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Abstract

Largeness, SQ-universality, and the existence of free subgroups of rank 2 are measures of the
complexity of a finitely presented group. We obtain conditions under which a cyclically presented
group possesses one or more of these properties. We apply our results to a class of groups introduced
by Prishchepov which contain, amongst others, the various generalizations of Fibonacci groups
introduced by Campbell and Robertson. Using the techniques developed we give a new, purely
group-theoretic, proof of the (almost complete) classification of the finite Cavicchioli-Hegenbarth-
Repovš groups.
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1 Introduction

Let w = w(x0, . . . , xn−1) be a word in the free group Fn with generators x0, . . . , xn−1 and let θ : Fn →
Fn be the automorphism of Fn given by θ(xi) = xi+1 for each 0 ≤ i ≤ n−1 (subscripts mod n). Define

Gn(w) = 〈x0, . . . , xn−1 |w, θ(w), . . . , θn−1(w) 〉.

Then Gn(w) is said to be a cyclically presented group and the above presentation is said to be a cyclic
presentation.

Cyclically presented groups may be trivial, finite and nontrivial, or infinite. Examples of cyclic
presentations of the trivial group are of interest in connection with Andrews-Curtis conjecture [1] and
have been researched in [15],[24] and elsewhere. In contrast, papers such as [2], [6], [9], [16], [28], [33],
[43] give conditions for a cyclically presented group to be infinite, and in [32] for it to be SQ-universal.
The classification of finite cyclically presented groups within certain families is a problem addressed
in, for example, [14], [23], [42], [45].

In this paper we consider the “freeness” properties of largeness, SQ-universality, and the existence
of free subgroups of rank 2. We investigate these properties both for arbitrary cyclically presented
groups Gn(w) and for the following family of groups, introduced and studied by Prishchepov in [33]
and investigated further in [13],[40]. Let n, r, s ≥ 1, 1 ≤ k ≤ n, 0 ≤ q ≤ n−1 and define the Prischepov
group to be

P (r, n, k, s, q) = Gn((x0xq . . . xq(r−1))(x(k−1)x(k−1)+q . . . x(k−1)+q(s−1))
−1)

= 〈x0, . . . , xn−1 |xixi+q . . . xi+q(r−1) = xi+(k−1)xi+(k−1)+q . . . xi+(k−1)+q(s−1) (0 ≤ i < n) 〉.

This family contains various other families of cyclically presented groups that have been considered in
the literature, starting with Conway’s Fibonacci groups F (2, n) = P (2, n, 3, 1, 1) of [14]. When s = 1
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the Prischepov groups coincide with Campbell and Robertson’s Fibonacci-type groups R(r, n, k, h) =
P (r, n, (r−1)h+k+1, 1, h) of [5], which in turn contain the Fibonacci groups F (r, n) = P (r, n, r+1, 1, 1)
of [6], the generalized Fibonacci groups F (r, n, k) = P (r, n, r + k, 1, 1) of [7]; the Sieradski groups
S(2, n) = P (2, n, 2, 1, 2) of [39]; the Gilbert-Howie groups H(n, t) = P (2, n, 2, 1, t) of [23]; the so-
called Cavicchioli-Hegenbarth-Repovš groups Gn(m, k) = P (2, n, k + 1, 1,m) which were introduced
independently in [11] and [27]. For s ≥ 1 we have the groups F (r, n, k, s) = P (r, n, r + k, s, 1) of [8]
which contain the groups H(r, n, s) = P (r, n, r + 1, s, 1) of [6]; and we have the generalized Sieradski
groups S(r, n) = P (r, n, 2, r − 1, 2) (r ≥ 2) of [10]. We remark that there would be certain advantages
in defining P (r, n, k, s, q) to be the group Gn((x0xq . . . xq(r−1))(xkxk+q . . . xk+q(s−1))−1) (and this was
done in [41]) but in order to maintain consistency with [33], and also with [40], we use Prischepov’s
original definition.

We start by giving some definitions and background material in Section 2. In Section 3 we use
free products, epimorphic images, amalgamated free products, and a Freiheitssatz to obtain conditions
under which a cyclically presented group Gn(w) is large, SQ-universal, or contains a free subgroup of
rank 2. In corollaries we apply these results to the Prishchepov groups. In Section 4 we obtain other
basic properties of these groups. In Section 5 we study P (r, n, k, s, q) in greater depth by finding new
large epimorphic images and by applying Freiheitssatz results of Shwartz [35].

Except for three groups the finite groups H(n, t) were classified in [23],[30]; one of the outstanding
cases was proved infinite in [12]. Except for the two remaining unresolved groups in the family H(n, t)
the finite groups Gn(m, k) were classified in [45],[46]. In Section 6 we obtain a new proof of this (almost
complete) classification; this proof avoids the algebraic number theory results of [30],[45] that were
required in the first proof.

2 Preliminaries

A group G is large if it has a finite index subgroup that maps onto the free group of rank 2; G is
SQ-universal if every countable group can be embedded in a quotient group of G. Any large group
is SQ-universal and hence contains a free subgroup of rank 2. Not every SQ-universal group is large
however, even within the class of cyclically presented groups: the Higman group G4(x0x1x

−2
0 x−1

1 ) [25],
which was proved to be SQ-universal in [34], has no proper subgroup of finite index and so cannot map
onto the free group of rank 2. As is well known, not every group containing a free subgroup of rank 2
is SQ-universal and so we can consider three distinct levels of ‘freeness’: largeness, SQ-universality,
and the existence of free subgroups of rank 2. Each of these properties is preserved when taking finite
extensions or finite index subgroups; also, a group that maps onto a group with one of these freeness
properties also satisfies that property.

A free product H ∗K (where H,K are non-trivial) is large if and only if either H or K is large, or
H,K have non-trivial finite homomorphic images H̄, K̄, not both of order 2 ([31, Theorem 3.7]). An
amalgamated free product H ∗LK in which [H : L] ≥ 2, [K : L] ≥ 2 and [H : L] + [K : L] ≥ 5 contains
a free subgroup of rank 2 (this is well known but see, for example, [4, Lemma 1]); if additionally L is
finite then the amalgamated free product is SQ-universal [29].

The automorphism θ of the introduction induces an action of the cyclic group T = 〈 t | tn 〉 of order
n on the presentation Gn(w). Specifically, t−1xit = xi+1 (0 ≤ i ≤ n − 1) and therefore t−ix0t

i =
xi. Writing x = x0 we see that the split extension of Gn(w) by T has a presentation En(W ) =
〈x, t | tn = W (x, t) = 1 〉 where W (x, t) = xα1tβ1 . . . xα`tβ` (for some ` ≥ 1, 1 ≤ βi ≤ n− 1, αi ∈ Z\{0}
(1 ≤ i ≤ `)) is a rewrite of w = w(x0, . . . , xn−1). We remark that t has order n in En(W ) and that if
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w is an mth power then W (x, t) is also an mth power.
In the case of a Prischepov group P (r, n, k, s, q) the relator

(x0xq . . . xq(r−1))(x(k−1)x(k−1)+q . . . x(k−1)+q(s−1))
−1

rewrites to (xt−q)r−1xt−Bx−1(xt−q)1−stA, where A = (k−1), B = (k−1)−q(r−s). Setting y = tqx−1

and eliminating x this becomes y−rt−BystA and so the split extension of P (r, n, k, s, q) by T has a
presentation

M(r, n, k, s, q) = 〈 y, t | tn = 1, ystA = tByr 〉.

