
Temporal Aggregation of Seasonally

Near-Integrated Processes∗

Tomás del Barrio Castroa, Paulo M.M. Rodriguesb and A.M. Robert Taylorc

a Department of Applied Economics, University of the Balearic Islands

b Banco de Portugal, Nova School of Business and Economics, Universidade Nova de Lisboa

c Essex Business School, University of Essex

December 3, 2018

Abstract

We investigate the implications that temporally aggregating, either by average sampling or

systematic (skip) sampling, a seasonal process has on the integration properties of the resulting

series at both the zero and seasonal frequencies. Our results extend the existing literature in

three ways. First, they demonstrate the implications of temporal aggregation for a general sea-

sonally integrated process with S seasons. Second, rather than only considering the aggregation

of seasonal processes with exact unit roots at some or all of the zero and seasonal frequen-

cies, we consider the case where these roots are local-to-unity such that the original series is

near-integrated at some or all of the zero and seasonal frequencies. These results show, among

other things, that systematic sampling, although not average sampling, can impact on the non-

seasonal unit root properties of the data; for example, even where an exact zero frequency unit

root holds in the original data it need not necessarily hold in the systematically sampled data.

Moreover, the systematically sampled data could be near-integrated at the zero frequency even

where the original data is not. Third, the implications of aggregation on the deterministic kernel

of the series are explored.

Keywords: Aggregation, systematic sampling, average sampling, seasonal (near-) unit roots,

demodulation.

JEL classification: C12, C22.

1 Introduction

The use of temporally aggregated data is relatively common in empirical applications using macroe-

conomic and financial data. In practice temporal aggregation amounts to converting higher fre-

quencies (e.g. monthly) observed in the data to lower frequency components (e.g. quarterly or

annual). As such, temporal aggregation therefore has important implications for the time series
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University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, United Kingdom. Email: rtaylor@essex.ac.uk.
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properties of the resulting series (see, among others, Wei, 2006, Casals, Jerez and Satoca, 2009,

and Silvestrini and Veredas, 2008), not least because the underlying data transformation has the

potential to confuse unobservable cycles with observable cycles in the data. As discussed in Pons

(2006), the sampling effect known as aliasing (see, in particular, Koopmans, 1974) implies, for ex-

ample, that when a unit root in seasonally unadjusted quarterly data is detected, it is not possible

to state whether that unit root is also present at a monthly frequency with the same period or

occurs at another monthly frequency with a period which is not observable when using quarterly

observations. Interestingly, this also has an impact on the long-run component because, for exam-

ple, a zero-frequency unit root appearing in a quarterly data set could be the result of sampling a

monthly series with a root of modulus one (with a slight abuse of language, we will refer to roots

of modulus one simply as unit roots in what follows) present at a frequency other than zero; see,

for example, Granger and Siklos, (1995).

In this paper we extend the results of Pons (2006) in a number of empirically important di-

rections. First, we generalise his results for the case of quarterly data to the effects of temporally

aggregating a seasonal time series observed with a general number of seasons, S. We will focus

primarily on systematic sampling (also sometimes referred to as skip sampling) and average sam-

pling but other forms of temporal aggregation are also covered by our general framework. Second,

we use a more general local-to-unity framework which allows us to show the effects of aggregation

on seasonal cycles for both exact unit root and local to unity (or near-unit root) processes. Third,

our analysis also covers the effects of aggregation on the deterministic part of the seasonal process.

We will consider the impact of data aggregation by both systematic sampling and average sam-

pling. In obtaining our analytical results we use properties of circulant matrices associated with

near-integrated processes at the zero, Nyquist and seasonal harmonic frequencies and discuss their

connection with the demodulation operator introduced by Granger and Hatanaka (1964).1

We show how temporal aggregation modifies the demodulation operator associated with near-

integrated processes at the zero, Nyquist and harmonic seasonal frequencies. In particular we show

that a (near-) unit root at the zero frequency component of the data is always preserved under

temporal aggregation, regardless of whether systematic or average sampling is used. However,

where systematic sampling is used, the proximity of this zero frequency root to unity can depend

on the proximity to unity of roots at the seasonal frequencies in the original data. In particular,

even where an exact zero frequency unit root holds in the original data it is not guaranteed to

hold in the systematically sampled data if the relevant seasonal frequencies in the original data do

not admit exact unit roots. Moreover, under systematic sampling near-integrated behaviour at the

zero frequency can obtain in the temporally aggregated data even where the original data does not

contain a (near-) unit root at the zero frequency. In contrast, (near-) unit roots at the Nyquist

frequency are preserved only when Q := S/SA, SA denoting the number of seasons per year after

temporal aggregation has been applied, is odd. When Q is even these roots either vanish from

the series under average sampling or are shifted to the zero frequency under systematic sampling.

1Further details on complex demodulation can be found in, inter alia, Granger and Hatanaka (1964, Chapter
10) and Bloomfield (2000, Chapter 7). In the context considered in this paper, the complex demodulation operator,
e±iωt, will be used to shift a complex-valued autoregressive process, such as

(
1− φe±iωL

)
yt = εt, from its original

frequency, ω, to the zero frequency.
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Under systematic sampling, (near-) unit roots at the seasonal harmonic frequencies, say ωk, are

shifted under temporal aggregation to frequency Qωk. This also occurs under average sampling if

sin
(
Qωk
2

)
6= 0, whereas these roots vanish from the temporally aggregated series otherwise. We

also show that the demodulation operator impacts on the terms in the usual trigonometric form of

deterministic seasonality in the same way so that qualitatively similar implications are seen for the

deterministic component in the temporally aggregated data.

The outline of the remainder of the paper is as follows. In section 2, we detail the general

seasonally near-integrated process which we will consider and detail some relevant large sample

properties of the series. In section 3, we analytically explore the effects of temporal aggregation on

both the stochastic and deterministic components of the data using a framework which contains

both systematic and average sampling as special cases. Section 4 concludes. Mathematical proofs

and additional supporting material are provided in an on-line supplementary appendix.

2 Seasonally Near-Integrated Processes

Consider the univariate seasonal time series {ySn+s}, observed with seasonal periodicity S (e.g. for

monthly data, S = 12) over T := SN seasonal cycles (e.g. years) which satisfies the data generating

process [DGP],

ySn+s = xSn+s + µSn+s (2.1)

α(L)xSn+s = uSn+s, s = 1− S, ..., 0, n = 1, 2, . . . , N. (2.2)

For simplicity we will assume in what follows that the initial conditions x1−S , . . . , x0 are all zero.2

In (2.1)–(2.2), µSn+s := δ′zSn+s is a purely deterministic component, further details on which will

be given in section 3.2. The shocks uSn+s are assumed to follow a mean zero weakly stationary

process, precise assumptions on which will be given below. Finally, α(L) := 1 −
∑P

j=1 α
∗
jL

j is

a P -th order, P ≤ S, autoregressive polynomial, L denoting the conventional lag operator such

that LSj+kySn+s = yS(n−j)+s−k. We assume that this polynomial can be factorised as α(L) =∏bS/2c
k=0 ωk(L)hk , b·c denoting the integer part of its argument, and where hk ∈ {1, 0}, such that

P :=
∑bS/2c

k=0 fkhk, where ωk(L) is a polynomial of order fk whose coefficients are all real. Hence,

if hk = 1 (hk = 0) then so ωk(L) will be (not be) a factor of α(L). In this factorisation, ω0(L) :=

(1−α0L) associates the parameter α0 with the zero frequency ω0 := 0, ωk(L) := [1− 2(αk cosωk−
βk sinωk)L+(α2

k+β2k)L2] corresponds to the conjugate (harmonic) seasonal frequencies (ωk, 2π−ωk),
ωk = 2πk/S, with the associated parameters αk and βk, k = 1, . . . , S∗, S∗ := b(S−1)/2c, and, for S

even, ωS/2(L) := (1+αS/2L) associates the parameter αS/2 with the Nyquist frequency ωS/2 := π.3

2Relaxing this condition induces the presence of an additional term in X0 := (x1−S , ..., x0)′ in the right member
of the general solution (and approximations thereof) to the stochastic difference equation in (2.2) which appear
in, for example, Equations (2.6) and (2.7). Here the coefficient on X0 would depend on n if any of the roots are
local-to-unity but would be fixed otherwise. However, for the purposes of establishing the unit root properties of the
aggregated series this additional term is irrelevant and so to simplify our presentation we set the initial conditions to
zero. Moreover, it is also worth noting that allowing the initial conditions to be of op(N

1/2) would not alter any of
the large sample results which follow.

3In what follows, it is understood that terms relating to frequency π are to be omitted when S is odd and that
where reference is made to the Nyquist frequency this is understood only to apply where S is even.
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In order to allow for the presence of (near-) unit root behaviour at some or all of the zero

and seasonal frequency components of the data, we will adopt a local-to-unity framework for the

factors of α(L). Specifically, a local-to-unit root at the zero frequency is obtained by setting

α0 = α0,T = exp
(
c0
T

) ∼= (1 + c0
T

)
, where c0 is a finite constant. For the harmonic seasonal frequency

components, a complex pair of local-to-unit roots at frequency ωk is obtained setting αk = αk,T =

exp
(
ck
T

) ∼= (
1 + ck

T

)
and βk = 0, where ck is a finite constant. Notice that setting βk = 0 imposes

that ωk(L) =
(
1− αke−iωkL

) (
1− αkeiωkL

)
, where i :=

√
−1, and, hence, that these roots occur

at frequency ωk, as seems natural given the seasonal identification of the harmonic frequencies.

Finally, for the Nyquist frequency component, a local-to-unit root is obtained by setting αS/2 =

αS/2,T = exp(
cS/2
T ) ∼= (1+

cS/2
T ), where cS/2 is again a finite constant. Under this structure, {ySn+s}

admits both single (k = 0, S/2) and pairs of complex conjugate (k = 1, . . . , S∗) roots with modulus

in the neighborhood of unity at frequencies ωk, k = 0, ..., bS/2c. These roots are stable for ck < 0,

explosive for ck > 0, and are exact unit roots when ck = 0, k = 0, . . . , bS/2c. Notice, therefore, that

the structure considered here allows for different local-to-unity parameters, some of which could

be zero such that a pure unit root obtains, to hold at each of the zero and seasonal frequencies.

Crucially, (near-) unit roots will only occur in ySn+s at those frequencies, ωk, for which hk = 1,

k = 0, . . . , bS/2c.
The shocks uSn+s in (2.2) are taken to satisfy the conditions of Assumption 1 below.

Assumption 1. The error process {uSn+s} is i.i.d. with E(uSn+s) = 0 and E(u2Sn+s) = σ2 <∞.

Remark 1: In order to simplify our presentation, Assumption 1 does not allow for stationary

autocorrelation or conditional heteroskedasticity in uSn+s. However, our assumptions could be

weakened to allow for these effects without qualitatively altering the results presented in this

paper. In particular, we could permit uSn+s to follow a stationary and invertible ARMA process

thereby allowing non-zero stable roots to occur and these could be identified with any observable

spectral frequency. Doing so would introduce additional nuisance parameters, deriving from the

stationary autocorrelation, into the large sample results given in Lemma 1 below (see del Barrio

Castro, Rodrigues and Taylor, 2018, for details on how our key results given below in Equation

(2.7) and Lemma 1 would need to be modified when uSn+s is serially correlated) but would not

alter the conclusions drawn from them regarding the integrational properties of the aggregated

data. Moreover, the implied ARMA dynamics in the time aggregated data arising from stationary

and invertible ARMA shocks in the original data is already well documented in the literature; see,

for example, Chapter 20 of Wei (2006) for an excellent summary. �

Under the local-to-unity framework outlined above, we can write (2.2) as

(∆c0
0 )h0

(
∆
cS/2
S/2

)hS/2∏S∗

k=1

(
∆ck
k

)hk xSn+s = uSn+s (2.3)

where ∆c0
0 := 1−α0,TL, ∆

cS/2
S/2 := 1 +αS/2,TL, ∆ck

k := 1−2 cos [ωk]αk,TL+α2
k,TL

2, for k = 1, ..., S∗

and where αi,T := exp
(
ci
T

) ∼= (
1 + ci

T

)
, i = 0, 1, ..., bS/2c. For the purpose of the analysis that

follows it will be convenient to introduce the vector of seasons representation. For the process

4



under analysis in (2.3), it is observed that α(L) := 1 −
∑P

j=1 α
∗
jL

j is a P -th order, P ≤ S,

autoregressive polynomial, which we factor as α(L) := (∆c0
0 )h0

(
∆
cS/2
S/2

)hS/2∏S∗

k=1

(
∆ck
k

)hk . For any

value P ≤ S, (2.3) can always be represented as a first order vector of seasons process, viz.,

Ψ0Xn = Ψ1Xn−1 + U∗n, n = 1, ..., N (2.4)

where Xn :=
(
xSn−(S−1), xSn−(S−2), ..., xSn

)′
, Xn−1 :=

(
xS(n−1)−(S−1), xS(n−1)−(S−2), ..., xS(n−1)

)′
,

and where X0 is a vector of zeros and U∗n :=
(
uSn−(S−1), uSn−(S−2), ..., uSn

)′
is a vector white noise

process with zero mean vector and variance σ2IS , where IS is an S × S identity matrix, and Ψ0

and Ψ1 are lower and upper triangular S × S parameter matrices, respectively, whose precise form

is given in section S.5 of the supplementary appendix.

