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Abstract

We study the semi-parametric estimation of the conditional mode of a random vec-

tor that has a continuous conditional joint density with a well-defined global mode. A

novel full-system estimator is proposed and its asymptotic properties are studied. We

specifically consider the estimation of vector autoregressive conditional mode models and

of systems of linear simultaneous equations defined by mode restrictions. The proposed

estimator is easy to implement and simulations suggest that it is reasonably behaved in

finite samples. An empirical example illustrates the application of the proposed meth-

ods, including its use to obtain multi-step forecasts and to construct impulse response

functions.

Key words: Impulse response functions, Multivariate conditional mode, Robust regression,

Simultaneous equations, Vector autoregression.
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1. INTRODUCTION

The mode is an interesting measure of location for multivariate data, not only because of

its intuitively appealing interpretation, but also because it is currently the only practical

multivariate measure of location that is robust in the sense that it is not sensitive to

perturbations of the tails of the distribution (see Tsay, Peña, and Pankratz, 2000, and

Galeano, Peña, and Tsay, 2006, for details on the importance of outliers in a multivariate

context). The interest of the multivariate mode is reflected in the continued attention that

it has received in the literature since the pioneering work by Konakov (1973), Samanta

(1973), and Sager (1978, 1979); see, e.g., the contributions by Abraham, Biau, and Cadre

(2003), Mokkadem and Pelletier (2003), Klemelä (2005), and Hsu and Wu (2013).

The attractive properties of the multivariate mode extend naturally to the conditional

case, and the conditional mode of a multivariate distribution is likely to be of interest

in areas such as economics that have systems of equations at their core. For instance, in

a standard supply and demand system, the conditional multivariate mode will be infor-

mative about how the relevant covariates affect the modal realization of the equilibrium

price-quantity pair. Key economic variables have skewed distributions and are not con-

ditionally independent (see, e.g., Smith and Vahey, 2016) and in multivariate models

involving such variables the difference between the modal value of the vector and the

vector of marginal modal (or mean) values can be substantial.

The conditional multivariate mode may also be of interest as a predictor. For the

univariate case, the use of the conditional mode as a predictor was emphasized by Collomb,

Härdle, and Hassani (1987) and more recently by Yao and Li (2014a) and by Chen,

Genovese, Tibshirani, andWasserman (2016), who show that for a given level of confidence

prediction sets based on the conditional mode can be smaller than those based on the

conditional mean. An axample of the use of univariate mode as a predictor can be found

in the Bank of England’s quarterly Inflation Report, which presents univariate mode-

based predictions of inflation and output growth. Of course, it might also be interesting

to consider a predictor based on the mode of the joint distribution of the two variates.
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In economics, systems of equations are often dynamic; that is the case, for example, of

the systems of simultaneous equations considered by Haavelmo (1943), and of the popular

vector autoregressive models (Sims, 1980). Therefore, it is of particular interest to study

the estimation of the multivariate conditional mode in a time series context, explicitly

allowing for dynamic specifications and dependent data. Estimation of the univariate

conditional mode allowing for dependent data was pioneered by Collomb, Härdle, and

Hassani (1987). However, because in general the mode of a multivariate distribution is

not the vector of the marginal modes, multivariate mode regression cannot be performed

using single-equation estimators developed for the univariate case.

In this paper we consider the semi-parametric estimation of the conditional multivari-

ate mode, or multivariate mode regression, for a random vector that has a continuous

conditional joint density with a well-defined global mode. As in Lee (1989, 1993) and

Kemp and Santos Silva (2012), the proposed estimator is semi-parametric in the sense

that the conditional mode is specified as a parametric function but only mild assumptions

are made about the conditional distribution of interest (see also the related work by Yao

and Li, 2014a, and, 2014b). We develop a novel full-system conditional mode regression

estimator which can be seen as a multivariate generalization of the estimator introduced

by Kemp and Santos Silva (2012) and that, as far as we are aware, is the first conditional

multivariate mode estimator. We derive the asymptotic properties of the estimator al-

lowing for dependent data and therefore, as a by-product, we generalize to the time-series

context both the results of Kemp and Santos Silva (2012) and previous work on uncondi-

tional multivariate mode estimation. Additionally, our results are obtained allowing for

a stochastic bandwidth, which is another important extension of the work by Kemp and

Santos Silva (2012).

We consider two particular cases where the methods we propose can be of interest.

We start by studying the estimation of vector autoregressive conditional mode models

and then consider the estimation of systems of linear simultaneous equations defined by

conditional mode restrictions. In the latter case we investigate the conditions under which

it is possible to identify the structural parameters of interest, both in the context of classic

systems of simultaneous equations and in structural vector autoregressive models.
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To illustrate the application and usefulness of the proposed methods, we include a

simple empirical example which shows how to obtain mode-based multi-step forecasts and

construct impulse response functions; the good performance of the mode-based forecasts

is particularly noteworthy.

The remainder of the paper is organized as follows. The next section sets up the prob-

lem and presents the main results on the estimation of multivariate dynamic conditional

mode models. Section 3 considers the estimation of systems of linear simultaneous equa-

tions defined by conditional mode restrictions. Section 4 presents simulation results, and

Section 5 provides an illustrative empirical example. Finally, Section 6 concludes and

discusses directions for future research. The proofs of all theorems are presented in an

online appendix.

2. MAIN RESULTS

2.1. Model and estimator

We consider systems of the form

Yt = A0Zt + Ut, (1)

where Yt and Ut are G×1 random vectors, Zt is a K×1 vector that can contain exogenous

variables and lagged values of Yt, and A0 is a G×K matrix of unknown parameters such

that A0 ∈ A, where A is the parameter space.

Systems of the form of (1) are often used in economics. Examples include the reduced

form of systems of simultaneous equations (Haavelmo, 1943), systems of seemingly unre-

lated equations (Zellner, 1962), and vector autoregressive models (Sims, 1980); all these

systems are generally interpreted as representing conditional expectations, whereas we

will consider the case in which the systems define conditional multivariate modes.

Suppose that we have a sample {(Yt, Zt)}Tt=1 of size T from the strictly stationary ergodic

sequence of random vectors {(Yt, Zt)}∞t=−∞, and let Ft−1 denote the σ-algebra generated

by {(Yt−1−j, Zt−j)}∞j=0. Also, let P = (Ω,F ,P) denote the underlying probability space for

{(Yt, Zt)}∞t=−∞ where, as usual, Ω denotes the sample space, F is the σ-algebra of events,
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and P is a probability measure. We are interested in the case where the conditional

mode of Ut given Ft−1, denoted Mode (Ut|Ft−1), is equal to zero. Then, because Zt

is measurable with respect to Ft−1 for each t, the conditional mode of Yt given Ft−1,

denoted Mode (Yt|Ft−1), satisfies:

Mode (Yt|Ft−1) = Mode (A0Zt + Ut|Ft−1) = A0Zt.

As in the pioneering work of Lee (1989, 1993) and in Kemp and Santos Silva (2012), we

obtain our estimator for A0 as the minimizer of a loss function, with the difference being

that here the loss function is multivariate. In particular, we consider a loss function of

the form

LT (Yt, Zt, A) = 1− %K
(
Yt − AZt

δT

)
, (2)

where K (·) denotes a multivariate smooth kernel function, % = K (0)−1 is a scaling con-

stant, and δT is a strictly positive bandwidth that depends on T . As shown below,

the minimizer of the expectation of LT (Yt, Zt, A) will approach the conditional mode as

δT → 0. Notice that, as the bandwidth approaches 0, LT (Yt, Zt, A) approaches a multi-

variate version of the 0-1 loss, whose expected value is minimized when the mode is used

as the predictor (see, e.g., Ferguson, 1967, or Hastie, Tibshirani, and Friedman, 2009).

The 0-1 loss function is often used in classification problems when the variate of interest is

discrete. For continuous variables, the centre of the modal interval is the optimal predic-

tor when the objective is to maximize the probability that the prediction is within a given

tolerance of the actual realization (Ferguson, 1967, Manski, 1991). This corresponds to

the use of the step loss function, a practice with a long tradition in the statistical analysis

of quality control problems (e.g., Trietsch, 1999). In this case, the mode emerges as the

optimal predictor when the tolerance goes to zero and therefore the step loss function

approaches the 0-1 loss function.

Minimizing the sample analog of the expectation of (2) is equivalent to maximizing

QT (A) ≡ T−1

T∑
t=1

δ−GT K
(
Yt − AZt

δT

)
, (3)

which is a multivariate version of the objective function considered by Kemp and Santos

Silva (2012).
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Although our asymptotic results will be obtained under much more general con-

ditions, here we focus on the multiplicative standard normal kernel K
(
Yt−AZt
δT

)
=

(2π)−G/2 exp
(
− (Yt−AZt)′(Yt−AZt)

2δ2T

)
; see, e.g., Scott (1992) for examples of other multivari-

ate smooth kernels. This choice of kernel is not innocuous because it may be possible

to obtain estimators with somewhat improved asymptotic properties by using different

kernels (see Eddy, 1980, and Romano, 1988), but the multiplicative normal kernel has

several important advantages. In particular, because it is essentially quadratic around 0,

it generates a loss function which has both the multivariate mode and the multivariate

mean as minimizers in limiting cases (see also Kemp and Santos Silva, 2012).

Further insights into the nature of the objective function based on the normal kernel can

be obtained by noting that, under the assumptions to be defined below, minimizing the

expectation of (2) when K (·) is the multiplicative normal kernel is equivalent to solving

the following set of moment conditions

E

[
exp

(
−(Yt − AZt)′ (Yt − AZt)

2δ2
T

)
(Zt ⊗ IG) (Yt − AZt)

]
= 0, (4)

where IG is an identity matrix of order G. It is clear that (4) defines a multivariate

weighted least squares problem where the weights are functions of the residuals of the

G equations in the system, implying that the equations cannot be estimated one-by-

one. As noted earlier, this is because in general the mode of a multivariate distrib-

ution is not the vector of the marginal modes and therefore estimation of A0 has to

be performed using a full-system estimator. However, the weights approach a constant

as δT passes to infinity and consequently, for large values of the bandwidth parameter,

minimizing E [LT (Yt, Zt, A)] is equivalent to estimating each equation by least squares.

To put it differently, when K (·) is the multiplicative standard normal kernel, minimiz-

ing E [LT (Yt, Zt, A)] is equivalent to solving a set of moment conditions that identify

Mode (Yt|Ft−1) when δT → 0, or E (Yt|Ft−1) when δT →∞.

These results show that, for our choice of kernel, minimization of (2) defines a continuum

of multivariate conditional measures of central tendency of which the two polar cases

have particularly interesting interpretations. For any other positive and finite choice of

δT , minimization of E [LT (Yt, Zt, A)] defines a measure of location which, in some sense,
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is between the mean and the mode, and can be viewed as a multivariate generalization

of the measure of location implicitly defined by a particular member of the class of M -

estimators introduced by Huber (1973). That is, for 0 < δT < ∞ our estimator is a

multivariate version of a robust M -estimator. As in Kemp and Santos Silva (2012), this

has important implications for the choice of bandwidth because the bandwidth not only

determines the properties of the estimator but also, and more importantly, defines the

conditional measure of central tendency that is estimated.

The moment conditions in (4) are also informative about the choice of algorithm to

maximize (2). Because QT (A) is differentiable, it can be maximized using a Newton-type

algorithm of the kind typically available in standard econometrics software. Moreover,

(4) shows that an algorithm of this kind may be implemented as a multivariate version of

the iterative reweighted least squares algorithm often used in robust regression estimation

(e.g., Li, 1985, pp. 335-6). Finally, (4) also makes clear that, for large values of δT , (2)

will have a single maximum. However, that will not be the case for small values of δT and

therefore the researcher needs to ensure the estimates obtained correspond to the global

maximum of QT (A).

2.2. Asymptotic results

We now consider the asymptotic properties of the estimator of the parameters of the

conditional mode, explicitly taking into account that in practice the bandwidth will be

data dependent. In particular, we consider the properties of the estimator defined by

ÂT = arg max
A∈A

Q̂T (A) , (5)

where

Q̂T (A) ≡ T−1

T∑
t=1

δ̂
−G
T K

(
Yt − AZt

δ̂T

)
, (6)

and δ̂T is a strictly positive data-dependent bandwidth that depends on T . Throughout,

we use ‖M‖ to denote the non-negative square-root of the sum of the squares of the ele-

ments of any array M , i.e., ‖M‖ = [trace (M ′M)]1/2. Additionally, C is a finite positive

constant, and we use the following convention for the derivatives of a vector-valued func-
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tion F (a) with respect to the vector a: F (1)(a) ≡ ∂F (a)/∂a′, F (2)(a) ≡ ∂2F (a)/∂a∂a′,

F (3)(a) ≡ ∂vec(F (2)(a))/∂a′.

The following assumptions will be used in obtaining our results; the proofs of all theo-

rems are provided in an online appendix.

1. (Stationarity and Ergodicity) {Wt}∞t=−∞ is a strictly stationary ergodic sequence of

random vectors, where Wt = (Y ′t , Z
′
t)
′, defined on an underlying probability space

P = (Ω,F ,P).

2. (Parameter Space) A is a compact subset of RG×K and A0 is an element of A.

3. (Conditional Density I) For each −∞ < s < ∞, let Fs−1 denote the σ-algebra

generated by {(Ys−1−j, Zs−j)}∞j=0; then for each t there is a version of the conditional

density function of Ut = (Yt − A0Zt) given Ft−1, denoted by ft (·|Ft−1), such that:

(i) ft (u|Ft−1) ≤ C for all u ∈ RG, t = 1, 2, . . . , and ω ∈ Ω; (ii) ft (u|Ft−1) ≤

ft (0|Ft−1) with equality if and only if u = 0 for all t = 1, 2, . . . , and ω ∈ Ω; and

(iii) ft (u|Ft−1) is continuous in u for all t = 1, 2, . . . , and ω ∈ Ω.

4. (Moments I) E (‖Wt‖) ≤ C.

5. (No Multicollinearity) Pr (AZt = 0) < 1 for any fixed A ∈ RG×K such that A 6= 0.

6. (Kernel Function I) K (·) : RG → R satisfies (i)
∫
RG K (x) dx = 1;

∫
RG |K (x)| dx ≤

C; and (ii) |K (x)| ≤ C and
∥∥K(1) (x)

∥∥ ≤ C for all x ∈ RG.

7. (Non-Stochastic Bandwidth Component I) {δT}∞T=1 is a sequence of finite strictly

positive constants such that: (i) δT = o (1); (ii) ln (T ) /
(
TδGT

)
= o (1).

8. (Stochastic Bandwidth Component I ) δ̂T = δT/γ̂T , where {γ̂T}
∞
T=1 is a sequence of

random variables defined on P such that ln γ̂T = Op (1).

9. (Conditional Density II) (i) ft (u|Ft−1) is three times differentiable with respect to

u and
∥∥∥f (j)

t (u|Ft−1)
∥∥∥ ≤ C, j = 1, 2, 3, for all u ∈ RG, t = 1, 2, . . . , and ω ∈ Ω; (ii)

f
(2)
t (0|Ft−1) is negative definite for all ω ∈ Ω.

10. (Interior Parameter Value) A has a non-empty interior, denoted int (A) and A0 ∈

int (A).

11. (Moments II) E
(
‖Wt‖G+4+τ

)
≤ C, for some τ > 0.
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12. (Kernel Function II) (i)
∫
RG xK (x) dx = 0; (ii) K (·) is three times differentiable

with
∥∥K(j) (x)

∥∥ ≤ C, j = 2, 3, for all x ∈ RG; (iii)
∫
RG
∥∥K(j) (x)

∥∥2
dx ≤ C

for j = 1, 2; (iv)
∫
‖x‖

∥∥K(1) (x)
∥∥2
dx ≤ C; (v)

∫
‖x‖2

∥∥K(2) (x)
∥∥2
dx ≤ C; (vi)

limM→∞ supx:‖x‖≥M ‖xK (x)‖ = 0 and limM→∞ supx:‖x‖≥M
∥∥xK(1) (x)′

∥∥ = 0.

13. (Non-Stochastic Bandwidth Component II) The sequence {δT}∞T=1 is such that: (i)
ln(T )

TδG+4T

= o(1); (ii) TδG+6
T = o (1).

14. (Stochastic Bandwidth Component II)
(
TδG+2

T

)1/2
ln γ̂T = Op (1).

These assumptions are largely similar to those in Kemp and Santos Silva (2012), but

there are some notable differences. The major differences are that Assumptions 1 and

3 reflect the different nature of the problem considered in the present paper, and that

Assumptions 8 and 14 explicitly allow for the use of a stochastic bandwidth of the type

suggested by Silverman (1986, p. 45), something that was not done by Kemp and Santos

Silva (2012). Note that although we only explicitly consider the case where the same

bandwidth is used for all equations, our results extend straightforwardly to the case

where different scaling factors are used for each equation, as we do in Sections 4 and

5. The remaining assumptions are adapted to take into account the multivariate nature

of the problem being considered here. We note that Assumptions 4 and 11 are stronger

than the corresponding assumptions in Kemp and Santos Silva (2012) in that they impose

conditions on the moments of Yt. These stronger conditions are needed to deal with the

stochastic bandwidth, but they would also be implicitly imposed in the case where Zt

includes lagged values of Yt, something that was not considered by Kemp and Santos

Silva (2012).

The following theorem establishes the existence of ÂT , the estimator of interest.