By the above comments P (r, n, k, s, q) is large, SQ-universal, or contains a free subgroup of rank 2 if
and only if M(r, n, k, s, q) is large, SQ-universal, or contains a free subgroup of rank 2, respectively.

3 Free subgroups in cyclically presented groups

3.1 Free product of cyclically presented groups

The following theorem, formalizing a statement made in the introduction of [15], gives conditions
under which a cyclically presented group Gn(w) can be expressed as a free product; its corollary gives
conditions for it to be large.

Theorem 3.1 Let w be a word in x0, . . . , xn−1 involving only the m letters xλ0 , . . . , xλm−1 (0 ≤ λ1 <

λ2 < . . . < λm−1 ≤ n − 1) so that w = v(xλ0 , . . . , xλm−1). Let ∆ = (λ0, . . . , λm−1, n), N = n/∆
and µ0 = λ0/∆, . . . , µm−1 = λm−1/∆. Then Gn(w) = Gn(v(xλ0 , . . . , xλm−1)) is isomorphic to the free
product of ∆ copies of GN (v(xµ0 , . . . , xµm−1)).

Proof
The group Gn(v(xλ0 , . . . , xλm−1)) has a presentation 〈X |R 〉 where

X = {xi | 0 ≤ i ≤ n− 1},

R = {v(xλ0+i, xλ1+i, . . . , xλm−1+i) | 0 ≤ i ≤ n− 1, subscripts mod n}.

For each 0 ≤ α ≤ ∆− 1 set

Xα = {xi | i ≡ α mod ∆, 0 ≤ i ≤ n− 1}

= {xα, xα+∆, . . . , xα+(N−1)∆},

Rα = {v(xλ0+i, xλ1+i, . . . , xλm−1+i) | i ≡ α mod ∆, 0 ≤ i ≤ n− 1}

= {v(xλ0+α, xλ1+α, . . . , xλm−1+α), v(xλ0+α+∆, xλ1+α+∆, . . . , xλm−1+α+∆), . . . ,

v(xλ0+α+(N−1)∆, xλ1+α+(N−1)∆, . . . , xλm−1+α+(N−1)∆)}.

Then Rα is a set of words involving only elements of Xα and the Xα form a partition of X and the
Rα form a partition of R. Hence

〈X |R 〉 ∼= 〈X0 |R0 〉 ∗ . . . ∗ 〈XN−1 |RN−1 〉.

Fix a value of α (0 ≤ α ≤ N − 1) and set y0 = xα, y1 = xα+∆, . . . , y(N−1) = xα+(N−1)∆. Then
Xα = {y0, . . . , yN−1} and xλ0+α = yµ0 , xλ1+α = yµ1 , . . . , xλm−1+α = yµm−1 so Rα is the set

{v(yµ0 , yµ1 , . . . , yµm−1), v(yµ0+1, yµ1+1, . . . , yµm−1+1), . . . , v(yµ0+(N−1), yµ1+(N−1), . . . , yµm−1+(N−1)}.

Thus 〈Xα |Rα 〉 ∼= GN (v(yµ0 , yµ1 , . . . , yµm−1)) which (by relabeling) is GN (v(xµ0 , xµ1 , . . . , xµm−1)) and
the result follows. 2
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Corollary 3.2 With the above notation let G = Gn(v(xλ0 , . . . , xλm−1)), H = GN (v(xµ0 , . . . , xµm−1))
and suppose ∆ ≥ 2, H 6= 1. Then G is large unless ∆ = 2 and H ∼= Z2, in which case G ∼= D∞.

Now |r − s| divides the determinant of the relation matrix of P (r, n, k, s, q) and so it divides
|P (r, n, k, s, q)|. Using this and applying Theorem 3.1 and Corollary 3.2 to Prischepov groups we have

Corollary 3.3 Let ∆ = (n, k − 1, q) when r + s ≥ 3 and let ∆ = (n, k − 1) when r = s = 1.
Then P = P (r, n, k, s, q) is isomorphic to the free product of ∆ copies of H = P (r,N,K, s,Q) where
N = n/∆, Q = q/∆, K = (k− 1)/∆ + 1. If H 6= 1, ∆ ≥ 2 then P is large unless H ∼= Z2 and ∆ = 2,
in which case P ∼= D∞. In particular, if ∆ ≥ 2 and |r − s| 6= 1 then P is large unless ∆ = 2 and
|r − s| = 2.

In particular we recover a result about the groups R(r, n, k, h).

Corollary 3.4 ([5, Theorem 4]) The group R(r, n, k, h) is isomorphic to the free product of (n, k, h)
copies of R(r,N,K,H) where N = n/(n, k, h), K = k/(n, k, h), H = h/(n, k, h).

In particular, if (n, k, h) > 1 then R(r, n, k, h) is large unless R(r,N,K,H) = 1 or ((n, k, h) = 2,
r ≤ 3 and R(r,N,K,H) ∼= Z2). This corollary in turn contains a result about the groups Gn(m, k).

Corollary 3.5 ([2, Lemma 1.2]) The group Gn(m, k) is isomorphic to the free product of (n,m, k)
copies of GN (M,K) where N = n/(n,m, k), M = m/(n,m, k), K = k/(n,m, k).

In particular, if (n,m, k) > 1 then Gn(m, k) is large unless GN (M,K) = 1 or ((n,m, k) = 2 and
GN (M,K) ∼= Z2).

3.2 Epimorphic images

If a group G maps homomorphically onto a large group, or onto a group that contains a free subgroup
of rank 2 then G is large, or contains a free subgroup of rank 2, respectively. Our method of proof in
this section is to find suitable epimorphic images of En(W ).

It was determined in [19] when the group 〈x, t | tn = W (x, t)m = 1 〉 (m ≥ 2) contains a free sub-
group of rank 2 or is infinite and soluble. (Actually, it also gives conditions under which the group
contains a Ree-Mendelsohn pair – see [19] for the definition – or is infinite and soluble.) Combining
that theorem with [3] we can prove the following related result.

Theorem 3.6 Let En(W ) = 〈x, t | tn = V (x, t)m = 1 〉 where n,m ≥ 2 and V (x, t) = xα1tβ1 . . . xα`tβ`,
` ≥ 1, 1 ≤ βi ≤ n− 1, αi ∈ Z\{0} (1 ≤ i ≤ `).

(a) If n+m ≥ 5 then En(W ) is large;

(b) if n = m = 2 then En(W ) contains a free subgroup of rank 2 unless ` = 1 and α1 ≤ 2, in which
case En(W ) is infinite and soluble.

Proof
If n + m ≥ 5 then choose k ∈ N with k > max{6, |α1|, . . . , |α`|}. Then En(W ) maps onto the group
〈x, t |xk = tn = V (x, t)m = 1 〉 which is large by [3] since 1/k+ 1/n+ 1/m < 1. If n = m = 2 then the
result was proved in [19, Theorem 4] (see also [20, Theorem 8] or [21, Theorem 7.3.3.1]). 2
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Theorem 3.7 Let En(W ) = 〈x, t | tn = W (x, t) = 1 〉 where W (x, t) = xα1tβ1 . . . xα`tβ`, ` ≥ 1, 1 ≤
βi ≤ n− 1, αi ∈ Z\{0} (1 ≤ i ≤ `).

(a) If (β1, . . . , β`, n) ≥ 2 and |
∑`

i=1 αi| 6= 1 then En(W ) is large except possibly when (β1, . . . , β`, n) =
2 and |

∑`
i=1 αi| = 2, in which case En(W ) is infinite.

