
Multi-Objective Linear Programming Revisited:

Exact and Approximate Approaches

Paschal Bisong Nyiam

A thesis submitted for the degree of

Doctor of Philosophy (PhD)

Department of Mathematical Sciences

University of Essex

August, 2018.

Dedication

To my wife Blessing, and Children: Paschaline, Favour and Paschal

Jnr.

Abstract

Most real world decision making problems involve more than one ob-

jective function and can be formulated as multiple objective linear

programming (MOLP) problems. Some exact methods have proven

to be effective on small and medium scale MOLP instances. The

thesis considers prominent exact methods, implements and modifies

some of them and compares them on existing test problems. Heuris-

tics or approximate methods on the other hand, have been commonly

applied to nonlinear and discrete multi-objective optimisation prob-

lems, and not so much to MOLP. Given the complexity of MOLP,

it is worth investigating heuristics as a solution approach. This has

also been considered here.

The thesis presents an extensive state-of-the-art survey of MOLP al-

gorithms developed over the past five decades and modifies/extends

some of them to generate the set of all nondominated points of the

problem. It then compares these extended variants with others such

as Benson’s algorithm, the affine scaling interior-point MOLP al-

gorithm and the recently introduced parametric simplex algorithm.

Furthermore, the thesis investigates heuristic approaches namely non-

i

dominated sorting genetic algorithm II and the plant propagation al-

gorithm as alternative approximate methodologies for MOLP. It also

presents a procedure to compute the most preferred nondominated

point of the problem. All algorithms have been tested and compared

on existing test instances.

ii

Declaration

The work in this thesis is based on research carried out at the Depart-

ment of Mathematical Sciences, University of Essex, United King-

dom. No part of this thesis has been submitted elsewhere for any

other degree or qualification and it is all my own work, unless ref-

erenced to the contrary in the text. Copyright c© 2018 Paschal

Bisong Nyiam.

“The copyright of this thesis rests with the author. No quotations

from it should be published without the author’s prior written con-

sent, and information derived from it should be acknowledged”.

iii

Acknowledgements

I would like to express my deep gratitude to my Supervisor, Professor

Abdel Salhi for his insights, guidance, help and continuous encour-

agement during this work. This work would not have been possible

without his help and guidance. I consider myself fortunate to have

worked with him. May God Almighty bless and reward him.

I would also like to thank the Head of Department of Mathemati-

cal Sciences, University of Essex, Professor Berthold Lausen and all

the members of academic and administrative staff (most especially

Shauna), for all their support and encouragement through out my

stay at this University.

Most importantly, I would also wish to say a big thank you to my

beloved wife, Blessing and Children Paschaline, Favour and Paschal

Jr. whom I left for a period of four years, my parents and all members

of the family for their continuous support and prayers.

Finally, in terms of financial support, I would like to thank the Uni-

versity of Calabar, Calabar, Cross River State, Nigeria whose plat-

form I used to obtain funding from the Tertiary Education Trust

iv

Fund (TETFUND) to undertake this programme of research. Thank

you for giving me the opportunity.

v

Abbreviations

ASF Achievement Scalarizing Function

ASPA Affine Scaling Primal Algorithm

ASIMOLP Affine Scaling Interior Multiple Objective Linear Programming

AHP Analytic Hierarchy Process

BOA Benson’s Outer-approximation Algorithm

BNP Best Nondominated Point

BD Boundary Dictionaries

CP Compromise Programming

DM Decision Maker

EEP Efficiency Equivalent Polyhedron

EMSA Extended Multiobjective Simplex Algorithm

GA Genetic Algorithm

iMOLPe Interactive Multiple Objective Linear Programming explorer

IPM Interior Point Method

vi

LP Linear Program

MEF Maximal Efficient Faces

MPNP Most Preferred Nondominated Point

MADM Multi-Attribute Decision Making

MCDM Multiple Criteria Decision Making

MOEA Multi-Objective Evolutionary Algorithm

MOGA Multi-Objective Genetic Algorithm

MOLP Multiple Objective Linear Programming

MOO Multi-Objective Optimisation

MOPPA Multi-Objective Plant Propagation Algorithm

MOPLIB Multi-Objective Problem Library

MSA Multi-objective Simplex Algorithm

MSM Multi-objective Simplex Method

NES Number of Efficient Solutions

NIA Nature Inspired Algorithm

NNP Number of Nondominated Points

NSGA Nondominated Sorting Genetic Algorithm

OSM Objective Space Method

vii

PSA Parametric Simplex Algorithm

PPA Plant Propagation Algorithm

PDIMOLP Primal-Dual Interior Multiple Objective Linear Programming

STEM Step Method

SIMOLP Simplified Interactive Multiple Objective Linear Programming

VEGA Vector Evaluated Genetic Algorithm

VMA Vector Maximization Approach

VD Visited Dictionaries

viii

Contents

Abstract i

Declaration iii

Acknowledgements iv

Abbreviations vi

List of Figures xiv

List of Tables xvii

List of Algorithms xix

1 INTRODUCTION 1

1.1 Statement of the Problem and Basic Concepts 3

1.1.1 The MOLP problem 3

1.1.2 Efficient Solutions and Nondominated Points . 8

ix

1.2 Solution Approaches to MOLP 11

1.2.1 Exact Methods 11

1.2.2 Heuristics . 15

1.3 The Strawberry Plant 22

1.4 The Basic Plant Propagation Algorithm 24

1.5 The Algebra of MOLP 27

1.6 Research Objectives 32

1.7 Main Contributions 33

1.8 Organization . 34

2 REVIEW OF LITERATURE 37

2.1 Introduction . 37

2.2 Non-Interactive Algorithms 39

2.2.1 Simplex based algorithms 39

2.2.2 Interior-point based algorithms 51

2.2.3 Objective space based algorithms 57

2.3 Interactive Algorithms 65

2.3.1 Interactive simplex based algorithms 65

2.3.2 Interactive Interior-point based algorithms . . 74

2.4 Heuristic approaches to multi-objective optimisation . 78

2.5 Summary . 82

x

3 A COMPARISON OF BOA WITH AN EXTENDED

VERSION OF MSA 83

3.1 Introduction . 83

3.2 The Multi-objective Simplex Algorithm 85

3.2.1 Illustration of MSA 88

3.3 The Extended Multi-objective Simplex Algorithm . . 90

3.3.1 Illustration of the Extended MSA 92

3.4 Scalarization Techniques 93

3.5 Benson’s Outer-Approximation Algorithm 95

3.5.1 Illustration of Benson’s Outer-Approximation

Algorithm . 98

3.6 Discussion of Experimental Results 99

3.7 Summary of Results 103

3.8 Summary . 104

4 THE SIMPLEX, INTERIOR-POINT AND OBJEC-

TIVE SPACE APPROACHES TO MOLP 111

4.1 Introduction . 111

4.2 The Affine Scaling Interior-Point Algorithm 114

4.2.1 Illustration of ASIMOLP 116

xi

4.2.2 Determination of the priority vector used in

ASIMOLP . 117

4.3 Interactive Affine Scaling Interior MOLP Algorithm . 119

4.3.1 Illustration of Interactive ASIMOLP 122

4.4 Selection of the Most Preferred Nondominated Point 123

4.5 Discussion of Experimental Results 128

4.6 Summary of Results 132

4.7 Summary . 133

5 COMPARATIVE STUDY OF TWO KEY ALGORITHMS

IN MOLP 141

5.1 Introduction . 141

5.2 The Parametric Simplex Algorithm 143

5.2.1 Illustration of the PSA 148

5.3 Additional illustration of BOA 149

5.4 Discussion of Experimental Results 152

5.5 Summary of Results 156

5.6 Summary . 157

6 A HEURISTIC APPROACH TO MULTI-OBJECTIVE

LINEAR PROGRAMMING 171

xii

6.1 Introduction . 171

6.2 Multi-objective Plant Propagation Algorithm 173

6.3 Solution Procedure 174

6.3.1 Illustration of MOPPA 176

6.4 Discussion of Experimental Results 183

6.5 Summary of Results 184

6.6 Summary . 185

7 CONCLUSION AND FUTURE RESEARCH PLAN193

7.1 Introduction . 193

7.2 Contributions . 194

7.3 Future Research . 197

Appendices 230

A Non-Interactive Simplex based methods 231

B Interactive Simplex based methods 234

C Objective space based methods 237

D Non-Interactive Interior-point based methods 240

E Interactive Interior-point based methods 242

xiii

F Script used in generating Problem 50 to 52. 244

G List of papers submitted/awaiting submission to Jour-

nals 246

xiv

List of Figures

1.1 The Strawberry Plant (FragariaXananassa) 23

3.1 Efficient edge of the feasible region connecting two

points in the decision space. 90

3.2 The edge joining the two nondominated points in the

objective space. 98

3.3 Running time of MSA, EMSA and BOA for the 47

instances solved. 110

4.1 ASIMOLP search path showing convergence to the ef-

ficient frontier. 116

4.2 Interactive ASIMOLP search path showing convergence

to the efficient frontier. 122

4.3 Running time of EMSA, ASIMOLP and BOA for the

48 instances solved. 140

xv

5.1 Efficient edges joining the three points in the decision

space . 149

5.2 Nondominated edges connecting the three points in the

objective space. 150

5.3 Running time of PSA and BOA for the 70 instances

solved. 170

6.1 Nondominated frontier approximated by MOPPA. . . 177

6.2 Nondominated frontier approximated by NSGA-II. . 180

xvi

List of Tables

3.1 Summary of experimental results 104

3.2 Comparative results for individual problem 105

4.1 Graduation scale for comparing alternatives 118

4.2 Summary of experimental results 132

4.3 Comparative results for small, medium and large in-

stances . 134

5.1 Summary of experimental results 157

5.2 Comparative results for small to medium instances . 159

5.3 Comparative results for large instances 166

6.1 Nondominated Points and their corresponding fitness

values . 178

6.2 Nondominated Points and their corresponding crowd-

ing distance . 181

xvii

6.3 Summary of experimental results 185

6.4 Comparative results for individual problem 187

xviii

List of Algorithms

1 Nondominated Sorting Genetic Algorithm II . 21

2 The Plant Propagation Algorithm (PPA) . . . 25

3 Multi-objective Simplex Algorithm 88

4 Extended Multi-objective Simplex Algorithm 92

5 Benson’s Outer-Approximation Algorithm . . 97

6 Affine Scaling Interior MOLP Algorithm 115

7 Interactive Affine Scaling Interior MOLP Algo-

rithm . 121

8 Parametric Simplex Algorithm 147

9 The Multi-Objective Plant Propagation Algo-

rithm . 174

xix

Chapter 1

INTRODUCTION

Most problems faced by Decision Makers (DMs) in the real-world

are of the multiple objective optimisation type. That is, they have

two or more objective functions by which the success of a particular

solution can be measured. Frequently, these objectives which are

meant to be achieved, are in conflict with each other and as a result,

there does not exist a unique solution that satisfies the DM across

all objectives at the same time. Therefore, a most preferred solution

must be sought in accordance with the subjective preferences of the

DM. The mathematical process of seeking such a solution is known

as multiple objective programming, [85]. In the past few decades,

there has been an increase in the awareness of multiple objective or

1

multiple criteria optimisation and the design of multiple objective

programming techniques. Most of the earlier techniques were based

on the simplex and interior-point methods of Linear Programming

(LP). These are the so called decision space approaches. However,

objective space approaches are becoming more and more prominent.

Before discussing these further, it is useful to first define the gen-

eral concept of Multiple Criteria Decision Making (MCDM). Many

definitions exist, but most researchers in the field accept the follow-

ing general one: MCDM refers to the solving of planning and deci-

sion problems involving multiple and generally conflicting objectives.

“Solving” means that a DM will choose one “reasonable” alternative

or most preferred solution from a set of available ones, [95].

MOLP can be define as a branch of MCDM that seeks to optimize

two or more linear objective functions subject to a set of linear con-

straints. It has been an active area of research since the 1960s be-

cause of its relevance in practice, [57]. Indeed, many decision making

problems that arise in the real world involve more than one objec-

tive and can be formulated as MOLP problems. Consequently, it has

been widely applied in many fields and has become a useful tool in

2

decision making.

1.1 Statement of the Problem and Basic Con-

cepts

1.1.1 The MOLP problem

Let us consider a manufacturing firm that uses two raw materials to

produce three products A,B, and C. The firm has 300 units of raw

material I and 200 units of raw material II in stocks. Each unit of

A uses 4 units of raw material I and 5 units of raw material II. B

uses 6 units of material I and 3 units of material II and C uses 8

units of material I and 2 units of material II. Let x1, x2, x3 denote the

amounts of A,B and C to be produced. The firm is faced with the

following constraints

4x1 + 6x2 + 8x3 ≤ 300

5x1 + 3x2 + 2x3 ≤ 200

xj ≥ 0, j = 1, 2, 3.

3

The cost prices of producing each unit of A,B and C is 1.5, 1.2 and

2.0 respectively. Product A yields a profit of 2.0 per unit, B yields

1.5 and C yields 2.2. The firm would like to simultaneously minimize

total production cost

1.5x1 + 1.2x2 + 2x3

and maximize total profit

2x1 + 1.5x2 + 2.2x3

as its objectives, subject to the above constraints.

One can clearly see that these objectives are not compatible; they are

conflicting. Ideally, the firm would wish to have a feasible solution

that minimizes as well as maximizes the objective functions. Unfor-

tunately, such a solution does not exit. Practitioners usually find

a number of solutions before deciding on which is most preferred.

Indeed, this is what makes MOLP challenging [106].

More formally, in MOLP, one considers q linear objective functions

4

defined on x as

f1(x) = c11x1 + c12x2 + . . .+ c1nxn

...

fq(x) = cq1x1 + cq2x2 + . . .+ cqnxn,

or

fi(x) =
n∑
j=1

cijxj, i = 1, ..., q,

to be optimized subject to a set of m linear constraints:

g1(x) = a11x1 + a12x2 + . . .+ a1nxn ≤ b1

...

gm(x) = am1x1 + am2x2 + . . .+ amnxn ≤ bm,

or

gr(x) =
n∑
j=1

arjxj ≤ br, r = 1, ...,m.

These linear inequalities together with the nonnegativity conditions

xj ≥ 0 for all j form the feasible set of solutions X. To “optimize”

5

means either “minimize” or “maximize” the functions fi(x) over a

nonempty convex polyhedron X which amounts to finding a vector

x̂ ∈ X such that
∑n

j=1 cijxj ≤
∑n

j=1 cijx̂j, or
∑n

j=1 cijxj ≥
∑n

j=1 cijx̂j

with
∑n

j=1 cijxj 6=
∑n

j=1 cijx̂j.

Coefficients cij can be positive, negative, or zero; they indicate the

amount of gain (or loss) to be realized with respect to the ith objective

per each unit of increase in the jth variable. Coefficients arj indicate

how much of the rth resource must be expanded per each unit of

increase in xj, [163].

The general MOLP (minimization) problem can be expressed as

min c1x = f1 (1.1)

...

cqx = fq

subject to x ∈ X = {x ∈ Rn : Ax ≤ b, b ∈ Rm, x ≥ 0}

or alternately as the linear vector optimization problem in matrix

6

form

min Cx

subject to Ax = b (1.2)

x ≥ 0,

where C is a q × n criterion matrix consisting of the rows ck, k =

1, ..., q, A is an m×n constraint matrix, b ∈ Rm is the right hand side

vector and “min” amounts to finding an element x̂ ∈ X such that

no other point Cx, x ∈ X is smaller than Cx̂. It is worthy to note

that the solution x̂ is not worst than any other solution, but in no

way the best, that is, the point Cx̂ cannot be smaller than or equal

to all points Cx, x ∈ X in general [106]. We say that (1.2) is stated

in Standard form when the constraint are written as equalities. It is

given in Canonical form when the constraints are inequalities Ax ≤ b.

The feasible set in the decision space is X = {x ∈ Rn : Ax = b, x ≥ 0}

and in the objective space it is Y = {Cx : x ∈ X} . The set Y is

also referred to as the image of X. The upper image is defined as

Y + Rq+ [100].

In practice, problem (1.2) is typically solved by the DM with the

7

support of the analyst looking for a most preferred (best) solution in

the feasible region X. This is because optimizing all the objective

functions simultaneously is not possible because of their conflicting

nature. Consequently, the concept of optimality as was used in single-

objective optimization is replaced with that of Pareto-optimality first

introduced by the Italian economist Vilfredo Pareto [115]. It states

that, a feasible solution is Pareto-optimal or efficient or nondomi-

nated or noninferior if there is no other feasible solution that is equal

or better with respect to all objectives in the model, [61]. There-

fore solving MOLP is understood as finding either all the efficient or

nondominated points or a subset of them, or a most preferred point

depending on the purpose for which it is needed.

1.1.2 Efficient Solutions and Nondominated Points

Definition 1.1.2: An efficient solution of the problem is a solution

that cannot improve any of the objective functions without deterio-

rating at least one of the other objectives.

Definition 1.1.3: A weakly efficient solution is one that cannot

improve all the objective functions simultaneously.

8

Definition 1.1.4: A nondominated point in the objective space is

the image of an efficient solution in the decision space.

The set of all nondominated points forms the nondominated set. Let

x̂ ∈ X be a feasible solution of (1.2) and let ŷ = Cx̂:

• x̂ is called efficient if there is no other x ∈ X such that Cx ≤ Cx̂

and Cx 6= Cx̂; correspondingly, ŷ = Cx̂ is called nondominated

point.

• x̂ is called weakly efficient if there is no other x ∈ X such that

Cx < Cx̂; and ŷ = Cx̂ is called weakly nondominated point, [56].

The set of all efficient solutions and the set of all weakly efficient

solutions of (1.2) are denoted by XE and XWE respectively [29].

YN = {Cx : x ∈ XE} and YWN = {Cx : x ∈ XWE} are the non-

dominated and weakly nondominated sets in the objective space of

(1.2), respectively.

Definition 1.1.5: The ideal objective point y∗ is the minimum cri-

terion values over the efficient set XE. The ideal objective values are

easy to obtain by simply minimizing each objective function individ-

ually over the feasible region X, [4].

9

Definition 1.1.6: Robustness of method can be defined in different

ways; in terms of computing efficiency or the ability of a method

to solve problems depending on the researcher. In this thesis, we

consider it as the ability of a method to solve all problems (both

simple and difficult).

As an illustration of the concept, let us consider the following example

with two objectives adapted from Hartley [78]

x1 − x2 + x3

2x1 + x2 − 3x3.

The extreme points A: (2, 1, 1), B: (6, 3, 2), C: (6, 6, 3), D: (4, 1, 0)

and E: (6, 0, 2) have objective values (nondominated points) A: (2,

2), B: (5, 9), C: (3, 9), D: (3, 9) and E: (8, 6). A is dominated by

B, B dominates C, but C dominates neither D or E. In other words,

a feasible solution is efficient (or nondominated) if it is dominated

by no other feasible solution, [78]. Consequently, a rational DM will

never choose point A:(2, 2) which can be deleted from consideration.

There is no clear dominance among the other four points, they are

all nondominated points.

The nondominated faces in the objective space of the problem consti-

10

tutes the nondominated frontier and the efficient faces in the decision

space of the problem constitutes the efficient frontier.

1.2 Solution Approaches to MOLP

1.2.1 Exact Methods

A number of exact approaches has been suggested for the problem as

would be seen in the next chapter. Some of the prominent methods

include the parametric programming or weighting method, multi-

objective simplex method, interior-point methods and the objective

space approaches. Apart from the interior-point methods that find

a most preferred efficient and nondominated point, the other exact

methods are used to generate the set of efficient solutions and non-

dominated points of the problem. The drawback of some of these

methods is, as the size of the instance increases, the total computa-

tion time which increases exponentially. However, instances of small

size can be solved efficiently by these methods. Some of them will be

highlighted in the following.

Parametric programming or weighting method [160]: Weight-

11

ing the objectives to obtain efficient solutions appears to be the oldest

MOLP technique [41]. It is the most commonly used approach for

computing efficient solutions and works in the decision space of the

problem. Its basic idea is to transform the MOLP problem into a sin-

gle objective by using non-negative weighting coefficients λ1, λ2, ..., λq

which are multiplied by the corresponding objective and are then

added up to form a weighted sum objective. Formally, it can be

expressed as

min fλ = λ1c
T
1 x+ λ2c

T
2 x+ ...+ λqc

T
q x =

q∑
i=1

λic
T
i x

subject to x ∈ X.

(1.3)

Problem (1.3) is then repeatedly optimized over the original feasible

region X using different combinations of weights usually specified by

the DM. If λi > 0 for all q, an optimal solution to (1.3) is an efficient

solution to MOLP (1.2). But, if λi = 0 for some i, and (1.3) has

alternative optimal solutions, then the solutions obtained may only

be weakly efficient solutions to (1.2). Usually, normalized weights are

considered so that λ ∈ Rq : λi > 0, i = 1, 2, ..., q, and
∑q

i=1 λi = 1.

Unfortunately, this method has some limitations in real and general

12

applications due to the linear form of the weighted sum objective and

as the efficient set XE is usually complicated and non-convex, [30].

The weighted sum method cannot find efficient solutions or nondom-

inated points that are on a non-convex part of the efficient frontier.

It can only capture efficient solutions that are located on the convex

part of the efficient frontier and cannot be used to appropriately ap-

proximate the true efficient frontier because a uniform variation of

the weights often leads to an uneven distribution of the efficient so-

lutions, [164]. This is largely due to the fact that the method is often

implemented as a convex combination of the objective functions.

Multi-objective simplex method (MSM) [63, 117, 161]: The

MSM is a generalized version of the conventional simplex method

of LP and works in the decision space of the problem. It is one of

the earliest method used to find the set of all efficient solutions of the

problem. This is done by moving from one efficient extreme point to

adjacent efficient extreme point (using simplex pivots) until all the

efficient extreme points have been found. The MSM is known for

producing a huge number of efficient extreme points and the compu-

tational efforts required to compute them grows exponentially with

the problem dimension.

13

Interior-point methods : Interior-point methods are also decision

space based. They appeared in the early 90s following the appearance

of the Ellipsoid algorithm of Khachiyan [91] and Karmarkar’s algo-

rithm [89]. The first to adapt a variant of Karmarkar’s [89] interior-

point method to MOLP seems to be Abhyankar [1]. Whereas the

MSM makes use of the vertices of the feasible region, interior-point

methods generate series of iterates inside the feasible region follow-

ing a combined search direction that moves the current iterate to a

new one. An assessment of the suitability of points used to derive

the search direction is done using a utility or preference function [5].

The process continues to generate search directions and new feasi-

ble points at each iteration until the algorithm converges to a most

preferred efficient point.

Objective space methods : Due to the various difficulties arising

from solving the problem in the decision space, efforts were made

to solve them in the objective space. One of the most popular

objective space method is Benson’s Outer-approximation Algorithm

(BOA) [30]. It computes the set of all nondominated points of the

problem. The algorithm starts by constructing an initial surrounding

polyhedron containing the image and an interior point of the image is

14

determined. At each iteration, the algorithm determines appropriate

cuts which are appended to the surrounding polyhedron to make it

shrink. This process continues and the surrounding polyhedron keeps

on shrinking at each iteration until some of its vertices coincide with

the boundary of the image. The algorithm stops and returns the

vertices on the boundary of the image as the set of nondominated

points of the problem. Another Outer-approximation method is that

presented by Csirmaz [43] which is an improved version of BOA. This

version solves only one scalar linear program in each iteration dur-

ing the search process, unlike what is obtainable in [30] where two

scalar linear programs are solved in each iteration. The modification

in [43] dramatically lead to a significant improvement in computa-

tion time compared to what is obtainable when using the method of

Benson [30].

1.2.2 Heuristics

Real life MOLP problems are difficult to solve. In a worst-case situ-

ation all vertices might be efficient, meaning that the problem would

be intractable as there might be exponentially many efficient ver-

tices, [98]. It is, therefore, clear that MOLP is intractable in the

15

worst-case. Moreover, looking at [90] which shows that listing all

vertices of a polyhedron is NP-hard, one can deduce that MOLP

is also NP-hard since in the worst-case scenario all vertices must be

found to determine the efficient ones. Thus, exact methods are some-

times inefficient and costly, especially when the problem size is large.

Instead of finding efficient and nondominated points, heuristics gen-

erally find good approximations or near efficient solutions in accept-

able computational times. For this reason, they are widely used in

multi-objective optimisation (MOO). Given that finding all efficient

solutions of MOLP is NP-hard since it is equivalent to enumerating

all vertices of the feasible region, [34]. It is astonishing to note that

only one approximate method, namely NSGA [140], has been applied

to it [37]. Some well-known heuristic methods to MOO and the ones

recently developed will be discussed in the following.

Genetic Algorithm : The Genetic Algorithm (GA) was developed

by Holland in 1975, [81]. It is based on the idea of natural selection.

The algorithm works with three operators; crossover, mutation and

reproduction [134]. To implement GA the following are needed:

Initial Population A predetermined number of individuals is ran-

16

domly generated to form an initial population. The basic GA starts

with this population.

Fitness Function This measure is essential for the implementation

of GA. It allows to rank individual solutions in the population. It is

often the objective function of the optimisation problem.

Selection of Parents The main idea of selection is choosing indi-

viduals from the population to be parents to new individuals. The

latter are expected to be better than the parents. There are differ-

ent selection methods such as the Roulette Wheel and Tournament

Selection [121].

Genetic Operators: There are three such operators.

Crossover The crossover operator selects a random point which

shows a position on the individual. Then, parts of two selected in-

dividuals are exchanged to generate two new individuals. This pro-

cedure is called a single-point crossover. Another type is called two-

point crossover. In this variant, two random positions are selected

and parts of parents are exchanged.

Mutation A predetermined number of individuals are mutated. This

17

is done by changing/flipping some of the entries of an individual. This

operator helps exploration of the search space.

Reproduction This copies good individuals into the new population

as they are.

Stopping Criteria The algorithm stops when the number of gen-

erations reaches a predetermined maximum number of generations.

Another commonly used stopping criterion is the maximum number

of generations without improvement in the current solutions, [81,134].

Vector Evaluated Genetic Algorithm (VEGA): VEGA is the

first population-based evolutionary multi-objective genetic algorithm

(MOGA) applied to MOO problems. It was introduced by Schaf-

fer [130]. Here, the population is divided randomly into equal sub-

populations at each iteration. Fitness values are assigned to all the

solutions in a sub-population based on one of the objective functions

and each objective is used to evaluate members in the population. In

each sub-population, a fitness proportionate selection is done and the

selected members are used for procreation. The process is repeated

until convergence is achieved.

Multi-Objective Genetic Algorithm (MOGA): MOGA is the

18

first population-based evolutionary algorithm that uses the nondom-

inated classification of the population. In MOGA, each solution is

checked for its domination in the population and a rank i, equal to

ni the number of solutions that dominates solution i, is assigned to

it. To ensure that diversity is achieved, the algorithm uses a sharing

function model, [74].

Nondominated Sorting Genetic Algorithm (NSGA): NSGA

is one of the multi-objective evolutionary algorithms (MOEA) which

has the capacity to find nondominated points in a single run. It

was introduced by Srinivas and Deb [140]. In NSGA the population

is sorted according to nondomination and classified into a number

of fronts (F1, F2, ..., Fn). Using niching and nondominated sorting

of solutions in every generation, the good solutions are selected for

procreation. The algorithm also uses a sharing function model to

ensure diversity. Its main issues are:

• It requires the potential user to specify the sharing parameter,

which is difficult for the user to determine the ideal value for.

• The nondominated sorting technique is time consuming and com-

putationally expensive.

19

• It lacks elitism, which may be important in preventing the loss

of good solutions once they are found, [159].

Nondominated Sorting Genetic Algorithm II (NSGA-II):

NSGA-II [49, 50] is an improved version of NSGA [140]. Though

NSGA enjoyed patronage in the multi-objective evolutionary com-

munity, it was also widely criticized for the above three issues (lack

of elitism, high computational cost of nondominated sorting and the

requirement for specifying the sharing parameter). The NSGA-II

succeeded in solving all the three issues at once by introducing a fast

nondominated sorting and tournament selection using the concept of

crowding distance, [116]. In NSGA-II, in addition to the genetic oper-

ators of crossover and mutation, two new specialized multi-objective

operators or mechanisms have been proposed to solve the above three

issues:

• Nondominated Sorting : NSGA-II employs a fast nondomi-

nated sorting that is aimed at reducing the complexity of sorting

as compared to that used in NSGA.

• The Crowding Distance : It is a technique to replace the

sharing parameter that was needed in the old version. This

20

approach involves ranking among members of a front those that

are dominating or being dominated by each other.

These two procedures are used together with the genetic selection op-

erators to create the population of the next generation. The pseudo-

code of NSGA-II adapted from [159] is given as Algorithm 1.

Algorithm 1 Nondominated Sorting Genetic Algorithm II

1: Initialization:
2: � Generate random population
3: � Evaluate objective values
4: � Assign rank (level) based on nondomination
5: � Generate child population

- Tournament selection
- Crossover and mutation

For i = 1 to number of generations
6: � Parent and child population are assigned rank based on nondomination
7: � Generate sets of nondominated fronts
8: � Determine the crowding distance between points on each front
9: � Select points based on crowding distance calculation

and fill into the parent population until full
10: � Create next generation
11: � Tournament Selection
12: � Crossover and Mutation
13: � Evaluate Objective Values
14: � Increment generation index

End

Among all the above mentioned MOEAs, NSGA-II is the most popu-

lar and known for its capacity to promote the quality of solutions, [87].

There are new nature-inspired algorithms (NIA’s) which have shown

a lot of promise on nonlinear single and MOO problems. One such

21

algorithm is the so called Plant Propagation Algorithm or PPA. It

emulates the way plants and in particular the strawberry plant propa-

gate [128]. Before going further, we will briefly present the strawberry

plant and PPA. The details of multi-objective plant propagation algo-

rithm (MOPPA) will be provided in Chapter 6 where it is investigated

and used to solve MOLP.

1.3 The Strawberry Plant

The strawberry plant (Fragaria x ananassa) belongs to the Rose fam-

ily. The strawberry-growing industry started in Paris in the seven-

teenth century with the European variety. In 1714, Amedee-Francois

Frezier, a mathematician and engineer, hired by Louis XIV [62] to

draw maps of South America returned from Chile with some Chilean

strawberry plants which give a larger fruit. Subsequent crossings with

the European variety and selections led to the modern plant, [128].

22

Figure 1.1: The Strawberry Plant (FragariaXananassa)

Looking at mature strawberry plants, one will observe after a period

of time, a concentration of younger plants around strong and well-

established ones; that is the plants send many short runners as they

are in good spots. Plants that are not well-established and are not

looking very strong, send few but longer runners to explore the envi-

ronment in search of better spots with enough water, nutrients and

sunlight. These basic principles are behind the design of PPA and

subsequently MOPPA.

23

1.4 The Basic Plant Propagation Algorithm

The Plant Propagation Algorithm (PPA) introduced by Salhi and

Fraga, [128], emulates the strategy that plants deploy to survive by

colonising new places which have good conditions for growth. Plants,

like animals, survive by overcoming adverse conditions using often ba-

sic but effective strategies. The strawberry plant, for instance, has

a survival and expansion strategy which is to send short runners to

exploit the local area if the latter has good conditions (with enough

water, nutrients and light), and to send long runners to explore new

and more remote areas, that is to run away from a not so favourable

current area (with poor water supply, nutrients and light). The mech-

anism of the basic PPA is described below, [134,147].

The algorithm starts with a population of plants each of which rep-

resents a solution in the search space. Xi denotes the solution repre-

sented by plant i in an n-dimensional space. Xi ∈ Rn, i.e. Xi = [xij],

for j = 1, . . . , n and xij ∈ R. NP is the population size. This itera-

tive process stops when g the counter of generations reaches its given

maximum value gmax.

24

Algorithm 2 The Plant Propagation Algorithm (PPA)

1: Generate a population P = Xi, i = 1, . . . , NP of plants;
2: g ← 1
3: for g = 1 : gmax

4: Compute Ni = f(Xi),∀ Xi ∈ P
5: Sort P in ascending order of fitness values N (for minimization);
6: Create new population φ
7: for each Xi, i = 1, . . . , NP
8: ri ← set of runners where both the size of the set and the distance for

each runner (individually) are proportional to the fitness values
Ni;

9: φ← φ ∪ ri (append to population);
10: endfor
11: P ← φ (new population);
12: endfor
13: Return P , (the population of solutions).

Individuals/plants/solutions are evaluated and then ranked (sorted in

ascending or descending order) according to their objective (fitness)

values and whether the problem is a min or a max problem. The

number of runners of a plant is proportional to its objective value

and conversely, the length of each runner is inversely proportional

to the objective value, [128]. For each Xi, Ni ∈ (0, 1) denotes the

normalized objective function value space. The number of runners

for each plant to generate is

nir = d(nmax Ni βi)e (1.4)

where nir shows the number of runners and βi ∈ (0, 1) is a randomly

25

picked number. Thus, for each plant, the minimum number of runners

is 1. The distance value found for each runner is denoted by dxij. It

is:

dxij = 2(1−Ni)(r − 0.5), for j = 1, . . . , n. (1.5)

where r ∈ [0, 1] is a randomly chosen value.

Calculated distance values are used to position the new plants as

follows:

yij = xij + (bj − aj) dxij, for j = 1, . . . , n. (1.6)

where yij shows the position of the new plant and [aj, bj] are the

bounds of the search space. If the bounds of the search domain are

violated, the point is adjusted to be within the domain [aj, bj].

The new population that is created by appending the new solutions

to the current population is sorted. In order to keep the number of

population constant, the solutions that have lower objective value are

dropped, [134].

The algorithm was originally designed for single-objective nonlinear

optimisation problems. It has been successfully tested on single-

objective and bicriteria continuous optimisation problems in [128].

26

It has also been applied successfully to a single-objective dynamic

optimisation problem in the built environment [68].

1.5 The Algebra of MOLP

Let us re-write (1.3) as

min{λTCx : Ax = b, x ≥ 0} (1.7)

and use the notation C̄ = C − CBA−1
B A for the reduced cost matrix

with respect to basis B, R = C̄N for the nonbasic part of the reduced

cost matrix and also note that C̄B = 0 (the basic part of the reduced

cost matrix). It has been shown in [56] that if XE 6= ∅, then X has

an efficient basic feasible solution.

Definition 1.5: A feasible basis B is called efficient if B is an optimal

basis of LP(1.7) for some λ ∈ Rq>0. A pivot is said to be a feasible

pivot if the solution obtained after the pivot step is feasible, even if

the pivot element is negative.

Definition 1.6: Two bases B and B̂ are called adjacent if one can

be obtained from the other by a single pivot step.

27

Definition 1.7: (a) Let B be an efficient basis. Variable xj, j ∈ N

is called efficient nonbasic variable at B if there exist a λ ∈ Rq>0 such

that λTR ≥ 0 and λTrj = 0 where rj is the column of R corresponding

to variable xj.

(b) Let B be an efficient basis and let xj be an efficient nonbasic

variable. Then a feasible pivot from B with xj entering the basis is

called an efficient pivot with respect to B and xj.

It has also been shown in [56] that if B is an efficient basis and xj

an efficient nonbasic variable, then any efficient pivot from B will

lead to an adjacent efficient basis B̂. To determine if a nonbasic

variable xj at an efficient basis B is efficient, one needs to perform

Evans-Steuer [63] nondominance test which involves solving the LP

max etv

subject to Rz − rjδ + Iv = 0 (1.8)

z, δ, v ≥ 0

It has also been shown in [56] that (1.8) is always feasible and can only

have an optimal solution with v = 0 or be unbounded. Therefore:

• xj is an efficient nonbasic variable if and only if (1.8) is bounded

28

and has optimal value 0,

• xj is an inefficient nonbasic variable if and only if (1.8) is un-

bounded.

In MSM, one must consider negative pivot elements because if non-

basic variable xj is efficient and column j of Ā contains no positive

element, then the increase of xj is unbounded, a fact that indicates an

unbounded LP in the single objective case. However, since λTrj = 0

this is not the case in MOLP, rather unboundedness of XE is de-

tected in the direction given by the vector with components −b̄i
Āij

,i ∈ B,

xj = 1. Though, this is not a feasible pivot as it does not lead to an-

other basis, but does not constitute unboundedness of the objective

function. The results so far allow one to move from efficient basis to

efficient basis until all efficient solutions are found. [56].

In MOLP, one and only one of the following cases can occur:

• The MOLP is infeasible, that is X = ∅,

• it is feasible (X 6= ∅) but has no efficient solutions (XE = ∅), or

• it is feasible and has efficient solutions, that is XE 6= ∅.

29

The MSM handles these situations in three phases as follows:

Phase I: Determine an initial basic feasible solution or stop with

the conclusion that X = ∅.

Phase II: Determine an initial efficient basis or stop with the

conclusion that XE = ∅.

Phase III: Pivot among efficient bases to determine all efficient

extreme points and unbounded efficient edges of XE.

In the first phase, the algorithm is initialized with a basic feasible

solution by solving the following auxiliary LP:

min eTz

subject to Ax+ Iz = b (1.9)

x, z ≥ 0

where eT = (1, ..., 1) ∈ Rq and I is the identity matrix of proper

order.

The MOLP is feasible, that is X 6= ∅ if and only if (1.9) has an

optimal solution zero.

In phase II, the solution of (1.7) with λ > 0 will yield an efficient

30

basis, provided (1.7) is bounded. First, the following auxiliary LP is

solved to check if XE = ∅

min uT b+ wTCx0

subject to uTA+ wTC ≥ 0 (1.10)

w ≥ e,

XE 6= ∅ if and only if (1.10) has an optimal solution (û, ŵ) with

ûT b + ŵTCx0 = 0. This optimal solution returns an appropriate

weighting vector ŵ. Then û is also an optimal solution of the LP(1.11)

min{uT b : uTA ≥ −ŵTC}. (1.11)

The dual of (1.11) has an optimal basic feasible solution which is

efficient and it is equivalent to the weighted sum LP

min{ŵTCx : Ax = b, x ≥ 0}. (1.12)

The LPs (1.10) and (1.12) are the necessary tools in phase II of the

algorithm. If (1.10) is infeasible, XE = ∅. Otherwise an optimal

solution of (1.10) yields an appropriate weighting vector ŵ = λ for

which (1.7) has an optimal basic feasible solution which is an initial

31

efficient solution of the MOLP, [56].

