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Abstract

We study an incomplete-information model of sequential bargaining for a single object, with

the novel feature that agents are located in a network. In each round of trade, the current owner

of the object either consumes it or makes a take-it-or-leave-it offer to some connected trader.

Traders may buy in order to consume or to resale to others. We show that the equilibrium price

dynamics is non-monotone and that traders that intermediate the object arise endogenously and

attain a profit. We also provide insights on how traders’ equilibrium payoffs depend on their

location in the network.
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1 Introduction

We investigate a model of sequential bargaining with incomplete information and the distinctive

feature that agents are embedded in a network of trading relationships. There is one indivisible

object for sale, initially owned by one of the agents. All traders are risk-neutral and have a high

or low monetary valuation for the object, which is private information. In each round of trade the

current owner of the object makes a take-it-or-leave-it offer to a connected agent of their choosing.

The trader who receives this offer either accepts or rejects it. When a trader becomes a new owner,

she can either consume the object and the game ends, or the game enters a new round of trade.

The number of rounds is finite, the network is commonly known and all actions are observed.1

The assumption, that each trader is only able to bargain with a subset of the population,

captures the existence of heterogenous match-specific characteristics that may affect the feasibility

of exchange. These may include, among others, transaction costs, bonds of trust, reputation, or

other legal or geographical constraints. The study of a model with limited bargaining opportunities

and resale is of interest for two reasons. First, it captures some realistic aspects of the trade in wide

arrays of markets, ranging from over-the-counter markets to markets for artworks and collectibles.2

Second, it contributes to our understanding of micro-mechanisms of price formation.

The set of weak-Markov equilibria that we characterize has a simple structure (Proposition 1

and 2). A high-value trader acquires the object to consume it; hence, in equilibrium there are no

arbitrage opportunities for high value traders. When a low-value trader acquires the object, she

engages in a sequence of offers, until the object is sold. All her offers, but the last, come at prices

that only high-value traders are willing to accept. We refer to these offers as consumption offers

because, once accepted, the object is consumed. Unless there is no time left, consumption offers

are always followed by an offer that is accepted by both the high-value and low-value trader. We

refer to these offers as resale offers, because they come at price equal to the resale value of the

low-value trader who receives it. This latter feature implies that low-value traders also have no

arbitrage opportunities.

We call dealers those traders who get at least one resale offer with positive probability. We call

clients those traders who obtain only consumption offers. Low-value traders make zero profit. High-

1We derive the main results under the assumption that agents do not discount the future, but all the results are

robust to the introduction of discounting (Section 5.1).
2Financial products such as foreign currencies, swaps, forward rate agreements, and exotic options are almost

always traded in over-the-counter markets. These securities are subject to counter-party risk and therefore, bonds of

trusts between firms are particularly important and naturally give raise to trading networks. See Allen and Babus

(2009) for a survey on networks in financial markets.
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value traders make a positive profit if, and only if, they are dealers. Dealers arise endogenously,

depending on the network architecture and on the pattern of expected demand. Roughly speaking,

traders on the periphery of the network, and traders who have a high expected value, become

clients. Traders who provide access to valuable areas of the network become dealers and earn a

rent on their location. This result provides a micro-foundation for the prominent sociological theory

of structural holes.3

The aforementioned equilibrium properties allow us to prove two main results. Firstly, we

show that the equilibrium sequence of demanded prices is non-monotone in time (Proposition 3).

While resale offers follow a decreasing trend, consumption offers spike above subsequent and earlier

resale offers. Resale offers are decreasing in time because, as time passes, all traders become more

pessimistic about the total expected demand in the network. Refused consumption offers represent

bad news about the value of the object; as a consequence the value of the object (conditional on

still being on the market) must decrease in time. Prices in consumption offers spike, as sellers are

attempting to exploit their local market power and to capture the demand of high-value traders to

whom they have direct access.

Secondly, we provide insights on how the payoff of different dealers is affected by their location

in the network and in the actual flow of trade (Proposition 4). Our main result is that, in general,

traders who become dealers earlier obtain a payoff advantage over later dealers. Despite earlier

dealers purchasing the object at a higher price than later dealers, they acquire the good with an

higher probability. The second effect dominates the first. The decline in price only incorporates the

reduction in the expected demand of traders that have rejected consumption offers. The decline in

the probability of receiving a resale offer also incorporates the probability that earlier dealers may

have high-value and consume the object. A consequence of this is that if a trader is essential in

connecting another trader to the initial owner, than the former obtains a higher expected payoff

(provided they have the same type).4

We finally discuss the efficiency properties of equilibria. When traders’ valuations are public in-

formation, efficiency is obtained regardless of the trading network (Proposition 5). When the initial

seller is connected to all traders, in our simple binary type environment, ex-post efficiency is ob-

tained regardless of the prior information about traders’ evaluation (Proposition 6). However, when

asymmetric information is combined with limited bargaining possibilities, a seller will sometimes

3See Burt (1992). The theory of structural holes documents the phenomenon that individuals who have bridging

position in an economic network tend to obtain a payoff advantage.
4A trader i is essential to connect j to the initial owner if trader i lies in every path connecting j to the initial

owner.
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insist on a high price when she is connected to some high-expected demand trader who, incidentally,

provides access to a low-expected demand area of the network. If a high-price is demanded, the

low-value trader will be unable to acquire the object and resell it, giving rise to inefficiencies. In

spirit of the Coase conjecture, the presence of a deadline provides some commitment power to the

seller, and this is key for the source of inefficiency that we have emphasised. Section 5.1 provides an

example where the equilibrium outcome becomes ex-post efficient as the number of rounds grows

large and the discount rate goes to zero.

Section 2 introduces the model. Section 3 develops a simple example that illustrates the main

economic insights of this paper. Section 4 presents our main results. We first present our equilibrium

characterization, we then discuss price dynamics (section 4.1), equilibrium payoff ranking (section

4.2), and efficiency (section 4.3). Section 5 checks the robustness of our results to some of the

assumptions. Section 5.1 discusses discounting, section 5.2 multiple types, and section 5.3 analyzes

a simple network formation game. Section 6 concludes the main text. Appendix A discusses

multiplicity of equilibria and Appendix B contains all the proofs. Before proceeding, we review the

relevant literature.

1.1 Review of the literature.

Sequential bargaining with asymmetric information between two agents has been extensively stud-

ied (see, for example, Fudenberg and Tirole (1983), Sobel and Takahshi (1983), Cramton (1984)).

A main message in this literature is that, when the seller makes all the offers, the price at which

the object is offered declines over time because, as offers are rejected, the seller becomes more

pessimistic about the buyers’ evaluation. Our price dynamic is more articulate and it is driven by

the combination of asymmetric information, market incompleteness and opportunities for resale.

The decline in the price of resale offers, which reflects the tendency of traders to become more pes-

simistic, is combined with the incentive of sellers to use their trading connections to screen potential

buyers, creating spikes in the price demanded for the object. We also show that the combination

of asymmetric information, and the incompleteness of trade relationships, may endogenously gen-

erate a set traders– essential traders –who block the flow the object. To our knowledge, this form

of inefficiency is novel in the bargaining literature.

There a number of papers that study the effect of resale opportunities on market outcomes

under incomplete information.5 Calzolari and Pavan (2006) study revenue maximizing mechanisms

when a monopolist can sell to a single buyer, who in turn can resell to a third party. Zheng (2002)

5See Jehiel and Moldovanu (1999) for an analysis of resale markets with complete information and externalities.
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investigates the design of a seller-optimal mechanism when winning bidders can attempt to resell

the good to the other bidders. Haile (2003) considers a two-stage model in which an auction in

the first stage is followed by a resale auction, held by the first-stage winner.6 Our model sidesteps

many difficulties that are present in these earlier works by considering a simpler informational

structure, with two values and common support. On the other hand, we achieve greater generality

in modelling the resale market by allowing for an arbitrary trading network. This allows us to

investigate novel questions, such as how the location of a trader in the trading network affects her

ability to obtain rents.

Finally, our work relates to the emerging literature on markets and networks. A central and

open issue in this literature is the understanding of the role of connections in determining the terms

of trade and the efficiency of a market. Most of the existing work has focused on the exchange of

goods in buyer-seller networks with random matching, in an environment with complete information

and absence of resale possibilities (e.g., Calvo-Armengol (2003), Coromina-Bosch (2004), Manea

(2011), Polanski (2007)). Kranton and Minheart (2001) consider a buyer-seller network where

where buyers’s valuation is private information, where no resale takes place. Blume et al. (2009)

study a complete-information model buyers and sellers connected via intermediaries. Nava (2009)

develops a static model of Cournot competition in trading networks under complete information.

Gale and Kariv (2007) analyse dynamic exchange in a network under the assumption of complete

information.7 Finally, Gofman (2011) studies a reduced-form model of bargaining in over-the-

counters markets, which are modeled as trading networks. We share with this literature the general

approach of using networks to model markets, and similar research questions, such as how the

location of a trader in a network affects her payoffs. We contribute to this literature by developing

a model that incorporates simultaneously two important features of many markets: asymmetric

information and possibility of resales.

2 Model

The economy consists of a set of traders, N ≡ {1, . . . , n}, and two goods, money that everyone

owns in large quantity, and a single indivisible object initially owned by trader 1. Each trader i is

risk-neutral and has a binary private monetary evaluation for the good, vi, normalized to be either

zero or one. In our baseline model we assume that traders do not discount the future. Therefore,

regardless of the timing, if i consumes the object and pays pi his utility is vi − pi. If i does not

6See also Garratt and Troger (2006) and Krishna and Hifalir (2008).
7See also Gale and Kariv (2009) for a related experiment on trading in networks.
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consume the object but pays pi his utility is −pi. Traders are ex-ante heterogeneous and values are

independently distributed. The common prior probability that vi = 1 is πi ∈ (0, 1).

A trading network is a graph G = (N,E), where vertices N represent traders, and edges E ⊆
2N×N trading relationships. The existence of an edge ij in E indicates that traders i and j can

trade. We consider undirected and connected trading networks.8

The game consists of a finite number T of rounds of trade. An arbitrary round t develops in

three stages and it is illustrated in Figure 1:

1st. The current owner of the object s either (a) makes a take-it-or-leave-it offer at price p to one

of her neighbors i, or (b) makes no offer and waits. If she makes no offer, the game enters the

third stage of round t. Otherwise the game proceeds to the second stage.

2nd. Trader i decides whether to accept or to reject the offer. In case of rejection the game proceeds

to the third stage. In case of acceptance treader i becomes the new owner and she transfers

an amount p of money to the seller. The game proceeds to the third stage.

3rd. The current owner of the object decides whether to consume the object or not consume. The

game ends if the object is consumed. Otherwise, unless t = T , the game proceeds to the first

stage of round t+ 1.

We assume that all actions are observed by all traders, and that everything but the private

values is common knowledge. The triple Γ = 〈G,π, T 〉 represents a network trading game, which is

a multi-stage extensive form games with observed actions and independent types. In this setting

with common prior, independent types and observed action, a system of beliefs specifies, for all non

terminal public histories h, a profile of common posterior probabilities µ(h) = (µ1(h), . . . , µn(h)),

where µi(h) indicates the probability that player i has value one. We will often write µt = 〈µt−i, µti〉
for the profile of beliefs at the beginning of a round t, omitting reference to the particular history.

The adopted solution concept is perfect Bayesian equilibrium (PBE). A perfect Bayesian equilib-

rium is a strategy profile and a belief system such that the strategies are sequentially rational given

the belief system, and the belief system is consistent with Bayesian updating whenever possible

(see Fudenberg and Tirole (1991)).

The following analysis is developed under the assumptions that there are only two types, there

is no-discounting and the game consists of a finite number of rounds. We emphasize that the

8A network is undirected if ij ∈ E if and only if ji ∈ E. A path between i to j in G is a non-empty graph where

the set of vertices is {i, b1, . . . , bm, j} ⊆ N and the set of edges is {ib1, b1b2, . . . , bmj} ⊆ E. A network is connected if

there is a path between every pair of traders.
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Figure 1: Timing within a period of trade t.

assumption that agents do no discount the future has no main qualitative implications for the

equilibrium behavior. In section 5 we discuss formally the implications of relaxing the various

restrictions of the model.

3 Illustrative Example

We develop a simple example to illustrate general equilibrium properties of network trading games.

The example considers the trading network G depicted in figure 2. There are n = 5 traders

and T = 4 rounds of trade. Trader 1 is the initial owner and the profile of initial beliefs is

π = (0, 1/3, 1/2, 1/3, 2/3).