In what follows it will be convenient to consider the reduced form of (2.4); that is,

Xn = ΦXn−1 + Un (2.5)

where Φ := Ψ−10 Ψ1 and Un := Ψ−10 U∗n. The error term Un has zero mean and variance matrix

E (UnU
′
n) = Ψ−10 E

(
U∗nU

∗′
n

)
Ψ−1

′

0 = σ2Ψ−10 Ψ−1
′

0 . Backward substitution in (2.5) yields that,

Xn =
n−1∑
k=0

ΦkUn−k (2.6)

with the convention that Φ0 = IS .

As shown in the proof of Lemma 1 (which can be found in the supplementary appendix), the

representation in (2.6) can be equivalently written as the sum of partial sum processes relating to

the zero and seasonal frequencies, plus a lower order remainder term; viz,

Xn = ψ0C0

n∑
i=1

αn−i0,NUi+ψS/2CS/2

n∑
i=1

αn−iS/2,NUi+

S∗∑
k=1

(
ψ−k C

−
k + ψ+

k C
+
k

) n∑
i=1

αn−ik,NUi+op(N
1/2) (2.7)

where αi,N := exp
(
ci
N

) ∼= (1 + ci
N

)
, i = 0, 1, ..., bS/2c, and

C0 := Circ[1, 1, 1, . . . , 1], CS/2 := Circ[1,−1, 1, . . . ,−1], (2.8)

C−k := Circ
[
1, e−i(S−1)ωk , e−i(S−2)ωk , · · · , e−iωk

]
, (2.9)

C+
k := Circ

[
1, e+i(S−1)ωk , e+i(S−2)ωk , · · · , e+iωk

]
, (2.10)

where C0, CS/2, C
−
k and C+

k are S × S circulant matrices of rank 1. The weights ψ0, ψS/2 and, ψ−k
and ψ+

k , k = 1, . . . , S∗, are non-zero (zero) when ∆c0
0 , ∆

cS/2
S/2 and ∆ck

k , k = 1, . . . , S∗, respectively

are factors (not factors) of α(L). So, for example, if hk = 0 (hk = 1) for some k ∈ {1, . . . , S∗},
then ψ−k = ψ+

k = 0 (ψ−k 6= 0 and ψ+
k 6= 0). The specific value of these weights will depend of

the total number of factors present in α(L). In Remarks 3 and 4 below we provide some specific

examples. It is seen from the representation in (2.7) that a different circulant matrix arises for each
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spectral frequency that admits a (near-) unit root. Being able to use this approximation to the

representation in (2.6) enables us to derive Lemma 1 below and, as a result, then to demonstrate

clearly the impact that aggregation has on each of these components as the time span of the data

increases.

In Lemma 1 we now provide a multivariate invariance principle for Xn in (2.7). Where uSn+s is

serially uncorrelated this contains, as a particular case, the result given in Lemma A.1 of del Barrio

Castro, Rodrigues and Taylor (2018) (see Remark 4 below), and will form the basic building block

for the asymptotic results that will be provided in this paper.

Lemma 1. Let xSn+s be generated according to (2.3), and let Assumption 1 hold on uSn+s. Then,

as T →∞, and denoting weak convergence by “⇒”, it follows that,

N−1/2XbrNc ⇒ σ

[
ψ0C0Jc0 (r) + ψS/2CS/2JcS/2 (r) +

S∗∑
k=1

(
ψ−k C

−
k + ψ+

k C
+
k

)
Jck (r)

]
, r ∈ [0, 1]

(2.11)

where Jck (r) := (Jck,1−S (r) , Jck,2−S (r) , ..., Jck,0 (r))′, k = 0, 1, ..., bS/2c, is an S×1 vector standard

Ornstein-Uhlenbeck (OU) process such that dJck (r) = ckJck (r) dr + dW (r), with W (r) an S × 1

vector standard Brownian motion and where C0, CS/2, C−k and C+
k , k = 1, . . . , S∗, are the S × S

circulant matrices defined in (2.8)-(2.10). The coefficients ψ0 and ψS/2 will be non-zero if ∆c0
0 and

∆
cS/2
S/2 , respectively, are factors of α(L), while ψ−k and ψ+

k will be non-zero if ∆ck
k , k ∈ {1, . . . , S∗}

is a factor of α(L).

Remark 2: The S × S circulant matrices, C0, CS/2, C
−
k and C+

k for k = 1, . . . , S∗, can be written

as, C0 := v0v0
′, where v0

′ := (1, 1, 1, ..., 1), CS/2 := vS/2vS/2
′, where vS/2

′ := (−1, 1,−1, ..., 1) ,

and C−k := E−k1E
−′
k2 and C+

k := E+k1E
+′
k2 , where E−k1 :=

(
1, e−iωk , e−i2ωk , ..., e−i(S−1)ωk

)′
, E+k1 :=(

1, e+iωk , e+i2ωk , ..., e+i(S−1)ωk
)′
, E−k2 :=

(
1, e−i(S−1)ωk , ..., e−i2ωk , e−iωk

)′
and E+k2 :=

(
1, e+i(S−1)ωk , ...,

e+i2ωk , e+iωk
)′

. For a generic circulant matrix, say C := Circ [a1, a2, a3, · · · , aS ], of order S × S it

is always possible to write C = FΛF ∗ where F is the matrix of eigenvectors, which for all circulant

matrices is defined as

F :=



1 1 1 · · · 1

1 e−i
2π
S e−i

4π
S · · · e−i

2(S−1)π
S

1 e−i
4π
S e−i

8π
S · · · e−i

4(S−1)π
S

...
...

...
. . .

...

1 e−i
2(S−1)π

S e−i
4(S−1)π

S · · · e−i
2(S−1)2π

S


,

F ∗ is the conjugate transpose of F , and Λ := diag [λ1,λ2,, λ3,··· ,λS ] , where λj, j = 1, 2, · · · , S,

are the eigenvalues of C. The latter can be obtained as λj := PC(exp(2πS )j−1), where PC (z) :=∑S
j=1 ajz

j−1 is the polynomial associated with the circulant matrix C. Hence, C0, CS/2, C
−
k and

C+
k , k = 1, . . . , S∗, all have rank one and, from Theorem 3.1.1 in Fuller (1996), the non-zero
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eigenvalues of C0, CS/2, C
−
k and C+

k , which are equal to S, are located in the first position for C0,

in position S/2 − 1 for CS/2, in position k + 1 for C−k , and in position S − k + 1 for C+
k of the

principal diagonal of Λ. For further details on circulant matrices see, for example, Davis (1979),

Osborn and Rodrigues (2002), and Smith, Taylor and del Barrio Castro (2009). �

Remark 3: To take an example, consider the case where α(L) = ∆c0
0 ∆ck

k , for some k ∈ {1, ..., S∗}.
Then, h0 = 1 and hk = 1, and it can be shown that ψ0 = 1

2(1−cos(ωk)) , ψ
+
k = bk

(
eiωk

eiωk−1

)
and

ψ−k = ak

(
e−iωk

e−iωk−1

)
, where for any k ∈ {1, ..., S∗}, we define bk := eiωk

eiωk−e−iωk
and ak := e−iωk

e−iωk−eiωk .

As a second example, suppose α(L) = ∆
cS/2
S/2 ∆ck

k , again for some k ∈ {1, ..., S∗}. In this case,

ψS/2 = 1
2(1+cos(ωk))

, ψ+
k = bk

(
eiωk

eiωk+1

)
and ψ−k = ak

(
e−iωk

e−iωk+1

)
. As a final example, consider the

case where α(L) = ∆ck
k ∆

cj
j , for some j, k ∈ {1, ..., S∗} with j 6= k. In this case,

ψ−k = ak

{
aj

(
eiωj

eiωj − eiωk

)
+ bj

(
e−iωj

e−iωj − eiωk

)}
ψ−j = aj

{
ak

(
eiωk

eiωk − eiωj

)
+ bk

(
e−iωk

e−iωk − eiωj

)}
ψ+
k = bk

{
aj

(
eiωj

eiωj − e−iωk

)
+ bj

(
e−iωj

e−iωj − e−iωk

)}
ψ+
j = bj

{
ak

(
eiωk

eiωk − e−iωj

)
+ bk

(
e−iωk

e−iωk − e−iωj

)}
.

Derivations for the three examples above are provided in the supplementary appendix. �

Remark 4: For the case where a (near-) integrated component is present at all of the zero

and seasonal frequencies, such that hk = 1, for k = 0, ..., bS/2c, it follows from Lemma A.1

of del Barrio Castro, Rodrigues and Taylor (2018), noting that the circulant matrices Ck :=

Circ [cos [0] , cos [ωk] , cos [2ωk] , . . . , cos [(S − 1)ωk]], k = 1, . . . , S∗, which appear in Lemma A.1

of del Barrio Castro, Rodrigues and Taylor (2018) can be written4 as Ck = 1
2(C−k + C+

k ), that

N−1/2XbrNc ⇒
σ

S

[
C0Jc0 (r) + CS/2JcS/2 (r) +

S∗∑
i=1

(
C−k + C+

k

)
Jck (r)

]
, r ∈ [0, 1]. (2.12)

The result in (2.12) is a special case of Lemma 1 above. Notice that in this example each of the

ψ0, ψS/2, ψ
−
k and ψ+

k , k = 1, . . . , S∗, weights is equal to 1/S. �

Remark 5: Using the results given for the circulant matrices C0, CS/2, C
−
k and C+

k , k = 1, . . . , S∗,

in Remark 2, the vector of seasons representation in (2.7) can also be written as,

Xn = ψ0v0v0
′
n∑
i=1

αn−i0,NUi+ψS/2vS/2vS/2
′
n∑
i=1

αn−iS/2,NUi+

S∗∑
k=1

(
ψ−k E

−
k1E
−′
k2 + ψ+

k E
+
k1E

+′
k2

) n∑
i=1

αn−ik,NUi+op(N
1/2).

Defining v−k := e−iωkE−j1 = (e−iωk , e−iωk2, ..., e−iωkS)′ and v+
k := eiωkE+j1 = (eiωk , eiωk2, ..., eiωkS)′,

k = 1, ..., S∗, and using the results that e−iωkE−j1 = e−iωkE+j2 and eiωkE+j1 = eiωkE−j2, it is seen that

4Using the fact that for ωk = 2πk/S, (S − 1)ωk = 2πk−2πk/S, and cos (jωk) = cos ((S − j)ωk) = 1
2
(e−i(S−j)ωk +

ei(S−j)ωk ), j = 0, 1, . . . , S − 1.
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the foregoing equation can be equivalently written as

Xn = ψ0v0v0
′
n∑
i=1

αn−i0,NUi+ψS/2vS/2vS/2
′
n∑
i=1

αn−iS/2,NUi+
S∗∑
k=1

(
ψ−k v−k v+′

k + ψ+
k v+

k v−′k
) n∑
i=1

αn−ik,NUi+op(N
1/2).