1.6 Research Objectives

This research study is intended to look at the state-of-the-art tech-

nology for MOLP. It considers prominent exact algorithms, under-

standing them, implementing and modifying some of them, as well as

comparing them comprehensively on a series of existing test problems.

We would also apply two population based algorithms to MOLP. The

research objectives of this thesis can be categorized as follows:

• to present a state-of-the-art survey of MOLP algorithms devel-

oped over the past few decades;

• to extend the Multi-objective Simplex Algorithm (MSA) of Evans

and Steuer [63] to generate the set of all nondominated points

and compare it with Benson’s [30] Outer-approximation Algo-

rithm (BOA) in order to determine its effectiveness;

• to further compare the extended multi-objective simplex algo-

rithm (EMSA) with Arbel’s Affine Scaling Interior MOLP Algo-

rithm (ASIMOLP) [6] and BOA [30];

32

• to comprehensively compare the Parametric Simplex Algorithm

(PSA) of Rudloff et al. [124] with BOA [30];

• to apply nature-inspired population based stochastic algorithms

such as the multi-objective strawberry plant propagation algo-

rithm (MOPPA) [67] and NSGA-II [49,50] which were originally

designed to solve multi-objective nonlinear programming prob-

lems to MOLP using the penalty function method to handle

general constraints.

1.7 Main Contributions

We have outlined some of the thesis objectives above, now we outline

the main contributions of the thesis as follows:

• An extensive survey of the topic is presented. No source of any

note in the literature going back at least five decades has been

ignored.

• We have extended MSA to make it a competitive alternative to

what is on offer today in terms of exact methods.

• We have introduced a procedure to compute the Most Preferred

33

Nondominated Point (MPNP).

• We have, we believe, applied heuristic approaches for the first

time to MOLP. These are the well established NSGA-II [49, 50]

and the recently introduced Plant Propagation Algorithm or

PPA, [128].

• We have carried out an extensive empirical evaluation of these

approximate approaches against the most prominent exact meth-

ods investigated here, EMSA, ASIMOLP, BOA and PSA.

1.8 Organization

This thesis is divided into seven chapters. Chapter 2 presents a state-

of-the-art survey of MOLP algorithms developed over the past five

decades. The survey classifies the algorithms into two broad cate-

gories: Non-interactive and Interactive algorithms. Section 2.2 pro-

vides a review of Non-interactive algorithms while Section 2.3 reviews

the Interactive approaches. Section 2.4 discusses heuristic approaches

to MOO. Finally, Section 2.5 summarizes Chapter 2.

Chapter 3 presents an extension of the MSA of Evans and Steuer [63]

34

to generate the set of all nondominated points of the problem. It also

compares the extended and the original version with BOA. Section

3.2 presents the MSA of Evans and Steuer [63] while Section 3.3

presents its extended version. Section 3.4 discusses two scalarization

techniques. We present BOA in Section 3.5. Section 3.6 provides the

experimental results obtained with these algorithms. We present the

summary of experimental results in Section 3.7 and a summary of

Chapter 3 is presented in Section 3.8.

Chapter 4 provides a computational investigation on EMSA, ASI-

MOLP [6] and BOA [30]. Section 4.2 presents ASIMOLP. The deter-

mination of a priority vector used in ASIMOLP is presented in Sec-

tion 4.2.2. We presents Interactive ASIMOLP in Section 4.3. Section

4.4 discusses the selection of a most preferred nondominated point.

We provide experimental results in Section 4.5. The summary of ex-

perimental results is presented in Section 4.6 and a summary of the

chapter in Section 4.7.

Chapter 5 provide a computational investigation of two MOLP algo-

rithms namely PSA of Rudloff et al. [124] and BOA. PSA is presented

in Section 5.2. We provides additional illustration of BOA in Section

35

5.3. Section 5.4. presents the experimental results obtained with the

two algorithms. We present a summary of experimental results in

Section 5.5. Finally, Section 5.6 summarizes Chapter 5.

Chapter 6 applies nature-inspired population based stochastic algo-

rithms, MOPPA [67] and NSGA-II [49,50] to MOLP. It also compares

them with exact methods. Section 6.2 presents the multi-objective

plant propagation algorithm. The solution procedure is presented in

Section 6.3. Section 6.4 provides the experimental results obtained

with MOPPA and NSGA-II and exact methods EMSA, ASIMOLP,

BOA and PSA. We present a summary of experimental results in

Section 6.5. A summary of Chapter 6 is presented in Section 6.6.

Chapter 7 concludes the whole thesis, provides its findings and sug-

gests some future research directions.

36

Chapter 2

REVIEW OF LITERATURE

2.1 Introduction

This chapter presents a state-of-the-art survey of MOLP algorithms

developed over the last five decades. The algorithms are classified

into two broad categories: Non-Interactive algorithms and Interac-

tive ones. The algorithms in the first category are of the Simplex,

Interior-point and Objective space based algorithms. While those

in the second category are of the Simplex and Interior-point based

ones. A tabulated list of all algorithms is included in the appendices

section.

This chapter is organized as follows. Section 2.2 is a review of lit-

37

erature on the Non-interactive algorithms. These algorithms include

the simplex, interior-point and objective space based methods. Sec-

tion 2.3 is a review on the Interactive algorithms which include only

the simplex and interior point based ones. In Section 2.4, we discuss

heuristic approaches to MOO problems in general. A summary of

the chapter is presented in Section 2.5.

Before going any further, let us reiterate that the algorithms consid-

ered are in the following categories:

1. Non-Interactive Algorithms

• Simplex based algorithm and its variants, (MSA)

• Interior-point based methods, (IPM)

• Objective space based methods, (OSM)

2. Interactive Algorithms

• Simplex based algorithm and its variants, (MSA)

• Interior-point based methods, (IPM).

We note that in the objective space methods, the simplex algorithm

or the dual simplex algorithm are being invoked at some point or

38

the other during the search process. This may suggest that they

should be put in the simplex based class. However, for more clarity

and given that there is a strong trend to refer to them as objective

space methods, we prefer to put them on their own. Their underlying

philosophy is different from that of the simplex methods.

2.2 Non-Interactive Algorithms

2.2.1 Simplex based algorithms

In the last five decades a number of approaches has been suggested

for generating either the entire efficient decision set XE or the non-

dominated set YN or a subset thereof, or a most preferred solution to

the problem.

The first parametric programming approach to MOLP appears to be

due to Schonfeld, [132]. The author presented an algorithm for the

enumeration of efficient solutions of the problem using parametric

programming. Few years later, Geoffrion [73] presented a bicriterion

parametric linear programming algorithm to solve the problem. It

was noted that solutions are not extreme points of the feasible region,

39

pointing to the fact that one should not rely only on algorithms that

consider extreme point solutions as in ordinary LP.

Eiselt and Sandblom [61] noted that, Evans and Steuer [63], Philip

[117] and Zeleny [162] all derived generalized versions of the simplex

method known as MSA. That of Philip, [117] first determines if an

extreme point is efficient and subsequently checks if it is the only one

that exists. If not, the algorithm finds them all. This MSA approach,

however, may fail at a degenerate vertex. In [118], Philip modified it

to overcome this difficulty.

The MSA of Evans and Steuer [63] also generates all the efficient

extreme points and unbounded efficient edges of MOLPs; see also

Algorithm 7.1, page 178 of [56]. The algorithm first establishes that

the problem is feasible and has efficient solutions. Thereafter, it

generates them all. An LP test problem is solved to determine the

pivots that lead to efficient vertices. The algorithm is implemented

as a software called ADBASE, [144].

The MSA variant of Zeleny [162] also uses an LP test problem to

determine the efficiency of extreme points. But, here, vertices are

tested for efficiency after they have been obtained unlike in [63] where

40

the test problem determines pivots leading to efficient vertices.

Yu and Zeleny [156,157] used the approach in [162] to generate the set

of all efficient solutions and presented a formal procedure for testing

the efficiency of extreme points. The efficient solutions are derived

from the efficient faces, in a top-to-bottom search strategy. Numer-

ical illustrations with three objectives were used to demonstrate the

effectiveness of the method. In a similar paper, Yu and Zeleny [158]

applied their approach expanded in [157] to parametric linear pro-

gramming. Two basic forms of the problem and two computational

procedures for computing the efficient set were presented: the direct

decomposition of the parametric space into subspaces associated with

extreme points and the indirect algebraic method. From a numerical

experience point of view, the indirect algebraic method outperforms

the direct decomposition.

In [24], Belenson and Kapur developed a technique which applies LP

approach to solve two person zero-sum games with mixed strategies.

The problem was formulated as a weighted sum MOLP problem and

solved with the simplex method. Relatively small MOLP instances

with two objectives were used to demonstrate the applicability of the

41

method. It was noted however, that the number of individual LPs to

be solved during the search process could be too large which makes

it difficult to solve larger problems.

Isermann [83] proposed a variant of the MSA of Evans and Steuer [63]

that solves fewer LPs when determining the entering variables. The

algorithm first establishes whether an efficient solution for the prob-

lem exists, and solves a test problem to determine pivots leading to

efficient vertices. It was implemented as a software called EFFACET

in Isermann and Naujoks [84].

In [27], Benson validated Isermann’s method in [83] for finding an

initial efficient extreme point for the problem and also proposed a

method to do the same.

Ecker and Kouada [55] proposed a method for finding an initial effi-

cient solution of the problem. It was however noted in [83] that the

efficient solution obtained with the method in [55] may not be an

efficient basic feasible solution of the problem.

The MSA of Gal [69] generates the set of all efficient vertices and

higher-dimensional faces. This approach is meant to address the

problem of determining efficient faces and higher dimensional faces

42

not resolved in [63] and [117]. Here, efficient extreme points are gen-

erated using a test problem. The algorithm also determines higher-

dimensional efficient faces for degenerate problems which were only

discussed in [83] and [162] but not solved. The efficient faces are gen-

erated in a bottom-to-top search strategy unlike what was suggested

in [156,157].

Steuer [143] applied the MSA of Evans and Steuer [63] to parametric

and non-parametric MOLP. Different methods for obtaining an initial

efficient extreme point as well as different LP test problems were

also presented. Efficient extreme points are generated through the

decomposition of the weight space into finite subsets that provide

optimal weights corresponding to extreme point solutions.

In [56], Ehrgott applied the MSA of Evans and Steuer [63] to solve

MOLP problem instances with two and three objective functions.

Ecker and Kouada [54] also proposed a variation on the MSA of

Evans and Steuer [63]. They noted that algorithms usually started

from an initial efficient extreme point and moved to an adjacent one

following the solution of an LP problem. The proposed method does

not require the solution of any LP problem to test for the efficiency

43

of extreme points and the feasible region needs not be bounded. The

algorithm enumerates all efficient extreme points and appears to have

computational advantage over other methods.

In a different paper, Ecker et al. [53] presented yet another variant of

MSA. The algorithm first determines the maximal efficient faces in-

cident to a given efficient vertex (i.e. containing the efficient vertex)

and ensures that previously generated efficient faces are not regener-

ated. This is done following a bottom-to-top search strategy as in [69],

which dramatically improves computation time. The proposed ap-

proach was illustrated with a degenerate example given in [157], to

demonstrate its applicability. It was computationally more efficient

than the method in [157].

The MSA of Armand and Malivert [20] determines the set of ef-

ficient extreme points even for degenerate MOLPs. The approach

follows a bottom-to-up search strategy and utilizes a lexicographic

selection rule to choose the leaving variables which proves effective

when solving degenerate problems. It was tested successfully on a

number of degenerate problems. A numerical example with five ob-

jectives and eight constraints which was solved in [157] was also used

44

to demonstrate its effectiveness. The proposed MSA was superior to

that in [157]. In a similar paper, Armand [19], proposed another algo-

rithm for finding all maximal efficient edges of the problem. The lexi-

cographic pivoting rule is also used here to determine all the maximal

efficient faces. It was reported that this algorithm is computationally

superior to that in [20] upon comparison.

A modification of PSA for single objective LP to solve bounded bi-

criterion LP problems was presented by Ruszczynski and Vander-

bei [125]. The approach was applied to a large mean-risk portfolio

optimization problem for which the nondominated portfolios were

generated.

Ehrgott et al. [58] introduced a primal-dual simplex algorithm for

bounded MOLPs. This algorithm finds a subset of the efficient so-

lutions that are used to generate the whole efficient frontier. The

algorithm starts with a coarse partitioning of the weight space which

continues in each iteration as well as solves a costly LP in each it-

eration. A vertex enumeration is then performed in the last step to

obtain efficient solutions. Numerical illustrations show the applica-

bility of the algorithm.

45

Recently, Rudloff et al. [124] suggested a PSA for the problem. The

algorithm is a generalization of the algorithm in [125] and is similar

to that in [58]. It works for any dimension, solves bounded and

unbounded problems (unlike the algorithm in [58] and [125]), but

does not find all the efficient solutions unlike the algorithm of Evans

and Steuer [63]. Instead, it finds a subset of efficient solutions based

on the idea of Löhne [100]. That is, a subset of efficient solutions

that allows to generate the whole efficient frontier. The algorithm

performs pivoting for only one leaving variable among the set of all

possible leaving variables. It was compared with a version of BOA

in [77] which is an objective space based algorithm, and that in [63]

using small MOLP instances which were randomly generated with 3

and 4 objectives and up to 50 variables and constraints. Numerical

experiments show that the proposed algorithm outperforms Benson’s

algorithm for non-degenerate problems. However, Benson’s algorithm

is better for highly degenerate ones. The parametric MSA was also

found to be computationally more efficient than Evans and Steuer

MSA, [63].

In [133], Seiford and Yu extended MSA to solve a multiple criteria

and multiple constraint levels (right hand sides) problem (i.e. mul-

46

tiple discrete right hand sides). The approach was regarded as a

symmetric extension of MSA that generates all the efficient solutions

of the problem. It was noted however that the algorithm is limited,

since it is only suitable for problems with multiple discrete right hand

sides.

Strijbosch et al. [146] proposed a simplified MOLP algorithm (MOLP-

S) based on the simplex method to trace the efficient solutions of the

problem. It was reported that the proposed algorithm was compu-

tationally more efficient than the ADBASE software of Steuer [143]

upon comparison.

A detailed discussion on the field of MCDM in general and its mod-

els is presented by Zeleny in [163]. The author also gave a complete

account of MSA as well as presented different applied MOLP for-

mulations. The problems were solved effectively using his approach

in [162].

A method called the moving optimal method for finding the efficient

solutions of the problem based on the simplex method was proposed

in [114]. The algorithm proceeds by solving q single objective LPs of

a given problem to obtain the optimal solution of each LP. Using the

47

optimal solution of the first LP as an initial solution of the next and

repeating the process, efficient solution line segments are generated.

An instance posed in [48] was used to demonstrate its effectiveness.

The proposed method was found to be better than that in [48].

In [148], Suprajitno presented an interval arithmetic simplex-based

algorithm for the problem. According to the author, the information

needed to solve real world problems is uncertain, hence the need for

using intervals to define the data. The problem is formulated as an

interval MOLP problem to start with and solved using a modified

simplex algorithm. The procedure was found to be effective when

tested on interval MOLPs posed in [113] for which some efficient

solutions were obtained.

Sayin [129] presented a method for finding the set of efficient solutions

of the problem based on the approach in [157]. The method incorpo-

rates a simple LP test that identifies efficient faces and also employs

a top-to-bottom search strategy to generate maximal efficient faces.

Numerical experiments show that the computational effort increases

with the problem dimension and the number of variables appears to

have a significant effect on computation time.

48

In [154], Yan et al. investigated the structure of efficient and weakly

efficient solutions as well as proposed a method for finding them. The

algorithm determines a finite number of weights that corresponds to

weighted sum problems. It was noted however, that heavy computa-

tional effort may be required as the procedure involved solving many

LPs during the search process for efficient and weakly efficient solu-

tions.

Foroughi and Jafari [65] presented a modification of the algorithm

in [154]. It was shown that if in one stage of the algorithm, the

weighted sum problem has no finite optimal solution, the method

in [154] would be ineffective. The modified algorithm overcomes this

difficulty without changing its complexity.

Pourkarimi et al. [119] also improved on the algorithm of Yan et al.

[154] by presenting a method that solves fewer LPs during the search

process. The proposed method used a bottom-to-up search strategy

and gives a representation of the maximal efficient faces. A numerical

illustration was used to demonstrate its computational efficiency over

the method in [154].

Kim and Thien [93] presented an algorithm for generating the set of

49

all efficient extreme points and rays for the problem. A bottom-to-

top search strategy was used to determine the efficiency of extreme

points. An MOLP instance introduced in [157] which was also solved

in [20] was used to demonstrate the applicability of the approach. It

was noted however that the number of objectives has a significant

effect on the computational time unlike what was reported in [129].

In a similar paper, Kim et al. [94] extended the approach in [93]

to MOLPs associated with linear multiplicative (nonconvex global

optimization) programming problems for generating the same.

An approach where the two dimensional simplex tableau is replaced

with a three dimensional one was proposed in [36]. Contrary to MSA

which allows displacement between zero dimensional faces (extreme

points), this approach enables displacement between higher dimen-

sional faces and leads to the determination of efficient faces of higher

dimensions without necessarily determining its vertices.

More recently, Luc [106] presented his text on the fundamental con-

cepts in MOLP which introduces readers to the subject. The author

also presented different MOLP dual problems and discussed MSA in

detail with illustrative examples. The author was motivated by the

50

fact that, apart from the work of Zeleny [162] and Steuer [143] nearly

all other texts on the subject are devoted to nonconvex problems.

Of all these MSA variants discussed above, that of Evans and Steuer

[63] is the most popular and successful for computing all efficient

extreme points of the problem [131].

2.2.2 Interior-point based algorithms

Simplex-based approaches and its variants make explicit use of the

vertices of the feasible region. Interior point approaches, however,

generate iterates in the interior of the feasible region. Various such

approaches have been suggested. The difference between them de-

pends on the methodology employed to assess the suitability of points

used to derive a combined search direction along which one heads to-

wards the next iterate.

The first to adapt a variant of Karmarkar’s [89] interior-point algo-

rithm, to solve MOLP appears to be Abhyankar [1]. It relies on the

method of centers. It uses a parameterization of ellipsoids in the n-

dimensional space to approximate the efficient frontier of the problem

in polynomial time.

51

Arbel [5] also modified and adapted a variant of Karmarkar’s algo-

rithm [89] resulting in the so called Affine Scaling Interior MOLP

(ASIMOLP) algorithm. He used the convex combination of individ-

ual directions to derive a combined direction along which to step

toward the next iterate. Specifically, the algorithm generates step

direction vectors based on the objectives of the problem. The rel-

ative preference of these directions is then assessed using a utility

(or preference) function to obtain the points used in combining them

into a single direction vector that moves the current iterate to a new

one. The process is repeated until the algorithm converges to a most

preferred efficient solution after meeting some termination conditions.

In [6], Arbel proposed another ASIMOLP algorithm. This approach

offers another means of assessing preference information to establish

a combined search direction rather than using the DM’s utility func-

tion. The Analytic Hierarchy Process (AHP) developed in [127] was

applied to obtain the relative preference of points used to derive a

combined direction along which the next step is taken. It is based

on the assessed preferences to weigh the step direction vectors for

each of the objectives in order to derive a combined step direction

vector. This process continues to generate search directions and new

52

feasible points at each iteration, until the algorithm converges to a

most preferred point on the efficient frontier.

A modification of the Affine Scaling Primal Algorithm (ASPA) is

presented in [16]. Here, the procedure assumes that the DM has an

implicitly known utility function and search directions are generated

to approximate the gradient of this function. These directions are

later combined to arrive at the next iterate. This continues in a

sequence of steps until the algorithm converges to an efficient solution.

In a similar paper, Arbel [9] presented another modification of ASPA

to generate search directions in the form of projected gradients which

improves each objective. The projected gradients are then used to

derive a combined direction that leads to a new iterate. By taking a

full step along the combine direction enables one to reach a boundary

or anchor point. The anchor points together with the current iterate

defines a cone of opportunities at which to terminate the process

upon convergence at the boundary of the feasible region.

In [7] yet another ASIMOLP algorithm based on the AHP has been

suggested. The derived preference information is applied to the pro-

jected gradients in order to obtain anchoring points and cones used

53

in searching for a most preferred solution. The boundaries of the

constraints polytope are constantly probed to make more directions

available, which enables one to arrive at a most preferred solution.

The formal principles behind interior-point LP approaches is pre-

sented by Arbel in [8], the author provided the basic details of ASPA

which are used in the implementation of ASIMOLP.

Wen and Weng [151] modified ASIMOLP in [5] to resolve zigzagging

issues. Zigzagging is an alternating search path that is usually gen-

erated by ASIMOLP and it often leads to poor convergence. The

modified algorithm, however, may not yield a most preferred efficient

solution.

In [13], Arbel and Korhonen introduced a new starting mechanism

which makes it possible to start an algorithm from a feasible or in-

feasible solution. The problem is first augmented so as to obtain an

initial feasible solution. This augmentation is controlled by a nonneg-

ative parameter which verifies the efficiency of the final solution. The

parameter is then forced to zero at the end of the iterative process

thereby achieving an efficient solution.

Zhong and Shi [165] applied ASIMOLP to find the solution of mul-

54

tiple criteria and multiple constraint level problems. The approach

involves partitioning the columns of the right hand side matrix (with

each column representing the right hand side vector) into different

MOLP problems. The problems are then solved by ASIMOLP and

their efficient solutions combined through a convex combination to

obtain a most preferred efficient solution.

Lin et al. [99] also proposed a modification of ASIMOLP [5]. They

adopted the utility function trade-off method to weigh the objective

functions involved and compared the modified algorithm with that

in [151] and the simplex method. Numerical experiments show that

their algorithm is superior. On computing efficiency, the interior

point based algorithms outperform the simplex-based ones on large

scale problems.

In [64], Fliege presented a method for approximating the solution of

the problem based on a warm-start strategy using the path-following

primal interior-point algorithm. With the warm-start strategy, points

from the iteration history of scalar problems already solved are used

as starting points until an approximate solution to the problem is

obtained.

55

Arbel and Sadka [18] presented a derivation of the Euclidean center

(and its weighted version) which is defined as the point in the decision

space which is the centre of the largest sphere that can be inscribed

in the constraints polytope. By assigning weights to the different

decision variables, one traverses the entire efficient frontier, thereby

arriving at an efficient solution of the problem.

Weng and Wen [152] presented an ASIMOLP based algorithm. It

computes a weighted sum of the different search directions involved

using a utility function. These search directions are then normal-

ized with the weights to obtain a combined direction that moves

the current solution to an anchor point. Computational experiments

show that the proposed algorithm is suitable for solving large scale

instances.

A comprehensive account of the algorithm in [5] is given in Gal [70].

Also discussed were the modifications needed for adopting the single

objective interior-point algorithm to MOLPs. Numerical illustrations

with two and three objectives were used to demonstrate the effective-

ness of the algorithm.

56

2.2.3 Objective space based algorithms

Due to the various difficulties arising from solving MOLP problems

in the decision space (such as having different efficient solutions that

map onto the same point in the objective space), efforts were made to

look at the possibility of solving them in the objective space. The first

attempt at exploring the possibility of solving them in the objective

space appears to be due to Dauer [44]. He presented an analysis of

the objective space and obtained a characterization between a face of

the objective space and the corresponding face of the decision space.

Numerical illustrations show the collapsing that occur when mapping

the decision space onto the objective space, thereby forming the basis

for a new procedure for MOLP.

In a similar paper, Dauer and Liu [46] presented another analysis of

the objective space and developed a procedure for determining the

nondominated extreme points and edges in this space. They observed

that not all extreme points of the constraint space necessarily map to

extreme points in the objective space. It was noted that their tech-

nique analyzes a simpler structure than those analyzed by algorithms

based on the decision space.

57

In [47], Dauer and Saleh determined the nondominated extreme points

of the problem by solving a resulting single-objective nonparametric

LP. The optimal basic solution of this LP was used to obtain the

corresponding nondominated extreme point in the objective space.

An algorithm for the construction of an Efficiency Equivalent Polyhe-

dron (EEP) associated with the objective space was presented in [71].

The proposed algorithm generates a nonredundant inequality repre-

sentation of the constructed EEP to obtain the Maximal Efficient

Faces (MEF) of the problem. Similarly, Dauer and Gallagher [45] pre-

sented the MEF algorithm for determining higher dimensional MEF

of the problem. The algorithm utilizes a nonredundant inequality

representation of the EEP generated by the algorithm in [71] as in-

put, and work in conjunction to obtain the MEF of higher dimension.

It was noted however, that the proposed algorithm is limited to only

problems with two and three objectives.

In [92], Kim suggested that it is better to work with an EEP that is

smaller than the feasible set, because not all data in this set plays

a role in determining the efficient set XE. Based on his observa-

tion, he proposed an outer-approximation algorithm for constructing

58

a smaller EEP that is used to obtain all the nondominated points

of the problem. This algorithm is quite similar to that in [71] as

both worked with nonredundant inequalities representation of EEP,

but differ in the definition of an EEP. Whereas in the former it was

described as being associated with the objective space, here it is as-

sociated with the decision space.

Benson and Sun [33] proposed a weight set decomposition approach

for generating the set of nondominated points using the idea of Ze-

leny [162]. The authors modified Zeleny’s approach to resolve the

issue of one-to-one correspondence with the efficient decision set. Nu-

merical illustrations show that the approach was computationally less

demanding than the decision set-based method in [162].

Benson [30], who presented a detailed account of decision space ap-

proaches, proposed an algorithm for generating the set of all non-

dominated points in the objective space. This is the so called BOA.

According to the author, this algorithm is the first of its kind. Com-

putational results suggests that the objective space based approach is

better than the decision space based one. A further analysis of objec-

tive space based algorithm for the problem was presented in [28]. This

59

outer-approximation algorithm also generates the set of all weakly

nondominated points, thereby enhancing the usefulness of the algo-

rithm as a decision aid.

Another of Benson’s [29] suggestions is a hybrid approach for solving

the problem in the objective space. The approach partitions the

objective space into simplices that lie in each face so as to generate the

set of nondominated points. This idea was earlier presented in [23].

The algorithm is quite similar to that in [30]. The difference between

them is in the manner in which the nondominated vertices are found.

While a vertex enumeration procedure is employed in [30], a simplicial

partitioning technique is used in the latter.

In [135], a modification of the algorithm of Benson [30] was presented.

While in [30], a bisection method that requires the solution of many

LPs in one step is required, here, solving one LP achieves the desired

effect and in the process improves computation time. In [136] an

approximate dual variant of the algorithm of Benson [30] for obtaining

approximate nondominated points of the problem was proposed. The

proposed algorithm was applied to the beam intensity optimization

problem of radio therapy treatment planning for which approximate

60

nondominated points were obtained. Numerical testing shows that

the approach is faster than solving the primal directly. Similarly,

Ehrgott et al. [57] presented a dual variant of Benson’s [30] algorithm

using results from the geometric duality theory of Heyde and Lohne

[79]. Numerical illustrations also suggests that the dual variant of

the algorithm may have computational advantage.

The explicit form of BOA [30] as modified by Shao and Ehrgott [135]

is presented in [100]. This version solves two LPs in each iteration

during the process of obtaining the nondominated extreme points.

Löhne [101], presented a Matlab implementation of this algorithm

called BENSOLVE-1.2 for computing all the nondominated points

and extreme directions (unbounded nondominated edges) of the prob-

lem.

Csirmaz [43] presented an improved version of BOA [30] that solves

one LP and a vertex enumeration problem in each iteration. While

in [30], solving two LPs to determine a unique boundary point and a

supporting hyperplane of the image is required in two steps, here, the

two steps are merged and solving only one LP does both tasks and

improves computation time. The algorithm was used to generate all

61

the nondominated vertices of the polytope defined by a set of Shan-

non inequalities on four random variables so as to map their entropy

region. Numerical testing shows the applicability of the approach to

medium and large instances with 3 and 10 objectives and up to 5772

variables and 635 constraints.

Hamel et al. [77] introduced new versions and extensions of the al-

gorithm in [30]. The primal and dual variants of the algorithm solve

only one LP problem in each iteration. Tests reveal a reduction in

computation time.

Similarly, Löhne et al. [102] extended the primal and dual variants

of the algorithm in [30] to solve convex vector optimization problems

approximately in the objective space.

Tantawy [149] presented a method for obtaining nondominated points.

He also developed a condition for an efficient extreme point to have

a corresponding nondominated point in the objective space. It was

suggested that, DMs should rely on the nondominated points because

they are fewer when compared with the efficient solutions.

Heyde and Löhne [79] proposed a geometric approach to duality in

MOLP which was similar to the theory of convex polytopes [75]. It

62

was shown that there exists a one-to-one mapping between the set

of all minimal faces of the primal problem and maximal faces of the

dual problem, such that the mapping is inclusion-reversing. Using

this mapping, the authors computed the minimum number of faces

in the primal and the corresponding maximum number of vertices in

the dual problem and vice versa. In a similar paper, Heyde et al. [80]

presented a duality theory for the problem using a set-valued dual

objective function. Numerical application using a bicriterion portfolio

optimization problem reveals the practical application of the theory.

A framework for the problem based on oriented projective geometry

(which allows unbounded polyhedra to be treated as bounded) was

presented by Burton and Ozlen [35]. The framework when incorpo-

rated into Benson’s outer approximation algorithm resulted in a new

algorithm that works in an oriented projective space. Numerical ex-

periments show that there is a reduction in the number of inefficient

vertices and running time.

Löhne [100] presented a detailed and comprehensive account of set-

valued and vector-valued approaches to the problem in the objective

space. The exposition covers the general theory of MOLP, scalar-

63

ization techniques, duality and extended variants of Benson’s [30]

algorithm to mention but a few. Most importantly, a solution con-

cept that takes into account the polyhedral structure of the problem

was introduced. The author suggested that a solution of the prob-

lem should be a finite subset of the feasible set which consists of

not only the set of efficient or nondominated points but also extreme

directions.

Recently, Shao and Ehrgott [138] extended the primal and dual vari-

ants of the algorithm in [30] to solve linear multiplicative program-

ming problems. The authors first improved their primal objective

space algorithm in [137] which was also based on the algorithm of

Benson [30] by making it solve only one LP in each iteration. There-

after, the dual variant in [57] was sandwiched to obtain a modified

dual objective space algorithm that also solve one LP in each it-

eration. Numerical results suggests that the proposed algorithm is

superior to the global optimisation algorithm presented in [72].

64

2.3 Interactive Algorithms

2.3.1 Interactive simplex based algorithms

Having discussed the non-interactive solution approaches, we now

turn our attention to the interactive algorithms that seek to find a

most preferred solution to the problem. These methods consists of

two main phases: a computational phase where efficient solutions are

computed and a dialogue phase where the DM is required to express

his or her preferences to guide the solution process. Interactivity in

our view is an essential feature of usable tools. It enhances applica-

bility and robustness of methods on one hand, but hinders them on

the other by the mere fact that intervention is required.

The earliest to propose an interactive approach to the problem seems

to be Benayoun et al. [25]. They called their procedure Step Method

(STEM). Here, a payoff table is first constructed in order to obtain

the ideal (optimum) solution for each of the objectives under consid-

eration. In the computation phase, a weighted Tchebyshev distance

to the ideal solution is solved to generate efficient solutions which are

them presented to the DM to decide which is most preferred. Oth-

65

erwise, the DM specifies the maximum or minimum amount he/she

is willing to sacrifice in one objective in order to improve the other

objectives. The information supplied by the DM is transformed into

additional constraints thereby altering the feasible region and objec-

tive values. This process continues until a most preferred solution is

obtained.

Few years later, Zionts and Wallenius [166] presented an interactive

method for solving the problem using a linear utility function instead

of a payoff table. It was noted however that, the STEM algorithm

in [25] may not work well in solving relatively small problems. Their

method starts with arbitrary set of weights which are used to obtain

a weighted sum objective function. This function is then optimized

to obtain efficient solutions. The DM provides answers to certain

questions in order to determine the trade off used to construct linear

approximations of the utility function. Based on the answers provided

by the DM, a new set of weights with associated efficient solutions are

found. This continues repeatedly until a most preferred solution is

found. In a similar paper, Zionts and Wallenius [167] extended their

interactive approach in [166] to a class of nonlinear utility functions.

66

In [31], Benson et al. applied the STEM algorithm presented in [25]

to solve the citrus rootstock selection problem in [26]. The algo-

rithm returns unsatisfactory results when the payoff table approach

was used as suggested in [25]. Benson-Sayin [32] global optimiza-

tion heuristic was then applied to solve the problem. It was noted

however, that the use of appropriate global optimization methods is

crucial to the achievement of success in real-world problems and the

use of unreliable payoff table approach in applied MOLP should be

discouraged.

Arbel and Oren [14] also presented an interactive approach for the

problem. Unlike the methods in [166] and [167] that utilize linear and

nonlinear utility functions, here, AHP was used to assign priorities to

vertices adjacent to the one representing the current basic solution to

possibly improve the objective function values. These priorities were

used to obtain an approximate gradient for weighing the objective

functions in the next iteration. Here, the DM is not required to

provide inputs for determining tradeoff, rather he or she evaluates

adjacent vertices for possible improvements until no adjacent vertex is

preferred to the current one. It was noted however, that the approach

produces only approximate solutions.

67

Steuer [141] suggested an interactive algorithm which utilizes crite-

rion weights specified by the DM in the dialogue phase to obtain

a subset of efficient solutions. The procedure solved the resulting

weighted sum problem to determine a subset of efficient solutions

corresponding to the specified weights. These solutions are then pre-

sented to the DM to choose that which is most preferred. This ap-

proach, however, may produce a large subset of efficient solutions

which may be difficult for the DM to choose the most preferred.

In [142], Steuer improved on the approach in [141] to further reduce

the subset of efficient solutions presented to the DM.

The interactive approach of Choi and Kim [38] provides the set of

nondominated solutions for large instances. The procedure solves a

Tchebycheff error problem to determine the closest point on a face

of the feasible region from the reference point. It was reported that

the method ensures a full coverage of the nondominated points and

reduces the DM’s burden in obtaining a most preferred solution.

In [145], Stewart presented an interactive method for solving the

problem. It was noted that, the method of Zionts and Wallenius [166]

does not specify how an interactive search over faces of the simplex

68

was to be carried out. However, his method avoid the unspecified

search and use a single procedure that requires only pairwise prefer-

ence statements from the DM.

A Simplified Interactive MOLP (SIMOLP) procedure for the prob-

lem was presented in [122]. This method does not require a payoff or

utility function and starts by solving the single objective LP prob-

lems involved, to obtain a set of efficient points and the associated

nondominated points. These points are then presented to the DM for

a review. If the DM is satisfied with any of them, the process stops;

otherwise, an augmented LP is solved to obtain an efficient solution

and a corresponding nondominated point which is again presented

to the DM for further review. The procedure continues until a most

preferred solution is achieved. Numerical illustrations show that a

most preferred solution can be achieved in a relatively few number of

iterations.

Korhonen and Laakso [97] proposed a visual interactive algorithm to

solve the problem using an unknown utility function to simulate the

DM’s behaviour. The approach utilizes aspiration levels or reference

direction to determine the direction of improvement that is projected

69

on the efficient frontier in order to obtain a subset of efficient solu-

tions. The corresponding objective values are then presented to the

DM for evaluation. It was noted however, that the interface adopted

here was based on a static graphic representation and could make the

DM rely too much on the system.

In [96], Korhonen and Wallenius improved on the algorithm in [97]

by presenting its dynamic version called Pareto race. Here, the DM

provides preference information that guide the search process to the

efficient frontier and thereby improving the objective values.

Haksever and Ringuest [76] conducted an investigation into the com-

puting efficiency of four variants of SIMOLP [122]. Numerical results

suggests that solving each successive LP using the optimal basis of

the previous problem is an effective way of achieving a reduction in

the number of iterations and CPU time.

In [107], Malakooti and Ravindran developed an interactive paired

comparison simplex method for the problem. The approach assumes

that the DM has an unknown utility function and performs a test for

efficiency to reduce the number of efficient solutions and questions

for the DM. This method was compared with that of Zionts and

70

Wallenius [166]. It was reported that the proposed method is superior

in all criteria selected for evaluation.

Dell and Karwan [51] proposed an interactive procedure using a

Tchebycheff utility function. This procedure was compared with the

method of Zionts and Wallenius [166]. Computational results sug-

gests that the procedure performs slightly better than that of Zionts

and Wallenius in terms of the quality of solution it returns. However,

Zionts and Wallenius method was computationally more efficient than

the proposed method.

The interactive method of Lotfi et al. [105] utilizes the DM’s aspi-

ration levels and a Tchebycheff function. The approach facilitates

the achievement of a most preferred solution at a non-extreme point.

The approach was compared with SIMOLP procedure [122]. Experi-

mental results show that the proposed method compared favourably

in terms of the quality of solutions it returns. However, the SIMOLP

procedure outperforms the proposed method in terms of computing

efficiency.

Michalowski and Szapiro [111] presented a Bi-reference interactive

procedure for the problem. Here, the DM is required to specify his or

71

her worst outcome, from where an ideal outcome is determined. The

algorithm then construct an improvement direction from the worst

to ideal outcome, leading to a trial solution. The DM is expected to

partition the objectives into that which require to be improved, un-

changed and relaxed. This action would lead to the displacement of

outcomes and a new improvement direction is obtained that yields a

most preferred solution. The method was compared with STEM algo-

rithm of Benayoun et al. [25] and that of Zionts and Wallenius [167].

Numerical results show that the Bi-reference procedure is superior

to both methods by returning preferred solutions in a few number of

iterations.

The interactive method of Quaddus and Holzman [120] assumes that

the DM has an implicitly known utility function. The approach is

similar to that in [166]. The DM is also required to specify a set

of weights used to construct a weighted sum objective which is then

optimized to obtain a starting efficient solution. Here, each objective

function is evaluated using the starting efficient point and the solu-

tions presented to the DM for evaluation. The procedure is repeated

until a most preferred solution is obtain. It was noted that the ap-

proach is more flexible and require minimum interaction than that

72

in [166].

