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Abstract: The optimal reinsurance contract is investigated from the perspective of

an insurer who would like to minimise its risk exposure under Solvency II. Under this

regulatory framework, the insurer is exposed to the retained risk, reinsurance premium

and change in the risk margin requirement as a result of reinsurance. Depending on how

the risk margin corresponding to the reserve risk is calculated, two optimal reinsurance

problems are formulated. We show that the optimal reinsurance policy can be in the

form of two layers. Further, numerical examples illustrate that the optimal two-layer

reinsurance contracts are only slightly different under these two methodologies.

Keywords and phrases : Optimal Reinsurance; Risk Margin; General Premium Principle;

Solvency II; Technical Provision.

1. Introduction

A standard reinsurance contract is usually reached between two parties: the insurer, cedent, insurance

buyer, or even simpler, buyer, who has an interest in transferring part of its risk to the reinsurer, also

known as insurance seller, or even simpler, seller. Mathematically, let X ≥ 0 be the total risk that

the insurer faces during a fixed period, with distribution function denoted by F (·) and survival function

F̄ (·) = 1 − F (·). Moreover, the right end-point of F is denoted by xF := inf{z ∈ ℜ : F (z) = 1},

where inf φ = +∞ by convention. The reinsurance seller agrees to pay, R[X ], the amount by which

the entire loss exceeds the insurer’s amount, I[X ], and therefore I[X ] + R[X ] = X . Two most common

reinsurance contracts are the Quota-share and Stop-loss, where I[X ] = cX (with 0 ≤ c ≤ 1) and
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I[X ] = X ∧M := min{X,M} (with 0 ≤ M ≤ xF ), respectively. In order to avoid potential moral hazard

issues arising from the reinsurance arrangement, the set of feasible contracts is usually given by

F := {0 ≤ R[x] ≤ x : R[x] and x−R[x] are non-decreasing functions} . (1.1)

There is a vast academic literature on identifying the optimal risk transfer for an insurance company

within a one-period setting. The first attempts are attributed to Borch (1960) and Arrow (1963) who

consider to minimise the variance of the insurer’s retained risk and maximise the expected utility of the

insurer’s final wealth, respectively. Further extensions have been developed for various decision criteria

(see for example, Van Heerwaarden et al., 1989, Young, 1999, Kaluska, 2001, 2005, Verlaak and Beirlant,

2003, Kaluszka and Okolewski, 2008, Ludkovski and Young, 2009 etc). Two risk measures commonly

used in practice, Value-at-risk (VaR) and Conditional Value-at-risk (CVaR), are considered by Cai et

al. (2008), Cheung (2010), Chi and Tan (2011) and Lu et al. (2014). The classical risk model setting

has been successfully studied in the literature by Centeno and Guerra (2010) and Guerra and Centeno

(2008, 2010), where a natural choice for optimisation is the maximisation of the adjustment coefficient.

An optimal reinsurance contract where the counterparty default risk is incorporated into the model

has been investigated by Biffis and Millossovich (2012), Bernard and Ludkovski (2012) and Asimit et al.

(2013). Other extensions and variations of optimal reinsurance design studied in the literature include,

for example, the model with multiple reinsurers by Chi and Meng (2014) and the model with risk margins

determined via expectile risk measure by Cai and Weng (2015). A recent paper of Tan and Weng (2014)

investigates the optimal reinsurance design using an empirical approach.

A relatively recent project, namely Solvency II, has been developing in order to harmonise the reg-

ulatory environment within the European Union (EU) insurance industry. This unified methodology

applies to all insurance/reinsurance companies that operate in the EU insurance market and its legal

framework is specified in European Commission (2009). The actual implementation of Solvency II is

expected to be put in place 2016, and in the meantime, various Quantitative Impact Studies (QIS) have

been performed. The main purpose of these QIS’s has been to collect feedback from many insurance and

reinsurance companies related to the constantly augmented Solvency II specifications. The most recent

one, also known as QIS 5 (see European Commission, 2010), defines the most probable recommendations

that will later lead to the implementation of Solvency II. Thus, it is very interesting to investigate the

optimal reinsurance policy for an insurance company under the Solvency II Regime, which is the aim of

the paper.

In this paper, we only deal with a non-life insurer, since the life reinsurance contracts have different

characteristics. In addition, the buyer is regulated with the help of the Solvency II current recommen-

dations. The aim of this paper is to identify the optimal reinsurance arrangement where the buyer’s

risk is quantified by the VaR plus the change in the risk margin requirement as a result of reinsurance.

Traditionally, the cost of reinsurance has been considered to be solely the reinsurance premium. It would

be more realistic to also include the change in the cost of capital as a result of reinsurance, which is

given by the technical provisions (TP’s) under the Solvency II jurisdiction. More specifically, the TP’s

are composed of best estimate (BE) and risk margin (RM), but only the RM component is incorporated

in our optimisation objective as the BE’s are calculated gross of reinsurance. Moreover, the RM’s can
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be calculated via the existing proxy model in QIS5 with Log-Normal approximation or by taking into

account the risk profile of the underwriting risk. Depending on how the RM corresponding to the re-

serve risk is calculated, two optimal reinsurance models are formulated. We show that any admissible

reinsurance policy defined in (1.1) is dominated by a two-layer reinsurance contract. Further, it is very

interesting to point out that our numerical analysis shows similar optimal reinsurance contracts under

the two different calculation methodologies of the RM’s. The rest of the paper is organised as follows:

Section 2 defines our model, while Section 3 provides us with the main results. Finally, Section 4 gives

some numerical examples.

2. Model formulation

This section provides the details of optimal reinsurance models that are investigated in the current pa-

per. Let us denote P and π
(

R[X ]
)

as the gross premium charged by the buyer and the seller, respectively,

where π(·) represents the premium principle chosen by the reinsurer. To make our results accessible to

many reinsurance premium principles, we follow the assumption of Chi (2012), that π(·) preserves the

convex order, i.e. π(X) ≤ π(Y ) if X ≤cx Y which is equivalent to

EX = EY and E(X − d)+ ≤ E(Y − d)+, for all d ∈ ℜ,

where (x)+ := max{0, x}. The buyer’s profit is the difference between P − π
(

R[X ]
)

− I[X ] and the cost

of setting the TP’s as defined in Solvency II. The latter is defined and detailed in European Commission

(2009, 2010), but a succinct description can be found in Asimit et al. (2015), which is further used as

a baseline reference in our commentary on TP’s. As discussed in Section 1, for each line of business,

each TP consists of BE of the liabilities and its RM, where the BE is defined as an expectation of future

liabilities that are evaluated gross of any risk transfer. Thus, our optimisation objective will not take this

component into account. The RM’s are usually evaluated by considering four sources of risk: underwriting

(UwR), unavoidable market (UMR), counterparty default (CDR) and operational (OpR).

Firstly, the OpR (see for example, Asimit et al., 2015) is independent of any risk transfer, reinsurance

transaction or coinsurance, and thus, we can remove this component from our analysis. In addition,

the UwR includes the premium (PR) and reserve (RR) risks and its corresponding RM is calculated as

follows

RMUwR

(

R[X ]
)

:= g

(

a1

(

P − π
(

R[X ]
)

)

, b1EI[X ]

)

,

where g(x, y) :=
√

x2 + y2 + xy and parameters a1 and b1 are given by

a1=λ







exp
{

Φ−1(p)
√

log
(

1+σ2
PR

)

}

√

1+σ2
PR

− 1






, b1=λ







exp
{

Φ−1(p)
√

log
(

1+σ2
RR

)

}

√

1+σ2
RR

− 1






.