3.1 Equilibrium with complete information.

As a benchmark, we briefly discuss the case of complete information. Assume that the profile of

values is given and is common knowledge. In this case, all subgame-perfect equilibrium outcomes

are Pareto efficient. Furthermore, if there is at least a trader with value one, the object is traded

at price 1 and the initial seller extracts all the surplus. For instance, assume that trader 5 has high

value and all other traders have low value. In equilibrium the good flows from trader 1 to trader

5, via trader 2 and trader 4, each transaction occurs at price 1, and trader 5 consumes the object.
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1 51
[0]

5
[2/3]

3 2 43
[1/2]

2
[1/3]

4
[1/3]

Figure 2: Four rounds, trader 1 is the owner.

3.2 Equilibrium under incomplete information.

Consider the incomplete information case. Recall that π = (0, 1/3, 1/2, 1/3, 2/3). Denote pij the

price that trader i demands to trader j. The profile of beliefs at t is denoted by µt.

Trader 1 has low-value and therefore she sells the object to trader 2. To determine the price

that trader 1 asks we need to determine trader 2’s strategy when she receives an offer from 1 in

the first round of trade.

First, suppose that 2 is a low-value trader. In this case the only reason for purchasing the object

is to resale it to other traders. Hence, 2’s willingness to pay is the expected payoff that she obtains

in the continuation game in which she owns the object, there are three rounds of trade left, and

the beliefs are µ2 = (0, 0, 1/2, 1/3, 2/3).9 We term this payoff trader 2’s resale value, we denote it

by r2, and we derive it next.

In the continuation game, illustrated in figure 3(a), there is only one equilibrium. Trader 2 asks

price p23 = 1 to trader 3, who accepts the offer if she has high-value and rejects it otherwise.10 In

case of rejection, trader 2 makes an offer to 4 at a price which is equal to trader 4’s resale value,

that is r4 = 2/3. Trader 4 accepts this offer regardless of her value (the reason is explained in

the next paragraph). Once trader 4 becomes owner she consumes the object if she has high-value.

Otherwise, she asks a price of p45 = 1 to trader 5 in the last round of trade. Trader 5 accepts the

offer only if she has high-value. We obtain:

r2 = Pr[3 accepts p23]× p23 + Pr[3 rejects p23]× Pr[4 accepts r2]× r4 =
1

2
+

1

2
× 2

3
=

5

6

Second, suppose that trader 2 has high-value, and take as given the strategy of trader 2 when

9Since, in equilibrium, high-value traders always consume the object, once trader 2 makes an offer, it becomes

common knowledge that she has a low value, i.e., µ2
2 = 0

10If trader 3 has high consumption value she accepts any offer up to one (and then consumes the object) because,

by rejecting, she will never receive another offer in the remaining rounds of trade.
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she has low-value. By rejecting a price below her resale value, trader 2 signals that she has high-

value. In this case her expected payoff is zero because, whenever trader 1 is certain that trader

2 has value one, trader 1’s optimal strategy is to wait until the last round and ask a price of one

to trader 2. Next, consider an offer which is above trader 2’s resale value r2. Given trader 2

low-value strategy, if trader 2 rejects an offer above r2 all traders will believe that the probability

that trader 2 has value one lies somewhere in the interval [0, 1/3]. Hence, the expected payoff that

trader 2 obtains by rejecting that offer is the expected payoff that high-value trader 2 obtains in the

continuation game where trader 1 is the owner, there are three rounds of trade left, and beliefs are

µ2 = (0, µ22, 1/2, 1/3, 2/3), for some µ22 ∈ [0, 1/3]. This payoff, which we denote V2(µ
2
2), is derived

as follows.

1 51
[0]

5
[2/3]

3 2 43
[1/2]

2
[0]

4
[1/3]

(a) Three rounds left, trader 2 is the owner

1 51
[0]

5
[2/3]

3 2 43
[1/2]

2
[μ2]

4
[1/3]

(b) Three rounds left, trader 1 is the owner.

Figure 3: Two different continuation games.

In the continuation game, illustrated in figure 3(b), there is only one equilibrium payoff for trader

2. Trader 1 asks for trader 2’s resale value, which is 2/3. Trader 2 accepts the offer regardless of

her type and consumes the object if she has high value. Otherwise she asks a price of 1 to trader 3

and then to trader 4, and each of these offers is accepted only by high-value traders. Concluding, if

high-value trader 2 rejects a price above her resale value r2, she will buy the object in the subsequent

round at a price of 2/3 and will then consume, obtaining a net payoff of V2(µ
2
2) = 1/3 , for all

µ22 ∈ [0, 1/3].

It is now possible to verify that a high-value trader 2 strictly prefers to reject every price above

r2 = 5/6, because rejection would allow her to buy at a lower price in the subsequent round.

Because trader 2 will reject any offer above 5/6 regardless of her value, and because waiting one

round provides player 1 with a payoff of 2/3, we can conclude that in equilibrium trader 1 will

make an offer to trader 2 at price 5/6.
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Summary of the Equilibrium Path. In the first period trader 1 offers the object to 2 at her

resale value 5/6. Trader 2 purchases the object and consumes it if she has high-value. Otherwise,

in the second period of trade, trader 2 asks price 1 to trader 3. Trader 3 accepts the offer and

consumes the object if and only if she has high-value. Otherwise, trader 2 remains the owner and,

in the third period of trade, she offers the object to 4 at trader 4’s resale value, which is 2/3. Trader

4 buys the object regardless of her value. Finally, if trader 4 has a high-value she consumes the

object, otherwise, in the last round of trade, she offers the good to trader 5 at a price one. Trader

5 accepts the offer and consumes the good if she has high-value, otherwise the game ends.

There are four important properties that emerge from the description of the equilibrium path,

which we now discuss in turn. As we shall show in the next section, these are robust equilibrium

properties of network trading games.

Types of offers. There are two types of offers along the equilibrium path: resale offers and

consumption offers. A resale offer is at a price that is accepted both by a high and low-value

trader. Trader 2 receives a resale offer in period 1 and trader 4 receives a resale offer in period 3.

A consumption offer is at a price that makes a high-value trader indifferent between accepting and

rejecting the offer, whereas a low-value trader strictly prefers to reject the offer. Trader 3 receives

a consumption offer in period 2 and trader 5 receives a consumption offer in period 4.

Types of traders. There are two types of traders in equilibrium: clients and dealers. A client

receives only consumption offers. Trader 3 and trader 5 are clients. A dealer receives a resale offer

with positive probability. Trader 2 and trader 4 are dealers.

Price Dynamics. Consider the sequence of equilibrium offers (r2, p
2
3, r4, p

4
5) = (5/6, 1, 2/3, 1).

Figure 4 illustrates the pattern of prices over time; the bold points in the figure are the prices of

resale offers, the other points are the prices of consumption offers (the point at time zero is trader 1’s

resale value). The prices associated to resale offers are declining along the sequence of equilibrium

offers. This reflects the fact that later dealers are more pessimistic about the profitability of selling

the object. However, the price sequence is in general non-monotonic, because each consumption

offer is at a price which is higher than every price asked in future resale offers. This reflects the idea

that dealers are able to exploit their local market power against some of their directly connected

traders.
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Price

1

Consumption offers

5/6
Resale offers

2/3

2/3

Period of trade
t=0 t=2 t=3 t=4t=1

Figure 4: Price Dynamics.

Payoff ranking among traders. Clients and low-value dealers earn zero profits. Dealers with

high-value obtain positive expected profits. Furthermore, earlier dealers obtain a higher expected

payoff than later dealers. Despite earlier dealers acquire the object at a higher price than later

dealers, the former have a higher probability of acquiring the good than the latter. The second

effect dominates the former because the decline of the price associated to resale offers incorporates

only the decline in the expected demand due to the rejection of consumption offers. Whereas

the difference in the probability of acquiring a good also account for the possibility that dealers

consume the good themselves. In our example, high-value trader 2 would acquire the object for

sure at price 5/6, obtaining a payoff of 1/6. High-value trader 4 would acquire the object with

probability 1/6 and, in that event, she would pay a price of 2/3, obtaining an expected payoff of

1/6(1− 2/3) = 1/9.

We conclude with two remarks. First, the equilibrium play with incomplete information gener-

ates a number of features that are in stark contrast with the equilibrium properties under complete

information. Notably, with asymmetric information the sequence of demanded prices are not con-

stant and dealers obtain a positive profit. Second, in this example the equilibrium outcome is

ex-post efficient, i.e. the object is consumed by a high-value trader, if any exists. This does not

hold in general and section 4.3 provides general insights on efficiency in these environments.

4 Characterization of Equilibria

We focus on weak-Markov equilibria (see Fudenberg, Levine and Tirole (1983)). That is, we

restrict attention to equilibria where two conditions hold. First, the acceptance strategy of a

buyer, atj(p,µ
t | vj), and the subsequent decision to consume or not, depends only on the price

asked, the round of the game, the state of beliefs, and the private information of the buyer. Second,
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the offer made by a seller in round t depends only on the round of the game, the state of beliefs,

the private information of the seller and, in addition, the offer that she has made in round t.11

Our characterization is recursive. We characterize equilibrium strategies at an arbitrary pe-

riod t by taking as given continuation payoffs accruing from period t + 1 onward. We denote by

V t+1
i [s, (j, p),µ | vi] the continuation payoff that trader i with value vi obtains in the equilibrium of

the continuation game which starts in round t+1 following an offer to j at price p and where trader

s is the seller and the profile of posterior beliefs is µ. We write Rt+1
i = V t+1

i [i, (i, p), (µt
−i, 0) | 0]

and call it resale value of i in round t + 1. In words, this is the equilibrium expected payoff to

low-value trader i when she is the seller at period t + 1, having accepted an offer at price p in t.

We also write, for a generic µi ∈ [0, 1], V t+1
i (µi) = V t+1

i [s, (i, p), (µt−i, µi) | 1]. In words, V t+1
i (µi)

is the equilibrium expected payoff to high value trader i when she refuses an offer at a price of p in

round t and this refusal induces public beliefs µi. Because the game ends at T we let V T+1
i [· | ·] = 0

for all i ∈ N .

Proposition 1. Every weak-Markov PBE satisfies the following conditions.12

Low-Value Trader. In every round t, whenever applicable, a low-value trader:

1-L. Makes an offer (j, p) that maximizes:

Evj [a
t
j(p,µ

t | vj)]p+ (1− Evj [atj(p,µt | vj)])V t+1
i [i, (j, p),µt+1 | 0]. (1)

2-L. Accepts an offer at price p if p ≤ Rt+1
i and rejects otherwise.

3-L. Does not consume the object.

High-Value Trader. In every round t, whenever applicable, a high-value trader:

1-H. Does not make an offer and waits.

2-H. Accepts an offer at price p if p ≤ Rt+1
i , while otherwise plays one of the following:

– accepts the offer if p ≤ 1− V t+1
i (0);

11It is well know that strong Markov equilibria do not always exist in sequential bargaining games with incomplete

information. This happens because it may be necessary for the probability of acceptance of some buyer to be constant

over some interval. Hence the seller posterior will be the same after an offer in such interval is refused; but for the

probability of acceptance to be constant, the seller next offer will have to depend on the current one.
12In point 1.L, 3.L, 1H, and 3.H we are selecting some equilibria by breaking indifferences in a special way. This

simplifies our narrative, but has no effect on the set of equilibrium payoffs. For example, in 3-H if the resale value of

a high value trader is 1, then that trader is indifferent between consuming or selling the object.
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– rejects the offer if p ≥ 1− V t+1
i (µti);

– accepts with probability λ if there exists a λ ∈ (0, 1) such that

p = 1− V t+1
i (µt+1

i ), where µt+1
i =

(1− λ)µti
1− λµti

.

3-H. Consumes the object.

The first part of proposition 1 characterizes the equilibrium behavior of low-value traders. A

low-value trader only acquires the object in order to resell it. Hence, her willingness to pay equals

her resale value (2-L and 3-L). Because the willingness to pay of high-value traders is at least equal

to the resale value, along the equilibrium no seller makes an offer at a price below the resale value.

Hence, a low-value trader resales the object at a price that maximizes her expected revenues, taking

into account that once the offer is accepted her continuation payoff is zero (1-L).

The second part of the proposition characterizes equilibrium strategies of high-value traders.

Points 1-H and 3-H state that high-value traders always consume, because they cannot profit from

selling the good even though it may be possible for them to reacquire it later at a lower price. In

equilibrium there are no arbitrage opportunities. The price differential that a high-value trader

may accrue by selling today and buying in the future will not compensate her for the expected loss

suffered in case of consumption by some other trader.