In [39], a tricriteria algorithm (TRIMAP) for the problem was in-

troduced. The algorithm was not aimed at finding a most preferred

solution, but to assist the DM discard the subsets of efficient solutions

which are of no use. The method employs a progressive and selective

learning of the efficient set, until the DM has adequate knowledge of

the set. The DM is required to provide lower bounds for the objectives

which are graphically transformed into the weight space diagram to

visually limit the search scope. The information provided by the DM

also guides the search process to unexplored regions of the diagram

until a good knowledge of the efficient set is achieved. This algorithm

is implemented as a software in [40]. The program is implemented

in Pascal and consists of three phases: the weight space decomposi-

tion phase, simplex and routine implementation phases. During the

interactive process, a graphical representation of the weight space

with regions corresponding to efficient vertices and their associated

objective values are presented to the DM for evaluation. It was noted

however, that the software may only solve problems with three ob-

jectives.

73

Recently, Alves et al. [3] introduced an interactive graphical-based

computational tool for teaching, research and decision support pur-

poses in MOLP. The software is equipped with interactive approaches

such as: STEM, Pareto race, interval criterion weight and scalar-

ization techniques: weighted sum, reference point and e-constraint

techniques as well as a Vector Maximization Approach (VMA) that

generates all efficient extreme points of the problem. Apart from

the VMA which is noninteractive, a brief description of the interac-

tive approaches is also included. Visualization of results as well as the

graphical display of regions on the weight space diagram for problems

with up to three objectives can also be done. It was noted however,

that the solver is limited to solving problems with a maximum of six

objectives, a hundred constraints and decision variables.

2.3.2 Interactive Interior-point based algorithms

Various interactive interior-point approaches has been suggested for

the problem. These methods differ in the methodology adopted to

elicit preference information from the DM that guide the search or

solution process.

74

The first to present an interactive interior-point approach to the prob-

lem appears to be Arbel and Oren [15]. Their method was based on

ASPA and assumes that the DM has an implicitly known utility func-

tion. The approach generates search directions used to approximate

the gradient of the utility function. The DM is required to provide

preference information that is used to update the approximated gradi-

ent, thereby resulting in a sequence of iterates. The iterative process

continues until a most preferred solution is achieved.

Another of Arbel’s [10] suggestions is an interactive path-following

Primal-Dual Interior Multiple Objective Linear Programming (PDI-

MOLP) algorithm. The difference between ASIMOLP and PDI-

MOLP is in the way their interior step directions are generated.

While ASIMOLP is concerned with cost reduction, PDIMOLP in-

cludes a centring scheme that keeps the current iterate centred in the

constraints polytope.

In [12], Arbel and Korhonen introduced another interactive algorithm

as above. This algorithm combines path-following primal-dual pro-

cess with Achievement Scalarizing Function (ASF) first introduced

in [153]. The DM is required to specify his or her aspiration levels of

75

the objectives and the ASF depends on these aspiration levels. The

algorithm then generates a path from the current iterate to the opti-

mum of the ASF. As the DM continue to change his or her aspiration

levels, a new iterate is generated that is closer to the optimum of the

ASF. This process continues until a most preferred solution is found.

Arbel [11] suggested yet another interactive PDIMOLP algorithm

for the problem. This approach is quite similar to that in [15]. The

difference between them is, while the former is based on ASPA, the

latter is based on the path-following primal-dual process.

In a different paper, Arbel and Oren [17] proposed a modification of

the path-following primal-dual algorithm. The authors applied AHP

to derive priorities that are used to approximate the gradient of the

DM’s utility function. Projecting the approximated gradient onto

the null space of the constraints matrix, provides the combined step

direction along which one move from the current iterate to a new

one. By taking a full step along the combined direction enables the

algorithm to converge to a most preferred efficient solution on the

boundary of the feasible region.

Aghezzaf and Ouaderhman [2] also presented an interactive interior-

76

point algorithm where an implicit utility function is known. Here, the

DM is required to provide trade-offs used to derive an approximate

gradient of the utility function as well as updates the lower bounds

of the objectives. The algorithm then generates a sequence of smaller

polytopes that tend to shrink towards a most preferred solution.

In [86], Junior and Lins suggested an interactive interior-point ap-

proach that is based on ASPA and makes explicit use of ASF. The

ASF was formulated in such a way that the algorithm follows a path

that avoid sudden changes in the search direction so as to exhibit

a win-win property. The DM is required to specify the aspiration

levels for each objective as well as the proportion among other objec-

tives. In each iteration, intermediate solutions and objective values

are presented to the DM for evaluation. It was noted however, that

the method allows the DM to reach a most preferred solution without

making trade-offs between objectives.

Trafalis and Alkahtani [150] proposed an interactive interior-point

algorithm for the problem based on the method of analytic centers.

Here, the DM is required to supply his or her trade-offs which are used

to obtain a cut in the objective space and this induces a corresponding

77

cut in the variable space. The analytic center of the feasible region

is then constructed and the DM’s trade-offs are determined in the

analytic center of the objective space, thereby obtaining a trajectory

of analytic centers which converges to a most preferred solution.

2.4 Heuristic approaches to multi-objective op-

timisation

Having reviewed exact methods to the problem, we now turn our at-

tention to heuristics or approximate approaches to MOO problems

in general. As stated earlier, heuristics or approximate methods have

been commonly applied to nonlinear and discrete multi-objective op-

timisation and not so much to MOLP.

In [37], Chakraborty and Ray applied multi-objective parametric

fuzzy programming and NSGA [140] to MOLP transportation prob-

lem. Here, the MOLP problem is transformed into a single objective

parametric problem with interval parameters. Numerical illustration

using a coal energy resource allocation problem show the applicabil-

ity of the method. NSGA has been widely applied in different dis-

crete and continuous multi-objective optimisation problems. In [21],

78

Bagchi applied NSGA to several scheduling problems for which ap-

proximate efficient solutions were found. For extensive applications of

NSGA to chemical engineering problems, see [112]. NSGA-II [49,50]

which is an improved version of NSGA [140] and arguably the most

popular in the context of nonlinear multi-objective problems has also

had tremendous applications in different nonlinear multi-objective

optimisation. It was successfully applied in the energy generation

expansion planning problem in [88] for which the minimum invest-

ment and outage costs were approximated. Similarly, Hu et al. [82]

also applied NSGA-II to a real-life combined gas and electricity net-

work expansion planning problem in Hainan province (China) with an

aim of minimizing investment, production and carbon emission costs.

The problem was formulated as a bicriterion nonlinear MOO prob-

lem and solved using NSGA-II for which the nondominated front was

approximated. In [109], Massobrio et al. applied NSGA-II to the taxi

sharing problem in order to determine the minimum cost of journey

and delay time by passengers from the same location to different des-

tinations. The problem was formulated as a bicriteria multi-objective

optimisation problem and solved with NSGA-II and greedy heuris-

tics. Numerical results show that NSGA-II outperform the greedy

79

algorithms by achieving significant improvements in both objectives

in acceptable computational time. Recently, NSGA-II was applied in

the communication industry to solve the spectrum assignment prob-

lem in [108]. Here, the spectrum assignment problem was also for-

mulated as a bicriterion MOO problem and solved using NSGA-II.

Experimental results show that there is an improvement in through-

put at the cost of spectral efficiency which offers useful guidelines to

the service provider to maintain customer satisfaction in the spec-

trum sharing network. In [52], a modification of NSGA-II [49, 50]

was presented and applied to the combined economic and emission

dispatch problem. It was noted however, that NSGA-II ensures di-

versity along the nondominated front using the concept of crowding

distance, but lateral diversity may be lost due to the lack of diversity

in a particular decision variable which may push the search towards

the nondominated front. The modified version resolved this issue

by incorporating controlled elitism into NSGA-II and replaced the

crowding distance operator with a dynamic version which proves ef-

fective when solving problems.

Salhi and Fraga [128] presented the plant propagation algorithm

(PPA). This is the so called PPA. The algorithm emulates the way

80

plants and in particular, the strawberry plant propagate by send-

ing many short runners when they are in good spots and fewer but

longer runners to explore the environment when they are in a not so

good spot. It was tested on a complex nonlinear process design prob-

lem and compared with the Nelder-Mead algorithm. Experimental

results show the effectiveness of the proposed method, and its signif-

icantly outperforms the Nelder-Mead search method. In [67], Fraga

and Amusat extended the PPA [128] to solve multi-objective nonlin-

ear programming problems. A novel fitness function that emphasizes

the end-points is introduced into the extended version and applied to

the integrated energy systems design for off-grid mining operations

problem for which good designs that achieve the desired objectives

were approximated. Recently, Rodman et al. [123] applied the ex-

tended PPA (MOPPA) to the industrial beer fermentation process in

order to minimize the production time and maximize ethanol produc-

tion. The problem was modelled as a bicriteria nonlinear dynamic

optimisation problem and solved with MOPPA. Numerical results

show the effectiveness of MOPPA in solving complex multi-objective

optimisation problems.

81

2.5 Summary

In this chapter, we have reviewed MOLP papers that have appeared

since 1964. The survey classifies MOLP algorithms into two broad

classes: Non-Interactive and Interactive algorithms. The Non-

Interactive algorithms include simplex based, interior-point based

and objective space based methods. The Interactive algorithms only

include simplex and interior-point based methods. We have also pre-

sented a tabulated list of all algorithms reviewed during the period.

This in the form of many tables is presented in Appendices A through

E. Appendix A records the non-interactive simplex based methods;

Appendix B records the interactive simplex based methods; the ob-

jective space based methods are recorded in Appendix C; Appendix

D records the non-interactive interior-point based methods and Ap-

pendix E records the interactive interior-point based methods. Each

of these appendices is organised chronologically. In the next chap-

ter, we shall present an extension of MSA of Evans and Steuer [63]

to compute the set of all nondominated points. The extended ver-

sion will be compared with the original one and with BOA that also

computes the set of all nondominated points of the problem.

82

Chapter 3

A COMPARISON OF BOA WITH AN

EXTENDED VERSION OF MSA

3.1 Introduction

Many algorithms have been suggested for MOLP in the last few

decades as can be seen from the previous chapter. Most of them

are based on the simplex method for Linear Programming. Promi-

nent among them is the Multiobjective Simplex Algorithm (MSA)

and its variants. MSA and its variants work in the decision vari-

able space and find the set of all efficient solutions of the problem.

Current solution approaches finds either the entire set of all efficient

solutions or a subset of them and also return the corresponding non-

83

dominated points. According to Schechter and Steuer [131], the MSA

of Evans and Steuer [63] is the most popular and successful for com-

puting all the efficient solutions of the problem. However, it is well

known [28–30, 44, 46, 57, 59, 102, 135, 136] that in practice, the DM

prefers to base his or her choice of a most preferred solution on the ob-

jective values (nondominated points) rather than the efficient set [30]

and moreover, it was noted in [59] that finding the nondominated

set instead of the efficient set is more important for the DM. This

chapter presents an extension of the MSA of Evans and Steuer [63]

to generate the set of all nondominated points of the problem.

We reiterate here that the chapter extends the MSA of Evans and

Steuer [63] whose explicit form can be found in [56] to generate the

whole set of nondominated points devoid of redundant nondominated

points. We shall then compare the extended version with the orig-

inal one as well as with the primal variant of BOA [30] which is

an objective space based method that also computes the set of all

nondominated points of the problem.

From the outset, MSA and BOA seem not comparable since one is de-

cision space based while the other is objective space based; one com-

84

putes efficient solutions and the other nondominated points. How-

ever, if one can generate nondominated points from MSA then this

can be performed.

This chapter is organized as follows. Sections 3.2 and 3.3 presents

MSA and its extended version respectively. We discuss two scalar-

ization techniques in Section 3.4. BOA is presented in Section 3.5.

Section 3.6 presents experimental results obtained with the different

algorithms. Section 3.7 present the summary of results. Finally, a

summary of the chapter is presented in Section 3.8.

3.2 The Multi-objective Simplex Algorithm

A typical multiple objective simplex algorithm is that of Evans and

Steuer [63]. The version described here can be found in [56], page

178. We consider this algorithm because of its popularity (see [131]),

and because most of the MSA algorithms discussed earlier are either

based on or are variants of it. It works in the decision space and finds

the set of all efficient extreme points.

In an MOLP problem, only one of the following situations can occur:

85

the problem can be infeasible, meaning that the feasible set X is

empty (X = ∅); the problem may be feasible, that is (X 6= ∅) but

may not have efficient solutions, that is, (XE = ∅); or it is feasible and

has efficient solutions, that is XE 6= ∅. This algorithm handles these

situations in three phases: In the first phase, it finds an initial basic

feasible solution or stop with the conclusion that X = ∅; in the second

phase, it finds an initial efficient basis or stop with the conclusion

that XE = ∅; and in the final phase it pivots among efficient bases to

determine all efficient extreme points of the problem, [56].

The algorithm is initialized by solving two auxiliary LPs to determine

whether the problem is feasible and to verify that it has efficient

solutions. If the feasible region X is not empty and the set of efficient

extreme points XE exists, a weighted sum LP is solved to determine

an initial efficient basis B. Its implementation stores a list of efficient

bases L1 to be processed, a list L2 of efficient bases for output, and a

list of efficient nonbasic variables NE. An LP test problem is solved

to determine pivots that lead to efficient bases. The algorithm pivots

from an initial efficient basis to an adjacent efficient basis until the

list L1 to be processed is empty. The algorithm stops and returns list

L2 from where all efficient extreme points are computed. Before we

86

describe MSA in pseudo-code form, we first explain the used notation.

Notation: A, b, C form the problem data; L1 and L2 as above;

eT = (1, ..., 1) ∈ Rq; I is the identity matrix of proper order; X is

the feasible set; XE, the set of efficient solutions; B, the efficient

basis; NE, a list of efficient nonbasic variables; N , the set of nonbasic

variables; B
′
, the new basis; Ā, and b̄ are updated constraint matrix

and RHS vector; R is the nonbasic part of the reduced cost matrix

and rj is a column of R corresponding to a nonbasic variable being

tested for efficiency.

87

Algorithm 3 Multi-objective Simplex Algorithm
0: Input: A, b, C : Problem data

1: Initialize: Set L1 ← ∅, L2 ← ∅;
Phase I : Solve theLP min{eT z : Ax+ Iz = b, x, z ≥ 0}. If the optimal value

of thisLP is nonzero, STOP, X = ∅;
Otherwise x0 is a basic feasible solution of MOLP

Phase II : Solve theLP min{uT b+ wTCx0 : uTA+ wTC ≥ 0, w ≥ e}. If
it is infeasible, STOP, XE = ∅;
Otherwise (û, ŵ) is an optimal solution;

Find an optimal basisB of theLP min{ŵTCx : Ax = b, x ≥ 0};
SetL1 ← {B}, L2 ← ∅.;

2: while L1 6= ∅
3: ChooseB ∈ L1, L1 ← L1\{B}, L2 ← L2

⋃
{B};

4: Compute Ã, b̃, andRaccording toB;

5: NE ← N ;

6: for all j ∈ N
7: Solve theLP max{eT v : Rz − rjσ + Iv = 0; y, σ, v ≥ 0}.
8: If thisLP is unboundedNE ← NE\{j};
9: for all j ∈ NE

10: for all i ∈ B
11: ifB′ ← (B\{i})

⋃
{j} is feasible , B′ /∈ L1

⋃
L2 then;

12: L1 ← L1
⋃
B′;

13: endif;

14: endfor;

15: endfor;

16: endfor;

17: endwhile.

18: Output:L2 : List of efficient bases.

3.2.1 Illustration of MSA

Consider the following MOLP adapted from [86]. We solve this prob-

lem using a Matlab implementation of Algorithm 3 provided by the

authors of [124].

88

minf1 = −x1

minf2 = −x2

Subject to

6x1 + 10x2 ≤ 60

x1 ≤ 7

x2 ≤ 5

x1, x2 ≥ 0

(3.1)

The efficient solutions found are x1 = (7.0, 1.8)T , x2 = (1.6, 5.0)T ,

x3 = (1.6, 5.0)T , x4 = (7.0, 1.8)T . Where x1 = (x1
1, x

1
2)
T ,..., x4 =

(x4
1, x

4
2)
T ∈ XE . The algorithm is prone to generating more efficient

solutions due to the way it operates and due to the fact that it may

find the same efficient solution in more than one iteration, as in this

case; x1 = x4 and x2 = x3 are repetitive of what has already been

found. Solutions x3 and x4 are redundant, and would be of little or

no use to the DM. The feasible region in the decision space is shown

in Figure 3.1.

89

Figure 3.1: Efficient edge of the feasible region connecting two points in the decision

space.

3.3 The Extended Multi-objective Simplex Algo-

rithm

As part of the initialization step (line 1 of Algorithn 4), we have

included the set of efficient extreme points XE and that of nondomi-

nated points YN . In the second phase, as the algorithm finds an initial

efficient basis B by solving a weighted sum LP, the algorithm also

finds a corresponding efficient basic feasible solution and appends it

to the set of efficient extreme points (XE ← {x̄}). The first non-

dominated point is also computed from CT x̄ and appended to the

nondominated set (YN ← {CT x̄}).

90

As the algorithm iterates, a new efficient basis B
′

is obtained after

each pivot and the corresponding efficient basic feasible solution x̄
′

(line 11 of Algorithm 4) is found and added to the set of efficient

extreme points XE (line 13). Likewise, the corresponding nondomi-

nated points are also found at each iteration and added to the non-

dominated set YN (line 14). This continues until the set of efficient

bases L1 to be processed is empty. The algorithm returns the set

of all efficient extreme points and the corresponding nondominated

points (line 20).

Before we present Algorithm 4 as the extended MSA in pseudo-code

form, we first state here that the structure of the algorithm and the

used notation remain the same as that in Algorithm 2. The additional

components are x̄, x̄
′
, XE and YN which stand for the efficient basic

feasible solution, the new efficient basic feasible solution, the set of

efficient extreme points and the corresponding set of nondominated

points for output.

91

Algorithm 4 Extended Multi-objective Simplex Algorithm
0: Input: A, b, C (data of MOLP problem)

1: Initialize: Set L1 ← ∅, L2 ← ∅ , XE ← ∅, YN ← ∅;
Phase I : Solve theLP min{eT z : Ax+ Iz = b, x, z ≥ 0}. If the optimal value

of LP is not zero, STOP, X = ∅;
Otherwise let x0 be a basic feasible solution of MOLP

Phase II : Solve theLP min{uT b+ wTCx0 : uTA+ wTC ≥ 0, w ≥ e}. If
it is infeasible, STOP, XE = ∅. Otherwise let (û, ŵ) be an

optimal solution. F ind optimal basisB and

basic feasible solution x̄ of LP min{ŵTCx : Ax = b, x ≥ 0};
SetL1 ← {B}, L2 ← ∅, XE ← {x̄}, YN ← {CT x̄};

2: while L1 6= ∅ do

3: ChooseB ∈ L1, L1 ← L1\{B}, L2 ← L2 ∪ {B};
4: Compute Ã, b̃, andRaccording toB;

5: NE ← N ;

6: for all j ∈ N
7: Solve theLP max{eT v : Rz − rjσ + Iv = 0; z, σ, v ≥ 0}.
8: If thisLP is unboundedNE ← NE\{j};
9: for all j ∈ NE

10: for all i ∈ B
11: ifB′ ← (B\{i}) ∪ {j} is feasible , B′ /∈ L1 ∪ L2, let x̄′ be its basic solution then;

12: L1 ← L1 ∪B′;
13: XE ← XE ∪ {x̄′};
14: YN ← YN ∪ {CT x̄′};
15: endif

16: endfor

17: endfor

18: endfor

19: endwhile

20: Output:XE : The efficient set

YN : The nondominated set.

3.3.1 Illustration of the Extended MSA

We modified and extended the Matlab implementation of Algorithm

3 provided by the authors of [124] and used it to solve problem

3.1 of Section 3.2.1. The efficient extreme points found are x1 =

92

(7.0, 1.8)T , x2 = (1.6, 5.0)T , and the corresponding nondominated

points are f 1 = (−7.0, −1.8)T and f 2 = (−1.6, −5.0)T respectively.

Where x1 = (x1
1, x

1
2)
T , x2 = (x2

1, x
2
2)
T ∈ XE and f 1 = (f 1

1 , f
1
2)T ,

f 2 = (f 2
1 , f

2
2)T ∈ YN . Notice here that, the efficient extreme points

x1, x2 and the corresponding nondominated points f 1 and f 2 re-

turned are devoid of redundant points. The algorithm is designed to

avoid returning redundant efficient and nondominated points unlike

the original version. The feasible region in the decision space is the

same as in Figure 3.1.

3.4 Scalarization Techniques

Before presenting BOA, we first present two basic scalarization meth-

ods that play an important role in its implementation. These methods

are weighted sum scalarization and translative or scalarization by a

reference variable. As noted in [100], scalarization is one of the most

important techniques used in MOLP.

In the weighted sum method, a new objective function based on the

q-linear objectives is obtained by assigning non-negative weights wi ∈

Rq to each of the objectives. The weighted sum of the objectives is

93

∑q
i=1wicix = wTCx. For each vector w ∈ Rq, w ≥ 0, we obtain a

scalar linear program

minwTCx subject to Ax ≥ b P1(w)

The weights are usually normalized so that eTw = 1, with eT =

(1, ..., 1). The dual of P1(w) is

max bTu subject to


ATu = CTw

u ≥ 0 D1(w)

In the method of scalarization by a reference variable, the q objec-

tives are associated to a common reference variable z and the i-th

objective is restrained from being larger than the reference variable

and a fixed real number yi, that is c1x ≤ y1 + z, c2x ≤ y2 + z, . . . ,

cqx ≤ yq + z.

The reference variable z is the objective function that has to be min-

imized. By setting e = (1, ..., 1)T , we obtain for each vector y ∈ Rq

94

the scalar linear program

min z subject to


Ax ≥ b

Cx− ze ≤ y. P2(y)

The dual program is

max bTu− yTw subject to



ATu− CTw = 0

eTw = 1 D2(y)

(u,w) ≥ 0.

[100]. The above two scalarization techniques are fundamental for

the implementation of BOA which is discussed in the next section.

3.5 Benson’s Outer-Approximation Algorithm

This version of BOA is due to Shao & Ehrgott [135]. It can be found

in [100]. It works in the objective space of the problem and returns

the set of all nondominated points and extreme directions. The algo-

rithm can be regarded as a primal-dual method because it also solves

the dual problem. But here, we are only concerned with the solution

of the primal. The algorithm first constructs an initial polyhedron

95

Y0 (outer-approximation) containing the upper image Y in the ob-

jective space and an interior point p̂ of the image is determined by

solving P1(w). The inequality representation of the outer approxima-

tion is also determined by solving D1(w). The algorithm construct a

sequence of decreasing polytopes Y0 ⊇ Y1 ⊇ . . . ⊇ Yk = Y . The ver-

tices of each polytope Yk as well as inequality representation (facets)

are stored in each iteration. Then for each vertex v of the polytope,

the algorithm checks if the vertex is on the boundary of Y . If the

vertices are on it, the problem is solved. The external vertices of Y

are among the vertices of Yk. Otherwise, for any vertex v of Yk that

is not on the boundary of Y , the algorithm connects this vertex to

the interior point p̂ and finds the intersection y of this line with the

boundary of Y by solving P2(v). Then a supporting hyperplane adja-

cent to y is constructed by solving D2(y). This hyperplane is added

to Yk to provide a smaller approximation. The algorithm is repeated

in the same way until the vertices of Yk coincide with the boundary

of Y . The algorithm returns the set of vertices on the boundary of Y

as the nondominated set Ȳ and directions Ȳ h of the problem. The

notation used in the pseudo-code of BOA is as follows.

Notation: A, b, C are the problem data; P h is the homogeneous

96

problem; D∗h is the homogeneous dual problem; T̄ h is the solution of

the homogeneous dual problem; p̂ is an interior point; T̄ is a set of

solutions of the dual problem; Y d
k is the inequality representation of

the current polytope; k is the iteration counter; Y p
k is the representa-

tion by vertices; (ŷ, z) is an optimal solution to P2(v); δ(0 < δ < 1)

is a unique value that determines the intersection or boundary point

y; R(v) is the LP that finds the unique value δ; the command solve()

solves an LP; vert() returns the vertices of a polytope Yk; Ȳ is the

set of nondominated vertices; (Ȳ h) is the set of extreme directions.

Algorithm 5 Benson’s Outer-Approximation Algorithm
0: Input: A, b, C : Problem data

a solution ({0}, Ȳ h) to Ph;

a solution T̄h to D∗h;

1: Initialize: p̂← P(solve(P1(0))) + e;

2: T̄ ← {(solve(D1(w)), w)|(u,w) ∈ T̄h};
3: while z = 0 do

4: Y d
k ← {D

∗(u,w)|(u,w) ∈ T̄};
5: Y p

k ← vert(Y d);

6: Ȳ ← ∅;
7: for i = 1 to |Y p| do
8: v ← Y p

k [i];

9: (ŷ, z)← solve(P2(v));

10: Ȳ ← Ȳ ∪ {ŷ};
11: if z 6= 0 then

12: (x, δ)← solve(R(v)), (0 < δ < 1);

13: y ← δv + (1− δ)p̂;
14: (u,w)← solve(D2(y));

15: T̄ ← T̄ ∪ {(u,w)};
16: endif;

17: endfor;

18: endwhile

19 Output: (Ȳ , Ȳ h) : Nondominated set and directions;

T̄ : a solution to dual.

97

3.5.1 Illustration of Benson’s Outer-Approximation Algo-

rithm

For continuity, we consider again problem 3.1 of Section 3.2.1 The

nondominated points found using an existing Matlab implementation

of Algorithm 5, namely Bensolve-1.2, [101], are f 1 = (−1.6, −5.0)T

and f 2 = (−7.0, −1.8)T where f 1 and f 2 ∈ YN . These nondominated

points are shown in Figure 3.2.

Figure 3.2: The edge joining the two nondominated points in the objective space.

98

3.6 Discussion of Experimental Results

In this section, we provide numerical results to study the computa-

tional efficiency of Algorithms 3, 4 and 5, and the number of non-

dominated points returned by Algorithms 4 and 5.

Table 3.2 shows the numerical results for a collection of 55 problems

from existing literature, ranging from small to moderate size MOLP

instances. Problem 1 is taken from Ehrgott [56], and Problems 2 to 10

were taken from Zeleny [163]. Problems 11 to 21 are test problems

from the interactive MOLP explorer (iMOLPe) of Alves et al. [3].

Problems 22 to 47 are taken from Steuer [143]. Problem 48 is a

test problem in Bensolve-1.2 [101], while problems 49 and 53 are test

problems in Bensolve-2.0 [104]. Problems 50 to 52 are obtained using

a script in Bensolve-2.0 [104] that is used to generate problem 53 with

the same number of variables and constraints. Finally, problems 54

and 55 are test problems in MOPLIB [103] which stands for Multi-

Objective Problem Library.

Note that all the problems in Table 3.2 are non-degenerate. Problem

48 is such that the constraint matrix is sparse while the criterion

99

matrix is dense. The RHS vector is such that all the components are

ones except for 200 at the end as the largest entry. Problem 49 has

a dense constraint matrix with an identity matrix of order n as its

criterion matrix where n is the number of variables in the problem.

The RHS vector is such that all the components are zeros except for a

one (1) at the begining as the only none zero element. Problems 50 to

53 have dense criterion matrices with identity matrices of order n as

their constraint matrices where n is also the number of variables in the

respective problem. All the elements in the RHS vectors are ones.

Finally, Problems 54 and 55 have sparse constraints and criterion

matrices with dense RHS vectors.

Results for Algorithm 3 were obtained using a Matlab implementa-

tion of this algorithm provided by the authors of [124]. We modified

and extended Algorithm 3 of Evans and Steuer [63] into Algorithm

4 or EMSA the Extended Multi-objective Simplex Algorithm. We

have implemented it in Matlab in the same way as in [124] and ex-

perimented with it on the test problems mentioned above. We also

used an existing Matlab implementation of Algorithm 5 known as

Bensolve-1.2 [101] to obtain results for this algorithm. The current

version, Bensolve-2.0, [104] is implemented in the C programming

100

language. We employed Bensolve-1.2 [101] which is implemented in

Matlab so as to test the algorithms with the same tools and for a

meaningful comparison. All algorithms were executed on an Intel

Core i5-2500 CPU at 3.30GHz with 16.0GB RAM. In all tests, n

is the number of variables, m the number of constraints and q the

number of objectives. Algorithm 3 is MSA of Evans and Steuer [63],

Algorithm 4 its extended version and Algorithm 5 is BOA as pre-

sented in [135]. We recorded the CPU times (in seconds) returned

by the algorithms for each problem. We also recorded the Number

of Efficient Solutions (NES) returned by MSA, the Number of Non-

dominated Points (NNP) returned by EMSA and the NNP returned

by BOA for each problem.

As can be seen in Table 3.2, the CPU times for all algorithms increase

as the problem dimensions increase. We can also infer from Table 3.2

that the CPU times depend to some extent on the total number of

efficient or nondominated points returned by the algorithms for a

given problem. That is to say, the larger the number of efficient or

nondominated points in a given problem, the more computational

efforts would be required to compute them, see problems 25, 30, 36,

39, 45, 52, 53 and 55. With this observation, one can rightly say that

101

there is a relative influence of the size of the efficient or nondominated

set on the CPU times. In all the problems considered, BOA was

found to be computationally more efficient than the simplex-type

algorithms.

As can also be seen in Table 3.2, the total number of nondominated

points returned by EMSA are the same to that returned by BOA

for most of the problems considered. This is so because EMSA has

been designed to avoid returning redundant nondominated points

that would be of no use to the DM after they have been computed.

This feature is also reported in [30] that BOA avoids redundant cal-

culations of points that would be of little or no use to the DM. This

make EMSA compare favourably in terms of the total number of non-

dominated points it returns. However, we noticed a slight difference

in the number of nondominated points returned by both algorithms

in some of the problems considered. For these problems where this

occurs, a few nondominated points have been repeated. It was also

observed that the simplex-type algorithms could not produce results

for problems 39, 40, 45, 46, 48, 49 and 55 after running for 3 days;

it was aborted. The fact that some problems were aborted after 3

days of running time does not necessarily mean that MSA and EMSA

102

cannot solve these problems; if allowed to run further it would poten-

tially return a huge number of efficient points or run out of memory

which would indicate that the total number of efficient solutions has

exceeded the Matlab solution capacity of the machine used. We also

notice for the above problems that there is a slight difference in CPU

times between MSA and EMSA. This was expected as a consequence

of the extension, more computational efforts would be required to

compute the corresponding nondominated points, after which they

are sorted in each case. As can also be seen in Table 3.2, the CPU

times returned by MSA are less than that returned by EMSA for all

the problems considered. The difference in CPU times can be clearly

seen in problems with a huge number of efficient solutions, see also

problems 25, 30, 36 and 52.

3.7 Summary of Results

In this section, we present the summary of experimental results dis-

cussed in the previous section in Table 3.1. We have also presented

the CPU time of MSA, EMSA and BOA for 47 out of the 55 in-

stances (which represent 85.45 %) of the total problems solved by all

103

the methods in Figure 3.3.

Criteria for Evaluation

Algorithms Computing Efficiency NNP returned

Efficient on small to Does not return

MSA medium size instances nondominated points

and slightly outperform

EMSA

Efficient on small to Return the same NNP

EMSA medium size instances as BOA for over 85

percent of the problems

considered

Computationally more Return the same NNP

BOA efficient than MSA as EMSA for most of

and EMSA the problems considered

Table 3.1: Summary of experimental results

3.8 Summary

In this chapter, we have presented MSA of Evans and Steuer [63]

and extended the algorithm to compute the set of all nondominated

points. We have also presented BOA [30] and illustrated the algo-

rithms on a small MOLP instance. We then proceeded to investigate

104

the computational efficiency of EMSA and its original version, as

well as compare the total number of nondominated points returned

by EMSA with that returned by BOA on a collection of 55 problems

ranging from small to moderate size. In the next chapter, we shall

further compare the computing efficiency and the quality of nondom-

inated points returned by EMSA with that returned by BOA and

ASIMOLP.

Table 3.2: Comparative results for individual

problem

Algorithm MSA EMSA BOA

Prob. Origin n m q NES CPU (s) NES NNP CPU (s) NNP CPU (s)

1 Ehrgott 3 3 3 5 0.158 5 3 0.169 3 0.038

2006

2 Zeleny 2 2 2 5 0.018 5 3 0.027 3 0.021

1982

3 ” 2 4 2 16 0.063 16 2 0.072 2 0.026

4 ” 2 4 3 36 0.161 36 3 0.182 3 0.161

5 ” 2 6 2 64 0.373 64 3 0.399 3 0.212

Continued on next page

105

Table 3.2 – continued from previous page

Algorithm MSA EMSA BOA

Prob. Origin n m q NES CPU (s) NES NNP CPU (s) NNP CPU (s)

6 ” 3 3 3 15 0.069 15 5 0.075 5 0.046

7 ” 5 3 3 6 0.039 6 4 0.041 4 0.043

8 ” 5 2 2 1 0.045 1 1 0.055 1 0.016

9 ” 6 4 2 36 0.201 36 1 0.299 1 0.017

10 ” 7 4 3 36 0.273 36 5 0.317 4 0.163

11 iMOLPe 2 3 2 8 0.036 8 4 0.052 3 0.047

12 ” 3 3 4 12 0.052 12 3 0.074 3 0.033

13 ” 3 5 3 88 0.502 88 10 0.551 10 0.042

14 ” 3 3 3 19 0.077 19 8 0.089 7 0.035

15 ” 4 3 3 18 0.092 18 8 0.097 8 0.038

16 ” 4 2 3 8 0.039 8 6 0.041 6 0.036

17 ” 4 4 3 44 0.247 44 11 0.302 11 0.053

18 ” 3 3 3 37 0.156 37 5 0.178 5 0.033

19 ” 15 10 2 98 1.494 98 12 1.619 11 0.054

20 ” 15 10 3 254 3.901 254 28 4.852 37 0.445

Continued on next page

106

Table 3.2 – continued from previous page

Algorithm MSA EMSA BOA

Prob. Origin n m q NES CPU (s) NES NNP CPU (s) NNP CPU (s)

21 ” 10 15 3 50 0.481 50 15 0.569 14 0.259

22 Steuer 5 5 2 28 0.191 28 5 0.197 5 0.036

23 ” 4 4 3 10 0.061 10 3 0.065 3 0.015

24 ” 5 5 4 154 1.406 154 14 1.432 14 0.098

25 ” 10 8 4 2096 123.432 2096 51 125.406 63 1.973

26 ” 5 4 3 26 0.161 26 9 0.175 9 0.089

27 ” 6 8 4 560 10.963 560 13 11.182 20 0.236

28 ” 7 6 4 48 0.416 48 12 0.451 36 0.286

29 ” 7 6 4 152 1.568 152 9 1.601 9 0.192

30 ” 8 8 6 1080 34.946 1080 56 36.125 286 73.963

31 ” 8 8 3 208 2.689 208 5 2.726 5 0.168

32 ” 8 8 3 64 0.694 64 1 0.706 1 0.135

33 ” 5 5 4 74 0.541 74 12 0.618 12 0.277

34 ” 6 6 3 304 3.829 304 17 3.907 17 0.212

35 ” 5 5 4 202 1.861 202 10 2.061 9 0.183

Continued on next page

107

Table 3.2 – continued from previous page

Algorithm MSA EMSA BOA

Prob. Origin n m q NES CPU (s) NES NNP CPU (s) NNP CPU (s)

36 ” 10 10 4 3,072 318.13 3,072 6 325.555 6 0.333

37 ” 8 8 3 608 12.972 608 13 13.251 13 0.217

38 ” 6 7 4 440 6.051 440 25 7.001 21 0.386

39 ” 12 16 4 * - - - - 601 31.034

40 ” 10 14 5 * - - - - 132 102.952

41 ” 7 6 3 40 0.353 40 3 0.447 3 0.165

42 ” 7 7 3 56 0.507 56 8 0.583 7 0.153

43 ” 6 6 4 128 1.248 128 5 1.311 5 0.158

44 ” 6 6 4 168 1.781 168 10 1.856 10 0.211

45 ” 10 14 5 * - - - - 471 307.611

46 ” 10 14 5 * - - - - 128 114.653

47 ” 7 7 3 60 0.545 60 6 0.601 6 0.159

48 Bensolve1.2 100 101 2 * - - - - 32 0.503

49 Bensolve2.0 5 31 5 * - - - - 22 2.877

50 ” 36 36 2 82 1.899 82 31 1.921 8 0.211

Continued on next page

108

Table 3.2 – continued from previous page

Algorithm MSA EMSA BOA

Prob. Origin n m q NES CPU (s) NES NNP CPU (s) NNP CPU (s)

51 ” 64 64 2 292 13.968 292 57 14.455 14 0.403

52 ” 100 100 2 1102 118.418 1102 99 125.495 20 0.621

53 ” 343 343 3 x - - - - 1,368 55.302

54 MOPLIB 53 226 3 561 26.231 561 552 28.116 552 6.551

55 ” 53 221 3 * - - - - 2552 1663.803

(*) Aborted after 3 days of running time

(x) Out of memory

109

Figure 3.3: Running time of MSA, EMSA and BOA for the 47 instances solved.

110

Chapter 4

THE SIMPLEX, INTERIOR-POINT AND

OBJECTIVE SPACE APPROACHES TO

MOLP

4.1 Introduction

Most MOLP algorithms are based on the simplex algorithm and

interior-point methods for Linear Programming. However, objective

space based methods are becoming more and more prominent. Ben-

son [30], argued that since the number of objectives in an MOLP is

often much smaller than the number of decision variables and typ-

ically many efficient solutions in the decision space map to a sin-

gle point in the objective space, generating the set of nondominated

111

points in the objective space would require less computation, [59].

He then suggested an outer-approximation algorithm for computing

all the nondominated points in the objective space of the problem.

This chapter compares the computational efficiency and the quality

of a most preferred nondominated point returned by this algorithm

with the most preferred nondominated point returned by EMSA as

well as with that returned by Arbel’s ASIMOLP [6].

This comparison may sound not possible given that the three algo-

rithms are based on three different philosophies and compute differ-

ent things: EMSA works in the decision space and finds the set of

all efficient extreme points and also generates the set of all nondom-

inated points; ASIMOLP also works in the decision space but finds

a most preferred efficient point and also returns the corresponding

most preferred nondominated point; BOA, on the other hand, works

in the objective space to find the set of all nondominated points of

the problem.