Here, p = 99.5%, Φ−1(·) is the quantile function of the standard Normal distribution and λ represents

the adjusted Cost-of-Capital rate. The parameters σPR and σRR are the coefficients of variation for PR

and RR, respectively, as calibrated in QIS5 under the Log-Normal assumption.

Secondly, the RM for the UMR component is evaluated via the following formula

RMUMR

(

R[X ]
)

:= cEI[X ], with c = CoC × (d− n)(d− n+ 1)∆n,



4

where CoC and d are the Cost-of-Capital rate and modified duration of the insurer’s net liability I[X ],

respectively. In addition, n is the longest duration of available risk-free financial instruments to cover

I[X ]. Moreover, ∆n represents the absolute decrease of the risk-free interest for maturity n under the

downward stress scenario of the interest rate risk sub-module (as defined in the SCR section of European

Commission, 2009).

Thirdly, the RM for CDR is given by

RMCDR

(

R[X ]
)

:= g
(

a2π
(

R[X ]
)

, b2ER[X ]
)

,

with parameters a2 and b2 given by

a2 = λ(1 −RecR) l
√

q(1− q)×






Φ
(√

log
(

1 + σ2
PR

)

− Φ−1(p)
)

1− p
−

exp
{

Φ−1(p)
√

log
(

1 + σ2
PR

)

}

√

1 + σ2
PR






,

b2 = λ(1 −RecR) l
√

q(1− q)×






Φ
(√

log
(

1 + σ2
RR

)

− Φ−1(p)
)

1− p
−

exp
{

Φ−1(p)
√

log
(

1 + σ2
RR

)

}

√

1 + σ2
RR






,

where l is a constant (usually, 3 ≤ l ≤ 5), while q and RecR represent the reinsurer one-year default

probability and recovery rate, respectively.

To quantify the insurer’s risk exposure, we also need to introduce VaR, which is a well-known risk

measure in finance and insurance. The VaR of a generic loss variable Z at a confidence level a, V aRa(Z),

represents the minimum amount of capital that makes the insurance company to be solvent at least a%

of the time, i.e.

V aRa(Z) := inf{z ≥ z0 : Pr(Z ≤ z) ≥ a},

where z0 := sup{z ∈ ℜ : Pr(Z ≤ z) = 0} represents the left-end point of the distribution function of Z.

Recall that V aRp

(

I[X ]
)

= V aRp(X)− V aRp

(

R[X ]
)

is true as a result of R[X ] ∈ F .

We are now able to introduce our optimisation problem. The classical approach in the existing litera-

ture, since the pioneering work of Cai and Tan (2007), has been to minimise the insurer’s retained risk

and reinsurance premium. In the Solvency II framework, it is translated to V aRp

(

I[X ]
)

+π
(

R[X ]
)

, since

V aRp(·) is the standard risk measure used under this regulatory framework. In addition, it also includes

the additional cost of capital as a result of buying reinsurance. That is, the difference between the RM’s

after and before the risk transfer is given by

RMUwR

(

R[X ]
)

+RMUMR

(

R[X ]
)

+RMCDR

(

R[X ]
)

−RMUwR(X)−RMUMR(X)−RMCDR(X).

Recall that the BE’s are calculated gross of reinsurance, and thus, our objective functions may not take

the BE’s into account. To simplify the representation, we further remove the last three terms in the

above equation from our objective function, since they are not sensitive to the ceded loss function R[X ].
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Assuming that the buyer reinsures only one risk, the optimisation problem, formulated with Log-

Normal approximation, becomes:

min
R∈F

H1

(

R[X ]
)

, (2.1)

where

H1

(

R[X ]
)

: = RMUwR

(

R[X ]
)

+RMUMR

(

R[X ]
)

+RMCDR

(

R[X ]
)

+π
(

R[X ]
)

+ V aRp(X)− V aRp

(

R[X ]
)

= g

(

a1

(

P − π
(

R[X ]
)

)

, b1EI[X ]

)

+ g
(

a2π
(

R[X ]
)

, b2ER[X ]
)

+c
(

EX − ER[X ]
)

+ π
(

R[X ]
)

+ V aRp(X)− V aRp

(

R[X ]
)

.

One may wonder why RR is calculated via a Log-Normal approximation, while the reinsurance pre-

mium calculation takes into account the risk profile of the underwriting policies. The insurer may choose

the Standard Formula or adjust this formula by using its belief on the distribution of X , and the most

advantageous one would be its choice.

In order to rewrite (2.1) in the absence of the Log-Normal approximation, we need to introduce

another well-known risk measure, CVaR. This risk measure has various representations in the literature

(see Acerbi and Tasche, 2002), and one of them is given by

CV aRa(Z) :=
1

1− a

∫ 1

a

V aRs(Z) ds = V aRa(Z) +
1

1− a
E
(

Z − V aRa(Z)
)

+
. (2.2)

Interestingly, this risk measure is a special case of the Haezendonck-Goovaerts class, which was introduced

many years ago by Haezendonck and Goovaerts (1982). Further details can be found in Bellini and

Rosazza Gianin (2012), Goovaerts et al. (2004 and 2012) and the references therein.

Recall that all previous RM’s have been calculated based on the Standard Formula from Solvency II,

where the Log-Normal approximation has been used in the definition of RM’s for UwR and CDR. An

alternative calculation of the RR contributions is to take into account the actual variation within the risk

itself, i.e. I[X ] and R[X ] for the UwR and CDR, respectively. Concretely, the Log-Normal approximation

for the RM’s of UwR and CDR showed that

λ

(

V aRp

(

I[X ]
)

− EI[X ]

)

≈ b1 EI[X ]

and

ϑ

(

CV aRp

(

R[X ]
)

− V aRp

(

R[X ]
)

)

≈ b2 ER[X ],

where ϑ = λ(1 − RecR) l
√

q(1− q). It has been implicitly assumed in the last two equations that I[X ]

and R[X ] are Log-Normal distributed with the same coefficient of variation. This standard assumption is

acceptable in the Solvency II framework, and the values of σRR for the recognised nine lines of business

can be found in European Commission (2010) or Asimit et al. (2015). By the above approximations, we

should guarantee that V aRp

(

I[X ]
)

≥ EI[X ], and the RM’s for UwR and CDR can be rewritten by

RMUwR

(

R[X ]
)

= g

(

a1

(

P − π
(

R[X ]
)

)

, λ
(

V aRp

(

I[X ]
)

− EI[X ]
)

)
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and

RMCDR(R[X ]) = g

(

a2π
(

R[X ]
)

, ϑ
(

CV aRp

(

R[X ]
)

− V aRp

(

R[X ]
)

)

)

respectively. Thus, if we refrain ourselves from using the Log-Normal approximation in the RM calculation

corresponding to RR, the optimisation problem (2.1) can be rewritten as follows:

min
R∈F

H2

(

R[X ]
)

, (2.3)

where

H2

(

R[X ]
)

: = g

(

a1

(

P − π
(

R[X ]
)

)

, λ
(

V aRp

(

I[X ]
)

− EI[X ]
)

)

+ c
(

EX − ER[X ]
)

+g

(

a2π
(

R[X ]
)

, ϑ
(

CV aRp

(

R[X ]
)

− V aRp

(

R[X ]
)

)

)

+ π
(

R[X ]
)

+V aRp(X)− V aRp

(

R[X ]
)

.