2-H describes the equilibrium acceptance strategy of an high-value trader i. Rejecting an offer

below the resale value cannot be a best reply for trader i, as that would signal that she has high-

value for the object. Consider offers at a price p greater than the resale value of trader i. Recall

that if trader i had a low-value, she would reject such offer. In a separating equilibrium, high-value

trader i accepts the offer at p. In this case, a rejection would signal that trader i has low-value

and trader i would obtain a continuation payoff of V t+1
i (0). Hence, accepting is compatible with

equilibrium play only if the payoff from acquiring the object and consuming it, which is 1 − p, is

above V t+1
i (0). In contrast, in a pooling equilibrium, high value trader i would reject the offer.

In this case, by rejecting the offer, the beliefs about trader i remain unchanged and his expected

payoff is V t+1
i (µti). Hence, for pooling to be an equilibrium, it has to be the case that 1−p is below

V t+1
i (µti).

When V t+1
i (µti) < V t+1

i (0) and trader i receives an offer at a price in (1−V t+1
i (0), 1−V t+1

i (µti)),

there is no equilibrium where high value trader i plays a pure strategy. In this case, high value trader

i randomizes between acceptance and rejection in such a way that the continuation equilibrium

payoff that she obtains in case she rejects, given Bayesian updating, equals the payoff trader i

obtains by accepting and consuming the object, which is 1− p.
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It is worth noting that when V t+1
i (µti) > V t+1

i (0), and when high-value i receives an offer above

her resale value and in the range (1 − V t+1
i (µti), 1 − V

t+1
i (0)), both acceptance and rejection are

compatible with equilibrium play. This gives rise to multiple equilibria since trader i’s behavior is

essentially unrestricted. For example, for any two prices in that range, it is a best reply that trader

i rejects the lower price and that she accepts the higher price. This possibility, which is discussed

extensively in appendix A, motivates the equilibrium selection approach which is proposed next.13

To enhance our characterization we impose a continuity restriction on equilibrium play at “near”

information sets. More precisely, we require that at every information set where a high-value trader

receives an offer, she plays a pure strategy, whenever compatible with equilibrium play, and that

she uses the same pure strategy at two information sets that are equal except for the price asked

by the seller. This is expressed more formally below.

Definition 1. A weak-Markov PBE is in pure-strategies whenever possible (PWP) if the equilibrium

strategy played by every buyer satisfies two properties:

A. For any price asked in round t to a given trader a best-reply in pure strategies is played

whenever compatible with equilibrium play.

B. If accept (reject) is played in equilibrium at price p such that p > Rt+1
i , then accept (reject)

is played also at any price p′ such that p′ > p, whenever compatible with equilibrium play.

The next proposition supports our equilibrium selection criterium by showing that for every

network trading game there exists a weak-Markov PBE in PWP - hereinafter simply a PWP

equilibrium - and in some network trading game all equilibria are PWP (e.g. the game studied in

section 3 has a unique equilibrium).

Proposition 2.

1. A PWP equilibrium exists in every network trading game and in some network trading game

all equilibria are in PWP.

2. In every PWP equilibrium each offer made to trader i in round t is either:

– A resale offer: an offer at a price which equals the resale value of i;

13Another source of multiplicity is the fact that sellers may have multiple optimal offers. Appendix A also illustrates

how the multiplicity of equilibria is linked to possible indifference that potential sellers may have across offers and

how such indifference can be broken with the introduction of transaction costs.
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– A consumption offer: an offer at a price higher than trader i’s resale value and that

makes high value trader i indifferent between accepting the offer and rejecting the offer,

i.e., 1− p = Vi(µ
t+1
i ), where µt+1

i are the equilibrium updated beliefs in case of refusal.

The next two subsections describes global properties of PWP equilibria: the equilibrium price

dynamics, and how the equilibrium payoff of traders depend on their position in the network and

in the history of offers.

4.1 Price dynamics

In a PWP equilibrium the sequence of offers and exchanges develops as follows. Whenever a trader

acquires the object she consumes it if she has high-value. Otherwise she makes a sequence of offers

until the object is sold. In particular, the owner starts by making a sequence of consumption offers

to some of her neighbors. If these offers are rejected she makes a resale offer which is accepted for

sure. Hence, all possible public histories of the game can be summarized by a list of consumption

offers and resale offers, which eventually ends either because the game reaches time T or because

a high-value trader acquires the good and consumes it.

We call trading chain any public history of offers that may arise in the event in which all traders

have low-value and therefore the game reaches time T . Formally, the trading chain is a finite list

(p11, p
1
2 . . . , r

1
2, p

2
1, p

2
2 . . . , r

1
3, . . . ), where psi indicates the ith consumption offer made by the sth seller,

and rs−1s indicates the resale offer that the (s− 1)th seller makes to the sth seller.

If along the equilibrium path each seller has a unique optimal offer, the resale offer that the

(s− 1)th seller proposes to the sth seller is:

rs−1s = α1p
s
1 + (1− α1)α2p

s
2 + · · ·+

k∏
i=1

(1− αk)rss+1, (2)

where αk indicates the probability that the kth consumption offer made by the sth seller is accepted.

In words, the resale value of a trader who acquires the object is equal to the expected sale price.

In general, a seller could be indifferent among different optimal offers, in which case equilibria

exist where the seller randomizes. Consequently, the trading chain is not unique, and all offers in

the chain follow a stochastic process determined by the sellers’ equilibrium strategies. In this case,

equation 2 must hold for every realization of the random variables. Otherwise, seller s would be

making a suboptimal offer at some point.

The following result provides a sharp description of the dynamics of prices in equilibrium.
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Proposition 3. In every PWP equilibrium:

1. the price asked in resale offers is decreasing along the trading chain: for all s, rss+1 ≥ rs
′
s′+1

for all s′ ≥ s;

2. every consumption offer is at a price greater than the price asked in every subsequent resale

offer: for all s, psi ≥ rs
′
s′+1 for all s′ ≥ s;

3. For every pair of resale offers (rss+1, r
s′
s′+1) with rss+1 6= rs

′
s′+1 and s < s′, there exists some

consumption offer demanded by seller s+ 1, say ps+1
i , which is strictly higher than rss+1.

To understand the first part of proposition 3 consider two consecutive resale offers, the first at

period t and the second at period t + x. The trader who receives the resale offer at t + x knows

that all consumption offers from period t + 1 to period t + x − 1 have been rejected. Since when

a trader rejects a consumption offer all other traders update downward the beliefs that she has a

high consumption value, the trader who receives the resale offer at period t+ x is more pessimistic

about the profitability of reselling the good than the trader who receives the resale offer at period

t. Hence, the price asked in resale offers declines overtime.14

The result that consumption offers are above the subsequent resale offers reflects the ability of

sellers to use their local monopoly to demand a high price to some of their neighboring traders,

before passing the object to another dealer. While it is clear that consumption offers to clients,

which come at price one, are above all subsequent resale offers, it is less obvious that this is the

case also for consumption offers made to dealers. To gain an intuition for this phenomenon let’s

consider a special case in which a seller s makes a consumption offer to i at price pi and thereafter

a resale offer at price rj to j who, in turn, makes a sequence of consumption offers and then a resale

offer to i at price ri.

We know that the consumption offer to trader i leaves her indifferent between accepting the

offer and rejecting it. That is:

1− pi = Pr(E)[1− ri] ⇐⇒ pi = 1− Pr(E) + Pr(E)ri

where Pr(E) is the probability that trader i receives her resale offer after refusing the consumption

offer. This probability is the probability that trader j does not consume the object, times the

probability that all those traders who receive a consumption offers from j do not accept such offer.

14Another force toward the decreasing of resale values is timing. As the deadline approaches, the opportunities of

selling the object necessarily decrease.
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We can then conclude that the resale value of agent j, rj , is bounded from above by 1− Pr(E) +

Pr(E)ri, as every consumption offer is no higher than 1.15

The last part of the proposition summarizes possible non-monotonicity in the price demanded

over time. It follows by combining the observation that equilibrium resale values decline over time

(part 1 of proposition 3) and that, in equilibrium, the resale value of an agent equals the expected

price at which she will sell the object, expression 2 holds.

4.2 Payoff ranking

We now discuss the equilibrium payoff of different traders. In order to do that we classify all traders

(except the initial owner) into three categories.

Definition 2. In a given equilibrium we say that a trader is A. inactive if she receives no offers

with probability one; B. a client if she is active and the probability of getting a resale offer is zero;

C. a dealer if there is a positive probability of obtaining at least one resale offer.

With this taxonomy in mind the following corollary is a direct consequence of proposition 2.

Corollary 1. In every PWP equilibrium:

1. Every trader (except for the initial owner) is either inactive, client or dealer.

2. A trader obtains a strictly positive expected payoff if, and only if, she is the initial owner, or

she has high consumption value and she is a dealer.

Low-value traders make zero expected payoff because no offer is ever made at a price below the

willingness to pay of a low-value trader. To see that clients obtain zero profit consider the last offer

that a client obtains. By proposition 2 this offer must leave the high-value trader indifferent between

accepting and rejecting it, and since it is the last offer, it must come at a price of one. This implies

that all previous offers must be at price one as well. Finally, high-value dealers obtain a positive

expected payoff because, with some probability, they obtain an offer at their resale value. Since

every earlier consumption offer must keep them indifferent between accepting and rejecting, such

15More formally, let 1−µj be the probability that trader j does not consume the object, and let αj the probability

that all those who obtain consumption offers from j do not accept the offer. Hence:

pi = 1− Pr(E) + Pr(E)ri = 1− αj(1− µj) + αj(1− µj)r
s′
i ≥ 1− αj + αjri.

Next, note that 1− Pr(E) + Pr(E)rs
′

i is an upper bound for rj , because rj ≤ 1− αj + αjri.

17



consumption offers must be at a price strictly below one. It follows that a dealer with high-value

will, at the beginning of the game, expect to make a positive profit.

Since dealers are the only traders, other than the initial seller, who make a positive profit, we

now examine how the position of a dealer in the equilibrium trading chain affects her payoff. For

the sake of discussion, consider the case in which the trading chain is deterministic and take a

dealer i who immediately precedes dealer j in the trading chain. When comparing their expected

equilibrium payoff, there are two countervailing effects at play. The first effect is that, since the

price of resale offers decreases along the trading chain, dealer i buys at a higher price than dealer

j. The second effect is that the probability that trader i will buy the good is higher than the

probability that dealer j will buy the object. As the following proposition illustrates, these two

effects can be compared and, generally, earlier traders obtain a payoff advantage.

Proposition 4. In every PWP equilibrium:

1. If all offers to trader j are preceded with certainty by a resale offer to trader i, then the

expected utility of a high-value trader i is greater than that of a high-value trader j

2. If all resale offers to trader j are preceded with certainty by a resale offer to trader i and

πi ≥ πj, then the expected utility of a high-value trader i is greater than that of trader j

The main intuition behind the result is that despite later traders pay lower prices than earlier

traders, this price differential does not compensate them for the decrease in the probability of

obtaining the offer. The decline in price only offsets the expected demand of clients, but does not

incorporate the possibility that dealers may consume the object.16

Proposition 4 and corollary 1 are silent about the relation between the location of traders in the

trading network and their payoffs. The following corollary makes some steps in this direction. We

say that trader j is essential for trader i if j belongs to every path connecting trader i to the initial

owner. A trading network G is a tree if there is only one path between every pair of traders. A

trader is an end-trader if she is connected only to another trader and she is not the initial owner.

Corollary 2. In every PWP equilibrium

16In the example of section 3, trader 2 with value one acquires the object at price 5/6 for sure, while trader 4 with

value one buys the object at price 2/3 if both 2 and 3 have value zero (which happens with probability 1/2 times

2/3). So, high value trader 2 obtains a higher profit than high value trader 4. Note that the decrease in resale price

that occurs among the two dealers equals the probability that the client who gets the offer in between accepts it.

So, the decline in the price does not incorporate the probability that the earlier dealer 2 may consume the object.

However, this affects negatively the payoff of dealer 4.
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1. Every end-trader obtains zero profit.

2. If trader j is essential for trader i, then high-value trader j obtains a higher expected profit

than trader i.

3. If the trading network is a tree, then in every path starting from the initial owner the expected

payoff of high-value traders in the path declines with their distance from the initial owner.

The corollary points out the importance of the location of a trader in a trading network. In

particular, it emphasizes that traders who are essential in connecting other traders to the initial

owner, obtain a payoff advantage. This is an economic micro-foundation of the theory of structural

holes, which is a prominent theory in the sociological literature of networks (see Burt (1992)).

4.3 Efficiency

If the profile of values is known, a feasible outcome of the game is an allocation of the goods (object

and money) to the traders that is achievable within T periods of trade. An outcome is Pareto

efficient if it is feasible and there is no alternative feasible outcome that would make all traders

weakly better off and one trader strictly better off. In this setting, an outcome is Pareto efficient

if and only the object is consumed by a trader with value one, whenever at least one exists.