To achieve this comparison, we recall that it has been shown that in

practice, the DM prefers basing his or her choice of a most preferred

(best) solution in the nondominated points [30]. We shall then act as

112

the DM and choose a Most Preferred Nondominated Point (MPNP)

whose components are as close as possible to an unattainable ideal

objective point from the nondominated set returned by EMSA and

BOA to compare with a MPNP returned by ASIMOLP.

One of the key issues in MOLP is computing the MPNP’s. We give a

detailed procedure for the purpose here which allows us to carry out

the comparison.

To the best of our knowledge, no comparison of the computing effi-

ciency and the quality of MPNP chosen from the nondominated set

returned by BOA and EMSA with that returned by ASIMOLP has

been carried out before. We intend to fill this gap here.

This chapter is organized as follows. Section 4.2 presents ASIMOLP.

The determination of priority vector used in ASIMOLP is presented

in Section 4.2.2. We presents Interactive ASIMOLP in Section 4.3.

Section 4.4 discusses the selection of a most preferred nondominated

point. We provide the experimental results in Section 4.5. A sum-

mary of results is presented in Section 4.6 and the summary of Chap-

ter 4 is presented in Section 4.7.

113

4.2 The Affine Scaling Interior-Point Algorithm

ASIMOLP whose general form can be found in [6], works in the deci-

sion space and returns only one efficient extreme point of the problem,

or at most, an efficient face of the feasible region. It also returns the

corresponding nondominated point. The algorithm is initialized with

a feasible and interior starting solution vector x0 and generates q in-

terior step direction vectors dxi (1 ≤ i ≤ q). AHP is then used to

derive the relative priority or preference vector p for these directions

by filling a pairwise comparison matrix, which is then normalized

and the rows are averaged to obtain the priority vector. The compo-

nents of the derived priority vector p are then used as coefficients of

a convex combination of the q interior step directions that yields a

combined step direction vector dx that moves toward a new feasible

point. This process continues until the algorithm converges to a most

preferred efficient extreme point after meeting some termination con-

ditions. Before we present the pseudo-code form of ASIMOLP, the

used notation is described.

Notation: A, b, C form the problem data; x0 is the initial interior

feasible solution vector; αi is the step size (1 ≤ i ≤ q); σ is a stopping

114

tolerance; ρ is the step size factor; D is the diagonal and scaling

matrix; yi is an estimate of the dual vector (1 ≤ i ≤ q); dxi is the

ith interior step direction vector (1 ≤ i ≤ q); dx is the combined step

direction vector; pi is the derived priority vector (1 ≤ i ≤ q); xnew is

the new feasible point; fnew is the new objective values; xend is the

most preferred efficient extreme point at the boundary of the feasible

region at termination and fend is the corresponding objective values

at termination.

Algorithm 6 Affine Scaling Interior MOLP Algorithm
0: Input: A, b, C : Problem data
1: Initialize: Choose x0 > 0, Stopping tolerance σ (0 < σ < 1), Step size factor ρ (0 < ρ < 1),

Converged = 0, k ← 0;
2: while Converged 6= 1 do
3: k ← k + 1
4: D ← diag(x0)
5: yi(k)← (AD2AT)−1AD2ci, 1 ≤ i ≤ q
6: dxi(k)← D2(cTi −AT yi(k)), 1 ≤ i ≤ q
7: if dxi(k) ≥ 0, 1 ≤ i ≤ q, stop
8: else
9: αi ← min[−xi

dxi(k)
,∀dxi(k) < 0], 1 ≤ i ≤ q

10: xi(k + 1)← x(k) + ραidxi(k), 1 ≤ i ≤ q
11: dx←

∑q
i=1 piαidxi

12: x(k + 1)← x(k) + ρdx(k)
13: xend ← x(k) + dx(k)
14: fend ← CT xend
15: dxend ← xend − x(k)
16: if k > 1, do
17: dx←

∑q
i=1 piαidxi + penddxend

18: xnew ← x(k) + ρdx(k)
19: fnew ← CT xnew
20: xend ← x(k) + dx(k)
21: fend ← CT xend
22: dxend ← xend − xnew
23: else
24: if ‖dxend‖ ≤ σ, stop
25: else
26: x0 ← xnew
27: Go to step 4
28: endif
29: endif
30: endif
31: endwhile

32 Output: xend : Most preferred efficient solution
fend : V alues of the objective functions

115

4.2.1 Illustration of ASIMOLP

We developed the pseudo-code of this algorithm, implemented it in

Matlab and used it to solve Problem 3.1 of Section 3.2.1. The most

preferred efficient solution found using our Matlab implementation of

Algorithm 5 is x1 = (3.6418, 3.7913)T , and the corresponding objec-

tive values are f 1 = (−3.6418, −3.7913)T where f 1 ∈ YN . The search

path as generated by the Algorithm is shown in Figure 4.1.

Figure 4.1: ASIMOLP search path showing convergence to the efficient frontier.

116

4.2.2 Determination of the priority vector used in ASI-

MOLP

From [5], one can either use a utility function if it is available (as

was done in [9]), to assess preference information needed to establish

a combined step direction instead of interacting with the DM or use

the AHP methodology, but in most cases, the utility function is not

known [6]. In this chapter, we have used AHP as was done in [6,7] to

derive the relative preference or priority vector p whose components

are used as coefficients of a convex combination of the q interior

step directions that yields a combined step direction that moves the

current iterate to a new one.

The procedure involves a pairwise comparison of the q interior step

directions and construction of a q × q comparison matrix for com-

paring the interior step directions. A complete pairwise comparison

117

matrix A can be expressed as

A =



d1 d2 . . . dq

d1
w1

w1

w1

w2
. . . w1

wq

d2
w2

w1

w2

w2
. . . w2

wq

...
...

...

dq
wq

w1

wq

w2
. . .

wq

wq


=



1 a12 . . . a1q

a21 1 . . . a2q

...
...

aq1 aq2 . . . 1


where the entry aij indicates the strength of the step direction di

when compared with the step direction dj. These entries are obtained

from the well-established comparison scale used by the AHP in [127]

and [126]. Such a scale is shown in Table 4.1.

Numerical value Interpretation

1 requirements i and j are of equal value

3 requirement i has a slightly higher value than j

5 requirement i has a strongly higher value than j

7 requirement i has a very strongly higher value than j

9 requirement i has an absolutely higher value than j

2,4,6,8 intermediate values between two adjacent judgments

Table 4.1: Graduation scale for comparing alternatives

We note that the above comparison matrix is a reciprocal matrix,

where aij = 1/aij, aij > 0 and aij = 1 for i = j. After filling out and

118

obtaining the comparison matrix, the matrix is then normalized. The

normalized principal eigen-vector herein referred to as the preference

or priority vector, p, is obtained by averaging across the rows of

the matrix. The components of the priority vector are then used as

coefficients of a convex combination of the q interior directions that

yields a combined direction that enables one to move from the current

iterate to the next, (more details can be seen in [127] and [126]).

4.3 Interactive Affine Scaling Interior MOLP Al-

gorithm

We present the Interactive ASIMOLP which is another examplar al-

gorithm from the Affine Scaling Interior MOLP Algorithm in this

section. It is developed in [15]. It works in the decision space and

also returns only one efficient solution, or an efficient face of the fea-

sible region. The difference between Algorithms 6 and this one is

that at each iteration a set of points is presented to the DM to decide

that which is most preferred. The difference can also be seen in the

assessment of the relative priority vector p which is used to derive the

combined step direction vector dx. In Algorithm 6, AHP was used

119

to derive p by filling a comparison matrix, while in here, the implic-

itly known DM’s utility function u(x) is used to approximate vector

p. At each iteration, the current iterate and the boundary point are

presented to the DM to choose the most preferred efficient solution.

Notation: A, b, C form the problem data; x0 is the initial interior

feasible solution; δ is a stopping tolerance; ρ is the step size factor;

D, the diagonal and scaling matrix; yi is an estimate of the dual

vector (1 ≤ i ≤ q); u(x) is the implicitly known utility function; zi

are the q reduced cost step direction vectors (1 ≤ i ≤ q); dxi are

the individual q interior step direction vectors (1 ≤ i ≤ q); du is the

change in utility function; dv is the change in objective values; dux is

an approximate gradient of the utility function; dx is the combined

step direction vector; αi is the step size (1 ≤ i ≤ q); pi is the derived

priority vector (1 ≤ i ≤ q); xnew is the new feasible point; fnew is

the new objective values; xend is the most preferred efficient solution

at the boundary of the feasible region at termination and fend is the

corresponding objective values at termination.

120

Algorithm 7 Interactive Affine Scaling Interior MOLP Algorithm
0: Input: A, b, C
1: Initialize: Choose x0 > 0, Stopping tolerance σ (0 < σ < 1), Step size factor ρ (0 < ρ < 1), u(x),

Converged = 0, k ← 0;
2: while converged 6= 1 do
3: k ← k + 1
4: D ← diag(x0)
5: yi(k)← (AD2AT)−1AD2ci, 1 ≤ i ≤ q
6: zi(k)← (cTi −AT yi(k)), 1 ≤ i ≤ q
7: dxi(k)← D2(zi(k)), 1 ≤ i ≤ q
8: if dxi(k) ≥ 0, 1 ≤ i ≤ q, stop
9: else
10: du← [pi − p0]
11: dv(k)← C[ραidxi(k)]
12: dux(k)← du(dv(k))−1C
13: y ← (AD2AT)−1AD2(dux(k))T

14: dx(k)← D2(dux(k))T −AT y

15: αi = Min[−Xi
dxi(k)

,∀dxi(k) < 0], 1 ≤ i ≤ q
16: xi(k + 1)← x(k) + ραidxi(k), 1 ≤ i ≤ q
17: xend ← x(k) + ρdx(k)
18: if k > 1, do
19: du← [pi − p0, pb − p0], 1 ≤ i ≤ q
20: dv(k)← C[ραidxi(k), dxb], 1 ≤ i ≤ q
21: dux(k)← du(dv(k))T (dv(k)(dv(k))T)−1C
22: y ← (dux(k))T −AT (AD2AT)−1AD2(dux(k))T

23: dx← D2y
24: xnew ← x(k + 1) + ρdx(k)
25: fnew ← CT xnew
26: xend ← x(k + 1) + dx(k)
27: dxend ← xend − xnew
28: else
29: if ‖dxend‖ ≤ σ, stop
30: else
31: x0 ← xnew
32: Go to step 4
33: endif
34: endif
35: endif
36: endwhile

37 Output: xend
fend

121

4.3.1 Illustration of Interactive ASIMOLP

We also developed the pseudo-code of Algorithm 7, implemented the

algorithm in Matlab and applied to Problem 3.1 of section 3.2.1. The

most preferred efficient solution found is x1 = (3.7146, 3.7094)T and

the corresponding values of objective functions are f 1 = (−3.7146,

− 3.7094)T . Notice how the solution is quite similar to that obtained

with Algorithm 6. The search path as generated by Algorithm 7 is

shown in Figure 4.2

Figure 4.2: Interactive ASIMOLP search path showing convergence to the efficient

frontier.

122

4.4 Selection of the Most Preferred Nondomi-

nated Point

This issue has been alluded to in Section 4.1. To determine the

MPNP, we employ the technique of Compromise Programming (CP)

introduced by Zeleny [161] and compute the ideal objective point

which would serve as a reference point in each case. CP is a mathe-

matical programming method that is based on the notion of distance

of a most preferred solution from the ideal point y∗, [163]. CP can

be used to find the best nondominated point by determining the

minimum distance to the ideal point, [164]. Ehrgott & Tenfelde-

Podehl [60] note that the ideal point is an essential component of

CP, and the idea is to find a nondominated point which is as close as

possible to it. This is a point in the objective space whose compo-

nents are the optimal values of the objective functions when they are

individually optimized, [3]. It was also noted in [163] that the ideal

point serves as a rationale directing and facilitating human choice

and decision making. To find the ideal point, we simply solve q sin-

123

gle objective problems

min cTk x, k = 1, 2, ..., q

subject to x ∈ X.
(4.1)

We note here that, the ideal point itself is not an element of the

nondominated set (y∗ /∈ YN). Otherwise, this would mean that the

objective functions are not conflicting. It always exists in the objec-

tive space, but its corresponding point in the feasible region of the

decision space may not exist [3].

For our numerical illustration above (problem 3.1 of Section 3.2.1),

solving each of the objective function individually over the feasible

region X yields the ideal objective point y∗ = (−7.0,−5.0)T . Clearly

y∗ /∈ YN where YN = {(−7.0, −1.8)T , (−1.6, −5.0)T}.

Having computed the ideal objective point y∗, we now determine the

minimum distance of each nondominated point ŷ from it by finding

min {‖ŷ1 − y∗‖, ‖ŷ2 − y∗‖, . . . , ‖ŷn − y∗‖}

where ŷ ∈ YN has already been found either by BOA or EMSA, ‖ .‖

is the Euclidean norm on Rq and y∗ is the ideal objective point.

124

Using the nondominated points f 1 and f 2 of problem (3.1) yields

‖f 1 − y∗‖ = 3.2 and ‖f 2 − y∗‖ = 5.4.

Since, the relative distance of f 1 from the ideal point y∗ is 3.2 which

is the smallest of the two, it therefore means that f 1 = (−7.0, −1.8)T

is the closest of the two nondominated points to the ideal point

y∗ = (−7.0,−5.0)T . Hence, f 1 is selected as the DM’s most preferred

nondominated point.

Next, we measure the distance of the nondominated point f 1 =

(−3.6418 − 3.7913)T returned by ASIMOLP in Section 4.2.1 for the

same numerical illustration (Problem 3.1 of Section 3.2.1) from the

ideal point y∗ = (−7.0,−5.0)T , as was done with those returned by

BOA and EMSA for the same example. It turned out that, the dis-

tance

‖f 1 − y∗‖ = 3.5691

is bigger than 3.2 which was the closest when measuring the points re-

turned by BOA and EMSA, thereby making the nondominated points

returned by BOA and EMSA closer to the ideal point and of higher

quality.

125

The following more substantial illustrative MOLP adapted from Ze-

leny [163] with three objectives makes the point.

minf1 = −x1 − 2x2 + x3 − 3x4 − 2x5 − x7

minf2 = −x2 − x3 − 2x4 − 3x5 − x6

minf3 = −x1 − x3 + x4 + x6 + x7

Subject to

x1 + 2x2 + x3 + x4 + 2x5 + x6 + 2x7 ≤ 16

− 2x1 − x2 + x4 + 2x5 + x7 ≤ 16

− x1 + x3 + 2x5 − 2x7 ≤ 16

x2 + 2x3 − x4 + x5 − 2x6 − x7 ≤ 16

x1, x2, x3, x4, x5, x6, x7 ≥ 0

(4.2)

Again, optimizing each of the objective functions individually over the

feasible region yields the ideal objective point y∗ = (−48.0,−32.0,−16.0)T .

Solving (4.2) with BOA and EMSA, the set of nondominated points

found is YN = {(−48.0,−32.0, 16.0)T , (−16.0, 0.0,−16.0)T ,

(0.0,−8.0,−16.0)T , (−5.33,−21.33,−5.33)T , (−16.0,−24.0, 0.0)T} with

y∗ /∈ YN . By determining the minimum distance of each of these non-

126

dominated points from the ideal point y∗, it was found that the point

(−48.0,−32.0, 16.0)T is the closest. Its distance from it is 32. It is

selected as the DM’s MPNP.

For problem (4.2), the MPNP returned by ASIMOLP is f 1 = (−7.65,

− 13.80,−7.75)T as shown in Table 4.2, Problem 10. Again, we mea-

sure its distance from the ideal point y∗ = (−48.0,−32.0,−16.0)T .

It was found that the distance of the point (−7.65,−13.80,−7.75)T

from y∗ = (−48.0,−32.0,−16.0)T is 45.0269, which is also larger

than the corresponding values of BOA and EMSA, thereby making

the MPNPs returned by BOA and EMSA to be of higher quality.

We have used this method to choose the MPNP from the nondomi-

nated sets returned by BOA and EMSA for comparison. There is no

selection of a MPNP in ASIMOLP as the algorithm computes a most

preferred efficient solution and also returns the corresponding most

preferred nondominated point.

To determine the quality of the MPNP returned by ASIMOLP, we

simply measure its distance from the ideal point in each case and

compare with the distances of those returned by BOA and EMSA in

order to determine that which is the closest to the ideal point and of

127

higher quality.

4.5 Discussion of Experimental Results

In this section, we provide numerical results to compare the quality

of a Most Preferred Nondominated Point (MPNP) and the efficiency

of Algorithms 4, 5 and 6. Table 4.3 shows the numerical results for a

collection of 61 existing problems ranging from small to medium and

realistic MOLP instances. Problem 1 is taken from Ehrgott [56], and

Problems 2 to 10 are from Zeleny [163]. Problems 11 to 21 are test

problems from the interactive MOLP explorer (iMOLPe) of Alves

et al. [3]. Problems 22 to 47 are taken from Steuer [143]. Problem 48

is a test problem in Bensolve-1.2 of Löhne [101], while problems 49

and 53 are test problems in Bensolve-2.0 of Löhne and Weißing [104].

Problems 50 to 52 are obtained using a script in Bensolve-2.0 of Löhne

and Weißing [104] that was also used to generate problem 53 with the

same number of variables and constraints. Finally, problems 54 to 61

are from MOPLIB [103] which stands for Multi-Objective Problem

Library.

We have added six (6) additional instances to our collection of prob-

128

lems in this chapter. These problems are larger in size and have

more difficult structures. They include Problems 54 to 56 and 59 to

61. Problem 54 is such that the constraint and criterion matrices are

sparse while the components of the RHS vector are all zeros except

for a one (1) at the centre as the only non-zero entry. Problems 55

and 60 have dense RHS vectors while the constraint and criterion

matrices are sparse. In Problems 56 and 59, the constraint matrices

are sparse, the criterion matrices are dense and all the elements in

the RHS vectors are ones. Problem 61 is such that the constraint

and criterion matrices are sparse while the components of the RHS

vector are all zeros except for a ninety (90) at the end as the only

non-zero entry.

We modified and extended Algorithm 3 of Evans and Steuer [63] into

Algorithm 4 or EMSA the Extended Multi-objective Simplex Algo-

rithm. We have implemented it in Matlab in the same way as in [124]

and experimented with it on a set of MOLP’s. We have also imple-

mented Algorithm 6 in Matlab and used an existing Matlab imple-

mentation of Algorithm 5 known as Bensolve-1.2, [101]. The current

version, Bensolve-2.0, of Löhne and Weißing [104] is implemented in

the C programming language. We employed Bensolve-1.2 [101] which

129

is implemented in Matlab to test the algorithms with the same tools

and for a more meaningful comparisons. In all test, m is the num-

ber of constraints, n the number of variables and q the number of

objectives. Algorithm 4 is EMSA, Algorithm 5 is BOA as presented

in [135] and Algorithm 6 is Arbel’s ASIMOLP [6]. All algorithms

were executed on an Intel Core i5-2500 CPU at 3.30GHz with 16.0GB

RAM. We recorded the CPU times (in seconds) for each problem and

acted as the DM by choosing a most preferred (best) nondominated

point (whose components are as close as possible to the ideal objec-

tive point as explained in Section 4.4) from the nondominated set

YN = {Cx : x ∈ XE} returned by BOA to compare with the MPNP

returned by EMSA and with that returned by ASIMOLP.

As can be seen from Table 4.3, the CPU times for all algorithms in-

crease as the problem sizes increase. It was observed that ASIMOLP

returns a CPU time of less than a second for most of the test problems

it solves, thereby making it computationally more efficient than BOA

and EMSA. However, BOA was found to be computationally more

efficient than EMSA for all the test problems considered. We noticed

that ASIMOLP did not solve problem 54 as there exists no initial

and strictly positive starting solution (x0 > 0 such that Ax0 = b) due

130

to singularity issues which indicates that either the initial solution

does not exist or it is not unique. We suspect that the difficulty this

problem pose to ASIMOLP is due to its matrix structure and the

way interior-point methods work. A diagonal matrix whose diagonal

elements are the elements of an initial positive starting solution is re-

quired. Once the diagonal elements are not strictly positive (x0 > 0),

ASIMOLP exhibits this difficulty. We even employed a decomposi-

tion approach which did not yield the required initial positive starting

solution.

In terms of the quality of a MPNP returned by the algorithms, it was

observed that EMSA and BOA return the same MPNPs for all test

problems considered. This makes these two algorithm comparable

and the nondominated points they returned are of higher quality

than those returned by ASIMOLP in all cases. We also observed in

Table 4.3 that EMSA and BOA could not produce results for some of

the test problems considered despite the long running time allowed

(3 days); they were aborted. If allowed to run further, they would

potentially return a huge number of nondominated points or run out

of memory as earlier explained in Section 3.6. We note here that,

some of these problems most especially from problem 48 to 61 are

131

numerically ill-posed and highly challenging MOLP instances with

difficult structures.

4.6 Summary of Results

In this section, we present the summary of experimental results dis-

cussed in the previous section in Table 4.2. We have also presented

the CPU time of EMSA, ASIMOLP and BOA for 48 out of the 61

instances (which represent 78.69 %) of the total problems solved by

all the algorithms in Figure 4.3.

Criteria for Evaluation

Algorithms Computing Efficiency Quality of MPNP returned

Efficient on small to medium Return high quality MPNP

EMSA size instances as BOA which is superior to

that returned by ASIMOLP

Computationally more efficient Quality of MPNP returned

ASIMOLP than EMSA and BOA not so good

Computationally more Return the same MPNP

BOA efficient than EMSA as EMSA for all the

problems considered

Table 4.2: Summary of experimental results

132

4.7 Summary

In this chapter, we have presented ASIMOLP and its interactive ver-

sion. We have also illustrated them on a small MOLP instance. We

then proceeded to investigate their computational efficiency and com-

pare the quality of a most preferred nondominated point they re-

turned on a collection of 61 existing problems ranging from small to

moderate and large MOLP instances. In the next chapter, we shall

carry out a detailed comparison of BOA with the recently introduced

PSA of Rudloff et al. [124] using small, medium and realistic MOLP

instances.

133

Table 4.3: Comparative results for small, medium and large instances

Algorithm EMSA ASIMOLP BOA

Prob. Origin n m q MPNP CPU (s) MPNP CPU (s) MPNP CPU (s)

1 Ehrgott 3 3 3 f1 = -2.00 0.169 f1 = -1.74 0.036 f1 = -2.00 0.038

2006 f2 = 10.00 f2 = 5.56 f2 = 10.00

f3 = -5.00 f3 = -2.75 f3 = -5.00

2 Zeleny 2 2 2 f1 = -25000.00 0.027 f1 = -30626.00 0.111 f1 = -25000.00 0.021

1982 f2 = -66667.00 f2 = -64132.00 f2 = -66667.00

3 ” 2 4 2 f1 = -9.00 0.072 f1 = 4.00 0.031 f1 = -9.00 0.026

f2 = -15.00 f2 = -18.42 f2 = -15.00

4 ” 2 4 3 f1 = -3.00 0.182 f1 = -3.50 0.027 f1 = -3.00 0.161

f2 = -7.50 f2 = -2.74 f2 = -7.50

f3 = 4.00 f3 = 4.89 f3 = 4.00

5 ” 2 6 2 f1 = -24.00 0.399 f1 = -21.29 0.032 f1 = -24.00 0.212

f2 = -16.00 f2 = -17.29 f2 = -16.00

6 ” 3 3 3 f1 = 3.00 0.075 f1 = 1.33 0.028 f1 = 3.00 0.046

f2 = -6.00 f2 = -6.20 f2 = -6.00

f3 = -12.00 f3 = -9.68 f3 = -12.00

7 ” 5 3 3 f1 = 0.00 0.041 f1 = -1.38 0.034 f1 = 0.00 0.043

f2 = -4.00 f2 = -2.77 f2 = -4.00

f3 = -24.00 f3 = -10.04 f3 = -24.00

8 ” 5 2 2 f1 = -52.0 0.055 f1 = -4.11 0.019 f1 = -52.0 0.016

f2 = -52.0 f2 = -29.30 f2 = -52.0

9 ” 6 4 2 f1 = 0.00 0.229 f1 = -0.02 0.043 f1 = 0.00 0.017

f2 = 0.00 f2 = -0.00 f2 = 0.00

10 ” 7 4 3 f1 = -48.00 0.317 f1 = -7.65 0.035 f1 = -48.00 0.163

f2 = -32.00 f2 = -13.80 f2 = -32.00

f3 = 16.00 f3 = -7.75 f3 = 16.00

11 iMOLPe 2 3 2 f1 = -21.00 0.052 f1 = -11.87 0.032 f1 = -21.00 0.047

f2 = -7.00 f2 = -10.22 f2 = -7.00

12 ” 3 3 4 f1 = -10.00 0.074 f1 = -5.59 0.037 f1 = -10.00 0.033

f2 = -20.00 f2 = -18.62 f2 = -20.00

f3 = -100.00 f3 = -34.83 f3 = -100.00

f4 = -10.00 f4 = -42.23 f4 = -10.00

13 ” 3 5 3 f1 = -21.00 0.551 f1 = -10.48 0.035 f1 = -21.00 0.042

f2 = -4.50 f2 = -3.62 f2 = -4.50

Continued on next page

134

Table 4.3 – continued from previous page

Algorithm EMSA ASIMOLP BOA

Prob. Origin n m q MPNP CPU (s) MPNP CPU (s) MPNP CPU (s)

f3 = -4.00 f3 = -2.14 f3 = -4.00

14 ” 3 3 3 f1 = -2.66 0.089 f1 = -1.10 0.041 f1 = -2.66 0.035

f2 = -2.00 f2 = -1.22 f2 = -2.00

f3 = -0.33 f3 = -1.57 f3 = -0.33

15 ” 4 3 3 f1 = -48.50 0.097 f1 = -35.80 0.051 f1 = -48.50 0.038

f2 = -19.50 f2 = -43.97 f2 = -19.50

f3 = -37.00 f3 = -29.82 f3 = -37.00

16 ” 4 2 3 f1 = -20.00 0.041 f1 = -31.71 0.046 f1 = -20.00 0.036

f2 = -80.00 f2 = -49.12 f2 = -80.00

f3 = -40.00 f3 = -38.69 f3 = -40.00

17 ” 4 4 3 f1 = -40.00 0.243 f1 = -32.22 0.041 f1 = -40.00 0.186

f2 = -50.00 f2 = 32.50 f2 = -50.00

f3 = -10.00 f3 = -36.27 f3 = -10.00

18 ” 3 3 3 f1 = 0.00 0.178 f1 = -1.12 0.042 f1 = 0.00 0.033

f2 = -2.00 f2 = -2.14 f2 = -2.00

f3 = -4.00 f3 = 2.63 f3 = -4.00

19 ” 15 10 2 f1 = -363.82 1.581 f1 = -137.09 0.142 f1 = -363.82 0.195

f2 =-33.70 f2 =-198.96 f2 =-33.70

20 ” 15 10 3 f1 = -363.82 4.852 f1 = -107.15 0.223 f1 = -363.82 0.476

f2 = -33.70 f2 = -169.94 f2 = -33.70

f3 = -136.71 f3 = -16.26 f3 = -136.71

21 ” 10 15 3 f1 = -132.60 0.569 f1 = 59.42 0.145 f1 = -132.60 0.259

f2 = -236.42 f2 = -257.21 f2 = -236.42

f3 = -279.67 f3 = -256.48 f3 = -279.67

22 Steuer 5 5 2 f1 = -10.00 0.197 f1 = -6.30 0.033 f1 = -10.00 0.036

1986 f2 = -3.00 f2 = -6.90 f2 = -3.00

23 ” 4 4 3 f1 = 3.42 0.065 f1 = -3.79 0.035 f1 = 3.42 0.015

f2 = -10.28 f2 = 11.38 f2 = -10.28

f3 = -3.42 f3 = -2.96 f3 = -3.42

24 ” 5 5 4 f1 = 1.02 1.432 f1 = 2.28 0.037 f1 = 1.02 0.098

f2 = -25.46 f2 = -22.58 f2 = -25.46

f3 = 24.44 f3 = 25.30 f3 = 24.44

f4 = -28.32 f4 = -25.47 f4 = -28.32

25 ” 10 8 4 f1 = 106.29 125.406 f1 = 80.00 0.048 f1 = 106.29 1.973

Continued on next page

135

Table 4.3 – continued from previous page

Algorithm EMSA ASIMOLP BOA

Prob. Origin n m q MPNP CPU (s) MPNP CPU (s) MPNP CPU (s)

f2 = -462.13 f2 = -54.36 f2 = -462.13

f3 = 175.57 f3 = -163.73 f3 = 175.57

f4 = -33.41 f4 = -23.82 f4 = -33.41

26 ” 5 4 3 f1 = -52.07 0.196 f1 = -4.44 0.041 f1 = -52.07 0.054

f2 = 31.50 f2 = -13.17 f2 = 31.50

f3 = -17.35 f3 = -14.37 f3 = -17.35

27 ” 6 8 4 f1 = -6.94 14.846 f1 = -6.69 0.045 f1 = -6.94 0.065

f2 = -5.38 f2 = -2.25 f2 = -5.38

f3 = 6.83 f3 = 6.77 f3 = 6.83

f4 = -9.16 f4 = -8.83 f4 = -9.16

28 ” 7 6 4 f1 = -31.53 0.451 f1 = -25.90 0.032 f1 = -31.53 0.286

f2 = -26.48 f2 = -23.94 f2 = -26.48

f3 = -26.57 f3 = -19.06 f3 = -26.57

f4 = -0.34 f4 = -8.62 f4 = -0.34

29 ” 7 6 4 f1 = 26.80 1.601 f1 = 4.03 0.033 f1 = 26.80 0.192

f2 = -37.73 f2 = -29.03 f2 = -37.73

f3 = -24.33 f3 = -18.07 f3 = -24.33

f4 = -59.60 f4 = -28.17 f4 = -59.60

30 ” 8 8 6 f1 = -74.00 36.125 f1 = -15.46 0.084 f1 = -74.00 73.963

f2 = -107.50 f2 = -38.73 f2 = -107.50

f3 = -41.25 f3 = -43.30 f3 = -41.25

f4 = -27.25 f4 = -30.95 f4 = -27.25

f5 = -9.00 f5 = -8.30 f5 = -9.00

f6 = -30.75 f6 = -26.72 f6 = -30.75

31 ” 8 8 3 f1 = -36.57 2.726 f1 = -32.03 0.036 f1 = -36.57 0.168

f2 = -22.28 f2 = -20.03 f2 = -22.28

f3 = -14.00 f3 = -17.73 f3 = -14.00

32 ” 8 8 3 f1 = -14.03 0.706 f1 = -8.77 0.036 f1 = -14.03 0.135

f2 = -18.00 f2 = -10.56 f2 = -18.00

f3 = -4.93 f3 = -5.13 f3 = -4.93

33 ” 5 5 4 f1 = -21.50 0.618 f1 = -20.83 0.049 f1 = -21.50 0.277

f2 = -39.25 f2 = -21.78 f2 = -39.25

f3 = -16.25 f3 = -16.05 f3 = -16.25

Continued on next page

136

Table 4.3 – continued from previous page

Algorithm EMSA ASIMOLP BOA

Prob. Origin n m q MPNP CPU (s) MPNP CPU (s) MPNP CPU (s)

f4 = 27.00 f4 = 14.45 f4 = 27.00

34 ” 6 6 3 f1 = -12.65 3.907 f1 = 12.69 0.046 f1 = -12.65 0.212

f2 = 0.00 f2 = -3.21 f2 = 0.00

f3 = -30.15 f3 = -28.39 f3 = -30.15

35 ” 5 5 4 f1 = -14.66 2.016 f1 = -6.33 0.033 f1 = -14.66 0.183

f2 = -21.06 f2 = -14.44 f2 = -21.06

f3 = 35.73 f3 = 20.77 f3 = 35.73

f4 = -16.00 f4 = -14.63 f4 = -16.00

36 ” 10 10 4 f1 = 46.50 325.555 f1 = 50.69 0.057 f1 = 46.50 0.333

f2 = 19.21 f2 = 18.98 f2 = 19.21

f3 = -27.07 f3 = -23.38 f3 = -27.07

f4 = -27.07 f4 = -23.85 f4 = -27.07

37 ” 8 8 3 f1 = -14.48 13.251 f1 = -2.46 0.042 f1 = -14.48 0.217

f2 = -4.74 f2 = -3.22 f2 = -4.74

f3 = 6.93 f3 = -1.93 f3 = 6.93

38 ” 6 7 4 f1 = -2.61 7.001 f1 = -1.80 0.039 f1 = -2.61 0.386

f2 = -12.63 f2 = -4.00 f2 = -12.63

f3 = 9.70 f3 = 2.78 f3 = 9.70

f4 = -2.37 f4 = -2.07 f4 = -2.37

39 ” 12 16 4 * - f1 = -5.09 0.062 f1 = -5.25 31.034

f2 = -9.83 f2 = -14.25

f3 = -9.53 f3 = -8.25

f4 = -6.18 f4 = -1.00

40 ” 10 14 5 * - f1 = -1.07 0.051 f1 = -5.16 102.952

f2 = -3.83 f2 = -2.79

f3 = -5.53 f3 = -4.38

f4 = -16.87 f4 = -18.70

f5 = -8.42 f5 = -9.69

41 ” 7 6 3 f1 = -29.40 0.447 f1 = -10.74 0.044 f1 = -29.40 0.165

f2 = -65.30 f2 = -32.20 f2 = -65.30

f3 = -39.30 f3 = -24.39 f3 = -39.30

42 ” 7 7 3 f1 = -62.18 0.583 f1 = -47.39 0.039 f1 = -62.18 0.153

f2 = -93.50 f2 = -86.99 f2 = -93.50

Continued on next page

137

Table 4.3 – continued from previous page

Algorithm EMSA ASIMOLP BOA

Prob. Origin n m q MPNP CPU (s) MPNP CPU (s) MPNP CPU (s)

f3 = -52.00 f3 = -54.78 f3 = -52.00

43 ” 6 6 4 f1 = -37.50 1.311 f1 = -10.40 0.032 f1 = -37.50 0.158

f2 = -11.25 f2 = -6.52 f2 = -11.25

f3 = -7.50 f3 = -5.91 f3 = -7.50

f4 = -20.25 f4 = -0.34 f4 = -20.25

44 ” 6 6 4 f1 = 34.50 1.856 f1 = 28.39 0.029 f1 = 34.50 0.211

f2 = -7.50 f2 = -6.38 f2 = -7.50

f3 = -56.00 f3 = -45.43 f3 = -56.00

f4 = -31.50 f4 = -25.83 f4 = -31.50

45 ” 10 14 5 * - f1 = 3.35 0.043 f1 = 1.03 307.611

f2 = -3.18 f2 = -2.19

f3 = -2.48 f3 = 2.01

f4 = -2.50 f4 = -8.13

f5 = 2.10 f5 = -7.22

46 ” 10 14 5 * - f1 = 2.35 0.057 f1 = -4.95 105.344

f2 = 0.73 f2 = -3.42

f3 = -11.72 f3 = -4.38

f4 = -1.90 f4 = -18.91

f5 = -10.33 f5 = -9.27

47 ” 7 7 3 f1 = -3.83 0.601 f1 = -6.82 0.038 f1 = -3.83 0.159

f2 = -76.46 f2 = -68.93 f2 = -76.46

f3 = -49.57 f3 = -25.08 f3 = -49.57

48 Bensolve 100 101 2 * - f1 = -4.89 0.037 f1 = -8.42 0.503

1.2 f2 = -106.50 f2 = -116.65

49 5 31 5 - f1 = 0.00 0.021 f1 = 0.00 2.877

* f2 = 0.00 f2 = -1.00

Bensolve f3 = 0.00 f3 = 0.00

2.0 f4 = 0.00 f4 = 0.00

f5 = 0.01 f5 = -2.00

50 Script of 36 36 2 f1 = -5.00 1.921 f1 = -8.41 0.018 f1 = -5.00 0.211

Prob. 53 f2 = -26.00 f2 = -20.12 f2 = -26.00

51 ” 64 64 2 f1 = -63.00 14.455 f1 = -52.24 0.028 f1 = -63.00 0.403

f2 = -7.00 f2 = -10.56 f2 = -7.00

52 ” 100 100 2 f1 = -124.00 125.495 f1 = -119.51 0.031 f1 = -124.00 0.621

Continued on next page

138

Table 4.3 – continued from previous page

Algorithm EMSA ASIMOLP BOA

Prob. Origin n m q MPNP CPU (s) MPNP CPU (s) MPNP CPU (s)

f2 = -9.00 f2 = -11.72 f2 = -9.00

53 Bensolve 343 343 3 x - f1 = -35.32 0.651 f1 = -42.00 55.302

2.0 f2 = -101.41 f2 = -294.00

f3 = -9.63 f3 = -6.00

54 MOPLIB 30 21 12 f1=5.0E-12, f2=5.0E-12 7.235 + - f1=5.0E-12, f2=5.0E-12 0.598

f3=5.0E-12, f4=5.0E-12 f3=5.0E-12, f4=5.0E-12

f5=5.0E-12, f6=5.0E-12 f5=5.0E-12, f6=5.0E-12

f7=5.0E-12, f8=5.0E-12 f7=5.0E-12, f8=5.0E-12

f9=5.0E-12, f10=5.0E-12 f9=5.0E-12, f10=5.0E-12

f11=5.0E-12, f12=-5.5E-11 f11=5.0E-12, f12=-5.5E-11

55 ” 4492 1003 4 x - f1 = 42.70 18.281 x -

f2 = 83.10

f3 = 0.00

f4 = -725.90

56 ” 100 20 3 f1 = -168.00 5.281 f1 = -61.18 0.011 f1 = -168.00 4.291

f2 = -124.00 f2 = -73.93 f2 = -124.00

f3 = -143.00 f3 = -96.38 f3 = -143.00

57 ” 53 221 3 * - f1 = -19.23 0.725 f1 = 0.00 1663.803

f2 = -54.56 f2 = -2.00

f3 = 0.00 f3 = -13959.00

58 ” 53 226 3 f1 = -188.00 28.116 f1 = -50.22 0.196 f1 = -188.00 6.551

f2 = -123.00 f2 = -47.01 f2 = -123.00

f3 = 16842.00 f3 = 0.00 f3 = 16842.00

59 ” 900 60 4 * - f1 = -283.50 0.262 * -

f2 = -352.74

f3 = -268.85

f4 = -372.16

60 ” 1143 1211 3 x - f1 = 2.11 0.725 x -

f2 = 51.82

f3 = 0.61

61 ” 218 28 27 * - f1=0.52,f2=0.01,f3=6.95 0.481 * -

f4=2.41,f5=4.94,f6=-5.53

f7=-9.71,f8=2.23,f9=-0.31

f10=2.67,f11=-3.19,f12=-5.55

Continued on next page

139

Table 4.3 – continued from previous page

Algorithm EMSA ASIMOLP BOA

Prob. Origin n m q MPNP CPU (s) MPNP CPU (s) MPNP CPU (s)

f13=-5.42,f14=-4.46,f15=-4.35

f16=6.01,f17=-3.36,f18=1.71

f19=-8.01,f20=8.90,f21=8.01

f22=-5.35,f23=5.35,f24=5.35

f25=5.35,f26=-5.37,f27=-4.35

(*) Aborted after 3 days of running time

(+) No initial starting solution

(x) Out of memory

Figure 4.3: Running time of EMSA, ASIMOLP and BOA for the 48 instances

solved.