3. Optimal reinsurance design

In this section, we proceed with solving the optimal reinsurance problems (2.1) and (2.3). Note that

a1, a2, b1, b2 ∈ (0, 1), since CoC, λ ∈ (0, 1) and the market wide estimates for σPR and σRR showed to be

less than 22%. Therefore, it is not difficult to see that the objective function from (2.1) is increasing in

π
(

R[X ]
)

. Consequently, the first step in solving (2.1) is to find the solutions to the following optimisation

problem

arg min
R∈F

π
(

R[X ]
)

,

subject to ER[X ] = µ ∈ [0, EX ],

V aRp

(

R[X ]
)

= ν,

π
(

R[X ]
)

≤ P.

Clearly, the last inequality constraint ensures that the reinsurance premium could not exceed the insurer’s

gross premium.

Before solving the above minimisation problem, we first define a layer (a, b] of a risk Z by

L(a,b](Z) := (Z − a)+ ∧ (b− a) = (Z − a)+ − (Z − b)+, 0 ≤ a ≤ b.

Next, the analysis of the above infinite-dimensional optimisation problem can be reduced to studying

a certain finite-dimensional one, as shown in the following theorem.

Theorem 3.1. For any admissible ceded loss function R[X ], denote µ = ER[X ] and ν = V aRp

(

R[X ]
)

,

then there must exist an admissible ceded loss function R̃[X ] in the form of

R̃[X ] =







X ∧ ν + L(V aRp(X),t](X), E(X ∧ ν) ≤ µ;

X ∧ z + L(V aRp(X)−ν+z,V aRp(X)](X), otherwise,
(3.1)

for some z ∈ [0, ν] and t ≥ V aRp(X) such that

CV aRp

(

R[X ]
)

≥ CV aRp

(

R̃[X ]
)

, V aRp

(

R̃[X ]
)

= V aRp

(

R[X ]
)

and R̃[X ] ≤cx R[X ].
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Moreover, we have

CV aRp

(

R̃[X ]
)

− V aRp

(

R̃[X ]
)

=
1

1− p

(

µ− E(X ∧ ν)
)

+
. (3.2)

Proof. Using a proof similar to that of Theorem 3.2 in Chi (2012), we get that there exists an admissible

ceded loss function in the form of

R̂[X ] = L(0,d1](X) + L(V aRp(X)+d1−ν,d2](X),

for some d1 ∈ [0, ν] and d2 ∈ [V aRp(X), xF ] such that

R̂[X ] ≤cx R[X ], V aRp

(

R̂[X ]
)

= ν and CV aRp

(

R̂[X ]
)

= CV aRp

(

R[X ]
)

.

Now, building upon R̂[X ], we can construct an admissible ceded loss function R̃[X ] as in (3.1), where

t and z are determined by ER̃[X ] = ER̂[X ] = µ. More specifically, if E[X ∧ ν] ≤ µ, it is not difficult to

find that H(y) := E
(

X ∧ ν + L(V aRp(X),y](X)
)

, y ≥ V aRp(X), is a non-decreasing continuous function

with

H
(

V aRp(X)
)

= E
(

X ∧ ν
)

≤ µ and H(d2) ≥ ER̂[X ] = µ.

Thus, there must exist a t ∈
[

V aRp(X), d2
]

such that ER̃(X) = H(t) = µ. Now, if E
(

X ∧ ν
)

> µ, we

have EH̃
[

X ; d1
]

≤ ER̂[X ] = µ and EH̃[X ; ν] = E
(

X ∧ ν
)

> µ, where

H̃[X ; y] := X ∧ y + L(V aRp(X)−ν+y,V aRp(X)][X ], d1 ≤ y ≤ ν.

Moreover, EH̃[X ; y] is continuous and non-decreasing in y, and therefore, there must exist a z ∈ [d1, ν]

such that ER̃[X ] = EH̃[X ; z] = µ.

Further, we can see from the definition of R̃[X ] that V aRp

(

R̃[X ]
)

= ν and (3.2) are true. By com-

paring R̃(X) with R̂(X), we note that R̂(X) ≥ R̃(X) and R̂(X) ≤ R̃(X) are true for any X ≥ V aRp(X)

and 0 ≤ X ≤ V aRp(X), respectively. In other words, R̂ up-crosses R̃, and in turn, it follows from

Lemma 3 of Ohlin (1969) that R̃[X ] ≤cx R[X ]. It is well-known that the CVaR risk measure preserves

the convex order, and thus, we have CV aRp

(

R[X ]
)

≥ CV aRp

(

R̃[X ]
)

. The proof is now complete. �

By the above theorem, we know that any admissible ceded loss function R is dominated by R̃ (as

defined in (3.1)). According to the definition of R̃, one can find that the parameters z and t when µ

and ν are known. Moreover, as R̃[X ] is a function of µ and ν, we rewrite it as R̃[X ;µ, ν] in order to

emphasise this dependence. As a result, the study of optimal reinsurance problem (2.1) can be simplified

to solving a minimisation problem of two decision variables µ and ν. Before solving this minimisation

problem, it is necessary to elaborate the relationship between µ and ν. Specifically, for any R ∈ F with

V aRp(R[X ]) = ν, we have

L(V aRp(X)−ν,V aRp(X)](X) ≤ R[X ] ≤ X ∧ ν +
(

X − V aRp(X)
)

+
.

Consequently, (µ, ν) should satisfy
∫ V aRp(X)

V aRp(X)−ν

F̄ (x) dx ≤ µ ≤ EX −

∫ V aRp(X)

ν

F̄ (x) dx and ν ≤ V aRp(X). (3.3)

Thus, optimisation problem (2.1) is equivalent to

min
{(µ,ν)∈ℜ2

+
: (3.3) is satisfied

π(R̃[X;µ,ν])≤P}

h1(µ, ν), where h1(µ, ν) := H1

(

R̃[X ;µ, ν]
)

. (3.4)
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The analysis of the above optimisation problem can be further simplified by using the following proposi-

tion.

Proposition 3.1. For any 0 ≤ µ ≤ EX, we have

h1(µ, ν) ≥ h1

(

µ, ν(µ)
)

, ∀ 0 ≤ ν ≤ ν(µ),

where

ν(µ) := sup
{

0 ≤ t ≤ V aRp(X) : E(X ∧ t) ≤ µ
}

. (3.5)

Proof. For any 0 ≤ ν1 < ν2 ≤ ν(µ), we can show that

R̃
[

X ;µ, ν2
]

≤cx R̃
[

X ;µ, ν1
]

. (3.6)

Specifically, noting that E(X ∧ νi) ≤ µ for i = 1, 2, it can be seen from (3.1) that R̃
[

X ;µ, ν1
]

up-crosses

R̃
[

X ;µ, ν2
]

and that ER̃
[

X ;µ, νi
]

= µ for i = 1, 2. Then, (3.6) could be obtained by using Lemma 3

from Ohlin (1969).

Further, π
(

R̃
[

X ;µ, ν2
]

)

≤ π
(

R̃
[

X ;µ, ν1
]

)

follows from the assumption that π(.) preserves the convex

order. Recall that h1(µ, ν) is non-increasing in ν and is non-decreasing in π
(

R̃
[

X ;µ, ν
]

)

. Hence, the

final result is obtained, which concludes our proof. �

We now turn to study optimal reinsurance model (2.3). Recall that a1, a2, b1, b2 ∈ (0, 1). It is not diffi-

cult to find that the objective function H2

(

R[X ]
)

is increasing in π
(

R[X ]
)

and CV aRp

(

R[X ]
)

. Further,

using Theorem 3.1, we know that any admissible ceded loss function R[X ] is sub-optimal to R̃[X ;µ, ν]

where µ = ER[X ] and ν = V aRp

(

R[X ]
)

. As a result, the analysis of optimal reinsurance model (2.3)

can be simplified to solving an optimisation problem of two decision variables µ and ν. However, in

contrast to the optimisation problem (3.4), (µ, ν) is subject to more constraints. Specifically, in addition

to (3.3), another constraint, ν ≤ V aRp(X) + µ − EX (in order to guarantee the feasibility constraint

V aRp

(

I[X ]
)

≥ EI[X ]), is needed as a consequence of removing the Log-Normal approximation. Thus,

the optimisation problem (2.3) is equivalent to

min
{(µ,ν)∈ℜ2

+
:ν≤V aRp(X)+µ−EX

π(R̃[X;µ,ν])≤P and (3.3) is satisfied}

h2(µ, ν), where h2(µ, ν) := H2

(

R̃[X ;µ, ν]
)

. (3.7)

We try to further reduce the dimension of the above minimisation problem, and define

φ(µ) =: µ− E
(

X ∧
(

V aRp(X) + µ− EX
)

)

, 0 ≤ µ ≤ EX.