(2.13)

The representation in (2.13) will prove convenient for our subsequent analysis of the impact of

temporal aggregation on the unit root and stationarity properties of xSn+s. Notice in particular,

that the pre-multiplication of the near-integrated processes v0
′∑n

i=1 α
n−i
0,NUi, vS/2

′∑n
i=1 α

n−i
S/2,NUi,

v+′
k

∑n
i=1 α

n−i
k,NUi and v−′k

∑n
i=1 α

n−i
k,NUi, k = 1, ..., S∗, by the vectors v0, vS/2, v−k , v+

k , k = 1, ..., S∗,

respectively, transforms these to near-integrated processes whose spectral peak occurs at the zero,

π and ωk, k = 1, ..., S∗, frequencies respectively; cf. Definition 1.1 of Gregoir (2006, p.48). These

transformation vectors, also known as demodulation operators, were introduced by Granger and

Hatanaka (1964) and have also been employed by, among others, Gregoir (1999, 2006, 2010) and

del Barrio Castro, Rodrigues and Taylor (2018). As we will see in the next section, temporal

aggregation can alter the form of these demodulation operators, and this can lead to the presence

of near-integrated behaviour at different spectral frequencies to those observed in the data before

aggregation. �

Remark 6: Using the result in (2.13), the multivariate FCLT result in (2.11) of Lemma 1 can be

equivalently be expressed as,

N−1/2XbrNc ⇒ σ

[
ψ0v0v0

′Jc0 (r) + ψS/2vS/2vS/2
′JcS/2 (r) +

S∗∑
k=1

(
ψ−k v−k v+′

k + ψ+
k v+

k v−′k
)
Jck (r)

]
,

r ∈ [0, 1]. Moreover, noting that v+′

k = hα′k + ihβ′k and v−
′

k = hα′k − ihβ′k where

[
hα′k
hβ′k

]
:=

[
cos [ωk] cos [2ωk] · · · cos [Sωk]

sin [ωk] sin [2ωk] · · · sin [Sωk]

]
,

the FCLT can also be written as,

N−1/2XbrNc ⇒ σ
{
ψ0v0

√
SJ0,c0(r) + ψS/2vS/2

√
SJS/2,cS/2(r) +

S∗∑
k=1

[
ψ−k v−k

√
S/2

(
Jαk,ck (r) + iJβk,ck (r)

)
+ ψ−k v+

k

√
S/2

(
Jαk,ck (r)− iJβk,ck (r)

)]}
, (2.14)

r ∈ [0, 1], where Jj,cj (r) := S−1/2v′jJcj (r), j = 0, S/2, Jαk,ck (r) := hα′k (S/2)−1/2 Jck (r) and

Jβk,ck (r) := hβ′k (S/2)−1/2 Jck (r), k = 1, ..., S∗, are seen to be S mutually independent (by virtue of

the fact that they are orthogonal linear combinations of the elements of vector OU processes each

of which is driven by the same vector standard Brownian motion process) scalar OU processes. �
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3 The Impact of Temporal Aggregation

3.1 Temporal Aggregation

Following Franses and Boswijk (1996), we consider temporal aggregation schemes that can be

written such that the temporally aggregated data, when written in vector of seasons form, is

defined via the original data, again in vector of seasons form, and a sample aggregation matrix A

as

Y A
n := AYn, n = 1, 2, ..., N. (3.1)

In (3.1), A is an SA×S matrix of full row rank where S is the number of seasons prior to aggregation

and SA is the number of seasons after aggregation; for example, in the case of aggregating monthly

to quarterly data, S = 12 and SA = 4, while in the case where the seasonality is completely

aggregated out of the data, SA = 1.

For most temporal aggregation schemes, the matrix A, can be written in generic form as

A :=


aQ 0Q 0Q · · · 0Q

0Q aQ 0Q · · · 0Q
...

...
...

. . .
...

0Q 0Q 0Q · · · aQ

 (3.2)

where Q := S/SA is an integer, and where 0Q is the 1×Q vector of zeros, and aQ is a 1×Q vector.

Both systematic (or point-in-time) sampling and average sampling satisfy the form given in (3.2).

The former is used when dealing with stock variables5 and is defined such that aQ := (0, 0, . . . , 1)

so that only observations Q, 2Q, ..., kQ, ... of the original time series are retained in the aggregated

data. The latter is used when dealing with flow variables and is defined such that aQ := 1Q, where

1Q is the 1×Q vector of ones, so that the kth element of the aggregated data series is formed as

the sum of elements (k − 1)Q + 1, ..., kQ in the original data. Temporal aggregation can also be

considered for cases where Q is non-integer, although we will not analyse such cases in any detail

here. An example of this is where daily data is converted to working day data, such that S = 7

and SA = 5. On possible way this can be done is by treating the data for Saturday and Sunday

as repeated missing observations. In this case A is comprised of the first five rows of the seven by

seven identity matrix.

In section 3.2 we will first consider the impact of temporal aggregation on the stochastic part

of ySn+s of (2.1); that is, we will consider the properties of XA
n := AXn. We will consider the

impact of systematic sampling in section 3.2.1, and average sampling in section 3.2.2. The impact

of temporal aggregation on the deterministic component, µSn+s, in (2.1) will then be considered in

section 3.3.

5Stocks are variables such as prices, unemployment, temperature, and the capital stock that can, in principle, be
observed at any given point in time, whereas flows are variables such as rainfall, income, and consumption expenditures
that are defined with respect to an interval of time.
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3.2 The Impact of Aggregation on the Stochastic Component

3.2.1 Systematic Sampling

Consider again the decomposition given for the vector of seasons representation for Xn given in

(2.13). Pre-multiplying through by A, we therefore have that

AXn = ψ0Av0v0
′
n∑
i=1

αn−i0,NUi + ψS/2AvS/2vS/2
′
n∑
i=1

αn−iS/2,NUi

+
S∗∑
k=1

(
ψ−k Av−k v+′

k + ψ+
k Av+

k v−′k
) n∑
i=1

αn−ik,NUi + op(N
1/2). (3.3)

It immediately follows from (2.14) and an application of the continuous mapping theorem that,

under the conditions of Lemma 1, the following FCLT applies to XA
n ,

N−1/2XA
brNc = N−1/2AXbrNc ⇒ σ

{
ψ0Av0

√
SJ0,c0(r) + ψS/2AvS/2

√
SJS/2,cS/2(r)

+

S∗∑
k=1

[
ψ−k Av−k

√
S/2

(
Jαk,ck (r) + iJβk,ck (r)

)
+ ψ−k Av+

k

√
S/2

(
Jαk,ck (r)− iJβk,ck (r)

)]}
, r ∈ [0, 1].

It is immediately seen from a comparison of (3.3) with (2.13) that the demodulation operators

v0, vS/2, v
−
k and v+

k , k = 1, ..., S∗, in (2.13) are transformed under data aggregation to Av0, AvS/2,

Av−k and Av+
k , k = 1, ..., S∗, respectively, in (3.3). We will therefore need to examine the form

of these demodulation operators for a given A matrix to establish at which spectral frequencies

near-integrated behaviour will be present in the temporally aggregated data.

Under systematic sampling aQ := (0, 0, . . . , 1). In connection with the first partial sum on the

right hand side of (3.3), we therefore have that Av0 = 1SA . Consequently, the frequency associated

with the demodulation operator is not altered by aggregation and, hence, this term will converge

(on scaling) to an SA-dimensional vector each element of which is given by J0,c0(r). Therefore

the temporally aggregated data will, like the original process, admit a near-unit root at the zero

frequency.

Turning to the second partial sum process in (3.3), we have that AvS/2 = (eiπQ, eiπ2Q, eiπ3Q, . . . ,

eiπSAQ)′. Where Q is odd it is seen that AvS/2 = (−1, 1, ..., 1)′ and, hence, the demodulation

operator will again not be altered by aggregation and the scaled partial sum will converge to

an SA-dimensional vector the jth element of which is given by (−1)jJS/2,cS/2(r) which therefore

implies the presence of a Nyquist frequency near-unit in the aggregated data, just as in the original

data. However, where Q is even it is seen that AvS/2 = 1SA and so the frequency associated

with the demodulation operator is altered to the zero frequency by aggregation. Consequently, the

partial sum is transformed to the zero frequency with convergence on scaling to an SA-dimensional

vector each element of which is given by JS/2,cS/2(r) which therefore implies the presence of a zero

frequency near-unit root in the aggregated data.
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Finally, consider the seasonal harmonic frequencies, ωk, k = 1, ..., S∗. Here we have that,

Av+
k = eiωk(eiωk(Q−1), eiωk(2Q−1), eiωk(3Q−1), . . . , eiωk(SAQ−1))′

= (eiωkQ, eiωk2Q, eiωk3Q, . . . , eiωkSAQ)′,

Av−k = e−iωk(e−iωk(Q−1), e−iωk(2Q−1), e−iωk(3Q−1), . . . , e−iωk(SAQ−1))′

= (e−iωkQ, e−iωk2Q, e−iωk3Q, . . . , e−iωkSAQ)′.

We therefore see that the frequency associated with the demodulation operator is mapped from

ωk to ωkQ, k = 1, ..., S∗, by systematic sampling. As a consequence, the corresponding complex

conjugate pairs of partial sums in (3.3) are transformed to either a single partial sum process

(if ωkQ coincides with the zero or Nyquist frequencies), or a complex conjugate pair of partial

sum processes associated with frequency ωkQ. These will converge, on scaling, to either an SA-

dimensional vector or a pair of SA-dimensional vectors each element of which is given by an OU

process or a complex-valued OU process at frequency ωkQ, which therefore implies the presence

of either a near-unit root or a complex conjugate pair of near-unit roots at frequency ωkQ in the

aggregated data.

Table 1: Summary of Frequency Allocations under Systematic Sampling of Monthly Data

k 0 1 2 3 4 5 6

Original monthly frequency ωk 0 π
6

π
3

π
2

2π
3

5π
6 π

Allocation in quarterly data ωAk 0 π
2 π π

2 0 π
2 π

Allocation in annual data ωAk 0 0 0 0 0 0 0

To illustrate these effects, consider the specific example of systematic sampling from monthly

(S = 12) observations to either quarterly (SA = 4) observations, such that Q = 3, or to annual

observations, such that Q = 12. Using the general results above, the implications for this example

are summarised in Table 1.6 We can see from Table 1 that a near-unit root at the zero frequency

in the systematically sampled quarterly data could be attributable to either the presence in the

monthly data of a zero frequency near-unit root or a complex conjugate pair of near-unit roots at

frequency 2π
3 in the monthly data, or indeed the presence of both. Similarly, a Nyquist frequency

near-unit root in the quarterly data under systematic sampling can obtain from the presence in the

monthly data of either a Nyquist frequency near-unit root or a pair of complex conjugate near-unit

roots at frequency π
3 , or both. A complex conjugate pair of near-unit roots will arise at the annual

frequency (π2 ) in the systematically sampled quarterly data if a complex conjugate pair of near-unit

roots appears at frequency π/2 in the monthly data but will also arise if a complex conjugate pair

of near-unit roots is present at the π
6 or 5π

6 frequencies in the monthly data. In the case of the

systematically sampled annual data, it can be seen that a conventional near-unit root will arise

from the presence of near-unit roots at any of the zero and seasonal frequencies in the monthly

6Recalling that the spectrum repeats with period 2π, and that ω and 2π−ω, ω ∈ (0, π), are conjugate frequencies.
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data.

Remark 7: In the simplest possible case where a near-unit root at a given frequency in the

temporally aggregated data arises from near-unit root behaviour at a single frequency in the original

data then so it can be straightforwardly seen from the results above that it will inherit the local-to-

unity parameter associated with that near-unit root in the original data. However, as the examples

given in Table 1 have shown, near-unit root behaviour at a given frequency in the aggregated data

can also arise from near-unit root behaviour at more than one distinct frequency in the original

data. An interesting question this raises is what will the local-to-unity parameter associated with

that near-unit root be in such cases? The answer is that it will be some linear combination of the

relevant local-to-unity parameters present in the original process. In the supplementary appendix

we present in detail the algebra underlying this result for three example DGPs where the data

are systematically sampled and near-unit roots are present at more than one of the zero and

seasonal frequencies: Case A, ∆c0
0 ∆ck

k xSn+s = uSn+s; Case B, ∆
cS/2
S/2 ∆ck

k xSn+s = uSn+s, and Case

C, ∆ck
k ∆

cj
j xSn+s = uSn+s. Case A relates to a process which admits near-unit roots at the zero and

kth harmonic seasonal frequency, ωk, while in Case B near-unit roots are present at the Nyquist

frequency and ωk. Finally, in case C near-unit roots are present at the jth and kth harmonic

frequencies, ωj and ωk, j 6= k. To illustrate, consider the case where we systematically sample

from monthly to quarterly data. For Case A suppose we have ω4 = 2π
3 such that both the zero

frequency near-unit root and the harmonic frequency complex conjugate pair of near unit-roots are

mapped to the zero frequency under aggregation. The resulting zero frequency near-unit root in the

aggregated data has local-to-unity parameter cA0 := (c0 + 2c4)/3. Notice, therefore, that even if the

original data contained a pure unit root at the zero frequency (c0 = 0), the temporally aggregated

data would not contain a pure zero frequency unit root unless the original process also contained

a pair of complex conjugate pure unit roots at frequency 2π
3 (i.e. c4 = 0). Similarly, in Case B

where ωk = π
3 , such that both the Nyquist frequency near-unit root and the harmonic frequency

complex conjugate pair of near unit-roots are mapped to the Nyquist frequency under aggregation,

the resulting Nyquist frequency near-unit root in the aggregated data has local-to-unity parameter

cAS/2 := (cS/2 + 2ck)/3. �

3.2.2 Average Sampling

In contrast to systematic sampling, it is well known that average sampling will, in general, induce

moving average (MA) behaviour into the aggregated data; see Wei (2006, Chapter 20) for a general

discussion on this point and the Appendix of Pons (2006) for a discussion specific to the case of

average sampling from monthly to quarterly data when unit roots are present in the monthly data.