Under incomplete information, a feasible outcome is a mapping from the set of all possible

profiles of values into the set of possible feasible outcomes under complete information. Following

Holmstrom and Myerson (1983), we say that an outcome is ex-post Pareto efficient if it is Pareto

efficient in the classic sense for every profile of values.

In what follows we show that inefficient equilibrium outcomes result from the combination of

asymmetric information and incompleteness of trading opportunities. Our first result shows that

the fact that traders can only bargain with a subset of other traders does not create inefficiency as

long as the values of all traders are commonly known.

Proposition 5. Assume that values are common knowledge. For every network trading game, all

subgame perfect equilibrium outcomes are Pareto efficient.

In every subgame perfect equilibrium the strategy of a seller is to make an offer at the price of

one to a trader who has either value one or that has a path to a trader with high-value and that

can be reached in the remaining number of rounds. The strategy of a trader receiving an offer is

to accept the offer if the price does not exceed one if, and only if, she has either a high-value or
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she has a path to a trader with high-value who can be reached in the remaining number of rounds.

Hence, subgame perfect equilibrium outcomes are Pareto efficient.

The result that the architecture of the trading network does not affect the efficiency of equilibria

breaks down in the presence of asymmetric information. In short, inefficiencies may take place when

some trader i, with high expected-value, provides monopolistic access to another trader j, with low

expected- value. In that case, the object may never reach agent j, even when she is the only trader

with a high-value for the object. This happens because when trader i has high enough expected

value (relative to the expected value of j) the seller prefers to ask her a price of one rather than

her resale value. The ability of the seller to convince trader i to accept a price of one rests on the

possibility of making that offer close enough to the deadline. In fact, when the deadline approaches,

the seller can credibly threat trader i that if she rejects the offer she will not receive any offer at a

lower price in the future. The example below illustrates this point.

Example 1. There are three traders, trader 1 is the initial owner, who has a link with trader 2,

who has a link with trader 3 (i.e. N = {1, 2, 3} and E = {12, 23}). The initial profile of prior

beliefs is π = (0, π, 1/2). Suppose for simplicity that T = 2 (nothing would change for T > 2). We

consider two cases.

Case 1. π < 1/2. When π < 1/2, there is only one equilibrium in which trader 1 asks the resale

value to trader 2, which is equal to 1/2; trader 2 consumes if she has high value, otherwise she

asks a price of 1 to trader 3, who, in case she has high consumption value, accepts the offer and

consumes the object. So, even if the initial trader is not connected to all traders, for all profile of

initial beliefs π = (0, π, 1/2) where π < 1/2, every equilibrium outcome is ex-post efficient.

Case 2. π > 1/2 When π > 1/2, every equilibrium is payoff equivalent and has the following

structure: with probability λ trader 1 waits in the first round and in the second round asks a price

of one to trader 2, and with the remaining probability trader 1 asks a price of one to trader 2 in

the first period, and if the offer is rejected, trader 1 consumes the object. In both cases, trader 2

accepts the offer of 1 if and only if she has high value. Hence, the equilibrium outcome is ex-post

inefficient: trader 3 does not consume the object in the event in which she is the only trader with

high-value.

The inefficiency emphasized by example 1 is typical in network trading games. The next propo-

sition shows that in every situation in which the initial owner cannot bargain directly with all the

other traders, inefficiency arises for set of priors which has positive measure.

Proposition 6. There exists a T ∗ such that for every T > T ∗ and for every π ∈ (0, 1)n×n there is
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at least one ex-post efficient equilibrium outcome of network trading game < G,π, T > if, and only

if, the initial seller is connected to all other traders.

If the initial owner is linked to all other agents, then, as long as the time is large enough, she

asks a price of one to each trader, sequentially, and, if they all reject the respective offer, the initial

owner consumes the object. The equilibrium outcome is ex-post efficient. However, whenever there

is a trader who is essential to connect the initial owner to another set of traders, one can find

profiles of initial beliefs which are sufficiently optimistic about the value of the essential trader so

that the flow of trade will never reach the traders in latter set, leading to inefficient outcomes.

This may suggest that increasing the connectivity of a trading network would help the emergence

of efficient equilibrium outcomes, as connectivity makes each trader ”less” essential. The following

example shows that this is not always the case.17

Example 2. There are n = 4 traders and the initial profile of beliefs is π = (0, 1/2, 1/3, 2/3).

Suppose that T = 3, but the conclusion will not change if T > 3. First consider the network trading

game depicted in figure 5(a). Here, there is a unique equilibrium and the equilibrium outcome is

efficient: trader 1 sells to trader 2 at a price of 2/3, trader 2 consumes if she has high value,

otherwise she resells the good for the same price to trader 3, who consumes if she has high value,

otherwise she offers the good at a price of one to trader 4. Trader 4 acquires the good and consumes

it if she has high-value.

Consider now the new network obtained by adding a link from trader 1 to trader 4. The new

network trading game is depicted in figure 5(b). In this case all equilibrium outcomes are payoff

equivalent and in every equilibrium trader 1 will ask a price of 1 to each of his neighbors, and in

case they both reject she consumes the object. So, whenever trader 4 is the only trader who has

high-value, the equilibrium outcome is inefficient.

5 Extensions

We consider a number of extensions to our model. Section 5.1 shows that our results are robust to

the introduction of discounting, and shows that the outcome of the game becomes approximately

ex-post efficient when the time-horizon is large and discounting is small. Section 5.2 studies a

simple three player and finite-horizon game where there are three types of traders. We highlight

17This phenomenon is often referred to as Braess paradox, following the terminology of the literature on trans-

portation networks.
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Figure 5: Braess Paradox in Network Trading Games.

the complications that arise when valuations may take more than two values and we hint that the

main qualitative properties of the equilibrium characterization with two types should be robust to

the introduction of multiple types. Finally, in section 5.3 we present a simple three player network

formation game.

5.1 Discounting

We modify the model by assuming that if trader i consumes the object and pays p within period t

his utility is δt−1(vi − p), with δ ∈ (0, 1). Similarly, a trader who receives a payment p in round t

obtains utility δt−1p.

The equilibrium characterization of Proposition 1 and Proposition 2 are easily extended to a

network trading game with discounting. In fact, adopting the same exact notation, both proposi-

tions continue to hold if we discount by δ all continuation payoffs that appear in the statements.18

With this modification, corollary 1, corollary 2, proposition 3 and proposition 4 are still valid in

the case of discounting. Intuitively, discounting will only reinforce the result that resale prices de-

crease because the expected demand in the network declines, not only because of learning, but also

because the object depreciates over time. A similar intuition applies to the result that expected

utilities of high-value dealers decline along the trading chain.

The introduction of discounting, however, may decrease the revenue that the initial seller obtains

18In 1-L V t+1
i [i, (j, p),µt+1 | 0] is replaced with δV t+1

i [i, (j, p),µt+1 | 0]. In 2-L Rt+1
i is replaced with δRt+1

i . In

3-H V t+1
i (0) is replaced with δV t+1

i (0). Finally in 3-H and in Proposition 2 V t+1
i (µt

i) is replaced with δV t+1
i (µt

i).
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and it may modifie the efficiency properties of equilibrium outcomes. These two effects, the loss

of bargaining power for sellers of a durable good, and the tendency toward efficiency of bargaining

with large time horizon and small discounting, have been known, for some time, as the Coase

conjecture, and have been formally obtained in several models of bargaining (see, for example,

Bulow (1982) and Fudenberg, Levine and Tirole (1985)). We now illustrate that these effects are

present also in network trading games with discounting.

We develop a three-player example where the initial seller is connected to a middlemen, who in

turn is connected to a third trader. We know that when the time horizon is finite and traders do not

discount the future, if the expected value of the middleman is higher than that of the third trader,

then, in every equilibrium, the initial seller waits until the deadline and asks to the middleman

a high-price (see example 1, case 2). The presence of a deadline, together with no discounting,

allow the initial seller to credibly commit not to sell the good in case of a refusal of her offer.

Hence, the initial seller can extract the surplus of the high-value middleman. We have also seen

that this is a source of inefficiency, since the third trader may be the only trader with high value.

The following proposition shows that when traders discount the future, the initial seller gradually

loses her bargaining power against the middleman as the time-horizon gets larger. In particular,

when time is large enough, the object is immediately sold at the resale price. This implies that, as

discounting goes to one, the equilibrium outcome of the game is approximately ex-post efficient.

Proposition 7. Consider a network trading game with discounting. Let N = {1, 2, 3}, E = {12, 23}
and π1 = 0 . For any 1 < δ < 0 and π2 > δπ3 there exists T ∗ such that for any T > T ∗ the trading

game < G,T,π, δ > has an equilibrium where (a) in round one, trader 1 asks to trader 2 a price

1− δ(1− δπ3) and trader 2 accepts and consumes if, and only if, she has value 1; (b) if the offer is

refused, in round two trader 1 asks to trader 2 her resale value, which is equal to δπ3, and trader 2

accepts the offer; (c) in round three, trader 2 asks price one to trader 3, who accepts if, and only if,

she has value one; (d) if the offer is rejected there are no other offers until the end of the game.19

We conclude this section remarking that, under discounting, the network trading game becomes

continuous at infinity, because per-period payoffs are uniformly bounded. Following Fudenberg

and Levine (1986), we can then find an equilibrium in the infinite-horizon game by considering

the limit of a model with the deadline and discounting. With this remark in mind, we conjecture

that proposition 7 could be generalized to arbitrary network trading game: when the time horizon

is infinite and discounting vanishes, there is an equilibrium outcome of the trading game that

converges to an ex-post efficient outcome.

19When π2 < δπ3 the object is immediately sold at the resale value.
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5.2 Multiple types

We consider an example where there are three traders located in a line, i.e., N = {1, 2, 3} and E =

{12, 23}. We let T = 3 and assume that there are three possible types, (1, v, 0), with corresponding

priors (πhi , π
m
i , π

l
i). For simplicity we further assume that the initial owner has value zero (i.e.,

πl1 = 1) and that πhi = πmi = πli = 1/3 for i = 2, 3. Finally we assume that v = 1/2 + ε for some

small but positive ε. We now describe the equilibrium path using five observations.

First observation. Suppose trader 2 becomes the owner at the end of the first round (or the

second). If she has high-value, trader 2 consumes and obtains a payoff of 1. If she is medium-value,

then she waits one round, asks a price of one to trader 3 in the last round, and she consumes if the

offer is rejected. Because in the last round a trader accepts every price up to her valuation, the

continuation payoff of the medium-value trader 2 is 1/3+2v/3. If trader 2 has low-value, she makes

immediately an offer at price v to trader 3, and trader 3 accepts if she has high or medium-value

(note that 2v/3 > 1/3 because v > 1/2). Hence the continuation payoff of low-value trader 2 is

2v/3.

Next, observe that in the construction above both low-value 2 and medium-value 2 try to resell

the good to trader 3 at price 1. However, in equilibrium, low-type 2 makes an immediate offer at

price v, whereas medium value trader 2 waits that the deadline approaches before making an offer

to trader 3 at price 1. In fact, there is no equilibrium in which the medium-value 2 asks a price of

one immediately and such an offer is accepted by the high-value 3. If that were the case then the

low-value 2 would mimic the high-value and ask a price of one as well; subsequently lowering the

price to v in case of rejection. The fact that signalling occurs also in the selling stage represents an

additional complexity which is absent in the two-type model.

Second observation. The strategy of trader 2 when she receives an offer from trader 1 in the

second round is summarized in Figure 6. This strategy represents a best reply for trader 2 for

the following reasons. First, since 2v/3 is the resale value of 2’s low-type, we can specify that

everyone accepts prices below 2v/3 by assuming that an out-of-equilibrium rejection signals high-

value. Consider now an offer at a price p > 1/3 + 2v/3. If trader 2 follows the strategy and rejects

such offer, then beliefs do not change and trader 1 (who is for sure low-value) will ask in the last

round a price v < p. Hence, by refusing, all types of trader 2 are better off. Lastly, for prices in

the range (2v/3, 1/3 + 2v/3) we know that the refusal would signal that 2 has low-value. Hence,

following a rejection from 2, trader 1 will not make any other offer to 2. Therefore accepting is a
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Figure 6: Strategy of 2 with offer at t=2.

best-reply for 2.

Given the strategy outlined above, and assuming that the posterior beliefs that 2 is high-value

and medium-value are respectively µh and µm, at the beginning of the second round trader 1

will behave as follows. She will ask either price 2v/3 (i.e., the resale value of the low-value), or

1/3 + 2v/3 (i.e. the resale value of the medium-value), or will wait one round and then ask a price

of 1 (in the final round player 2 will accept all offers up to 1 if she has value one). Which offer is

optimal for trader 1 depends on the beliefs µh and µm. Observe that waiting is optimal for trader

1 whenever µh ≥ 2/3; when µh + µm = 2v
2v+1 trader 1 is indifferent between the resale value of the

medium-value trader and the resale value of the low value-trader. If posteriors were equal to prior

beliefs, the initial owner would find it optimal to ask price 1/3 + 2v/3.