Noting that p = 99.5%, we assume that V aRp(X) ≥ EX in the remainder of the paper. Thus, φ(µ) is a

non-decreasing and continuous function with φ(0) ≤ 0 and φ(EX) ≥ 0. Consequently,

µ0 := inf
{

0 ≤ µ ≤ EX : φ(µ) = 0
}

is well-defined.

Proposition 3.2. If µ ≥ µ0, we get

h2(µ, ν) ≥ h2

(

µ, V aRp(X) + µ− EX
)

, ∀0 ≤ ν ≤ V aRp(X) + µ− EX.
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Whenever 0 ≤ µ < µ0, we have

h2(µ, ν) ≥ h2

(

µ, ν(µ)
)

, ∀ 0 ≤ ν ≤ ν(µ),

where ν(µ) ∈
[

0, V aRp(X)
)

is defined in (3.5).

Proof. It is first assumed that µ ≥ µ0. Now, E(X ∧ν) ≤ µ holds as a result of ν ≤ V aRp(X)+µ−EX .

We can see from the proof of Proposition 3.1 that

π
(

R̃
[

X ;µ, ν2
]

)

≤ π
(

R̃
[

X ;µ, ν1
]

)

for any 0 ≤ ν1 < ν2 ≤ V aRp(X) + µ− EX.

Furthermore, relation (3.2) yields that CV aRp

(

R̃[X ;µ, ν]
)

− V aRp

(

R̃[X ;µ, ν]
)

is non-increasing in ν.

Thus, h2(µ, ν) is non-increasing in ν by keeping in mind that h2(·) is non-decreasing in π(·) and CV aRp(·).

Hence, our first claim is justified in full.

The case in which 0 ≤ µ < µ0 can be dealt as above. The proof is finally completed. �

Remark 3.1. Proposition 3.2 says that whenever µ ≥ µ0, any admissible ceded loss function R̃[X ;µ, ν]

is dominated by R̃[X ;µ, V aRp(X) + µ−EX ], which is well-defined as

E
(

X ∧
(

V aRp(X) + µ− EX
)

)

+ E
(

X − V aRp(X)
)

+
= EX −

∫ V aRp(X)

V aRp(X)+µ−EX

F̄ (t)dt ≥ µ.

Otherwise, for 0 ≤ µ < µ0, Proposition 3.2 implies that the optimal ν must be attained over the interval
[

ν(µ), V aRp(X) + µ− EX
]

∩Nµ, where

Nµ :=
{

ν ∈
[

0, V aRp(X) + µ− EX
]

: (3.3) is satisfied.
}

, 0 ≤ µ ≤ EX.

Now, for any ν ∈
[

ν(µ), V aRp(X)+µ−EX
]

∩Nµ, we have E
(

X∧ν
)

≥ E
(

X∧ν(µ)
)

= µ. This, together

with (3.2), yields that

CV aRp

(

R̃[X ;µ, ν]
)

− V aRp

(

R̃[X ;µ, ν]
)

= 0,

which in turn implies that the third term of h2(·) from (2.3) is reduced to

RMCDR

(

R̃[X ;µ, ν]
)

= a2π
(

R̃[X ;µ, ν]
)

.

Collecting the above arguments, the analysis of minimisation problem (3.7) can be reduced to solving

two simpler optimisation problems:

(i) min
µ0≤µ

π(R̃[X;µ,V aRp(X)+µ−EX])≤P

h2(µ, V aRp(X) + µ− EX);

(ii) min
(µ,ν)∈R

π(R̃[X;µ,ν])≤P

h2(µ, ν),

where

R :=
{

(µ, ν) ∈ ℜ2
+ : 0 ≤ µ < µ0, ν ∈

[

ν(µ), V aRp(X) + µ− EX
]

∩Nµ

}

.

It seems impossible to find closed-form solutions without specifying the premium principle π(·). Thus,

some well-known premium principles are investigated in the next section in order to derive the optimal

parameters of the two-layer reinsurance.
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4. Examples and numerical analysis

The final section of the paper provides the solutions to optimal reinsurance problems (2.1) and (2.3)

for some well-known premium principles. Initially, closed-form solutions are found for expected value

premium principle, which is formally defined as

π(·) = (1 + ρ)E[·], (4.1)

where ρ > 0 represents the safety loading coefficient. Numerical solutions are then investigated for a large

class of premium principles, known as Wang’s class, for which we need to assume that the loss sample

space is composed of a finite number of possible outcomes.

4.1. Expected value premium principle. As anticipated, we now find the closed-form solutions of

optimisation problems (2.1) and (2.3) under the expected value premium principle assumption. By

Theorem 3.1, the optimal ceded loss function can be in the form of (3.1) and the analysis reduces to

solving the minimisation problems (3.4) and (3.7). A two-step procedure is used to solve these problems,

where the first step derives the optimal ν for a fixed µ, while the second step provides the global optimal

solution. Noting that µ is upper-bounded by P
1+ρ since π

(

R̃[X ;µ, ν]
)

≤ P , the value of P is critical to

the set of feasible solutions. Thus, our analysis is divided accordingly. As reinsurance is expected to be

more costly than insurance, the economic constraint, P ≤ (1 + ρ)EX , is made in this subsection.

We first study the optimisation problem (2.1), where Log-Normal approximation is used. By some

simple algebra, the objective function h1(·) can be rewritten as follows:

h1(µ, ν)=cEX+
(

C2−c+1+ρ
)

µ+C1

√

(

µ−
B

2C2
1

)2

+
3a21b

2
1

4C4
1

(

P−(1+ρ)EX
)2

+ V aRp(X)− ν, (4.2)

where Ci := g
(

ai(1 + ρ), bi
)

, i = 1, 2 and B := 2a21P (1 + ρ) + 2b21EX + a1b1
(

P + (1 + ρ)EX
)

.

In the first step, note that h1(µ, ν) is non-increasing in ν, and then we have h1(µ, ν) ≥ h1

(

µ, ν∗(µ)
)

,

where ν∗(µ) = sup
{

0 ≤ t ≤ V aRp(X) :
∫ V aRp(X)

V aRp(X)−t F̄ (z)dz ≤ µ
}

. The second step is used to solve the

following optimisation problem min
µ∈[0,P/(1+ρ)]

h1

(

µ, ν∗(µ)
)

.

1a) If P/(1 + ρ) < E
(

X ∧ V aRp(X)
)

, then for any µ ∈
[

0, P/(1 + ρ)
]

, we have ν∗(µ) < V aRp(X),

and together with (4.2) we get that

h1

(

µ, ν∗(µ)
)

= (C2−c+1+ρ)µ+C1

√

(

µ−
B

2C2
1

)2

+
3a21b

2
1

4C4
1

(P−(1+ρ)EX)2

+V aRp(X)− ν∗(µ) + cEX.