(b) If (n,
∑`

i=1 βi) ≥ 2 and (α1, . . . , α`) ≥ 2 then En(W ) is large except possibly when (n,
∑`

i=1 βi) =
2 and (α1, . . . , α`) = 2, in which case En(W ) is infinite.

Proof
For (a) observe that the group En(W ) maps onto 〈x, t | t(β1,...,β`,n) = x|

∑`
i=1 αi| = 1 〉 ∼= Z(β1,...,β`,n) ∗

Z|∑`
i=1 αi| and for (b) that it maps onto 〈x, t | t(n,

∑`
i=1 βi) = x(α1,...,α`) = 1 〉 ∼= Z(n,

∑`
i=1 βi)

∗ Z(α1,...,α`).
2

Corollary 3.8 (a) If (n,A,B) ≥ 2 and |r− s| 6= 1 then M(r, n, k, s, q) is large except possibly when
(n,A,B) = 2 and |r − s| = 2, in which case it is infinite.

(b) If (n,A−B) ≥ 2 and (r, s) ≥ 2 then M(r, n, k, s, q) is large except possibly when (n,A−B) = 2
and (r, s) = 2, in which case it is infinite.

As an immediate corollary we get

Corollary 3.9 ([44, Theorems 1 and 2]) If (r, n) > 1 then F (r + 1, n, 0) is infinite.

3.3 Amalgamated free products and the Freiheitssatz

The following theorem uses the fact that the group En(W ) = 〈x, t | tn = W (x, t) = 1 〉 can sometimes
be expressed as an amalgamated free product, possibly with the amalgamation over a finite group, to
prove SQ-universality of En(W ) or the existence of a free subgroup of rank 2. Since the split extension
of any cyclically presented group Gn(w) is of the form En(W ) the theorem can be used to prove
SQ-universality of Gn(w) or the existence of a free subgroup of rank 2.

Theorem 3.10 Let En(W ) = 〈x, t | tn = W (x, t) = 1 〉 where n ≥ 2 and W (x, t) = xα1tβ1 . . . xα`tβ`,
` ≥ 1, 1 ≤ βi ≤ n− 1, αi ∈ Z\{0} (1 ≤ i ≤ `), and suppose x has infinite order and t has order n in
En(W ).

(a) If (α1, . . . , α`) ≥ 2, n ≥ 3 then En(W ) contains a free subgroup of rank 2.

(b) If (β1, . . . , β`, n) ≥ 2 then En(W ) is SQ-universal.

In particular, if n ≥ 3 and En(W ) does not contain a free subgroup of rank 2 then (α1, . . . , α`) = 1
and (β1, . . . , β`, n) = 1.

Proof
(a) Let a = (α1, . . . , α`), γi = αi/a (1 ≤ i ≤ `). Then En(W ) ∼= H ∗L K where

H = 〈xa, t | tn = (xa)γ1tβ1 . . . (xa)γ`tβ` = 1 〉,

K = 〈x | 〉, L = 〈xa | 〉. Now [K : L] = a ≥ 2. If [H : L] = 1 or 2 then H ∼= Z or D∞. But t has order
n ≥ 3 in H so H 6∼= D∞. Further, H 6∼= Z since t has order n. Thus [H : L] ≥ 3.
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(b) Let b = (β1, . . . , β`, n), δi = βi/b (1 ≤ i ≤ `), N = n/b. Then En(W ) ∼= H ∗L K where
H = 〈x, tb | (tb)N = xα1(tb)δ1 . . . xα`(tb)δ` = 1 〉, K = 〈 t | tn 〉, L = 〈 tb | (tb)N 〉. Now [K : L] = b ≥ 2
and L has infinite index in H since L is finite and H is infinite. 2

If En(W ) arises as a split extension of the group Gn(w), as explained in Section 2, then t has order
n in En(W ); x will not always have infinite order of course. When

∑`
i=1 αi = 0, however, there is an

epimorphism E � Z given by t 7→ 0, x 7→ 1 ∈ Z and so x has infinite order in En(W ).
We now consider the hypothesis “x has infinite order and t has order n in En(W )” in more detail.

A one-relator product G = (H ∗ K)/ << R >> (where << R >> denotes the normal closure of
R in H ∗ K) is said to satisfy the Freiheitssatz if the natural homomorphisms H → G, K → G are
both embeddings. The Freiheitssatz for one-relator products has been considered in many papers
– see [17],[18],[26],[38] and the references therein. Setting H = 〈x | 〉 ∼= Z, K = 〈 t | tn 〉 ∼= Zn,
R = W (x, t) we see that En(W ) = (H ∗K)/ << R >>. Clearly the Freiheitssatz holds here if and
only if x has infinite order and t has order n in En(W ). Thus we can re-express Theorem 3.10 as

Theorem 3.10′ Let En(W ) = (H ∗ K)/ << R >> where H = 〈x | 〉 ∼= Z, K = 〈 t | tn 〉 ∼= Zn,
R = W (x, t) where n ≥ 2 and W (x, t) = xα1tβ1 . . . xα`tβ`, ` ≥ 1, 1 ≤ βi ≤ n − 1, αi ∈ Z\{0}
(1 ≤ i ≤ `), and suppose that the Freiheitssatz holds.

(a) If (α1, . . . , α`) ≥ 2, n ≥ 3 then En(W ) contains a free subgroup of rank 2.

(b) If (β1, . . . , β`, n) ≥ 2 then En(W ) is SQ-universal.

In particular, if n ≥ 3 and En(W ) does not contain a free subgroup of rank 2 then (α1, . . . , α`) = 1
and (β1, . . . , β`, n) = 1.

Applying this to Prischepov groups we have

Corollary 3.11 Let M = M(r, n, k, s, q) where n ≥ 2. Then M is the one-relator product (H∗K)/ <<
R >> where {H,K} = {〈x | 〉, 〈 t | tn 〉}, R = ystAy−rt−B where A = (k − 1), B = (k − 1)− q(r − s).
Suppose that the Freiheitssatz holds.

(a) If (r, s) ≥ 2, n ≥ 3 then M contains a free subgroup of rank 2.

(b If (A,B, n) ≥ 2 then M is SQ-universal.

In particular, if n ≥ 3 and M does not contain a free subgroup of rank 2 then (r, s) = 1 and (A,B, n) =
1.

(We remark that alternative forms of the Freiheitssatz for cyclically presented groups and their
extensions have been considered in [16],[28].)

4 Basic properties of Prishchepov groups

We first note some isomorphisms amongst the groups P (r, n, k, s, q).

Lemma 4.1 P (r, n, k, s, q) ∼= P (r′, n, k′, s′, q), where r′ = s, s′ = r, k′ = n− k + 2.
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Proof
Let r′, s′, k′ be as stated and for each 0 ≤ i ≤ n − 1, set j = i + (k − 1) mod n. Then the re-
lators of P (r, n, k, s, q), namely (xixi+q . . . xi+q(r−1))(xi+(k−1)xi+(k−1)+q . . . xi+(k−1)+q(s−1))−1 become
(xj+(k′−1)xj+(k′−1)+q . . . xj+(k′−1)+q(r−1))(xjxj+q . . . xj+q(s−1))−1. Inverting these we get the relators
(xjxj+q . . . xj+q(s−1))(xj+(k′−1)xj+(k′−1)+q . . . xj+(k′−1)+q(r−1))−1 which are the relators of P (r′, n, k′, s′, q).