This will therefore also induce MA behaviour into the vector of seasons form for the aggregated

data; further discussion on this issue is provided in Section S.5 of the on-line supplementary ap-

pendix. However, the resulting MA dynamics do not impact on the near-integrated properties of

the aggregated process (they merely change the long-run variances associated with the terms in the

FCLT). For the purposes of the main text, without loss of generality for what concerns us here, we

may therefore simply disregard any MA behaviour induced in the vector of seasons form by average
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sampling of the data.

Under average sampling aQ is a 1×Q vector of ones, 1Q and, therefore, Av0 = Q1SA . In the

case of the Nyquist frequency,

AvS/2 = eiπ
S/SA−1∑
h=0

eiπh(1, eiπQ, eiπ2Q, . . . , eiπ(SA−1)Q)′

=
sin (Qπ/2)

sin (π/2)
ei(Q+1)π

2 (1, eiπQ, eiπ2Q, . . . , eiπ(SA−1)Q)′. (3.4)

We can therefore see immediately that, just as in the case of systematic sampling, a near-unit root

at the zero frequency will always be retained under average sampling. Moreover, from (3.4) and

using the fact that
∑Q−1

h=0 e
iπh = sin(Qπ/2)

sin(π/2) e
i(Q−1)π/2, it follows that average sampling of a process

which admits a near-unit root at the Nyquist frequency will lead to the presence of a near-unit

root at the Nyquist frequency in the aggregated data only in the case where Q is odd. Where Q is

even, such that sin (Qπ/2) = 0, the root will vanish under average sampling.

Turning to the seasonal harmonic frequencies, ωk, k = 1, ..., S∗, we have that,

Av+
k = eiωk

Q−1∑
h=0

eiωkh(1, eiωkQ, eiωk2Q, . . . , eiωk(SA−1)Q)′

=
sin (Qωk/2)

sin (ωk/2)
ei(Q+1)

ωk
2 (1, eiωkQ, eiωk2Q, . . . , eiωk(SA−1)Q)′ (3.5)

and

Av−k = e−iωk
Q−1∑
h=0

e−iωkh(1, e−iωkQ, e−iωk2Q, . . . , e−iωk(SA−1)Q)′

=
sin (Qωk/2)

sin (ωk/2)
e−i(Q+1)

ωk
2 (1, e−iωkQ, e−iωk2Q, . . . , e−iωk(SA−1)Q)′ (3.6)

where we have used the fact that
∑Q−1

h=0 e
∓iωkh = sin(Qωk/2)

sin(ωk/2)
e∓i(Q−1)ωk/2. It can be observed that a

pair of complex conjugate near-unit roots at frequency ωk will vanish under average sampling in

cases where sin (Qωk/2) = 0. This will happen at all frequencies ωk for which the ratio (k/SA)

takes integer values, k = 1, ..., S∗. Where sin (Qωk/2) 6= 0, the frequency associated with the

demodulation operator is, as in the case of systematic sampling, mapped from ωk to ωkQ, k =

1, ..., S∗, under average sampling and so the effects here are the same as described above under

systematic sampling.7

Paralleling the results in Table 1 for systematic sampling, Table 2 summarises the implications

of average sampling for the near-unit root properties of data aggregated from monthly observations

to either quarterly or annual observations. Notice that for the quarterly aggregated data, the

7In other words, Q is a constant that determines the outcome of the filters at a specific frequency, for instance,
for the zero, Nyquist and harmonic frequencies the filters are (1 + L + ... + LQ−1), sin(Qπ/2)/ sin(π/2)e−i(Q+1)π/2,
and sin(Qωk/2)/ sin(ωk/2)ei(Q+1)ωk/2 and sin(Qωk/2)/ sin(ωk/2)e−i(Q+1)ωk/2, respectively.

13



impact of average sampling is the same as for systematic sampling except for the case of a pair

of complex conjugate near-unit roots at frequency 2π
3 which are annihilated by average sampling.

For the annual aggregated data, average sampling will annihilate near-unit root behaviour at any

seasonal frequency. As with the case of systematic sampling discussed in Remark 7, the local-to-

unity parameter associated with a near-unit root process arising at a given frequency in the average

sampled data will be a weighted combination of the non-centrality parameter(s) at the frequency

or frequencies in the non-aggregated data which are mapped to that frequency in the aggregate

data.

Table 2: Summary of Frequency Allocations under Average Sampling of Monthly Data

k 0 1 2 3 4 5 6

Original monthly frequency ωk 0 π
6

π
3

π
2

2π
3

5π
6 π

Allocation in quarterly data ωAk 0 π
2 π π

2 − π
2 π

Allocation in annual data ωAk 0 − − − − − −

3.3 The Impact of Aggregation on the Deterministic Kernel

We now turn our attention to the impact of temporal aggregation on the deterministic com-

ponent µSn+s := δ′zSn+s of (2.1). We can write the vector of seasons representation for Yn

as Yn = Xn + Znδ, n = 1, ..., N , where Xn is as defined just below (2.7), and where Zn :=

(zSn+1−S , zSn+2−S , ..., zSn)′. Consequently, the deterministic component in the temporally aggre-

gated data will be given by AZnδ ≡ ZAn δ
A where ZAn is the matrix of resulting deterministic

variables in the aggregated data and δA the corresponding parameter vector. The deterministic

component in the aggregated data can therefore be straightforwardly evaluated for a given deter-

ministic kernel in the original data and aggregation matrix, A.

In what follows we will adopt the familiar trigonometric deterministic seasonal form and follow

del Barrio Castro, Rodrigues and Taylor (2018) by focusing attention on the following three cases

of practical relevance, although other possibilities, including seasonal mean shifts, could also be

analysed using the same framework:

Case 1: Zero and seasonal frequency intercepts:

zSn+s = zSn+s,1 := (1, cos(2π(Sn+ s)/S), sin(2π(Sn+ s)/S), ...

..., cos(2πS∗(Sn+ s)/S), sin(2πS∗(Sn+ s)/S), (−1)Sn+s
)′
,

s = 1 − S, ..., 0, n = 1, ..., N, with δ :=
(
δ0, δ

′
1, ..., δ

′
S∗ , δS/2

)′
and δk := (δk,1, δk,2)

′ , k = 1, ..., S∗.

Notice that the first element of zSn+s,1 is a zero frequency (or standard) intercept variable, while

the last element, (−1)Sn+s, is a Nyquist frequency intercept variable. Finally, cos(2πk(Sn+ s)/S)
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and sin(2πk(Sn + s)/S) together form a pair of intercepts at the kth harmonic frequency, ωk,

k = 1, ..., S∗.

Case 2: Zero and seasonal frequency intercepts, and zero frequency trend: zSn+s = zSn+s,2 :=

(z′Sn+s,1, Sn + s)′, s = 1 − S, ..., 0, n = 1, ..., N, with δ := (δ0, δ
′
1, ..., δ

′
S∗ , δS/2, δ0)

′ and δk :=

(δk,1, δk,2)
′, k = 1, ..., S∗.

Case 3: Zero and seasonal frequency intercepts and trends:

zSn+s = zSn+s,3 :=
(
z′Sn+s,1, (Sn+ s) z′Sn+s,1

)′
, s = 1− S, ..., 0, n = 1, ..., N

with δ := (δ0, δ
′
1, ..., δ

′
S∗ , δS/2, δ0, δ

′
1, ..., δ

′
S∗ , δS/2)

′ and δk :=
(
δk,1, δk,2

)′
, k = 1, ..., S∗. Notice that

the interaction of the time index, (Sn + s), onto zSn+s,1 results in deterministic spectral (linear)

trends at each of the zero and seasonal frequencies, ωk, k = 0, ..., bS/2c.

Remark 8: Notice that under Case 1, Zn = (v0,h
α
1 ,h

β
1 , ...,h

α
S∗ ,h

β
S∗ ,vS/2), where v0, hαk and

hβk , k = 1, ..., S∗, and vS/2 are the S × 1 vectors defined in section 2. Under Case 2, Zn =

(v0,h
α
1 ,h

β
1 , ...,h

α
S∗ ,h

β
S∗ ,vS/2, tn), where tn := (Sn+ 1−S, Sn+ 2−S, ..., Sn)′. Finally, under Case

3, Zn = (v0,h
α
1 ,h

β
1 , ...,h

α
S∗ ,h

β
S∗ ,vS/2, tn, tn ◦ hα1 , tn ◦ hβ1 , ..., tn ◦ hαS∗ , tn ◦ hβS∗ , tn ◦ vS/2), where ◦

denotes the Hadamard (elementwise) product. �

Remark 9: The deterministic component µSn+s under Case 3 above can be equivalently written

in terms of seasonally varying intercept and trend coefficients as µSn+s := a∗s + b∗s(Sn + s). For

Case 1 this holds with b∗s = 0, s = 1 − S, ..., 0, imposed. In Case 2 this holds but with b∗s = b∗,

s = 1−S, ..., 0, imposed. These representations are mathematically equivalent with a unique linear

mapping existing between the elements of δ and {a∗s, b∗s}0s=1−S above; see Canova and Hansen (1992,

p.239) for precise details. The vector of seasons representation for the deterministic component in

this case can be written as Dnγ, where: under Case 1, Dn = IS , the Sth order identity matrix;

under Case 2, Dn = (IS , tn), and under Case 3, Dn = (IS , tn ◦d1, ..., tn ◦dS), where dj , j = 1, ..., S,

are S × 1 vectors whose elements are all zero other than their jth element which is 1. �

It can be seen that the trigonometric representation for deterministic seasonality in Cases 1–3

is closely related to the demodulation operator introduced in section 2.1. In particular, the real

(Re[.]) and imaginary (Im[.]) parts of e−iωk(Sn+s) for ωk, k = 0, . . . , bS/2c correspond to the columns

of z′Sn+s,1. Clearly for both ω0 and ωS/2 only the real parts are relevant because e−i0(Sn+s) = 1

and e−iπ(Sn+s) = (−1)Sn+s. For the harmonic seasonal frequencies, ωk, k = 1, ..., S∗, we have

that Re[e−i
2π
S
(Sn+s)] = cos

(
2π
S (Sn+ s)

)
and Im[e−i

2π
S
(Sn+s)] = sin

(
2π
S (Sn+ s)

)
. Bearing this in

mind, the impact of temporal aggregation on these trigonometric deterministic variables through

the implied change in the demodulation operator induced by the matrix A will parallel what we

observed in section 3.1 for the spectral frequency stochastic components of the aggregated data.

We consider the effects of systematic and average sampling on the deterministic component in turn.

Where systematic sampling is used it can then be seen that zero frequency intercept and trend

variables for the original data will be transformed to zero frequency intercept and trend variables re-

spectively for the aggregated data. Similarly, Nyquist frequency intercept and trend variables will be
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transformed to Nyquist frequency intercept and trend variables respectively for the aggregated data

when Q is odd, but will shift to zero frequency intercept and trend variables respectively when Q is

even. Finally for the harmonic frequencies, ωk, k = 1, . . . , S∗, the deterministic variables associated

with frequency ωk will be transformed such that together they span the space of the analogous deter-

ministic variable(s) at frequency Qωk after systematic sampling. Defining the SA×1 vectors vA0 :=

(1, 1, ..., 1)′, vAS/2 := (−1, 1, ..., 1)′, together with hαAkQ := (cos [Qωk] , cos [2Qωk] , . . . , cos [SAQωk])

and hβ AkQ := (sin [Qωk] , sin [2Qωk] , . . . , sin [SAQωk]), k = 1, ..., S, these transformations can be

seen to occur because, under systematic sampling: Av0 = vA0 ; AvS/2 = vAS/2 when Q is odd and

AvS/2 = vA0 when Q is even; and Ahαk = hαAkQ and Ahβk = hβ AkQ , k = 1, ..., S∗.8 Taken together,

these results entail that the deterministic component in the aggregated data will again contain

zero and seasonal frequency intercepts in Case 1, zero and seasonal frequency intercepts and a zero

frequency linear trend in Case 2, and zero and seasonal frequency intercepts and trends in Case

3. In each case the zero and seasonal frequencies are now collectively given by ωAk := 2πk/SA,

k = 0, ..., bSA/2c. The coefficients on these deterministic variables will be functions of the intercept

and trend parameters in the original data. To give a simple example, suppose we consider system-

atic aggregation from S = 4 to SA = 2 and let Case 1 above hold on the deterministic component.