Theorem 1 (Existence) Under Assumptions 1, 2, 6, 7 and 8, there exists a measurable

random variable ÂT such that:

Pr
(
ÂT ∈ A

)
= 1,

Pr
(
Q̂T

(
ÂT

)
≥ Q̂T (A) , ∀A ∈ A

)
= 1.

The consistency of ÂT is established by the following theorem.
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Theorem 2 (Consistency) Under Assumptions 1—8, ÂT converges in probability to A0.

We next establish the asymptotic normality of the estimator and its rate of convergence.

Theorem 3 (Asymptotic Normality) Under Assumptions 1—14:(
T δ̂

G+2

T

)1/2

(α̂T − α0)
d−→ N

[
0, D−1

0 B0D
−1
0

]
,

where α̂T = vec
(
ÂT

)
, α0 = vec (A0), and:

B0 = E
[
ft (0|Ft−1) (Zt ⊗ IG)M (Zt ⊗ IG)′

]
,

D0 = E
[
(Zt ⊗ IG) f

(2)
t (0|Ft−1) (Zt ⊗ IG)′

]
,

M =

∫
RG
K(1) (x)K(1) (x)′ dx.

Allowing δ̂T to vanish suitably slowly, it follows from Theorem 3 that ÂT converges at

a rate that can be made arbitrarily close to T
2

6+G . Therefore, the estimator is affected by

a form of the “curse of dimensionality” in that its rate of convergence goes down when

G increases. This, of course, is a consequence of the fact that non-parametric density

estimation is less “local”in high dimensions, i.e., larger bandwidths have to be used when

the dimension of the problem increases (see Assumption 13). Note that, as in Lee (1989,

1993), it is also possible to consider an estimator with a fixed bandwidth; under suitably

strong regularity conditions of the type considered by Lee (1989, 1993) such an estimator

is
√
T -consistent for the parameters of the conditional mode.

Finally, the next theorem establishes the consistency of the usual “sandwich”covariance

matrix estimator.

Theorem 4 (Consistent Asymptotic Covariance Estimation) Under Assumptions 1—14:

Σ̂T = Âvar (α̂T ) = D̂−1
T B̂T D̂

−1
T

p−→ Σ0 = Avar (α̂T ) = D−1
0 B0D

−1
0 ,

where B0 and D0 are given as in Theorem 3 and:

D̂T = T−1

T∑
t=1

δ̂
−(G+2)

T (Zt ⊗ IG)K(2)

(
Yt − ÂTZt

δ̂T

)
(Zt ⊗ IG)′

p−→ D0,

B̂T = T−1

T∑
t=1

δ̂
−G
T (Zt ⊗ IG)K(1)

(
Yt − ÂTZt

δ̂T

)
K(1)

(
Yt − ÂTZt

δ̂T

)′
(Zt ⊗ IG)′

p−→ B0.
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3. SYSTEMS OF LINEAR SIMULTANEOUS EQUATIONS

In this section we discuss how our earlier results can be used in the context of systems of

linear simultaneous equations. In particular, we consider standard simultaneous equation

systems of the form

Y ′t Γ0 + Z ′tΨ0 = V ′t , t = 1, . . . , T, (7)

where Γ0 and Ψ0 are, respectively, G × G and K × G matrices of unknown structural

parameters, Vt is a G × 1 random vector such that Mode (Vt|Ft−1) = 0, and Yt, Zt are

defined as before. Additionally, we assume that Γ0 is non-singular and note that (7)

can represent either a classic system of simultaneous equations (Haavelmo, 1943) or a

structural vector autoregressive model (Bernanke, 1986).

The method developed in the previous section cannot generally be used to directly

estimate (7) because of the evident simultaneity. However, it is possible to show that our

earlier results can be used to estimate the reduced form of the model, which is given by

Y ′t = Z ′tA
′
0 + U ′t , (8)

with A′0 = −Ψ0Γ−1
0 and U ′t = V ′t Γ

−1
0 . To see this, let Ut and Vt be two random vec-

tors such that Ut = ΥVt, where Υ is a non-singular matrix, and let fUt(ut|Ft−1) and

fVt(vt|Ft−1) denote the conditional density functions of Ut and Vt, respectively. Note that

because fUt(ut|Ft−1) = fVt (Υ−1vt|Ft−1)/ |det (Υ)|, we have that if Mode (Vt|Ft−1) = 0,

then fUt(ut|Ft−1) = fVt (Υ−1ut|Ft−1)/ |det (Υ)| ≤ fVt (0|Ft−1)/ |det (Υ)| = fUt(0|Ft−1),

and therefore Mode (Ut|Ft−1) = 0. Uniqueness of the conditional mode of Ut follows

from the fact that Υ is non-singular. Therefore, Mode (Vt|Ft−1) = 0 implies that

Mode (Ut|Ft−1) = 0 and hence (8) is just the transpose of a system of the form of (1) and

can be estimated in a similar fashion. However, typically economists are not interested in

learning about A0 and therefore it is interesting to study the conditions under which it is

possible to identify Γ0 and Ψ0.

Identification of the structural parameters in Γ0 and Ψ0 requires the researcher to be

able to impose enough restrictions on (7); these can involve only the elements of Γ0 and

Ψ0, or also restrictions on the conditional distribution of Vt; we consider the two cases

separately.
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3.1. Classic system of simultaneous equations

In the context of classic systems of simultaneous equations, it is commonly assumed

that restrictions on Γ0 and Ψ0 are enough to ensure that the whole system is identified;

Richmond (1974) provides a necessary and suffi cient condition for system identification

based on linear restrictions on Γ0 and Ψ0.

Let β0 = (vec (Γ0)′ , vec (Ψ0)′)′ and notice that the equality A′0 = −Ψ0Γ−1
0 implies

A′0Γ0 + Ψ0 = 0, which can be vectorized as

(IG ⊗ A′0, IGK)β0 = 0.

Furthermore, assume that Γ0 and Ψ0 satisfy the additional set of m linear restrictions

Φβ0 = ϕ,

where Φ is a m × G (G+K) matrix and ϕ is a m-dimensional vector. Richmond (1974,

Theorem 5) shows that the system is identified if and only if

rank((IG ⊗ A′0, IGK)′,Φ′) = G (G+K) . (9)

Note that condition (9) implies that m ≥ ρ ≥ G2, where ρ ≡ rank(Φ), and the para-

metric restrictions Φβ0 = ϕ imply a partition of β0 into two subvectors β
r
0 and β̄

r
0 such

that β̄r0 = Φrβ
r
0 + ϕr, where Φr is a ρ × (G2 + GK − ρ) matrix and ϕr, β

r
0, and β̄

r
0 are

vectors of dimensions ρ, G (G+K) − ρ, and ρ, respectively. Furthermore, imposing the

restriction β̄r = Φrβ
r + ϕr on Ψ and Γ we obtain Ψr and Γr.

For identified models, we estimate βr0 and estimates of the remaining parameters of β0

are obtained via the equation β̄r0 = Φrβ
r
0 + ϕr. The estimator of β

r
0 can be implemented

using the following two-stage procedure. First, obtain ÂT , B̂T , and D̂T by estimating

the transpose of (8) using the multivariate conditional mode estimator defined by (5).

Second, estimate βr0 by solving the following minimum distance problem:

β̂
r

T = arg min
βr∈Br

[
α̂T + vec

((
ΨrΓ

−1
r

)′)]′
Σ̂−1
T

[
α̂T + vec

((
ΨrΓ

−1
r

)′)]
, (10)

where Σ̂T = Âvar (α̂T ) = D̂−1
T B̂T D̂

−1
T , as in Theorem 4, and Br denotes the parameter

space of βr. Notice that when the system is exactly identified the minimum distance
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estimator is not needed and estimates of the structural parameters can be obtained just

by solving the system α̂T + vec
(
(ΨrΓ

−1
r )
′)

= 0 for Γr and Ψr.

The asymptotic properties of this two-stage estimator are closely related to those of

ÂT . To establish these properties we need the following additional assumptions where we

use the definitions: C(βr) = ∂ vec (ΨrΓ
−1
r ) /∂βr′ and C0 = C(βr0).

15. (Identification) The matrices Γ0, A0, and Φ are such that: (i) rank (Γ0) = G; (ii)

rank((IG ⊗ A′0, IGK)′,Φ′) = G (G+K).

16. (Parameter Space - II) Br is compact.

17. (Rank Condition) rank(C0) = G (G+K)− ρ.

18. (Interior Parameter Value - II) Br has a non-empty interior, denoted int (Br), and

βr0 ∈ int (Br).

The following result establishes the consistency of the proposed procedure.

Theorem 5 (Consistency II) Under Assumptions 1—7, 15 and 16: β̂
r

T

p−→ βr0.

Then, Theorems 1—3 imply the following results.

Theorem 6 (Asymptotic Normality II) Under Assumptions 1—18:√
TδG+2

T

(
β̂
r

T − βr0
)

d−→ N
(

0,
[
C ′0D0B

−1
0 D0C0

]−1
)
.

Theorem 7 (Consistent Asymptotic Covariance Estimation II) Under Assumptions 1—

18:

Âvar
(
β̂
r

T

)
=
[
Ĉ ′T D̂T B̂

−1
T D̂T ĈT

]−1 p−→ Avar
(
β̂
r

T

)
=
[
C ′0D0B

−1
0 D0C0

]−1
,

where B̂T and D̂T are given as in Theorem 4 and ĈT = C
(
β̂
r

T

)
.

3.2. Structural vector autoregressive models

There are models in which the available restrictions on Γ0 and Ψ0 are not enough to

ensure that Assumption 15 holds, but identification can be obtained by imposing restric-

tions on the conditional distribution of Vt. For example, assumptions on the conditional
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distribution of Vt are heavily used in the identification of structural vector autoregressive

models because in this case restrictions on Ψ0 are generally diffi cult to justify. In this

context, it is often assumed that the conditional covariance matrix of Vt is diagonal (see,

e.g., Lütkepohl, 2005), reflecting the fact that the structural errors are “primitive”, in the

sense that they do not have common causes (Bernanke, 1986).

Naturally, restrictions on the conditional covariance of Vt do not help in the identifica-

tion of (7) because the model does not impose any structure on the conditional moments

of Vt. However, there are cases in which the stronger condition that the elements of Vt

are conditionally independent can be used to identify Γ0 and Ψ0. Strictly speaking the

assumption that the elements of Vt are conditionally independent is much stronger than

the assumption that they are conditionally uncorrelated. Nonetheless, conditional inde-

pendence is very much in line with the idea that the structural errors are “primitive”

and it is perhaps the most natural justification for the absence of conditional correlation.

Moreover, the absence of conditional correlation is often coupled with the assumption of

normally distributed errors (see, e.g., Lütkepohl, 2005), and together these assumptions

imply conditional independence.

Estimation under conditional independence of the elements of Vt is particularly at-

tractive because in this case the multivariate mode is just the vector of the marginal

modes, and therefore it is possible to escape the curse of dimensionality by estimating

each equation separately.

Estimation equation-by-equation of (7) under conditional independence may be possible

by adapting Sargan’s (1958) approach to the estimation of models defined by conditional

mode restrictions, much in the same way Sakata (2007) adapted it to the estimation

of models defined by conditional median restrictions. The details of such method are,

however, beyond the scope of the present paper. Nevertheless, our earlier results can

easily be used in the leading case where the elements of Vt are assumed to by conditionally

independent and Γ0 is restricted to be a triangular matrix with ones on the main diagonal

(this is the so-called Cholesky identification).
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For example, assuming that Γ is lower triangular, (7) can be written as

ytg =
G∑

j=g+1

−γjgytj +

K∑
k=1

ψkgztk + vtg, g = 1, . . . , G− 1, & t = 1, . . . , T,

ytG =

K∑
k=1

ψkGztk + vtG, t = 1, . . . , T,

where yti, zti, and vti denote the ith element of the vectors Yt, Zt, and Vt, and γjg and

ψkg denote elements of the matrices Γ0 and Ψ0.

By assumption, the mode of vtG conditional on Ft−1 is zero and hence

Mode (ytG|Ft−1) =
K∑
k=1

ψkGztk. (11)

In addition, by assumption, vtg is conditionally independent of (vtg+1, · · · , vtG) given Ft−1,

with a conditional mode of 0. Hence it follows that

Mode (ytg|Ft−1) =
G∑

j=g+1

−γjgytj +
K∑
k=1

ψkgztk, g = 1, . . . , G− 1. (12)

Equations (11) and (12) show that when the errors are independent and the Cholesky

identification is used, it is possible to estimate each equation separately by using the

univariate version of the estimator proposed in Section 2. We illustrate the use of this

procedure in Subsection 5.3.

4. SIMULATION EVIDENCE

In this section we present the results of simulation experiments illustrating the finite

sample performance of the proposed estimator. The core of these experiments is designed

to shed light on how the performance of the estimator depends on the number of equations

in the system and on the smoothing parameter. We also perform a small set of experiments

illustrating the sensitivity of the estimators to the presence of an additive outlier.

In these experiments data for t = −249, . . . , T , with T ∈ {150, 300}, are generated by

yg,t = ag0 + ag1y1,t−1 + ag2y2,t−1 + ag3y3,t−1 + ag4y4,t−1 + ug,t, g ∈ {1, 2, 3, 4} ,

with yg,−250 = 0, agg = 0.75, and agi = 0 for g 6= i. The errors are generated as

ug,t = εg,t
(
0.1 + 0.75u2

g,t−1

)0.5
, with ug,−250 = εg,−250, and therefore follow an ARCH-type
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process (Engle, 1982). The variables εg,t are generated independently as draws from the

log-normal distribution with parameters µ and σ, and are shifted and scaled to have

zero mode and unit variance; we set µ = 0 and, to generate errors with very different

degrees of skewness, we run experiments with σ ∈ {0.3, 0.9} (the skewness of the log-

normal distribution goes to 0 with σ). The combination of heteroskedasticity and skewness

implies that the conditional mean and conditional mode of yg,t can have different forms

and therefore we can expect the estimates obtained by mode- and mean-based vector

autoregressions to be different, especially in the high-skewness case with σ = 0.9 (note

that this design is prone to generating innovation outliers).

Because the errors εg,t are independent across g, each equation can be estimated either

by itself or as part of a system. To study the effect of G, we focus on the estimation of

equation 1 and compare the results obtained when it is estimated as part of a system of

dimension G = 1, 2, 3, 4. By doing this we can gain some insight into the costs of the

curse of dimensionality incurred when using the system estimator proposed in Section 2.

The mode estimator was implemented using equation specific bandwidths with the

smoothing parameter for equation g, denoted δ̂g,T , defined as δ̂g,T = smadgT−l, where

madg denotes the median of the absolute deviation from the median least squares residual

for equation g, and l = 1.001/ (6 +G).

To complete the definition of δ̂g,T it is necessary to define the scaling factor s. Using

Silverman’s (1986, p. 45, eq. 3.28) rule-of-thumb as a guide, and noting that for the normal

distribution the standard deviation is approximately equal to 1.4826mad, Kemp and San-

tos Silva (2012) used s = 1.6 for the univariate case. In the multivariate case, however, it

may be useful to do some oversmoothing to mitigate the effects of the curse of dimension-

ality. Therefore, to study the interplay between the effects of s and G on the performance

of the estimator, for each value of G we run experiments for s ∈ {1.6, 3.2, 6.4,∞}, with

s =∞ corresponding to the mean-based estimator.

Table 1 contains the means and standard errors of the estimates of a10 and a11 obtained

in 10000 replicas of simulation procedure; to conserve space we focus on these more

interesting parameters. The results for the least squares estimator (s = ∞) provide a

benchmark against which we can compare the mode-based estimates and illustrate that
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mode- and mean-based estimates can be quite different. The results obtained with the

conditional mode estimators with s = 1.6 are reminiscent of those reported by Kemp and

Santos Silva (2012) in that the slope parameters are generally estimated with little bias

but the biases of the intercepts are more noticeable; naturally the biases decrease as the

samples grow. These results hold for all the values of G considered in these experiments.

The results with s = 1.6 also clearly reveal the effects of the curse of dimensionality,

with the precision of the estimates dropping quickly with G, especially when σ = 0.9. The

effects of the curse of dimensionality, however, are much less noticeable with larger values

of s. In particular, for s = 6.4 the standard error of the estimates is much less sensitive

to the value of G. Increasing s also generally increases the precision of the estimates for

all values of G but, naturally, the larger bandwidths lead to larger biases, especially for

the intercepts.

The results in Table 1 suggest that, if the interest is on the slope parameters, setting

s to a value around 6.4 is a sensible choice. However, if the estimate of the intercept is

also relevant, for example if the objective is to use the model for prediction, setting s to

a smaller value may be advisable.

We next report the results of a smaller set of simulations illustrating the effect of an

additive outlier on the results of mode- and mean-based vector autoregressions. In these

experiments the data were generated exactly as before but then y11 is multiplied by 10 to

generate an additive outlier; note that, unlike innovation outliers, this additive outlier is

not generated by the assumed data generating process (the misplacement of the decimal

point is often referred as a possible cause of outliers, see for example Rousseeuw and

Leroy, 1987). Table 2 reports the mean and standard errors of the estimates of a10 and

a11 obtained in 10000 replicas of simulation procedure for the cases with G ∈ {1, 4}

and s ∈ {1.6, 6.4,∞}. Comparing the results in Table 2 with the corresponding results in

Table 1, it is clear that the estimates obtained with the mean-based vector autoregressions

(s =∞) are severely affected by the presence of a single additive outlier even when T =

300; this is clear both in the mean and standard error of the estimates. In contrast, and

as expected, the results obtained with the mode-based estimators are almost unaffected

by the presence of the additive outlier.
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Overall, these results are encouraging in that they suggest that the proposed mode

estimator is likely to have a reasonable performance in moderately large samples. More-

over, these results also suggest that with a careful choice of the bandwidth is possible to

mitigate the costs of the curse of dimensionality, at least for systems with a moderate

number of equations. Finally, the simulation results illustrate the expected robustness of

the mode-based estimator to the presence of outliers. The findings of these simulations

will inform the choices made in the next section where we consider the use of mode-based

vector autoregressions in practice.