2

Thus the roles of r, s may be interchanged. For P (r, n, k, s, q) we have A = (k − 1), B = (k −
1) − q(r − s); the corresponding values for P (r′, n, k′, s′, q) are A′ = (k′ − 1) ≡ −A mod n, B′ =
(k′ − 1)− q(r′ − s′) ≡ −B mod n – that is, A and B are negated (mod n).

Lemma 4.2 (i) P (r, n, k, s, q) ∼= P (r, n, k − q(r − s), s, n− q);

(ii) P (r, n, k, s, q) ∼= P (s, n, k − q(r − s), r, q).

Proof
(i) Setting yi = x−1

i (0 ≤ i ≤ n− 1, subscripts mod n) the relators

(xixi+q . . . xi+q(r−2)xi+q(r−1))(xi+(k−1)xi+(k−1)+q . . . xi+(k−1)+q(s−2)xi+(k−1)+q(s−1))
−1

of P (r, n, k, s, q) become

(y−1
i y−1

i+q . . . y
−1
i+q(r−2)y

−1
i+q(r−1))(y

−1
i+(k−1)y

−1
i+(k−1)+q . . . y

−1
i+(k−1)+q(s−2)y

−1
i+(k−1)+q(s−1))

−1

which is a cyclic permutation of

(yi+(k−1)+q(s−1)yi+(k−1)+q(s−2) . . . yi+(k−1)+qyi+(k−1))(yi+q(r−1)yi+q(r−2) . . . yi+qyi)
−1. (1)

Inverting gives

(yi+q(r−1)yi+q(r−2) . . . yi+qyi)(yi+(k−1)+q(s−1)yi+(k−1)+q(s−2) . . . yi+(k−1)+qyi+(k−1))
−1

and then setting j = i+ q(r − 1) mod n (for each 0 ≤ i ≤ n− 1) these become

(yjyj+(n−q) . . . yj+(r−2)(n−q)yj+(r−1)(n−q))

(yj+(k−1)−q(r−s)yj+(k−1)−q(r−s)+(n−q) . . . yj+(k−1)−q(r−s)+(s−2)(n−q)yj+(k−1)−q(r−s)+(s−1)(n−q))
−1

which are the relators of P (r, n, k − q(r − s), s, n− q).
(ii) Setting zi = y−i (0 ≤ i ≤ n− 1, subscripts mod n) in (1) we get

(z−i−(k−1)−q(s−1)z−i−(k−1)−q(s−2) . . . z−i−(k−1)−qz−i−(k−1))(z−i−q(r−1)z−i−q(r−2) . . . z−i−qz−i)
−1.

Letting j = −i− (k − 1)− q(s− 1) mod n (for each 0 ≤ i ≤ n− 1) these become

(zjzj+q . . . zj+q(s−2)zj+q(s−1))

(zj+(k−1)+q(s−r)zj+(k−1)+q(s−r)+q . . . zj+(k−1)+q(s−r)+q(r−2)zj+(k−1)+q(s−r)+q(r−1))
−1.

These are the relators of P (s, n, k − q(r − s), r, q) so the proof is complete. 2

For P (r, n, k, s, q) we have A = (k − 1), B = (k − 1) − q(r − s); the corresponding values for the
isomorphic copy of P (r, n, k, s, q) (in either (i) or (ii)) are A′ = B, B′ = A so the roles of A,B may
also be interchanged. Thus while part (ii) interchanges the roles of r, s we now have a different effect
on A,B than that obtained when we use Lemma 4.1.
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Corollary 4.3 ([2, Lemma 1.1(3)]) Gn(m, k) ∼= Gn(n−m,n+ (k −m)).

Applying the technique used in [5, Lemma 2] more generally we have

Theorem 4.4 Let (α, n) = 1. Then Gn(w(x0, x1, . . . , xn−1)) ∼= Gn(w(x0, xα, . . . , xα(n−1))). In partic-
ular if (q, n) = 1 then P (r, n, k, s, q) ∼= P (r, n, (k − 1)Q+ 1, s, 1) where qQ ≡ 1 mod n.

Proof
Let a satisfy aα ∼= 1 mod n and for each 0 ≤ j ≤ n− 1 set i = aj mod n, so j ≡ αi mod n and define
yi = xαi (0 ≤ i ≤ n− 1, subscripts mod n). Then the set of generators of Gn(w(x0, xα, . . . , xα(n−1)))
{x0, x1, . . . , xn−1} = {y0, y1, . . . , yn−1} and the set of relators

{w(xj , xj+α, . . . , xj+(n−1)α) | 0 ≤ j ≤ n− 1} = {w(yi, yi+1, . . . , yi+(n−1)) | 0 ≤ i ≤ n− 1}

and the result follows. 2

As a corollary we of course recover [5, Lemma 2] which states that R(r, n, k, h) ∼= R(r, n, αk, αh)
for any (α, n) = 1. This in turn implies the following, which we record for later use.

Corollary 4.5 ([2, Lemma 1.3]) (i) If (n, k) = 1 then Gn(m, k) ∼= Gn(t, 1) = H(n, t) where
tk = m mod n.

(ii) If (n, k −m) = 1 then Gn(m, k) ∼= Gn(t, 1) = H(n, t) where t(k −m) = n−m mod n.

Let P = P (r, n, k, s, q). If A ≡ 0 mod n then k ≡ 1 mod n so P = P (r, n, 1, s, q); if B ≡ 0 mod n

then k − q(r − s) ≡ 1 mod n and using the equivalent presentation P (s, n, k − q(r − s), r, q) (of
Lemma 4.2(ii)) we see that P ∼= P (s, n, 1, r, q). Furthermore, a direct consideration of the cyclic
presentation shows that P (r, n, 1, s, q) = P (|r − s| + 1, n, 1, 1, q). We can classify when these groups
are large:

Theorem 4.6 Let P = P (r, n, 1, 1, q) with r ≥ 1 and let d = (n, (r − 1)q).

(a) If r = 1 then P ∼= Z ∗ . . . ∗ Z︸ ︷︷ ︸
n

;

(b) if r = 2 then P = 1;

(c) if d = 1 then P ∼= Zr−1;

(d) if r = 3 and d = 2 then P ∼=

D∞ if (n, q) = 2 and n = 2 mod 4,

Z if (n, q) = 1;

(e) if r ≥ 4 or d ≥ 3 then P is large.

Proof
The cases r = 1 and r = 2 (parts (a) and (b)) are immediate by considering the cyclic presentation.

Suppose d = 1. Then (n, q) = 1 so, by Theorem 4.4, P ∼= P (r, n, 1, 1, 1) = Gn(x0x1 . . . xr−2).
Moreover (n, r − 1) = 1 so by [44, Theorem 3] Gn(x0x1 . . . xr−2) ∼= Zr−1, proving part (c). Suppose
then that r ≥ 3 and d ≥ 2.

If r ≥ 4 or d ≥ 3 then Corollary 3.8 implies that P is large so assume that r = 3 and d =
2 (i.e. (n, 2q) = 2). Now Corollary 3.3 implies that P is isomorphic to (n, q) copies of G =
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P (3, N, 1, 1, Q) where N = n/(n, q), Q = q/(n, q), and since (Q,N) = 1 Theorem 4.4 implies that G ∼=
P (3, N, 1, 1, 1) = GN (x0x1). Eliminating generators xN , xN−1 shows that GN (x0x1) ∼= GN−2(x0x1)
and it is clear that G3(x0x1) ∼= Z2 and G2(x0x1) ∼= Z so GN (x0x1) ∼= Z when N is even and
GN (x0x1) ∼= Z2 when N is odd. If (n, q) = 2 then n ≡ 2 mod 4, since (n, 2q) = 2, so N is odd
and hence P ∼= Z2 ∗ Z2

∼= D∞. If (n, q) = 1 then n = N so P ∼= Z since n is even. 2

5 Free subgroups in Prishchepov groups

5.1 Largeness

In this section we extend ideas that were first used in [9]. As in Section 3 we prove largeness by finding
a large epimorphic image. When we consider (the split extension of) Prishchepov groups P (r, n, k, s, q),
rather than arbitrary cyclically presented groups, there is a new epimorphic image that we can use.
Let d = (n,A+B); then by killing td we see that M(r, n, k, s, q) maps onto

N = 〈 y, t | td = 1, (ystA)2 = yr+s 〉.