Then in vector of seasons form the deterministic component for the original data is given by

Znδ =


1 0 1 −1

1 −1 0 1

1 0 −1 −1

1 1 0 1




δ0

δ1,1

δ1,2

δ2

 .

Here A :=

[
0 1 0 0

0 0 0 1

]
, and so we have that AZn =

[
1 −1 0 1

1 1 0 1

]
. Consequently,

AZnδ ≡ ZAn δA =

[
1 −1

1 1

][
δ0 + δ2

δ1,1

]

so that in the systematically sampled (biannual) data we have a zero frequency intercept with

coefficient δ0 + δ2 and a Nyquist frequency intercept with coefficient δ1,1. Notice therefore that, for

example, the zero frequency intercept in the aggregated data could be zero (non-zero) even where

it is non-zero (zero) in the original data.

Similarly, it can be seen that under average sampling the zero frequency deterministic variables

for the original data will again be transformed to the corresponding zero frequency variables for

the aggregated data. Nyquist frequency deterministic variables will either be annihilated (vanish)

when Q is even, or will be transformed to the corresponding Nyquist frequency variables for the

aggregated data when Q is odd. For the harmonic frequencies ωk, k = 1, . . . , S∗, the deterministic

variables associated with frequency ωk will be annihilated when k/SA is an integer, and transformed

8Notice that where Qωk = aπ with a a positive integer, then so hβ AkQ = 0, while hαAkQ = (−1, 1, ..., 1)′ if a is odd

and hαAkQ = (1, 1, ..., 1)′ if a is even.
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to the analogous deterministic variable(s) at frequencyQωk when k/SA is non-integer. In particular:

Av0 is proportional to vA0 ; AvS/2 = 0 when Q is even and proportional to vAS/2 when Q is odd;

Ahαk = Ahαk = 0 when k/SA is an integer, k = 1, ..., S∗, while Ahαk,S and Ahβk,S are proportional to

hαAkQ and hβ AkQ , respectively, when k/SA is non-integer, k = 1, ..., S∗. As with systematic sampling,

the deterministic component in the aggregated data will therefore again contain zero and seasonal

frequency intercepts in Case 1, zero and seasonal frequency intercepts and a zero frequency linear

trend in Case 2, and zero and seasonal frequency intercepts and trends in Case 3, but where in

each case the zero and seasonal frequencies are again collectively given by ωAk , k = 0, ..., bSA/2c.
The coefficients on these deterministic variables will again be functions of the intercept and trend

parameters in the original data but these will not be the same functions as in the systematic

sampling case. For the sample example given above aggregating quarterly to biannual data under

Case 1, A :=

[
1 1 0 0

0 0 1 1

]
, and so we have that AZn =

[
2 −1 1 0

2 1 −1 0

]
. Consequently,

AZnδ ≡ ZAn δA =

[
1 −1

1 1

][
2δ0

δ1,1 − δ2,1

]

so that in the average sampled data we have a zero frequency intercept with coefficient 2δ0 (which

therefore depends only on the value of the zero frequency intercept in the original data), and a

Nyquist frequency intercept with coefficient δ1,1 − δ2,1.

4 Conclusions

In this paper we have built upon earlier work pertaining to monthly data in Pons (2006) and

investigated the implications for the zero and seasonal frequency near-unit root properties of a time

series which has been subject to temporal aggregation from S seasons per cycle to SA < S seasons.

As part of these results we have shown that systematic sampling, appropriate for stock variables, can

impact on the non-seasonal unit root properties of the data, while for average sampling, appropriate

for flow variables, this is not the case. We have also analysed the impact of aggregation on the

deterministic kernel of the series. Our results again show that for systematically sampled data the

non-seasonal aspect of the deterministic kernel can be affected by temporal aggregation. The results

relating to the near-unit root properties and the deterministic kernel properties of the aggregated

series were shown to parallel each other. In particular, both were shown to be attributable to

changes, induced by the temporal aggregation scheme, in the frequency associated with the relevant

demodulation operator.

As a final comment, we have explored the impact that temporal aggregation has on the inte-

gration properties of a seasonally observed processes by using conventional asymptotic arguments

based on an increasing time span. As pointed out by a referee, it might also be possible to attack

this problem in a way that views the sample size as two-dimensional, using so-called infill asymp-

totics whereby the sampling frequency is also allowed to increase. Undertaking such an analysis is

beyond the scope of the present paper, but could constitute a fruitful avenue for further research
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in this topic.
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Supplementary Online Appendix
to

Temporal Aggregation of Seasonally Near-Integrated Processes

by

T. del Barrio Castro, P.M.M. Rodrigues and A.M.R. Taylor

S.1 Introduction

The contents of this supplement are organised as follows. In section S.2 we provide a proof of

Lemma 1. Next in section S.3 we provide a derivation of the results given for the three examples

in Remark 3. In section S.4 we provide detailed derivations for Cases A, B and C considered in

Remark 7 where near-unit roots occur at more than one distinct frequency. Finally, in section S.5,

we present an additional discussion related to the moving average dynamics potentially induced by

average sampling. Additional references are included at the end of the supplement.

S.2 Proof of Lemma 1

Consider first the following partial fraction decomposition,

1

∆ck±
k ∆

cj±
j

=
(
∆ck±
k

)−1
℘k±kj −

(
∆
cj±
j

)−1
℘j±kj (S.1)

where k, j = 0, 1, ..., S/2, ∆ck±
k :=

(
1− e±iωkαk,TL

)
, ∆

cj±
k :=

(
1− e±iωjαj,TL

)
, and

℘k±kj :=
e±iωkαk,T(

e±iωkαk,T − e±iωjαj,T
) , ℘j±kj :=

e±iωjαj,T(
e±iωkαk,T − e±iωjαj,T

) .
The terms ℘k±kj and ℘j±kj , are such that

℘k±kj =
e±iωkαk,T(

e±iωkαk,T − e±iωjαj,T
) =

e±iωk

(e±iωk − e±iωj )
+O(1/T ) =: ℘̃k±kj +O(1/T ),

and

℘j±kj =
e±iωjαj,T(

e±iωkαk,T − e±iωjαj,T
) =

e±iωj

(e±iωk − e±iωj )
+O(1/T ) =: ℘̃j±kj +O(1/T ).

1



In what follows, to simplify notation, but without loss of asymptotic generality, we will ignore the

O(1/T ) remainders and define ℘̃k±kj := e±iωk

e±iωk−e±iωj
and ℘̃j±kj := e±iωj

e±iωk−e±iωj
. The following results

which will prove useful in the proofs that follow may then be stated,

∆c0
0 ℘̃

S/2
S/2,0 −∆

cS/2
S/2 ℘̃

0
S/2,0 = 1 +

(
cS/2 − c0

)
2T

L (S.2)

∆ck∓
k ℘̃k±kj −∆

cj∓
j ℘̃j±kj = 1 +

(ck − cj)
T (e±iωj − e±iωk)

L (S.3)

∆cv
v ℘̃

k±
kv −∆

cj±
j ℘̃vkv = 1 +

e±iωkeiωv(ck − cv)
T (e±iωk − eiωv)

L (S.4)

where k, j = 1, ..., S∗. Recall also that eiωv = 1, for v = 0 and eiωv = −1 for v = S/2.

Notice that the results for the pure unit root case follow straightforwardly from (S.2) to (S.4) by

considering ck = 0, k = 0, 1, ..., S/2.

Proofs of (S.2) - (S.4)

• Consider first the left hand side of (S.2). This satisfies

∆c0
0 ℘̃

S/2
S/2,0 −∆

cS/2
S/2 ℘̃

0
S/2,0 = ℘̃

S/2
S/20 − ℘̃

0
S/20 − (℘̃

S/2
S/20e

∓iω0(1 +
c0
T

)− ℘̃0
S/20e

∓iωS/2(1 +
cS/2

T
))L

= 1− 1

2T

(
c0 − cS/2

)
L

= 1 +

(
cS/2 − c0

)
2T

L (S.5)

with ℘̃0
S/2,0 = ei0

eiπ−ei0 = −1
2 and ℘̃

S/2
S/2,0 = eiπ

eiπ−ei0 = 1
2 .

• Consider next (S.3). For k, j = 1, ..., S∗, we observe first that,

∆ck∓
k ℘̃k±kj −∆

cj∓
j ℘̃j±kj = ℘̃k±kj − ℘̃

j±
kj − (℘̃k±kj e

∓iωk(1 +
ck
T

)− ℘̃j±kj e
∓iωj (1 +

cj
T

))L. (S.6)

Next, observe that

℘̃k±kj − ℘̃
j±
kj =

e±iωk

e±iωk − e±iωj
− e±iωj

e±iωk − e±iωj
= 1 (S.7)

and

(℘̃k±kj e
∓iωk(1 +

ck
T

)− ℘̃j±kj e
∓iωj (1 +

cj
T

)) =

(
e±iωk

e±iωk − e±iωj
e∓iωk(1 +

ck
T

)− e±iωj

e±iωk − e±iωj
e−∓iωj (1 +

cj
T

)

)
=

cj − ck
T (e±iωj − e±iωk)

, for k 6= j and k, j = 1, ..., S∗. (S.8)

Substituting (S.7) and (S.8) into (S.6), the result in (S.3) is obtained.

• Consider next (S.4). For the zero (v = 0) and Nyquist (v = S/2) frequencies notice that eiωv =

e−iωv . Therefore, for v = 0, S/2 and j = 1, ..., S∗, ℘̃k±kv := e±iωk

e±iωk−eiωv and ℘̃vkv := eiωv

e±iωk−eiωv and,
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hence, ( e±iωk

e±iωk−eiωv e
iωv(1 + cv

T ) − eiωv

e±iωk−eiωv e
±iωk(1 + ck

T )) = −eviωkeiωv ck−cv
T (e±iωk−eiωv ) . Consequently,

the result in (S.4) follows from,

∆cv
v ℘̃

k±
kv −∆

cj±
j ℘̃vkv = ℘̃k±kv − ℘̃

v
kv − (℘̃k±kv e

iωv(1 +
cv
T

)− ℘̃vkve±iωj (1 +
cj
T

))L

= 1 +
e±iωkeiωv(ck − cv)
T (e±iωk − eiωv)

L. (S.9)

Recall that eiωv = 1, for v = 0 and eiωv = −1 for v = S/2.

Next consider the following definitions from del Barrio Castro, Rodrigues and Taylor (2018),

Si,ci (Sn+ s) :=
Sn+s∑
j=1

cos [((Sn+ s)− j)ωj ]αSn+s−ji,T LSn+s−j , i = 0, S/2 (S.10)

S−k,ck (Sn+ s) :=

Sn+s∑
j=1

e−iωk(Sn+s−j)αSn+s−jk,T LSn+s−j , k = 1, . . . , S∗ (S.11)

S+
k,ck

(Sn+ s) :=

Sn+s∑
j=1

eiωk(Sn+s−j)αSn+s−jk,T LSn+s−j , k = 1, . . . , S∗. (S.12)

Using (S.10) - (S.12), we can write (2.3) as,

xSn+s =

[
(S0,c0 (Sn+ s))h0

(
SS/2,cS/2 (Sn+ s)

)hS/2 S∗∏
k=1

{
S−k,ck (Sn+ s)S+

k,ck
(Sn+ s)

}hk]
uSn+s

=

[
(S0,c0 (Sn+ s))h0

(
SS/2,cS/2 (Sn+ s)

)hS/2
×

S∗∏
k=1

{
akS

−
k,ck

(Sn+ s) + bkS
+
k,ck

(Sn+ s)
}hk]

uSn+s +Op (1) (S.13)

where bk := eiωk

eiωk−e−iωk
and ak := e−iωk

e−iωk−eiωk , k ∈ {1, ..., S
∗} and where we have used the fact that

S−k,ck (Sn+ s)S+
k,ck

(Sn+ s) = akS
−
k,ck

(Sn+ s) + bkS
+
k,ck

(Sn+ s); see Gregoir (2006). Combining

(S.13) with (S.2) to (S.4) we obtain that,

xSn+s =
{
ψ0S0,c0 (Sn+ s) + ψS/2SS/2,cS/2 (Sn+ s)

+

S∗∑
k=1

[
ψ−k S

−
k,ck

(Sn+ s) + ψ+
k S

+
k,ck

(Sn+ s)
]}

uSn+s +Op (1) . (S.14)

To determine the specific values for ψ0, ψS/2, ψ
−
k and ψ+

k , k = 1, . . . , S∗, in (S.14) knowledge of

which operators S0,c0 (Sn+ s), SS/2,cS/2 (Sn+ s), S−k,ck (Sn+ s) and S+
k,ck

(Sn+ s) , k = 1, . . . , S∗

are present in (S.13) is required. The specific values of these weights can then be computed directly

from (S.2) to (S.4).
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From (S.14) it then follows that the vector of seasons representation for Xn is given by,

Xn = ψ0C0

n∑
i=1

αn−i0,NUi + ψS/2CS/2

n∑
i=1

αn−iS/2,NUi +
S∗∑
k=1

{(
ψ−k C

−
k + ψ+

k C
+
k

) n∑
i=1

αn−ik,NUi

}
+Op (1) .

