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Abstract
Word production begins with high-Gamma automatic linguistic processing functions followed by speech motor planning and
articulation. Phonetic properties are processed in both linguistic and motor stages of word production. Four phonetically dissim-
ilar phonemic structures BBA^, BFO^, BLE^, and BRY^ were chosen as covert speech tasks. Ten neurologically healthy volun-
teers with the age range of 21–33 participated in this experiment. Participants were asked to covertly speak a phonemic structure
when they heard an auditory cue. EEG was recorded with 64 electrodes at 2048 samples/s. Initially, one-second trials were used,
which contained linguistic andmotor imagery activities. The four-class true positive rate was calculated. In the next stage, 312ms
trials were used to exclude covert articulation from analysis. By eliminating the covert articulation stage, the four-class grand
average classification accuracy dropped from 96.4% to 94.5%. The most valuable features emerge after Auditory cue recognition
(~100 ms post onset), and within the 70–128 Hz frequency range. The most significant identified brain regions were the
Prefrontal Cortex (linked to stimulus driven executive control), Wernicke’s area (linked to Phonological code retrieval), the right
IFG, and Broca’s area (linked to syllabification). Alpha and Beta band oscillations associated with motor imagery do not contain
enough information to fully reflect the complexity of speech movements. Over 90% of the most class-dependent features were in
the 30-128 Hz range, even during the covert articulation stage. As a result, compared to linguistic functions, the contribution of
motor imagery of articulation in class separability of covert speech tasks from EEG data is negligible.
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Introduction

Speech is the most natural and intuitive form of human
communication. Language and cognition are closely

related processes. A BCI system designed to understand
commands covertly spoken in the user’s mind, is highly
desirable. Most neocortical territories in both hemi-
spheres, as well as many subcortical brain regions are
involved in language [1]. EEG signals can successfully
identify 200–600 Hz cortical spikes [2–4] for medical
diagnostic applications. In artefact-free conditions, EEG
signals accurately measure induced/evoked high-Gamma
brain activity, up to 150 Hz [5–8]. Based on the unique
cognitive Neuroanatomy of each individual, the spatial,
temporal, and spectral patterns of activity may vary from
person to person [9].

Word production begins with semantic (conceptual
preparation), lexical (Lemma retrieval), and phonetic
(phonological code retrieval and syllabification) linguistic
processes, followed by planning the movements of
language muscles (phonetic encoding) for articulation
[10, 11].
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Linguistic phonetic processing is an automatic brain func-
tion, which elicits high-Gamma (70–160 Hz) oscillations [12,
13]. In each individual, Phonetic processing activity for a spe-
cific word does not change over time [14, 15] and is not
affected by priming, cognitive activity, or task frequency
[16, 17]. In contrast, semantic and lexical processing, is affect-
ed by task frequency, priming, and cognitive activity [18–20],
which would also arbitrarily shift the temporal course of all
following functions. These problems can be avoided by using
a suitable experimental protocol.

In covert speech, the manner of articulation in an individual
(their ‘accent’) is consolidated over time. Covert articulation
tasks activate the same language motor centres as their overt
form [21, 22]. As a result, covert speech is produced with the
same consistency as overt speech. However, in covert speech,
the activity of the Primary Motor Cortex is greatly attenuated
[23] and may be difficult to detect by EEG. Figure 1, illus-
trates the functional division of the primary motor cortex, also
known as the BHomunculus^. Speech production is the most
complex motor skill, which takes many years to learn and
master. Almost one third of the Primary Motor Cortex is allo-
cated to muscles producing speech, which reflects this com-
plexity [24].

Phonetically dissimilar covert speech tasks create distinc-
tive neural activity associated with the phonological code re-
trieval and syllabification stages of linguistic processing [25]
and involve different language muscle combinations during
covert articulation. A linguistic BCI with four classes is suffi-
ciently capable of controlling a smart device with a suitable
user interface. In this study, the four directions (back, forward,
left, and right) are shortened into Phonemic structures BBA^,
BFO^, BLE^, and BRY^and used as covert speech tasks. These
covert speech classes are cognitively appropriate directional
commands, have little or no overlap with typical mind-
wandering states, and provide an intuitive method of

communication. For example, the user can move a cursor to
the left by covertly speaking BLE^. In addition, these
Phonemic structures are phonetically dissimilar. To demon-
strate these phonetic differences in an accurate and quantita-
tive manner, the properties of each consonant and vowel [26],
such as place of articulation and manner of articulation, are
presented in Fig. 2 [27]. For example, the consonant /b/ is
voiced, plosive, and bilabial.