Differentiating h1

(

µ, ν∗(µ)
)

with respect to µ, we obtain

h′
1

(

µ, ν∗(µ)
)

=
C1(µ− B

2C2
1
)

√

(µ− B
2C2

1
)2+

3a2
1b

2
1

4C4
1

(

P−(1+ρ)EX
)2

−
1

F̄
(

V aRp(X)−ν∗(µ)
)

+C2 − c+ 1 + ρ. (4.3)

One may find that h′
1

(

µ, ν∗(µ)
)

is non-decreasing. Hence, the minimal value of h1

(

µ, ν∗(µ)
)

is

obtained at

µ∗
1 =

(

sup
{

0 ≤ µ ≤ P/(1 + ρ) : h′
1

(

µ, ν∗(µ)
)

≤ 0
}

)

+
,
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where sup ∅ = −∞ by convention.

1b) Otherwise, if P/(1 + ρ) ≥ E
(

X ∧ V aRp(X)
)

, we separate the discussion into two subcases:

µ ∈
[

0, E(X ∧ V aRp(X))
)

and µ ∈ [E(X ∧ V aRp(X)), P/(1 + ρ)].

For any µ ∈
[

0, E(X ∧ V aRp(X))
)

, similar arguments to those used in case (1a), the minimal

value of h1(µ, ν
∗(µ)) is attainable at

µ∗
2 =

(

sup
{

0 ≤ µ < E(X ∧ V aRp(X)) : h′
1

(

µ, ν∗(µ)
)

≤ 0
}

)

+
,

where h′
1

(

µ, ν∗(µ)
)

is given in (4.3).

If µ ∈
[

E(X ∧ V aRp(X)), P/(1 + ρ)
]

, then we have ν∗(µ) = V aRp(X) and

h1

(

µ, ν∗(µ)
)

=cEX+(C2−c+1+ρ)µ+C1

√

(

µ−
B

2C2
1

)2

+
3a21b

2
1

4C4
1

(P−(1+ρ)EX)2.

Clearly, h1

(

µ, ν∗(µ)
)

is a convex function and its minimum is attained at

µ∗
3 = max

{

sup
{

E[X ∧ V aRp(X)] ≤ µ ≤
P

1 + ρ
:

C2−c+1+ρ+
C1(µ− B

2C2
1
)

√

(µ− B
2C2

1
)2+

3a2
1b

2
1

4C4
1
(P−(1+ρ)EX)2

≤ 0
}

, E
(

X ∧ V aRp(X)
)

}

.

Finally, the minimum between h1

(

µ∗
2, ν

∗
(

µ∗
2

)

)

and h1

(

µ∗
3, ν

∗
(

µ∗
3

)

)

provides the global optimal solution

to (2.1).

Now, we turn our attention to solving the optimisation problem (2.3), where the Log-Normal approx-

imation is not used to estimate the RR within the UwR and CDR. It has been found at the end of

Remark 3.1 that for any µ ≥ µ0, we only need to solve a minimisation problem in one variable, namely

µ. The same conclusion is drawn in the next proposition for the other case in which 0 ≤ µ < µ0.

Proposition 4.1. Assume that the reinsurance premium is calculated by the expected value principle as

given in (4.1). Whenever 0 ≤ µ < µ0, we have h2(µ, ν) ≥ h2

(

µ, ν∗(µ)
)

for all ν ∈ Nµ, where

ν∗(µ) := min
{

V aRp(X) + µ− EX,M(µ)
}

.

Here, M(µ) := sup
{

s ∈ [0, V aRp(X)] :
∫ V aRp(X)

V aRp(X)−s F̄ (t)dt = µ
}

.

Proof. For any ν ∈
[

ν(µ), V aRp(X) + µ− EX
]

∩Nµ, we have π
(

R̃[X ;µ, ν]
)

= (1 + ρ)µ and

CV aRp

(

R̃[X ;µ, ν]
)

− V aRp

(

R̃[X ;µ, ν]
)

= 0.

Moreover, we get

V aRp

(

Ĩ[X ;µ, ν]
)

− EĨ[X ;µ, ν] = V aRp(X) + µ− EX − ν,

which is non-negative and non-increasing in ν. Therefore, h2(µ, ν) is non-increasing in ν, which completes

the proof. �

Remark 4.1. It is necessary to determine whenever ν∗(µ) = M(µ). Let

ϕ(µ) :=

∫ V aRp(X)

EX−µ

F̄ (t)dt− µ, 0 ≤ µ ≤ µ0.
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Clearly, ϕ(µ) is a decreasing function with ϕ(0) =
∫ V aRp(X)

EX
F̄ (t)dt ≥ 0 and

ϕ(µ0) =

∫ V aRp(X)

EX−µ0

F̄X(t)dt− µ0 ≤ E
(

X ∧
(

V aRp(X) + µ0 − EX
)

)

− µ0 = 0.

Thus,

µs
0 =: inf

{

0 ≤ µ ≤ µ0 : ϕ(µ) ≤ 0
}

is well-defined, and in turn, ν∗(µ) = V aRp(X) + µ− EX if and only if µ ≥ µs
0.

Now, one may find µ∗ and solve minimisation problem (2.3), by assuming that µ falls into one of the

following three intervals:
[

0, µs
0

]

,
[

µs
0, µ0

]

and
[

µ0,+∞
]

. As mentioned earlier, µ is upper-bounded by

P
1+ρ , and therefore, the analysis is again divided according to the value of P .

2a) If P/(1 + ρ) < µs
0, we have µ ∈ [0, P/(1 + ρ)] and µ < µs

0. Thus, ν∗(µ) = M(µ) and

CV aRp

(

R̃
[

X ;µ, ν∗(µ)
]

)

− V aRp

(

R̃
[

X ;µ, ν∗(µ)
]

)

= 0 are true according to Remarks 3.1 and

4.1. Consequently,

h2

(

µ, ν∗(µ)
)

= g
(

a1
(

P−(1 + ρ)µ
)

, λK(µ)
)

+
(

(1+a2)(1+ρ)−c
)

µ+cEX+V aRp(X)−M(µ),

where K(µ) =: V aRp(X)− EX + µ−M(µ). Clearly,

K
′

(µ) = 1−M
′

(µ) = 1−
1

F̄
(

V aRp(X)−M(µ)
) ≤ 0.

Thus, if (1 + a2)(1 + ρ)− c−M
′(µ) ≤ 0 is satisfied for any µ ∈ [0, P/(1 + ρ)], then the minimum

value of h2

(

µ, ν∗(µ)
)

is attained at µ̂∗
1 = P

1+ρ . Otherwise, a numerical solution will be employed.

2b) If P
1+ρ ∈ [µs

0, µ0), we give separate discussions for µ ∈ [0, µs
0] and µ ∈ [µs

0, P/(1 + ρ)].

For any µ ∈ [0, µs
0], we use similar arguments as used in case 2a). The minimum value of

h2

(

µ, ν∗(µ)
)

is attained at µ̂∗
2 = µs

0, if (1 + a2)(1 + ρ) − c − M
′(µ) ≤ 0 is satisfied for any

µ ∈ [0, µs
0]. Otherwise, a numerical solution may be employed.