(S.15)

S.3 Derivation of the Examples in Remark 3

• Consider first the DGP ∆cv
v ∆ck

k xSn+s = uSn+s, v = 0, S/2, k = 1, . . . , S∗. This corresponds

to (S.13) with hv = hk = 1 and all remaining hj = 0, for all j 6= v, k. Using (S.2) and (S.3), it is

possible after some algebra to write xSn+s as,

xSn+s =

[
1

2 (1− eiωv cos (ωk))
Sv,cv (Sn+ s) + ak

(
e−iωk

e−iωk − eiωv

)
S−k,ck (Sn+ s)

+ bk

(
eiωk

eiωk − eiωv

)
S+
k,ck

(Sn+ s)

]
uSn+s +Op (1) . (S.16)

It is then straightforward to show that the vector of seasons representation associated with (S.16)

is given by,

Xn =
1

2 (1− eiωv cos (ωk))
Cv

n∑
i=1

αn−iv,NUi + ak

(
e−iωk

e−iωk − eiωv

)
C−k

n∑
i=1

αn−ik,NUi

+ bk

(
eiωk

eiωk − eiωv

)
C+
k

n∑
i=1

αn−ik,NUi +Op (1) . (S.17)

• Consider next the DGP ∆ck
k ∆

cj
j xSn+s = uSn+s, which corresponds to (S.13) with hk = hj = 1

and all remaining hi = 0, i 6= j, k. Using (S.3) we obtain after some algebra that,

xSn+s =

[
ak

{
aj

(
eiωj

eiωj − eiωk

)
+ bj

(
e−iωj

e−iωj − eiωk

)}
S−k,ck (Sn+ s) +

aj

{
ak

(
eiωk

eiωk − eiωj

)
+ bk

(
e−iωk

e−iωk − eiωj

)}
S−j,cj (Sn+ s) +

bk

{
aj

(
eiωj

eiωj − e−iωk

)
+ bj

(
e−iωj

e−iωj − e−iωk

)}
S+
k,ck

(Sn+ s) +

bj

{
ak

(
eiωk

eiωk − e−iωj

)
+ bk

(
eiωj

eiωj − eiωk

)}
S+
j,cj

(Sn+ s)

]
uSn+s +Op (1) (S.18)

where ak := e−iωk

e−iωk−eiωk , bk := eiωk

eiωk−e−iωk
, aj := e−iωj

e−iωj−eiωj
and bj := eiωj

eiωj−e−iωj
. Consequently, the
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corresponding vector of seasons representation of (S.18) is given by

Xn = ak

{
aj

(
eiωj

eiωj − eiωk

)
+ bj

(
e−iωj

e−iωj − eiωk

)}
C−k

n∑
i=1

αn−ik,NUi +

aj

{
ak

(
eiωk

eiωk − eiωj

)
+ bk

(
e−iωk

e−iωk − eiωj

)}
C−j

n∑
i=1

αn−ik,NUi +

bk

{
aj

(
eiωj

eiωj − e−iωk

)
+ bj

(
e−iωj

e−iωj − e−iωk

)}
C+
k

n∑
i=1

αn−ik,NUi +

bj

{
ak

(
eiωk

eiωk − e−iωj

)
+ bk

(
e−iωk

e−iωk − e−iωj

)}
C+
j

n∑
i=1

αn−ik,NUi +Op (1) . (S.19)

S.4 Derivation of Examples in Remark 7

In what follows we make use of the multivariate FCLT (see, for example, Phillips, 1988), from

which we observe for the scaled partial sums that, under Assumption 1,

σ−1√
N

brNc∑
i=1

α
brNc−i
k,N Ui ⇒ Jck (r) , r ∈ [0, 1], k = 0, ..., S/2

where Jck (r) is an S × 1 vector of standard Ornstein-Uhlenbeck processes.

• Consider first the DGP

∆cv
v ∆ck

k xSn+s = uSn+s. (S.20)

where uSn+s satisfies Assumption 1. Here xSn+s admits a near-unit root at the zero (v = 0) or the

Nyquist (v = S/2) frequency and a complex conjugate pair of near-unit roots at the kth harmonic

seasonal frequency, ωk := 2πk/S. The DGP in (S.20) therefore coincides with (2.3) for the case

where hv = hk = 1 and all remaining hj = 0, for j 6= v, k. Consequently, using Lemma 1, Remark

3, and the definition of A in (3.2), we have that

N−1/2XA
brNc ⇒ σA

[
1

2 (1− eiωv cos (ωk))
vvv

′
vJcv (r) + ak

(
e−iωk

e−iωk − eiωv

)
v−k v+′

k Jck (r)

+ bk

(
eiωk

eiωk − eiωv

)
v+
k v−′k Jck (r)

]
. (S.21)

Recalling the definitions v+′

k := hα′k + ihβ′k and v−
′

k := hα′k − ihβ′k from Remark 6, it is possible

to write (S.21) as,

N−1/2XA
brNc ⇒

σ

2 (1− eiωv cos (ωk))
Avvv

′
vJcv (r) + σak

(
e−iωk

e−iωk − eiωv

)
Av−k

(
hα′k + ihβ′k

)
Jck (r)

+ σbk

(
eiωk

eiωk − eiωv

)
Av+

k

(
hα′k − ihβ′k

)
Jck (r) . (S.22)
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Moreover, for Av−k and Av+
k we have that

Av+
k =

[
ei

2πk
S
Q ei

2πk
S

2Q ei
2πk
S

3Q · · · ei
2πk
S
SAQ

]′
=

[
e
i 2πk
SA e

i 2πk
SA

2
e
i 2πk
SA

3 · · · ei2πk
]′

(S.23)

and

Av−k =
[
e−i

2πk
S
Q e−i

2πk
S

2Q e−i
2πk
S

3Q · · · e−i
2πk
S
SAQ

]′
=

[
e
−i 2πk

SA e
−i 2πk

SA
2

e
−i 2πk

SA
3 · · · e−i2πk

]′
. (S.24)

The results in (S.23) and (S.24) are crucial for the understanding of whether or not near-unit

roots present at a given spectral frequency in the original data will shift to another frequency under

temporal aggregation. Specifically, it can be seen from the general results in the main text that

a pair of complex conjugate near-unit roots at the harmonic seasonal frequency ωk := 2πk/S will

be mapped to the zero frequency under systematic sampling if the ratio k/SA belongs to the set

of natural numbers or to the Nyquist frequency under systematic sampling if the ratio 2k/SA is a

positive odd integer. For the former case we have that Av0 = Av−k = Av+
k = 1SA =: v0

SA
and

for the latter AvS/2 = Av−k = Av+
k = vπSA where vπSA is an SA × 1 vector defined as vπSA :=

[−1, 1,−1, . . .]′. Hence, for these two cases (v = 0 and v = S/2), (S.22) becomes,

N−1/2XA
brNc ⇒ σvfSA

[
σ

2 (1− eiωv cos (ωk))
v′vJcv (r)

+ ak

(
e−iωk

e−iωk − eiωv

)(
hα′k + ihβ′k

)
Jck (r) + bk

(
eiωk

eiωk − eiωv

)(
hα′k − ihβ′k

)
Jck (r)

]
= σvfSA

[
1

2 (1− eiωv cos (ωk))
v′vJcv (r)

+
sin (ωk)− eiωv sin (2ωk)

2 [1− eiωv cos (ωk)] sin (ωk)
hα′k Jck (r)− cos (ωk)− eiωv cos (2ωk)

2 [1− eiωv cos (ωk)] sin (ωk)
hβ′k Jck (r)

]
(S.25)

where f = 0 when v = 0 and f = π when v = S/2, and where we have used the following results

ak

(
e−iωk

e−iωk − eiωv

)
+ bk

(
eiωk

eiωk − eiωv

)
=

sin (ωk)− eiωv sin (2ωk)

2 [1− eiωv cos (ωk)] sin (ωk)
(S.26)

and

ak

(
e−iωk

e−iωk − eiωv

)
− bk

(
eiωk

eiωk − eiωv

)
= − cos (ωk)− eiωv cos (2ωk)

2i [1− eiωv cos (ωk)] sin (ωk)
. (S.27)

Recall that the results for the Nyquist frequency are only considered when 2k/SA is a positive

odd integer.

To determine the local-to-unity parameter associated with the resulting zero frequency near-unit

root in the systematically sampled aggregated data, consider the following lemma.
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Lemma S.1. Let xSn+s be generated as in (S.20). Then, the vector of seasons representation for

the systematically sampled data when k/SA takes values in the set of natural numbers (when the

zero frequency is considered, f = 0 and v = 0) or 2k/SA takes values in the set of positive odd

integer numbers (when the Nyquist frequency is considered, f = π and v = S/2) is given by

XA
n = vfSA

(
1

2 (1− eiωv cos (ωk))
v′v

n∑
i=1

αn−iv,NUi+
sin (ωk)− eiωv sin (2ωk)

2 (1− eiωv cos (ωk)) sin (ωk)
hα′k

n∑
i=1

αn−ik,NUi

− cos (ωk)− eiωv cos (2ωk)

2 (1− eiωv cos (ωk)) sin (ωk)
hβ′k

n∑
i=1

αn−ik,NUi

)
+Op (1) . (S.28)

Proof of Lemma S.1. To prove (S.28), note first that on pre-multiplying (S.17) by A we obtain

AXn =
1

2 (1− eiωv cos (ωk))
Avvvv

′
n∑
i=1

αn−iv,NUi + ak

(
e−iωk

e−iωk − eiωv

)
Av−k v+

k
′
n∑
i=1

αn−ik,NUi

+ bk

(
eiωk

eiωk − eiωv

)
Av−k v+

k
′
n∑
i=1

αn−ik,NUi +Op (1) . (S.29)

When the ratio k/SA takes values in the set of natural numbers (the zero frequency case) or 2k/SA

takes values in the set of positive odd integer numbers (the Nyquist frequency case), (S.29) becomes

AXn = vfSA

(
1

2 (1− eiωv cos (ωk))
vv
′
n∑
i=1

αn−iv,NUi + ak

(
e−iωk

e−iωk − eiωv

)
v+
k
′
n∑
i=1

αn−ik,NUi

+ bk

(
eiωk

eiωk − eiωv

)
v−k
′
n∑
i=1

αn−ik,NUi

)
+Op (1) . (S.30)

Noting that v+′

k = hα′k + ihβ′k and v−
′

k = hα′k − ihβ′k , it is possible to write:

AXn = vfSA

(
1

2 (1− eiωv cos (ωk))
vv
′
n∑
i=1

αn−iv,NUi

+ ak

(
e−iωk

e−iωk − eiωv

)(
hα′k + ihβ′k

) n∑
i=1

αn−ik,NUi

+ bk

(
eiωk

eiωk − eiωv

)(
hα′k + ihβ′k

) n∑
i=1

αn−ik,NUi

)
+ op (1)

= vfSA

(
1

2 (1− eiωv cos (ωk))
vv
′
n∑
i=1

αn−iv,NUi

+

[
ak

(
e−iωk

e−iωk − eiωv

)
+ bk

(
eiωk

eiωk − eiωv

)]
hα′k

n∑
i=1

αn−ik,NUi

+

[
ak

(
e−iωk

e−iωk − 1

)
− bk

(
eiωk

eiωk − 1

)]
ihβ′k

n∑
i=1

αn−ik,NUi

)
+ op (1)
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= vfSA

(
1

2 (1− eiωv cos (ωk))
vv
′
n∑
i=1

αn−iv,NUi

+
sin (ωk)− eiωv sin (2ωk)

2 (1− eiωv cos (ωk)) sin (ωk)
hα′k

n∑
i=1

αn−ik,NUi

− cos (ωk)− eiωv cos (2ωk)

2 (1− eiωv cos (ωk)) sin (ωk)
hβ′k

n∑
i=1

αn−ik,NUi

)
+Op (1) . (S.31)

Then from (S.26) and (S.27), (S.31) is seen to be equivalent to (S.28), as required. �

To illustrate how to determine the local-to-unity parameter in (S.28), we will use the following

two examples:

Example 1: Consider the case shown in Table 1 for S = 12 and SA = 4. For frequency ωk = 2π/3,

k = 4 so that k/SA = 1 and so the results in (S.25)-(S.28) above apply. Hence, (S.28) for this

example is given by

XA
n = 1SA

(
1

3
v′0

n∑
i=1

αn−i0,NUi +
2

3
hα′k

n∑
i=1

αn−ik,NUi

)
+Op (1) . (S.32)

Note that frequency 2π/3 completes a full cycle every 3 periods, and hence for hα′k we only need

to consider the following three values that are repeated cyclically, cos (2π/3) = −1/2, cos (4π/3) =

−1/2 and cos (6π/3) = 1, so that hα′k = [−1/2,−1/2, 1,−1/2,−1/2, 1,−1/2,−1/2, 1,−1/2,−1/2, 1] .