140

Chapter 5

COMPARATIVE STUDY OF TWO KEY

ALGORITHMS IN MOLP

5.1 Introduction

MOLP has been an active area of research since the 60s. During this

period, various algorithms have been developed for generating either

the entire efficient or nondominated set, or a subset of it, or a most

preferred efficient or nondominated point for the problem. Most of

these approaches are decision space-based. However, objective space-

based methods are becoming more and more prominent.

This chapter presents a detailed computational investigation of two

MOLP algorithms namely the PSA of Rudloff et al. [124] and Algo-

141

rithm 5 which is the primal variant of BOA [30]. These two algorithms

are based on the same solution concept introduced by Lohne [100].

They are similar in output but different in philosophy since one of

them, BOA, is an objective space-based search algorithm, while PSA

is a decision space-based algorithm. They are prominent examples

of MOLP algorithms. Unfortunately, there is no empirical evidence

in the literature, as far as we can tell, that separates them in terms

of the quality of a most preferred nondominated point they returned

and robustness. This chapter intends to fill this gap. It considers

all available test problems ranging from small size to large size and

solves them with Matlab implementations of the two algorithms on

the same machine. The extensive results are recorded and discussed.

It is hoped that these results would be a valuable guideline for the

potential users to choose between the two depending on the problems

they have to solve. Note that to the best of our knowledge, no one

tested these algorithms as extensively as we have done here in terms

of the size and variety of problems.

The PSA [124] work in the decision space and does not intend to

find the set of all efficient solutions of the problem, rather it finds a

subset of efficient solutions that allows to generate the whole efficient

142

frontier and also returns the corresponding nondominated points and

directions. BOA on the other hand, works in the objective space to

find the set of all nondominated points as well as directions of the

problem.

In this chapter, we shall also act as the DM and choose a Most Pre-

ferred Nondominated Point (MPNP) whose components are as close

as possible to an unattainable ideal objective point from the non-

dominated set returned by PSA to compare with a MPNP returned

by BOA. The rest of the chapter is organized as follows. The PSA

is presented in Section 5.2. We present another illustration of BOA

in Section 5.3. Section 5.4 presents experimental results on the two

algorithms to compare their computing efficiency, robustness and the

quality of a MPNP. We present the summary of experimental results

in Section 5.5. The chapter summary is presented in Section 5.5.

5.2 The Parametric Simplex Algorithm

In this section, we presents the PSA of Rudloff, Ulus and Vander-

bei [124]. This algorithm is one of the current solution approaches

for the problem. It can be viewed as a variant of the algorithm in [63],

143

with a similar structure. It is different in the sense that it does not

find all the efficient extreme points and unbounded efficient edges

(extreme rays) as is being done in [63]. As mentioned earlier, the

algorithm works in the decision space and finds a solution based on

the idea of Löhne [100] i.e., it finds a finite subset of efficient extreme

points and directions that allows to generate the whole efficient fron-

tier. The algorithm is initialized by solving an LP to find a weight

vector, such that the weighted sum problem using this weight vector

yields an optimal solution that is efficient. The corresponding optimal

dictionary is used to construct an initial dictionary D0 and an index

set of entering variables JD
0

. A dictionary contains a set of basic and

nonbasic variables at each iteration. The optimal solution is used

as an initial efficient basic feasible solution x0. Its implementation

stores a set of Boundary Dictionaries (BD) containing dictionaries

that are not yet visited and a set of Visited Dictionaries (V D) that

contains dictionaries that are already visited. At each iteration, the

algorithm moves from one dictionary to another, collecting their ba-

sic solutions into a set of efficient solutions X̄ for output until all the

dictionaries are visited. More specifically, the algorithm performs

pivoting for only one leaving variable among the set of all possible

144

leaving variables and picks only one entering variable thereby mak-

ing it computationally efficient. In addition, rather than solving a

vertex enumeration problem which is more costlier as is being done

in [30], the algorithm finds a set of parameters that guarantees the

efficiency of the current vertex and eliminates the redundant inequal-

ities thereof. This is done by solving a parametrized LP to check

if an inequality is defining or redundant; if redundant it would be

eliminated which also improves computation time. For unbounded

problems where there is no leaving variable for an entering variable,

a corresponding homogenous problem is solved and the solution found

forms the extreme directions of the problem. When all the dictionar-

ies are visited, the algorithm stops and returns the set of efficient

extreme points X̄ and directions X̄h as well as the corresponding

nondominated vertices Ȳ and directions Ȳ h of the problem. Before

we describe the pseudo-code form of PSA, we first explain the used

notation.

Notation: A, b, C are the problem data; D0 is the initial dictionary;

JD
0

is an initial index set of entering variables; x0, an initial efficient

basic feasible solution corresponding to the initial dictionary; ED0

is

the set of explored pivots for the initial dictionary; R, the recession

145

cone of the image; JD is the index set of entering variables; BD is

the set of boundary dictionaries; N , the set of nonbasic variables; B,

the set of basic variables; the indices i, j correspond to basic variable

xi ∈ B and nonbasic variable xj ∈ N respectively; B−1, is the inverse

of the basic matrix; ej is a unit column vector corresponding to the

nonbasic variable xj; x
h is a direction of the recession cone in the

decision space; P T [X̄h] is the image of the direction; −ZT
Ne

j is the

objective value of the homogeneous problem; ED is the set of explored

pivots for the current dictionary; D̄ is the new dictionary; N̄ is the

updated nonbasic variables; ED̄ is the set of all explored pivots of

the new dictionary D̄; x̄ is the basic feasible solution for the new

dictionary D̄; V D, the set of visited dictionaries; X̄ is the set of

efficient extreme points in the decision space; X̄h, the set of extreme

directions in the decision space; Ȳ is the set of all nondominated

vertices in the objective space and Ȳ h, is the set of extreme directions

in the objective space.

146

Algorithm 8 Parametric Simplex Algorithm
0: Input: A, b, C

1: Initialize: Find D0 and the index set of entering variables JD0
;

BD ← {D0}, X̄ ← {x0}, Ȳ h ← ∅ , V S ← ∅, X̄h ← ∅, ED0 ← ∅.
2: while BD 6= ∅ do
3: LetD ∈ BDwithnonbasic variablesN and index set of entering variables JD;
4: for j ∈ JD do
5: Let xj be the entering variable;

6: ifB−1Nej ≤ 0 then
7: Let xh be such that xhB = −B−1Nej and xhN = ej ;

8: X̄h ← X̄h ∪ {xh}
9: Ȳ h ← PT [X̄h] ∪ {−ZT

Ne
j}

10: else

11: Pick i ∈ argmini∈B,(B−1N)ij>0
(B−1b)i

(B−1N)ij
;

12: if (j, i) 6∈ ED then
13: Perform the pivotwith entering variable xj and leaving variablexi;
14: Call the new dictionary D̄ with nonbasic variables N̄ = N ∪ {i}\{j};
15: if D̄ 6∈ V S then
16: if D̄ ∈ BD then
17: ED̄ ← ED̄ ∪ {(i, j)};
18: else
19: Let x̄ be the basic solution for D̄;
20: X̄ ← X̄ ∪ {x̄};
21: Ȳ ← PT [X̄] ∪ {PT x̄};
22: Compute the index set of entering variables JD̄ of D̄;

23: LetED̄ = {(i, j)};
24: BD ← BD ∪ {D̄};
25: endif
26: endif
27: endif
28: endif
29: endfor
30: V S ← V S ∪ {D}, BD ← BD\{D}
31: endwhile

32 Output: (X̄, X̄h) : Set of Efficient solutions and directions;

(Ȳ , Ȳ h) : Nondominated set and directions.

147

5.2.1 Illustration of the PSA

Consider the following MOLP adapted from Alves et al. [3], which

we solved using a Matlab implementation of PSA.

minf1 = −3x1 − x2

minf2 = −x1 − 4x2

Subject to

− x1 + x2 ≤ 2

x1 + x2 ≤ 7

x1 + 2x2 ≤ 10

x1, x2 ≥ 0

(5.1)

The efficient extreme points found are x1 = (2.0, 4.0)T , x2 = (4.0, 3.0)T

and x3 = (7.0, 0.0)T . The corresponding nondominated points are

f 1 = (−10.0, −18.0)T , f 2 = (−15.0, −16.0)T and f 3 = (−21.0, −7.0)T

respectively, where x1 = (x1
1, x

1
2)
T , x2 = (x2

1, x
2
2)
T , x3 = (x3

1, x
3
2)
T ∈ XE

and f 1 = (f 1
1 , f

1
2)T , f 2 = (f 2

1 , f
2
2)T , f 3 = (f 3

1 , f
3
2)T ∈ YN . The feasible

region in the decision space is shown in Figure 5.1.

148

Figure 5.1: Efficient edges joining the three points in the decision space

5.3 Additional illustration of BOA

We now provide another illustration of BOA using Problem 5.1 of

Section 5.2.1. The nondominated points found using Bensolve-1.2

[101], are f 1 = (−21.0, −7.0)T , f 2 = (−15.0, −16.0)T and f 3 =

(−10.0, −18.0)T respectively. These points are shown in Figure 5.2.

149

Figure 5.2: Nondominated edges connecting the three points in the objective space.

To select the MPNP using Problem 5.1, solving each of the objective

function individually over the feasible region X as was done earlier

yields the ideal objective point y∗ = (−21.0,−18.0)T . Again, y∗ /∈ YN

where YN = {(−10.0, −18.0)T , (−15.0, −16.0)T , (−21.0, −7.0)T}.

Having computed the ideal objective point y∗, we now determine the

minimum distance of each nondominated point ŷ from it by finding

min {‖ŷ1 − y∗‖, ‖ŷ2 − y∗‖, . . . , ‖ŷn − y∗‖}

where ŷ ∈ YN has already been found either by PSA or BOA and y∗

is the ideal objective point.

150

Using the nondominated points f 1, f 2 and f 3 of Problem 5.1 yields

‖f 1 − y∗‖ = 11.0, ‖f 2 − y∗‖ = 6.3 and ‖f 3 − y∗‖ = 11.0.

Since, the relative distance of f 2 from the ideal point y∗ is 6.3 which is

the smallest of the three, it therefore means that f 2 = (−15.0, −16.0)T

is the closest of the three nondominated points to the ideal point

y∗ = (−21.0,−18.0)T . Hence, f 2 is selected as the DM’s MPNP.

We now used Problem 4.2 of Section 4.4. For PSA, the set of non-

dominated points found is YN = {(−8.0,−4.0, 12.0)T ,

(−16.0, 0.0,−16.0)T , (0.0,−8.0, 8.0)T , (−8.0, 0.0, 8.0)T} also with y∗ /∈

YN .

Next, we measure the distances of each of these points from the ideal

point y∗ = (−48.0,−32.0,−16.0)T as was done with those returned

by BOA in Section 4.4. It turned out that, the nondominated point

(−16.0, 0.0,−16.0)T is the closest to the ideal point y∗ and is selected

as the DM’s MPNP as shown in Table 5.2, Problem 10. Its distance

from it is 55.42 which is bigger than 32 which was the closest when

measuring the points returned by BOA in Section 4.4, thereby making

the MPNP returned by BOA closer to the ideal point and of higher

151

quality for this problem.

5.4 Discussion of Experimental Results

In this section, we provide numerical results to compare the comput-

ing efficiency, robustness and the quality of a Most Preferred Non-

dominated Point (MPNP) returned by Algorithms 5 and 8.

Table 5.2 shows the numerical results for a collection of 53 problems,

from the existing literature. Problem 1 is taken from Ehrgott [56],

Problems 2 to 10 were taken from Zeleny [163]. Problems 11 to

21 are test problems from the interactive MOLP explorer (iMOLPe)

of Alves et al. [3]. Problems 22 to 47 are taken from Steuer [143].

Problems 48 and 53 are test problem in Bensolve-2.0 of Löhne and

Weißing [104], while Problem 52 is a test problem in Bensolve-1.2 of

Löhne [101]. Finally, Problems 49 to 51 are obtained using a script

in Bensolve-2.0 of Löhne and Weißing [104] that was used to generate

problem 53 with the same number of variables and constraints.

We have added twenty-five (25) additional realistic instances to our

collection of problems in this chapter. These problems are recorded

152

in Table 5.3. They include Problems 54 to 72, 78, 80 to 84 and

86. Problems 54 to 72 are such that their constraint and criterion

matrices are sparse while all the components of the RHS vectors

are zeros except for a one (1) as the only non-zero entry. Problem

78 is such that the RHS vector is dense while the constraint and

criterion matrices are sparse. In Problems 80 and 82, the constraint

matrices are sparse, criterion matrices are dense and all the elements

in the RHS vectors are ones. Problems 83 and 84 are such that the

constraint and criterion matrices are sparse, all the components of the

RHS vectors are zeros except for a one (1) at the begining as the only

non-zero element. Finally, problem 86 is such that, the constraint and

criterion matrices as well as the RHS vector are all sparse.

Results for Algorithm 8 were obtained using a Matlab implementa-

tion of this algorithm provided by Rudloff et al. [124]. We also used

Bensolve-1.2 of Löhne [101] here to test their performance with the

same tools and for a meaningful comparison. All problems were exe-

cuted on Intel Core i5-2500 CPU at 3.30GHz with 16.0GB RAM. In

all tests, n is the number of variables, m the number of constraints, q

the number of objectives, NNP the number of nondominated points

returned by the algorithms for each problem and the CPU times (in

153

seconds). Algorithm 8 is PSA of Rudloff et al. [124] and Algorithm 5

is BOA [30] and as presented in [135]. We recorded the CPU times (in

seconds) returned by the algorithms for each problem and also acted

as the DM by choosing the MPNP (whose components are as close as

possible to the ideal objective point as explained in Section 4.4 and

5.3) from the nondominated set YN = {Cx : x ∈ XE} returned by

PSA to compare with the MPNP returned by BOA.

As can be seen in Table 5.2, as usual, the CPU times increase as

the problem dimension increases. We can also infer from Tables 5.2

and 5.3 that the CPU times also depend to some extent on the total

number of nondominated points returned by the algorithm for a given

problem. That is to say, the more the number of nondominated points

in a given problem the more computational effort would be required to

obtain them. We note here that all the problems in Table 5.2 are non-

degenerate For these problems, PSA appears to have computational

advantage over BOA, most especially for those problems with more

nondominated points as it returns only a subset of them; see problems

20, 25, 30, 39, 40 and 46. We noticed that for those problems where

both algorithms return the same number of nondominated points,

there is a slight difference in CPU time which is in favour of PSA.

154

We also observed that PSA returns more nondominated points for

some of the problems than BOA; this is not supposed to happen as it

is meant to return a subset of these points. Some of the nondominated

points returned are repeated.

In terms of the quality of a MPNP returned by these algorithms,

we observed in Table 5.2 that, both algorithms returned the same

MPNP points for most of the problems considered. However, for

a few of these problems where the MPNP are not the same, BOA

returned higher quality MPNP than PSA as illustrated in page 151.

Next, we use practical size MOLP instances from Csirmaz [42] which

is an MOLP solver called Inner, and MOPLIB [103] which stands

for Multi-Objective Problem Library. These test problems were also

executed on the same machine and the results are reported in Table

5.3. Problems 54 to 72 are from Csirmaz [42] while problems 73

to 86 are from MOPLIB. Note that Problems 54 to 73 are highly

degenerate. In fact, the RHS vector is such that all the components

are zeros except for a one (1) at the begining, at the end or at the

centre as the only none zero element. For these highly degenerate

problems, it was observed that BOA is computationally superior to

155

PSA which confirms what was reported by Rudloff et al. [124], that

BOA outperforms PSA on highly degenerate problems. Even the

nondominated points returned by PSA for these problems are also of

lower quality than those returned by BOA.

In terms of robustness we noticed in Tables 5.2 and 5.3 that, PSA

could not solve problems 38, 45, 52, 68 and 81. It returns the image

which is the whole region which indicates that none of the vertices

in the image is nondominated, meaning that no solution is returned

thereby making BOA more robust.

For those problems which were solved by BOA in Table 5.3, it was

also observed that the MPNPs returned are of higher quality than

those returned by PSA. However, for the non-degenerate problems,

PSA was found to be computationally superior to BOA.

5.5 Summary of Results

In this section, we present the summary of experimental results dis-

cussed in the previous section in Table 5.1. We have also presented

the CPU time of BOA and PSA for 70 out of the 86 instances (which

156

represent 81.40 %) of the total problems solved by both methods in

Figure 5.3.

Algorithms Criteria for Evaluation

Computing Efficiency Robustness Quality of

Degenerate Non-degenerate MPNP

Problems Problems

BOA Computationally Computationally Outperforms PSA Returned high

superior to inferior to PSA in terms of quality MPNP than

PSA on on non-degenerate robustness PSA on highly

highly degenerate problems of methods degenerate

problems problems

PSA Computationally Computationally Not so robust Returned high

inferior to BOA more efficient as compared to quality MPNP as

on highly than BOA on BOA BOA for most

degenerate non-degenerate of the problems

problems problems considered

Table 5.1: Summary of experimental results

5.6 Summary

We have presented PSA, illustrated it and BOA on small MOLP in-

stance. We have also presented a detailed computational experience

to compare the efficiency, robustness and the quality of MPNP’s re-

157

turned by these algorithms. The CPU times and quality of MPNP’s

returned by these algorithms for a collection of 86 existing MOLP

problems ranging from small to medium and practical size instances

is reported. In the next chapter, we shall apply the strawberry multi-

objective plant propagation algorithm (MOPPA) [67] and NSGA-

II [49,50] which were originally designed to solve multi-objective non-

linear programming problems to solve MOLP.

158

Table 5.2: Comparative results for small to medium instances

Algorithms BOA PSA

Prob. Origin n m q NNP MPNP CPU (s) NNP MPNP CPU (s)

1 Ehrgott 3 3 3 3 f1 = -2.00 0.038 3 f1 = -2.00 0.031

2006 f2 = 10.00 f2 = 10.00

f3 = -5.00 f3 = -5.00

2 Zeleny 2 2 2 3 f1 = -25000 0.021 3 f1 = -25000 0.015

1982 f2 = -66667 f2 = -66667

3 ” 2 4 2 2 f1 = -9.00 0.026 2 f1 = -9.00 0.019

f2 = -15.00 f2 = -15.00

4 ” 2 4 3 3 f1 = -3.00 0.161 3 f1 = -3.00 0.121

f2 = -7.50 f2 = -7.50

f3 = 9.00 f3 = 9.00

5 ” 2 6 2 3 f1 = -24.00 0.212 3 f1 = -24.00 0.181

f2 = -16.00 f2 = -16.00

6 ” 3 3 3 5 f1 = 3.00 0.046 5 f1 = 3.00 0.032

f2 = -6.00 f2 = -6.00

f3 = -12.00 f3 = -12.00

7 ” 5 3 3 4 f1 = 0.00 0.043 4 f1 = 0.00 0.041

f2 = -4.00 f2 = -4.00

f3 = -24.00 f3 = -23.62

8 ” 5 2 2 1 f1 = -52.00 0.016 1 f1 = -52.00 0.011

f2 = -52.00 f2 = -52.00

9 ” 6 4 2 1 f1 = 0.00 0.017 1 f1 = 0.00 0.012

f2 = 0.00 f2 = 0.00

10 ” 7 4 3 5 f1 = -48.00 0.163 4 f1 = -16.00 0.152

f2 = -32.00 f2 = 0.00

f3 = 16.00 f3 = -16.00

Continued on next page

159

Table 5.2 – continued from previous page

Algorithms BOA PSA

Prob. Origin n m q NNP MPNP CPU (s) NNP MPNP CPU (s)

11 iMOLPe 2 3 2 3 f1 = -21.00 0.047 3 f1 = -21.00 0.035

f2 = -7.00 f2 = -7.00

12 ” 3 3 4 3 f1 = -10.00 0.033 3 f1 = -10.00 0.021

f2 = -20.00 f2 = -20.00

f3 = -100.00 f3 = -100.00

f4 = -10.00 f4 = -10.00

13 ” 3 5 3 10 f1 = -21.00 0.042 10 f1 = -21.00 0.033

f2 = -4.50 f2 = -4.50

f3 = -4.00 f3 = -4.00

14 ” 3 3 3 7 f1 = -2.66 0.035 7 f1 = -2.66 0.032

f2 = -2.00 f2 = -2.00

f3 = -0.33 f3 = -0.33

15 ” 4 3 3 8 f1 = -48.50 0.038 8 f1 = -48.50 0.036

f2 = -19.50 f2 = -19.50

f3 = -37.00 f3 = -37.00

16 ” 4 2 3 6 f1 = -20.00 0.036 6 f1 = -20.00 0.035

f2 = -80.00 f2 = -80.00

f3 = -40.00 f3 = -40.00

17 ” 4 4 3 11 f1 = -40.00 0.186 11 f1 = -40.00 0.162

f2 = -50.00 f2 = -50.00

f3 = -10.00 f3 = -10.00

18 ” 3 3 3 5 f1 = 0.00 0.033 5 f1 = 0.00 0.031

f2 = -2.00 f2 = -2.00

f3 = -4.00 f3 = -4.00

19 ” 15 10 2 11 f1 = -363.82 0.195 7 f1 = -229.18 0.125

f2 = -33.70 f2 = -35.31

Continued on next page

160

Table 5.2 – continued from previous page

Algorithms BOA PSA

Prob. Origin n m q NNP MPNP CPU (s) NNP MPNP CPU (s)

20 ” 15 10 3 37 f1 = -363.82 0.476 7 f1 = -134.17 0.301

f2 = -33.70 f2 = -32.88

f3 = -136.71 f3 = -135.82

21 ” 10 5 3 14 f1 = 226.40 0.623 14 f1 = 223.09 0.589

f2 = -501.86 f2 = -496.23

f3 = -351.14 f3 = -246.64

22 Steuer 5 5 2 5 f1 = -10.00 0.036 5 f1 = -10.00 0.034

1986 f2 = -3.00 f2 = -3.00

23 ” 4 4 3 3 f1 = 3.42 0.015 3 f1 = 3.42 0.012

f2 = -10.28 f2 = -10.28

f3 = -3.42 f3 = -3.42

24 ” 5 5 4 14 f1 = 1.02 0.098 14 f1 = 1.02 0.081

f2 = -25.46 f2 = -25.46

f3 = 24.44 f3 = 24.44

f4 = -28.32 f4 = -28.32

25 ” 10 8 4 72 f1 = 106.29 1.973 65 f1 = 183.36 0.921

f2 = -462.13 f2 = -424.26

f3 = 175.57 f3 = 117.29

f4 = -33.41 f4 = -4.03

26 ” 5 4 3 9 f1 = -52.07 0.054 8 f1 = -52.07 0.045

f2 = 31.50 f2 = 31.50

f3 = -17.35 f3 = -17.35

27 ” 6 8 4 14 f1 = -6.94 0.065 6 f1 = -6.94 0.053

f2 = -5.38 f2 = -5.38

f3 = 6.83 f3 = 6.83

f4 = -9.16 f4 = -9.16

Continued on next page

161

Table 5.2 – continued from previous page

Algorithms BOA PSA

Prob. Origin n m q NNP MPNP CPU (s) NNP MPNP CPU (s)

28 ” 7 6 4 15 f1 = -31.53 0.286 12 f1 = -31.53 0.555

f2 = -26.48 f2 = -26.48

f3 = -26.57 f3 = -26.57

f4 = -0.34 f4 = -0.34

29 ” 7 6 4 9 f1 = 26.80 0.192 9 f1 = 26.80 0.142

f2 = -37.73 f2 = -37.73

f3 = -24.33 f3 = -24.33

f4 = -59.60 f4 = -59.60

30 ” 8 8 6 286 f1 = -74.00 73.963 40 f1 = -77.00 0.699

f2 = -107.50 f2 = -52.00

f3 = -41.25 f3 = -16.00

f4 = -27.25 f4 = -52.40

f5 = -9.00 f5 = 26.00

f6 = -30.75 f6 = -20.00

31 ” 8 8 3 5 f1 = -36.57 0.168 5 f1 = -36.57 0.156

f2 = -22.28 f2 = -22.28

f3 = -14.00 f3 = -14.00

32 ” 8 8 3 12 f1 = -14.03 0.135 1 f1 = -6.50 0.121

f2 = -18.00 f2 = -11.00

f3 = -4.93 f3 = -7.50

33 ” 5 5 4 12 f1 = -21.50 0.277 8 f1 = -8.00 0.216

f2 = -39.25 f2 = -23.87

f3 = -16.25 f3 = -7.62

f4 = 27.00 f4 = 27.00

34 ” 6 6 3 17 f1 = -12.65 0.212 17 f1 = 13.62 0.210

f2 = 0.00 f2 = -9.75

Continued on next page

162

Table 5.2 – continued from previous page

Algorithms BOA PSA

Prob. Origin n m q NNP MPNP CPU (s) NNP MPNP CPU (s)

f3 = -30.15 f3 = -26.25

35 ” 5 5 4 9 f1 = -14.66 0.462 2 f1 = -14.00 0.345

f2 = -21.06 f2 = 0.00

f3 = 35.73 f3 = 27.00

f4 = -16.00 f4 = 0.00

36 ” 10 10 4 6 f1 = 46.50 0.333 6 f1 = 46.50 0.241

f2 = 19.21 f2 = 19.21

f3 = -27.07 f3 = -27.07

f4 = -27.07 f4 = -27.07

37 ” 8 8 3 13 f1 = -14.48 0.217 13 f1 = -14.48 0.201

f2 = -4.74 f2 = -4.74

f3 = 6.93 f3 = 6.93

38 ” 6 7 4 21 f1 = -2.61 0.386 * - -

f2 = -12.63

f3 = 9.70

f4 = 2.37

39 ” 12 16 4 601 f1 = -5.25 31.034 23 f1 = -5.13 0.982

f2 = -14.25 f2 = -3.38

f3 = -8.25 f3 = 1.83

f4 = -1.00 f4 = -1.18

40 ” 10 14 5 132 f1 = -5.16 102.952 9 f1 = -18.00 1.395

f2 = -2.79 f2 = 70.60

f3 = -4.38 f3 = -3.20

f4 = -18.70 f4 = 8.00

f5 = -9.69 f5 = -4.30

41 ” 7 6 3 3 f1 = -29.40 0.165 3 f1 = -29.40 0.151

Continued on next page

163

Table 5.2 – continued from previous page

Algorithms BOA PSA

Prob. Origin n m q NNP MPNP CPU (s) NNP MPNP CPU (s)

f2 = -65.30 f2 = -65.30

f3 = -39.30 f3 = -39.30

42 ” 7 7 3 7 f1 = -62.18 0.036 7 f1 = -62.18 0.036

f2 = -93.50 f2 = -93.50

f3 = -52.00 f3 = -52.00

43 ” 6 6 4 5 f1 = -37.50 0.158 5 f1 = -37.50 0.134

f2 = -11.25 f2 = -11.25

f3 = -7.50 f3 = -7.50

f4 = -20.25 f4 = -20.25

44 ” 6 6 4 10 f1 = 34.50 0.211 10 f1 = 34.50 0.201

f2 = -7.50 f2 = -7.50

f3 = -56.00 f3 = -56.00

f4 = -31.50 f4 = -31.50

45 ” 10 14 5 471 f1 = 1.03 307.611 * - -

f2 = -2.19

f3 = 2.01

f4 = -8.13

f5 = 7.22

46 ” 10 14 5 128 f1 = -4.95 105.344 1 f1 = -4.93 0.291

f2 = -3.42 f2 = -5.57

f3 = -4.38 f3 = -2.83

f4 = -18.91 f4 = -16.28

f5 = -9.27 f5 = -6.13

47 ” 7 7 3 6 f1 = -3.83 0.045 9 f1 = -3.83 0.031

f2 = -76.46 f2 = -76.46

f3 = -49.57 f3 = -49.57

Continued on next page

164

Table 5.2 – continued from previous page

Algorithms BOA PSA

Prob. Origin n m q NNP MPNP CPU (s) NNP MPNP CPU (s)

48 Bensolve-2.0 5 31 5 22 f1 = 0.00 2.877 1 f1 = 0.00 0.125

f2 = -1.00 f2 = 0.00

f3 = 0.00 f3 = 0.00

f4 = 0.00 f4 = 0.00

f5 = -2.00 f5 = 0.00

49 ” 36 36 2 8 f1 = -5.00 0.211 82 f1 = -5.00 0.772

f2 = -26.00 f2 = -25.50

50 ” 64 64 2 14 f1 = -63.00 0.403 292 f1 = -34.50 5.167

f2 = -7.00 f2 = -9.50

51 ” 100 100 2 20 f1 = -124.00 0.621 1102 f1 = -123.50 36.323

f2 = -9.00 f2 = -9.00

52 Bensolve-1.2 100 101 2 32 f1 = -8.42 0.503 * - -

f2 = -116.65

53 Bensolve-2.0 343 343 3 1,368 f1 = -42.00 55.302 x - -

f2 = -294.00

f3 = -6.00

(*) The image is the whole region, implying that the problem has no solution

(x) Out of memory

165

Table 5.3: Comparative results for large instances (NNP stands for Number of

Nondominated Points)

Algorithms BOA PSA

Prob. Origin n m q NNP MPNP CPU (s) NNP MPNP CPU (s)

54 inner 844 12 10 1 f1 = -1.00, f2 = -1.00, f3= 0.00 0.871 1 f1 = 0.00, f2 = 0.00, f3= 0.00 2.835

f4 = 0.00, f5 = 0.00, f6 = 0.00 f4 = 0.00, f5 = 0.00, f6 = 0.00

f7 = 0.00, f8 = 0.00, f9 = 0.00 f7 = 0.00, f8 = 0.00, f9 = 0.00

f10 = 0.00 f10 = 0.00

55 ” 853 12 10 1 f1 = -1.00, f2 = -1.00, f3= 0.00 0.892 1 f1 = 0.00, f2 = 0.00, f3= 0.00 2.888

f4 = 0.00, f5 = 0.00, f6 = 0.00 f4 = 0.00, f5 = 0.00, f6 = 0.00

f7 = 0.00, f8 = 0.00, f9 = 0.00 f7 = 0.00, f8 = 0.00, f9 = 0.00

f10 = 0.00 f10 = 0.00

56 ” 857 12 10 1 f1 = -1.00, f2 = -1.00, f3= 0.00 0.871 1 f1 = 0.00, f2 = 0.00, f3= 0.00 2.922

f4 = 0.00, f5 = 0.00, f6 = 0.00 f4 = 0.00, f5 = 0.00, f6 = 0.00

f7 = 0.00, f8 = 0.00, f9 = 0.00 f7 = 0.00, f8 = 0.00, f9 = 0.00

f10 = 0.00 f10 = 0.00

57 ” 873 12 10 1 f1 = 0.00, f2 = -1.00, f3= -1.00 0.884 1 f1 = 0.00, f2 = 0.00, f3= 0.00 3.041

f4 = 0.00, f5 = 0.00, f6 = 0.00 f4 = 0.00, f5 = 0.00, f6 = 0.00

f7 = 0.00, f8 = 0.00, f9 = 0.00 f7 = 0.00, f8 = 0.00, f9 = 0.00

f10 = 0.00 f10 = 0.00

58 ” 877 12 10 1 f1 = 0.00, f2 = -1.00, f3= -1.00 0.935 1 f1 = 0.00, f2 = 0.00, f3= 0.00 3.071

f4 = 0.00, f5 = 0.00, f6 = 0.00 f4 = 0.00, f5 = 0.00, f6 = 0.00

f7 = 0.00, f8 = 0.00, f9 = 0.00 f7 = 0.00, f8 = 0.00, f9 = 0.00

f10 = 0.00 f10 = 0.00

59 ” 880 12 10 1 f1 = 0.00, f2 = -1.00, f3= -1.00 0.968 1 f1 = 0.00, f2 = 0.00, f3= 0.00 3.113

f4 = 0.00, f5 = 0.00, f6 = 0.00 f4 = 0.00, f5 = 0.00, f6 = 0.00

f7 = 0.00, f8 = 0.00, f9 = 0.00 f7 = 0.00, f8 = 0.00, f9 = 0.00

f10 = 0.00 f10 = 0.00

60 ” 882 12 10 1 f1 = -1.00, f2 = 0.00, f3= -1.00 1.009 1 f1 = 0.00, f2 = 0.00, f3= 0.00 3.115

f4 = 0.00, f5 = 0.00, f6 = 0.00 f4 = 0.00, f5 = 0.00, f6 = 0.00

f7 = 0.00, f8 = 0.00, f9 = 0.00 f7 = 0.00, f8 = 0.00, f9 = 0.00

f10 = 0.00 f10 = 0.00

61 ” 886 12 10 2 f1 = 0.00, f2 = 0.00, f3= 0.00 1.341 1 f1 = 0.00, f2 = 0.00, f3= 0.00 3.118

f4 = 1.00, f5 = -1.00, f6 = -1.00 f4 = 0.00, f5 = 0.00, f6 = 0.00

f7 = 0.00, f8 = 0.00, f9 = 0.00 f7 = 0.00, f8 = 0.00, f9 = 0.00

f10 = 0.00 f10 = 0.00

Continued on next page

166

Table 5.3 – continued from previous page

Algorithms BOA PSA

Prob. Origin n m q NNP MPNP CPU (s) NNP MPNP CPU (s)

62 ” 888 12 10 1 f1 = -1.00, f2 = -1.00, f3= 0.00 1.104 1 f1 = 0.00, f2 = 0.00, f3= 0.00 3.119

f4 = 0.00, f5 = 0.00, f6 = 0.00 f4 = 0.00, f5 = 0.00, f6 = 0.00

f7 = 0.00, f8 = 0.00, f9 = 0.00 f7 = 0.00, f8 = 0.00, f9 = 0.00

f10 = 0.00 f10 = 0.00

63 ” 1009 12 10 1 f1 = 0.00, f2 = -1.00, f3= -1.00 1.281 1 f1 = 0.00, f2 = 0.00, f3= 0.00 3.911

f4 = 0.00, f5 = 0.00, f6 = 0.00 f4 = 0.00, f5 = 0.00, f6 = 0.00

f7 = 0.00, f8 = 0.00, f9 = 0.00 f7 = 0.00, f8 = 0.00, f9 = 0.00

f10 = 0.00 f10 = 0.00

64 ” 1956 12 10 1 f1 = -1.00, f2 = -1.00, f3= 0.00 4.288 1 f1 = 0.00, f2 = 0.00, f3= 0.00 13.374

f4 = 0.00, f5 = 0.00, f6 = 0.00 f4 = 0.00, f5 = 0.00, f6 = 0.00

f7 = 0.00, f8 = 0.00, f9 = 0.00 f7 = 0.00, f8 = 0.00, f9 = 0.00

f10 = 0.00 f10 = 0.00

65 ” 1983 12 10 1 f1 = 0.00, f2 = 0.00, f3= 0.00 4.418 1 f1 = 0.00, f2 = 0.00, f3= 0.00 13.805

f4 = -1.00, f5 = -1.00, f6 = 0.00 f4 = 0.00, f5 = 0.00, f6 = 0.00

f7 = 0.00, f8 = 0.00, f9 = 0.00 f7 = 0.00, f8 = 0.00, f9 = 0.00

f10 = 0.00 f10 = 0.00

66 ” 3722 338 10 55 f1 = -0.25, f2 = -0.50, f3= -2.75, 22.167 1 f1 = 0.00, f2 = 0.00, f3= 0.00 56.198

f4 = 1.87, f5 = -0.62, f6 = 0.00, f4 = 0.00, f5 = 0.00, f6 = 0.00

f7 = 0.00, f8 = 0.00, f9 = 0.00 f7 = 0.00, f8 = 0.00, f9 = 0.00

f10 = 0.00 f10 = 0.00

67 ” 3725 338 10 61 f1 = -0.20, f2 = -0.40, f3= -2.40, 24.605 1 f1 = 0.00, f2 = 0.00, f3= 0.00 56.458

f4 = -2.20, f5 = -0.6, f6 = -0.20 f4 = 0.00, f5 = 0.00, f6 = 0.00

f7 = 0.00, f8 = 0.00, f9 = 0.00 f7 = 0.00, f8 = 0.00, f9 = 0.00

f10 = 0.00 f10 = 0.00

68 ” 3897 362 10 + - - * - -

69 ” 5646 492 10 1575 f1 = -0.38, f2 = 0.00, f3= -2.55, 125.488 1 f1 = 0.00, f2 = 0.00, f3= 0.00 130.159

f4 = -1.66, f5 = -0.16, f6=-0.44 f4 = 0.00, f5 = 0.00, f6 = 0.00

f7 = 0.00, f8 = 0.00, f9 = 0.00 f7 = 0.00, f8 = 0.00, f9 = 0.00

f10 = 0.00 f10 = 0.00

70 ” 8891 707 10 13 f1 = -0.20, f2 = 0.00, f3= -2.20, 228.312 1 f1 = 0.00, f2 = 0.00, f3= 0.00 329.701

f4 = -2.20, f5 = -0.20, f6=-0.20 f4 = 0.00, f5 = 0.00, f6 = 0.00

f7 = 0.00, f8 = 0.00, f9 = 0.00 f7 = 0.00, f8 = 0.00, f9 = 0.00

Continued on next page

167

Table 5.3 – continued from previous page

Algorithms BOA PSA

Prob. Origin n m q NNP MPNP CPU (s) NNP MPNP CPU (s)

f10 = 0.00 f10 = 0.00

71 ” 9472 707 10 + - - 1 f1 = 0.00, f2 = 0.00, f3= 0.00 362.449

f4 = 0.00, f5 = 0.00, f6 = 0.00

f7 = 0.00, f8 = 0.00, f9 = 0.00

f10 = 0.00

72 ” 10017 779 10 31 f1=-0.11, f2 = 0.00, f3= -2.44, 260.494 1 f1 = 0.00, f2 = 0.00, f3= 0.00 412.929

f4 = -2.44, f5 = -0.55, f6=-0.55 f4 = 0.00, f5 = 0.00, f6 = 0.00

f7 = 0.00, f8 = 0.00, f9 = 0.00 f7 = 0.00, f8 = 0.00, f9 = 0.00

f10 = 0.00 f10 = 0.00

73 MOPLIB 30 21 12 1 f1=5.0E-12, f2=5.0E-12 0.598 1 f1 = 0, f2 = 0 0.167

f3=5.0E-12, f4=5.0E-12 f3 = 0, f4 = 0

f5=5.0E-12, f6=5.0E-12 f5 = 0, f6 = 0

f7=5.0E-12, f8=5.0E-12 f7 = 0 , f8 = 0

f9=5.0E-12, f10=5.0E-12 f9 = 0, f10 = 0

f11=5.0E-12, f12=-5.5E-11 f11 = 0, f12 = 0

74 ” 100 20 3 291 f1 = -168.00 4.291 1 f1 = -168.00 0.122

f2 = -124.00 f2 = -124.00

f3 = -143.00 f3 = -143.00

75 ” 53 221 3 2552 f1 = 0.00 1663.803 1 f1 = 0.00 0.682

f2 = -2.00 f2 = 0.00

f3 = -13959.00 f3 = -13461.00

76 ” 53 226 3 552 f1 = -180.00 6.551 74 f1 = -144.00 1.628

f2 = -123.00 f2 = -79.00

f3 = 16842.00 f3 = 13360.00

77 ” 1143 1211 3 x - - 1 f1 = -85.00, f2 = 0, f3 = 0 16.248

78 ” 36939 4608 3 x - - 1 f1 = 0, f2 = 0, f3 = 0 18927.102

79 ” 900 60 4 + - - 1 f1 = -434.00, f2 = -452.00 3.005

f3 = -497.00, f4 = -463.00

80 ” 729 729 4 + - - x - -

81 ” 4492 1003 4 x - - * - -

82 ” 900 60 10 x - - 1 f1 = -394.00, f2 = -429.00 4.306

f3 = -415.00, f4 = -428.00

f5 = -447.00, f6 =-417.00

Continued on next page

168

Table 5.3 – continued from previous page

Algorithms BOA PSA

Prob. Origin n m q NNP MPNP CPU (s) NNP MPNP CPU (s)

f7 = -401.00 , f8 = -414.00

f9 = -402.00, f10 = -429.00

83 ” 779 10174 10 + - - 1 f1 = 0.00, f2 = 0.00 424.58

f3 = 0.00, f4 = 0.00

f5 = 0.00, f6 = 0.00

f7 = 0.00, f8 = 0.00

f9 = 0.00, f10 = 0.00

84 ” 376 1917 19 x - - 1 f1 = 2, f2 = -1, f3 = -1 69.765

f4 = -1 , f5 = 0, f6= -1,

f7 = 0, f8 = -1, f9= 0,

f10 = -1, f11 = -2, f12= -2

f13 = 0 , f14 =0, f15 = 0

f16 = 0, f17 = 0, f18 = 0,

f19 = 0 .