For any µ ∈ [µs
0, P/(1 + ρ)], Remarks 3.1 and 4.1 yield that ν∗(µ) = V aRp(X) + µ− EX and

CV aRp

(

R̃
[

X ;µ, ν∗(µ)
]

)

− V aRp

(

R̃
[

X ;µ, ν∗(µ)
]

)

= 0,

which in turn imply V aRp

(

Ĩ
[

X ;µ, ν∗(µ)
]

)

− EĨ
[

X ;µ, ν∗(µ)
]

= 0. Thus,

h2

(

µ, ν∗(µ)
)

=
(

(a2 − a1)(1 + ρ) + ρ− c
)

µ+ a1P + (1 + c)EX,

and therefore, its minimum is attained at µ̂∗
3 = µs

0 if (a2 − a1)(1 + ρ) + ρ− c > 0, or µ̂∗
3 = P

1+ρ ,

otherwise.

Finally, the minimum between h2

(

µ̂∗
2, ν

∗
(

µ̂∗
2

)

)

and h2

(

µ̂∗
3, ν

∗
(

µ̂∗
3

)

)

provides the global optimal

solution to (2.3).

2c) If P
1+ρ ∈ [µ0, EX ], our analysis is divided into three cases: µ ∈ [0, µs

0], µ ∈ [µs
0, µ0] and

µ ∈ [µ0, P/(1 + ρ)].

The first subcase, µ ∈ [0, µs
0], is similar to case 2a). The minimum value of h2

(

µ, ν∗(µ)
)

is

attained at µ̂∗
4 = µs

0, if for any µ ∈ [0, µs
0] we have (1 + a2)(1 + ρ)− c−M

′(µ) ≤ 0. Otherwise, a

numerical solution is needed.

Whenever µ ∈ [µs
0, µ0], similar arguments used to derive µ̂∗

3 show that the minimum value of

h2

(

µ, ν∗(µ)
)

is attained at µ̂∗
5 = µs

0 if (a2 − a1)(1 + ρ) + ρ− c > 0, or µ̂∗
5 = µ0, otherwise.
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Finally, for any µ ∈
[

µ0,
P

1+ρ

]

, Proposition 3.2 suggests that the local solution is found via the

minimisation of h2

(

µ, V aRp(X) + µ− EX
)

. Specifically, we have

V aRp

(

Ĩ
[

X ;µ, V aRp(X) + µ− EX
]

)

− EĨ
[

X ;µ, V aRp(X) + µ− EX
]

= 0,

and hence

h2

(

µ, V aRp(X) + µ− EX
)

= a1P + (1 + c)EX +
(

(1− a1)ρ− a1 − c
)

µ+ g
(

a2(1 + ρ)µ, ϑH(µ)
)

where

H(µ) :=
1

1− p

(

µ− E
(

X ∧
(

V aRp(X) + µ− EX
)

)

)

.

If (1− a1)ρ− a1 ≥ c (which is expected to hold under a realistic parametrisation), then µ̂∗
6 = µ0.

Otherwise, a numerical solution is employed.

We now give a numerical illustration of the above derivations, and in fact we solve optimisation

problems (2.1) and (2.3) under a realistic parametrisation as suggested in QIS5. Alternatively, a short

description is provided in Asimit et al. (2015). We also compare our results with the optimal contract

given by Proposition 4.2 of Chi and Tan (2013), where the RM’s have not been included in the objective

function.

Example 4.1. In this example, we consider two different distributions for X. The first distribution

is assumed to be Pareto with shape parameter α = 3 and scale parameter θ = 1, 000, and therefore,

F̄ (x) =
(

1, 000/(x + 1, 000)
)3
. The second one is a Log-Normal distribution with location parameter

µLN = 5.786 and scale parameter σLN = 0.926. The parameter values are chosen such that the two

distributions have the same value for EX and V aR0.8(X) respectively. The choice of a confidence level

of 80% is made, since anecdotically, this level represents a rough estimate of the minimal capital that an

insurer needs to hold to keep its business running. We also choose λ = 6%/1.04, CoC = 6%, σPR = 0.1

and σRR = 0.11 as suggested in QIS5 for Fire and Other Property Damage, while d = 1.56, n = 1 and

∆n = 3% are suggested in Asimit et al. (2015). We set RecR = 50%, which is the benchmark value

used in Solvency II, and q = 6.04% that represents the one-year default probability of a B-rating reinsurer

calibrated in QIS5. Finally, it is also assumed that ρ = 0.5 and l = 3.

Assuming that the reinsurer adopts an expected value premium principle as defined in (4.1), the

feasible region of µ is upper-bounded by P
1+ρ as the premium charged by the reinsurer should not ex-

ceed the gross premium received by the insurer. Thus, we now turn to the discussion of choosing a

proper value for P . As analysed in the derivation of closed-form solutions to the optimisation prob-

lems (2.1) and (2.3), the feasible region of P , i.e. [0, (1 + ρ)EX ], is further divided into two sub-

intervals, (1a)[0, (1 + ρ)E
(

X ∧ V aRp(X)
)

] and (1b)[(1 + ρ)E
(

X ∧ V aRp(X), (1 + ρ)EX ], for problem

(2.1), while in problem (2.3) three sub-intervals of feasible value of P are considered, (2a)[0, (1 + ρ)µs
0],

(2b)[(1 + ρ)µs
0, (1 + ρ)µ0] and (2c)[(1 + ρ)µ0, (1 + ρ)EX ]. Thus, our numerical illustration is divided ac-

cording to these five intervals of P . Although the numerical boundaries of these five intervals are different

under the two distributions of X considered in this example, we try our best to employ the same value

of P for both distributions when each interval is considered, and therefore our optimal solutions may be

compared across the two distributions. In particular, Table 4.1 summarises the numerical intervals of P
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under Pareto and Log-Normal distributions respectively, together with the chosen value of P from each

interval.

Model Interval of P Pareto Log-Normal P

(2.1)
(1a) [0, 728.07] [0, 739.51] 700

(1b) [728.07, 750] [739.51, 750] 740

(2.3)

(2a) [0, 591.76] [0, 555.46] 555

(2b) [591.76, 727.96] [555.46, 739.46] 700

(2c) [727.96, 750] [739.46, 750] 740

Table 4.1. Parametrisation of P .

For each of the five cases described above, Figure 4.1 contains the plots of the optimal ceded risk

when X is Pareto and Log-Normal distributed. We find that, under the same optimisation model and

parametrisation, the insurer always retains more risk by itself when X is Log-Normal distributed as

compared to the Pareto case. This is not surprising, since Pareto has a heavier tail than Log-Normal.

Figure 4.1. Closed-form solution under expected value principle with a Pareto distri-

bution (red line) and a Log-Normal distribution (blue line), where the top row displays

(1a) and (1b) and the bottom row shows (2a), (2b) and (2c).

Table 4.2 provides the solutions across the two optimisation models (2.1) and (2.3). In all of the ten

examples investigated, the global optimal reinsurance contracts have the same two-layer form

R∗[X ] = L(V aRp(X)−ν∗,V aRp(X)](X), (4.4)

where the values of ν∗ are summarised in Table 4.2 together with the corresponding expected value of the

reinsurer’s risk µ∗. Also, under our parametrisation, V aRp(X) = 4, 848.04 in the Pareto distribution
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case, while V aRp(X) = 3, 537.65 in the Log-Normal distribution setting. The conclusion drawn from Fig-

ure 4.1, that the insurer always retains more risk under Log-Normal distribution assumption than Pareto,

is affirmed by studying Table 4.2. If we compare the values of ν∗ and µ∗ across optimisation models, we

find that there is only negligible differences between the optimal contracts solved under the two methodolo-

gies where the RM is calculated either with or without applying the Log-Normal approximation. Thus, we

can conclude that the optimal reinsurance contract is quite robust with respect to the two methodologies

of the RM evaluation within Solvency II.