Table 1: Simulation results

G = 1 G = 2 G = 3 G = 4

σ T s Const. y1,t−1 Const. y1,t−1 Const. y1,t−1 Const. y1,t−1

0.3 150 ∞ 0.197
(0.147)

0.761
(0.096)

0.197
(0.147)

0.761
(0.096)

0.197
(0.147)

0.761
(0.096)

0.197
(0.147)

0.761
(0.096)

6.4 0.150
(0.086)

0.728
(0.076)

0.155
(0.089)

0.729
(0.078)

0.158
(0.091)

0.730
(0.080)

0.161
(0.093)

0.731
(0.082)

3.2 0.109
(0.088)

0.723
(0.079)

0.116
(0.094)

0.722
(0.084)

0.121
(0.100)

0.722
(0.090)

0.126
(0.105)

0.722
(0.094)

1.6 0.064
(0.121)

0.723
(0.107)

0.071
(0.147)

0.721
(0.125)

0.078
(0.171)

0.721
(0.147)

0.087
(0.208)

0.718
(0.171)

300 ∞ 0.176
(0.098)

0.789
(0.074)

0.176
(0.098)

0.789
(0.074)

0.176
(0.098)

0.789
(0.074)

0.176
(0.098)

0.789
(0.074)

6.4 0.134
(0.055)

0.743
(0.049)

0.139
(0.057)

0.745
(0.051)

0.142
(0.058)

0.747
(0.053)

0.145
(0.060)

0.748
(0.054)

3.2 0.092
(0.057)

0.738
(0.053)

0.099
(0.061)

0.738
(0.056)

0.104
(0.065)

0.739
(0.060)

0.108
(0.068)

0.739
(0.063)

1.6 0.047
(0.083)

0.739
(0.077)

0.054
(0.098)

0.739
(0.091)

0.058
(0.117)

0.739
(0.105)

0.061
(0.139)

0.740
(0.122)

0.9 150 ∞ 0.196
(0.254)

0.825
(0.069)

0.196
(0.254)

0.825
(0.069)

0.196
(0.254)

0.825
(0.069)

0.196
(0.254)

0.825
(0.069)

6.4 0.145
(0.064)

0.761
(0.035)

0.149
(0.067)

0.763
(0.037)

0.153
(0.071)

0.764
(0.039)

0.155
(0.074)

0.766
(0.041)

3.2 0.108
(0.054)

0.752
(0.031)

0.113
(0.060)

0.753
(0.034)

0.116
(0.066)

0.754
(0.038)

0.119
(0.072)

0.755
(0.042)

1.6 0.066
(0.053)

0.750
(0.034)

0.068
(0.066)

0.751
(0.042)

0.070
(0.082)

0.753
(0.052)

0.072
(0.102)

0.754
(0.064)

300 ∞ 0.175
(0.142)

0.849
(0.049)

0.175
(0.142)

0.849
(0.049)

0.175
(0.142)

0.849
(0.049)

0.175
(0.142)

0.849
(0.049)

6.4 0.136
(0.039)

0.761
(0.022)

0.141
(0.042)

0.763
(0.024)

0.145
(0.044)

0.765
(0.026)

0.147
(0.046)

0.767
(0.027)

3.2 0.099
(0.033)

0.753
(0.019)

0.104
(0.037)

0.754
(0.022)

0.108
(0.041)

0.755
(0.024)

0.111
(0.046)

0.756
(0.027)

1.6 0.058
(0.032)

0.751
(0.021)

0.062
(0.041)

0.752
(0.027)

0.065
(0.052)

0.753
(0.033)

0.066
(0.064)

0.754
(0.041)
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Table 2: Simulation results with an additive outlier

G = 1 G = 4

σ T s Const. y1,t−1 Const. y1,t−1

0.3 150 ∞ 0.400
(0.351)

0.554
(0.222)

0.400
(0.351)

0.554
(0.222)

6.4 0.159
(0.092)

0.724
(0.084)

0.170
(0.102)

0.725
(0.093)

1.6 0.073
(0.116)

0.720
(0.106)

0.101
(0.203)

0.707
(0.177)

300 ∞ 0.301
(0.213)

0.656
(0.178)

0.301
(0.213)

0.656
(0.178)

6.4 0.137
(0.056)

0.742
(0.052)

0.148
(0.061)

0.747
(0.057)

1.6 0.051
(0.080)

0.739
(0.074)

0.065
(0.137)

0.737
(0.120)

0.9 150 ∞ 0.572
(0.925)

0.503
(0.240)

0.572
(0.925)

0.503
(0.240)

6.4 0.162
(0.090)

0.766
(0.051)

0.172
(0.111)

0.770
(0.065)

1.6 0.089
(0.066)

0.750
(0.045)

0.097
(0.116)

0.751
(0.081)

300 ∞ 0.411
(0.319)

0.651
(0.198)

0.411
(0.319)

0.651
(0.198)

6.4 0.144
(0.043)

0.765
(0.026)

0.155
(0.052)

0.770
(0.033)

1.6 0.069
(0.034)

0.751
(0.020)

0.076
(0.066)

0.755
(0.041)

5. PUTTING THE MODE-BASED VAR THROUGH ITS PACES

In this section we illustrate the usefulness of multivariate mode auto-regression models

in a context similar to that considered by Stock and Watson (2001) in their classic pa-

per on vector autoregressions (VARs). Specifically, we compare mode- and mean-based

VARs in a three-variable model for inflation (π), unemployment rate (u), and interest

rate (R), estimated with US quarterly data from 1960:I to 2000:IV, and then compute

pseudo out-of-sample forecasts from 2001:I to 2017:IV. Other examples of VAR models

using quarterly data for inflation, unemployment, and interest rate include Cogley and

Sargent (2001), Primiceri (2005), and Koop, Leon-Gonzalez, and Strachan (2009). All

data were obtained from the St. Louis Fed’s Federal Reserve Economic Data (FRED)

website. Specifically, the series used are CPIAUCNS (Consumer Price Index for All Ur-

ban Consumers: All Items, Monthly, Not Seasonally Adjusted), UNRATENSA (Civilian

Unemployment Rate, Percent, Monthly, Not Seasonally Adjusted), and FEDFUNDS (Ef-
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fective Federal Funds Rate, Percent, Monthly, Not Seasonally Adjusted). Quarterly values

of all variables are obtained by averaging monthly values and monthly inflation is obtained

as 100 ln (Pt/Pt−12) where Pt is CPIAUCNS.

5.1. Dynamics and Granger causality

Following Stock and Watson (2001), we start by comparing the results for Granger-

causality tests based on mode- and mean-based VARs. As in Stock and Watson (2001),

we will only use four-lag VARs and will not discuss in detail the choice of the lag length

(see Lütkepohl, 2005, for a discussion of this topic).

A related issue that we do not discuss is the use of shrinkage methods to reduce possible

overparameterization which can have a negative effect on the performance of VAR mod-

els, especially when used for forecasting (see, e.g., Canova, 1999). A popular approach to

overcome this problem is to use Bayesian methods (see, e.g., Litterman, 1986, and Kilian

and Lütkepohl, 2017, Ch. 5). Using Bayesian methods in the context of the proposed

mode regression estimator, however, is not feasible because those methods are likelihood

based and our estimator is non-parametric about the distribution of the errors. Alter-

natively, one could choose the lag length so as to optimize forecasting performance (see

Canova, 1999) or we could perform the shrinkage using a form of LASSO (see, e.g., Hastie,

Tibshirani and Friedman, 2009). Studying and implementing either of these approaches,

however, is beyond the scope of this paper and we leave it for future research.

Table 3 presents the p-values for the Granger-causality tests for the mean-based VAR

(s =∞) and for the mode-based VARs obtained with different values of s. As expected,

the results for the mean-based model are not very different from those obtained with the

mode-based model when s is large. However, for s = 1.6 the results become substantially

different, suggesting that mode- and mean-based models can have very different dynamic

structures (the difference between the two models will depend on how the shape of the

distribution of the errors varies with the regressors). For example, the mean-based model

provides strong evidence that u does not Granger-cause π, whereas with the mode-based

model with s = 1.6 that null hypothesis is rejected at the usual 5% level. Of course,
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the strong rejection of the null of no Granger-causality on mode- and mean-based models

can also hide significantly different dynamic structures, leading to substantially different

forecasts; we investigate that in the next subsection.

Table 3: P-values for Granger-causality tests (1960:I —2000:IV)

Mean Mode
s =∞ s = 6.4 s = 3.2 s = 1.6

Regressor π u R π u R π u R π u R

π – 0.00 0.02 – 0.00 0.06 – 0.00 0.06 – 0.00 0.01

u 0.76 – 0.23 0.90 – 0.57 0.64 – 0.83 0.01 – 0.23

R 0.01 0.00 – 0.00 0.00 – 0.00 0.00 – 0.00 0.00 –

5.2. Multiperiod Forecasts

The traditional literature on VARmodels has considered iterated and direct multiperiod

forecasts (see, e.g., Stock and Watson, 2012, pp. 678-684 for a textbook treatment of these

approaches). If the VAR is correctly specified, iterated multiperiod forecasts are known to

be more effi cient, but direct forecasts are more robust and therefore the choice of method

to use depends on the particular application at hand (see, e.g., Bhansali, 2002, and Stock

and Watson, 2012). Iterated multiperiod forecasts, however, rely on the properties of

the expectation operator and therefore this approach is not available unless the VAR

characterizes the conditional mean. On the contrary, direct multiperiod forecasts do not

depend on the properties of expectations and therefore can be used in our context.

Suppose that the purpose is to use the information available at time t− 1 to obtain a

forecast of Yt−1+h, with h > 0. The direct forecast can be obtained from estimates of the

model

Yt = Ah0Zt+1−h + Ut, (13)

where Zt+1−h can contain Yt−h, its lags, and exogenous variables. Letting Âh0 denote an

estimate of Ah0 , the forecast of Yt−1+h can be obtained as Ŷt−1+h = Âh0Zt.

Naturally, the properties of the forecast will depend on the properties of the estima-

tor of Ah0 and on the properties of Ut. Letting Ft−h denote the σ-algebra generated by

{(Yt−j, Zt+1−j)}∞j=h, the traditional direct multiperiod forecasts are obtained if the ele-

ments of Ah0 are estimated by least squares under the assumption that E (Ut|Ft−h) = 0.
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Likewise, we obtain a mode-based predictor of Yt−1+h when Ah0 is estimated by the method

proposed in Section 2 under the assumption that Mode (Ut|Ft−h) = 0.

Using (13) to generate direct forecasts for h = 1, . . . , H, implies assuming that Yt

has a VAR representation for each h. This is a strong assumption that is unlikely to

hold in practice (more generally, it is widely accepted that VARs are often misspecified;

see, e.g, the discussion in Jordà, 2005). The assumption that the models are correctly

specified is particularly unlikely to hold in the pseudo out-of-sample forecasts that we

perform below because our models were used to make predictions during the recent global

financial crisis and ensuing recession; likewise, at some point all models were estimated

using data from this exceptional period. This suggests that the models we use may suffer

from some degree of misspecification due to structural changes, but this is also often

unavoidable in practice (e.g., Clements and Hendry, 1998, suggest that structural change

is a major source of forecasting errors). However, autoregressive models estimated using

an expanding window that spans structural breaks, as we use, have been shown to produce

reasonably accurate forecasts (see Pesaran and Timmermann, 2005). More importantly,

the major economic events of the early 21st century provide us with the opportunity to

study the prediction ability of the different models in very different, and rapidly changing,

economic scenarios. We note that the asymptotic theory we develop in this paper will

not apply if the mode-based model is not correctly specified, but studying the asymptotic

properties of misspecified mode regression is clearly beyond the scope of this paper.

In order to be able to compare the forecasts produced by the different models it is

necessary to define a suitable loss function. Although many alternatives are available

(see, e.g., Komunjer and Owyang, 2012, and Sinclair, Stekler, and Muller-Droge, 2016),

the loss function we use here is simply the Euclidean distance between the forecast and

the actual realization, defined as

dt+h =
(
e2

1,t+h + e2
2,t+h + e2

3,t+h

)1/2
,

where eg,t+h is the h-step-ahead forecasting error for equation g estimated with data up

to t. The motivation for our choice of loss function is the intuitive interpretation of

this measure, which is likely to make it attractive to non-experts (of course, it may be
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possible to define an estimator of the multivariate measure of location that minimizes

the expected value of this loss function but that is not our objective here). We could

also consider a more general loss function where the forecasting error of each equation is

given a different weight. This is particularly interesting if the variables are measured on

different scales or have very different dispersion, which is not the case in the example we

consider. Obviously, the ranking of the different forecasts will depend on the choice of loss

function (see, e.g., Sinclair, Stekler, and Muller-Droge, 2016) but that is not particularly

important in our context because, rather than ranking the different models, we mainly

want to shed light on the different nature of the mode- and mean-based predictions.

We now go back to our example and run a simulation exercise similar to that performed

by Stock andWatson (2001). In particular, mode- and mean-based models were estimated

(with an expanding window) and used to produce forecasts for h periods ahead for each

of the 68 observations between 2001:I and 2017:IV. We then computed the values of

dt+h, with h ∈ {1, 2, 4, 8}, for the iterated and direct forecasts obtained with the mean-

based models, and for the direct forecasts produced by the mode-based models with

s ∈ {1.6, 3.2, 6.4}; Table 4 displays descriptive statistics of dt+h for each of the models.

In this particular example, the iterated forecasts and the direct forecasts obtained with

the mean-based models have comparable performance, except for h = 8 where the iterated

forecasts are clearly superior to the mean-based direct forecasts. Comparing now mode-

and mean-based forecasts, we see that the performance of the mode-based forecasts is

very good for all horizons. Indeed, for s ∈ {3.2, 6.4} the mean of dt+h is lower for the

mode regressions than for any of the mean-based forecasts. The mode-based forecasts,

however, tend to have larger standard errors, but the mode-based forecast with s = 3.2

has lower standard error than the iterated mean-based forecasts for all cases with h > 1.

Finally, all the quartiles of dt+h tend to be closer to zero for the mode-based forecasts,

suggesting that the distribution of dt+h tends to have more mass close to zero than the

mean-based forecasts.

The difference between the distributions of dt+h for mode- and mean-based models is

clearly illustrated by the top panel in Figure 1, which displays an estimate of the density

of dt+h for h = 4 for the mode-based forecasts with s = 3.2 (solid line) and for the mean-

23



based forecasts (dashed line). The bottom panel of Figure 1 plots the values of dt+4 for

the mode-based forecasts with s = 3.2 (solid line) and for mean-based forecasts (dashed

line). This plot shows that both methods have similar values of dt+4 up to the financial

crisis, but subsequently the mode-based model preformed substantially better.

To complement this information, Figure 2 displays for each of the series being considered

the four-period ahead forecasting errors (eg,t+4) for the mode-based forecasts with s = 3.2

(solid line) and for the mean-based forecasts (dashed line). The individual mode-based

forecasting errors need to be read with caution because what is being predicted is the mode

of the joint distribution and not the marginal modes, but these plots reinforce the idea

that the mode-based predictions are particularly good after the financial crisis. Figures 1

and 2 also show that the mode-based model leads to some of the largest forecasting errors

Table 4: Descriptive statistics for dt+h (2001:I —2017:IV)

Quartiles
Method Mean SError 1st 2nd 3rd

h = 1 Mean 0.954 0.755 0.501 0.713 1.059

Mode s = 1.6 0.953 0.821 0.421 0.658 1.187

Mode s = 3.2 0.896 0.801 0.362 0.656 1.093

Mode s = 6.4 0.896 0.797 0.404 0.662 1.091

h = 2 Mean (Iterated) 1.631 1.244 0.784 1.290 2.131

Mean (Direct) 1.569 1.173 0.751 1.191 2.014

Mode s = 1.6 1.518 1.324 0.627 1.136 2.102

Mode s = 3.2 1.383 1.065 0.651 1.072 1.869

Mode s = 6.4 1.518 1.191 0.612 1.206 1.944

h = 4 Mean (Iterated) 2.563 1.774 1.278 2.159 3.462

Mean (Direct) 2.574 1.607 1.437 2.374 3.449

Mode s = 1.6 2.644 2.296 1.091 1.764 3.653

Mode s = 3.2 2.357 1.745 1.106 1.899 3.019

Mode s = 6.4 2.443 1.592 1.258 2.298 3.308

h = 8 Mean (Iterated) 3.881 2.075 2.176 3.738 5.207

Mean (Direct) 4.269 2.288 2.384 3.820 6.249

Mode s = 1.6 3.701 2.075 1.844 3.652 4.756

Mode s = 3.2 3.614 1.901 1.978 3.745 4.598

Mode s = 6.4 3.742 2.108 1.758 3.636 5.010
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Figure 1: Top panel: estimates of the density of dt+4 for the mode-based

forecasts with s = 3.2 (solid line) and for the mean-based forecasts (dashed

line). Bottom panel: values of dt+4 for the mode-based forecasts with s = 3.2

(solid line) and for the mean-based forecasts (dashed line).
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Figure 2: Four-period ahead forecast errors for inflation (top), unemployment

rate (middle), and interest rate (bottom) for the mode-based forecasts with

s = 3.2 (solid line) and for the mean-based forecasts (dashed line).
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(this is reflected by their large standard errors reported in Table 4). This is not surprising

because the loss function on which this estimator is based does not particularly penalize

very large errors. That is, the existence of some large errors is the price to pay for having

more errors close to zero, as illustrated by the top panel in Figure 1.