85 ” 218 28 27 + - - 1 f1 = -360, f2 = 0, f3 = 0 14.746

f4 = 90 , f5 =180, f6=180,

f7 = 180, f8 = 180, f9=270,

f10 = 0, f11 = 360, f12=90

f13 = 180 , f14 =0, f15=90

f16 = 90, f17 =0, f18 = -90,

f19= 90 , f20 = -90, f21=-90,

f22= 90 , f23 = -90, f24=-90,

f25= -90 , f26=90, f27 = 0.

86 ” 295056 24586 2 x - x - -

(*) The image is the whole region, implying that the problem has no solution

(+) Aborted after three days of running time

(x) Out of memory

169

Figure 5.3: Running time of PSA and BOA for the 70 instances solved.

170

Chapter 6

A HEURISTIC APPROACH TO

MULTI-OBJECTIVE LINEAR

PROGRAMMING

6.1 Introduction

Multiple Objective Linear Programming (MOLP) problems are usu-

ally solved with exact methods as stated in previous chapters.

Given that MOLP is NP-hard [34, 90], it is surprising that only one

approximate approach has been applied to it. Such approaches also

called heuristics have been commonly used in nonlinear and discrete

multi-objective optimisation (MOO). It is, therefore, worthwhile in-

171

vestigating representatives of this class of approaches and comparing

them with exact methods.

Heuristic approaches are numerous and varied. Perhaps the most

common such algorithms are those of the population-based evolu-

tionary type such as the Genetic Algorithm, Ant Colony Algorithm

and Tabu Search [22]. In the context of MOO, Nondominated Sort-

ing Genetic Algorithm II or NSGA-II [49, 50] is arguably the most

popular. There are new nature-inspired population based stochas-

tic algorithms which have shown a lot of promise on nonlinear MOO

problems. One such algorithm is the strawberry multi-objective plant

propagation algorithm or MOPPA [67].

PPA in its multi-objective version has not been applied to MOLP,

yet. We intend to do that here. MOPPA [67] is the implemented ver-

sion. We shall apply MOPPA and NSGA-II [49,50] to our collection

of representative MOLP problems and then compare their outcomes

with those of the exact methods. Before embarking into these ex-

periments, we first briefly present MOPPA. We then apply MOPPA

and NSGA-II to a set of well known test problems. The results will

be compared with those obtained with the exact methods EMSA,

172

ASIMOLP, BOA and PSA.

6.2 Multi-objective Plant Propagation Algorithm

The Multi-objective Plant Propagation Algorithm (MOPPA) [67] is

an extension of PPA [128] to multi-objective nonlinear optimisation

problems. Apart from the extension, the algorithm was also equipped

with a novel fitness function whose aim is to emphasize the end-

points and drive the population based stochastic algorithm towards

a good approximation to the nondominated front. In both PPA and

MOPPA, each member of the population can generate a number of

runners proportional to that member’s fitness and to define a new

point, a distance away proportional to 1 minus the fitness with all

values randomly chosen, [67]. Both approaches implements exploita-

tion or concentration by sending many short runners from good solu-

tions and implements diversification or exploration by sending fewer

but longer runners from those solutions that are not so good. The

algorithm was successfully applied to the integrated energy systems

design for off-grid mining operations which is a bicriteria dynamic

optimisation problem. Most recently, the algorithm was also applied

173

to the industrial beer fermentation process in [123] for which the non-

dominated front was successfully approximated. Given the successes

of the algorithm recorded so far for single and multi-objective non-

linear programming problems, we intend to apply MOPPA to MOLP

problems. The pseudo-code of MOPPA adapted from [67] is given as

Algorithm 9.

Algorithm 9 The Multi-Objective Plant Propagation Algorithm
0: Given: f(x), a vector function; ng, number of generations to perform; np, the

propagation size; nr, maximumnumber of runners to propagate.
1: Output: z, vector approximation to Nondominated frontier.
2 p ← initial random population of size np

3 for ng generations do
4 prune population p, removing similar solutions
5 N ← fitness(p) B Use rank based fitness
6 p̄ ← ∅ B Empty set
7: for i← 0 ... np do
8: x← select(p,N) B Tournament fitness based selection
9: for each runnerto generate do B Number proportional to fitness rounded up
10: x̄← new solution(x, 1−N) B Distance inversely proportional to fitness
11: p̄← x̄ ∪ p̄ B Add to new population
12: endfor
13: p← p\x BRemove from old population
14: endfor
15: p← p̄ ∪Nondominated(p) BNew population with elitism
16: endfor
17: z ← Nondominated(p)

6.3 Solution Procedure

In order to apply MOPPA to MOLP, we use the penalty function

method [110] to handle the constraints. The penalty function method

is the most popular constraint handling technique in evolutionary

174

algorithms and many other optimisation frameworks [110, 155]. It

penalizes each objective or fitness function by reducing its fitness

values in proportion to the degree of constraint violation [139]. In

other words, a penalty term is added to each of the objective function

penalizing the function values that are not in the feasible region. To

use this method, MOLP problem (1.1) is reformulated as follows:

min f1(x) +Kp1(x)

...

fq(x) +Kpq(x)

subject to x ∈ X = {[a, b]n ⊂ Rn : gj(x) ≤ 0, j = 1, ...,m} ,

(6.1)

where X is the search space or feasible region which is described

by box constraints, a and b are the lower and upper bounds on all

variables, the scalar quantity K is a constant which is called the

penalty parameter and the function pk(x), k = 1, ..., q is the penalty

function. Equation (6.1) is now our new MOLP penalty program.

The penalty function pk(x) satisfies the following

• pk(x) = 0, if gj(x) ≤ 0

• pk(x) > 0, if gj(x) � 0,

175

that is to say, the penalty function is zero if no violation of the con-

straint occurs and is positive if a constraint is violated; the penalty

parameter term would be added to the objective function such that

the solution is pushed back towards the feasible region. A large

penalty value prevents searching the infeasible region and enables

the method to converge to a feasible solution quickly, [155].

6.3.1 Illustration of MOPPA

We implemented the MOLP penalty program 6.1 in Matlab and ap-

plied a Matlab implementation of MOPPA which can be found in [66]

to solve Problem 3.1 of Section 3.2.1. With x1 ∈ [0, 7] , x2 ∈ [0, 5] as

variable bounds, a population size of 50, maximum number of run-

ners 5 and the number of generations to perform at 200 are chosen.

The nondominated front approximated by the algorithm is shown in

Figure 6.1.

176

Figure 6.1: Nondominated frontier approximated by MOPPA.

The nondominated points and their corresponding fitness values are

shown in Table 6.1. These are sorted in decreasing order from left

to right of the table according to the rank based fitness function

incorporated in the algorithm.

177

f1
-6

.9
8
-1

.6
4
-1

.7
9
-7

.0
0
-6

.7
6
-2

.5
0
-6

.8
7
-6

.3
2
-3

.1
7
-6

.6
1
-2

.7
3
-3

.2
6
-1

.9
3
-1

.9
7
-3

.4
2
-1

.6
8
-6

.8
6
-1

.9
3
-3

.1
1
-6

.0
8
-6

.7
7
-3

.7
8
-2

.4
2
-4

.1
0
-1

.7
4
-2

.0
0
-6

.8
7
-6

.3
6

f2
-1

.8
0
-5

.0
0
-4

.8
9
-1

.7
9
-1

.9
4
-4

.4
6
-1

.8
3
-2

.1
3
-3

.9
2
-2

.0
1
-4

.2
4
-3

.8
1
-4

.7
9
-4

.7
7
-3

.8
0
-4

.9
6
-1

.8
5
-4

.8
2
-4

.0
7
-2

.1
9
-1

.9
0
-3

.5
9
-4

.5
1
-3

.2
9
-4

.9
0
-4

.7
7
-1

.8
4
-2

.1
2

fi
tn

es
s0

.9
6

0.
9
5

0
.9

3
0
.9

1
0
.9

0
0
.8

8
0.

8
6

0
.8

4
0.

82
0.

81
0.

79
0.

77
0.

75
0.

73
0.

71
0.

69
0
.6

7
0
.6

5
0
.6

3
0.

6
1

0
.5

9
0
.5

7
0
.5

5
0
.5

3
0
.5

1
0
.4

9
0
.4

7
0
.4

5

T
ab

le
6.

1:
N

on
d
om

in
at

ed
P

oi
n
ts

an
d

th
ei

r
co

rr
es

p
on

d
in

g
fi
tn

es
s

va
lu

es

178

We are interested in the nondominated point with the best fitness

value which will serve as the Best Nondominated Point (BNP). From

Table 6.1, the BNP is f 1 = (−6.98,−1.80)T with a fitness value of

0.96, where f 1 = (f 1
1 , f

1
2)T ∈ YN . Note that when solving Problem

3.1 of Section 3.2.1 with exact methods, the MPNP was found to be

f 1 = (−7.0, −1.80)T in Section 4.4.

In Figure 6.1, it can be seen that MOPPA is able to approximate

the nondominated frontier using the penalty function method. The

nondominated points are not evenly distributed on the frontier but

tend to concentrate more towards the end-points of the front.

We have also solved Problem 3.1 using NSGA-II [49,50] which is an-

other approximate multi-objective evolutionary algorithm with the

same settings as in Equation 6.1. We use the same variable bounds

with a population size of 50, 200 generations, mutation rate of 0.02

and crossover rate of 0.8. The nondominated frontier as approxi-

mated by NSGA-II is shown in Figure 6.2.

179

Figure 6.2: Nondominated frontier approximated by NSGA-II.

The nondominated points approximated by NSGA-II are in Table 6.2.

Each of these points is assigned a rank or fitness value according to

its domination level and sorted in descending order from left to right

of the table according to their crowding distances. The end-points

which are fitter than other points are assigned an infinite distance

value.

180

f1
-6

.8
2
-1

.9
6
-4

.2
8

-4
.1

2
-6

.6
0

-4
.4

9
-3

.7
8

-3
.9

1
-5

.7
7

-5
.6

4
-5

.2
6

-5
.3

9
-3

.5
5

-4
.8

8
-5

.8
8

-3
.1

0
-3

.4
5

-5
.9

7
-2

.1
3

-4
.5

5

f2
-1

.9
0
-4

.8
2
-3

.3
6

-3
.5

3
-2

.0
0

-3
.2

9
-3

.7
2

-3
.6

2
-2

.5
4

-2
.6

1
-2

.8
4

-2
.7

6
-3

.8
2

-3
.0

3
-2

.4
7

-4
.1

4
-3

.9
2

-2
.3

9
-4

.7
2

-3
.2

1

C
ro

w
d

in
g
In

f
In

f
0
.1

5
82

0.
1
23

2
0
.1

1
71

0
.1

0
66

0.
10

32
0.

10
14

0.
09

74
0.

09
53

0.
09

43
0.

09
33

0.
0
92

5
0.

0
91

7
0
.0

9
16

0
.0

9
12

0
.0

9
0
5
0
.0

8
9
4
0
.0

8
6
3
0
.0

8
4
2

D
is

ta
n

ce

T
ab

le
6.

2:
N

on
d
om

in
at

ed
P

oi
n
ts

an
d

th
ei

r
co

rr
es

p
on

d
in

g
cr

ow
d
in

g
d
is

ta
n
ce

s

181

From Table 6.2, the end-point f 1 = (−6.82,−1.90)T which is the first

to be listed and therefore highest in ranking of the two end-points, is

selected as the BNP.

In Figure 6.2, it can be seen that NSGA-II did not only approximate

the nondominated frontier, but also distribute the points evenly on

the nondominated front for the problem.

In terms of the quality of nondominated points approximated by these

two algorithms, it can be seen in Tables 6.1 and 6.2 that the points

returned by MOPPA are of higher quality than those returned by

NSGA-II. This can easily be seen that the BNP f 1 = (−6.98,−1.80)T

selected from Table 6.1 is of higher quality and closer to the MPNP

f 1 = (−7.0, −1.80)T found by the exact methods of Section 4.4 than

the BNP f 1 = (−6.82,−1.90)T selected from Table 6.2.

We compare these two approximate methods with the four exact

methods (EMSA, ASIMOLP, BOA and PSA) whose results are pre-

sented in Tables 4.3, 5.2 and 5.3 respectively.

182

6.4 Discussion of Experimental Results

In this section, we provide numerical results to compare the quality

of the BNP returned by MOPPA and NSGA-II which find approxi-

mate points to the MPNP computed by exact methods as shown in

Tables 4.3, 5.2 and 5.3. Since heuristic approaches are best tested

on problems for which the solutions are known [50]. Table 6.4 shows

the numerical results for a collection of 51 existing problems from the

literature ranging from small to medium and realistic instances. The

structure of these problems have been described in previous chapters.

All algorithms were implemented in Matlab and executed on an In-

tel Core i5-2500 CPU at 3.30GHz with 16.0GB RAM. In all tests,

m is the number of constraints, n the number of variables and q

the number of objectives. We used the MPNPs computed from the

nondominated set returned by EMSA, PSA, BOA and ASIMOLP

as explained in Section 4.4 to compare with the BNP returned by

MOPPA and NSGA-II.

As can be seen from Table 6.4, MOPPA compared favourably in terms

of the quality of the BNP it returns. The algorithm returns BNPs

183

which are of higher quality and closer to those returned by exact

methods than NSGA-II, which confirms what was reported in [67].

Of particular interest is Problems 3, 9, 11 and 23 where the points

returned are exactly the same with those of the exact methods. In

terms of diversity (spread) between the two approximated methods,

as can be seen from Section 6.4.1, NSGA-II returns nondominated

points that are more uniformly or evenly distributed than the non-

dominated front of MOPPA whose points tend to concentrate more

towards the end-points of the front.

We also observed in Table 6.4 that some of the exact methods could

not produce results for some of the numerically ill-posed and highly

challenging test problems considered due to one reason or the other

as stated in the table. The approximate methods on the other hand,

were able to solve all these difficult MOLP instances approximately.

6.5 Summary of Results

In this section, we present the summary of experimental results dis-

cussed in the previous section in Table 6.3.

184

Criteria for Evaluation

Algorithms Diversity (Spread) Quality of BNP returned

The nondominated points are not evenly Return high quality BNP than

MOPPA distributed on the front but concen- NSGA-II which is closer to those

trate more towards the end-points returned by the exact methods

The nondominated points are uniformly The quality of BNP is not as good

NSGA-II distributed on the nondominated as that returned by MOPPA

front

Table 6.3: Summary of experimental results

6.6 Summary

In this chapter, we have applied two heuristic approaches to MOLP.

One, namely NSGA-II is well established and popular heuristic for

continuous and discrete MOO. The other, MOPPA, is fairly recent

addition to NIA’s which has shown a lot of promise on continuous

MOO, and continuous and discrete single objective optimisation. Our

experimental investigation using Matlab implementations of both ap-

proaches applied to an extensive and representation set of MOLP

instances has shown that the methods found on the whole good non-

dominated fronts. That of NSGA-II is more uniformly spread while

185

the BNP’s returned by MOPPA tend to be of better quality. The

methods compare well with the exact ones especially on the large

instances which the exact methods failed to solve even when given

generous amounts of computation times. Constraints have been han-

dled using a penalty approach.

186

T
a
b
le

6
.4

:
C

o
m

p
a
ra

ti
v
e

re
su

lt
s

fo
r

in
d
iv

id
u
a
l

p
ro

b
le

m

A
lg

o
r
it
h
m

E
M

S
A

A
S
I
M

O
L
P

B
O
A

P
S
A

N
S
G

A
-I

I
M

O
P
P
A

P
r
o
b
.

O
r
ig

in
n

m
q

M
P
N

P
M

P
N

P
M

P
N

P
M

P
N

P
B
N

P
B
N

P

1
3

3
3

f1
=

-2
.0

0
f1

=
-1

.7
4

f1
=

-2
.0

0
f1

=
-2

.0
0

f1
=

-0
.3

5
f1

=
-0

.7
0

E
h
rg

o
tt

f2
=

1
0
.0

0
f2

=
5
.5

6
f2

=
1
0
.0

0
f2

=
1
0
.0

0
f2

=
3
.2

7
f2

=
7
.1

2

2
0
0
6

f3
=

-5
.0

0
f3

=
-2

.7
5

f3
=

-5
.0

0
f3

=
-5

.0
0

f3
=

-1
.9

8
f3

=
-3

.5
6

2
Z

e
le

n
y

2
2

2
f1

=
-2

5
0
0
0

f1
=

-3
0
6
2
6

f1
=

-2
5
0
0
0

f1
=

-2
5
0
0
0

f1
=

-2
2
3
0
2

f1
=

-2
4
8
8
0

1
9
8
2

f2
=

-6
6
0
0
0

f2
=

-6
4
1
3
2

f2
=

-6
6
0
0
0

f2
=

-6
6
6
6
7

f2
=

-3
4
7
5
0

f2
=

-3
7
3
2
0

3
”

2
4

2
f1

=
-9

.0
0

f1
=

4
.0

0
f1

=
-9

.0
0

f1
=

-9
.0

0
f1

=
-9

.1
8

f1
=

-9
.0

0

f2
=

-1
5
.0

0
f2

=
-1

8
.4

2
f2

=
-1

5
.0

0
f2

=
-1

5
.0

0
f2

=
-1

1
.2

1
f2

=
-1

5
.0

0

4
”

2
4

3
f1

=
-3

.0
0

f1
=

-3
.5

0
f1

=
-3

.0
0

f1
=

-3
.0

0
f1

=
-3

.1
0

f1
=

-3
.1

0

f2
=

-7
.5

0
f2

=
-2

.7
4

f2
=

-7
.5

0
f2

=
-7

.5
0

f2
=

-2
.2

1
f2

=
-2

.5
0

f3
=

-9
.0

0
f3

=
4
.8

9
f3

=
-9

.0
0

f3
=

-9
.0

0
f3

=
-4

.1
3

f3
=

-4
.4

0

5
”

2
6

2
f1

=
-2

4
.0

0
f1

=
-2

1
.2

9
f1

=
-2

4
.0

0
f1

=
-2

4
.0

0
f1

=
-1

4
.6

1
f1

=
-2

1
.0

0

f2
=

-1
6
.0

0
f2

=
-1

7
.2

9
f2

=
-1

6
.0

0
f2

=
-1

6
.0

0
f2

=
-9

.3
2

f2
=

-1
7
.0

0

6
”

3
3

3
f1

=
3
.0

0
f1

=
1
.3

3
f1

=
3
.0

0
f1

=
3
.0

0
f1

=
-0

.1
7

f1
=

0
.0

0

f2
=

-6
.0

0
f2

=
-6

.2
0

f2
=

-6
.0

0
f2

=
-6

.0
0

f2
=

-3
.1

1
f2

=
-6

.0
0

f3
=

-1
2
.0

0
f3

=
-9

.6
8

f3
=

-1
2
.0

0
f3

=
-1

2
.0

0
f3

=
-3

.9
7

f3
=

-3
.0

0

7
”

5
3

3
f1

=
0
.0

0
f1

=
-1

.3
8

f1
=

0
.0

0
f1

=
0
.0

0
f1

=
-1

.4
0

f1
=

-0
.1

0

f2
=

-4
.0

0
f2

=
-8

.7
7

f2
=

-4
.0

0
f2

=
-4

.0
0

f2
=

-3
.0

0
f2

=
-4

.0
0

f3
=

-2
4
.0

0
f3

=
-1

0
.0

4
f3

=
-2

4
.0

0
f3

=
-2

3
.6

2
f3

=
-5

.0
8

f3
=

-9
.0

0

8
”

5
2

2
f1

=
-5

2
.0

0
f1

=
-4

.1
1

f1
=

-5
2
.0

0
f1

=
-5

2
.0

0
f1

=
-1

7
.1

5
f1

=
-5

1
.0

0

f2
=

-5
2
.0

0
f2

=
-2

9
.3

0
f2

=
-5

2
.0

0
f2

=
-5

2
.0

0
f2

=
-2

9
.7

2
f2

=
5
4
.0

0

9
”

6
4

2
f1

=
0
.0

0
f1

=
-0

.0
2

f1
=

0
.0

0
f1

=
0
.0

0
f1

=
-0

.0
3

f1
=

0
.0

0

f2
=

0
.0

0
f2

=
0
.0

0
f2

=
0
.0

0
f2

=
0
.0

0
f2

=
-0

.0
3

f2
=

0
.0

0

1
0

”
7

4
3

f1
=

-4
8
.0

0
f1

=
-7

.6
5

f1
=

-4
8
.0

0
f1

=
-1

6
.0

0
f1

=
-1

0
.8

5
f1

=
-1

3
.9

0

f2
=

-3
2
.0

0
f2

=
-1

3
.8

0
f2

=
-3

2
.0

0
f2

=
0
.0

0
f2

=
-1

1
.6

6
f2

=
-1

0
.7

6

f3
=

1
6
.0

0
f3

=
-7

.7
5

f3
=

1
6
.0

0
f3

=
-1

6
.0

0
f3

=
-2

.5
2

f3
=

2
.6

5

1
1

iM
O

L
P

e
2

3
2

f1
=

-2
1
.0

0
f1

=
-1

1
.8

7
f1

=
-2

1
.0

0
f1

=
-2

1
.0

0
f1

=
-2

0
.0

2
f1

=
-2

1
.0

0

f2
=

-7
.0

0
f2

=
-1

7
.2

2
f2

=
-7

.0
0

f2
=

-7
.0

0
f2

=
-8

.4
4

f2
=

-7
.0

0

1
2

”
3

3
4

f1
=

-1
0
.0

0
f1

=
-5

.5
9

f1
=

-1
0
.0

0
f1

=
-1

0
.0

0
f1

=
-8

.8
6

f1
=

-1
2
.0

0

f2
=

-2
0
.0

0
f2

=
-1

8
.6

2
f2

=
-2

0
.0

0
f2

=
-2

0
.0

0
f2

=
-1

7
.1

5
f2

=
-1

9
.0

0

f3
=

-1
0
0
.0

0
f3

=
-3

4
.8

3
f3

=
-1

0
0
.0

0
f3

=
-1

0
0
.0

0
f3

=
-2

0
.9

5
f3

=
-3

5
.0

0

C
o
n
ti

n
u
e
d

o
n

n
e
x
t

p
a
g
e

187

T
a
b
le

6
.4

–
c
o
n
t
in

u
e
d

fr
o
m

p
r
e
v
io

u
s

p
a
g
e

A
lg

o
r
it
h
m

E
M

S
A

A
S
I
M

O
L
P

B
O
A

P
S
A

N
S
G

A
-I

I
M

O
P
P
A

P
r
o
b
.

O
r
ig

in
n

m
q

M
P
N

P
M

P
N

P
M

P
N

P
M

P
N

P
B
N

P
B
N

P

f4
=

-1
0
.0

0
f4

=
-4

2
.2

3
f4

=
-1

0
.0

0
f4

=
-1

0
.0

0
f4

=
-1

2
.5

5
f4

=
-1

2
.0

0

1
3

”
3

5
3

f1
=

-2
1
.0

0
f1

=
-1

0
.4

8
f1

=
-2

1
.0

0
f1

=
-2

1
.0

0
f1

=
-1

4
.4

0
f1

=
-1

6
.5

0

f2
=

-4
.5

0
f2

=
-3

.6
2

f2
=

-4
.5

0
f2

=
-4

.5
0

f2
=

-4
.5

7
f2

=
-4

.5
0

f3
=

-4
.0

0
f3

=
-2

.1
4

f3
=

-4
.0

0
f3

=
-4

.0
0

f3
=

-3
.8

3
f3

=
-5

.0
0

1
4

”
3

3
3

f1
=

-2
.6

6
f1

=
-1

.1
0

f1
=

-2
.6

6
f1

=
-2

.6
6

f1
=

-2
.2

2
f1

=
-2

.0
0

f2
=

-2
.0

0
f2

=
-1

.2
2

f2
=

-2
.0

0
f2

=
-2

.0
0

f2
=

-1
.0

7
f2

=
-1

.5
0

f3
=

-0
.3

3
f3

=
-1

.5
7

f3
=

-0
.3

3
f3

=
-0

.3
3

f3
=

-0
.4

0
f3

=
-1

.5
0

1
5

”
4

3
3

f1
=

-4
8
.5

0
f1

=
-3

5
.8

0
f1

=
-4

8
.5

0
f1

=
-4

8
.5

0
f1

=
-3

0
.3

7
f1

=
-3

5
.0

0

f2
=

-1
9
.5

0
f2

=
-4

3
.9

7
f2

=
-1

9
.5

0
f2

=
-1

9
.5

0
f2

=
-2

1
.8

8
f2

=
-3

0
.0

0

f3
=

-3
7
.0

0
f3

=
-2

9
.8

2
f3

=
-3

7
.0

0
f3

=
-3

7
.0

0
f3

=
-3

5
.7

0
f3

=
-3

5
.0

0

1
6

”
4

2
3

f1
=

-2
0
.0

0
f1

=
-3

1
.7

1
f1

=
-2

0
.0

0
f1

=
-2

0
.0

0
f1

=
-2

0
.4

8
f1

=
-3

5
.0

0

f2
=

-8
0
.0

0
f2

=
-4

9
.1

2
f2

=
-8

0
.0

0
f2

=
-8

0
.0

0
f2

=
-2

4
.5

6
f2

=
-3

0
.0

0

f3
=

-4
0
.0

0
f3

=
-6

9
.6

9
f3

=
-4

0
.0

0
f3

=
-4

0
.0

0
f3

=
-2

7
.1

1
f3

=
-3

5
.0

0

1
7

”
4

4
3

f1
=

-4
0
.0

0
f1

=
-3

2
.2

2
f1

=
-4

0
.0

0
f1

=
-4

0
.0

0
f1

=
-2

1
.9

0
f1

=
-3

5
.0

0

f2
=

-5
0
.0

0
f2

=
-3

2
.5

0
f2

=
-5

0
.0

0
f2

=
-5

0
.0

0
f2

=
-2

0
.5

8
f2

=
-3

0
.0

0

f3
=

-1
0
.0

0
f3

=
-3

6
.2

7
f3

=
-1

0
.0

0
f3

=
-1

0
.0

0
f3

=
-2

8
.3

4
f3

=
-3

5
.0

0

1
8

”
3

3
3

f1
=

0
.0

0
f1

=
-1

.1
2

f1
=

0
.0

0
f1

=
0
.0

0
f1

=
-1

.9
3

f1
=

-2
.0

0

f2
=

-2
.0

0
f2

=
-2

.1
4

f2
=

-2
.0

0
f2

=
-2

.0
0

f2
=

-1
.2

2
f2

=
-1

.9
2

f3
=

-4
.0

0
f3

=
-2

.6
3

f3
=

-4
.0

0
f3

=
-4

.0
0

f3
=

-1
.8

7
f3

=
-2

.0
0

1
9

”
1
5

1
0

2
f1

=
-3

6
3
.8

2
f1

=
-1

3
7
.0

9
f1

=
-3

6
3
.8

2
f1

=
-2

2
9
.1

8
f1

=
-7

3
.5

3
f1

=
-1

4
3
.0

5

f2
=

-3
3
.7

0
f2

=
-1

9
8
.9

6
f2

=
-3

3
.7

0
f2

=
-3

5
.3

1
f2

=
-3

1
.1

4
f2

=
-3

2
.1

1

2
0

”
1
5

1
0

3
f1

=
-3

6
3
.8

2
f1

=
-1

0
7
.1

5
f1

=
-3

4
3
.5

0
f1

=
-1

3
4
.1

7
f1

=
-7

4
.8

5
f1

=
-1

3
3
.7

7

f2
=

-3
3
.7

0
f2

=
-1

6
9
.9

4
f2

=
-4

2
.4

3
f2

=
-3

2
.8

8
f2

=
-3

6
.9

6
f2

=
-4

5
.0

5

f3
=

-1
3
6
.7

1
f3

=
-1

6
6
.2

6
f3

=
-1

5
8
.7

5
f3

=
-1

3
5
.8

2
f3

=
-5

5
.3

5
f3

=
-7

6
.5

4

2
1

”
1
0

5
3

f1
=

2
2
6
.4

0
f1

=
5
9
.4

2
f1

=
2
2
6
.4

0
f1

=
2
2
3
.0

9
f1

=
-1

1
1
.8

5
f1

=
-1

6
4
.6

5

f2
=

-5
0
1
.8

6
f2

=
-3

5
7
.2

1
f2

=
-5

0
1
.8

6
f2

=
-4

9
6
.2

3
f2

=
-4

7
.5

2
f2

=
-4

7
.3

3

f3
=

-3
5
1
.1

4
f3

=
-3

5
6
.4

8
f3

=
-3

5
1
.1

4
f3

=
-2

4
6
.6

4
f3

=
-5

8
.9

6
f3

=
-5

8
.3

7

2
2

S
te

u
e
r

5
5

2
f1

=
-1

0
.0

0
f1

=
-6

.3
0

f1
=

-1
0
.0

0
f1

=
-1

0
.0

0
f1

=
-6

.3
6

f1
=

-6
.5

0

1
9
8
6

f2
=

-3
.0

0
f2

=
-6

.9
0

f2
=

-3
.0

0
f2

=
-3

.0
0

f2
=

-3
.3

3
f2

=
-3

.5
0

2
3

”
4

4
3

f1
=

3
.4

2
f1

=
-3

.7
9

f1
=

3
.4

2
f1

=
3
.4

2
f1

=
-3

.0
9

f1
=

-3
.5

0

f2
=

-1
0
.2

8
f2

=
1
1
.3

8
f2

=
-1

0
.2

8
f2

=
-1

0
.2

8
f2

=
9
.2

5
f2

=
1
0
.5

0

C
o
n
ti

n
u
e
d

o
n

n
e
x
t

p
a
g
e

188

T
a
b
le

6
.4

–
c
o
n
t
in

u
e
d

fr
o
m

p
r
e
v
io

u
s

p
a
g
e

A
lg

o
r
it
h
m

E
M

S
A

A
S
I
M

O
L
P

B
O
A

P
S
A

N
S
G

A
-I

I
M

O
P
P
A

P
r
o
b
.

O
r
ig

in
n

m
q

M
P
N

P
M

P
N

P
M

P
N

P
M

P
N

P
B
N

P
B
N

P

f3
=

-3
.4

2
f3

=
-2

.9
6

f3
=

-3
.4

2
f3

=
-3

.4
2

f3
=

-2
.7

4
f3

=
-3

.4
0

2
4

”
5

5
4

f1
=

1
.0

2
f1

=
2
.2

8
f1

=
1
.0

2
f1

=
1
.0

2
f1

=
1
.9

8
f1

=
1
.2

0

f2
=

-2
5
.4

6
f2

=
-2

2
.5

8
f2

=
-2

5
.4

6
f2

=
-2

5
.4

6
f2

=
-2

.7
3

f2
=

-3
.8

1

f3
=

2
4
.4

4
f3

=
2
0
.3

0
f3

=
2
4
.4

4
f3

=
2
4
.4

4
f3

=
1
0
.7

5
f3

=
2
.6

1

f4
=

-2
8
.3

2
f4

=
-2

5
.4

7
f4

=
-2

8
.3

2
f4

=
-2

8
.3

2
f4

=
-5

.3
2

f4
=

-4
.5

5

2
5

”
1
0

8
4

f1
=

1
0
6
.2

9
f1

=
8
0
.0

0
f1

=
1
0
6
.2

9
f1

=
1
8
3
.3

6
f1

=
1
3
.2

2
f1

=
-5

4
.5

0

f2
=

-4
6
2
.1

3
f2

=
-5

4
.3

6
f2

=
-4

6
2
.1

3
f2

=
-4

2
4
.2

6
f2

=
-3

6
.0

0
f2

=
-2

0
.6

4

f3
=

1
7
5
.5

7
f3

=
-1

6
3
.7

3
f3

=
1
7
5
.5

7
f3

=
1
1
7
.2

9
f3

=
6
.0

7
f3

=
4
6
.5

9

f4
=

-3
3
.4

1
f4

=
-2

3
.8

2
f4

=
-3

3
.4

1
f4

=
-4

.0
3

f4
=

-1
.8

0
f4

=
2
0
.9

7

2
6

”
5

4
3

f1
=

-5
2
.0

7
f1

=
-4

.4
4

f1
=

-5
2
.0

7
f1

=
-5

2
.0

7
f1

=
-2

1
.0

0
f1

=
-2

1
.0

0

f2
=

3
1
.5

0
f2

=
-1

3
.1

7
f2

=
3
1
.5

0
f2

=
3
1
.5

0
f2

=
4
.6

9
f2

=
8
.7

9

f3
=

-1
7
.3

5
f3

=
-1

4
.3

7
f3

=
-1

7
.3

5
f3

=
-1

7
.3

5
f3

=
-1

3
.8

7
f3

=
-1

4
.7

9

2
7

”
6

8
4

f1
=

-6
.9

4
f1

=
-6

.6
9

f1
=

-6
.9

4
f1

=
-6

.9
4

f1
=

-2
.9

0
f1

=
-2

.5
0

f2
=

-5
.3

8
f2

=
-2

.2
5

f2
=

-5
.3

8
f2

=
-5

.3
8

f2
=

-2
.2

9
f2

=
-4

.2
7

f3
=

6
.8

3
f3

=
6
.7

7
f3

=
6
.8

3
f3

=
6
.8

3
f3

=
1
.1

2
f3

=
5
.7

4

f4
=

-9
.1

6
f4

=
-8

.8
3

f4
=

-9
.1

6
f4

=
-9

.1
6

f4
=

-3
.9

4
f4

=
-4

.4
1

2
8

”
7

6
4

f1
=

-3
1
.5

3
f1

=
-2

5
.9

0
f1

=
-3

1
.5

3
f1

=
-3

1
.2

9
f1

=
-1

7
.4

2
f1

=
-2

0
.0

2

f2
=

-2
6
.4

8
f2

=
-2

3
.9

4
f2

=
-2

6
.4

8
f2

=
-3

0
.0

8
f2

=
-1

2
.2

9
f2

=
-1

6
.4

1

f3
=

-2
6
.5

7
f3

=
-1

9
.0

6
f3

=
-2

6
.5

7
f3

=
-2

6
.3

3
f3

=
-9

.5
8

f3
=

-1
4
.0

0

f4
=

-0
.3

4
f4

=
-8

.6
2

f4
=

-0
.3

4
f4

=
-0

.8
2

f4
=

-7
.6

1
f4

=
-4

.4
1

2
9

”
7

6
4

f1
=

2
6
.8

0
f1

=
4
.0

3
f1

=
2
6
.8

0
f1

=
2
6
.8

0
f1

=
-4

.0
5

f1
=

-4
.7

9

f2
=

-3
7
.7

3
f2

=
-2

9
.0

3
f2

=
-3

7
.7

3
f2

=
-3

7
.7

3
f2

=
-6

.9
7

f2
=

-7
.3

4

f3
=

-2
4
.3

3
f3

=
-1

8
.0

7
f3

=
-2

4
.3

3
f3

=
-2

4
.3

3
f3

=
-4

.9
2

f3
=

-6
.1

1

f4
=

-5
9
.6

0
f4

=
-2

8
.1

7
f4

=
-5

9
.6

0
f4

=
-5

9
.6

0
f4

=
-6

.1
3

f4
=

-1
0
.5

5

3
0

”
8

8
6

f1
=

-7
4
.0

0
f1

=
-1

5
.4

6
f1

=
-7

4
.0

0
f1

=
-7

7
.0

0
f1

=
-1

2
.1

1
f1

=
-1

4
.4

1

f2
=

-1
0
7
.5

0
f2

=
-3

8
.7

3
f2

=
-1

0
7
.5

0
f2

=
-5

2
.0

0
f2

=
-1

5
.4

0
f2

=
-2

2
.7

2

f3
=

-4
1
.2

5
f3

=
-4

3
.3

0
f3

=
-4

1
.2

5
f3

=
-1

6
.0

0
f3

=
-3

.9
0

f3
=

-1
0
.9

3

f4
=

-2
7
.2

5
f4

=
-3

0
.9

5
f4

=
-2

7
.2

5
f4

=
-5

2
.4

0
f4

=
-4

.7
9

f4
=

-1
3
.7

9

f5
=

-9
.0

0
f5

=
-8

.3
0

f5
=

-9
.0

0
f5

=
2
6
.0

0
f5

=
4
.3

7
f5

=
-5

.3
6

f6
=

-3
0
.7

5
f6

=
-2

6
.7

2
f6

=
-3

0
.7

5
f6

=
-2

0
.0

0
f6

=
-4

.1
0

f6
=

-1
9
.3

0

3
1

”
8

8
3

f1
=

-3
6
.5

7
f1

=
-3

2
.0

3
f1

=
-3

6
.5

7
f1

=
-3

6
.0

0
f1

=
-9

.5
3

f1
=

-1
0
.4

3

f2
=

-2
2
.2

8
f2

=
-2

0
.0

3
f2

=
-2

2
.2

8
f2

=
-2

3
.0

0
f2

=
-3

.9
7

f2
=

-4
.0

2

C
o
n
ti

n
u
e
d

o
n

n
e
x
t

p
a
g
e

189

T
a
b
le

6
.4

–
c
o
n
t
in

u
e
d

fr
o
m

p
r
e
v
io

u
s

p
a
g
e

A
lg

o
r
it
h
m

E
M

S
A

A
S
I
M

O
L
P

B
O
A

P
S
A

N
S
G

A
-I

I
M

O
P
P
A

P
r
o
b
.