If the word class is known by the user before the trials, the
conceptual preparation stage will be completed in advance.
The Lemma selection stage, with multiple competing lemmas
will have temporal inconsistencies. If trials are recorded in
blocks, only one Lemma is activated and selected. In block
recordings, the same auditory time cue, in the form of a Bbeep’
sound, can be used for task onset in all word classes, thus
eliminating class-dependent auditory evoked responses from
trials. By consolidated the semantic and lexical activities, con-
ceptual preparation and lemma selection are complete before
task onset. As a result, trials only contain automatic phonetic
linguistic processing stages, and will not be affected by the
temporal inconsistency of cognitive activity. Mental effort
causes activation of scalp and neck muscles [28], which can
mask high-Gamma cortical components. In this work, no
mental effort is required from the user during trials. These
conditions can be easily reproduced for the online application
of this Linguistic BCI, with the same block recordings used
for training.

After cue recognition (~100 ms post-onset), the following
stages are [23]: Lemma activation (~100-175 ms post-onset),
phonological code retrieval (~175-250 ms post-onset) and syl-
labification (~250-300 ms post-onset). Covert articulation
(~500-800 ms post-onset) and the corresponding Motor imag-
ery activity, are separated from the linguistic stages by a
~200 ms interval, during which covert articulation is designed
by an internal perceptual process using the working memory
and the somatosensory association cortex [9]. Initially one-
second trials are used. By using shorter trials (0-312 ms
post-onset), the covert articulation stage can be excluded from
analysis to study its contribution to classification accuracy.

Methods

This study was conducted with 10 neurologically healthy vol-
unteers in the age group of 21–33. All volunteers signed a
consent form based on the recommendations of the Ethical
Committee of the University of Essex. Participants were
seated in a comfortable armchair. The experiment consists of
4 recording runs for a participant, each containing 30 trials of
only one class. For all classes, an identical Bbeep^ sound was
used as the auditory cue. The user was informed of the task
before each run and asked to covertly speak when they heard
the timing cue. As a result, Conceptual Preparation, and

Fig. 1 The functional division of primary motor cortex. A significant
proportion, controls muscles responsible for speech
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Lemma selection are completed before onset. A random rest
period between 3 and 7 s was placed between trials to prevent
the user from anticipating onset time based on rhythm. This
ensures the remaining linguistic activities (Phonological Code
Retrieval, Syllabification, Covert Articulation) begin exactly
after auditory cue recognition, and the system is perfectly
synchronised. Recent studies on the time windows of the pro-
cessing stages of language production provide evidence of
latent activities of over 2000 ms [9]. The 3–7 s idle period
sufficiently separates the trials. Figure 3 shows the imagina-
tion protocol of the experiment.

The EEG signals were recorded using a 64 channel
Biosemi ActiveTwo™ system [29]. One computer generated
the graphical user interface and sent trigger signals to the
ActiveTwo device at the instant a time cue was presented to
the user. The triggers were sent via the parallel port and were
visible in the recorded data. A second computer saved the
EEG recordings and was connected to the ActiveTwo’s A/D
box via USB. Electrode placement was done per the interna-
tional ABC system, which for 64 channels corresponds to the
10/10 system. The ActiveTwo has a pre-amplifier stage on the
electrode and can correct for high impedances. However, the

offset voltage between the A/D box and the body was kept
between 25 mVand 50 mVas recommended by the manufac-
turer. The data were recorded at a sampling rate of 2048 sam-
ples/s, with guaranteed data frequency content of 0-409 Hz
according to BioSemi.

The pre-processing was done with the use of EEGLAB
[30], an open source MATLAB™ toolbox. Studies conducted
with the use of intra-cranial implants confirm high gamma
band activity during covert speech tasks [20, 31, 32]. One of
the main reasons that numerous studies have failed in achiev-
ing high classification accuracy, is that covert speech tasks are
treated as motor imagery, and information above the beta band
is often ignored or even filtered out [33]. A suitable frequency
range (0-128 Hz) for analysing Linguistic activity is achieved
by down-sampling the data to 256 Hz. This frequency range is
within the operating capability of the ActiveTwo system. The
data is then referenced using surface Laplacian. To remove
50 Hz noise from UK power lines, a FIR notch filter, with
rejection band of (49.2–50.8 Hz) was applied. Using the
Automatic Artifact Removal (AAR) toolbox in EEGLAB
[34], EOG and EMG artifacts were reduced, with SOBI [35]
and CCA algorithms [36] respectively. These methods