Model P Distribution ν∗ µ∗

(2.1)

700
Pareto 4, 712.81 373.36

Log-Normal 3, 328.37 309.84

740
Pareto 4, 712.84 373.38

Log-Normal 3, 328.38 309.85

(2.3)

555
Pareto 4, 707.87 370

Log-Normal 3, 330.21 311.10

700
Pareto 4, 713.97 374.15

Log-Normal 3, 329.68 310.74

740
Pareto 4, 713.83 374.06

Log-Normal 3, 329.58 310.67

Table 4.2. Numerical illustration of the closed-form solution under the expected value

premium principle.

Finally, it would be interesting to compare our results with the optimal contract when the objective

function does not take into account the change in the RM’s, which can be found in Proposition 4.2 in Chi

and Tan (2013), and it is

R∗[X ] = L(V aRβ∗(X),V aRp(X)](X), with β∗ = 1/3.

It is found that V aRβ∗(X) = 144.71 in the Pareto distribution setting, while V aRβ∗(X) = 218.58 in the

Log-Normal distribution case. Thus, the insurer always retains less risk if the RM’s are included in the

optimisation problem. In other words, our optimal contracts are more conservative than the one from

Chi and Tan (2013).

4.2. Wang’s premium principle. The expected value premium principle allows us to provide closed-

form solutions to our optimisation problems. Next, we numerically find the optimal contracts for a large

family of premium principles, namely Wang’s premium principle, for which closed-form solutions usually

seem difficult to be found. There is a rich literature on insurance pricing that recognises the advantages

of this pricing method (see for example, Wang, 2000, Wang and Young, 1998, Wang et al., 1997, Yaari,

1987). Under this premium principle, we have

π(X) := (1 + ρ)

∫ ∞

0

w
(

F̄ (x)
)

dx, (4.5)
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where the distortion function w : [0, 1] 7→ [0, 1] is a non-decreasing and concave function such that

w(0) = 0 and w(1) = 1. The safety loading coefficient, ρ, is employed as in the expected value premium

principle. Thus, (4.5) also includes the expected value principle as defined in (4.1), and therefore, allows

us to conveniently compare our numerical results with the closed-form solutions. Jones and Zitikis (2003)

investigates the empirical estimator for (4.5), which is:

π̂(X) = (1 + ρ)

n
∑

i=1

φixi,n,

where φi = w
(

1− i−1
n

)

− w
(

1− i
n

)

and x1,n ≤ x2,n ≤ . . . ≤ xn,n are the sample ordered statistics.

Recall that we deal with the following family of admissible ceded loss functions:

R[X ; d1, d2, µ, ν] := L(0,d1](X) + L(V aRp(X)+d1−ν,d2](X)

s.t. ER[X ; d1, d2, µ, ν] = µ, 0 ≤ d1 ≤ ν ≤ V aRp(X) ≤ d2 ≤ xF , (4.6)
∫ V aRp(X)

V aRp(X)−ν

F̄ (x) dx ≤ µ ≤ EX −

∫ V aRp(X)

ν

F̄ (x) dx, (4.7)

which is discussed in the proof of Theorem 3.1. We further assume that the loss distribution is discrete

in order to use the sample estimates for the reinsurance premium. This is not a restrictive assumption

from the practical point of view, since this sample represents the claim history. If there is no reliable

claim history but a proxy model is socially accepted, then one may draw a sample form this model. That

is, we observe a sample of size n, which without loss of generality is assumed to be increasingly ordered,

e.g. x1 ≤ x2 ≤ ... ≤ xn. Therefore, the reinsurance premium under Wang’s premium principle becomes

π
(

R[X ; d1, d2, µ, ν]
)

=(1 + ρ)

n
∑

i=1

φi×
(

xi ∧ d1 + (xi− x⌈np⌉− d1+ ν)+− (xi− d2)+
)

, (4.8)

where x⌈np⌉ is the sample estimation of V aRp(X). The feasibility conditions for the optimisation problem

from (2.1) are

π
(

R[X ; d1, d2, µ, ν]
)

≤ P, (4.9)

while for (2.3) they are

π
(

R[X ; d1, d2, µ, ν]
)

≤ P, ν ≤ V aRp(X) + µ− EX. (4.10)

Note that
∫ V aRp(X)

V aRp(X)−ν
F̄ (x) dx and

∫ V aRp(X)

ν
F̄ (x) dx can be replaced by

E
(

X − V aRp(X) + ν
)

+
− E

(

X − V aRp(X)
)

+
=

1

n

n
∑

i=1

(

(xi − x⌈np⌉ + ν)+ − (xi − x⌈np⌉)+
)

,

and

E
(

X − ν
)

+
− E

(

X − V aRp(X)
)

+
=

1

n

n
∑

i=1

(

(xi − ν)+ − (xi − x⌈np⌉)+
)

,

respectively. Therefore, we deal with two non-convex optimisation problems that need to be transformed

into implementable formulations in some commercial optimisation software. The next two propositions

show how the optimisation problems (2.1) and (2.3) can be reformulated as Mixed Integer Nonlinear Pro-

gramming (MINLP) with linear constraints that can be efficiently solved. The idea behind implementing

(2.1) and (2.3) is the same, and thus, we only show Proposition 4.2.
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Proposition 4.2. Denote A = {0, 1}, and let M be such that M ≥ 2xn. Solving

min
µ,ν,d1,d2

H1

(

R[X ; d1, d2, µ, ν]
)

subject to (4.6), (4.7) and (4.9)

is equivalent to

min
(

d1,d2,µ,ν,u,v,w
)

∈ℜ×ℜ×ℜ×ℜ×ℜn×ℜn×ℜn

(

s,t,η,θ,γ,ξ,ψ
)

∈ℜn×ℜn×An×An×An×An×An

{

−ν − cµ+ (1 + ρ)φT
(

u+ v−w
)

+g
(

a2(1 + ρ)φT (u + v−w), b2µ
)

+ g
(

a1P − a1(1 + ρ)φT (u+ v−w), b1x− b1µ
)

}

s.t. 0 ≤ d1 ≤ ν ≤ x⌈np⌉ ≤ d2 ≤ xn

−x+ u ≤ 0,−d11+ u ≤ 0,

x− u−Mη ≤ 0,−M1+ d11− u+Mη ≤ 0,

x− (x⌈np⌉ + d1 − ν)1− v ≤ 0,−v ≤ 0,

−x+ (x⌈np⌉ + d1 − ν)1+ v−Mθ ≤ 0,−M1+ v+Mθ ≤ 0,

x− d21−w ≤ 0,−w ≤ 0,

−x+ d21+w−Mγ ≤ 0,−M1+w+Mγ ≤ 0,

x− (x⌈np⌉ − ν)1− s ≤ 0,−s ≤ 0,

−x+ (x⌈np⌉ − ν)1+ s−Mξ ≤ 0,−M1+ s+Mξ ≤ 0,

x− ν1− t ≤ 0,−t ≤ 0,

−x+ ν1+ t−Mψ ≤ 0,−M1+ t+Mψ ≤ 0,

1
T
s− nK − nµ ≤ 0,

nµ− nx+ 1
T
t− nK ≤ 0,

−P + (1 + ρ)φT
(

u+ v−w
)

≤ 0,

nµ− 1
T
(

u+ v−w
)

= 0,

where x represents the sample mean and K =
1

n

n
∑

i=1

(xi − x⌈np⌉)+.