(Note that N = M(r, d, (r− s)q/2 + 1, s, q).) The group N in turn maps onto the generalized triangle
group 〈 y, t | yr+s = td = (ystA)2 = 1 〉.

Let G(l,m, n) = 〈 a, b | al = bm = (aαbβ)n = 1 〉. In [19, Theorem 6] (see also [20, Theorem 2],[21,
Theorem 7.3.2.2]) it was determined when G(l,m, n) contains a free subgroup of rank 2, is infinite
and soluble, or is finite; independently in [9, Theorem 2.5] the finite groups G(l,m, n) were classified.
Refining these results slightly we can classify when G(l,m, n) is large, infinite and soluble, or finite.

Theorem 5.1 Let G = 〈 a, b | al = bm = (aαbβ)n = 1 〉 where 1 ≤ α ≤ l − 1, 1 ≤ β ≤ m − 1 and let
κ = 1/l + 1/m+ 1/n− 1.

(a) If (α, l) = 1 and (β,m) = 1 then G is large if κ < 0, infinite and soluble if κ = 0, finite if κ > 1.

(b) If (α, l) > 1 or (β,m) > 1 then G is large unless either:

(i) l = 2, n = 2 and (β,m) = 2; or

(ii) m = 2, n = 2 and (α, l) = 2;

in which case G is infinite and soluble.

Proof
(a) If (α, l) = 1 and (β,m) = 1 then we may assume α = β = 1, in which case G is an ordinary
triangle group and the result is well known. (b) If κ < 1 then G is large by [3, Theorem B]. If {l,m} =
{2, 2}, {2, 3}, {2, 5}, {3, 3}, or {3, 5} then (α, l) = (β,m) = 1. Thus we only need to consider the cases
({l,m}, n) = ({2, k}, 2) (k ≥ 4), ({3, 4}, 2), ({3, 6}, 2), ({2, 4}, 3), ({2, 6}, 3), ({2, 4}, 4), ({4, 4}, 2) where
(α, l) > 1 or (β,m) > 1. If (l,m, n) = (2,m, 2) then G maps onto 〈 a, b | a2 = b(β,m) = 1 〉 which is large
unless (β,m) = 2 and in this case the cyclic subgroup H = 〈 bβ | bm 〉 is normal in G and G/H ∼= D∞ so
G is infinite and soluble. Similarly, if (l,m, n) = (l, 2, 2) then G is large unless (α, l) = 2 in which case
G is infinite and soluble. By passing to another generating pair if necessary we may assume α|l, β|m
which means that for the remaining triples there are nine groups to consider. In each case we can use
GAP [22] to find a subgroup (of index at most 6) that maps onto a free product of two cyclic groups
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(other than Z2 ∗ Z2) and hence G is large. 2

We now classify the large 2-generator Prischepov groups.

Theorem 5.2 Let M = M(r, 2, k, s, q), P = P (r, 2, k, s, q), A = (k − 1), B = (k − 1) − q(r − s). If
(r, s) = 1 let α, β ∈ Z be such that αr + βs = 1 and set g = |s2 − r2|(α, β). Then M is large unless
one of the following holds:

(a) A,B are both even and either

(i) |r − s| = 2 in which case M ∼= D∞,

1. if q is even then P ∼= D∞;

2. if q is odd then P ∼= Z;

(ii) |r − s| = 1 in which case M ∼= Z2 and P = 1;

(b) A,B are of opposite parity, in which case M ∼= Z2|r−s|, P ∼= Z|r−s|;

(c) A,B are both odd and one of the following holds:

(i) (r, s) = 2, in which case M and P are infinite and soluble;

(ii) r = s = 1, in which case M ∼= Z2 × Z, P ∼= Z;

(iii) (r, s) = 1 and r + s ≥ 3, in which case M soluble and finite of order 2g,

1. if q is even then P ∼= Zg;
2. if q is odd then P is non-abelian and soluble of order g.

Proof
If A,B are both even then M ∼= Z2 ∗ Z|r−s| which is large unless |r − s| = 2 or 1. If |r − s| = 2 then
M ∼= D∞ and P ∼= D∞ when q is even and P ∼= Z when q is odd. If |r − s| = 1 then M ∼= Z2 so
P = 1. If A,B are of opposite parity then M ∼= Z2|r−s| and hence P ∼= Z|r−s|. Suppose then that A,B
are both odd.

Now M = 〈 y, t | t2 = 1, yst = tyr 〉 maps onto 〈 y, t | t2 = y(r,s) = 1 〉 which is large when (r, s) ≥ 3
so assume (r, s) = 1 or 2. If r = s = 1 then M ∼= Z2 × Z and P ∼= Z so assume r + s ≥ 3. Let
G = 〈 y, t | yr+s = t2 = (yst)2 = 1 〉. If (r, s) = 1 then G ∼= D2(r+s), which is soluble; if (r, s) = 2 then
Theorem 5.1 implies that G is infinite and soluble. The cyclic subgroup H = 〈 (yst)2 〉 is normal in M
and M/H ∼= G, which is soluble, so M is soluble. Since M maps onto G we have that M is infinite
when (r, s) = 2. Assume then that (r, s) = 1.

Suppose q is even, so P = 〈x0, x1 |xr0 = xs1, x
r
1 = xs0 〉, and let α, β, g be as defined in the statement.

Then xβr0 = xβs1 = x1−αr
1 = x1x

−αs
0 and hence x1 = xαs+βr0 and so

P = 〈x0 |xαs
2+βrs−r

0 = xβr
2+αrs−s

0 = 1 〉

= 〈x0 |xα(s2−r2)
0 = x

β(s2−r2)
0 = 1 〉 ∼= Zg.

Now [M : P ] = 2 so |M | = 2g and is soluble (regardless of the parity of q).
Suppose then that q is odd and so r, s are both odd. Then

P = 〈x0, x1 | (x0x1)(r−1)/2x0 = (x1x0)(s−1)/2x1, (x1x0)(r−1)/2x1 = (x0x1)(s−1)/2x0 〉,

being an index 2 subgroup of M is soluble of order g. The determinant of the relation matrix of P
gives |P ab| = 2|r − s|. But g = |r − s|(r + s)(α, β) ≥ 3|r − s| so |P | 6= |P ab| so P is non-abelian. 2
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Theorem 5.3 Let N = 〈 y, t | td = 1, ystA = t−Ayr 〉 (d ≥ 2). Then N is large unless one of the
following holds:

(a) A ≡ 0 mod d and either

(i) d = 2 and |r − s| = 2, in which case N ∼= D∞; or

(ii) |r − s| = 1 in which case N ∼= Zd.