Fig. 3 Imagination protocol. The user imagines speaking a word when an
auditory cue in the form of a beep is presented. One second after each cue
are used for the first experiment, and 312 ms for the second. A random
rest period of 3–7 s occurs between trials. This sufficiently separated the

tasks from one another. Also, the random duration prevents the user from
anticipating the task onset based on rhythm. As a result, the next stages of
linguistic functions begin exactly after cue recognition and the system is
perfectly synchronised

Fig. 2 Properties of the
consonants and vowels in the
word classes, such as place of
articulation and manner of
articulation
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outperform ICA, which is ineffective beyond 70 Hz [37, 38].
Unfortunately, no algorithm can completely eliminate EMG,
which elicits 20-200 Hz oscillations in EEG [28, 39]. The
most effective solution is to reduce the possibility of recording
EMG by controlling the experiment protocol and the environ-
ment. The final stage of pre-processing is extracting epochs
from the continuous EEG recordings. Each epoch begins
when beep sound is generated and ends exactly one second
(or 312 ms for shortened trials) later.

This work is a novelty search with an exploratory ap-
proach. The experimental data were processed offline and
the main objective was to initially create a detailed feature
space, in such a way that little or no relevant information is
lost or excluded. Features must contain information on time
and frequency and should maintain their link to EEG channel
for possible topographical analysis. The discrete Gabor
Transform [40, 41] (presented in Fig. 4) was thus used as it
satisfies all these requirements. Although the Gabor transform
is computationally taxing, it has been successfully applied to
find hidden information in EEG data with muscle artefact
noise contamination to predict onset of seizures [42, 43] and
to identify the location of seizure sources [44]. The Gabor
transform has also been used for feature generation to classify
motor imagery tasks that are very similar, such as different
movements of the same hand [45, 46]. In the present study,
a time step of 0.03125 s (32 steps per second) and frequency
band of 2 Hz (64 frequency bands) were chosen to provide the
best tradeoff between classification performance and compu-
tational cost.

A 1-s epoch from a single EEG channel (256 samples) is
converted into a 64 × 32 feature matrix. For the 312 ms trials
(80 samples), one epoch from one channel is converted into a
64 × 10 feature matrix.

To maximise classification accuracy, it is necessary to iden-
tify the most distinctive features between the four covert
speech classes and use these features to train the classification

object. Dimensionality reduction and feature selection with
clustering algorithms is proven to be extremely effective
[47–49]. The Davies-Bouldin index [50] is a function of
within-cluster scatter to between-cluster separation [51, 52],
and can be used to determine most useful features to distin-
guish the four word classes. DBI matrices for all the six word-
pairs (e.g., BA vs. FO) are calculated, and used to assign a
conservative value to each feature in the Bone-vs-all^ DBI.
Features with the lowest DBI index are considered the most
valuable for class separation. Figure 5 shows the definition of
the Davies-Bouldin index with four one-dimensional clusters.

The mean and standard deviation of a 10-fold cross valida-
tion process [53] were used to estimate the true positive rate.
For each validation fold, 27 trials were used for training, and 3
remaining trials were set aside for testing only. Testing trials
change from one validation fold to the next, and over 10 folds,
all 30 trials are used in testing. The process of cross validation,
feature selection, training, and testing used in this work is
presented in Fig. 6.

Only the feature generation stage, using the discrete Gabor
transform, is applied to the entire dataset. All other calcula-
tions are unique and fold-dependent. In this study, for the 1-s
trials each DBI matrix has a dimension of 4096 × 32 (64 fre-
quency-bands, 64 channels, 32 time-steps). Based on the DBI,
features are ranked and sorted in order of importance. The
indexes of the most valuable 4000 features are saved, and
these features used for training the classification object. This
filtering approach for feature selection reduces the dimension-
ality of the feature space by 97%, with acceptable computa-
tional cost. The 312 ms trials use the same analysis pipeline as
1-s trials. For 64 channels, the dimension of the DBI matrix
for 312 ms trials is 4096 × 10 (64 frequency bands, 64 chan-
nels, 10 time-steps).