Third observation. Let’s now consider the strategy of player 2 when she receives an offer from

trader 1 in the first round. This is summarized in Figure 7. First observe that, for the same reasons

outlined in our second observation, accepting every offer below 2v/3 and rejecting every offer above

1/3 + 2v/3, regardless of her type, is a best reply. However, there is no pure strategy which is

compatible with equilibrium play, when the offer is at a price in the range (2v/3, 1/3 + 2v/3).20

We now construct a mixed strategy equilibrium where: (a) the low-value trader always rejects

the offer with probability one, (b) the medium-value trader and the high-value trader accept the

20It cannot be the case that the low type refuses the offer and the high and medium type accepts the offer; for

otherwise, both the medium value and high value trader strictly prefers to refuse the offer, signal low valuation and

get an offer at a price equal to the resale of the low-type in the next round. The other cases can be ruled out with

similar arguments.
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offer with the same probability λ, and, (c) upon rejection, trader 1 is indifferent between asking

the resale value of trader 2’s low-value, 2v/3, and the resale value of trader 2’s medium-value,

1/3 + 2v/3. This construction mimics the construction of a mixed strategy in the model with

two-types.

Following our second observation above, for trader 1 to be indifferent between asking a price

of 2v/3 and asking a price of 1/3 + 2v/3 upon rejection of his first offer, we must have that (i)

µh ≤ 2/3 and (ii) µh + µm = 2v
2v+1 . Because the medium-value and the high-value accept with the

same probability λ, Bayes rule imply that

µh = µm =
1− λ

2(1− λ) + 1
.

Therefore µh + µm = 2(1−λ)
2(1−λ)+1 , and by setting 1− λ = v we guarantee that both conditions (i) and

(ii) above are satisfied.

Finally, in equilibrium, the seller must randomize in the subsequent round between asking price

2v/3 and price 1/3 + 2v/3, in such a way that both the high-value trader 2 and the medium-value

trader 2 are indifferent between accepting and rejecting the offer in the first period. Let γ(p) be the

probability with which trader 1 plays price 2v/3 given the rejection of a price p ∈ (2v/3, 1/3+2v/3).

To make the medium-value of trader 2 indifferent we must have

1

3
+

2

3
v − p = (

1

3
+

2

3
v − 2

3
v)γ(p),

or equivalently, γ(p) = 1 + 2v − 3p. And it is easy to check that γ(p) also makes the high-value of

trader 2 indifferent between accepting and rejecting.
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Fourth observation. Given the strategy of trader 2, the initial owner in the first round will

either ask the resale value of the low-value trader 2, 2v/3, or the resale value of the medium-value

trader 2, 1/3 + 2/3v, or she will wait one round. Given the specified priors, the optimal strategy

for trader 1 is to demand a price 1/3 + 2/3v in the first round.

Summarizing. In the first round trader 1 asks the resale value of the medium-value of trader 2.

Trader 2 rejects if she has low-value, while she accepts with probability λ = 1− v if she has either

a high or medium-value. In case of rejection, in the second round trader 1 asks again 1/3 + 2/3v

with probability one. Trader 2 rejects if she has low-value, but she accepts if she has either high

or medium-value. In the former case, in the last round trader 1 consumes the object. In the latter

case there are two possibilities. If trader 2 has high-value, she consumes the object. If trader 2

has medium-value, then she demands a price of 1 to trader 3, who accepts the offer if she has

high-value. Otherwise, trader 2 consumes.

5.3 Trading Network Formation

The presence of a trading relationship indicates the feasibility of a direct exchange. A connection

may be generated by some costly investment incurred by the two parties, such infrastructure build-

ing or repeated meetings to built up trust. In this section, by focusing on the three player case, we

considers a simple network-formation game that takes place ex-ante.

Assume that at t = −1 the trading network G is formed. Each link has a cost c, that is equally

shared among the pair of traders. At t = 0, with equal probability the object is allocated to one

of the trader, say trader i, and the identity of the initial owner is revealed and becomes common

knowledge. Furthermore, types are realized, but they remain private information. Afterwards, the

trading network game (G,T,π, i), where i indicates the identity of the initial owner, is played.

Define Uj(G) the expected utility of j at time t = −1. This utility depends on the equilibrium

selected in each of the games (G,T,π, i), i ∈ N .

With three traders, there are four distinct network architectures: the empty network, the partial

network, the star network and the complete network. These are depicted in figure 8. We assume

throughout that T ≥ 2 and that πi = π for i = 1, 2, 3 and some π ∈ (0, 1). In each of these networks,

regardless of the initial owner, there is always an equilibrium which is ex-post efficient. In what

follows, in case of multiplicity we always select the efficient equilibrium in order to compute the

expected utility of each trader. We now describe the four cases in more details:

27



1 21
[π]

2
[π]

3
[π]

(a) The empty network.

1 21
[π]

2
[π]

3
[π]

(b) The partial network.

1 21
[π]

2
[π]

3
[π]

(c) The star network.

1 21
[π]

2
[π]

3
[π]

(d) The complete network.

Figure 8: Networks with three traders.
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• In the empty network (figure 8(a)) the expected payoff to each trader is the probability of

becoming the owner times the probability of having a high-value, i.e., π/3. Total welfare is

π.

• In the partial network (figure 8(b)) the expected payoff of the isolated trader (trader 3 in the

figure) is π/3. The payoff of each of the other two traders is [1−(1−π)2]/3−c/2. For example,

if trader 2 is the owner, she consumes if she has high-value, and otherwise she asks a price of

1 to trader 1, who accepts if she has high-value. Total welfare is π/3 + 2[1− (1− π)2]/3− c

• Consider the star network (figure 8(c)). The expected payoff to the central trader (trader 2

in the figure) is:
1

3
[1− (1− π)3] +

2

3
(1− π)2π − c.

The first part is the payoff of the central trader in the event she is the initial owner: she

consumes if she has high-value, and otherwise she asks a price of 1 in turn to each of the

other two traders, who accept when they have high-value. The second part of the expression

is the central trader’s payoff when the owner is one of the other traders: whenever the owner

is a low-value, trader 2 buys at a price of π and when she has high-value she consumes the

object. Hence, the expected payoff of each of the peripheral traders is [π+ (1− π)π]/3− c/2.

Total welfare is 1− (1− π)3 − 2c

• In the complete trading network (figure 8(d)) each trader obtains an expected payoff of

[1− (1− π)3]/3− c and total welfare is 1− (1− π)3 − 3c

We can now characterize efficient networks, that is networks that maximize total welfare. We

also characterize pairwise stable networks: a network G so that no individual trader wants to delete

any of the link she has, and no pair of disconnected traders want to form an additional link (given

the expected payoffs described above). Figure 5.3 summarizes the characterization of efficient and

pairwise stable networks. The following proposition, which follows from simple algebra and hence

we state without proof, summarizes the main economic insights of this exercise.

Proposition 8. When the cost of forming a trading link is sufficiently low, the pairwise-stable

trading network is over-connected as compared to the socially-efficient trading network. When the

cost of forming a trading link is moderate, the pairwise stable trading network is under connected

as compared to the socially efficient trading network.

When the cost of forming a link is low, the socially efficient network has to be connected to

allow for the good to flow from the initial owner to every other traders. Because in the star network

29



1 21 2 1 2 1 2

Efficient networks

1
[π]

2
[π]

3

1
[π]

2
[π]

3

1
[π]

2
[π]

3

1
[π]

2
[π]

3
[π][π] [π] [π]

Pairwise stable networks
c

1
[π]

2
[π]

1
[π]

2
[π]

1
[π]

2
[π]

1
[π]

2
[π][π] [π]

3
[π]

[π] [π]

3
[π]

[π] [π]

3
[π]

[π] [π]

3
[π]

1/2* [1 ][2 ]2/3* [1 ]2/3* [1 ]20 c1/2*π[1- π][2- π]2/3*π[1- π]2/3*π[1- π]20

(a) Three traders, T ≥ 2 and π < 2/3.

1 21 2 1 2 1 2

Efficient networks

1 2 1
[π]

2
[π]

3

1
[π]

2
[π]

3

1
[π]

2
[π]

3

1
[π]

2
[π]

3

1
[π]

2
[π]

3
[π][π] [π] [π]

Pairwise stable networks

[π]

c

1
[π]

2
[π]

1
[π]

2
[π]

1
[π]

2
[π]

1
[π]

2
[π]

1
[π]

2
[π][π] [π]

3
[π]

[π] [π]

3
[π]

[π] [π]

3
[π]

[π] [π]

3
[π]

[π] [π]

3
[π]

1/2*π[1 π][2 π] 2/3* [1 ]2* [1 ]20 2/3*π[1 π]2 c1/2*π[1- π][2- π] 2/3*π[1- π]2*π[1- π]20 2/3*π[1- π]2 c

(b) Three traders, T ≥ 2, π > 2/3.

Figure 9: Efficient networks vs. Pairwise Stable Networks.

30



there is always an ex-post efficient equilibrium outcome, this is the efficient network architecture.

However, the star is not pairwise stable for low costs. In the star each of the peripheral traders leaves

some rent to the central player whenever they are allocated the object and they have a low value.

By forming a link between them they can extract such rent. Therefore, as the cost of forming a link

is sufficiently low, they strictly prefers to get directly connected. This over-connectivity therefore

reflects the tendency to form direct connections to extract rents that otherwise would be left to

dealers.

When the cost of forming a link is moderate, there is a different source of inefficiency. Suppose

for example that π < 2/3 and that c ∈ (2/3π(1− π), 1/2π(1− π)(2− π)). In this case, the efficient

network is the star network. However, the pairwise stable network is the empty network. The star

is not pairwise stable because the cost of the link with the central trader is too high from the view

point of the peripheral traders, given that the central trader extracts rents from the peripheral

agents. That is, peripheral traders do not internalize the value that trading links create to other

traders, thereby inducing under-connectivity as compared to the efficient trading network.

6 Conclusions

In this paper we study a sequential trading model with incomplete information, where traders are

located in a network and there is one object for sale.

We characterize a class of weak-Markov equilibria and provide two main results. First, we show

that the price dynamics is non-monotone, and we describe the pattern. Second, we show that

dealers, who intermediate the object, arise endogenously and earn a profit. The rents that dealers

earn are determined by their position in the trading chain, which in turns depend on their position in

the network. Furthermore, we provide insights on how the combination of asymmetric information

and the incompleteness of trading relationships determine inefficient equilibrium outcomes. We

check the robustness of our results by considering the implications of introducing discounting,

infinite horizon, and multiple types.

In our model, sellers can only bargain with a single trader at a time. Further research may

focus on different and possibly more general trading mechanisms. Furthermore, in our model there

is only one object for sale. The presence of multiple objects would introduce competition among

owners and also represents an interesting avenue for further research.
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Appendix A

In this section we illustrate the consequences of having multiple equilibria using an example. The

example considers the trading network G depicted in figure 10. There are n = 5 traders, T = 6

rounds of trade and the initial profile of beliefs is π = (0, 1/3, 1/3, 2/3, 2/3).

Trader 1 has a low-value and therefore she will make an offer to one of her neighbor. The

optimal offer will depend on the acceptance strategy of 2 and 3. We restrict attention, without loss

of generality, to the case in which in the first period trader 1 makes an offer to trader 2.

Following proposition 1, to determine the equilibrium strategy of low value trader 2 we need to

derive the resale value of trader 2. In this case, the resale value of trader 2 is unique and equal to

R2
2 = 8/9. In fact, in the continuation game in figure 11(a) trader 2 will make a consumption offer

at a price of 1 to trader 5, and in case of rejection will sell the object to trader 1 at trader 1’s resale

value, which, at that point, is equal to 2/3. Hence, the strategy of low-value 2 when she obtains

an offer in the first period from trader 1 is to accept every offer at a price below R2
2 and to reject

offers at higher prices.

To determine the equilibrium behavior of trader 2 when she has high-value we need to determine

V 2
2 (0) and V 2

2 (1/3). That is, we need to characterize equilibria in the continuation game in figure

11(b). Note that, regardless of the belief about 2, i.e. µ2 ∈ [0, 1/3], trader 1 is indifferent between

the following two equilibrium paths:

1. Trader 1 makes a resale offer to trader 2 at 8/9, who accepts the offer. In this case high value

trader 2 gets a payoff of 1/9.21

21If trader 2 has a low value she will ask a price of 1 to trader 5 and, upon rejection, will sell the object to

trader 1 at her resale value which is, at that point, 2/3. So, trader 2’s expected profit (or trader 2’s resale value) is
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Figure 11: Two different continuation games.