(b) (A, d) = 1 and one of the following holds:

(i) d = 2 and (r, s) = 2 in which N is infinite and soluble; or

(ii) r = s = 1, in which case N ∼= Z o Zd, which is infinite and soluble; or

(iii) r + s ≥ 3, (r, s) = 1 and one of the following holds:

1. (d, {r, s}) = (3, {1, 5}),
2. (d, {r, s}) = (4, {1, 3}),
3. (d, {r, s}) = (6, {1, 2}),

in which case N is infinite and soluble; or

(iv) r + s ≥ 3, (r, s) = 1, and one of the following holds:

1. d = 2, in which case N is soluble and finite of order 2|s2−r2|(α, β), where αr+βs = 1,

2. (d, {r, s}) = (3, {1, 2}), in which case N is soluble and finite of order 24,

3. (d, {r, s}) = (3, {1, 3}), in which case N is soluble and finite of order 144,

4. (d, {r, s}) = (3, {1, 4}), in which case N is insoluble and finite of order 1080,

5. (d, {r, s}) = (3, {2, 3}), in which case N is insoluble and finite of order 360,

6. (d, {r, s}) = (4, {1, 2}), in which case N is soluble and finite of order 96,

7. (d, {r, s}) = (5, {1, 2}), in which case N is insoluble and finite of order 600.

Proof
If d = 2 then the result follows from Theorem 5.2 so assume d ≥ 3.
(a) If A ≡ 0 mod d then N ∼= Zd ∗ Z|r−s| which is large unless either d = 2 and |s − r| = 2, in which
case N ∼= D∞, or |s− r| = 1, in which case N ∼= Zd.
(b) The group N maps onto G = 〈 y, t | yr+s = td = (ystA)2 = 1 〉. If (A, d) > 1 then Theorem 5.1
implies that G, and hence N , is large unless r = s = 1, (A, d) = 2, in which case N maps onto
〈 y, t | t2 〉 ∼= Z ∗ Z2, which is large. Suppose then that (A, d) = 1. By applying an automorphism of
〈 t | td 〉 we may assume A = 1. If r = s = 1 then N ∼= Z o Zd so assume r + s ≥ 3. By Theorem 5.1
G, and hence N is large unless (r, s) = 1 and 1/(r + s) + 1/d ≥ 1/2. When we have equality the
conditions are equivalent to (b)(iii) and G is infinite and soluble. The cyclic subgroup H = 〈 (yst)2 〉
is normal in N and N/H ∼= G, which is soluble, so N is soluble. When the inequality is strict the
conditions are equivalent to (b)(iv) and computations using GAP show that N is finite of the given
order and soluble or insoluble as indicated. 2

This yields

Corollary 5.4 Let d = (n,A+B) = (n, 2(k − 1)− q(r − s)) and assume d ≥ 2.

(a) Suppose none of the conditions in Theorem 5.3(a),(b) hold. Then M(r, n, k, s, q) is large.
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(b) Suppose none of the conditions in Theorem 5.3(a)(ii) or (b)(iv) hold. Then M(r, n, k, s, q) is
infinite.

Combining the results of this section with those of Section 3 we have

Corollary 5.5 Suppose (n,A,B) ≥ 2, |s− r| ≥ 2, (A−B,n) ≥ 2 and (r, s) ≥ 2. Then M(r, n, k, s, q)
is large unless r = 2R, s = 2(R + ε), k = 2K − 1, n = 2N , for some R,N,K ≥ 1, ε = ±1, where
(q,N) = 1 and (N, (2K − 1) + qε) = 1.

Proof
By Corollary 3.8 we may assume (n,A,B) = |s−r| = (A−B,n) = (r, s) = 2. The conditions |s−r| = 2,
(r, s) = 2 are equivalent to r = 2R, s = 2(R+ε), for some R ≥ 1, ε = ±1. The condition (A−B,n) = 2
is then equivalent to n = 2N and (q,N) = 1 for some N ≥ 1. The condition (n,A,B) = 2 implies that
k = 2K − 1 for some K ≥ 1. Applying Corollary 5.4 we see that if M(r, n, k, s, q) is not large then
only case of Theorem 5.3 that can hold is (a)(i), and this is equivalent to (N, 2(K − 1) + qε) = 1. 2

5.2 Freiheitssatz methods for Prischepov groups

In this section we will regard M(r, n, k, s, q) as a one-relator product (H ∗ K)/ << R >> where
{H,K} = {〈x | 〉, 〈 t | tn 〉}, R = ystAy−rt−B where A = (k − 1), B = (k − 1) − q(r − s). In view of
Corollary 3.11 we now investigate when the Freiheitssatz holds in this situation. The following result
is contained in [33, Theorem C].

Theorem 5.6 ([33]) Suppose A 6≡ 0 mod n, B 6≡ 0 mod n, 2A 6≡ 0 mod n, 2B 6≡ 0 mod n, A 6≡
±B mod n, and r > 2s or s > 2r. Then the Freiheitssatz holds for M(r, n, k, s, q) if any of the
following hold.

(a) 3A, 4A, 5A 6≡ 0 mod n, B 6≡ ±2A mod n, B 6≡ −3A mod n, A 6≡ −2B mod n;

(b) 3B, 4B, 5B 6≡ 0 mod n, A 6≡ ±2B mod n, A 6≡ −3B mod n, B 6≡ −2A mod n;

(c) 3A, 3B 6≡ 0 mod n, B 6≡ −2A mod n, A 6≡ −2B mod n.

In [35, 36, 37, 38] Shwartz considered the Freiheitssatz for one-relator product (H ∗ K)/ << R >>

where R = abcd ∈ H ∗ K with a, c ∈ H, b, d ∈ K and these results can be applied to our situation
to obtain other conditions under which the Freiheitssatz holds. We now review Shwartz’s results. Let
H1 be the subgroup of H generated by {a, c} and let K1 be the subgroup of K generated by {b, d}.
We assume that there are no relations of length 1 or 2 among {a, c} in H1 or among {b, d} in K1.
By interchanging the roles of H,K, cyclically permuting the relator R, and replacing a, b, c, d by their
inverses we can reduce to the following four cases:

0. c =H a±2, d =K b±2;

1. c =H a2, b 6=K d±2, d 6=K b±2;

2. c =H a−2, b 6=K d±2, d 6=K b±2;

3. c 6=H a±2, a 6=H c±2, b 6=K d±2, d 6=K b±2;

12



where the subscripts indicate the group in which equality or inequality is considered. Freiheitssatz
theorems were obtained by Shwartz for Case 1 in [36], for Case 2 in [37], and for Case 3 in [38]; all of
these results are contained in [35]. Case 0 was considered in [17],[18] and our arguments below may
be applied to this case; however, since these results are more intricate we limit ourselves to applying
the results of Cases 1–3. We summarize Shwartz’s results in the following theorem. (In this theorem
A4, S4, A5 denote alternating and symmetric groups and Q12 denotes the quarternionic group of order
12.)

Theorem 5.7 ([35, 36, 37, 38]) Let G = (H ∗K)/ << R >> where R = abcd, a, c ∈ H, b, d ∈ K;
let H1 be the subgroup of H generated by {a, c}, K1 be the subgroup of K generated by {b, d}. Suppose
a 6=H 1, c 6=H 1, a2 6=H 1, c2 6=H 1, a 6=H c±1, b 6=K 1, d 6=K 1, b2 6=K 1, d2 6=K 1, b 6=K d±1, and
that b 6=K d±2, d 6=K b±2. The Freiheitssatz holds in each of the following cases.