O
r
ig

in
n

m
q

M
P
N

P
M

P
N

P
M

P
N

P
M

P
N

P
B
N

P
B
N

P

f3
=

-1
4
.0

0
f3

=
-1

7
.7

3
f3

=
-1

4
.0

0
f3

=
-1

5
.0

0
f3

=
-4

.3
2

f3
=

-3
.0

5

3
2

”
8

8
3

f1
=

-1
4
.0

3
f1

=
-8

.7
7

f1
=

-1
4
.0

3
f1

=
-6

.5
0

f1
=

-3
.8

5
f1

=
-6

.3
0

f2
=

-1
8
.0

0
f2

=
-1

0
.5

6
f2

=
-1

8
.0

0
f2

=
-1

1
.0

0
f2

=
-3

.3
2

f2
=

-3
.8

2

f3
=

-4
.9

3
f3

=
-5

.1
3

f3
=

-4
.9

3
f3

=
-7

.5
0

f3
=

-2
.7

9
f3

=
-3

.0
6

3
3

”
5

5
4

f1
=

-2
1
.5

0
f1

=
-2

0
.8

3
f1

=
-2

1
.5

0
f1

=
-8

.0
0

f1
=

-3
.4

4
f1

=
-1

7
.0

0

f2
=

-3
9
.2

5
f2

=
-2

1
.7

8
f2

=
-3

9
.2

5
f2

=
-2

3
.8

7
f2

=
-1

5
.7

6
f2

=
-1

3
.0

0

f3
=

-1
6
.2

5
f3

=
-1

6
.0

5
f3

=
-1

6
.2

5
f3

=
-7

.6
2

f3
=

-4
.9

7
f3

=
-5

.0
0

f4
=

2
7
.0

0
f4

=
1
4
.4

5
f4

=
2
7
.0

0
f4

=
2
7
.0

0
f4

=
5
.9

7
f4

=
8
.0

0

3
4

”
6

6
3

f1
=

-1
2
.6

5
f1

=
1
2
.6

9
f1

=
-1

2
.6

5
f1

=
1
3
.6

2
f1

=
-4

.8
1

f1
=

-6
.0

0

f2
=

0
.0

0
f2

=
-3

.2
1

f2
=

0
.0

0
f2

=
-9

.7
5

f2
=

2
.0

6
f2

=
4
.0

0

f3
=

-3
0
.1

5
f3

=
-2

8
.3

9
f3

=
-3

0
.1

5
f3

=
-2

6
.2

5
f3

=
3
.2

5
f3

=
2
.0

0

3
5

”
5

5
4

f1
=

-1
4
.6

6
f1

=
-6

.3
3

f1
=

-1
4
.6

6
f1

=
-1

4
.0

0
f1

=
-6

.6
4

f1
=

-9
.0

0

f2
=

-2
1
.0

6
f2

=
-1

4
.4

4
f2

=
-2

1
.0

6
f2

=
0
.0

0
f2

=
-1

1
.4

2
f2

=
-1

1
.2

1

f3
=

3
5
.7

3
f3

=
2
0
.7

7
f3

=
3
5
.7

3
f3

=
2
7
.0

0
f3

=
1
8
.0

7
f3

=
2
0
.2

1

f4
=

-1
6
.0

0
f4

=
-1

5
.6

3
f4

=
-1

6
.0

0
f4

=
0
.0

0
f4

=
-8

.7
1

f4
=

-9
.0

0

3
6

”
1
0

1
0

4
f1

=
4
6
.5

0
f1

=
5
0
.6

9
f1

=
4
6
.5

0
f1

=
4
6
.5

0
f1

=
-1

.4
6

f1
=

1
2
.9

8

f2
=

1
9
.2

1
f2

=
1
8
.9

8
f2

=
1
9
.2

1
f2

=
1
9
.2

1
f2

=
-2

.5
1

f2
=

8
.8

4

f3
=

-2
7
.0

7
f3

=
-2

3
.3

8
f3

=
-2

7
.0

7
f3

=
-2

7
.0

7
f3

=
-4

.0
9

f3
=

-4
.0

4

f4
=

-2
7
.0

7
f4

=
-2

3
.8

5
f4

=
-2

7
.0

7
f4

=
-2

7
.0

7
f4

=
-3

.5
0

f4
=

-8
.0

9

3
7

”
8

8
3

f1
=

-1
4
.4

8
f1

=
-2

.4
6

f1
=

-1
4
.4

8
f1

=
-1

4
.4

8
f1

=
-1

.1
3

f1
=

-2
.0

6

f2
=

-4
.7

4
f2

=
-3

.2
2

f2
=

-4
.7

4
f2

=
-4

.7
4

f2
=

-2
.1

2
f2

=
-4

.6
8

f3
=

6
.9

3
f3

=
-1

.9
3

f3
=

6
.9

3
f3

=
6
.9

3
f3

=
0
.0

9
f3

=
4
.0

2

3
8

”
6

7
4

f1
=

-2
.6

1
f1

=
-1

.8
0

f1
=

-2
.6

1
+

f1
=

-2
.0

7
f1

=
-2

.6
0

f2
=

-1
2
.6

3
f2

=
-4

.0
0

f2
=

-1
2
.6

3
f2

=
-0

.2
7

f2
=

-2
.4

4

f3
=

9
.7

0
f3

=
2
.7

8
f3

=
9
.7

0
f3

=
0
.4

5
f3

=
1
.6

6

f4
=

2
.3

7
f4

=
-2

.0
7

f4
=

2
.3

7
f4

=
-0

.9
0

f4
=

-1
.0

4

3
9

”
1
2

1
6

4
*

f1
=

-5
.0

9
f1

=
-5

.2
5

f1
=

-5
.1

3
f1

=
-2

.9
9

f1
=

-5
.7

5

f2
=

-9
.8

3
f2

=
-1

4
.2

5
f2

=
-3

.3
8

f2
=

-2
.0

2
f2

=
-2

.1
9

f3
=

-9
.5

3
f3

=
-8

.2
5

f3
=

1
.8

3
f3

=
-2

.5
7

f3
=

-3
.0

5

f4
=

-6
.1

8
f4

=
-1

.0
0

f4
=

-1
.1

8
f4

=
-1

.9
8

f4
=

-1
.9

0

4
0

”
1
0

1
4

5
*

f1
=

-1
.0

7
f1

=
-5

.1
6

f1
=

-1
8
.0

0
f1

=
-2

.2
0

f1
=

-4
.1

5

f2
=

-3
.8

3
f2

=
-2

.7
9

f2
=

7
0
.6

0
f2

=
-3

.5
3

f2
=

-2
.8

6

C
o
n
ti

n
u
e
d

o
n

n
e
x
t

p
a
g
e

190

T
a
b
le

6
.4

–
c
o
n
t
in

u
e
d

fr
o
m

p
r
e
v
io

u
s

p
a
g
e

A
lg

o
r
it
h
m

E
M

S
A

A
S
I
M

O
L
P

B
O
A

P
S
A

N
S
G

A
-I

I
M

O
P
P
A

P
r
o
b
.

O
r
ig

in
n

m
q

M
P
N

P
M

P
N

P
M

P
N

P
M

P
N

P
B
N

P
B
N

P

f3
=

-5
.5

3
f3

=
-4

.3
8

f3
=

-3
.2

0
f3

=
-1

.7
2

f3
=

-3
.1

4

f4
=

-1
6
.8

7
f4

=
-1

8
.7

0
f4

=
8
.0

0
f4

=
-5

.0
9

f4
=

-5
.3

6

f5
=

-8
.4

2
f5

=
-9

.6
9

f5
=

-4
.3

0
f5

=
-1

.5
0

f5
=

-1
.7

3

4
1

”
7

6
3

f1
=

-2
9
.4

0
f1

=
-1

0
.7

4
f1

=
-2

9
.4

0
f1

=
-2

9
.4

0
f1

=
-2

6
.0

9
f1

=
-3

0
.0

0

f2
=

-6
5
.3

0
f2

=
-3

2
.2

0
f2

=
-6

5
.3

0
f2

=
-6

5
.3

0
f2

=
-5

1
.3

5
f2

=
-5

2
.0

0

f3
=

-3
9
.3

0
f3

=
-2

4
.3

9
f3

=
-3

9
.3

0
f3

=
-3

9
.3

0
f3

=
-3

1
.9

7
f3

=
-2

4
.0

0

4
2

”
7

7
3

f1
=

-6
2
.1

8
f1

=
-4

7
.3

9
f1

=
-6

2
.1

8
f1

=
-6

2
.1

8
f1

=
-3

6
.8

0
f1

=
-3

4
.5

0

f2
=

-9
3
.5

0
f2

=
-8

6
.9

9
f2

=
-9

3
.5

0
f2

=
-9

3
.5

0
f2

=
-4

0
.0

1
f2

=
-5

0
.5

0

f3
=

-5
2
.0

0
f3

=
-5

4
.7

8
f3

=
-5

2
.0

0
f3

=
-5

2
.0

0
f3

=
-1

4
.0

5
f3

=
-2

2
.0

0

4
3

”
6

6
4

f1
=

-3
7
.5

0
f1

=
-1

0
.4

0
f1

=
-3

7
.5

0
f1

=
-3

7
.5

0
f1

=
-1

1
.0

4
f1

=
-1

7
.5

8

f2
=

-1
1
.2

5
f2

=
-6

.5
2

f2
=

-1
1
.2

5
f2

=
-1

1
.2

5
f2

=
-2

.4
7

f2
=

-3
.0

4

f3
=

-7
.5

0
f3

=
-5

.9
1

f3
=

-7
.5

0
f3

=
-7

.5
0

f3
=

-6
.1

1
f3

=
-0

.2
4

f4
=

-2
0
.2

5
f4

=
-0

.3
4

f4
=

-2
0
.2

5
f4

=
-2

0
.2

5
f4

=
0
.1

3
f4

=
-1

0
.8

6

4
4

”
6

6
4

f1
=

3
4
.5

0
f1

=
2
8
.3

9
f1

=
3
4
.5

0
f1

=
3
4
.5

0
f1

=
6
.0

2
f1

=
1
0
.0

0

f2
=

-7
.5

0
f2

=
-6

.3
8

f2
=

-7
.5

0
f2

=
-7

.5
0

f2
=

-6
.9

5
f2

=
-7

.0
0

f3
=

-5
6
.0

0
f3

=
-4

5
.4

3
f3

=
-5

6
.0

0
f3

=
-5

6
.0

0
f3

=
-9

.1
4

f3
=

-1
3
.0

0

f4
=

-3
1
.5

0
f4

=
-2

5
.8

3
f4

=
-3

1
.5

0
f4

=
-3

1
.5

0
f4

=
-3

.3
0

f4
=

-6
.5

0

4
5

”
1
0

1
4

5
*

f1
=

3
.3

5
f1

=
1
.0

3
+

f1
=

2
.6

2
f1

=
3
.0

3

f2
=

-3
.1

8
f2

=
-2

.1
9

f2
=

-2
.7

3
f2

=
-2

.8
9

f3
=

-2
.4

8
f3

=
2
.0

1
f3

=
0
.2

7
f3

=
-0

.1
6

f4
=

-2
.5

0
f4

=
-8

.1
3

f4
=

-2
.1

8
f4

=
-2

.6
4

f5
=

2
.1

0
f5

=
7
.2

2
f5

=
2
.6

9
f5

=
2
.5

5

4
6

”
1
0

1
4

5
*

f1
=

2
.3

5
f1

=
-4

.9
f1

=
-1

4
.9

3
f1

=
1
.7

3
f1

=
2
.0

4

f2
=

0
.7

3
f2

=
-3

.4
2

f2
=

-5
.5

7
f2

=
-3

.4
3

f2
=

-4
.0

1

f3
=

-1
1
.7

2
f3

=
-4

.3
8

f3
=

-2
.8

3
f3

=
-1

.3
2

f3
=

-1
.8

6

f4
=

-1
.9

0
f4

=
-1

8
.9

1
f4

=
-1

6
.2

8
f4

=
3
.3

5
f4

=
4
.0

4

f5
=

-1
0
.3

3
f5

=
-9

.2
7

f5
=

-6
.1

3
f5

=
-1

.2
6

f5
=

-1
.3

4

4
7

”
7

7
3

f1
=

-3
.8

3
f1

=
-6

.8
2

f1
=

-3
.8

3
f1

=
-3

.8
3

f1
=

-1
.8

3
f1

=
-2

.0
0

f2
=

-7
6
.4

6
f2

=
-6

8
.9

3
f2

=
-7

6
.4

6
f2

=
-7

6
.4

6
f2

=
-2

9
.6

9
f2

=
-3

0
.0

0

f3
=

-4
9
.5

7
f3

=
-2

5
.8

3
f3

=
-4

9
.5

7
f3

=
-4

9
.5

7
f3

=
-1

9
.7

0
f3

=
-2

0
.0

0

4
8

B
e
n
so

lv
e

5
3
1

5
*

f1
=

0
.0

0
f1

=
0
.0

0
f1

=
0
.0

0
f1

=
-0

.1
7

f1
=

-0
.2

0

2
.0

f2
=

0
.0

0
f2

=
-1

.0
0

f2
=

0
.0

0
f2

=
-0

.1
7

f2
=

-0
.2

0

C
o
n
ti

n
u
e
d

o
n

n
e
x
t

p
a
g
e

191

T
a
b
le

6
.4

–
c
o
n
t
in

u
e
d

fr
o
m

p
r
e
v
io

u
s

p
a
g
e

A
lg

o
r
it
h
m

E
M

S
A

A
S
I
M

O
L
P

B
O
A

P
S
A

N
S
G

A
-I

I
M

O
P
P
A

P
r
o
b
.

O
r
ig

in
n

m
q

M
P
N

P
M

P
N

P
M

P
N

P
M

P
N

P
B
N

P
B
N

P

f3
=

0
.0

0
f3

=
0
.0

0
f3

=
0
.0

0
f3

=
-0

.1
7

f3
=

-0
.2

0

f4
=

0
.0

0
f4

=
0
.0

0
f4

=
0
.0

0
f4

=
-0

.1
7

f4
=

-0
.2

0

f5
=

0
.0

1
f5

=
-2

.0
0

f5
=

0
.0

0
f5

=
-0

.1
7

f5
=

-0
.2

0

4
9

M
O

P
L

IB
1
0
0

2
0

3
f1

=
-1

6
8
.0

0
f1

=
-6

1
.1

8
f1

=
-1

6
8
.0

0
f1

=
-1

6
8
.0

0
f1

=
-1

0
0
.1

2
f1

=
-1

2
1
.8

2

f2
=

-1
2
4
.0

0
f2

=
-7

3
.9

3
f2

=
-1

2
4
.0

0
f2

=
-1

2
4
.0

0
f2

=
-9

9
.0

9
f2

=
-1

2
0
.0

9

f3
=

-1
4
3
.0

0
f3

=
-9

6
.3

8
f3

=
-1

4
3
.0

0
f3

=
-1

4
3
.0

0
f3

=
-1

0
9
.6

9
f3

=
-1

2
6
.8

4

5
0

”
3
0

2
1

1
2

f1
=

5
.0

E
-1

2
,f

2
=

5
.0

E
-1

2
-

f1
=

5
.0

E
-1

2
,f

2
=

5
.0

E
-1

2
f1

=
0
,

f2
=

0
f1

=
8
.0

E
+

1
5
,f

2
=

8
.0

E
+

1
5

f1
=

8
.0

E
+

1
5
,f

2
=

8
.0

E
+

1
5

f3
=

5
.0

E
-1

2
,f

4
=

5
.0

E
-1

2
f3

=
5
.0

E
-1

2
,f

4
=

5
.0

E
-1

2
f3

=
0
,

f4
=

0
f3

=
8
.0

E
+

1
5
,f

4
=

8
.0

E
+

1
5

f3
=

8
.0

E
+

1
5
,f

4
=

8
.0

E
+

1
5

f5
=

5
.0

E
-1

2
,f

6
=

5
.0

E
-1

2
f5

=
5
.0

E
-1

2
,f

6
=

5
.0

E
-1

2
f5

=
0
,

f6
=

0
f5

=
8
.0

E
+

1
5
,f

6
=

8
.0

E
+

1
5

f5
=

8
.0

E
+

1
5
,f

6
=

8
.0

E
+

1
5

f7
=

5
.0

E
-1

2
,f

8
=

5
.0

E
-1

2
f7

=
5
.0

E
-1

2
,f

8
=

5
.0

E
-1

2
f7

=
0

,
f8

=
0

f7
=

8
.0

E
+

1
5
,f

8
=

8
.0

E
+

1
5

f7
=

8
.0

E
+

1
5
,f

8
=

8
.0

E
+

1
5

f9
=

5
.0

E
-1

2
,f

1
0
=

5
.0

E
-1

2
f9

=
5
.0

E
-1

2
,f

1
0
=

5
.0

E
-1

2
f9

=
0
,

f1
0

=
0

f9
=

8
.0

E
+

1
5
,f

1
0
=

8
.0

E
+

1
5

f9
=

8
.0

E
+

1
5
,f

1
0
=

8
.0

E
+

1
5

f1
1
=

5
.0

E
-1

2
,f

1
2
=

-5
.5

E
-1

1
f1

1
=

5
.0

E
-1

2
,f

1
2
=

-5
.5

E
-1

1
f1

1
=

0
,

f1
2

=
0

f1
1
=

8
.0

E
+

1
5
,f

1
2
=

8
.0

E
+

1
5

f1
1
=

8
.0

E
+

1
5
,f

1
2
=

8
.0

E
+

1
5

5
1

”
2
1
8

2
8

2
7

x
f1

=
0
.5

2
,f

2
=

0
.0

1
,

x
f1

=
-3

6
0
.0

0
,f

2
=

0
.0

0
,

f1
=

2
.0

E
+

1
5
,

f2
=

2
.0

E
+

1
5
,

f1
=

2
.0

E
+

1
5
,

f2
=

2
.0

E
+

1
5
,

f3
=

6
.9

5
,f

4
=

2
.1

4
f3

=
0
.0

0
,f

4
=

9
0
.0

0
f3

=
2
.0

E
+

1
5
,f

4
=

2
.0

E
+

1
5
,

f3
=

2
.0

E
+

1
5
,f

4
=

2
.0

E
+

1
5
,

f5
=

4
.9

4
,f

6
=

-5
.5

3
,

f5
=

1
8
0
.0

0
,f

6
=

1
8
0
.0

0
,

f5
=

2
.0

E
+

1
5
,f

6
=

2
.0

E
+

1
5

f5
=

2
.0

E
+

1
5
,f

6
=

2
.0

E
+

1
5

f7
=

-9
.7

1
,

f8
=

2
.2

3
,

f7
=

1
8
0
.0

0
,f

8
=

1
8
0
.0

0
,

f7
=

2
.0

E
+

1
5
,f

8
=

2
.0

E
+

1
5
,

f7
=

2
.0

E
+

1
5
,f

8
=

2
.0

E
+

1
5
,

f9
=

-0
.3

1
,f

1
0
=

2
.6

7
f9

=
2
7
0
.0

0
,f

1
0
=

0
.0

0
,

f9
=

2
.0

E
+

1
5
,f

1
0
=

2
.0

E
+

1
5
,

f9
=

2
.0

E
+

1
5
,f

1
0
=

2
.0

E
+

1
5
,

f1
1
=

-3
.1

9
,f

1
2
=

-5
.5

5
f1

1
=

3
6
0
.0

0
,f

1
2
=

9
0
.0

0
f1

1
=

2
.0

E
+

1
5
,f

1
2
=

2
.0

E
+

1
5

f1
1
=

2
.0

E
+

1
5
,f

1
2
=

2
.0

E
+

1
5

f1
3
=

-5
.4

2
,

f1
4
=

-4
.4

6
,

f1
3
=

1
8
0
.0

0
,f

1
4

=
0
.0

0
,

f1
3
=

2
.0

E
+

1
5
,f

1
4
=

2
.0

E
+

1
5
,

f1
3
=

2
.0

E
+

1
5
,f

1
4
=

2
.0

E
+

1
5
,

f1
5
=

-4
.3

5
,f

1
6
=

6
.0

1
f1

5
=

9
0
.0

0
,f

1
6
=

9
0
.0

0
f1

5
=

2
.0

E
+

1
5
,f

1
6
=

2
.0

E
+

1
5
,

f1
5
=

2
.0

E
+

1
5
,f

1
6
=

2
.0

E
+

1
5
,

f1
7
=

-3
.3

6
,f

1
8
=

1
.7

1
,

f1
7
=

0
.0

0
,f

1
8
=

-9
0
.0

0
,

f1
7
=

2
.0

E
+

1
5
,f

1
8
=

2
.0

E
+

1
5
,

f1
7
=

2
.0

E
+

1
5
,f

1
8
=

2
.0

E
+

1
5
,

f1
9
=

-8
.0

1
,f

2
0
=

8
.9

0
,

f1
9
=

9
0
.0

0
,f

2
0
=

-9
0
.0

0
,

f1
9
=

2
.0

E
+

1
5
,f

2
0
=

2
.0

E
+

1
5

f1
9
=

2
.0

E
+

1
5
,f

2
0
=

2
.0

E
+

1
5

f2
1
=

8
.0

1
,f

2
2
=

-5
.3

5
f2

1
=

-9
0
.0

0
,f

2
2
=

9
0
.0

0
f2

1
=

2
.0

E
+

1
5
,f

2
2
=

2
.0

E
+

1
5
,

f2
1
=

2
.0

E
+

1
5
,f

2
2
=

2
.0

E
+

1
5
,

f2
3
=

5
.3

5
,f

2
4
=

5
.3

5
,

f2
3
=

-9
0
.0

0
,f

2
4
=

-9
0
.0

0
,

f2
3
=

2
.0

E
+

1
5
,f

2
4
=

2
.0

E
+

1
5

f2
3
=

2
.0

E
+

1
5
,f

2
4
=

2
.0

E
+

1
5

f2
5
=

5
.3

5
,

f2
6
=

-5
.3

7
,

f2
5
=

-9
0
.0

0
,f

2
6
=

9
0
.0

0
,

f2
5
=

2
.0

E
+

1
5
,f

2
6
=

2
.0

E
+

1
5
,

f2
5
=

2
.0

E
+

1
5
,f

2
6
=

2
.0

E
+

1
5
,

f2
7
=

-4
.3

5
f2

7
=

0
.0

0
f2

7
=

2
.0

E
+

1
5

f2
7
=

2
.0

E
+

1
5

(x
)

O
u
t

o
f

m
e
m

o
ry

(-
)

N
o

in
it

ia
l

st
a
rt

in
g

so
lu

ti
o
n

(*
)

A
b

o
rt

e
d

a
ft

e
r

3
d
a
y
s

o
f

ru
n
n
in

g
ti

m
e

(+
)

T
h
e

im
a
g
e

is
th

e
w

h
o
le

re
g
io

n
,

im
p
ly

in
g

th
a
t

n
o
n
e

o
f

th
e

v
e
rt

ic
e
s

is
n
o
n
d
o
m

in
a
te

d

192

Chapter 7

CONCLUSION AND FUTURE RESEARCH

PLAN

7.1 Introduction

This thesis is concerned with the state-of-the-art technology for MOLP.

It considers prominent exact algorithms, understanding them, imple-

menting and modifying some of them, as well as comparing them

comprehensively on a series of existing test problems. Above all, the

thesis also extends the MSA of Evans and Steuer [63] to generate the

set of all nondominated points devoid of redundant ones, presents

a procedure for computing the MPNP for the problem and applies

nature-inspired population-based MOPPA [67] and NSGA-II [49,50]

193

to MOLP. This chapter concludes the thesis and provides it findings.

The chapter also provides further research directions.

7.2 Contributions

In Chapter 2, we carried out a comprehensive review of MOLP lit-

erature spanning over five decades and presented a state-of-the-art

survey of all relevant algorithms. The survey classifies MOLP algo-

rithms into two broad classes: Non-Interactive and Interactive algo-

rithms. The Non-Interactive methods include the simplex, interior-

point and objective space based algorithms. The Interactive ones

include only the simplex and interior-point based algorithms. A tab-

ulated list of all algorithms is included in the appendices section. It

was observed that between 1964 and the early 90s, MOLP problems

were solved mostly by the simplex based algorithms and it variants.

Interior-point based methods for MOLP appeared in the literature

from the early 90s, following the appearance of the Ellipsoid algo-

rithm of Khachiyan [91] and Karmarkar’s algorithm [89]. The objec-

tive space methods appeared first in the mid 90s. They are gaining

194

in notoriety.

Chapter 3 extends the MSA of Evans and Steuer [63] to generate

the set of all nondominated points of the problem devoid of redun-

dant ones. We also compared the extended version with the original

version and with the primal variant of BOA [30] which is an objec-

tive space based method that also computes the set of all nondomi-

nated points of the problem. It was observed in Table 3.2 of Section

3.6 that there is a slight difference in computational time between

EMSA, introduced here and the original version. This was expected

as a consequence of the extension, more computational efforts would

be required to generate the corresponding nondominated points, af-

ter which they are sorted in each case. It was also observed that the

total number of nondominated points returned by EMSA is the same

with that returned by BOA in most of the problems considered.

Chapter 4 further investigates EMSA, BOA [30] and Arbel’s ASI-

MOLP [6]. In this chapter, we proposed a procedure to compute

the Most Preferred Nondominated Point (MPNP) and compared the

computing efficiency as well as the quality of a MPNP returned by

these three algorithms. In terms of the quality of a MPNP, it was ob-

195

served in Table 4.3 of Section 4.5 that BOA and EMSA are superior

to ASIMOLP in this regard while the latter outperforms BOA and

EMSA in terms of computing efficiency. However, on the test prob-

lems considered, BOA was also found to be computationally superior

to EMSA.

Chapter 5 compares BOA [30] comprehensively with the recently in-

troduced PSA [124]. In this chapter, we compared the computing

efficiency, robustness and the quality of MPNP’s returned by these

two algorithms. It was seen in Tables 5.2 and 5.3 that BOA is supe-

rior to PSA in terms of robustness, the quality of MPNP it returns

and is also computationally more efficient than PSA on highly degen-

erate problems. However, PSA outperforms BOA computationally on

non-degenerate problems.

Finally, Chapter 6 applies nature-inspired population-based stochas-

tic algorithms MOPPA [67] and NSGA-II [49, 50] to MOLP. In this

chapter, we compared the quality of Best Nondominated Points (BNPs)

returned by MOPPA and NSGA-II with those returned by the ex-

act methods. It was observed in Table 6.4 that MOPPA compared

favourably in terms of the quality of BNPs it returns. They are closer

196

to those returned by exact methods. However, NSGA-II returns non-

dominated points that are evenly distributed on the nondominated

front.

7.3 Future Research

To further improve the solution processes to the problem, the follow-

ing ideas are suggested.

• Dual Affine Scaling Interior-point MOLP algorithm: Based on

our extensive review of the literature, it was observed that this

algorithm is yet to be introduced as a solution approach to the

problem. It would be interesting if efforts were made to adapt

this algorithm as it was done in the single objective linear pro-

gramming.

• Hybridization: It would be worthwhile to look at the possibil-

ity of combining the interior-point method with multi-objective

simplex pivoting algorithm in order to generate a more effective

algorithm.

• As was noted in Chapter 2, ASIMOLP suffers from the zigzag-

197

ging phenomenon. It would, therefore, be worthwhile to modify

it in order to resolve the issue and potentially speed up its con-

vergence.

198

Bibliography

[1] Abhyankar, S., Morin, T., and Trafalis, T. Efficient

faces of polytopes: Interior point algorithms, parametrization

of algebraic varieties, and multiple objective optimization. Con-

temporary Mathematics 114 (1990), 319–341.

[2] Aghezzaf, B., and Ouaderhman, T. An interactive in-

terior point algorithm for multiobjective linear programming

problems. Operations Research Letters 29, 4 (2001), 163–170.

[3] Alves, M. J., Antunes, C. H., and Cĺımaco, J. Inter-

active MOLP explorer: a graphical-based computational tool

for teaching and decision support in multi-objective linear pro-

gramming models. Computer Applications in Engineering Ed-

ucation 23, 2 (2015), 314–326.

[4] Alves, M. J., and Costa, J. P. An exact method for com-

199

puting the nadir values in multiple objective linear program-

ming. European Journal of Operational Research 198, 2 (2009),

637–646.

[5] Arbel, A. An interior multiobjective linear programming algo-

rithm. Computers & operations research 20, 7 (1993), 723–735.

[6] Arbel, A. A weighted-gradient approach to multi-objective

linear programming problems using the analytic hierarchy pro-

cess. Mathematical and computer modelling 17, 4 (1993), 27–39.

[7] Arbel, A. Anchoring points and cones of opportunities in

interior multiobjective linear programming. Journal of the Op-

erational Research Society (1994), 83–96.

[8] Arbel, A. Interior-point methods for multiobjective linear

programming problems. In Multiple Criteria Decision Making.

Springer, 1994, pp. 27–36.

[9] Arbel, A. Using efficient anchoring points for generating

search directions in interior multiobjective linear programming.

Journal of the Operational Research Society (1994), 330–344.

[10] Arbel, A. An interior multiple objective primal-dual linear

200

programming algorithm using efficient anchoring points. Jour-

nal of the Operational Research Society (1995), 1121–1132.

[11] Arbel, A. An interior multiobjective primal-dual linear pro-

gramming algorithm based on approximated gradients and ef-

ficient anchoring points. Computers & operations research 24,

4 (1997), 353–365.

[12] Arbel, A., and Korhonen, P. Using aspiration levels in

an interior primal-dual multiobjective linear programming algo-

rithm. Journal of Multi-Criteria Decision Analysis 5, 1 (1996),

61–71.

[13] Arbel, A., and Korhonen, P. Using objective values to

start multiple objective linear programming algorithms. Euro-

pean Journal of Operational Research 128, 3 (2001), 587–596.

[14] Arbel, A., and Oren, S. S. Generating search directions in

multiobjective linear programming using the analytic hierarchy

process. Socio-Economic Planning Sciences 20, 6 (1986), 369–

373.

[15] Arbel, A., and Oren, S. S. Generating interior search

201

directions for multiobjective linear programming. Journal of

Multi-Criteria Decision Analysis 2, 2 (1993), 73–86.

[16] Arbel, A., and Oren, S. S. A modification of Karmarkars

algorithm to multiple objective linear programming problems.

In Multiple Criteria Decision Making. Springer, 1994, pp. 37–

46.

[17] Arbel, A., and Oren, S. S. Using approximate gradients

in developing an interactive interior primal-dual multiobjective

linear programming algorithm. European Journal of Opera-

tional Research 89, 1 (1996), 202–211.

[18] Arbel, A., and Sadka, R. Weighted euclidean centers. Op-

timization 54, 3 (2005), 239–251.

[19] Armand, P. Finding all maximal efficient faces in multiobjec-

tive linear programming. Mathematical Programming 61, 1-3

(1993), 357–375.

[20] Armand, P., and Malivert, C. Determination of the ef-

ficient set in multiobjective linear programming. Journal of

Optimization Theory and Applications 70, 3 (1991), 467–489.

202

[21] Bagchi, T. P. Multiobjective scheduling by genetic algorithms.

Springer Science & Business Media, 1999.

[22] Balicki, J., and Kitowski, Z. Multicriteria evolutionary

algorithm with tabu search for task assignment. In Interna-

tional Conference on Evolutionary Multi-Criterion Optimiza-

tion (2001), Springer, pp. 373–384.

[23] Ban, V. T. A finite algorithm for minimizing a concave func-

tion under linear constraints and its applications. In Proceedings

of IFIP Working Conference on Recent Advances on System

Modelling and Optimization (1983).

[24] Belenson, S. M., and Kapur, K. C. An algorithm for solv-

ing multicriterion linear programming problems with examples.

Journal of the Operational Research Society 24, 1 (1973), 65–77.

[25] Benayoun, R., De Montgolfier, J., Tergny, J., and

Laritchev, O. Linear programming with multiple objective

functions: Step method (stem). Mathematical programming 1,

1 (1971), 366–375.

[26] Benson, H., Lee, D., and McClure, J. Applying mul-

203

tiple criteria decision making in practice: The citrus rootstock

selection problem in Florida. Tech. rep., Discussion Paper, Uni-

versity of Florida, Department of Decision and Information Sci-

ences, Gainesville, Florida, 1992.

[27] Benson, H. P. Finding an initial efficient extreme point for a

linear multiple objective program. Journal of the Operational

Research Society (1981), 495–498.

[28] Benson, H. P. Further analysis of an outcome set-based al-

gorithm for multiple objective linear programming. Journal of

Optimization Theory and Applications 97, 1 (1998), 1–10.

[29] Benson, H. P. Hybrid approach for solving multiple-objective

linear programs in outcome space. Journal of Optimization

Theory and Applications 98, 1 (1998), 17–35.

[30] Benson, H. P. An outer approximation algorithm for generat-

ing all efficient extreme points in the outcome set of a multiple

objective linear programming problem. Journal of Global Op-

timization 13, 1 (1998), 1–24.

[31] Benson, H. P., Lee, D., and McClure, J. P. Global

204

optimization in practice: an application to interactive multiple

objective linear programming. Journal of Global Optimization

12, 4 (1998), 353–372.

[32] Benson, H. P., and Sayin, S. A face search heuristic al-

gorithm for optimizing over the efficient set. Naval Research

Logistics (NRL) 40, 1 (1993), 103–116.

[33] Benson, H. P., and Sun, E. A weight set decomposition

algorithm for finding all efficient extreme points in the outcome

set of a multiple objective linear program. European Journal of

Operational Research 139, 1 (2002), 26–41.

[34] Blanco, V., Puerto, J., and Ali, S. E. H. B. A semidef-

inite programming approach for solving multiobjective linear

programming. Journal of Global Optimization 58, 3 (2014),

465–480.

[35] Burton, B. A., and Ozlen, M. Projective geometry and the

outer approximation algorithm for multiobjective linear pro-

gramming. arXiv preprint arXiv:1006.3085 (2010).

[36] Cardoso, D. M., and Cĺımaco, J. C. Efficient frontier

205

scanning in molp using a new tool. In Multiple Criteria Decision

Making. Springer, 1994, pp. 229–238.

[37] Chakraborty, M., and Ray, A. Parametric approach and

genetic algorithm for multi objective linear programming with

imprecise parameters. Opsearch 47, 1 (2010), 73–92.

[38] Choi, Y. S., and Kim, S. H. Approximation of the set of effi-

cient objective vectors for large scale molp. In Multiple Criteria

Decision Making. Springer, 1994, pp. 301–310.

[39] Cĺımaco, J., and Antunes, C. H. Trimap- an interactive

tricriteria linear programming package. Found. Control Eng.

12, 3 (1987), 101–119.

[40] Climaco, J. C., and Antunes, C. H. Implementation of a

user-friendly software packagea guided tour of trimap. Mathe-

matical and Computer Modelling 12, 10-11 (1989), 1299–1309.

[41] Cohon, J. L. Multiobjective Programming and Planning,

vol. 140. Courier Corporation, 2004.

[42] Csirmaz, L. inner: MOLP solver,

https://github.com/lcsirmaz/inner. 2016.

206

[43] Csirmaz, L. Using multiobjective optimization to map the

entropy region. Computational Optimization and Applications

63, 1 (2016), 45–67.

[44] Dauer, J. P. Analysis of the objective space in multiple ob-

jective linear programming. Journal of Mathematical Analysis

and Applications 126, 2 (1987), 579–593.

[45] Dauer, J. P., and Gallagher, R. J. A combined

constraint-space, objective-space approach for determining

high-dimensional maximal efficient faces of multiple objective

linear programs. European Journal of Operational Research 88,

2 (1996), 368–381.