5.3. Impulse response functions

Impulse response functions (IRFs) are routinely used for policy analysis and their con-

struction is closely related to the forecasting problem discussed before. In particular, just

like with iterated multiperiod forecasts, the traditional IRFs obtained by inverting the

VAR are diffi cult to interpret unless the VAR represents a conditional expectation (see

Koop, Pesaran, and Potter, 1996, for other limitations of the traditional IRFs and see

White, Kim, and Manganelli, 2015, for the analog of an IRF in the context of quantile-

based models). However, as argued by Jordà (2005), models such as (13) provide an

alternative way of obtaining IRFs. Jordà’s (2005) approach extends naturally to the case

where the VAR defines a conditional mode.

To proceed it is convenient to write (13) as

Yt = Ah10Yt−h + Ah20Z
∗
t+1−h + Ut = M

(
Yt|Yt−h, Z∗t+1−h

)
+ Ut, (14)

where the role of Yt−h is now explicit and Z∗t+1−h contains the other variables in the model;

that is Ah0 =
[
Ah10 Ah20

]
and Zt−h+1 =

[
Y ′t−h Z∗′t+1−h

]′
. If (14) is estimated under

the invalid assumption that Mode (Ut|Ft−h) = 0, we can interpret M
(
Yt|Yt−h, Z∗t+1−h

)
as a “local projection” that approximates Mode (Yt|Ft−h), and we can define the Mode

Impulse Response Function (MIRF) as

MIRF (h, t, δ) = M
(
Yt|Yt−h + δ, Z∗t+1−h

)
−M

(
Yt|Yt−h, Z∗t+1−h

)
= Ah10δ, h = 0, 1, . . . (15)

with the normalization A0
10 = I and A0

20 = 0. That is, Ah10 gives the effect on

M
(
Yt|Yt−h, Z∗t+1−h

)
of a shock δ to Yt−h (or to Ut−h).

As in Jordà (2005), the MIRF defined by (15) gives the response to a shock to the

reduced form errors. However, economists are often more interested in the responses to

shocks to the structural errors. To see how those can be obtained, recall that from (8)
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we have that Ut =
(
Γ−1

0

)′
Vt, where Vt denotes the vector of structural errors. Therefore,

the effect of a shock to the structural error Vt−h is given by Ah10

(
Γ−1

0

)′
(this mimics the

approach used by Jordà, 2005, see Kilian and Kim, 2011, footnote 4).

Of course, whether or not it is possible to compute the structural MIRF depends on

whether Γ0 is identified. In this application we use the standard Cholesky identification

and assume that the structural model is a recursive VAR with the order π, u, R (as

in Stock and Watson, 2001), and that the errors of the equations are independent. As

discussed in Section 3, such model can be estimated using the system estimator defined

in Section 2, or it can be estimated equation by equation, which has the advantage of

avoiding the curse of dimensionality; this is the approach we use in this application.

IRFs are generally accompanied by the corresponding confidence intervals. Although

asymptotic theory can be used to compute these, it is well-known that asymptotic ap-

proximations do not work well for the sample sizes of most applications, and therefore

simulation-based methods are often preferred (see Kilian and Kim, 2011, and Stock and

Watson, 2018, footnote 11). Obtaining confidence intervals for the MIRF is also chal-

lenging because the model defined by (13) is likely to be misspecified and the asymptotic

theory provided in this paper will not be valid in this context. To avoid this problem, we

use the blocks-of-blocks bootstrap described in Kilian and Kim (2011) (see also Kilian and

Lütkepohl, 2017, pp. 351-353) and Efron’s percentile method to compute the confidence

intervals for the IRFs and MIRFs (Kim and Kilian, 2011, use the bias-corrected percentile

method but note that in the case of IRFs based on local projections the bias correction

improves performance only slightly). As in Kilian and Kim (2011), all the results are

obtained using 2000 bootstrap replicas and blocks of size 4 for all horizons.

Figures 3 to 5 display, respectively, the mean-based (at the top) and mode-based (at the

bottom) impulse response functions corresponding to 1 p.p. shock to inflation, unemploy-

ment rate, and interest rate. As in Stock and Watson (2001), the (M)IRFs are accompa-

nied by 66% confidence intervals and are estimated with data from 1960:I to 2000:IV. As

noted earlier, the parameters of the structural model were estimated equation-by-equation,

and the parameters of the reduced form VAR were estimated using the estimator described
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Figure 3: Impulse response functions and 66% confidence intervals (mean-

based at the top and mode-based with s = 6.4 at the bottom) for the effect

of a shock of 1 p.p. to π on (from left to right) π, u, and R.
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Figure 4: Impulse response functions and 66% confidence intervals (mean-

based at the top and mode-based with s = 6.4 at the bottom) for the effect

of a shock of 1 p.p. to u on (from left to right) π, u, and R.
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Figure 5: Impulse response functions and 66% confidence intervals (mean-

based at the top and mode-based with s = 6.4 at the bottom) for the effect

of a shock of 1 p.p. to R on (from left to right) π, u, and R.

in Section 2; given the simulation results in Section 4, and given that the (M)IRFs depend

only on the slope parameters, all mode-based models were estimated with s = 6.4.

The overall pattern of the mode- and mean-based response functions is reassuringly

similar and, with such small sample, it is not surprising to find that the confidence intervals

of the two sets of impulse response functions are largely overlapping. Looking in detail,

however, we can find some differences, for example in the way π and R react to a shock

to π, and especially on how R reacts to a shock to u. These differences, naturally, reflect

the different dynamic structures of the mode- and mean-based VARs that were revealed

by their different forecasting performances.

This application illustrates how mode-based models can be used for some of the tasks

VARs are more frequently used for. In the particular three-variable model we considered,

mode- and mean-based VARs lead to broadly comparable Granger-causality results and

influence response functions. However, the two approaches lead to substantially different

pseudo out-of-sample forecasts, with the mode-based models doing particularly well in this
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respect. Overall, these results suggest that mode-based models can provide an interesting

complement to standard VARs in many applications.

6. CONCLUDING REMARKS

We introduce an estimator of the conditional mode of a random vector allowing for

dynamic models and dependent data, thereby extending the results of Kemp and Santos

Silva (2012) to the multivariate case and to the time-series context. The proposed ap-

proach can be used in the estimation of vector autoregressive conditional mode models, as

well as in the estimation of some structural systems of simultaneous equations defined by

conditional mode restrictions. The multivariate mode regression estimator is easy to im-

plement using standard software, and it was found to be reasonably well behaved in small

samples. An empirical example illustrating the application of the proposed methods sug-

gests that mode- and mean-based models can have very different dynamic structures and

therefore can lead to forecasts and impulse response functions with different properties.

Several avenues for future research are left open. As noted before, it would be inter-

esting to consider using the LASSO to perform shrinkage in larger models identified by

conditional mode restrictions. Moreover, our results on the estimation of systems of si-

multaneous equations can be extended to cover the case where restrictions are non-linear

and, as mentioned before, it may be possible to develop an estimator for general structural

vector autoregressive models under the assumption that the errors of the equations are

conditionally independent.

It would also be interesting to study how long-run restrictions can be used to help with

identification of structural models, as in Blanchard and Quah (1989). The traditional

way to estimate models identified by long-run restrictions involves the estimation of the

covariance of the errors, something that cannot be done in our context because the model

does not impose any structure on the conditional moments. However, it may be possible

to follow a similar approach by replacing the covariance matrix with the Hessian of the

conditional density of the errors evaluated at the conditional mode. Indeed, this Hessian

shares important characteristics of the conditional covariance matrix and, in particular,
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both matrices are diagonal when the errors are conditionally jointly independent, and the

relation between the Hessian of the structural and reduced form errors closely resembles

the relation between the corresponding covariance matrices.

Finally, because the mode is a robust measure of location, the availability of the multi-

variate mode regression estimator also offers a possible alternative to several multivariate

robust estimators; see, for example, the multivariate regression estimators of Rousseeuw,

Van Aelst, Van Driessen, and Agulló (2004) and Agulló, Croux, and Van Aelst (2008),

the estimator for VAR models introduced by Muler and Yohai (2013), and the estimators

for simultaneous equations models developed by Krishnakumar and Ronchetti (1997) and

Maronna and Yohai (1997). Naturally, it would be interesting to explicitly compare the

properties and performance of these estimators.
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Appendix of Dynamic Vector Mode Regression

Gordon C.R. Kemp1 Paulo M.D.C Parente1 J.M.C. Santos Silva3
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In this appendix we provide the proofs of all the theorems presented in Sections 2 and

3. In particular, in Section A1 we prove the relevant theorems making use of a number

of lemmas and Section A2 presents the lemmas and the respective proofs.

A1. PROOF OF THEOREMS

In what follows CR, CS, H, J, M, and T denote the cr, Cauchy-Schwarz, Hölder,

Jensen, Markov, and triangle inequalities respectively, and MVT denotes the mean

value theorem; see Davidson (1994, pages 75, 132, 133, 138, 140, 340). In addition,

ULLN refers to the uniform law of large numbers for stationary ergodic processes; see

Lemma 7.2 of Hayashi (2000). Furthermore, for any array M we let ‖M‖ denote

the non-negative square-root of the sum of the squares of the elements of M . Thus,

for example, if M is a matrix then ‖M‖ = [trace (M ′M)]1/2. We also define the

set vec (A) ≡
{
y ∈ RGK |y = vec (A) , A ∈ A

}
. Finally, C denotes a finite positive con-

stant, and we use the following convention for the derivatives of a vector-valued func-

tion F (a) with respect to the vector a: F (1)(a) ≡ ∂F (a)/∂a′, F (2)(a) ≡ ∂2F (a)/∂a∂a′,

F (3)(a) ≡ ∂vec(F (2)(a))/∂a′.

Proof of Theorem 1 From Assumption 6 it follows that K (·) is continuous. From

Assumptions 1, 7 and 8 it follows that δT is strictly positive and δ̂T is strictly positive

with probability 1 and hence that there exists a subset Ω0 of Ω such that Pr (ω ∈ Ω0) = 1

and Q̂T (A;ω) is a continuous function of A for all ω ∈ Ω0. Since A is compact, by

Assumption 2, the result follows immediately by Lemma 7.1 from Hayashi (2000). �
1Department of Economics, University of Essex. E-mail: kempgcr@essex.ac.uk.
1ISEG-UL - Universidade de Lisboa; REM - Research in Economics and Mathematics; CEMAPRE-

Centro de Matemática Aplicada à Previsão e Decisão Económica. Email: pparente@iseg.ulisboa.pt.
3School of Economics, University of Surrey. E-mail: jmcss@surrey.ac.uk.

1



Proof of Theorem 2 Let θ =
(
γ, vec (A)′

)′
, where 0 < γ <∞, and define:

JT (θ) = T−1

T∑
t=1

δ−GT K
(
γ (Yt − AZt)

δT

)
.

Observe that Q̂T

(
ÂT

)
= γ̂GT JT

(
θ̂T

)
, where θ̂T =

(
γ̂T , vec

(
ÂT

)′)′
and γ̂T = δT/δ̂T .

Lemma 5 below establishes that there exists a continuous function Q0 (·) : A 7→ R such

that:

lim
T→∞

E
[
γGJT (θ)

]
= Q0 (A) , ∀γ > 0 &A ∈ A,

and that Q0 (A) achieves a unique strict global max on A at A0. Lemma 6 below estab-

lishes that for any fixed constant ν > 0 then:

sup
θ∈Θ

∣∣γGJT (θ)−Q0 (A)
∣∣ = op (1) , (A.1)

where Θ = [e−ν , eν ]× vec (A).

Now fix ε > 0; Assumption 8 implies that there exists 0 < c < ∞ such that

Pr (|ln γ̂T | > c) < ε for all T . Define:

γ̂T,ε =

{
γ̂T , |ln γ̂T | ≤ c;

1, |ln γ̂T | > c;

Q̂T,ε (A) = γ̂GT,εJT
(
γ̂T,ε, A

)
,

and observe that Equation (A.1) then implies that:

sup
A∈A

∣∣∣Q̂T,ε (A)−Q0 (A)
∣∣∣ = op (1) .

By the same arguments used to establish the existence of ÂT it follows that there exists

a random variable ÂT,ε such that:

Pr
(
ÂT,ε ∈ A

)
= 1,

Pr
(
Q̂T,ε

(
ÂT,ε

)
≥ Q̂T,ε (A) ,∀A ∈ A

)
= 1.

Now define:

Â∗T,ε =

ÂT , |ln γ̂T | ≤ c,

ÂT,ε, |ln γ̂T | > c.

2



Then Â∗T,ε is also a random variable and satisfies:

Pr
(
Â∗T,ε ∈ A

)
= 1,

Pr
(
Q̂T,ε

(
Â∗T,ε

)
≥ Q̂T,ε (A) , ∀A ∈ A

)
= 1.

Since A is compact then Â∗T,ε converges in probability to A0 by Theorem 2.1 from Newey

and McFadden (1994). But:

Pr
({∣∣∣ÂT − A0

∣∣∣ > ε
}
∩
{∣∣∣Â∗T,ε − A0

∣∣∣ > ε
})
≤ Pr

(
Â∗T,ε 6= ÂT

)
,

and hence:

Pr
(∣∣∣ÂT − A0

∣∣∣ > ε
)
≤ Pr

(
Â∗T,ε 6= ÂT

)
+ Pr

(∣∣∣Â∗T,ε − A0

∣∣∣ > ε
)
≤ ε+ o (1)

since Â∗T,ε 6= ÂT implies |ln γ̂T | > c which occurs with probability less than or equal to ε.

Since ε > 0 was arbitrary it follows that ÂT converges in probability to A0. �

Proof of Theorem 3 Theorem 2 implies that ÂT is a consistent estimator of A0 under

these assumptions. Since A ∈ int (A), by Assumption 9, it follows that:

lim
T→∞

Pr

([
∂Q̂T (A)

∂ vec (A)

∣∣∣∣∣
A=ÂT

]
= 0

)
= 1,

noting that Q̂T (A) is differentiable with respect to A for all A except possibly on a set

of outcomes with probability zero. Noting that Q̂T (A) = γ̂GT JT (γ̂T , A), where JT (γ,A)

is defined as in the proof of Theorem 2, it follows that limT→∞ Pr
(
RT

(
θ̂T

)
= 0
)

= 1,

where:

RT (θ) = γ−1 ∂JT (θ)

∂ vec (A)
= T−1

T∑
t=1

δ
−(G+1)
T (Zt ⊗ IG)K(1)

(
γ (Yt − AZt)

δT

)
,

θ =
(
γ, vec (A)′

)′
, and θ̂T =

(
γ̂T , vec

(
ÂT

)′)′
. A MVT expansion of RT (θ) around

θ0 =
(
1, vec (A0)′

)′
implies that:

RT

(
θ̂T

)
= RT (θ0) +

[
∂RT (θ)

∂ vec (A)′

∣∣∣∣
θ=θ∗T

]
vec
(
ÂT − A0

)
+

[
∂RT (θ)

∂γ

∣∣∣∣
θ=θ∗T

]
(γ̂T − 1) ,

(A.2)
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where θ∗T lies on the line segment joining θ̂T and θ0.

First, observe that:

(
TδG+2

T

)1/2
RT (θ0) =

(
TδGT

)−1/2
T∑
t=1

(Zt ⊗ IG)K(1)

(
Ut
δT

)
d−→ N (0, B0) ,

by Lemma 14, where:

B0 = E
[
ft (0|Ft−1) (Zt ⊗ IG)M (Zt ⊗ IG)′

]
, M =

∫
RG
K(1) (s)K(1) (s)′ ds.

Note that B0 is non-singular by Lemma 7. Next observe that:[
∂RT (θ)

∂ vec (A)′

]
= γT−1

T∑
t=1

δ
−(G+2)
T (Zt ⊗ IG)K(2)

(
γηt (A)

δT

)
(Zt ⊗ IG)′ ,

where ηt (A) = (Yt − AZt) and it then follows from Lemma 9 thatDT (θ) = γG+1
[
∂RT (θ)

∂ vec(A)′

]
converges in probability uniformly to:

D (θ) = E
[
(Zt ⊗ IG) f

(2)
t ((A− A0)Zt|Ft−1) (Zt ⊗ IG)′

]
,

on any suffi ciently small open neighborhood of θ0. Assumptions Assumptions 7, 8 and 13

imply that
(
TδG+2

T

)−1
= o(1) which combined with Assumption 14 implies that ln γ̂T =

op (1) and hence that γ̂T converges in probability to 1. Since ÂT converges in probability

to A0 by Theorem 2 then θ̂T converges in probability to θ0 and hence θ
∗
T also converges

in probability to θ0. Then since D (θ) is continuous at θ0, by Lemma 8, it follows that:[
∂RT (θ)

∂ vec (A)′

∣∣∣∣
θ=θ∗T

]
= D0 + op (1) ,

where:

D0 = D (θ0) = E
[
(Zt ⊗ IG) f

(2)
t (0|Ft−1) (Zt ⊗ IG)′

]
.