1. c = a2 and either

(i) |H1| ≥ 12, |K1| ≥ 10 and K1 6∈ {A4, S4, A5}; or

(ii) |H1| ∈ {7, 9, 10, 11}, |K1| ≥ 11 and K1 6∈ {A4, S4, A5}.

2. c = a−2 and either

(i) |H1| ≥ 9, |K1| ≥ 11 and K1 6∈ {Z12, A4, S4, A5}; or

(ii) |H1| = 7, |K1| ≥ 11 and K1 6∈ {Z12, A4, S4, A5}.

3. c 6=H a±2, a 6=H c±2, and

(i) H1 6∈ {A4,Z3 ⊕ Z3} and K1 6∈ {A4, S4, A5,Z3 ⊕ Z3,Z9,Z12,Z15, Q12}; or

(ii) H1 6∈ {A4, S4, A5,Z3 ⊕ Z3,Z9,Z12,Z15, Q12} and K1 6∈ {A4,Z3 ⊕ Z3}.

We may regard M = M(r, n, k, s, q) as a one-relator product (H ∗K)/ << R >> where R = abcd

in two ways:

(a) H = 〈 t | tn 〉, K = 〈 y | 〉, {a, c} = {tA, t−B}, {b, d} = {ys, y−r}, and so H1
∼= ZN , K1

∼= Z, where
N = n/(n,A,B); or

(b) H = 〈 y | 〉, K = 〈 t | tn 〉, {a, c} = {ys, y−r}, {b, d} = {tA, t−B}, and so H1
∼= Z, K1

∼= ZN , where
N = n/(n,A,B).

By replacing R by R−1, inverting generators of H and K, and cyclically permuting R we may
interchange the roles ofA,B and interchange the roles of r, s. Therefore in (a) we may take (without loss
of generality) a = tA, b = ys, c = t−B, d = y−r, and in (b) we may take a = ys, b = tA, c = y−r, d = t−B.
Applying Theorem 5.7 and then including the cases obtained by interchanging r, s and interchanging
A,B we obtain the following theorem. Note that by definition r ≥ 1, s ≥ 1 so many hypotheses are
automatic, and note that in (b) Case 1 does not occur. To make clear where each case comes from we
keep the numbering here consistent with that of Theorem 5.7.

Theorem 5.8 Suppose A 6≡ 0 mod n, B 6≡ 0 mod n, 2A 6≡ 0 mod n, 2B 6≡ 0 mod n, A 6≡ ±B mod n,
r 6= s and let N = n/(n,A,B). Then the Freiheitssatz holds for M(r, n, k, s, q) if any of the following
hold.

(a) r 6= 2s, s 6= 2r and one of the following holds:

13



1. (A ≡ −2B mod n or B ≡ −2A mod n) and N ≥ 7, N 6= 8;

2. (A ≡ 2B mod n or B ≡ 2A mod n) and N ≥ 7, N 6= 8;

3. A 6≡ ±2B mod n, B 6≡ ±2A mod n.

(b) A 6≡ ±2B mod n, B 6≡ ±2A mod n and one of the following holds:

2. (r = 2s or s = 2r) and N ≥ 11, N 6= 12;

3. r 6= 2s, s 6= 2r.

Observe that the conditions in b)(3) are the same as a)(3) and that the hypothesis r 6= s can be
removed (as in that case killing t shows that y has infinite order). Further, the condition a)(3) does
not hold when N < 7 so we obtain the following tidier formulation.

Theorem 5.8′ Let N = n/(n,A,B) and suppose N ≥ 7, A 6≡ 0 mod n, B 6≡ 0 mod n, 2A 6≡ 0 mod n,
2B 6≡ 0 mod n, A 6≡ ±B mod n and that either

(i) (A ≡ ±2B mod n or B ≡ ±2A mod n) and r 6= 2s, s 6= 2r, N 6= 8; or

(ii) A 6≡ ±2B mod n, B 6≡ ±2A mod n and if (r = 2s or s = 2r) then N ≥ 11, N 6= 12.

Then the Freiheitssatz holds for M(r, n, k, s, q).

Note that for any of the conditions of Theorem 5.6 to hold we require N ≥ 7 (where N =
n/(n,A,B)). However, Theorem 5.8′ does not generalize Theorem 5.6 since, for example, the group
M(2, 16, 3, 4, 1) satisfies the hypotheses of Theorem 5.6 but not of Theorem 5.8′.

By Corollary 3.11 we now have

Corollary 5.9 Suppose that the hypotheses of Theorem 5.8′ or Theorem 5.6 hold. Then M = M(r, n, k, s, q)
is infinite; moreover,

(a) if (r, s) ≥ 2 then M contains a free subgroup of rank 2;

(b) if (A,B, n) ≥ 2 then M is SQ-universal.

Note that for the cases A ≡ 0 mod n or B ≡ 0 mod n largeness of P (r, n, k, s, q) was completely
dealt with in Theorem 4.6 and for the case A ≡ −B mod n it was dealt with in Theorem 5.3.

Using Theorem 5.8′(ii) we can obtain a result about Cavicchioli-Hegenbarth-Repovš groupsGn(m, k).

Corollary 5.10 Let N = n/(n,m, k) and suppose N ≥ 11, N 6= 12 and k 6≡ 0, k 6≡ m, 2k 6≡ 0,
2(k −m) 6≡ 0, m 6≡ 0, m 6≡ 2k, k 6≡ 2m, k + m 6≡ 0, 3k 6≡ 2m, m 6≡ 3k (all mod n) then Gn(m, k) is
infinite.

It also follows from Theorem 5.8′ that the group G7(x−1
0 x−1

1 x−1
2 x4x3x2x1) ∼= P (4, 7, 3, 3, 1) is

infinite. This is the one group in [15] that could not be dealt with by computational techniques
and required detailed curvature analysis. (Though, of course, Theorem 5.8′ relies on the detailed
curvature analysis of Shwartz.) In fact, Theorem B of [15], which states that 〈 y, t | tn, ty−3t−2y4 〉 ∼=
M(4, n, 3, 3, 1) is infinite for all n ≥ 6 can be recovered as a corollary of Theorem 5.8′ apart from in
the cases n = 6, 8.
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6 The finite Cavicchioli-Hegenbarth-Repovš groups

Recall that the Cavicchioli-Hegenbarth-Repovš groups Gn(m, k) are the groups P (2, n, k + 1, 1,m) =
Gn(x0xmx

−1
k ). Bardakov and Vesnin [2, Question 1] have asked for a classification of the finite groups

Gn(m, k). With the exception of two unresolved groups the classification has now been obtained. The
existing proof of the classification relies on techniques from algebraic number theory [30],[45]. In this
section we first review that proof and then build on the results of Section 3 to obtain a new proof that
is purely group theoretic.

If k ≡ 0 mod n or (k−m) ≡ 0 mod n then Gn(m, k) = 1. If m ≡ 0 mod n then Corollary 3.5 implies
that Gn(m, k) is isomorphic to the free product of (k, n) copies of GN (M,K) where N = n/(n, k),
K = k/(n, k). By [2, Lemma 1.1(1)] if K 6≡ 0 mod N then GN (0,K) ∼= Z2N−1 so Gn(0, k) ∼= Z2N−1 if
(n, k) = 1 and is infinite otherwise. Thus we may assume 1 ≤ m, k ≤ n− 1, m 6= k.

Theorem 6.1 ([46]) Let (n,m, k) = 1, (n, k) > 1, (n, k − m) > 1, 1 ≤ k,m ≤ n − 1, k 6= m and
suppose Gn(m, k) 6= 1. Then Gn(m, k) is finite if and only if (m, k) = 1 and (n = 2k or n = 2(k−m)),
in which case G ∼= Zs where s = 2n/2 − (−1)m+n/2.