Therefore, for (S.32) we have that

XA
n = 1SA

[
1

3

n∑
i=1

δn−i0k,Nu12i−11,
1

3

n∑
i=1

δn−i0k,Nu12i−10,

n∑
i=1

(
1 +

(c0 + 2ck) /3

N

)n−i
u12i−9,

1

3

n∑
i=1

δn−i0k,Nu12i−8,
1

3

n∑
i=1

δn−i0k,Nu12i−7,

n∑
i=1

(
1 +

(c0 + 2ck) /3

N

)n−i
u12i−6,

1

3

n∑
i=1

δn−i0k,Nu12i−5,
1

3

n∑
i=1

δn−i0k,Nu12i−4,

n∑
i=1

(
1 +

(c0 + 2ck) /3

N

)n−i
u12i−3,

1

3

n∑
i=1

δn−i0k,Nu12i−2,
1

3

n∑
i=1

δn−i0k,Nu12i−1,

n∑
i=1

(
1 +

(c0 + 2ck) /3

N

)n−i
u12i

]
+Op (1)(S.33)

where δ0k,N :=
(
c0−ck
N

)
. Given that δ0k,N = O

(
N−1

)
, (S.33) can be re-written as

XA
n = 1SAv0

a
′
n∑
i=1

exp

(
(c0 + 2ck) /3

N

)n−i
Ui +Op (1)

where v0′
a :=

[
0 0 1 0 0 1 0 0 1 0 0 1

]
. This can immediately be seen to corre-

spond to a zero frequency near-unit root with local-to-unity parameter cA0 := (c0 + 2ck) /3. Notice
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also from the multivariate FCLT that,

N−1/2XA
brNc ⇒ σ$01SA$

−1
0 v0

a
′JcA0

(r) = σ$01SAJ0,cA0
(r)

where cA0 is as given above and $0 :=
(
v0′
a v0

a

)1/2
= 2.

Example 2: Consider the case shown in Table 1 for S = 12 and SA = 4. If ωk = π/3, then k = 2

and so 2k/SA = 1. Here (S.28) reduces to,

XA
n = vπSA

(
1

3
v′S/2

n∑
i=1

αn−iS/2,NUi +
2

3
hα′k

n∑
i=1

αn−ik,NUi

)
+Op (1) . (S.34)

Since frequency π/3 completes a full cycle every six periods, we only need to consider the

following six values that are repeated cyclically for determining hα′k : cos (π/3) = 1/2, cos (2π/3) =

−1/2, cos (3π/3) = −1, cos (4π/3) = −1/2, cos (5π/3) = 1/2 and cos (6π/3) = 1; viz, hα′k =

[1/2,−1/2,−1,−1/2, 1/2, 1, 1/2,−1/2,−1,−1/2, 1/2, 1]. Therefore, from (S.34) we have that,

XA
n = vπSA

1

3

n∑
i=1

δn−ikS/2,Nu12i−11,
1

3

n∑
i=1

δn−ikS/2,Nu12i−10,−
n∑
i=1

(
1 +

(
cS/2 + 2ck

)
/3

N

)n−i
u12i−9,

1

3

n∑
i=1

δn−ikS/2,Nu12i−8,
1

3

n∑
i=1

δn−ikS/2,Nu12i−7,

n∑
i=1

(
1 +

(
cS/2 + 2ck

)
/3

N

)n−i
u12i−6,

1

3

n∑
i=1

δn−ikS/2,Nu12i−5,
1

3

n∑
i=1

δn−ikS/2,Nu12i−4,−
n∑
i=1

(
1 +

(
cS/2 + 2ck

)
/3

N

)n−i
u12i−3,

1

3

n∑
i=1

δn−ikS/2,Nu12i−2,
1

3

n∑
i=1

δn−ikS/2,Nu12i−1,

n∑
i=1

(
1 +

(
cS/2 + 2ck

)
/3

N

)n−i
u12i

+Op (1) (S.35)

where δkS/2,N :=
ck−cS/2

N . Given that δkS/2,N = O
(
N−1

)
, we can re-write (S.35) as

XA
n := AXn = vπSAvπ′a

n∑
i=1

exp

((
cS/2 + 2ck

)
/3

N

)n−i
Ui +Op (1)

where vπ′a :=
[

0 0 −1 0 0 1 0 0 −1 0 0 1
]
. This can then be seen to correspond to

a Nyquist frequency near-unit root with local-to-unity parameter cAS/2 :=
(
cS/2 + 2ck

)
/3. Moreover,

N−1/2XA
brNc ⇒ σ$πv

π
SA
$−1π vπ′a JcA

S/2
(r) = σ$πv

π
SA
Jπ,cA

S/2
(r)

where $π := (vπ′a vπa)1/2 = 2.
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• Finally, consider the case where the DGP is given by

∆ck
k ∆

cj
j xSn+s = uSn+s, (S.36)

where uSn+s again satisfies Assumption 1. Here xSn+s admits a pair of complex conjugate near-unit

roots at both the jth and kth, j > k, harmonic seasonal frequencies, ωj := 2πj/S and ωk := 2πk/S,

respectively. The DGP in (S.36) therefore coincides with (2.3) on setting hj = hk = 1 and all

remaining hi = 0, for i 6= j, k. Again, using Lemma 1 and Remark 3, we have that

N−1/2XA
brNc ⇒ σA

[
ak

{
aj

(
eiωj

eiωj − eiωk

)
+ bj

(
e−iωj

e−iωj − eiωk

)}
v−k v+′

k Jck (r)

+ aj

{
ak

(
eiωk

eiωk − eiωj

)
+ bk

(
e−iωk

e−iωk − eiωj

)}
v−j v+′

j Jcj (r)

+ bk

{
aj

(
eiωj

eiωj − e−iωk

)
+ bj

(
e−iωj

e−iωj − e−iωk

)}
v+
k v−′k Jck (r)

+ bj

{
ak

(
eiωk

eiωk − e−iωj

)
+ bk

(
e−iωk

e−iωk − e−iωj

)}
v+
j v−′j Jcj (r)

]
(S.37)

which can be re-written as

N−1/2XA
brNc ⇒ σak

{
aj

(
eiωj

eiωj − eiωk

)
+ bj

(
e−iωj

e−iωj − eiωk

)}
Av−k v+

k Jck (r)

+ σaj

{
ak

(
eiωk

eiωk − eiωj

)
+ bk

(
e−iωk

e−iωk − eiωj

)}
Av−j v+

j Jcj (r)

+ σbk

{
aj

(
eiωj

eiωj − e−iωk

)
+ bj

(
e−iωj

e−iωj − e−iωk

)}
Av+

k v−k Jck (r)

+ σbj

{
ak

(
eiωk

eiωk − e−iωj

)
+ bk

(
e−iωk

e−iωk − e−iωj

)}
Av+

j v−j Jcj (r) . (S.38)

We observe from (S.24) and (S.23) that Av−k and Av+
k will correspond with frequency ωAk =

2πk/SA and Av−j and Av+
j with frequency ωAj = 2πj/SA. Hence, the only possible situation where

the OU processes in (S.38) will be allocated to the same harmonic frequency is when 2πk/SA and

2πj/SA are such that 2πj/SA = 2π− 2πk/SA; that is, j = SA− k. For example, when aggregating

from monthly to quarterly observations (S = 12 and SA = 4), the complex pairs of OU processes

associated with frequencies π/6 (k = 1) and π/2 (j = 3) in the monthly data will both be mapped

under aggregation to a complex pair of OU processes at frequency π/2 (since 3π/2 = 2π − π/2)

in the quarterly data. Where j = SA − k, we therefore have that Av−k = Av+
j and Av+

k = Av−j ,

and, hence,

N−1/2XA
brNc ⇒

σS

2

{
Av−k

[
a∗k

(
hα′k + ihβ′k

)
Jck (r) + b∗j

(
hα′j − ihβ′j

)
Jcj (r)

]
+ Av+

k

[
a∗j

(
hα′j + ihβ′j

)
Jcj (r) + b∗k

(
hα′k − ihβ′k

)
Jck (r)

]}
(S.39)
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where

a∗k := ak

{
aj

(
eiωj

eiωj − eiωk

)
+ bj

(
e−iωj

e−iωj − eiωk

)}
a∗j := aj

{
ak

(
eiωk

eiωk − eiωj

)
+ bk

(
e−iωk

e−iωk − eiωj

)}
b∗k := bk

{
aj

(
eiωj

eiωj − e−iωk

)
+ bj

(
e−iωj

e−iωj − e−iωk

)}
b∗j := bj

{
ak

(
eiωk

eiωk − e−iωj

)
+ bk

(
e−iωk

e−iωk − e−iωj

)}
.

As with Cases A and B above, it can be shown that the resulting complex pair of OU processes

at frequency ωAk will have a drift (local-to-unity) parameter given by a linear combination of the

drifts defining the OU processes at frequencies ωj and ωk prior to aggregation, and, hence, that

the systematically sampled process has a complex pair of near-unit roots at frequency ωAk with this

local-to-unity parameter.

S.5 Additional Material relating to Average Sampling

For any value P ≤ S, (2.3) can always be represented as a first order vector of seasons process as

in (2.4), replicated below for convenience

Ψ0Xn = Ψ1Xn−1 + U∗n, n = 1, ..., N

where Xn :=
(
xSn−(S−1), xSn−(S−2), ..., xSn

)′
, Xn−1 :=

(
xS(n−1)−(S−1), xS(n−1)−(S−2), ..., xS(n−1)

)′
,

X0 is a vector of zeros, and U∗n :=
(
uSn−(S−1), uSn−(S−2), ..., uSn

)′
is a vector white noise process

with zero mean vector and variance σ2IS , and where Ψ0 and Ψ1 are lower and upper triangular

S × S parameter matrices, respectively. In particular, Ψ0 is a lower triangular Toeplitz matrix

which for P < S takes the form

Ψ0 =



1 0 0 · · · 0 0 0

−α∗1 1 0 · · · 0 0 0
... −α∗1 1 · · · 0 0 0

−α∗P
... −α∗1 · · ·

...
...

...

0 −α∗P
... · · · 1 0 0

... 0 −α∗P · · · −α∗1 1 0

0
...

... · · · −α∗2 −α∗1 1
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and for P = S takes the form

Ψ0 =



1 0 0 0 0 · · · 0

−α∗1 1 0 0 0 · · · 0

−α∗2 −α∗1 1 0 0 · · · 0

−α∗3 −α∗2 −α∗1 1 0 · · · 0

−α∗4 −α∗3 −α∗2 −α∗1 1 · · · 0
...

...
...

...
...

. . .
...

−α∗S −α∗S−1 −α∗S−2 −α∗S−3 −α∗S−4 · · · 1


.