2. Trader 1 makes a resale offer to trader 3, which is also equal to 8/9. In the ensuing continuation

equilibrium, trader 2 acquires the good when both trader 3 and trader 5 have low value, which

happens with probability 2/9 and in that case she pays a price of 2/3; her expected profit is

therefore 2/27.22

Since trader 1 is indifferent between the two paths, the following strategy is optimal: if µ2 = 0 in

the continuation game in figure 11(b) then trader 1 ”plays” path 1 with probability σ(0), and path

2 with the remaining probability, whereas if µ2 = 1/3 then trader 1 ”plays” path 1 with probability

σ(1/3), and path 2 with the remaining probability. Hence, for µ2 ∈ {0, 1/3}, we have that:

V 2
2 (µ2) =

1

9
σ(µ2) +

2

27
[1− σ(µ2)] ∈

[
1

9
,

2

27

]
.

Note that R2
2 ≤ 1− V 2

2 (µ2). We can the distinguish two cases.

Case 1. Equilibria where σ(0) > σ(1/3). In this case V 2
2 (0) > V 2

2 (1/3). Proposition 1 and the

definition of PWP equilibria imply that in every PWP equilibrium we have that: high value trader

2 accepts every offer at a price p ∈ [8/9, 1− V 2
2 (0)], mixes for offers at a price p ∈ (1− V 2

2 (0), 1−
V2(1/3)], and rejects all offers at an higher price.

There are however equilibria which are not PWP. Consider for example an offer in the first

period at a price p ∈ [8/9, 1− V2(0)] and suppose that trader 2 accepts that offer with probability

2/3 + 1/3× 2/3 = 8/9.
22Indeed, once accepted the offer from trader 1, trader 3 consumes if she has high value, otherwise she asks a price

of 1 to trader 4, who accepts the offer if she has high value. Upon rejection, trader 3 resales the object to trader 1

who then asks a price of 2/3 to trader 2.
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1/2. Then, in case of rejection, at the beginning of the second period all traders beliefs that trader

2 has high value with probability µ2 = 1/5. For trader 2 to be indifferent between accepting and

rejecting the offer at price p in the first period it has to be the case that 1 − p = V 2
2 (1/5). This

is possible under the conjecture that, in case of rejection of offer p, in the second round of trade

trader 1 plays path 1 with probability σ(1/5), where σ(1/5) solves:

V 2
2 (1/5) = σ(1/5)

1

9
+ [1− σ(1/5)]

2

27
= 1− p,

and it is easy to verify that such value of σ(1/5) exists. Restriction A in the definition of PWP

equilibria rules out these equilibrium play by postulating that whenever there is a best reply which

is in pure strategy traders will coordinate on that.

Case 2. Equilibria where σ(0) < σ(1/3). In this case V 2
2 (0) < V 2

2 (1/3). Proposition 1 and the

definition of PWP equilibria implies that there are two types of PWP equilibria: in one equilibrium

high value trader 2 accepts every offer at a price p ∈ [8/9, 1−V 2
2 (1/3)] and rejects offers at a higher

price; in the other equilibrium high value trader 2 accepts every offer at a price p ∈ [8/9, 1−V 2
2 (0)]

and rejects offers at a higher price.

There are however equilibria which are not PWP. In these equilibria some offers at a price within

the range [1 − V 2
2 (1/3), 1 − V2(0)] are accepted, and other offers in the same range are rejected.

Restriction B in the definition of PWP rules out these equilibrium plays by imposing consistent

behaviour between information sets that differs only for the price asked by the seller.

We conclude the discussion with two observations. First, despite the restrictions that the def-

inition of PWP imposes on the equilibrium play, in this network trading game there are multiple

PWP equilibria. Second, in this example multiple equilibria are induced by the indifference that

treader 1 has between offers. A small introduction of trader specific transaction costs will break

this indifference leading to a unique equilibrium outcome. Suppose that if trader 1 sells to trader

2 then trader 1 has to pay a transaction cost of τ12, while if trader 1 sells to trader 3, then she

pays a transaction cost of τ13, where τ12 > τ13 and they are both very small. There are no other

transaction costs in the economy. Note that now, in the continuation game depicted in figure 11(b),

trader 1 strictly prefers path 2 to path 1. Hence, if in the first period trader 1 makes an offer to

trader 2 and the offer is rejected, in the second period trader 1 will make a resale offer to trader 3,

i.e., σ(µ2) = 0 for all µ2 ∈ [0, 1/3]. So, in this context, the introduction of small transaction costs

leads to a unique equilibrium, which is a PWP equilibrium. The equilibrium path is the following:

trader 1 makes a consumption offer to trader 2 at p12 = 1 − V 2
2 (0) = 25/27, and, upon rejection,

trader 1 asks the resale value (which is approximately) r13 = R3
3 = 8/9 to trader 3, who accepts

the offer. If trader 3 has low value then she makes a consumption offer to trader 4 at a price of
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p34 = 1− V 4
4 = 1, and, if rejected, she resells back the good to trader 1 at r31 = R5

1 = 2/3, who, in

turn, sells it to trader 2 at r12 = R6
2 = 2/3. If trader 2 has a high value she consumes; otherwise

she asks a price of p25 = 1 to trader 5.

Appendix B

Proof of Proposition 1. We prove the proposition by induction. We show that all equilibria in round

T have the desired properties; we then show that these properties hold in every weak-Markov PBE

of every game starting in round t, given that these properties are satisfied in every weak-Markov

PBE of every game starting from t+ 1 to T .

First consider round T . Recall that V T+1
i [· | ·] = 0. It is always optimal for a low-value trader

to make some offer at price one. Not making any offer is also a best reply only if µj = 0 for

all j who are i’s neighbors. Payoffs are clearly unaffected by this possibility. Accepting an offer

at price above RT+1
i = 0 provides negative payoff, hence refusing is the only action compatible

with equilibrium play. In round T the low-value trader is indifferent between consuming and not

consuming. It is always optimal for a high-value trader to wait and consume since µTj ≤ 1 for every

j. Again, making an offer at price 1 is also a best reply when µTj = 1 for some j neighbor of i,

but has no effect on equilibrium payoffs. For a high value trader it is optimal to accept every price

below or equal to one. Note that there is no equilibrium where price 1 is refused by the high-value,

because the seller would have an incentive to slightly undercut his price.

Next, assume that properties 1-L, 2-L, 3-L and 1-H, 2-H, 3-H hold for every weak-Markov PBE

of every game starting in round t + 1. We now prove that these properties hold for every game

starting at t.

Consider 3-H. Consuming at the end of round t is always optimal for a high-value trader;

otherwise according to induction hypothesis she will waits and consumes in t + 1. Consider 3-L.

Consuming gives 0 payoff to a low-value trader, while Rt+1
i ≥ 0 is the continuation value from not

consuming. Hence, unless Rt+1
i = 0, a low-value trader strictly prefers not to consume the object.

Next, consider 2-L. Suppose trader i accepts an offer in round t, she does not consume in the last

stage of round t, and she makes an offer at the beginning of round t+ 1, then, Bayesian updating

together with our induction hypothesis, imply that µt+1
i = 0. Hence, accepting an offer at time t

and not consuming, gives a payoff to i of:

V t+1
i [i, (i, p), (0, µt−i)|0]− p = Rt+1

i − p
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On the other hand, rejecting the offer of a seller s provides V t+1
i [s, (i, p), (µt+1

i , µt−i)|0] ≥ 0. Hence,

it is always optimal for trader i to refuse every price strictly greater than Rt+1
i . We now show that a

low value trader i accepts offers at prices p < Rt+1
i . For a contradiction, suppose that trader i refuses

with positive probability some offer at price p where p < Rt+1
i . Since p < Rt+1

i accepting gives a

strictly positive payoff. Therefore rejecting can be a best reply only if V t+1
i [s, (i, p), (µt+1

i , µt−i)|0] >

0. We now show that this is impossible.

To see this, we write the continuation payoff of trader i as follows:

V t+1
i [s, (i, p), (µt+1

i , µt−i)|0] =
∑
e∈E

Pr[e] (Ri(e)− p(e))

where E is the set of events under which i will receive an offer at price p(e) that she will accept.

Since V t+1
i [s, (i, p), (µt+1

i , µt−i)|0] > 0 there must exist some e ∈ E such that

Ri(e)− p(e) > 0,

where Ri(e) is the resale value of trader i when she becomes owner after accepting offer p(e). In

other words, for V t+1
i [s, (i, p), (µt+1

i , µt−i)|0] > 0, trader i must receive, with some probability, an

offer at a price below his resale value. However, note that when e is realized, by our induction

hypothesis, trader i accepts all prices lower or equal to Ri(e), regardless of her value. Hence, the

seller offering p(e) could strictly improves her payoff by slightly increasing the price, a contradiction

to sequential rationality.

Consider now 2-H. Note first that since the low type always accepts an offer below or equal to

the resale value, there is no equilibrium where the high type refuses such an offer with positive

probability. Otherwise she would signal that she has high value and get zero payoff. Next, suppose

that i receives an offer at a price p such that p > Rt+1
i . Recall that a low value trader always rejects

such an offer. Suppose that 1 − p ≥ V t+1
i (0), i.e. the continuation value of i given that everyone

beliefs she is a low type. Then accepting is a best reply because by rejecting she induces µt+1
i = 0

and therefore she obtains V t+1
i (0), while if she accepts and consumes she obtains 1 − p. Suppose

that 1− p ≤ 1− V t+1
i (µti). In this case rejecting is a best reply because acceptance provides payoff

1−p, which is below the continuation value from rejection given belief updating. Finally accepting

with probability λ is a best reply only if the trader is indifferent between acceptance and rejection,

given that upon rejection beliefs are updated according to Bayes rule.

Next consider 1-L. To see that in equilibrium every low-value seller must maximize the objective

in expression 1, it is sufficient to recall that, when proving 2-L we have shown that the continuation

payoff of every low-value trader who has sold an object is always zero.
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We finally consider 1-H. To prove that a high-value trader prefers to wait in round t and sub-

sequently consume, we need to show that her continuation payoff for the game just starting after

any of her offers in t cannot be above one, i.e., for every offer (j, p) that i can make in t we have

that V t
i [i,µt|1] ≤ 1, where V t

i [i,µt|1] is given by expression 1. First, note that if the offer (j, p)

is refused with probability 1, then the induction hypothesis implies that trader i consumes in the

subsequent round and therefore V t
i [i,µt|1] = 1. Hence, suppose that the offer (j, p) is accepted

with some positive probability. We distinguish two cases.

First, assume that p > Rt+1
j . If the offer is rejected the seller waits and consumes in round

t + 1. If the offer is accepted, then the price must be less than one, since we are assuming by

induction that no trader obtains a continuation greater than one if she has value zero, and we are

assuming that high-value traders consume immediately when they are owner in every period t′ > t.

Moreover, since we have proved above that a low-value trader rejects every offer above her resale

value, if j accepts the offer, she must be an high type and therefore she consumes in period t+ 1.

Overall, this implies that V t
i [i,µt|1] ≤ 1.

Second, suppose the offer is at a price p = Rt+1
j . Note that asking p < Rt+1

j is suboptimal

for the seller given that the offer is accepted for sure and that in a weak-Markov equilibrium the

continuation for the seller is the same regardless of the price asked, when the price below or equal

to Rt+1
j . In this case the offer is accepted and therefore the payoff of the high-value seller i by not

consuming and imitating a zero type seller is:

V t
i [i,µt|1] = Rt+1

j + V t+1
i [j, (j, p), (µt−i,−j , µ

t+1
i , µt+1

j )|1].

If i never gets another offer along the equilibrium path, then her payoff is equal to Rt+1
j , which by

the induction hypothesis is not greater than one. So, suppose that there exists a positive probability

that i gets another offer along the equilibrium path.

Since the induction hypothesis implies that in every equilibrium starting from t+1 onward each

seller with value 1 consumes the good whenever she acquires it, then from t + 1 onward someone

who buys the good and does not consume is believed to be a low-value trader. Because low-value

traders reject every offer above their continuation value, if i sells the good and she obtains another

offer at t′ > t the price asked to her will be higher or equal to the resale value at t′ (we have seen

that no seller asks a price below the resale value). Therefore i will accept that offer and consume

afterwards.

Taking this into consideration, assume that, starting from the acceptance of j in round t, there

are k subsequent histories of play that lead to another offer being made to i. Let’s denote by
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Ri(1), . . . , Ri(k) the continuation values of the low type i after these histories. Along each history

a number of offers is made to other players. For each of the continuation history define o1, . . . , ok

the set of players that receive an offer. Let r(ox) indicate the probability that all traders in ox have

value zero. Let Pr(ox) indicate the probability that the history x ensues. Given the above, and

given that the probability that all offers are refused in ox is less or equal than r(ox) we know that:

V t+1
i [j, (i, p), µt+1, | 1] ≤

∑
j Pr(ox)r(ox)[1−Ri(x)] (note that we have removed the probability that

j consumes and this can only strengthen the inequality).