The following theorem was proved (in number theoretic terms) in [30] for the case k = 1 and in [45]
for the general case.

Theorem 6.2 ([30],[45]) The group Gn(m, k) is perfect if and only if either (m = 2k mod n and
(n/(n,m, k), 6) = 1) or k = 0 or m mod n.

Thus we have

Corollary 6.3 ([45],[46]) Suppose (n, k) > 1 and (n,m − k) > 1, 1 ≤ k,m ≤ n − 1, k 6= m. Then
Gn(m, k) is finite if and only if (m, k) = 1 and (n = 2k or n = 2(k−m)), in which case Gn(m, k) ∼= Zs
where s = 2n/2 − (−1)m+n/2.

Proof
Suppose first that (n,m, k) = 1. Then m 6= 2k mod n (for otherwise (n,m, k) = (n, k) > 1) so by
Theorem 6.2 Gn(m, k) is not perfect, and hence is not trivial, so the result follows from Theorem 6.1.
Suppose then that d = (n,m, k) > 1. Then by Corollary 3.5 Gn(m, k) is isomorphic to the free product
of d copies of GN (M,K) where N = n/d,M = m/d,K = k/d. Since (N,M,K) = 1 each of these is
non-trivial by the above argument, so Gn(m, k) is infinite. 2

By Corollary 4.5 if (n, k) = 1 or (n,m−k) = 1 then Gn(m, k) is isomorphic to some Gilbert-Howie
group H(n, t).

Theorem 6.4 ([23]) Suppose n ≥ 2, t ≥ 0, (n, t) 6= (8, 3), (9, 3), (9, 4), (9, 6), (9, 7) and suppose
H(n, t) 6= 1. Then H(n, t) is finite if and only if t = 0, 1 or (n, t) = (2k, k + 1) where k ≥ 1 (in
which case H(n, t) ∼= Z2k+1), or (n, t) = (3, 2), (4, 2), (5, 2), (5, 3), (5, 4), (6, 3), (7, 4), (7, 6).

We have that H(n, t) is non-trivial by [43, Theorem B] when t = 2 and by Theorem 6.2 for the
case k = 1 ([30]) otherwise. Moreover the group H(9, 3) ∼= H(9, 6) was proved to be infinite in [12,
Lemma 15]. (We remark that the extension of this group also appears in [17, page 228] as G(−, 9).)
A calculation in GAP shows that H(8, 3) is soluble and of order 310 · 5. Thus there is the following
almost complete classification of the finite groups H(n, t):
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Corollary 6.5 Suppose n ≥ 2, t ≥ 0, (n, t) 6= (9, 4), (9, 7). Then H(n, t) is finite if and only if t = 0, 1
or (n, t) = (2k, k + 1) where k ≥ 1 (in which case H(n, t) ∼= Z2k+1), or (n, t) = (3, 2), (4, 2), (5, 2),
(5, 3), (5, 4), (6, 3), (7, 4), (7, 6), (8, 3).

In particular, for n ≥ 10 there are only finite groups in the families t = 0, t = 1, or (n, t) = (2k, k+ 1).
Combining Corollary 6.3 and Corollary 6.5 and restricting to the cases n ≥ 10 we have a classification
of the finite groups Gn(m, k):

Corollary 6.6 Suppose n ≥ 10, 1 ≤ m, k ≤ n − 1, m 6= k. Then Gn(m, k) is finite if and only
if (n,m, k) = 1 and (2k ≡ 0 mod n or 2(k − m) ≡ 0 mod n) in which case Gn(m, k) ∼= Zs where
s = 2n/2 − (−1)m+n/2.

Applying Corollary 3.5 we have that Gn(m, k) is large whenever (n,m, k) > 1.
In the next theorem we give a proof of Corollary 6.6 for n/(n,m, k) ≥ 11, n/(n,m, k) 6= 12

that is purely group theoretic. Since, by Corollary 3.5, Gn(m, k) is perfect if and only if GN (M,K)
is perfect (where N = n/(n,m, k),M = m/(n,m, k),K = k/(n,m, k)), to verify Theorem 6.2 for
n/(n,m, k) ≤ 10 and n/(n,m, k) = 12 we may assume (n,m, k) = 1 and so it suffices to verify it for
n ≤ 10 and n = 12. This can easily be done by group theoretic methods (for example using GAP).
Therefore the proof described above gives a purely group theoretic proof of the classification of the
finite groups Gn(m, k) for n/(n,m, k) ≤ 10 and n/(n,m, k) = 12. This, together with the proof of
Theorem 6.7 provides a proof of the (almost complete) classification of the finite groups Gn(m, k) that
does not involve the algebraic number theory used to prove Theorem 6.2.

Theorem 6.7 Suppose n/(n,m, k) ≥ 11, n/(n,m, k) 6= 12, 1 ≤ m, k ≤ n− 1, m 6= k. Then Gn(m, k)
is finite if and only if (n,m, k) = 1 and (2k ≡ 0 mod n or 2(k − m) ≡ 0 mod n) in which case
Gn(m, k) ∼= Zs where s = 2n/2 − (−1)m+n/2.

Proof
As in Corollary 6.3 it suffices to prove the result for (n,m, k) = 1. By Corollary 5.10 we need to
consider the cases 2k ≡ 0, 2(k −m) ≡ 0, m ≡ 2k, k ≡ 2m, k +m ≡ 0, 3k ≡ 2m, m ≡ 3k (all mod n).

If 2k ≡ 0 mod n or 2(k −m) ≡ 0 mod n then Gn(m, k) ∼= Zs by [45, Lemma 3]. If m = 2k then
(k, n) = 1 so by Theorem 4.4 we may assume k = 1 so m = 2. Then Gn(m, k) = Gn(2, 1) = S(2, n),
the Sieradski group. By [43, Theorem B] this is infinite for all n ≥ 6. If k = 2m then (m,n) = 1
so by Theorem 4.4 we may assume m = 1 so k = 2. Then Gn(m, k) ∼= Gn(1, 2) = F (2, n), the
Fibonacci group. If k + m ≡ 0 mod n then (k, n) = 1 so we may assume k = 1,m = n − 1 so
Gn(m, k) = Gn(n − 1, 1) ∼= Gn(1, 2) = F (2, n) by Corollary 4.3. The Fibonacci group F (2, n) is
infinite for all n ≥ 9 (see [42] for a survey of such results).

This leaves the cases 3k = 2m and m = 3k. The split extension of Gn(m, k) = P (2, n, k + 1, 1,m)
is

M = M(2, n, k + 1, 1, n) = 〈 y, t | tn = 1, ytA = tBy2 〉

where A = k, B = k−m mod n, and so (A,B, n) = (n,m, k) = 1. The condition 3k = 2m is equivalent
to A ≡ −2B mod n and the condition 3k = m mod n is equivalent to B = −2A mod n. In the first
case we have (B,n) = 1 so we may assume B = 1, A = −2; in the second case we have (A,n) = 1
so we may assume A = 1, B = −2. Either way we get (by replacing y with y−1, if necessary) that
M = 〈 y, t | tn, y2t2y−1t 〉. This maps onto L = 〈 y, t | yl, tn, y2t2y−1t 〉 for any l ≥ 1. By [18, Theorem 3]
if l ≥ 36 then y has order l in L, so l divides |M |. Thus |M | ≥ l for any l ≥ 36, so M is infinite. 2
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