Finally, observe that:[
∂RT (θ)

∂γ

]
= γT−1

T∑
t=1

δ
−(G+2)
T (Zt ⊗ IG)K(2)

(
γηt (A)

δT

)
ηt (A) .

It follows from Lemma 11 that PT (θ) = γG+1
[
∂RT (θ)
∂γ

]
converges uniformly in probability

to:

P (θ) = (G+ 1) E
[
(Zt ⊗ IG) f

(1)
t ((A− A0)Zt|Ft−1)

]
,

4



on any suffi ciently small open neighborhood of θ0. Since θ
∗
T converges in probability to

θ0 =
(
1, vec (A0)′

)′
, f (1)

t (u|Ft−1) is uniformly bounded with f (1)
t (0|Ft−1) = 0, by Assump-

tions 3 and 9, P (θ) is continuous, by Lemma 10 and E {‖Zt‖} < ∞, by Assumption 4,

then:

[
∂RT (θ)

∂γ

∣∣∣∣
θ=θ∗T

]
= op (1) .

Since D0 is non-singular by Lemma 7 it follows that:

h
1/2
T vec

(
ÂT − A0

)
= [D0 + op (1)]−1

[
N (0, B0) + op (1)h

1/2
T (γ̂T − 1) + op (1)

]
,

where hT = TδG+2
T . Assumptions 7, 8 13 and 14 then imply that h1/2

T (γ̂T − 1) = Op (1)

so it follows that:

h
1/2
T vec

(
ÂT − A0

)
d−→ N

[
0, D−1

0 B0D
−1
0

]
,

noting that D0 is symmetric by Lemma 7. But since
(
δ̂T/δT

)
= γ̂T = 1 + op (1) it follows

that: (
T δ̂

G+2

T

)1/2

vec
(
ÂT − A0

)
d−→ N

[
0, D−1

0 B0D
−1
0

]
.

�

Proof of Theorem 4 First, observe that D̂T = DT

(
θ̂T

)
where:

DT (θ) = γG+2T−1

T∑
t=1

δ
−(G+2)
T (Zt ⊗ IG)K(2)

(
γηt (A)

δT

)
ηt (A) ,

where ηt (A) = (Yt − AZt) and πT = δT/γ. Lemma 9 implies that DT (θ) converges in

probability uniformly to:

D (θ) = E
[
(Zt ⊗ IG) f

(2)
t ((A− A0)Zt|Ft−1) (Zt ⊗ IG)′

]
,

on any suffi ciently small open neighbourhood of θ0. But D (θ) is continuous at θ0, by

Lemma 8, and θ̂T converges in probability to θ0 =
(
1, vec (A0)′

)′
, as established in the

proof of Theorem 3, and hence it follows that D̂T converges in probability toD0 = D0 (θ0).

Second, define:

BT (θ) = γ̂GT T
−1

T∑
t=1

δ−GT (Zt ⊗ IG)K(1)

(
γηt (A)

δT

)
K(1)

(
γηt (A)

δT

)′
(Zt ⊗ IG)′ ,

5



and observe that B̂T = BT

(
θ̂T

)
. Lemma 13 implies that BT (θ) converges in probability

uniformly on any suffi ciently small open neighbourhood of θ0 to:

B (θ) = E
[
ft ((A− A0)Zt|Ft−1) (Zt ⊗ IG)M (Zt ⊗ IG)′

]
,

whereM =
∫
RG K

(1) (x)K(1) (x)′ dx. But B (θ) is continuous at θ0, by Lemma 12, and θ̂T

converges in probability to θ0 =
(
1, vec (A0)′

)′
and hence it follows that B̂T converges in

probability to B0 = B (θ0). �

Proof of Theorem 5 Note that the function

Q0(βr) =
[
α0 + vec

((
ΨrΓ

−1
r

))]′
Σ−1

0

[
α0 + vec

((
ΨrΓ

−1
r

))]
where Σ0 = Avar (α̂T ), is continuous in βr. Since Avar (α̂T ) is positive definite by Lemma

7, it follows that Q0(βr) > 0 for any βr : α0 6= − vec ((ΨrΓ
−1
r )) and Q0(βr) = 0 if and

only if α0 = − vec ((ΨrΓ
−1
r )). Hence by Assumption 15 the minimum is unique. Note also

that

QT (βr) =
[
α̂T + vec

(
ΨrΓ

−1
r

)]′
Σ̂−1
T

[
α̂T + vec

(
ΨrΓ

−1
r

)]
where Σ̂T = Âvar (α̂T ), converges uniformly to Q0(βr). Since Br is compact by Assump-

tion 16, all the assumptions of Theorem 2.1 of Newey and McFadden (1994) are satisfied

and hence β̂
r

T

p−→ βr0. �

Proof of Theorem 6 Since βr0 belongs to the interior of Br by Assumption 18, and

β̂
r

T

p→ βr0 by Theorem 5, it follows that the first order conditions of the minimization

problem (10) are satisfied with probability approaching one, yielding

C
(
β̂
r

T

)′
Σ̂−1
T

[
α̂T + vec

(
Ψ̂rΓ̂

−1
r

)]
= 0

where, as before, Σ̂T = Âvar (α̂T ). Note that since Σ0 = Avar (α̂T ) is non-singular, by

Lemma 7, then Σ̂T is non-singular with probability tending to 1, by Theorem 4.

Now by a Taylor expansion we have

vec
(

Ψ̂rΓ̂
−1
r

)
= vec

(
Ψ0,rΓ

−1
0,r

)
+ C

(
β̃
r

T

)(
β̂
r

T − βr0
)
,

6



where β̃
r

T is on a line joining β̂
r

T and β
r
0 and Ψ0,r and Γ0,r correspond to the matrices Ψr

Γr evaluated at β
r = βr0. But vec

(
Ψ0,rΓ

−1
0,r

)
= −α0 and therefore we have

C
(
β̂
r

T

)′
Σ̂−1
T C

(
β̃
r

T

)√
TδG+2

T

(
β̂
r

T − βr0
)

= −C
(
β̂
r

T

)′
Σ̂−1
T

√
TδG+2

T (α̂T − α0).

Now Assumptions 15, 17 and 18 imply that C (βr) is continuous with full rank in a

neighbourhood of βr0. Since β̂
r

T

p−→ βr0, by Theorem 5, it follows that β̃
r

T

p−→ βr0 and

hence that bothC
(
β̂
r

T

)
andC

(
β̃
r

T

)
converge in probability toC0. The result follows from

Theorems 3 and 4 together with the fact that rank(C0) = G (G+K)− ρ, by Assumption

17. �

Proof of Theorem 7 This follows immediately since Âvar (α̂T ) = D̂−1
T B̂T D̂

−1
T con-

verges in probability to Avar(α̂T ) = D−1
0 B0D

−1
0 , by Theorem 4, Avar(α̂T ) = D−1

0 B0D
−1
0

is non-singular, by Lemma 7, and since ĈT = C
(
β̂
r

T

)
converges in probability to the full

rank matrix C0, as argued in the proof of Theorem 6. �

A2. LEMMAS

Lemma 1 Suppose Assumption 2 is satisfied. Let 0 < ν < ∞ be a scalar constant

and define Θ = [e−ν , eν ] × vec (A); then there exists a constant d < ∞ such for each

T = 1, 2, . . . , there is a finite subset ΘT of Θ and a mapping θ̄T from Θ to ΘT for which:

1.
∥∥θ − θ̄T (θ)

∥∥ ≤ T−2 for all θ ∈ Θ, where for any θ1 =
(
γ1, vec (A1)′

)′
and θ2 =(

γ2, vec (A2)′
)′
:

‖θ1 − θ2‖ =
{

(γ1 − γ2)2 + vec (A1 − A2)′ vec (A1 − A2)
}1/2

2. the number of elements of ΘT is less than or equal to T 2G(K+1)d.

Proof. By construction [e−ν , eν ] is a closed bounded interval and since vec (A) is a

compact subset of RGK , by Assumption 2, then Θ is a compact subset of RG(K+1) and the

result follows immediately.

Lemma 2 Let {θi}ni=1 be a finite subset of some non-empty set Θ and suppose that for

each i = 1, 2, . . . , n, {(ζt (θi) ,Gt)}∞t=1 is a martingale difference sequence. In addition,

7



suppose that there exists 0 < c < ∞ such that Pr (|ζt (θi)| ≤ c) = 1 for all i = 1, 2, . . . , n

and t = 1, 2, . . . . Then for any finite positive real constants a and b and any finite positive

integer constant T :

Pr

(
sup

1≤i≤n

∣∣∣∣∣
T∑
t=1

ζt (θi)

∣∣∣∣∣ ≥ a

)
≤ 2n exp

{
−a2/2

ac+ b

}
+ Pr

(
sup

1≤j≤n

T∑
t=1

Var (ζt (θj) |Gt−1) > b

)
.

Proof. For each i = 1, . . . , n and t = 1, . . . , T define Si =
∣∣∣∑T

t=1 ζt (θi)
∣∣∣ and Vi =∑T

t=1 Var (ζt (θi) |Gt−1). Then:

Pr

(
sup

1≤i≤n

∣∣∣∣∣
T∑
t=1

ζt (θi)

∣∣∣∣∣ ≥ a

)
= Pr

(
sup

1≤i≤n
Si ≥ a

)
≤ Pr

(
sup

1≤i≤n
Si ≥ γGa& sup

1≤j≤n
Vj ≤ b

)
+ Pr

(
sup

1≤j≤n
Vj > b

)
≤

n∑
i=1

Pr

(
Si ≥ a& sup

1≤j≤n
Vj ≤ b

)
+ Pr

(
sup

1≤j≤n
Vj > b

)
≤

n∑
i=1

Pr (Si ≥ a&Vi ≤ b) + Pr

(
sup

1≤j≤n
Vj > b

)
.

But by Freedman’s inequality (Freedman, 1975, Theorem 1.6), it follows that:

Pr (Si ≥ a&Vi ≤ b) = Pr

(∣∣∣∣∣
T∑
t=1

ζt (θi)

∣∣∣∣∣ ≥ a&
T∑
t=1

Var (ζt (θi) |Gt−1) ≤ b

)
≤ 2 exp

{
−a2/2

ac+ b

}
,

noting that {(−ζt (θi) ,Gt)}∞t=1 is also a martingale with Var (−ζt (θi) |Gt−1) =

Var (ζt (θi) |Gt−1). Hence it follows that:

Pr

(
sup

1≤i≤n

∣∣∣∣∣
T∑
t=1

ζt (θi)

∣∣∣∣∣ ≥ a

)
≤ 2n exp

{
−a2/2

ac+ b

}
+ Pr

(
sup

1≤j≤n

T∑
t=1

Var (ζt (θj) |Gt−1) > b

)
,

as desired.

Lemma 3 Suppose that Assumptions 1 and 2 are satisfied. Let 0 < ν < ∞ be a scalar

constant and define Θ = [e−ν , eν ] × vec (A). In addition, let σ be a scalar constant

such that 0 ≤ σ ≤ 2, ψ (·) be a continuously differentiable function from RG to R with

supu

∥∥∥ψ(1) (u)
∥∥∥ ≤ Cψ for some Cψ < ∞, and m (·) be a function from RG+K to R such

8



that |m (Wt)| ≤ κ ‖Wt‖p for some κ <∞ and 0 ≤ p <∞. Define:

ΨT (θ) = T−1

T∑
t=1

δ
−(G+σ)
T ψ

(
ηt (A)

πT

)
m (Wt) ,

Ψe
T (θ) = T−1

T∑
t=1

δ
−(G+σ)
T E

[
ψ

(
ηt (A)

πT

)
m (Wt) |Ft−1

]

where πT = δT/γ, ηt (A) = (Yt − AZt) and θ =
(
γ, vec (A)′

)′
, where {δT}∞T=1 is a sequence

of finite positive constants. If {δT}∞T=1 satisfies δT = o (1) and T−2δ
−(G+σ+1)
T = o (1) and

E
{
‖Wt‖p+1} <∞ then:

sup
θ∈Θ

∣∣ΨT (θ)−ΨT

(
θ̄T (θ)

)∣∣ = op (1) ,

sup
θ∈Θ

∣∣Ψe
T (θ)−Ψe

T

(
θ̄T (θ)

)∣∣ = op (1) ,

where θ̄T (·) is characterized as in Lemma 1.

Proof. Define:

htT (θ) = T−1δ
−(G+σ)
T ψ

(
γηt (A)

δT

)
m (Wt)

so ΨT (θ) =
∑T

t=1 htT (θ). By MVT:

htT (θ)− htT
(
θ̄T (θ)

)
= T−1δ

−(G+σ)
T

[
ψ

(
γηt (A)

δT

)
− ψ

(
γ̄T (θ) ηt

(
ĀT (θ)

)
δT

)]
m (Wt)

= T−1δ
−(G+σ)
T ψ(1)

(
γ∗Tηt (A∗T )

δT

)′(γηt (A)− γ̄T (θ) ηt
(
ĀT (θ)

)
δT

)
m (Wt) ,

where
(
γ∗T , vec (A∗T )′

)′
lies on the line segment joining

(
γ, vec (A)′

)′
and(

γ̄T (θ) , vec
(
ĀT (θ)

)′)′
. Hence it follows by CS that:

∣∣htT (θ)− htT
(
θ̄T (θ)

)∣∣ ≤ CψT
−1δ

−(G+σ+1)
T

∥∥γηt (A)− γ̄T (θ) ηt
(
ĀT (θ)

)∥∥ |m (Wt)| .

Now:

γηt (A)− γ̄T (θ) ηt
(
ĀT (θ)

)
= (γ − γ̄T (θ))Yt −

[
γA− γ̄T (θ) ĀT (θ)

]
Zt

= (γ − γ̄T (θ))Ut −
[
γ
(
A− ĀT (θ)

)
+ (γ − γ̄T (θ)) ĀT (θ)

]
Zt,

9



and thus:

∥∥γηt (A)− γ̄T (θ) ηt
(
ĀT (θ)

)∥∥ ≤ ∥∥θ − θ̄T (θ)
∥∥ ‖Yt‖+ (eν + dA)

∥∥θ − θ̄T (θ)
∥∥ ‖Zt‖ ,

where dA = supA∈A ‖A‖ <∞, which implies that:

sup
θ∈Θ

∣∣htT (θ)− htT
(
θ̄T (θ)

)∣∣ ≤ CψT
−3δ

−(G+σ+1)
T {‖Yt‖+ (eν + dA) ‖Zt‖} |m (Wt)| .

In turn this implies that:

sup
θ∈Θ

∣∣ΨT (θ)−ΨT

(
θ̄T (θ)

)∣∣ ≤ T∑
t=1

{
sup
θ∈Θ

∣∣htT (θ)− htT
(
θ̄T (θ)

)∣∣}

≤ CψT
−3δ

−(G+σ+1)
T

T∑
t=1

{‖Yt‖+ (eν + dA) ‖Zt‖} |m (Wt)|

and hence that:

E

{
sup
θ∈Θ

∣∣ΨT (θ)−ΨT

(
θ̄T (θ)

)∣∣} ≤ CψT
−3δ

−(G+σ+1)
T E

[
T∑
t=1

{‖Yt‖+ (eν + dA) ‖Zt‖} |m (Wt)|
]

≤ CψκT
−3δ

−(G+σ+1)
T (1 + eν + dA) E

[
T∑
t=1

‖Wt‖p+1

]
= O

[
T−2δ

−(G+σ+1)
T

]
= o (1) ,

since T−2δ
−(G+σ+1)
T = o (1), E

{
‖Wt‖p+1} < ∞, and the data are stationary. Then M

implies that:

sup
θ∈Θ

∣∣ΨT (θ)−ΨT

(
θ̄T (θ)

)∣∣ = op (1) .

Now define hetT (θ) = E [htT (θ) |Ft−1], so Ψe
T (θ) =

∑T
t=1 h

e
tT (θ), and observe that:

∣∣hetT (θ)− hetT
(
θ̄T (θ)

)∣∣ =
∣∣E [htT (θ) |Ft−1]− E

[
htT
(
θ̄T (θ)

)
|Ft−1

]∣∣
≤ E

{∣∣htT (θ)− htT
(
θ̄T (θ)

)∣∣ |Ft−1

}
,

and thus:

∣∣Ψe
T (θ)−Ψe

T

(
θ̄T (θ)

)∣∣ ≤ T∑
t=1

∣∣hetT (θ)− hetT
(
θ̄T (θ)

)∣∣
≤

T∑
t=1

E
{∣∣htT (θ)− htT

(
θ̄T (θ)

)∣∣ |Ft−1

}
,
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by J, which implies that:

sup
θ∈Θ

∣∣Ψe
T (θ)−Ψe

T

(
θ̄T (θ)

)∣∣ ≤ T∑
t=1

E

{
sup
θ∈Θ

∣∣htT (θ)− htT
(
θ̄T (θ)

)∣∣ |Ft−1

}
.

But then:

E

{
sup
θ∈Θ

∣∣Ψe
T (θ)−Ψe

T

(
θ̄T (θ)

)∣∣} ≤
T∑
t=1

E

{
sup
θ∈Θ

∣∣htT (θ)− htT
(
θ̄T (θ)

)∣∣}

≤ CψT
−3δ

−(G+σ+1)
T

T∑
t=1

E [{‖Yt‖+ (eν + dA) ‖Zt‖} |m (Wt)|]

= o (1) ,

and hence by M:

sup
θ∈Θ

∣∣Ψe
T (θ)−Ψe

T

(
θ̄T (θ)

)∣∣ = op (1) .