Then, we observe that Rt+1
j ≤

∑
x Pr(ox)r(ox)Ri(x) + [1−

∑
x Pr(ox)r(ox)] since the price at

which i sells the good in t to j, i.e. Rt+1
j , cannot exceed an upper bound given by the case in

which, with probability Pr(ox)r(ox) the good is sold at price Ri(x) for all x, while with probability

1−
∑

j Pr(ox)r(ox) it is sold at price 1 (which, by our induction hypothesis, is the maximum price

at which the good could be ever sold). These considerations imply that Rt+1
j +V t+1

i (j, (j, p), µt+1 |
1) ≤ 1. �

Proof of Proposition 2. We first show that an equilibrium in PWP always exist. We do this by

induction. We show that a PWP equilibrium exists in the last round and then we show that we

can construct a PWP equilibrium for a game starting in round t taking as given the existence of a

PWP equilibrium in round t+ 1. In doing so we use the one-shot deviation principle for dynamic

incomplete information games (see Hendon et al. (1996)).

The equilibria we construct is as follows. The strategy profile satisfies the properties defined

in Proposition 1 at every information set. Furthermore, for the case of the high value trader who

receives an offer in round t we define her strategy (i.e. acceptance probability) as follows:
1 if p ≤ L = max{Rt+1

i , 1− V t+1
i (0)}

λi(p) if L < pt ≤ U = max{L, 1− V t+1
i (µti)}

0 if p > U

(3)

The defined strategy profile satisfied proposition 1 and in addition satisfies restriction A and re-

striction B in the definition of PWP equilibria.

To see that the prescribed strategy profile constitute an equilibrium when a the game starts in

round T is straightforward. For a game starting in round T and for any potential seller, we have

V T+1
i (µi) = RT+1

i = 0 for all µi and for all i. Hence, it is a best reply for a high-value trader is to

accept every offer up to a price of one.

Therefore it remains to show that the specified strategy is a best reply in round t, taking as given

the continuation equilibria in round t+ 1. In fact, since the strategy profile satisfies the properties
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in proposition 1, we only need to show that that it is always well defined. The only concern in this

case is the existence, for every price in (1 − V t+1
i (0), 1 − V t+1

i (µti)) (whenever this interval is not

empty), of a µ∗i < µti such that p = 1 − V t+1
i (µ∗i ). In fact, when i receives an offer in the range

(1 − V t+1
i (0), 1 − V t+1

i (µti)) the only best reply is to randomize and for this to be possible there

must exists a µ∗i < µti such that p = 1−V t+1
i (µ∗i ). Existence is guaranteed because the equilibrium

payoff correspondence, as a function of the prior beliefs, has a closed graph (see Fudenberg and

Tirole (1991)).

We now prove the second part of the statement. Consider two cases: (A) V t+1
i (0) ≥ V t+1

i (µt)

and (B) V t+1
i (0) < V t+1

i (µt).

Case (A). Three subcases are possible: (i) Rt+1
i ≥ 1 − V t+1

i (µti), (ii) 1 − V t+1
i (µti) ≥ Rt+1

i ≥
1− V t+1

i (0), and (iii) Rt+1
i < 1− V t+1

i (0). In case (i) the only PWP best reply requires the high-

value buyer to reject an offer for a price greater than Rt+1
i . In case (ii) the only PWP best reply

requires the high-value to reject any offer strictly above 1− V t+1
i (µti) and mix between acceptance

and rejection in (Rt+1
i , 1 − V t+1

i (µti)]. Note that in the latter instance p = 1 − V t+1
i (µ∗i ) for some

µ∗i ≤ µ
t+1
i . In case (iii), the only PWP best reply specifies acceptance in (Rt+1

i , 1−V t+1
i (0)] , mixing

in (1− V t+1
i (0), 1− V t+1

i (µti)], and rejection in (1− V t+1
i (µti), 1]. These observations together with

the strategy of the low-value trader and the Markov property of equilibria imply that a seller can

never find it optimal to sell the good at a price which is different from Rt+1
i or 1 − V t+1

i (µt+1
i ),

where µt+1
i is computed using Bayes rule.

Case (B). Three subcases are also possible: (i) Rt+1
i ≥ 1 − V t+1

i (0), (ii) 1 − V t+1
i (0) ≥ Rt+1

i ≥
1 − V t+1

i (µti), and (iii) Rt+1
i < 1 − V t+1

i (µti). Case (i) is the same as above. In case (ii) there are

two possible PWP best replies. First, to reject every offer above resale up to price 1. Second, to

accept every offer up to 1−V t+1
i (0) and to reject every offer above. In case (iii) the only PWP best

reply is to accept every price up to 1−V t+1
i (0) and to reject every price above. These observations

together with the strategy of the low-value buyer and the Markov property imply that a seller can

never find it optimal to sell the good at a price which is different from Rt+1
i or 1 − V t+1

i (µt+1
i ),

where µt+1
i is computed using Bayes rule.

�

Proof of Proposition 3. We prove part 2 of the proposition only. Part 1 follows immediately from

2. The proof is by induction. The Proposition holds at T − 1, because every resale offer at T will

be at zero. Suppose that the conjecture holds at every t′ > t and consider a consumption offer pdi

at time t.

39



First we introduce some notation. Following the consumption offer (i, p) from seller s in round

t many continuation trading chains can ensue in equilibrium. Among all those trading chains, we

consider the following set of trading chains: each of the trading chain in the set differs from the

other in at least one offer, and each of the trading chain leads to a seller different from s becoming

the next owner. Say that there are k of these trading chains. For trading chain x ∈ {1, . . . , k}, name

ox = {ix1 , . . . , ixm} the set of traders receiving a consumption offer in the trading chain before the

first resale offer and name dx the first trader in the chain that receives a resale offer (the first future

seller after s). For each y = 1, . . . ,m, let r(ixy) indicate the equilibrium probability that ixy refuses

the consumption offer. Let r(ox) indicate the equilibrium probability that all the consumption

offers to {ix1 , . . . , ixm} are rejected. Finally, let p(ixy) denote the price of the consumption offer to ixy ,

R(dx) the resale value of dx when she receives the resale offer, and Pr(ox) indicate the probability

that trading chain x is played in equilibrium.

The first observation is that s, starting from t + 1, expects to obtain the same continuation

payoff along each of the trading chain x = 1...k. That is, for each x, y ∈ {1, . . . , k}:

[1− r(ix1)]p(ix1) + · · ·+ r(ox)R(dx) = [1− r(iy1)]p(iy1) + · · ·+ r(oy)R(dy). (4)

Condition 4 is simply a standard indifference condition for mixed strategies: if that condition did

not hold, it would not be possible for both trading chains to occur with strictly positive probability

in equilibrium, because seller s would find profitable to deviate from the prescribed equilibrium

strategy at some point where the two trading chains differ.

The second observation is that for every x = 1...k the following holds:

R(dx) ≤ [1− r(ix1)]p(ix1) + · · ·+ r(ox)R(dx) ≤ (1− r(ox)) + r(ox)R(dx), (5)

where the first inequality follows because, by our induction hypothesis R(dx) ≤ p(ixy) for all y =

1...m, and the second inequality follows because p(ixy) ≤ 1 for all y = 1...m. Now, combining

the inequalities in 5 with the indifference condition 4 we obtain that for every x, y ∈ {1, ..., } the

following holds

R(dx) ≤ (1− r(oy)) + r(oy)R(dy) (6)

The third observation is the following. A trading chain x ∈ {1, .., k} is such that either: (i)

after that dx as received a resale offer there is a positive probability that in the future trader i

receives a resale offer, or (ii) this probability is zero. Name the trading chains which satisfy (i)

trading chains {1, ..., z}, while the one that satisfy (ii) are {z + 1, ..., k}. Next, for each x = 1...z,

let ox1 , . . . , o
x
h the set of paths starting from dx and leading to a resale offer to i. As before, r(oxj )
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represents the probability that all elements of the path oxj , excluding future sellers (i.e. dealers)

but possibly including i, refuse their offers. Then, denote the resale price to i following path oxj by

R(ixj ) and the probability that the path oxj ensues as Pr(oxj ). We know that for every x = 1, . . . , z

and j = 1, ...,m, the following holds:

R(dx) ≤ 1− r(oxj ) + r(oxj )R(ixj )

Therefore we conclude, using the previous observations 1 and 2, that for every x = 1, . . . , k and

every y = 1, . . . , z, and every j = 1, ...,m we have:

R(dx) ≤ (1− r(oy)r(oyj )) + r(oy)r(oyj )R(iyj ). (7)

The following fourth observation concludes the proof. We show that the consumption offer that i

obtains at t is pi ≥ (1 − r(oyj )r(oy)) + r(oy)r(oyj )R(iyj ) for at least one path y = 1...z (who recall

passes via dy and then reaches i, where y may be i).

As a first step, observe that if z = 0, then that means, by construction, that i only receives

consumption offers i from in future periods, and so i is a client, and each consumption offer is equal

to 1, including the one in period t, i.e., pi = 1. In this case the claim follows. So, suppose z > 0,

i.e., with some probability i receives a resale offer. In this case, we have that 1− pi must equal the

continuation payoff of i given that he rejects the offer, which is the probability that he obtains a

resale offer in the future times the net profit in that case which is 1 minus the price she pays (her

resale value).23 Formaly:

1− pi =
z∑
j=1

Pr(oj)r(oj) Pr(vdy = 0)

h(j)∑
w=1

Pr(ojw)r(ojw)(1−R(ijw))


≤

z∑
j=1

Pr(oj)r(oj)

h(j)∑
w=1

Pr(ojw)r(ojw)(1−R(ijw))


≤ max

j=1,...,z
r(oj)

[
max
w=1...h

r(ojw)(1−R(ijw))

]
where the first inequality follows because we have removed the probability that dealers consume

which is below one, and the second inequality follows because we have selected the maximum value

among all trading considered trading chains.

23 Note that if trader i receives another consumption offer before receiving the resale, then at that consumption

offer she must be indifferent between accepting and rejecting, where rejecting equals the probability that she receives

an offer at the resale value in the future. In the next formula, for sake of exposition, we consider the case where if i

rejects the consumption offer, in every path in which he receives a resale offer, she does not receive other consumption

offers. The other case can be proved in the same way by taking into account the aforementioned argument, and so

details are not provided.
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Rewriting the above equation we then obtain that there exists a y = 1...k and j = 1...m so that

pi ≥ (1− r(oy)r(oyj )) + r(oy)r(oyj )R(iyj ). This, together with inequality 7 completes the proof of the

proposition. �

Proof of Proposition 4. Let’s consider all the different histories of offers which start from the initial

seller and in which trader i gets a resale offer for the first time and name these different resales

Ri(1), . . . , Ri(k). If this set is empty, than by assumption both i and j makes a zero payoff and the

result holds. So suppose it is not empty. Let the path x be the path that leads to resale offer Ri(x),

where x = 1...k. In the path x, we denote by ox the traders in that path who receives an offer,

excluding both trader i and trader j. r(ox) indicates the probability that all traders in ox refuse

the respective consumption offer or, they do not consume if they have received a resale offer; r(ix)

and r(jx) denote the probability that i and j refuse an offer along the path x, whenever they are

included in the path (otherwise set these numbers equal to one). Finally, Pr(ox) is the probability

that the path occurs in equilibrium.

We can write the expected utility of trader 1 at the beginning of the game, condition on having

value 1, as follows:

Ui(1) =
∑
x

Pr(ox)r(ox)r(jx) (1−Ri(x)) .

Next, for each path x, let’s consider the different paths that start when i receives the resale offer

at the price Ri(x) and that lead to a resale offer to j. If this set is empty then the result follows.

Suppose it is not empty. Call the price of these resale offers to j as Rxj (1), . . . , Rxj (l). For each

Rxj (y) let oxy indicate that set of traders in the path that leads to the resale offer to j, excluding

j himself. Let Pr(oxy) the probability that the path occurs in equilibrium, conditional on path x

occurring. Let r(oxy) be the probability that all element in the path refuse the offer (or in case of

sellers that they have value zero conditional on the path occurring). Let Uj(1) indicate the interim

utility of a trader j with value 1 at the start of the game.

We know that

Uj(1) =

k∑
x=1

Pr(ox)r(ox)(1− πi)

 l∑
y=1

Pr(oxy)r(oxy)(1−Rxj (y))

 .
We now note that, from the proof of proposition 3 (observation 2, inequality 6), for every

x = 1, ..., k, with associated y = 1, ..., l, k, l > 0, we have that

Ri(x) ≤ (1− r(oxy)) + r(oxy)Rxj (y),
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and therefore

1−Ri(x) ≥ r(oxy)(1−Rxj (y)).