[46] Dauer, J. P., and Liu, Y.-H. Solving multiple objective

linear programs in objective space. European Journal of Oper-

ational Research 46, 3 (1990), 350–357.

[47] Dauer, J. P., and Saleh, O. Constructing the set of efficient

objective values in multiple objective linear programs. European

Journal of Operational Research 46, 3 (1990), 358–365.

[48] De, P., and Yadav, B. An algorithm for obtaining optimal

207

compromise solution of a multi objective fuzzy linear program-

ming problem. International Journal of Computer Applications

17, 1 (2011), 20–24.

[49] Deb, K., Agrawal, S., Pratap, A., and Meyarivan, T.

A fast elitist non-dominated sorting genetic algorithm for multi-

objective optimization: NSGA-II. In International Confer-

ence on Parallel Problem Solving From Nature (2000), Springer,

pp. 849–858.

[50] Deb, K., Pratap, A., Agarwal, S., and Meyarivan, T.

A fast and elitist multiobjective genetic algorithm: NSGA-II.

IEEE transactions on evolutionary computation 6, 2 (2002),

182–197.

[51] Dell, R. F., and Karwan, M. H. An interactive mcdm

weight space reduction method utilizing a Tchebycheff utility

function. Naval Research Logistics (NRL) 37, 2 (1990), 263–

277.

[52] Dhanalakshmi, S., Kannan, S., Mahadevan, K., and

Baskar, S. Application of modified NSGA-II algorithm to

combined economic and emission dispatch problem. Interna-

208

tional Journal of Electrical Power & Energy Systems 33, 4

(2011), 992–1002.

[53] Ecker, J., Hegner, N. S., and Kouada, I. Generating all

maximal efficient faces for multiple objective linear programs.

Journal of Optimization Theory and Applications 30, 3 (1980),

353–381.

[54] Ecker, J., and Kouada, I. Finding all efficient extreme

points for multiple objective linear programs. Mathematical

Programming 14, 1 (1978), 249–261.

[55] Ecker, J. G., and Kouada, I. Finding efficient points for

linear multiple objective programs. Mathematical Programming

8, 1 (1975), 375–377.

[56] Ehrgott, M. Multicriteria optimization. Springer Science &

Business Media, 2006.

[57] Ehrgott, M., Löhne, A., and Shao, L. A dual variant

of Bensons outer approximation algorithm for multiple objec-

tive linear programming. Journal of Global Optimization 52, 4

(2012), 757–778.

209

[58] Ehrgott, M., Puerto, J., and Rodriguez-Chia, A.

Primal-dual simplex method for multiobjective linear program-

ming. Journal of optimization theory and applications 134, 3

(2007), 483–497.

[59] Ehrgott, M., Shao, L., and Schöbel, A. An approxima-

tion algorithm for convex multi-objective programming prob-

lems. Journal of Global Optimization 50, 3 (2011), 397–416.

[60] Ehrgott, M., and Tenfelde-Podehl, D. Computation of

ideal and nadir values and implications for their use in mcdm

methods. European Journal of Operational Research 151, 1

(2003), 119–139.

[61] Eiselt, H. A., and Sandblom, C.-L. Linear programming

and its applications. Springer Science & Business Media, 2007.

[62] Erlanger, P. Louis XIV. Weidenfeld & Nicolson, 1970.

[63] Evans, J. P., and Steuer, R. A revised simplex method for

linear multiple objective programs. Mathematical Programming

5, 1 (1973), 54–72.

[64] Fliege, J. An efficient interior-point method for convex mul-

210

ticriteria optimization problems. Mathematics of Operations

Research 31, 4 (2006), 825–845.

[65] Foroughi, A., and Jafari, Y. A modified method for con-

structing efficient solutions structure of molp. Applied mathe-

matical modelling 33, 5 (2009), 2403–2410.

[66] Fraga, E. S. http://www.ucl.ac.uk/ uce-

cesf/strawberry.html#orgec5771e. 2018.

[67] Fraga, E. S., and Amusat, O. Understanding the impact

of constraints: a rank based fitness function for evolutionary

methods. In Advances in Stochastic and Deterministic Global

Optimization. Springer, 2016, pp. 243–254.

[68] Fraga, E. S., Salhi, A., Zhang, D., and Papageorgiou,

L. G. Optimisation as a tool for gaining insight: An application

to the built environment. Journal of Algorithms & Computa-

tional Technology 9, 1 (2015), 13–26.

[69] Gal, T. A general method for determining the set of all effi-

cient solutions to a linear vectormaximum problem. European

Journal of Operational Research 1, 5 (1977), 307–322.

211

[70] Gal, T., Stewart, T., and Hanne, T. Multicriteria deci-

sion making: advances in MCDM models, algorithms, theory,

and applications, vol. 21. Springer Science & Business Media,

2013.

[71] Gallagher, R. J., and Saleh, O. A. A representation of

an efficiency equivalent polyhedron for the objective set of a

multiple objective linear program. European Journal of Opera-

tional Research 80, 1 (1995), 204–212.

[72] Gao, Y., Xu, C., and Yang, Y. An outcome-space finite al-

gorithm for solving linear multiplicative programming. Applied

Mathematics and Computation 179, 2 (2006), 494–505.

[73] Geoffrion, A. M. Solving bicriterion mathematical pro-

grams. Operations Research 15, 1 (1967), 39–54.

[74] Ghosh, A., and Das, M. K. Non-dominated rank based sort-

ing genetic algorithms. Fundamenta Informaticae 83, 3 (2008),

231–252.

[75] Grünbaum, B. Convex polytopes, volume 221 of graduate

texts in mathematics, 2003.

212

[76] Haksever, C., and Ringuest, J. L. Computational effi-

ciency and interactive molp algorithms: an implementation of

the simolp procedure. Computers & Operations Research 17, 1

(1990), 39–50.

[77] Hamel, A. H., Löhne, A., and Rudloff, B. Benson

type algorithms for linear vector optimization and applications.

Journal of Global Optimization 59, 4 (2014), 811–836.

[78] Hartley, R. Linear and nonlinear programming: An intro-

duction to linear methods in mathematical programming. Hal-

sted Press, 1985.

[79] Heyde, F., and Löhne, A. Geometric duality in multiple

objective linear programming. SIAM Journal on Optimization

19, 2 (2008), 836–845.

[80] Heyde, F., Löhne, A., and Tammer, C. Set-valued duality

theory for multiple objective linear programs and application

to mathematical finance. Mathematical Methods of Operations

Research 69, 1 (2009), 159–179.

[81] Holland, J. H. Adaptation in natural and artificial systems:

213

An introductory analysis with applications to biology, control,

and artificial intelligence. The University of Michigan Press,

1975.

[82] Hu, Y., Bie, Z., Ding, T., and Lin, Y. An NSGA-II based

multi-objective optimization for combined gas and electricity

network expansion planning. Applied energy 167 (2016), 280–

293.

[83] Isermann, H. The enumeration of the set of all efficient so-

lutions for a linear multiple objective program. Operational

Research Quarterly (1977), 711–725.

[84] Isermann, H., and Naujoks, G. Operating manual for

the EFFACET multiple objective linear programming package.

Fakultaet fuer Wirtschaftswissenschaften, University of Biele-

feld, Bielefeld, Germany (1984).

[85] Jones, D. F., Mirrazavi, S. K., and Tamiz, M. Multi-

objective meta-heuristics: An overview of the current state-of-

the-art. European journal of operational research 137, 1 (2002),

1–9.

214

[86] Junior, H., and Lins, M. P. E. A win-win approach to

multiple objective linear programming problems. Journal of

the Operational Research Society 60, 5 (2009), 728–733.

[87] Kalyanmoy, D. Multi objective optimization using evolution-

ary algorithms. John Wiley and Sons, 2001.

[88] Kannan, S., Baskar, S., McCalley, J. D., and Mu-

rugan, P. Application of NSGA-II algorithm to generation

expansion planning. IEEE Transactions on Power systems 24,

1 (2009), 454–461.

[89] Karmarkar, N. A new polynomial-time algorithm for lin-

ear programming. In Proceedings of the sixteenth annual ACM

symposium on Theory of computing (1984), ACM, pp. 302–311.

[90] Khachiyan, L., Boros, E., Borys, K., Elbassioni, K.,

and Gurvich, V. Generating all vertices of a polyhedron is

hard. Discrete & Computational Geometry 39, 1-3 (2008), 174–

190.

[91] Khachiyan, L. G. A polynomial algorithm for linear pro-

gramming. Soviet Mathematics Doklady 20 (1979), 191–194.

215

[92] Kim, N. T. B. Efficiency equivalent polyhedra for the feasible

set of multiple objective linear programming. Acta Mathematica

Vietnamica 27, 1 (2002), 77–85.

[93] Kim, N. T. B., and Thien, N. T. Generating all efficient ex-

treme points in multiple objective linear programming problem

and its application, 2007.

[94] Kim, N. T. B., Thien, N. T., and Thuy, L. Q. Gener-

ating all efficient extreme solutions in multiple objective linear

programming problem and its application to multiplicative pro-

gramming. East-West Journal of Mathematics 10, 1 (2008).

[95] Korhonen, P. Multiple objective linear programming in sup-

porting forest management. In Multiple Use of Forests and

Other Natural Resources. Springer, 1999, pp. 85–95.

[96] Korhonen, P., and Wallenius, J. A pareto race. Naval

Research Logistics (NRL) 35, 6 (1988), 615–623.

[97] Korhonen, P. J., and Laakso, J. A visual interactive

method for solving the multiple criteria problem. European

Journal of Operational Research 24, 2 (1986), 277–287.

216

[98] Küfer, K.-H. On the asymptotic average number of efficient

vertices in multiple objective linear programming. Journal of

Complexity 14, 3 (1998), 333–377.

[99] Lin, C., Chen, C., Chen, P., et al. On the modified

interior point algorithm for solving multi-objective linear pro-

gramming problems. International Journal of Information and

Management Sciences 17, 1 (2006), 107.

[100] Löhne, A. Vector optimization with infimum and supremum.

Springer Science & Business Media, 2011.

[101] Löhne, A. Bensolve: VLP solver, version 1.2,

www.bensolve.org. 2012.

[102] Löhne, A., Rudloff, B., and Ulus, F. Primal and dual

approximation algorithms for convex vector optimization prob-

lems. Journal of Global Optimization 60, 4 (2014), 713–736.

[103] Löhne, A., and Schenker, S. MOPLIB: Multi-Objective

Problem Library, http://moplib.uni-jena.de/. 2015.

[104] Löhne, A., and Weibing, B. Bensolve: VLP solver, version

2.0.x, www.bensolve.org. 2015.

217

[105] Lotfi, V., Yoon, Y. S., and Zionts, S. Aspiration-based

search algorithm (absalg) for multiple objective linear program-

ming problems: theory and comparative tests. Management

Science 43, 8 (1997), 1047–1059.

[106] Luc, D. T. Multiobjective Linear Programming: An Introduc-

tion. 2016.

[107] Malakooti, B., and Ravindran, A. Experiments with an

interactive paired comparison simplex method for molp prob-

lems. Annals of Operations Research 5, 1-4 (1986), 575–597.

[108] Martinez-Vargas, A., Doḿınguez-Guerrero, J., An-

drade, Á. G., Sepúlveda, R., and Montiel-Ross, O.

Application of NSGA-II algorithm to the spectrum assignment

problem in spectrum sharing networks. Applied Soft Computing

39 (2016), 188–198.

[109] Massobrio, R., Fagúndez, G., and Nesmachnow, S.

Multiobjective taxi sharing optimization using the NSGA-II

evolutionary algorithm. In 11th Metaheuristic International

Conference (2015).

218

[110] Michalewicz, Z., and Schoenauer, M. Evolutionary algo-

rithms for constrained parameter optimization problems. Evo-

lutionary computation 4, 1 (1996), 1–32.

[111] Michalowski, W., and Szapiro, T. A bi-reference proce-

dure for interactive multiple criteria programming. Operations

Research 40, 2 (1992), 247–258.

[112] Nandasana, A. D., Ray, A. K., and Gupta, S. K.

Applications of the non-dominated sorting genetic algorithm

(NSGA) in chemical reaction engineering. International Jour-

nal of Chemical and Reactor Engineering 1 (2003), 1018.

[113] Oliveira, C., and Antunes, C. H. Multiple objective linear

programming models with interval coefficients–an illustrated

overview. European Journal of Operational Research 181, 3

(2007), 1434–1463.

[114] Pandian, P., and Jayalakshmi, M. Determining efficient

solutions to multiple objective linear programming problems.

Applied Mathematical Sciences 7, 26 (2013), 1275–1282.

[115] Pareto, V. Manuale di economia politica, vol. 13. Societa

219

Editrice, 1906.

[116] Pei, Y., and Hao, J. Non-dominated sorting and crowd-

ing distance based multi-objective chaotic evolution. In In-

ternational Conference in Swarm Intelligence (2017), Springer,

pp. 15–22.

[117] Philip, J. Algorithms for the vector maximization problem.

Mathematical programming 2, 1 (1972), 207–229.

[118] Philip, J. Vector maximization at a degenerate vertex. Math-

ematical Programming 13, 1 (1977), 357–359.

[119] Pourkarimi, L., Yaghoobi, M., and Mashinchi, M. De-

termining maximal efficient faces in multiobjective linear pro-

gramming problem. Journal of Mathematical Analysis and Ap-

plications 354, 1 (2009), 234–248.

[120] Quaddus, M., and Holzman, A. Imolp: an interactive

method for multiple objective linear programs. IEEE transac-

tions on systems, man, and cybernetics 16, 3 (1986), 462–468.

[121] Razali, N. M., Geraghty, J., et al. Genetic algo-

rithm performance with different selection strategies in solv-

220

ing TSP. In Proceedings of the world congress on engineer-

ing (2011), vol. 2, International Association of Engineers Hong

Kong, pp. 1134–1139.

[122] Reeves, G. R., and Franz, L. S. A simplified interactive

multiple objective linear programming procedure. Computers

& operations research 12, 6 (1985), 589–601.

[123] Rodman, A. D., Fraga, E. S., and Gerogiorgis, D.

On the application of a nature-inspired stochastic evolution-

ary algorithm to constrained multi-objective beer fermentation

optimisation. Computers & Chemical Engineering 108 (2018),

448–459.

[124] Rudloff, B., Ulus, F., and Vanderbei, R. A paramet-

ric simplex algorithm for linear vector optimization problems.

Mathematical Programming (2015), 1–30.

[125] Ruszczyński, A., and Vanderbei, R. J. Frontiers of

stochastically nondominated portfolios. Econometrica (2003),

1287–1297.

[126] Saaty, T., and Vargas, L. G. The logic of priorities: Appli-

221

cation in business, energy, health, and transportation. Nijhoff,

Boston (1982).

[127] Saaty, T. L. The analytic hierarchy process: planning, prior-

ity setting, resources allocation. New York: McGraw (1980).

[128] Salhi, A., and Fraga, E. S. Nature-inspired optimisation

approaches and the new plant propagation algorithm. In Pro-

ceedings of the International Conference on Numerical Anal-

ysis and Optimisation (ICeMATH’11), Yogyakarta, Indonesia

(2011).

[129] Sayin, S. An algorithm based on facial decomposition for find-

ing the efficient set in multiple objective linear programming.

Operations Research Letters 19, 2 (1996), 87–94.

[130] Schaffer, J. D. Multiple objective optimization with vector

evaluated genetic algorithms. In Proceedings of the 1st Interna-

tional Conference on Genetic Algorithms, Pittsburgh, PA, USA,

July 1985 (1985), pp. 93–100.

[131] Schechter, M., and Steuer, R. E. A correction to the con-

nectedness of the Evans-Steuer algorithm of multiple objective

222

linear programming. Foundations of Computing and Decision

Sciences 30, 4 (2005), 351–360.

[132] Schönfeld, K. P. Effizienz und Dualität in der Ak-

tivitätsanalyse (Diss.). Freie Universität Berlin, Germany, 1964.

[133] Seiford, L., and Yu, P.-L. Potential solutions of lin-

ear systems: The multi-criteria multiple constraint levels pro-

gram. Journal of Mathematical Analysis and Applications 69,

2 (1979), 283–303.

[134] Selamoğlu, B. İ., and Salhi, A. The plant propagation

algorithm for discrete optimisation: The case of the travelling

salesman problem. In Nature-inspired computation in engineer-

ing. Springer, 2016, pp. 43–61.

[135] Shao, L., and Ehrgott, M. Approximately solving multiob-

jective linear programmes in objective space and an application

in radiotherapy treatment planning. Mathematical Methods of

Operations Research 68, 2 (2008), 257–276.

[136] Shao, L., and Ehrgott, M. Approximating the nondomi-

nated set of an molp by approximately solving its dual problem.

223

Mathematical Methods of Operations Research 68, 3 (2008),

469–492.

[137] Shao, L., and Ehrgott, M. An objective space cut and

bound algorithm for convex multiplicative programmes. Jour-

nal of Global Optimization 58, 4 (2014), 711–728.

[138] Shao, L., and Ehrgott, M. Primal and dual multi-objective

linear programming algorithms for linear multiplicative pro-

grammes. Optimization (2015), 1–17.

[139] Smith, A. E., and Coit, D. W. Constraint handling tech-

niques: penalty functions. Handbook of evolutionary computa-

tion (1997), 5–2.

[140] Srinivas, N., and Deb, K. Multi-objective function opti-

mization using non-dominated sorting genetic algorithms. Evo-

lutionary computation 2, 3 (1995), 221–248.

[141] Steuer, R. E. Multiple objective linear programming with

interval criterion weights. Management Science 23, 3 (1976),

305–316.

[142] Steuer, R. E. An interactive multiple objective linear pro-

224

gramming procedure. TIMS Studies in the Management Sci-

ences 6 (1977), 225–239.

[143] Steuer, R. E. Multiple criteria optimization: theory, compu-

tation, and applications. Wiley, 1986.

[144] Steuer, R. E. Adbase: A multiple objective linear program-

ming solver for all efficient extreme points and all unbounded

efficient edges. Terry college of Business, University of Georgia,

Athens (2003).

[145] Stewart, T. J. An interactive multiple objective linear

programming method based on piecewise-linear additive value

functions. Systems, Man and Cybernetics, IEEE Transactions

on 17, 5 (1987), 799–805.

[146] Strijbosch, L. W., Van Doorne, A. G., and Selen,

W. J. A simplified MOLP algorithm: the MOLP-S procedure.

Computers & operations research 18, 8 (1991), 709–716.

[147] Sulaiman, M., Salhi, A., Selamoglu, B. I., and

Kirikchi, O. B. A plant propagation algorithm for con-

strained engineering optimisation problems. Mathematical

225

Problems in Engineering 2014 (2014).

[148] Suprajitno, H. Solving multiobjective linear programming

problem using interval arithmetic. Applied Mathematical Sci-

ences 6, 80 (2012), 3959–3968.

[149] Tantawy, S. Detecting non-dominated extreme points for

multiple objective linear programming. Journal of Mathematics

and Statistics 3, 3 (2007), 77–79.

[150] Trafalis, T. B., and Alkahtani, R. M. An interactive

analytic center trade-off cutting plane algorithm for multiobjec-

tive linear programming. Computers & industrial engineering

37, 3 (1999), 649–669.

[151] Wen, U.-P., and Weng, W.-T. An interior algorithm for

solving multiobjective linear programming problem. Institute

for Operations Research and the Management Sciences Inter-

national Meeting: Tel Aviv - Israel (1998).

[152] Weng, W.-T., and Wen, U.-P. An interior point algorithm

for solving linear optimization over the efficient set problems.

Journal of the Chinese Institute of Industrial Engineers 18, 3

226

(2001), 21–30.

[153] Wierzbicki, A. P. The use of reference objectives in mul-

tiobjective optimization. In Multiple criteria decision making

theory and application. Springer, 1980, pp. 468–486.

[154] Yan, H., Wei, Q., and Wang, J. Constructing efficient so-

lutions structure of multiobjective linear programming. Journal

of mathematical analysis and applications 307, 2 (2005), 504–

523.

[155] Yeniay, Ö. Penalty function methods for constrained opti-

mization with genetic algorithms. Mathematical and computa-

tional Applications 10, 1 (2005), 45–56.

[156] Yu, P., and Zeleny, M. The techniques of linear mul-

tiobjective programming. Revue française d’automatique,

d’informatique et de recherche opérationnelle. Recherche

opérationnelle 8, 3 (1974), 51–71.

[157] Yu, P., and Zeleny, M. The set of all nondominated solu-

tions in linear cases and a multicriteria simplex method. Journal

of Mathematical Analysis and Applications 49, 2 (1975), 430–

227

468.

[158] Yu, P., and Zeleny, M. Linear multiparametric program-

ming by multicriteria simplex method. Management Science

23, 2 (1976), 159–170.

[159] Yuen, T. J., and Ramli, R. Comparision of compuational

efficiency of MOEA\D and NSGA-II for passive vehicle suspen-

sion optimization. ECMS 2010 (2010), 219–225.

[160] Zadeh, L. Optimality and non-scalar-valued performance cri-

teria. IEEE transactions on Automatic Control 1, 8 (1963),

59–60.

[161] Zeleny, M. Compromise programming. In Cochrane JL, Ze-

leny M (eds), Multiple criteria decision making. University of

South Carolina Press, Columbia, SC, 1973, pp. 262–301.

[162] Zeleny, M. Linear multiobjective programming, vol. 95.

Springer Science & Business Media, 1974.

[163] Zeleny, M. Multiple criteria decision making, vol. 25.

McGraw-Hill New York, 1982.

228

[164] Zhang, W. A compromise programming method using multi-

bounds formulation and dual approach for multicriteria struc-

tural optimization. International journal for numerical methods

in engineering 58, 4 (2003), 661–678.

[165] Zhong, Y., and Shi, Y. An interior-point approach for solv-

ing MC2 linear programming problems. Mathematical and com-

puter modelling 34, 3 (2001), 411–422.

[166] Zionts, S., and Wallenius, J. An interactive programming

method for solving the multiple criteria problem. Management

science 22, 6 (1976), 652–663.

[167] Zionts, S., and Wallenius, J. An interactive multiple ob-

jective linear programming method for a class of underlying

nonlinear utility functions. Management Science 29, 5 (1983),

519–529.

229

Appendices

230

Appendix A

Non-Interactive Simplex based methods

SN Author(s) Year Title

1 Schonfeld, K. P. 1964 Effizienz und Dualitat in der

Aktivitatsanalyse

2 Geoffrion, A. M. 1967 Solving bicriterion mathematical programs

3 Philip, J. 1972 Algorithms for the vector maximization

problem

4 Evans & Steuer 1973 A revised simplex method for linear

multiple objective programming

5 Belenson & Kapur 1973 An algorithm for solving multicriterion lin-

ear programming problems with examples

6 Zeleny, M. 1973 Compromise programming

7 Zeleny, M. 1974 Linear multiobjective programming

8 Yu and Zeleny 1974 The techniques of linear multiple

objective programming

9 Yu and Zeleny 1975 The set of all nondominated

solutions in linear cases and

a multicriteria simplex method

10 Ecker and Kouada 1975 Finding efficient points for linear multiple

objective programs

11 Yu and Zeleny 1976 Linear multiparametric programming

Continued on next page

231

Table A.1 – continued from previous page

SN Author(s) Year Title

by multicriteria simplex method

12 Gal, T. 1977 A general method for determining

the set of all efficient solutions to

a linear vector maximization problem

13 Isermann, H. 1977 The enumeration of the set of

all efficient solutions for a linear

multiple objective program

14 Philip, J. 1977 Vector optimization at a

degenerate vertex

15 Ecker and Kouada 1978 Finding all efficient extreme points

for multiple objective linear programs

16 Seiford and Yu 1979 Potential solutions of linear systems:

The multicriteria multiple constraint

levels program

17 Ecker et al. 1980 Generating all maximal efficient

faces for multiobjective linear programs

18 Benson, H. P 1981 Finding an initial efficient extreme

point for linear multiobjective program

19 Zeleny, M 1982 Multiple criteria decision making

20 Steuer, R. E. 1986 Multiple criteria optimization:

theory, computation & applications

21 Strijbosch et al. 1991 A simplified MOLP algorithm:

The MOLP-S procedure

22 Armand and Malivert 1991 Determination of the efficient set

in multiobjective linear programming

23 Armand, P. 1993 Finding all maximal efficient faces in

multiobjective linear programming

24 Cardoso and Climaco 1994 Efficient frontier scanning in MOLP

using a new tool

25 Sayin, S. 1996 An algorithm based on facial

decomposition for finding the

efficient set in MOLP

26 Ruszczynski and Vanderbei 2003 Frontiers of stochastically

nondominated portfolios

27 Yan et al. 2005 Constructing efficient solutions

Continued on next page

232

Table A.1 – continued from previous page

SN Author(s) Year Title

structure of multiobjective linear

programming

28 Kim and Thien 2007 Generating all efficient extreme points in

multiple objective linear programming

problem and its application

29 Ehrgott et al. 2007 Primal-dual simplex method for

multiobjective linear programming

30 Kim et al. 2008 Generating all efficient extreme

solutions in MOLP and its application

to multiplicative programming

31 Pourkarimi et al. 2009 Determining maximal efficient faces in

multiobjective linear programming

problem

32 Foroughi & Jafari 2009 A modified method for construction efficient solutions

structure of MOLP

33 Suprajitno, H 2012 Solving multiobjective linear programming

problem using interval arithmetic

34 Pandian and Jayalakshmi 2013 Determining efficient solutions to multiple

objective linear programming problems

35 Rudloff et al. 2015 A parametric simplex algorithm for

linear vector optimization problems

An interior point multiple criteria

36 Luc, D. T. 2016 Multiobjective Linear Programming:

An Introduction

233

Appendix B

Interactive Simplex based methods

SN Author(s) Year Title

SN Author(s) Year Title

1 Benayoun et al 1971 Linear programming with multiple

objective functions

2 Zionts and Wallenius 1976 An interactive programming method

for solving the multiple criteria problem

3 Steuer, R. E. 1976 Multiple objective linear programming

with interval criterion weights

4 Steuer, R. E. 1977 An interactive multiple objective linear

programming procedure

5 Zionts and Wallenius 1983 An interactive multiple objective linear

programming method for a class of

underlying nonlinear utility functions

6 Reeves and Franz 1985 A simplified interactive multiple

objective linear programming procedure

7 Korhonen and Laakso 1986 A visual interactive method for

Continued on next page

234

Table B.1 – continued from previous page

SN Author(s) Year Title

solving the multiple criteria problem

8 Quaddus and Holzman 1986 Imolp: an interactive method for

multiple objective linear programs

9 Arbel and Oren 1986 Generating serach directions in MOLP

using the analytic hierarchy process

10 Malakooti and Ravindran 1986 Experiments with an interactive

paired comparison simplex method for

molp problems

11 Stewart, T. J. 1987 An interactive MOLP method based on

piecewise linear additive value functions

12 Climaco and Antunes 1987 Trimap - an interactive tricriteria

linear programming package

13 Korhonen and Wallenius 1988 A Pareto race

14 Dell and Karwan 1990 An interactive mcdm weight space

reduction method utilizing a Tcheby-

cheff utility function

15 Michalowski and Szapiro 1992 A bi-reference procedure for interactive

multiple criteria programming

16 Choi and Kim 1994 Approximation of the set of efficient

objective vectors for large scale molp

17 Lotfi et al. 1997 Aspiration-based search algorithm for

multiple objective linear programming

problems: theory and comparative tests

18 Benson et al. 1998 Global optimization in practice:

an application to interactive multiple

Continued on next page

235

Table B.1 – continued from previous page

SN Author(s) Year Title

objective linear programming

19 Alves et al. 2015 Interactive MOLP explorer: A graphical-

based computational tool for teaching

and decision support in multi-objective

linear programming models

236

Appendix C

Objective space based methods

SN Author(s) Year Title

1 Dauer, J. P. 1987 Analysis of the objective space in Multiobjective linear

programming

2 Dauer & Liu 1990 Solving multiple objective linear programs in objective

space

3 Dauer & Saleh 1990 Consrtucting the set of efficient objective in multiple

objective linear programs

4 Gallagher & Saleh 1995 A representation of an efficient equivalent polyhedron

for the objective set of a MOLP

5 Dauer & Gallagher 1996 A combined constraint space, objective space approach

for determining high dimensional efficient faces

of MOLP

6 Benson, H. P. 1998a An outer approximation algorithm for generating all

efficient extreme points in the outcome set of

MOLP problem

7 Benson, H. P. 1998b Further analysis of an outcome set-based algorithm

Continued on next page

237

Table C.1 – continued from previous page

SN Author(s) Year Title

for MOLP

8 Benson, H. P. 1998c Hybrid approach for solving multiple objective linear

programs in outcome space

9 Benson & Sun 2002 A weight set decomposition algorithm for finding all

extreme points in the outcome set of a MOLP

10 Kim, N. T. B. 2002 Efficiency equivalent polyhedra for feasible set of MOLP

11 Yan et al. 2005 Constructing efficient solutions structure of

multiobjective linear programming

12 Tantawy, S. 2007 Detecting nondominated extreme points for MOLP

13 Shao & Ehrgott 2008a Approximately solving MOLPs in objective space and

an application in radiotherapy treatment planning

14 Shao & Ehrgott 2008b Approximating the nondominated set of an MOLP by

approximately solving its dual problem

15 Heyde & Löhne 2008 Geometric duality in Multiple objective linear

programming

16 Heyde et al. 2009 Set-valued duality theory for MOLP & application to

mathematical finance

17 Burton & Ozlen 2010 Projective geometry and the outer approximation

algorithm for MOLP

18 Ehrgott et al. 2011 An approximation algorithm for convex MOLP problem

19 Ehrgott et al. 2012 A dual variant of Benson’s outer approximation

algorithm for MOLP

20 Lohne, A. 2012 Vector optimization with infimum

and supremum

21 Csirmaz, L. 2016 Using multiobjective optimization to map the entropy

region.

22 Hamel et al. 2014 Benson type algorithms for linear vector

Continued on next page

238

Table C.1 – continued from previous page

SN Author(s) Year Title

optimization & applications

23 Lohne et al. 2014 Primal and dual approximation algorithms for

convex vector optimization problems

24 Shao & Ehrgott 2015 Primal and dual MOLP algorithms for linear

multiplicative programming

239

Appendix D

Non-Interactive Interior-point based methods

SN Author(s) Year Title

1 Abhyankar et al. 1990 Efficient faces of polytopes: interior

point algorithms, parametrization

of algebraic varieties and multiple

objective optimization

2 Arbel, A. 1993a An interior multiobjective linear

programming algorithm

3 Arbel, A. 1993b A weighted-gradient approach to

MOLP problems using the analytic

hierarchy process

4 Arbel and Oren 1994 A modification of Karmarkar’s

algorithm to multiple objective

linear programming problems

5 Arbel, A. 1994a Anchoring points and cones of

opportunities in interior multiple

objective linear porgramming

Continued on next page

240

Table D.1 – continued from previous page

SN Author(s) Year Title

6 Arbel, A. 1994b Using efficient anchoring points

for generating search directions in

interior MOLP

7 Arbel, A. 1994c Interior point methods for multiobjective

linear programming problems: In multiple

criteria decision making

8 Wen and Weng 1998 An interior algorithm for solving multiobj-

ective linear programming problem

9 Bufardi, A. 1999 Multicriteria decision making: and

advances in MCDM models, algorithms,

theory, and applications

10 Arbel and Korhonen 2001 Using objective values to start

multiple objective linear

programming algorithms

11 Weng and Wen 2001 An interior point algorithm for solving

linear optimization over the

efficient set problems

12 Zhong and Shi 2001 An interior point approach for solving

mc2 linear programming problems

13 Arbel and Sadka 2005 Weighted euclidean centers

14 Lin et al. 2006 On the modified interior point

algorithm for solving MOLP problems

15 Fliege, J. 2006 An efficient interior point method for

convex multicriteria optimization

problems

241

Appendix E

Interactive Interior-point based methods

SN Author(s) Year Title

1 Arbel and Oren 1993 Generating interior search directions

for multiobjective linear programming

2 Arbel, A. 1995 An interior multiple objective

primal-dual linear programming

algorithm using efficient

anchoring points

3 Arbel and Oren 1996 Using approximate gradients in

developing an interactive primal-dual

MOLP algorithm

4 Arbel & Korhonen 1996 Using aspiration levels in an interior

primal-dual multiple objective

linear programming algorithm

5 Arbel, A. 1997 An interior multiobjective primal

dual linear programming algorithm

based on approximated gradients

Continued on next page

242

Table E.1 – continued from previous page

SN Author(s) Year Title

& efficient anchor points

6 Trafalis and Alkahtani 1999 An interactive analytic centre trade off

cutting plane algorithm for multiobjective

linear programming

7 Junior and Lins 2009 A win-win approach to multiple

objective linear programming problems

8 Aghezzaf and Ouaderhmann 2001 An interactive interior point

algorithm for MOLP problems

243

Appendix F

Script used in generating Problem 50 to 52.

The script in Bensolve-2.0 [104] that was used to generate Problems 50 to 52 in Table

3.2 is given below:

MOLP with q number of objectives, n = (q + 2 ∗ m)q as the number of variables and

constraints. One can adopt q and m to generate other larger instances as was done in

bensolve-2.0.1 \ex\example10.m

n = (q + 2 ∗m)q, is the number of variables and constraints

A, the constraint matrix is given by

A = eye(n), where n is the number of variables.

b, the RHS vector is given by

b = ones(n, 1).

To generate the criterion matrix C;

C = zeros(n, q);

for i=1:n

line = dec2base(i− 1, q + 2 ∗m, q)− ‘0‘;

line = line− (q + 2 ∗m− 1)/2;

C(i, :) = line;

end

244

C = C
′
.

If q = m = 2, Problem 50 in Table 3.2 is generated with 36 number of variables, 36

constraints and 2 objective functions.

When q = 2 and m = 3, Problem 51 in Table 3.2 is generated with 64 number of vari-

ables, 64 constraints with 2 objective functions.

When q = 2 and m = 4, Problem 52 in Table 3.2 is generated with 100 variables, 100

constraints and 2 objective functions.

Finally, when q = 3 and m = 2, Problem 53 in Table 3.2 is generated with 343 number

of variables, 343 constraints and 3 objective functions.

245

Appendix G

List of papers submitted/awaiting submission to

Journals

1. On the Simplex, Interior-point, and Objective space approaches to Multi-

objective Linear Programming: Revised version resubmitted to Journal of

the Operational Research Society (JORS).

2. A Comparative study of two key algorithms in Multi-objective Linear Pro-

gramming: Revised version awaiting resubmission to Journal of Algorithms

and Computational Technology (JACT).

3. A Comparison of Benson’s Outer-approximation Algorithm with an Extended

version of Multi-objective Simplex Algorithm: Submitted to Asia-Pacific

Journal of Operational Research (APJOR).

4. Multi-objective Linear Programming: A Survey: Awaiting second submis-

sion.

5. Application of Plant Propagation Algorithm and NSGA-II to Multi-objective

Linear Programming: Awaiting submission.

246

	Abstract
	Declaration
	Acknowledgements
	Abbreviations
	List of Figures
	List of Tables
	List of Algorithms
	1 INTRODUCTION
	1.1 Statement of the Problem and Basic Concepts
	1.1.1 The MOLP problem
	1.1.2 Efficient Solutions and Nondominated Points

	1.2 Solution Approaches to MOLP
	1.2.1 Exact Methods
	1.2.2 Heuristics

	1.3 The Strawberry Plant
	1.4 The Basic Plant Propagation Algorithm
	1.5 The Algebra of MOLP
	1.6 Research Objectives
	1.7 Main Contributions
	1.8 Organization

	2 REVIEW OF LITERATURE
	2.1 Introduction
	2.2 Non-Interactive Algorithms
	2.2.1 Simplex based algorithms
	2.2.2 Interior-point based algorithms
	2.2.3 Objective space based algorithms

	2.3 Interactive Algorithms
	2.3.1 Interactive simplex based algorithms
	2.3.2 Interactive Interior-point based algorithms

	2.4 Heuristic approaches to multi-objective optimisation
	2.5 Summary

	3 A COMPARISON OF BOA WITH AN EXTENDED VERSION OF MSA
	3.1 Introduction
	3.2 The Multi-objective Simplex Algorithm
	3.2.1 Illustration of MSA

	3.3 The Extended Multi-objective Simplex Algorithm
	3.3.1 Illustration of the Extended MSA

	3.4 Scalarization Techniques
	3.5 Benson's Outer-Approximation Algorithm
	3.5.1 Illustration of Benson's Outer-Approximation Algorithm

	3.6 Discussion of Experimental Results
	3.7 Summary of Results
	3.8 Summary

	4 THE SIMPLEX, INTERIOR-POINT AND OBJECTIVE SPACE APPROACHES TO MOLP
	4.1 Introduction
	4.2 The Affine Scaling Interior-Point Algorithm
	4.2.1 Illustration of ASIMOLP
	4.2.2 Determination of the priority vector used in ASIMOLP

	4.3 Interactive Affine Scaling Interior MOLP Algorithm
	4.3.1 Illustration of Interactive ASIMOLP

	4.4 Selection of the Most Preferred Nondominated Point
	4.5 Discussion of Experimental Results
	4.6 Summary of Results
	4.7 Summary

	5 COMPARATIVE STUDY OF TWO KEY ALGORITHMS IN MOLP
	5.1 Introduction
	5.2 The Parametric Simplex Algorithm
	5.2.1 Illustration of the PSA

	5.3 Additional illustration of BOA
	5.4 Discussion of Experimental Results
	5.5 Summary of Results
	5.6 Summary

	6 A HEURISTIC APPROACH TO MULTI-OBJECTIVE LINEAR PROGRAMMING
	6.1 Introduction
	6.2 Multi-objective Plant Propagation Algorithm
	6.3 Solution Procedure
	6.3.1 Illustration of MOPPA

	6.4 Discussion of Experimental Results
	6.5 Summary of Results
	6.6 Summary

	7 CONCLUSION AND FUTURE RESEARCH PLAN
	7.1 Introduction
	7.2 Contributions
	7.3 Future Research

	Appendices
	A Non-Interactive Simplex based methods
	B Interactive Simplex based methods
	C Objective space based methods
	D Non-Interactive Interior-point based methods
	E Interactive Interior-point based methods
	F Script used in generating Problem 50 to 52.
	G List of papers submitted/awaiting submission to Journals