Pseudo-Linear discriminant analysis was applied for clas-
sification, as it consistently out-performed all other supervised
machine learning methods, for EEG recorded covert speech
data [54]. Compared to the training process, the computational
cost of testing is negligible.

Fig. 5 Definition of the Davies-Bouldin index for 4 one-dimensional
clusters. Most valuable features have the smallest DBI

Fig. 4 Definition of Gabor coefficients by implementation of the direct
discrete Gabor transform and a Gaussian window function

20 Page 4 of 9 J Med Syst (2019) 43: 20



Results

The true positive rates of one word vs. all, are generated by a
standard ten-fold cross validation method. Figure 7 presents
these values for 1-s epochs, and for 312 ms epochs. By elim-
inating the covert articulation stage from trials, the relative

contribution of Motor Imagery of speech and linguistic pro-
cessing stages, in classification accuracy can be determined.

The Wilcoxon rank-sum test on both columns returns a p
value of 0.9269. By using 312 ms trials instead of 1-s trials to
exclude covert articulation, the computational cost is reduced
to one third, with less than 2% penalty in classification accu-
racy. During covert speech, the language motor regions are
suppressed, but not completely deactivated [23]. As a result,
during the covert articulation stage, there will be minute in-
voluntary muscle movements related to each phonemic struc-
ture, which will create class-related, high-GammaMyoelectric
artefacts. The 312 ms trials are complete before the covert
articulation stage begins (~500 ms post onset) and are guar-
anteed to be free from class-related EMG. Possible involun-
tary early muscle ticks (i.e. lip movements ~160 ms after cue)
can cause significant EMG contamination. The CCA algo-
rithm used here, only removes such artefacts from the first
400 ms of data (312 ms trials included) [55].

From 10 users, 10 validation folds/user, and 4000 fea-
tures/fold, 4e5 best features are identified from the exper-
iment with 1-s trials, and 4e5 from the shortened 312 ms
trials. Each Gabor feature is linked to a frequency band,
time step, and EEG electrode. The 4e5 features identified
in the 1-s trials are cumulatively placed in the 64 × 32
feature space to create a colour coded time-frequency rep-
resentation of the most class-dependent Neural activity,
and to identify the electrodes recording this activity for
a topographical map of the brain [56, 57]. These plots are
illustrated in Fig. 8. The features are highly concentrated
in the 70-128 Hz band, even during the covert articulation
stage.

Fig. 6 The process of cross
validation, feature selection,
training, and testing used in this
work is presented here. The grand
average true positive rate is the
mean and standard deviation of
BAccuracy_1^ through
BAccuracy_10^

Fig. 7 The true positive rates of one word vs. all, estimated by a ten-fold
cross validation method. Eliminating the covert articulation stage from
analysis has less than 2% effect on grand average classification accuracy.
Considering the Wilcoxon p value of 0.9269, compared to the high-
Gamma linguistic processing stages, the contribution of motor imagery
of articulation in class separation of covert speech tasks from EEG data is
negligible
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The 4e5 features identified in the 312 ms trials are cumu-
latively placed in the 64 × 10 feature space to create a colour
coded time-frequency representation and used to create a to-
pographic brain map (Fig. 9). The most significant regions are
the Prefrontal Cortex [58] (stimulus driven executive control),
the left Superior Temporal Gyrus [9] (Wernicke’s area, pho-
nological code retrieval), the right, and left Inferior Frontal
Gyrus [9] (Broca’s area, syllabification). The same regions
are prominent in both Figs. 8 and 9.

Discussion

In a recent publication by these authors [59] an identical ex-
perimental protocol and analysis pipeline to this work were
used to record mixed randomised trials in a single run using an
Enobio dry electrode system with 20 channels. To achieve a
manageable recording duration (6–7 min), only 20 trials were
recorded per class, and the idle period between trials was
reduced to 1–3 s. A grand average classification accuracy of

Fig. 9 The cumulative colour-coded joint time-frequency representation of 4e5 features, 312 ms trials (Left). The associated topographical plot (Right).
Most important regions: Prefrontal Cortex, left STG (Wernicke’s area), right, and left IFG (Broca’s area)

Fig. 8 The cumulative colour-coded joint time-frequency representation of 4e5 features from 10 users, 1-s trials (Left). The associated topographical plot
(Right). The top of the plot is the front of the head. The greatest concentration is within 70–128 Hz
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85% was achieved. Despite using fewer channels, inferior
electrodes, and fewer trials compared to the current work,
the system performed extremely well for mixed randomised
recordings.