Observe that the fact that j might receive a consumption offer before his resale along the path oxy

may only relax the bound. So,

Ui(1) ≥
∑
x

Pr(ox)r(ox)r(jx)

[∑
y

Pr(oxy)r(oxy)(1−Rxj (y))

]
.

Now note that in the first part of the statement of the proposition we have that r(jx) = 1, and

therefore we conclude that

Ui(1) ≥
∑
x

Pr(ox)r(ox)

[∑
y

Pr(oxy)r(oxy)(1−Rxj (y))

]
> Uj(1).

To prove the second part of the statement, consider that r(jx) ≥ (1 − πj). Then, the assumption

that πi ≥ πj is sufficient to show that Ui(1) > Uj(1). This concludes the proof of the proposition.

�

Proof of Proposition 5. Let d(i, j|G) be the geodesic distance between i and j. Consider the fol-

lowing strategy profile. In period t = 1, .., T , if trader i receives an offer (i, p) she accepts if and

only if p ≤ 1 and there exists a j ∈ N such that vj = 1 and d(i, j|G) ≤ T − t − 1; otherwise she

rejects the offer. If trader i is the owner in period t then she consumes whenever vi = 1 or vj = 0

for all j such that d(i, j|G) ≤ T − t. Otherwise, trader i asks a price of 1 to a trader l such that

d(l, j|G) ≤ T − t+ 1, where vj = 1.

To verify that this strategy profile constitutes a subgame perfect equilibrium, one can proceed by

induction with respect to t, starting from t = T . It is also immediate to verify that the equilibrium

outcome is Pareto Efficient. Furthermore, every other subgame perfect equilibrium has a strategy

profile that is different from the one above only when there are indifferences. For example, when

trader i is the owner at t, she has vi = 0 and she cannot reach any other trader with value 1 in the

remaining period, we have prescribed above that trader i consumes. Of course, prescribing to sell

and a price of 0, or to randomize between the two actions, will not change the equilibrium outcome.

In fact, a tedious argument shows that every subgame perfect equilibrium outcome is equivalent to

a subgame perfect equilibrium outcome derived with the above strategy. This completes the proof

of the proposition. �

Proof of Proposition 6. Suppose G is such that the initial owner is linked to all other traders, and

let T ∗ = n− 1. Then the following is an ex-post efficient equilibrium: trader 1 asks a price of 1 to
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each of his neighbors sequentially, each of the trader accepts the offer if and only if they have high

value, and, if they all reject the offer, trader 1 consumes the good.

Next, let i = 1 be the initial seller and let N1(G) indicate the set of traders in G connected to

1. Suppose that G is such that N1(G) 6= N \ {1}. We show that for every T , there exists some

profile of π such that under T and π every equilibrium is ex-post inefficient. If T < |N1(G)| (where

| · | indicates the cardinality of the set), then every equilibrium is ex-post inefficient because some

traders cannot be reached. So, let T ≥ |N1(G), and assume that it is sufficiently large. Let πj = πH

for all j ∈ N1(G) and let pij = πL for all j ∈ G/N1(G). The initial seller can always play the

following strategy: wait till |N1(G)| periods are left and then she asks a price of 1 to each of her

neighbors in sequence. This strategy will provide an ex-ante payoff of 1− (1− πH)|N1(G)|.

Suppose now that there exists an equilibrium outcome that is Pareto efficient. Then, there must

exist at least one trader j linked to the initial seller who receives an offer at her resale value with

probability one. Since j is getting a resale offer with probability one, the highest consumption offer

that she can accept before receiving the resale offer is at a price:

p∗ = 1− (1− πL)n−|N1(G)|−2(1− πH)|N1(G)|−1(1− πL) < 1

Hence, an upper bound to the expected payoff that the initial seller can make in every equilibrium

in which at least one of the traders linked to her receives a resale offer is:

1− (1− πH)|N1(G)|−1 + (1− πH)|N1(G)|−1πHp
∗ + (1− πH)|N1(G)|[1− (1− πL)n−|N1(G)|−1].

Substituting the upper bound for p∗ in the expression above, after some elaboration we get that

the upper bound in revenue from the strategy above is lower than 1− (1− πH)|N1(G)| whenever

1− (1− πL)n−|N1(G)|−1
[
1 + πH(1− πH)|N1(G)|−2

]
< 0,

which is always satisfies for sufficiently small πL. When the condition above holds the initial seller

is better off by asking a price of one to all her neighbors and an inefficiency arises. �

Proof of Proposition 7. Consider first any arbitrary subgame starting in round T − 1 with trader 1

as owner. For any belief profile µT−12 such that µT−12 ≥ δπ3 trader 1 asks price one in round T − 1

and makes no subsequent offer in case the offer is refused. Player 2 accepts only if she has value

one. Note that if 2 is the owner at the beginning of T − 1 and she has value zero she makes an

offer at price one to 3. Trader 3 accepts if she has value one and rejects otherwise. If 3 rejects then

2 makes no other offer. Observe that the same happens in any round t when 2 has low-value and

she is the owner (recall that it is known that 1 has value zero).
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Figure 12: Strategy of 2 (low and high-value).

Consider now a subgame where 1 is the owner and there are three periods left. Focus on the

case where µT−22 > δπ3. In fact, when µT−22 ≤ δπ3, then it is optimal for 1 to sell at the resale

value to 2 and the proposition holds. Moreover, even in a subgame starting in any previous round

with some π2 ≤ δπ3 the proposition trivially holds.

First, we obtain the equilibrium acceptance strategy of player 2 using our Proposition 1 (modified

taking into account the remarks of subsection 5.1) and the continuation payoffs V T−1
2 (0), V T−1

2 (µT−22 )

and RT−12 . We know that V T−1
2 (0) = 1 − δπ3 because in this case 1 prefers to ask to 2 the resale

value. We know that RT−12 = δπ3. Finally we know that V T−1
2 (µT−22 ) = 0, because µT−22 > δπ3.

Hence, when there are two rounds left player 1 will ask price one to 2. Given the considerations

above, we know that the equilibrium strategy for 2 is the one depicted in figure 12 where (omitting

player 2 subscripts from now on) λT−2 = µT−2−δπ3
µT−2(1−δπ3) , because in round T − 1 player 1 must be

indifferent between asking price one and asking the resale value of 2 (equal to δπ3), and therefore

we must have µT−1 = δπ3.

Once the acceptance strategy of 2 has been specified, we can now compute the optimal strategy

for player 1. Given the acceptance strategy of 2, trader 1 can focus on three offers: (A) asking the

resale value, in which case the offer is accepted for sure; (B) asking 1− δV T−1(0) = 1− δ(1− δπ3),
which is accepted with probability 1 only by the high-value; (C) asking price one, which is accepted

by the high-value with probability λT−2. Note that when (B) is refused 1 will subsequently ask the

resale value of 2, that is δπ3 while when (C) is refused he will ask again price one (he is indifferent

at that point between asking one and the resale). We conclude that player 1 obtains the following

payoffs in the three offers that she considers:

A. δπ3

B. µT−2(1− δ) + δ2π3

C. 1
1−δπ3 [µT−2 − δπ3 + δ2π3 − δ2π3µT−2]
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First, note that B is always preferable to A when µT−2 > δπ3. Second, observe that there

exists µT−2 = π3(1−δ2π3)
1+π3−2δπ3 such that when µT−2 = µT−2 then 1 is indifferent between B and C, when

µT−2 > µT−2 she prefers C and when µT−2 < µT−2 she prefers B.

Now consider any subgame starting at T−3. If µT−3 ≤ µT−2 then, there is an equilibrium where

in round T − 2 the seller follows strategy B; it can be shown that this is optimal also at T − 3.

This is true because in that case we have V T−2(0) = V T−2(µT−3). Therefore, if µT−3 ≤ µT−2, the

proposition holds. This allows also to conclude that if π2 ≤ µT−2, then in any game starting earlier

than T − 3 the proposition holds.

We then focus on situations where µT−3 > µT−2. We first construct the strategy of player 2.

We now note that V T−3
2 (0) = V T−2

2 (0) and RT−32 = RT−22 and observe that for any earlier round

these continuation payoffs continue to keep the same value. Moreover, we know that since C is

optimal at T − 2 with µT−2 = µT−3, we will have V T−2(µT−3) = 0. Therefore, the strategy of 2

is exactly the same as the one depicted in figure 12, with the exception that the probability with

which 2 mixes, now λT−3, must be such that µT−2 = µT−2. In fact, the equilibrium is constructed

with 2 mixing in such a way that in T − 2, trader 1 will be indifferent between B and C. Note that,

for this to happen, by Bayes rule we must have µT−2 = (1−λT−3)µT−3

1−λT−3µT−3 .

Given that trader 2 randomizes with equal probability in the interval of prices (1−δ(1−δπ3), 1],

the optimal strategy of trader 1 is, agian, either A, B or C. It is evident that the payoff of 1 for

taking actions A and B are the same as they are in T − 2. Therefore, consider the payoff of 1 by

making offer C. We have:

λT−3µT−3 + (1− λT−3µT−3)δ(µT−2(1− δ) + δ2π3) =

=
1

1− µT−2
[µT−3 − µT−2 + δ(1− δ)µT−2(1− µT−3) + δ3π3(1− µT−3)]

It is true that B is always preferred to A. Moreover there exists an µT−3 such that when

µT−3 = µT−3 then seller 1 is indifferent among B and C, when µT−3 > µT−3 she prefers C and

when µT−3 < µT−3 she prefers B.

Plain algebra shows that for any δ ∈ (0, 1) and any fixed π3 we always have µT−3 > µT−2.

Moreover, for some δ, there exists now an interval of π2 with π2 > δπ3, such that B would be

preferred to C. In other words, the set of π2 for which, for any given δ, 1 does not play B (and

therefore the theorem not hold) is shrinking as the number of rounds has increased.

To complete the proof, we show that, for any fixed δ ∈ (0, 1) and π3 ∈ (0, 1), as time gets large,

the values that π2 > δπ3 can take such that trader 1 prefers to follow strategy C, shrinks to the

empty set. Using the equilibrium construction developed so far, we must prove that, in any general
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round t, if the start with µT−t > µT−t+1 then we get that the threshold value µT−t grows over time

and it becomes higher than 1 when t is sufficiently large (i.e. the deadline is sufficiently far away).

Note thatRT−t+1 and V T−t+1(0) are stationary, and, when µT−t > µT−t+1, then V T−t+1(µT−t) =

0 (as in T − t+ 1, trader 1 follows strategy C under that belief profile).24 Therefore the strategy of

buyer 2 can be defined as in figure 12 in any round, using µT−t+1, δ, t, and π3 only. This implies

that (i) the seller contemplates only strategies A, B and C above, (ii) and the value of B is fixed

and greater than A and (iii) the value of C is determined using µT−t, µT−t+1 δ, t, and π3 only. We

can then equate B to C and solve for µT−t in order to obtain µT−t.

To do this, recall that trader 2, when she is offered high prices, must must mix as to induce

belief µT−t+1 in round T − t+ 1. Therefore, Bayes rule implies that λT−t is such that

µT−t+1 =
(1− λT−t)µT−t

1− λT−tµT−t
.

We can now compute the value of C in round T − t and by equating C with B we get the threshold

µT−t in round T − t. In particular:

µT−t = µT−t+1 1− δ(1− δ)− δ2π3
δ + (1− δ)2µT−t+1 − δ3π3

+
δ2(1− δ)π3

δ + (1− δ)2µT−t+1 − δ3π3
.

Plain algebra shows that µT−t > µT−t+1 for all δ ∈ (0, 1). To see that after some finite number

of rounds it must become optimal for the seller to follow the line of action B (and therefore the

theorem holds) consider that the worst case scenario is one where π3 = 0 (i.e., there is no value

from reselling). In this case the threshold simplifies to:

µT−t = µT−t+1 1− δ(1− δ)
δ + (1− δ)2µT−t+1

.

By solving this difference equation one gets, for some arbitrary constant C:

µT−t =
δ

δ − δ
(

δ
1−δ+δ2

)t
+
(

δ
1−δ+δ2

)t
− δ

(
δ

1−δ+δ2

)t
C + δ2

(
δ

1−δ+δ2

)t
C
,

which, because (1 − δ + δ2) > δ, converges to 1. This implies that when π3 > 0 the set of π2, for

which the best reply of the initial seller is to follows strategy C becomes null as the number of

rounds gets large. �

24Note that if µT−t ≤ µT−t+1 then we have an equilibrium where the good flows immediately, and this is the case

also if the number of round increases.
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