Lemma 4 Suppose that Assumptions 1 and 2 are satisfied. Let 0 < ν < ∞ be a scalar

constant and define Θ = [e−ν , eν ] × vec (A). In addition, let σ be a scalar constant

such that 0 ≤ σ ≤ 2, ψ (·) be a continuously differentiable function RG to R, such that

supu |ψ (u)| <∞ and supu

∥∥∥ψ(1) (u)
∥∥∥ <∞, and m (·) be a function from RG+K to R such

that E {|m (Wt)|r} <∞ for some r > (G+ σ + 2) /2. Define:

Ψ†T (θ) = T−1

T∑
t=1

δ
−(G+σ)
T ψ

(
γηt (A)

δT

)
m†T (Wt) ,

Ψ†,eT (θ) = T−1

T∑
t=1

δ
−(G+σ)
T E

[
ψ

(
γηt (A)

δT

)
m†T (Wt) |Ft−1

]
,

m†T (w) = m (w)χ
{
|m (w)| > δ−2

T

}
,

where ηt (A) = (Yt − AZt), θ =
(
γ, vec (A)′

)′
and χ (·) is the indicator function, and where

{δT}∞T=1 is a sequence of strictly positive constants such that δT = o (1); then:

sup
θ∈Θ

∣∣∣Ψ†T (θ)
∣∣∣ = op (1) , sup

θ∈Θ

∣∣∣Ψ†,eT (θ)
∣∣∣ = op (1) .

Proof. By assumption there exists Cψ < ∞ such that supu |ψ (u)| ≤ Cψ and

supu

∥∥∥ψ(1) (u)
∥∥∥ ≤ Cψ. Define:

h†tT (θ) = T−1δ
−(G+σ)
T ψ

(
γηt (A)

δT

)
m†T (Wt) , h†,etT (θ) = E

{
h†tT (θ) |Ft−1

}
,

11



so:

Ψ†T (θ) =

T∑
t=1

h†tT (θ) , Ψ†,eT (θ) =

T∑
t=1

h†,etT (θ) .

From T it follows that:∣∣∣Ψ†T (θ)
∣∣∣ ≤ T∑

t=1

∣∣∣h†tT (θ)
∣∣∣ ≤ CψT

−1

T∑
t=1

δ
−(G+σ)
T

∣∣∣m†T (Wt)
∣∣∣ ,

and hence that:

sup
θ∈Θ

∣∣∣Ψ†T (θ)
∣∣∣ ≤ Cψδ

−(G+σ)
T T−1

T∑
t=1

{
sup
θ∈Θ

∣∣∣m†T (Wt)
∣∣∣} ,

which in turn implies that:

E

{
sup
θ∈Θ

∣∣∣Ψ†T (θ)
∣∣∣} ≤ Cψδ

−(G+σ)
T E

{
sup
θ∈Θ

∣∣∣m†T (Wt)
∣∣∣} .

Now for any random variable X with E (|X|s) < ∞ for some s > 1 and any constant

c > 0 then it follows by H and M that:

E (|X|χ {|X| > c}) ≤ c−(s−1)E (|X|s) .

Setting X = supθ∈Θ |m (Wt; θ)| then it follows that:

sup
θ∈Θ

∣∣∣m†T (Wt)
∣∣∣ = sup

θ∈Θ

∣∣m (Wt)χ
{
|m (Wt)| > δ−2

T

}∣∣
= sup

θ∈Θ
|m (Wt)|χ

{
sup
θ∈Θ
|m (Wt)| > δ−2

T

}
= |X|χ

{
|X| > δ−2

T

}
.

Since r > 1 this then implies that:

E

{
sup
θ∈Θ

∣∣∣m†T (Wt)
∣∣∣} ≤ δ

2(r−1)
T E

{
sup
θ∈Θ
|m (Wt)|r

}
≤ δ

2(r−1)
T Cr,

where Cr = E {supθ∈Θ |m (Wt)|r}, and hence that:

E

{
sup
θ∈Θ

∣∣∣Ψ†T (θ)
∣∣∣} ≤ δ2r−2−G−σ

T CψCr = o (1) ,

noting that r > (G+ σ + 2) /2. This then implies that supθ∈Θ

∣∣∣Ψ†T (θ)
∣∣∣ = op (1) by M.

Next, observe that:

E

{
sup
θ∈Θ

∣∣∣h†,etT (θ)
∣∣∣} ≤ E

{
sup
θ∈Θ

∣∣∣E [h†tT (θ) |Ft−1

]∣∣∣} ≤ E

{
sup
θ∈Θ

∣∣∣h†tT (θ)
∣∣∣} ,
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by J, and hence that:

E

{
sup
θ∈Θ

∣∣∣Ψ†,eT (θ)
∣∣∣} ≤ T∑

t=1

E

{
sup
θ∈Θ

∣∣∣h†,etT (θ)
∣∣∣} ≤ T∑

t=1

E

{
sup
θ∈Θ

∣∣∣h†tT (θ)
∣∣∣} = o (1) ,

by J, which implies that supθ∈Θ

∣∣∣Ψ†,eT (θ)
∣∣∣ = op (1) by M.

Lemma 5 Suppose that Assumptions 1—7 are satisfied. Let θ =
(
γ, vec (A)′

)′
where 0 <

γ <∞ and A ∈ A, and define JT (θ) = T−1
∑T

t=1 δ
−G
T K

(
γ(Yt−AZt)

δT

)
. Then:

lim
T→∞

E
[
γGJT (θ)

]
= Q0 (A) = E [ft ((A− A0)Zt|Ft−1)] ,

Q0 (·) is continuous on A, and Q0 (A) ≤ Q0 (A0) for all A ∈ A with equality if and only

if A = A0.

Proof. First, fix 0 < γ <∞. Then for each t = 1, . . . , T define:

htT (θ) =
(
TπGT

)−1K
(
ηt (A)

πT

)
=
(
TπGT

)−1K
(
Ut − (A− A0)Zt

πT

)
,

hetT (θ) = E [htT (θ) |Ft−1] = T−1

∫
RG

π−GT K
(
u− (A− A0)Zt

πT

)
ft (u|Ft−1) du

where ηt (A) = (Yt − AZt) and πT =δT/γ, and note that:

hetT (θ) = T−1

∫
RG
K (x) ft ((A− A0)Zt + πTx|Ft−1) dx,

by transformation of variables from u to x = π−1
T [u− (A− A0)Zt]. In addition, define:

Qe
t0 (A, π) =

∫
RG
K (x) ft ((A− A0)Zt + πx|Ft−1) dx,

so hetT (θ) = T−1Qe
t0 (A, πT ). Assumption 1 implies that:

E
[
γGJT (θ)

]
= E

[
γGT−1

T∑
t=1

δ−GT K
(
γ (Yt − AZt)

δT

)]
= E [ThtT (θ)] = E [ThetT (θ)]

= E

[∫
RG
K (x) ft ((A− A0)Zt + πTx|Ft−1) dx

]
,

for all A ∈ A. But Qe
t0 (A, π) is continuous in

(
vec (A)′ , π

)′
for all (t, ω) by dominated

convergence since supu |ft (u|Ft−1)| < ∞ for all (u, t, ω), by Assumption 3, ft (u|Ft−1)
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is continuous in u, by Assumption 3, and
∫
RG |K (x)| dx ≤ C, by Assumption 6. Hence

dominated convergence implies that:

lim
T→∞

E
[
γGJT (θ)

]
= lim

T→∞
E [Qe

t0 (A, δT )]

= E

[∫
RG
K (x) ft ((A− A0)Zt|Ft−1) dx

]
= E [ft ((A− A0)Zt|Ft−1)] = Q0 (A) ,

since
∫
RG K (x) dx = 1, by Assumption 6, and δT = o (1), by Assumption 7, which implies

that πT = o (1), and also since that Q0 (A) is continuous in A, which follows from the

continuity of K (·) by Assumption 6.

Finally, by Assumption 3 then for any A:

ft ((A− A0)Zt|Ft−1) ≤ ft (0|Ft−1) , ∀ω ∈ Ω,

while by Assumption 5 it follows that for any A 6= A0 there exists a set S ∈ Ft−1 with

P (S) > 0 such that:

ft ((A− A0)Zt|Ft−1) < ft (0|Ft−1) , ∀ω ∈ S,

and hence it follows that for all A 6= A0:

Q0 (A) < Q0 (A0) .

Thus Q0 (A) achieves a unique strict global maximum over A ∈ A at A = A0, as desired.

Lemma 6 Suppose that Assumptions 1—8 are satisfied. Let 0 < ν < ∞ be a scalar

constant and define Θ = [e−ν , eν ]× vec (A); then:

sup
θ∈Θ

∣∣γGJT (θ)−Q0 (A)
∣∣ = op (1) ,

where θ =
(
γ, vec (A)′

)′
, JT (·) is defined as in Theorem 2 and Q0 (·) is given as in Lemma

5.

Proof. Let ΘT and θ̄T (·) be characterized as in Lemma 1. Then:

γGJT (θ)−Q0 (A) = γG
[
JT (θ)− JT

(
θ̄T (θ)

)]
+ γG

[
JT
(
θ̄T (θ)

)
− JeT

(
θ̄T (θ)

)]
+γG

[
JeT
(
θ̄T (θ)

)
− JeT (θ)

]
+
[
γGJeT (θ)−Q0 (A)

]
, (A.3)
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where:

JT (θ) = T−1

T∑
t=1

δ−GT K
(
ηt (A)

πT

)
.

JeT (θ) = T−1

T∑
t=1

δ−GT E

[
K
(
ηt (A)

πT

)
|Ft−1

]
,

where πT = δT/γ and ηt (A) = (Yt − AZt). Equation (A.3) implies by T that:

sup
θ∈Θ

∣∣γGJT (θ)−Q0 (A)
∣∣ ≤M1,T +M2,T +M3,T +M4,T , (A.4)

where:

M1,T = sup
θ∈Θ

γG
∣∣JT (θ)− JT

(
θ̄T (θ)

)∣∣ , M2,T = sup
θ∈Θ

γG
∣∣JT (θ̄T (θ)

)
− JeT

(
θ̄T (θ)

)∣∣
M3,T = sup

θ∈Θ
γG
∣∣JeT (θ̄T (θ)

)
− JeT (θ)

∣∣ , M4,T = sup
θ∈Θ

∣∣γGJeT (θ)−Q0 (A)
∣∣

Observe that JT (θ) can be re-written in the form:

JT (θ) = T−1

T∑
t=1

δ
−(G+σ)
T ψ

(
ηt (A)

πT

)
m (Wt) ,

with σ = 0, ψ (x) = K (x) for all x, and m (Wt) = 1 = ‖Wt‖0 for all (t, ω).

Since supu
∣∣K(1) (u)

∣∣ < ∞, by Assumption 6, E {‖Wt‖} < ∞, by Assumption 4, and

T−2δ
−(G+1)
T = o (1), by Assumption 7, then JT (θ) satisfies the requirements on ΨT (θ) for

Lemma 3 to apply and hence:

sup
θ∈Θ

∣∣JT (θ)− JT
(
θ̄T (θ)

)∣∣ = op (1) , sup
θ∈Θ

∣∣JeT (θ)− JeT
(
θ̄T (θ)

)∣∣ = op (1) .

Since [e−c, ec] is compact it then follows that M1,T and M3,T are both op (1).

Now fix T and for each θ ∈ Θ define:

htT (θ) = T−1δ
−(G+σ)
T K

(
ηt (A)

πT

)
, ζtT (θ) = htT (θ)− E [htT (θ) |Ft−1] ,

with σ = 0 so JT (θ) − JeT (θ) =
∑T

t=1 ζtT (θ). Then {(ζtT (θ) ,Ft)}∞t=1 is a martingale

difference sequence for any θ ∈ Θ and T , and by Assumption 6:

|ζt (θ)| ≤ 2T−1δ−GT C,

15



for all θ and t. In addition:

Var (ζt (θ) |Ft−1) ≤ E
[
ht (θ)2 |Ft−1

]
= T−2δ−2G

T E

[
K
(
ηt (A)

πT

)2

|Ft−1

]
,

so:

E

[
K
(
ηt (A)

πT

)2

|Ft−1

]
=

∫
RG
K
(
u− (A− A0)Zt

πT

)2

ft (u|Ft−1) du

= πGT

∫
RG
K (x)2 ft ((A− A0)Zt + πTx|Ft−1) dx

≤ δGT e
GνC3,

by transformation of variables from u to s = u−(A−A0)Zt
πT

, noting that supγ∈[e−ν ,eν ] |γ| = eGν ,

that
∫
RG K (x)2 dx ≤ C2, by Assumption 6, and that supu ft (u|Ft−1) ≤ C, by Assumption

3. It follows that:
T∑
t=1

Var (ζt (θ) |Ft−1) ≤ T−1δ−GT eGνC3.

Lemma 1 implies that the number of elements of ΘT is less than or equal to T 2G(K+1)d.

Hence, by setting a = η, b = T−1δ−GT eGνC3 and c = 2T−1δ−GT C, Lemma 2 implies that

for any fixed η > 0:

Pr

(
sup
θ∈ΘT

∣∣∣∣∣
T∑
t=1

ζtT (θ)

∣∣∣∣∣ ≥ η

)
≤ 2T 2G(K+1)d exp

{
−η2/2

2T−1δ−GT Cη + T−1δ−GT eGνC3

}

= 2d exp

{[
2G (K + 1)

lnT(
TδGT

) − η2

4Cη + 2eGνC3

] (
TδGT

)}

By Assumption 7, lnT/
(
TδGT

)
= o (1) which implies that

(
TδGT

)−1
= o (1) and since

JT (θ)− JeT (θ) =
∑T

t=1 ζtT (θ) it follows that:

lim
T→∞

Pr

(
sup
θ∈Θ

∣∣JT (θ̄T (θ)
)
− JeT

(
θ̄T (θ)

)∣∣ ≥ η

)
= 0,

for any fixed η > 0 and hence that:

sup
θ∈Θ

∣∣JT (θ̄T (θ)
)
− JeT

(
θ̄T (θ)

)∣∣ = op (1) .

Since [e−ν , eν ] is compact this implies that M2,T is op (1).

Last, define hetT (θ) = E [htT (θ) |Ft−1] and observe that hetT (θ) = ξt (πT , A), where:

ξt (π,A) =

∫
RG

ft ((A− A0)Zt + πx|Ft−1)K (x) dx.
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Assumptions 3 and 6 imply that ξt (π,A) is continuous in
(
π, vec (A)′

)′
, by dominated

convergence, and is uniformly bounded from above in absolute value by the non-stochastic

term C
∫
RG |K (x)| dx < ∞. Assumption 1 then implies that {ξt (π,A)}∞t=−∞ is strictly

stationary and ergodic and hence it follows by ULLN that T−1
∑T

t=1 ξt (π,A) converges

uniformly in probability to E [ξt (π,A)] on any compact set of values of
(
π, vec (A)′

)′
.

Since γGJeT (θ) = T−1
∑T

t=1 ξt (γ−1δT , A) and δT = o (1) it follows that:

sup
θ∈Θ

∣∣γGJeT (θ)− E [ξt (0, A)]
∣∣ = op (1) .

But:

E [ξt (0, A)] = E [ft ((A− A0)Zt|Ft−1)] = Q0 (A) ,

and hence M4,T is op (1).

Since M1,T , . . . ,M4,T are all op (1) it then follows from Equation (A.4) that:

sup
θ∈Θ

∣∣γGJT (θ)−Q0 (A)
∣∣ = op (1) .

Lemma 7 Under Assumptions 1—13, B0 is symmetric positive definite and D0 is sym-

metric negative definite.

Proof. First, it is clear thatM exists, by Assumption 12, and thatM is symmetric, by

construction. Now, for any fixed (G× 1) vector c1 6= 0:

c′1Mc1 =

∫
RG

c′1K(1) (x)K(1) (x)′ c1 dx

=

∫
RG

(
K(1) (x)′ c1

)2
dx.

Clearly, c′1Mc1 ≥ 0 for all c1 with equality if and only if K(1) (x)′ c1 = 0 for almost all

x. Since K (·) is twice differentiable it follows that K(1) (·) is continuous; hence it follows

that K(1) (x)′ c1 = 0 for almost all x if and only if K(1) (x)′ c1 = 0 for all x. Now since

c1 6= 0 we can construct a non-singular (G×G) matrix C whose first column is given by

c1 and then define K̃C (·) : RG → R such that:

K̃C (x) = K (Cx) .
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It then follows that:

∂K̃C (x)

∂x1

=
dK (Cx)

dx1

=
[
K(1) (Cx)

]′ ∂ (Cx)

∂x1

=
[
K(1) (Cx)

]′
c1,

since Cx =
∑G

j=1 cjxj where cj is the jth column of C, and hence c′1Mc1 = 0 if and only if
∂K̃C(x)
∂x1

= 0 for all x. But since C is non-singular then it follows from Assumption 12 that:

lim
M→∞

sup
x:‖x‖≥M

∣∣∣K̃C (x)
∣∣∣ = 0.

Consequently ∂K̃C(x)
∂x1

= 0 can only be true for all x if K̃C (x) = 0 for all x and hence

K (x) = 0 for all x which contradicts Assumption 6. Thus there is no c1 6= 0 such that

K(1) (x)′ c1 = 0 for almost all x and hence there is no c1 6= 0 such that c′1Mc1 = 0. It

follows that c′1Mc1 > 0 for all c1 6= 0 and henceM must be a symmetric positive definite

matrix.