Recording 120 trials in a single run using the experimental
protocol presented in this work, requires 25–30 min.
Maintaining constant focus for such a long duration is
exhausting for the user. To reduce user fatigue, trials were
recorded in four blocks, each 7–8 min in duration. For each
user, the distribution properties (mean, std., rang, etc.) of the
raw EEG recordings are virtually identical in all four blocks.
Figure 10 presents the distribution properties of the recorded
blocks from user 1. The classification accuracy for user 1 is
96.7%. The raw recordings for all 4 blocks closely match each
other’s distribution properties. This indicates there are no
drifts in the recorded signals (i.e. change of an electrode’s
impedance) causing positive bias in classification accuracy.

The topographical map in Fig. 9 shows the overall activity
up to 312 ms post task onset. To demonstrate the sequence of
activations, topographical plots with 62 ms intervals are cre-
ated (Fig. 11). Each plot only contains features from the indi-
cated time range. The sequence of activation is as follows [9]:

& [0-62 ms] Left, and right Auditory Cortex: response to
auditory cue.

& [62-124 ms] Prefrontal Cortex [58]: Stimulus-driven ex-
ecutive control, initiating covert speech with auditory cue
recognition (100 ms). Left Middle Temporal Gyrus:
Lemma activation (100-124 ms).

& [124-186 ms] left Superior Temporal Gyrus: Phonological
code retrieval.

& [186-248 ms] Left and right Inferior Frontal Gyrus:
syllabification.

& [248-312 ms] Left inferior, and Superior Parietal Cortex
[58]: Goal-driven executive control, by suppressing the
Primary Motor Cortex, and activating an internal percep-
tual planning process [60–63].

The syllabification stage is completed sooner than estimat-
ed, and the 312 ms trials contain the very early stages of
perceptual planning. However, the covert articulation stage,
which occurs after the activation of the Supplementary
Motor Area [9, 64], is excluded from shortened trials as
intended. In the 312 ms trials, the spatial, temporal, and spec-
tral properties of the 4e5 most valuable features identified
from 10 participants (Figs. 9 and 11), correspond to the auto-
matic linguistic processing stages of word production prior to
articulation, and are supported by a substantial body of evi-
dence [9, 10, 12–15, 20–22, 25, 31, 32, 60]. This, in addition
to eliminating the possibility of drifts in the raw EEG record-
ings, confirm the validity of our findings.

Conclusions

By excluding motor imagery, grand average classification ac-
curacy dropped from 96.4% to 94.5%. Compared to the high-

Fig. 10 The distribution properties of raw EEG recordings in each block
for user 1. In all blocks, the mean is 0, std. is 10, the 25% and 75%
quartiles are −20 and 20 respectively, and range is near 180. They all
have Gaussian distribution. With classification accuracy of 96.7%, no
signs of signal drifting exist, suggesting that recording in blocks has
little, if any effect on classification accuracy for this data

Fig. 11 Topographical maps of brain regions generating the most distinctive features within the indicated 62 ms interval. The plot for the 248-312 ms
interval indicates the early stages of perceptual planning, before activation of the SMA (~500 ms) and covert articulation
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Gamma linguistic processing stages of word production, the
contribution of motor imagery of articulation in class separa-
bility of covert speech tasks is negligible. However, by using
312 ms trials instead of 1-s trials, the computational cost is
significantly reduced. The 312 ms trials used in this work,
only contain phonetic linguistic processing activity. Phonetic
linguistic processing prior to articulation, elicits a unique and
word-specific pattern of high-Gamma activity [12, 65], which
does not change over time [14, 15] and is not affected by
frequency [16] or priming [17]. Phonetic codes are set up
and consolidated with the acquisition of language during
childhood, and remain unchanged throughout a person’s life
[17]. Phonetic codes are stored in the long term memory, and
are processed automatically by the brain requiring no con-
scious effort from the user during trials, with immunity from
any influence or modification [16, 17, 65, 66]. The experi-
mental protocol and analysis pipeline for 312 ms trials pre-
sented in this work can be used as a framework to create an
online EEG-based 4-class linguistic BCI in future studies. The
raw EEG recordings for all ten participants in this work have
been published on BMendeley Data^ (https://doi.org/10.
17632/5c2z92vw3g.2) for the benefit of our readers.
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