Proof. The relevant terms of the objective function are

−ν −
c

n

n
∑

i=1

(

xi ∧ d1 +
(

xi − (x⌈np⌉ + d1 − ν)
)

+
−
(

xi − d2
)

+

)

(4.11)

+(1 + ρ)

n
∑

i=1

φi

(

xi ∧ d1 +
(

xi − (x⌈np⌉ + d1 − ν)
)

+
−
(

xi − d2
)

+

)

+g

(

a1P−a1(1 + ρ)

n
∑

i=1

φi

(

xi ∧ d1+
(

xi − (x⌈np⌉ + d1 − ν)
)

+
−
(

xi − d2
)

+

)

, b1x− b1µ

)

+g

(

a2(1 + ρ)

n
∑

i=1

φi

(

xi ∧ d1 +
(

xi − (x⌈np⌉ + d1 − ν)
)

+
−
(

xi − d2
)

+

)

, b2µ

)

,
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by taking into account (4.8) and the fact that x1 ≤ x2 ≤ ... ≤ xn. Now, note that

x ∧ y = z ⇐⇒ z ≤ x, z ≤ y, x−Mη ≤ z, y −M(1− η) ≤ z

and

max{x, y} = z ⇐⇒ z ≥ x, z ≥ y, x+Mη ≥ z, y +M(1− η) ≥ z,

where M is a large number and η is a binary variable, i.e. η ∈ A. By multiple use of the latter in (4.11)

one may conclude the first reformulation, where any M ≥ 2xn satisfies all required inequality constraints.

This completes the proof. �

The next proposition gives the reformulation of optimisation problem (2.3) and is based on the objective

function without Log-Normal approximation for the RM’s. Before stating the next proposition, we note

that (2.2) and (4.6) yield that

CV aRp

(

R[X ;µ, ν, d1, d2]
)

− V aRp

(

R[X ;µ, ν, d1, d2]
)

=
1

1− p

∫ d2

V aRp(X)

F̄ (x) dx

=
1

1− p

(

E
(

X − V aRp(X)
)

+
− E(X − d2)+

)

=
1

(1− p)n

n
∑

i=1

(

(xi − x⌈np⌉)+ − (xi − d2)+
)

.

Proposition 4.3. Solving

min
µ,ν,d1,d2

H2

(

R[X ; d1, d2, µ, ν]
)

subject to (4.6), (4.7) and (4.10)
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is equivalent to

min
(

d1,d2,µ,ν,u,v,w
)

∈ℜ×ℜ×ℜ×ℜ×ℜn×ℜn×ℜn

(

s,t,η,θ,γ,ξ,ψ
)

∈ℜn×ℜn×An×An×An×An×An

{

−ν − cµ+ (1+ρ)φT
(

u+v−w
)

+g
(

a2(1+ρ)φT (u+v−w),
ϑ

(1− p)n
(nK − 1

T
w)
)

+g
(

a1P − a1(1 + ρ)φT (u+ v−w), λ(x⌈np⌉ − ν) − λ(x− µ)
)

}

s.t. 0 ≤ d1 ≤ ν ≤ x⌈np⌉ ≤ d2 ≤ xn

−x+ u ≤ 0,−d11+ u ≤ 0,

x− u−Mη ≤ 0,−M1+ d11− u+Mη ≤ 0,

x− (x⌈np⌉ + d1 − ν)1− v ≤ 0,−v ≤ 0,

−x+ (x⌈np⌉ + d1 − ν)1+ v−Mθ ≤ 0,−M1+ v+Mθ ≤ 0,

x− d21−w ≤ 0,−w ≤ 0,

−x+ d21+w−Mγ ≤ 0,−M1+w+Mγ ≤ 0,

x− (x⌈np⌉ − ν)1− s ≤ 0,−s ≤ 0,

−x+ (x⌈np⌉ − ν)1+ s−Mξ ≤ 0,−M1+ s+Mξ ≤ 0,

x− ν1− t ≤ 0,−t ≤ 0,

−x+ ν1+ t−Mψ ≤ 0,−M1+ t+Mψ ≤ 0,

1
T
s− nK − nµ ≤ 0,

nµ− nx+ 1
T
t− nK ≤ 0,

ν − µ+ x− x⌈np⌉ ≤ 0,

−P + (1 + ρ)φT
(

u+ v−w
)

≤ 0,

nµ− 1
T
(

u+ v−w
)

= 0.

With the help of Propositions 4.2 and 4.3, numerical solutions can be obtained for a large class of

premium principles. In fact, we produce a discrete approximation of the objective functions that can be

solved in any commercial optimisation software such as MATLAB, if the underlying distribution of X is

known. In particular, we illustrate further results for the expected value principle in Example 4.2, while

results for the Wang’s premium principle are presented in Example 4.3

Example 4.2. In this example, we provide numerical approximations of optimal solutions under the

expected value premium principle. One set of 100 samples of size 1, 000 is simulated from each of the two

parametric models used in Example 4.1, so that the numerical results given in the two examples can be

compared. As it has been seen from Example 4.1, optimal contracts found in all of the ten examples have

the same two-layer form regardless of the value of P chosen. Thus, we only provide examples for cases

(1b) and (2c) with P = 740, since these cases provide a large set of feasible solutions.
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Loss Distribution Model (2.1) Model (2.3)

Pareto 4, 597.5 4, 596.9

Log-Normal 3, 461.6 3, 462.3

Table 4.3. Empirical solutions of ν∗ to optimisation models (2.1) and (2.3) under ex-

pected value principle with P = 740.

Numerous examples have been employed and showed that the estimated value of d∗2 has negligible de-

viation from its closed-form solution value V aRp(X). However, variations exist in the estimated value

of d∗1, which is due to the lack of efficiency in using the MATLAB algorithm to solve MINLP. Neverthe-

less, we have seen cost-inefficiency in transferring very small liabilities when studying Example 4.1, and

therefore, it is expected that the bottom-layer of the optimal contract to be strictly positive, i.e. d∗1 = 0.

Thus, in order to speed up the computation process, we can explicitly set d∗1 = 0 and d∗2 = x⌈np⌉ and

only compute ν∗. Clearly, the optimal reinsurance contract is as given in equation (4.4), and the mean

value of estimated ν∗ is summarised in Table 4.3. The results are satisfactorily close to its corresponding

closed-form value, since the relative errors are less than 2.5% in the Pareto distribution case and are less

than 4% in the Log-Normal setting. Thus, it can be concluded that the numerical procedure is stable.

Example 4.3. The final example provides numerical illustrations to optimal reinsurance contracts under

Wang’s premium principle. In particular, we choose the Proportional Hazards Transform (PHT) prin-

ciple, where w(t) = t0.95. In addition, ρ = 0.38 is set, while all other parameters remain the same as

in Example 4.1. The value of ρ is chosen in such manner that, under the PHT principle, the optimal

contracts found in Example 4.1 are as expensive as priced under the expected value principle. Instead of

simulating new samples, we use the same simulated data as in Example 4.2. Again, we obtain robust es-

timates for d∗2 = V aRp(X), while variation exists in the estimates of d∗1. However, by a similar argument

given in Example 4.2, it is unnatural for the insurer to cede very low layers from the total loss. Thus,

it can be explicitly set d∗1 = 0 and d∗2 = V aRp(X). The optimal reinsurance contract has the form as in

Loss Distribution Model (2.1) Model (2.3)

Pareto 4, 598.3 4, 598.3

Log-Normal 3, 462.4 3, 460.9

Table 4.4. Empirical solutions of ν∗ to optimisation models (2.1) and (2.3) under PHT

premium principle with P = 740.

equation (4.4), and a summary of the estimates of ν∗ based on our 100 samples are given in Table 4.4.

It can be seen that the optimal contracts found under PHT principle are very close to those found under

the expected value principle, which can be explained by our choice for ρ.
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