Second, since M is symmetric, as shown above, then B0 is also symmetric. Now, fix

A 6= 0; then:

vec (A)′B0 vec (A) = E
[
ft (0|Ft−1) vec (A)′ (Zt ⊗ IG)M (Zt ⊗ IG)′ vec (A)

]
= E

[
ft (0|Ft−1) vec (AZt)

′M vec (AZt)
]
≥ 0,

since Pr (ft (0|Ft−1) > 0) = 1, by Assumption 3, and sinceM is positive definite, as es-

tablished above. In addition, Assumption 5 implies that Pr (vec (AZt) = 0) < 1. Together

these imply that:

Pr
(
ft (0|Ft−1) vec (AZt)

′M vec (AZt) = 0
)
< 1,

and hence that vec (A)′B0 vec (A) > 0 for all A 6= 0 which in turns implies that B0 is

positive definite.

Third, since ft (u|Ft−1) is three times differentiable for all u ∈ RG, by Assumption

9, then it follows that f (2)
t (0|Ft−1) is symmetric and hence that D0 is also symmetric.

Furthermore, f (2)
t (0|Ft−1) is negative definite, by Assumption 9. Next, fix A ∈ RG × RK

such that A 6= 0; then:

vec (A)′D0 vec (A) = E
[
vec (A)′ (Zt ⊗ IG) f

(2)
t (0|Ft−1) (Zt ⊗ IG)′ vec (A)

]
= E

[
vec (AZt)

′ f
(2)
t (0|Ft−1) vec (AZt)

]
.
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Since Pr (vec (AZt) = 0) < 1, by Assumption 5, then:

Pr
(

vec (AZt)
′ f

(2)
t (0|Ft−1) vec (AZt) = 0

)
< 1,

and hence vec (A)′D0 vec (A) < 0 for all A 6= 0 which in turn implies that D0 is negative

definite.

Lemma 8 Suppose that Assumptions 1—14 are satisfied. Let θ = (γ,A) where 0 < γ <∞

and A ∈ A. Then:

lim
T→∞

E [DT (θ)] = D (θ) = E
[
(Zt ⊗ IG) f

(2)
t ((A− A0)Zt|Ft−1) (Zt ⊗ IG)′

]
,

where DT (θ) = γG+1
[
∂RT (θ)

∂ vec(A)′

]
and RT (·) is defined as in the proof of Theorem 3. In

addition, D (θ) is continuous.

Proof. For any fixed 0 < γ <∞ define πT = δT/γ. Observe that:[
∂RT (θ)

∂ vec (A)′

]
= γT−1

T∑
t=1

δ
−(G+2)
T (Zt ⊗ IG)K(2)

(
ηt (A)

πT

)
(Zt ⊗ IG)′ ,

where ηt (A) = (Yt − AZt), so by stationarity and the law of iterated expectations it

follows that:

E [DT (θ)] = π
−(G+2)
T T−1

T∑
t=1

E

[
(Zt ⊗ IG)K(2)

(
ηt (A)

πT

)
(Zt ⊗ IG)′

]
= π

−(G+2)
T E

{
(Zt ⊗ IG) E

[
K(2)

(
ηt (A)

πT

)
|Ft−1

]
(Zt ⊗ IG)′

}
.

Using transformation of variables and repeated integration by parts it follows from As-

sumptions 3, 9 and 12:

E

[
K(2)

(
ηt (A)

πT

)
|Ft−1

]
= π

(G+2)
T

∫
RG
K (x) f

(2)
t ((A− A0)Zt + πTx|Ft−1) dx,

where πT =δT/γ, and hence that:

E [DT (θ)] = E

[
(Zt ⊗ IG)

∫
RG
K (x) f

(2)
t ((A− A0)Zt + πTx|Ft−1) dx (Zt ⊗ IG)′

]
.

Assumptions 3, 6 and 7 then imply by dominated convergence that:

D (θ) = lim
T→∞

E [DT (θ)] = E
[
(Zt ⊗ IG)′ f

(2)
t ((A− A0)Zt|Ft−1) (Zt ⊗ IG)′

]
,

and also that D (θ) is continuous.
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Lemma 9 Suppose that Assumptions 1—14 are satisfied. Let 0 < ν < ∞ be a scalar

constant and define Θ = [e−ν , eν ]× vec (A); then:

sup
θ∈Θ
‖DT (θ)−D (θ)‖ = op (1) ,

where θ =
(
γ, vec (A)′

)′
, and where DT (θ) and D (θ) are given as in Lemma 8.

Proof. Let πT = δT/γ and observe that:

DT (θ) = T−1

T∑
t=1

π
−(G+2)
T (Zt ⊗ IG)K(2)

(
ηt (A)

πT

)
(Zt ⊗ IG)′ ,

so each element of DT (θ) can be expressed as a linear combination with fixed coeffi cients

(that do not depend on T or θ) of terms of the form:

T−1

T∑
t=1

π
−(G+2)
T K(2)

rs

(
ηt (A)

πT

)
ZitZjt,

where K(2)
rs (·) is the (r, s)th element of K(2)

rs (·), and 1 ≤ i, j ≤ K and 1 ≤ r, s ≤ G. By the

same line of proof used to establish Lemma 8 it follows that D (θ) is the corresponding

linear combination of terms of the form:

E
[
f

(2)
t,rs ((A− A0)Zt|Ft−1)ZitZjt

]
,

where f (2)
t,rs (·|Ft−1) is the (r, s)th element of f (2)

t (·|Ft−1). Since [e−ν , eν ] is compact it

suffi ces to establish that for every fixed 1 ≤ i, j ≤ K and 1 ≤ r, s ≤ G:

sup
θ∈Θ

∣∣∣∣∣T−1

T∑
t=1

δ
−(G+2)
T K(2)

rs

(
ηt (A)

πT

)
ZitZjt − γ−(G+2)E

[
f

(2)
t,rs ((A− A0)Zt|Ft−1)ZitZjt

]∣∣∣∣∣ = op (1) .

(A.5)

Now fix 1 ≤ i, j ≤ K and 1 ≤ r, s ≤ G and define:

htT (θ) = T−1δ
−(G+2)
T K(2)

rs

(
ηt (A)

πT

)
ZitZjt,

h†tT (θ) = T−1δ
−(G+2)
T K(2)

rs

(
ηt (A)

πT

)
ZitZjtχ

(
|ZitZjt| ≥ δ−2

T

)
,

and then define:

hetT (θ) = E [htT (θ) |Ft−1] , h†,etT (θ) = E
[
h†tT (θ) |Ft−1

]
,

h∗tT (θ) = htT (θ)− h†tT (θ) , h∗,etT (θ) = E [h∗tT (θ) |Ft−1]
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and:

HT (θ) =

T∑
t=1

htT (θ) , H†T (θ) =
T∑
t=1

h†tT (θ) , H∗T (θ) =
T∑
t=1

h∗tT (θ) ,

He
T (θ) =

T∑
t=1

hetT (θ) , H†,eT (θ) =
T∑
t=1

h†,etT (θ) , H∗,eT (θ) =

T∑
t=1

h∗,etT (θ) ,

H0 (θ) = lim
T→∞

E [HT (θ)] = lim
T→∞

E [He
T (θ)] .

In addition, let ΘT and θ̄T (·) be characterized as in Lemma 1. Then:

HT (θ)−H0 (θ) =
[
HT (θ)−HT

(
θ̄T (θ)

)]
+H†T

(
θ̄T (θ)

)
+
[
H∗T
(
θ̄T (θ)

)
−H∗,eT

(
θ̄T (θ)

)]
−H†,eT

(
θ̄T (θ)

)
+
[
He
T

(
θ̄T (θ)

)
−He

T (θ)
]

+ [He
T (θ)−H0 (θ)] ,

and hence by T it follows that:

sup
θ∈Θ
|γHT (θ)− γH0 (θ)| ≤M1,T +M2,T +M3,T +M4,T +M5,T +M6,T , (A.6)

where:

M1,T = sup
θ∈Θ

γ
∣∣HT (θ)−HT

(
θ̄T (θ)

)∣∣ , M2,t = sup
θ∈ΘT

γ
∣∣∣H†T (θ)

∣∣∣ ,
M3,T = sup

θ∈ΘT

γ |H∗T (θ)−H∗,eT (θ)| , M4,t = sup
θ∈ΘT

γ
∣∣∣H†,eT (θ)

∣∣∣ ,
M5,T = sup

θ∈Θ
γ
∣∣He

T

(
θ̄T (θ)

)
−He

T (θ)
∣∣ , M6,t = sup

θ∈Θ
γ |He

T (θ)−H0 (θ)| .

First, observe that HT (θ) and He
T (θ) can be expressed in the form:

HT (θ) = T−1

T∑
t=1

δ
−(G+σ)
T ψ

(
ηt (A)

πT

)
m (Wt) ,

He
T (θ) = T−1

T∑
t=1

δ
−(G+σ)
T E

[
ψ

(
ηt (A)

πT

)
m (Wt) |Ft−1

]
,

where σ = 2, ψ (x) = K(2)
rs (x) and m (Wt) = ZitZjt. Since supx

∥∥∥K(3)
rs (x)

∥∥∥ < ∞, by

Assumption 12, |ZitZjt| ≤ ‖Wt‖2 by CS, E
{
‖Wt‖3} < ∞, by Assumption 11, and δT =

o (1), T−2δ
−(G+3)
T = o (1), by Assumption 13, then it follows that M1,T and M5,T are both

op (1) by Lemma 3.
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Second, observe that H†T (θ) and H†,eT (θ) then can be written as:

H†T (θ) = T−1

T∑
t=1

δ
−(G+σ)
T ψ

(
ηt (A)

πT

)
m†T (Wt) ,

H†,eT (θ) = T−1

T∑
t=1

δ
−(G+σ)
T E

[
ψ

(
ηt (A)

πT

)
m†T (Wt) |Ft−1

]
,

where m†T (Wt) = m (Wt)χ
(
|m (Wt)| > δ−2

T

)
. Fix r such that :

(G+ 4) < 2r ≤ (G+ 4 + τ) ,

and note that this then implies r > (G+ σ + 2) /2 since σ = 2 so:

E {|m (Wt)|r} ≤ E
{
‖Wt‖2r} ≤ E

{
‖Wt‖G+4+τ

}
<∞,

by Assumption 11. Since supx

∥∥∥K(3)
rs (x)

∥∥∥ < ∞, by Assumption 12, and δT = o (1), by

Assumption 7, then it follows that M2,T and M4,T are both op (1) by Lemma 4, noting

that ΘT ⊆ Θ.

Now set ζtT (θ) = h∗tT (θ)− h∗,etT (θ) which implies that:

ζtT (θ) = T−1δ
−(G+2)
T

{
ψ

(
ηt (A)

πT

)
m∗T (Wt)− E

[
ψ

(
ηt (A)

πT

)
m∗T (Wt) |Ft−1

]}
.

Since |ψ (x)| =
∣∣∣K(2)

rs (x)
∣∣∣ ≤ C for all x, by Assumption 12, and |m∗T (Wt)| ≤ δ−2

T for all

Wt, then:

|ζtT (θ)| ≤ 2T−1δ
−(G+4)
T C.

Now:

Var (ζtT (θ) |Ft−1) ≤ E
[
h∗tT (θ)2 |Ft−1

]
≤ E

[
htT (θ)2 |Ft−1

]
= T−2δ

−(2G+4)
T E

[
K(2)
rs

(
ηt (A)

πT

)2

|Ft−1

]
(ZitZjt)

2 ,

and by transformation of variables:

E

[
K(2)
rs

(
ηt (A)

πT

)2

|Ft−1

]
=

∫
RG
K(2)
rs

(
u− AZt
πT

)2

ft (u|Ft−1) du

= πGT

∫
RG
K(2)
rs (x)2 ft ((A− A0)Zt + πTx|Ft−1) dx ≤ γ−GδGTC

2,
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since supu ft (u|Ft−1) ≤ C, by Assumption 3, so:

Var (ζtT (θ) |Ft−1) ≤ γ−GT−2δ
−(G+4)
T C2 (ZitZjt)

2 ≤ T−2δ
−(G+4)
T eGνC2 ‖Zt‖2 ,

by CS, since γ−G ≤ eGν for all γ ∈ [e−ν , eν ], and thus:

sup
θ∈ΘT

T∑
t=1

Var (ζtT (θ) |Ft−1) ≤ T−1δ
−(G+4)
T eGνC2

[
T−1

T∑
t=1

‖Zt‖2

]
.

Now E
{
‖Zt‖2} ≤ µ4 = E

{
‖Wt‖4} <∞, by Assumption 11, and hence:

sup
θ∈ΘT

T∑
t=1

Var (ζtT (θ) |Ft−1) ≤ T−1δ
−(G+4)
T eGνC2 [µ4 + op (1)] ,

by the ergodic theorem. This implies that:

Pr

(
sup
θ∈ΘT

T∑
t=1

Var (ζtT (θ) |Ft−1) > 2T−1δ
−(G+4)
T C̄1

)
= op (1) ,

where C̄1 = eGνC2µ4. In addition, Lemma 1 implies that the number of elements of ΘT

is less than or equal to T 2G(K+1)d. Hence, by setting a = η, b = 2T−1δ
−(G+4)
T C̄1 and

c = 2T−1δ
−(G+4)
T C, Lemma 2 implies that for any fixed η > 0:

Pr

(
sup
θ∈ΘT

∣∣∣∣∣
T∑
t=1

ζtT (θ)

∣∣∣∣∣ ≥ η

)
≤ 2T 2G(K+1)d exp

{
−η2Tδ

(G+4)
T

4Cη + 4C̄1

}
+ o (1)

= 2d exp

{[
2G (K + 1)

lnT

Tδ
(G+4)
T

− η2

4Cη + 4C̄1

]
Tδ

(G+4)
T

}
+ o (1)

= o (1) ,

since lnT

TδG+4T

= o (1) and T−1δ
−(G+4)
T = o (1) by Assumption 13. But:

M3,T = sup
θ∈ΘT

|H∗T (θ)−H∗,eT (θ)| = sup
θ∈ΘT

∣∣∣∣∣
T∑
t=1

ζtT (θ)

∣∣∣∣∣ ,
and thus M3,T = op (1).

Last, observe that:

heT (θ) = T−1δ
−(G+2)
T E

[
K(2)
rs

(
γηt (A)

δT

)
ZitZjt|Ft−1

]
= T−1δ

−(G+2)
T E

[
K(2)
rs

(
γηt (A)

δT

)
|Ft−1

]
ZitZjt,
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and thus:

He
T (θ) = T−1

T∑
t=1

ZitZjtδ
−(G+2)
T E

[
K(2)
rs

(
γηt (A)

δT

)
|Ft−1

]
. (A.7)

Using transformation of variables and repeated integration by parts it follows from As-

sumptions 3, 9 and 12 that:

E

[
K(2)
rs

(
ηt (A)

πT

)
|Ft−1

]
= π

(G+2)
T

∫
RG
K (x) f

(2)
t,rs ((A− A0)Zt + πTx|Ft−1) dx,

so:

He
T (θ) = γ−(G+2)T−1

T∑
t=1

ZitZjt

∫
RG
K (x) f

(2)
t,rs ((A− A0)Zt + πTx|Ft−1) dx. (A.8)

By Assumptions 6 and 9 then ZitZjt
∫
RG K (s) f

(2)
t,rs ((A− A0)Zt + πx|Ft−1) dx is a con-

tinuous function of A and π and is uniformly bounded in absolute value by C2 |ZitZjt|.

Since E {|ZitZjt|} < ∞, by Assumption 11, then for any fixed 0 < π̄ < ∞ it follows by

ULLN that:

T−1

T∑
t=1

ZitZjt

∫
RG
K (x) f

(2)
t,rs ((A− A0)Zt + πx|Ft−1) dx (A.9)

converges uniformly in probability to:

E

[
ZitZjt

∫
RG
K (x) f

(2)
t,rs ((A− A0)Zt + πx|Ft−1) dx

]
, (A.10)

over
(
π, vec (A)′

)′ ∈ [−π̄, π̄]× vec (A). Since δT = o (1) and since θ ∈ Θ requires that γ ∈

[e−ν , eν ] then supθ∈Θ |πT | = o (1) and hence this implies that He
T (θ) converges uniformly

in probability to:

H0 (θ) = γ−(G+2)E
[
f

(2)
t,rs ((A− A0)Zt|Ft−1)ZitZjt

]
(A.11)

over θ ∈ Θ and thus that M6,T = op (1). Combining this with Equation (A.6) and the

results shown earlier that M1,T , . . . ,M5,T are all op (1) this then implies that Equation

(A.5) holds. This in turn establishes the desired result.