For P < S, the upper triangular matrix Ψ1 takes the form

Ψ1 =



0 · · · 0 α∗P · · · α∗1

· · · · · · 0 0 · · · α∗2

· · · · · · · · · · · · · · · α∗3
...

...
...

...
...

...

0 · · · 0 0 0 0


and for P = S takes the form

Ψ1 =



0 α∗P · · · α∗2 α∗1

0 · · · · · · α∗3 α∗2

0 · · · · · · α∗5 α∗4
...

...
...

...
...

0 · · · 0 0 0


.

As we will see, the vector of seasons representation has clear advantages compared to univariate

approaches which have appeared in the literature because the effects of temporal aggregation in

terms of processes moving from one frequency to another or vanishing after aggregation can be seen

clearly, as can the form of any moving average dynamics induced by average sampling.

As discussed in the main text, it is convenient in what follows to consider the reduced form of

(2.4) given in (2.5), again replicated for convenience below,

Xn = ΦXn−1 + Un

where9 Φ := Ψ−10 Ψ1 and Un := Ψ−10 U∗n, where the error term Un has zero mean and variance matrix

E (UnU
′
n) = Ψ−10 E

(
U∗nU

∗′
n

)
Ψ−1

′

0 = σ2Ψ−10 Ψ−1
′

0 .

In the body of the paper we are concerned only with the impact of average sampling on the

autoregressive dynamics of (2.5). However, when we aggregate (2.5) the structure of Ψ−10 has the

potential to generate moving average behaviour. In general, for any seasonal unrestricted AR(p)

9The elements of Ψ−1
0 are determined by the parameters of the inverse of α (L); see Pollock (1999,pp.46-48) for

details. An example is given in (S.46) below for the DGP in (S.40).
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process, with p ≤ S, Ψ−10 will always be lower triangular, which means that average sampling of

such a process, will result in the presence of moving average dynamics in the aggregated process.

An exception occurs in cases where the AR(p) process is a restricted seasonal process, with p = S,

such as
(
1− αTLS

)
xSn+s = uSn+s. In this case, in the vector of seasons representation the matrix

Ψ0 = Ψ−10 = IS and therefore no moving average dynamics will be generated by average sampling.

As an illustration of the result in (2.5) consider the general AR(1) process,

(
1− e±iωjαj,TL

)
xSn+s = uSn+s (S.40)

which admits the following first order vector of seasons representation, viz.,

Ψj±
0 Xn = Ψj±

1 Xn−1 + U∗n, n = 1, ..., N, j = 0, 1, ..., S/2 (S.41)

where Xn :=
(
xSn−(S−1), xSn−(S−2), ..., xSn

)′
, Xn−1 :=

(
xS(n−1)−(S−1), xS(n−1)−(S−2), ..., xS(n−1)

)′
,

X0 is again taken for simplicity to be a vector of zeros, and U∗n :=
(
uSn−(S−1), uSn−(S−2), ..., uSn

)′
is a vector white noise process with zero mean vector and variance σ2IS , and Ψj±

0 is a lower

triangular S × S parameter matrix with the following form: Ψj±
0 = (IS −MSe

±iωjαj,T ) where MS

is an S × S matrix with elements mij =

{
1 if i− j = 1

0 otherwise
and Ψj±

1 is an S × S matrix of zeros

with the exception of the element in position (1, S) which is equal to e±iωjαj,T . Notice that because

eiω0 = e−iω0 and eiωS/2 = e−iωS/2 , whenever the zero or Nyquist frequencies are under consideration

we will simply use eiω0 and eiωS/2 .

It will prove convenient to consider the reduced form of (S.41); that is,

Xn = Φk±Xn−1 +
(

Ψk±
0

)−1
U∗n, k = 0, 1, ..., S/2 (S.42)

where Φk± :=
(

Ψk±
0

)−1
Ψk±

1 . When k = 0 or k = S/2 are under consideration, we will therefore

denote the resulting parameter matrices by simply Ψk
0 and Ψk

1, k = 0, S/2. Notice that the error term

Un =
(

Ψk±
0

)−1
U∗n has zero mean and variance matrix E

(
UnU

′
n

)
=
(

Ψk±
0

)−1
E (U∗nU

∗′
n )
(

Ψk±
0

)−1′
=

σ2
(

Ψk±
0

)−1 (
Ψk±

0

)−1′
. Backward substitution in (S.42) yields that,

Xn =
n−1∑
j=0

(
Φk±

)j (
Ψk±

0

)−1
U∗n−j (S.43)

with the convention that
(
Φj±)0 = IS . Hence, the vector of seasons representation of (S.40) can

13



be expressed as,

Xn = δ0

n−1∑
j=0

(
Φ0
)j (

Ψ
S/2
0

)−1
U∗n−j + δS/2

n−1∑
j=0

(
ΦS/2

)j (
Ψ
S/2
0

)−1
U∗n−j +

S∗∑
k=1

δ−k n−1∑
j=0

(
Φk−

)j
U∗n−j + δ+k

n−1∑
j=0

(
Φk+

)j (
Ψk+

0

)−1
U∗n−j

 . (S.44)

The effects of temporal aggregation on (S.40) can be explored by pre-multiplying (S.44) by the

S × SA matrix A defined in (3.2); viz,

AXn = δ0

A
(
Ψ0

0

)−1
U∗n + A

n−1∑
j=1

(
Φ0
)j (

Ψ0
0

)−1
U∗n−j

+

δS/2

A
(

Ψ
S/2
0

)−1
U∗n + A

n−1∑
j=1

(
ΦS/2

)j (
Ψ
S/2
0

)−1
U∗n−j

+

S∗∑
k=1

δ−k
A

(
Ψk−

0

)−1
U∗n + A

n−1∑
j=0

(
Φk−

)j (
Ψk−

0

)−1
U∗n−j


+ δ+k

A
(

Ψk+
0

)−1
U∗n + A

n−1∑
j=0

(
Φk+

)j (
Ψk+

0

)−1
U∗n−j

 . (S.45)

Temporal aggregation of these frequency specific processes induces MA(1) dynamics in the error

process which is observed from A
(
Ψ0

0

)−1
U∗n, A

(
Ψ
S/2
0

)−1
U∗n, A

(
Ψk−

0

)−1
U∗n and A

(
Ψk+

0

)−1
U∗n,

k = 1, ..., S∗, where the coefficients of the infinite order moving average representation of (S.40)

are collected as the elements of the resulting matrices A
(
Ψ0

0

)−1
, A

(
Ψ
S/2
0

)−1
and A

(
Ψk±

0

)−1
. To

illustrate, consider frequency ωk = 2πk/S for the case of Q = S/SA = 3. The coefficients of the

infinite order moving average representation of (S.40) for this frequency are given by

(
Ψk±

0

)−1
=



1 0 0 0 · · · 0

αk,T e
±iωk 1 0 0 · · · 0

α2
k,T e

±i2ωk αk,T e
±iωk 1 0 · · · 0

α3
k,T e

±i3ωk α2
k,T e

±i2ωk αk,T e
±iωk 1 · · · 0

...
...

...
...

. . .
...

α
(S−1)
k,T e±i(S−1)ωk α

(S−2)
k,T e−i(S−2)ωk α

(S−3)
k,T e−i(S−3)ωk α

(S−4)
k,T e−i(S−4)ωk · · · 1


.

(S.46)

Hence, the elements of A
(

Ψk±
0

)−1
, which follow directly from (11), characterize the moving average

dynamics. �

Remark S.1: It is interesting to contrast the foregoing results with the alternative univariate

approach to determining the impact of temporal aggregation considered in Silvestrini and Veredas

(2008, Section 3.1) and Teles, Wei and Hodgess (2008). These authors show that the effects of

14



temporal aggregation of the process in (S.40) from S observations per year to SA per year, that is

S/SA = Q, can be obtained by multiplying both sides of (S.40) by

[
(1−e±iQωjαQj,TL

Q)
(1−e±iωjαj,TL)

] [
1−LQ
1−L

]
, so

that,

(
1− e±iQωjαQj,TL

Q
) (

1 + L+ · · ·+ LQ−1
)
xSn+s =(

1 + e±iωjαj,TL+ · · · e±i(Q−1)ωjαQ−1j,T LQ−1
) (

1 + L+ · · ·+ LQ−1
)
uSn+s. (S.47)

From (S.47) we observe that after aggregation of the frequency specific AR(1) process we obtain

an AR(1) process for the temporally aggregated process
(
1 + L+ · · ·+ LQ−1

)
xSn+s with the au-

toregressive parameter given by e±iQωjαQj,T . Moreover, Silvestrini and Veredas (2008) and Teles,

Wei and Hodgess (2008) show that the left hand side of (S.47) implies the presence of an MA(1)

disturbance, such that the temporally aggregated time series follows an ARMA(1,1) process. �

Remark S.2: An advantage of the demodulator operator is that we clearly see that the AR(1)

process vanishes when k/SA is an integer. However, this result cannot be clearly appreciated from

(S.47). To illustrate, consider the case where S = 12, SA = 4 and Q = 3. Here the coefficients of

the MA(∞)

ψ (L) = 1 +

∞∑
i=1

ψiL
i =

(
1 + e∓iωkαk,TL+ e∓iωk2α2

k,TL
2
) (

1 + L+ L2
)
/
(
1− e∓iωk3α3

k,TL
3
)

are such that

ψ1 = 1 + e∓iωkαk,T

ψ2 = 1 + e∓iωkαk,T + e∓iωk2α2
k,T

ψ3 = e∓iωkαk,T + e∓iωk2α2
k,T + e∓iωk3α3

k,T (S.48)

ψ4 = e∓iωk2α2
k,T + e∓iωk3α3

k,T + e∓iωk4α4
k,T

...

ψj = e∓iωk(j−2)α
(j−2)
k,T + e∓iωk(j−1)α

(j−1)
k,T + e∓iωkjαjk,T

which correspond precisely to the coefficients we would obtain from aggregating (S.46), i.e., from

A
(

Ψk±
0

)−1
. For example, consider the Nyquist frequency process

(
1− eiπαS/2,TL

)
xSn+s = uSn+s.

Using the same approach as in (S.47) it follows that

(
1−

(
eiπαS/2,T

)Q
LQ
) (

1 + L+ · · ·+ LQ−1
)
xSn+s =

(
1 + eiπαS/2,TL+ · · ·+

(
eiπαS/2,T

)Q−1
LQ−1

)
(
1 + L+ · · ·+ LQ−1

)
uSn+s. (S.49)

From (S.49) see that after aggregation the resulting process is an ARMA(1,1) with the MA(1)

component induced by the temporal aggregation. Clearly when Q = S/SA is odd the AR(1) process

remains associated with the Nyquist frequency because
(

1− eiπQαQS/2,TL
Q
)

=
(

1 + αQS/2,TL
Q
)

.
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However, for Q even the resulting AR(1) dynamics from temporal aggregation are now associated

with the zero frequency because in this case
(

1− eiπQαQS/2,TL
Q
)

=
(

1− αQS/2,TL
Q
)

. However,

as shown in the main text, when using the demodulator operator for Q even the AR(1) process(
1− eiπQαQS/2,TL

Q
)

will vanish. This situation can also be illustrated with the following example

for Q = 2, where (S.49) becomes:

(
1− α2

S/2,TL
2
)

(1 + L)xSn+s =
(
1− αS/2,TL

)
(1 + L)uSn+s. (S.50)

Regarding the coefficients of the resulting MA(∞) representation of (S.50), i.e., ψ (L) = 1 +∑∞
i=1 ψiL

i =
(
1− αS/2,TL

)
(1 + L) /

(
1− α2

S/2,TL
2
)

, it can be shown that

ψ1 = 1− αS/2,T = −
cS/2

T

ψ2 = α2
S/2,T − αS/2,T ∼=

(
1 +

cS/2

T

)2
−
(

1 +
cS/2

T

)
∼=
cS/2

T

ψ3 = α2
S/2,T − αS/2,T ∼=

(
1 +

cS/2

T

)2
−
(

1 +
cS/2

T

)3 ∼= −cS/2
T

ψ4 = α2
S/2,T − αS/2,T ∼=

(
1 +

cS/2

T

)4
−
(

1 +
cS/2

T

)3 ∼= cS/2

T
...

ψj ∼= (−1)j
cS/2

T
.

As αS/2,T ∼=
(

1 +
cS/2
T

)
, in this case the AR(1) process originally associated with the Nyquist

frequency vanishes after aggregation when moving from S to SA seasons per year and Q = 2. This

is clearly seen when we use the approach based on circulant matrices and the demodulator operator.

�
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