Lemma 10 Suppose that Assumptions 1—14 are satisfied. Let θ =
(
γ, vec (A)′

)′
where

0 < γ <∞ and A ∈ A. Then:

lim
T→∞

E [PT (θ)] = P (θ) = (G+ 1) E
[
(Zt ⊗ IG) f

(1)
t ((A− A0)Zt|Ft−1)

]
,

24



where PT (θ) = γG+1
[
∂RT (θ)
∂γ

]
and RT (·) is defined as in the proof of Theorem 3. In

addition, P (A) is continuous

Proof. Fix γ > 0 and A ∈ A. Then observe that:

PT (θ) = γG+1

[
∂RT (θ)

∂γ

]
= T−1

T∑
t=1

π
−(G+2)
T (Zt ⊗ IG)K(2)

(
ηt (A)

πT

)
ηt (A) ,

where πT = δT/γ and ηt (A) = (Yt − AZt), so by stationarity it follows that:

E [PT (θ)] = π
−(G+2)
T E

{
(Zt ⊗ IG)K(2)

(
ηt (A)

πT

)
ηt (A)

}
= π

−(G+2)
T E

{
(Zt ⊗ IG) E

[
K(2)

(
ηt (A)

πT

)
ηt (A) |Ft−1

]}
. (A.12)

Note that since γ is fixed then {πT}∞t=1 satisfies the same conditions as {δT}
∞
t=1.

Then observe that:

E

[
K(2)

(
ηt (A)

πT

)
ηt (A) |Ft−1

]
= E

[
K(2)

(
Ut − (A− A0)Zt

πT

)
(Ut − (A− A0)Zt) |Ft−1

]
=

∫
RG
K(2)

(
u− λt
πT

)
(u− λt) ft (u|Ft−1) du,

where λt = (A− A0)Zt. Hence for each i = 1, . . . , G, the ith element of

E
[
K(2)

(
ηt(A)
πT

)
ηt (A) |Ft−1

]
can be expressed as:

(
E

[
K(2)

(
ηt (A)

πT

)
ηt (A) |Ft−1

])
i

=
G∑
j=1

E

[
K(2)
ij

(
ηt (A)

πT

)
ηt,j (A) |Ft−1

]
,

where ηt,j (A) is the jth element of ηt (A). Now:

E

[
K(2)
ij

(
ηt (A)

πT

)
ηt,j (A) |Ft−1

]
=

∫
RG
K(2)
ij

(
u− λt
πT

)
(uj − λt,j) ft (u|Ft−1) du

=

∫
RG
K(2)
ij

(
u− λt
πT

)
(uj − λt,j) ft (u|Ft−1) duidu−i,

where λt,j is the jth element of λt and u−i consists of all the elements of u aside from ui.

Using integration by parts we have that:∫
R
K(2)
ij

(
u− λt
πT

)
(uj − λt,j) ft (u|Ft−1) dui = −πT

∫
R
K(1)
j

(
u− λt
πT

)
×∂ {(uj − λt,j) ft (u|Ft−1)}

∂ui
dui,
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noting that: [
πTK(1)

j

(
u− λt
πT

)
(uj − λt,j) ft (u|Ft−1)

]ui=∞
ui=−∞

= 0,

since: ∣∣∣∣K(1)
j

(
u− λt
πT

)
(uj − λt,j) ft (u|Ft−1)

∣∣∣∣ ≤ L0

∣∣∣∣K(1)
j

(
u− λt
πT

)
(uj − λt,j)

∣∣∣∣ ,
by Assumption 3, and since for all fixed u−i:

lim
ui→±∞

∣∣∣∣K(1)
j

(
u− λt
πT

)
(uj − λt,j)

∣∣∣∣ = 0,

by Assumption 12. Hence:∫
RG
K(2)
ij

(
u− λt
πT

)
(uj − λt,j) ft (u|Ft−1) du = −πT

∫
RG
K(1)
j

(
u− λt
πT

)
×∂ {(uj − λt,j) ft (u|Ft−1)}

∂ui
duidu−i

= −πT
∫
RG
K(1)
j

(
u− λt
πT

)
×∂ {(uj − λt,j) ft (u|Ft−1)}

∂ui
dujdu−j.

Repeating integration by parts gives:∫
RG
K(1)
j

(
u− λt
πT

)
∂ {(uj − λt,j) ft (u|Ft−1)}

∂ui
duj = −πT

∫
R
K
(
u− λt
πT

)
×∂

2 {(uj − λt,j) ft (u|Ft−1)}
∂uiuj

duj,

noting that: [
πTK(1)

j

(
u− λt
πT

)
∂ {(uj − λt,j) ft (u|Ft−1)}

∂ui

]uj=∞
uj=−∞

= 0,

since:
∂ {(uj − λt,j) ft (u|Ft−1)}

∂ui
= χijft (u|Ft−1) + (uj − λt,j) f (1)

t,i (u|Ft−1) ,

where χij = 1 if i = j and χij = 0 if i 6= r, so:∣∣∣∣K(1)
j

(
u− λt
πT

)
∂ {(uj − λt,j) ft (u|Ft−1)}

∂ui

∣∣∣∣ ≤ χijC

∣∣∣∣K(1)
j

(
u− λt
πT

)∣∣∣∣
+C

∣∣∣∣(uj − λt,j)K(1)
j

(
u− λt
πT

)∣∣∣∣ ,
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by Assumptions 3 and 9, and hence:

lim
ui→±∞

∣∣∣∣K(1)
j

(
u− λt
πT

)[
χijft (u|Ft−1) + (uj − λt,j) f (1)

t,i (u|Ft−1)
]∣∣∣∣ = 0,

by Assumption 12. Hence it follows that:∫
RG
K(2)
ij

(
u− λt
πT

)
(uj − λt,j) ft (u|Ft−1) du = π2

T

∫
RG
K
(
u− λt
πT

)
×∂

2 {(uj − λt,j) ft (u|Ft−1)}
∂uiuj

du.

Now:

∂2 {(uj − λt,j) ft (u|Ft−1)}
∂uiuj

= χijf
(1)
t,j (u|Ft−1) + f

(1)
t,i (u|Ft−1) + (uj − λt,j) f (2)

t,ij (u|Ft−1) ,

and thus:

E

[
K(2)
ij

(
ηt (A)

πT

)
ηt,j (A) |Ft−1

]
= π2

T

∫
RG
K(2)
ij

(
u− λt
πT

)
(uj − λt,j) ft (u|Ft−1) du

= χijπ
2
T

∫
RG
K
(
u− λt
πT

)
f

(1)
t,j (u|Ft−1) du

+π2
T

∫
RG
K
(
u− λt
πT

)
f

(1)
t,i (u|Ft−1) du

+π2
T

∫
RG
K
(
u− λt
πT

)
f

(2)
t,ij (u|Ft−1) (uj − λt,j) du.

(A.13)

By transformation of variables from u to x = u−λt
πT

it follows that:∫
RG
K
(
u− λt
πT

)
f

(1)
t,j (u|Ft−1) du = πGT

∫
RG
K (x) f

(1)
t,j (λt + πTx|Ft−1) dx,∫

RG
K
(
u− λt
πT

)
f

(2)
t,ij (u|Ft−1) (uj − λt,j) du = πG+1

T

∫
RG
K (x) f

(2)
t,ij (λt + πTx|Ft−1)xjdx,

and hence that:

E

[
K(2)
ij

(
ηt (A)

πT

)
ηt,j (A) |Ft−1

]
= χijπ

G+2
T

∫
RG
K (x) f

(1)
t,j (λt + πTx|Ft−1) dx

+πG+2
T

∫
RG
K (x) f

(1)
t,i (λt + πTx|Ft−1) dx

+πG+3
T

∫
RG
K (x) f

(2)
t,ij (λt + πTx|Ft−1)xjdx.

(A.14)
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Substituting this into Eqution (A.12) then implies that:

E [PT (θ)] = (G+ 1) E

{
(Zt ⊗ IG)

∫
RG
K (x) f

(1)
t ((A− A0)Zt + πTx|Ft−1) dx

}
+πTE

{
(Zt ⊗ IG)

∫
RG
K (x) f

(2)
t ((A− A0)Zt + πTx|Ft−1)x dx

}
.

It follows by dominated convergence that:

lim
T→∞

E [PT (θ)] = P (A) = (G+ 1) E
{

(Zt ⊗ IG) f
(1)
t ((A− A0)Zt|Ft−1)

}
, (A.15)

noting that E {‖Zt‖} is finite by Assumption 4,
∫
RG |K (x)| dx and

∫
RG ‖xK (x)‖ dx are

finite by Assumptions 6 and 12, and
∥∥∥f (1)

t (x|Ft−1)
∥∥∥ and ∥∥∥f (2)

t (x|Ft−1)
∥∥∥ are uniformly

bounded by Assumption 9, and also that P (A) is continuous in A, since
∥∥∥f (1)

t (x|Ft−1)
∥∥∥

is continuous in x by Assumption 9.

Lemma 11 Suppose that Assumptions 1—14 are satisfied. Let 0 < ν < ∞ be a scalar

constant and Θ = [e−ν , eν ]× vec (A); then:

sup
θ∈Θ
‖PT (θ)− P (θ)‖ = op (1) .

where θ =
(
γ, vec (A)′

)′
and where PT (θ) and P (θ) are defined as in Lemma 10.

Proof. Observe that:

PT (θ) = γG+1∂RT (θ)

∂γ
= γG+2

(
TδG+2

T

)−1
T∑
t=1

(Zt ⊗ IG)K(2)

(
γηt (A)

δT

)
ηt (A) ,

where ηt (A) = (Yt − AZt). Hence the ((i− 1)G+ j)th element of PT (θ) is given by:

vT,ij (θ) = γG+2
(
TδG+2

T

)−1
T∑
t=1

Zit

G∑
s=1

K(2)
js

(
γηt (A)

δT

)
ηs,t (A) ,

where ηs,t (A) denotes the sth element of ηt (A). In addition, as established by Lemma

10:

lim
T→∞

E [PT (θ)] = P (θ) = (G+ 1) E

{
(Zt ⊗ IG)

∫
RG
K (x) f

(1)
t ((A− A0)Zt|Ft−1) dx

}
,

so the ((i− 1)G+ j)th element of P (θ) is given by:

v0,ij (θ) = (G+ 1) E

{
Zit

∫
RG
K (x) f

(1)
t,j ((A− A0)Zt|Ft−1) dx

}
,
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where f (1)
t,j (·|Ft−1) denotes the jth element of f (1)

t,j (·|Ft−1). Hence it suffi ces to establish

that:

sup
θ∈Θ
‖vT,ij (θ)− v0,ij (θ)‖ = op (1) ,

for all i = 1, . . . , K and j = 1, . . . , G.

Next, observe that:

vT,ij (θ) = γG+2
(
TδG+2

T

)−1
T∑
t=1

Zit

G∑
s=1

K(2)
js

(
γηt (A)

δT

)
ηs,t (A)

= γG+2

G∑
s=1

T∑
t=1

(
TδG+2

T

)−1K(2)
js

(
γηt (A)

δT

)
ZitYst

−γG+2

G∑
s=1

K∑
k=1

ask

T∑
t=1

(
TδG+2

T

)−1K(2)
js

(
γηt (A)

δT

)
ZitZkt,

where ask is the (s, k)th element of A. Now, in the proof of Lemma 9 we estab-

lished that terms of the form
∑T

t=1

(
TδG+2

T

)−1K(2)
rs

(
ηt(A)
πT

)
ZitZkt converged in prob-

ability uniformly in θ over Θ to E
[
γ−(G+2)f

(2)
t,rs ((A− A0)Zt|Ft−1)ZitZkt

]
; see Equa-

tion (A.5). Since Θ is compact then it suffi ces to establish that terms of the form∑T
t=1

(
TδG+2

T

)−1K(2)
js

(
ηt(A)
πT

)
ZitYst converge in probability uniformly in θ over Θ.

Now fix 1 ≤ i ≤ K and 1 ≤ j, s ≤ G and define:

htT (θ) =
(
TδG+2

T

)−1K(2)
js

(
ηt (A)

πT

)
ZitYst,

h†tT (θ) =
(
TδG+2

T

)−1K(2)
js

(
ηt (A)

πT

)
ZitYstχ

(
|ZitYst| ≥ δ−2

T

)
.

Then define h∗tT (θ), hetT (θ), h†,etT (θ), h∗,etT (θ), HT (θ), H†T (θ), H∗T (θ), He
T (θ), H†,eT (θ),

H∗,eT (θ), H0 (θ), M1,T , . . . ,M6,T in the same way in relation to htT (θ) and hetT (θ) as given

in the proof of Lemma 9. Then:

sup
θ∈Θ
|HT (θ)−H0 (θ)| ≤M1,T +M2,T +M3,T +M4,T +M5,T +M6,T . (A.16)

First, observe that HT (θ) and He
T (θ) can be written in the form:

HT (θ) = T−1

T∑
t=1

δ
−(G+σ)
T ψ

(
ηt (A)

πT

)
m (Wt) ,

HT (θ) = T−1

T∑
t=1

δ
−(G+σ)
T E

[
ψ

(
ηt (A)

πT

)
m (Wt) |Ft−1

]
,
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where σ = 2, ψ (x) = K(2)
js (x) and m (Wt) = ZitYst. Since supx

∥∥K(3) (x)
∥∥ < ∞, by

Assumption 12, |ZitYst| ≤ ‖Wt‖2 by CS, E
{
‖Wt‖3} < ∞, by Assumption 11, and δt =

o (1), T−2δ
−(G+3)
T = o (1), by Assumption 13, then it follows that M1,T and M5,T are both

op (1) by Lemma 3.

Second, observe that H†T (θ) and H†,eT (θ) can be written in the form:

H†T (θ) = T−1

T∑
t=1

δ
−(G+σ)
T ψ

(
ηt (A)

πT

)
m†T (Wt) ,

H†,eT (θ) = T−1

T∑
t=1

δ
−(G+σ)
T E

[
ψ

(
ηt (A)

πT

)
m†T (Wt) |Ft−1

]
,

where m†T (Wt) = m (Wt)χ
(
|m (Wt)| > δ−2

T

)
. Fix r such that :

(G+ 4) < 2r ≤ (G+ 4 + τ) ,

and note that this then implies r > (G+ σ + 2) /2, since σ = 2, and:

E {|m (Wt)|r} ≤ E
{
‖Wt‖2r} ≤ E

{
‖Wt‖G+4+τ

}
<∞,

by Assumption 11. Since supx
∥∥K(3) (x)

∥∥ < ∞, by Assumption 12, and δT = o (1), by

Assumption 7, then it follows that M2,T and M4,T are both op (1) by Lemma 4, noting

that ΘT ⊆ Θ.

Third, set ζtT (θ) = h∗tT (θ)− h∗,etT (θ) which implies that:

ζtT (θ) = T−1δ
−(G+2)
T

{
ψ

(
ηt (A)

πT

)
m∗T (Wt)− E

[
ψ

(
ηt (A)

πT

)
m∗T (Wt) |Ft−1

]}
.

Since |ψ (u)| =
∣∣∣K(2)

rs (u)
∣∣∣ ≤ C for all u, by Assumption 12, and |m∗T (w)| ≤ δ−2

T for all w

then:

|ζtT (θ)| ≤ 2T−1δ
−(G+4)
T C.

Now:

Var [ζtT (θ) |Ft−1] ≤ E
[
h∗tT (θ)2 |Ft−1

]
≤ E

[
htT (θ)2 |Ft−1

]
= T−2δ

−(2G+4)
T E

[
K(2)
rs

(
ηt (A)

πT

)2

Y 2
st|Ft−1

]
Z2
it,
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where πT =δT/γ. Then by transformation of variables and CS:

E

[
K(2)
rs

(
ηt (A)

πT

)2

Y 2
st|Ft−1

]
=

∫
RG
K(2)
rs

(
u− (A− A0)Zt

πT

)2

(e′su+ e′sA0Zt)
2
ft (u|Ft−1) du

= πGT

∫
RG
K(2)
rs (x)2 (e′sAZt + πT e

′
sx)

2

×ft ((A− A0)Zt + πTx|Ft−1) dx

≤ 2CπGT

∫
RG
K(2)
rs (x)2 [‖A‖2 ‖Zt‖2 + π2

T ‖x‖
2] dx

≤ 2C2π2
T

[
d2
A ‖Zt‖

2 + π2
TC
]
,

where dA = supA∈A ‖A‖ and es is a (G× 1) vector whose sth element is 1 and whose

other elements are all 0. Then:

Var [ζtT (θ) |Ft−1] ≤ 2γ−GT−2δ
−(G+4)
T C2

[
d2
A ‖Zt‖

4 + π2
TC ‖Zt‖

2] ,
and so:

sup
θ∈ΘT

T∑
t=1

Var [ζtT (θ) |Ft−1] ≤ 2T−1δ
−(G+4)
T eGνC2

[
T−1

T∑
t=1

{
d2
A ‖Zt‖

4 + π2
TC ‖Zt‖

2}] .
Set µ4 = E

{
‖Wt‖4}, which is finite by Assumption 11; then:

E
{
‖Zt‖4} ≤ E

{
‖Wt‖4} ≤ µ4, E

{
‖Zt‖2} ≤ E

{
‖Wt‖2} ≤ µ

1/2
4 ,

and hence:

sup
θ∈ΘT

T∑
t=1

Var [ζtT (θ) |Ft−1] ≤ 2T−1δ
−(G+4)
T eGνC2

[
d2
Aµ

1/2
4 + op (1)

]
,

by the ergodic theorem and noting that π2
T = o (1). Hence:

Pr

(
sup
θ∈ΘT

T∑
t=1

Var [ζtT (θ) |Ft−1] > 4T−1δ
−(G+4)
T C̄2

)
= op (1) ,

where C̄2 = eGνC2d2
Aµ4. In addition, Lemma 1 implies that the number of elements of

ΘT is less than or equal to T 2G(K+1)d. Hence, setting a = η, b = 4T−1δ
−(G+4)
T C̄2 and

c = 2T−1δ
−(G+4)
T C, it follows from Lemma 2 that for any fixed η > 0 that:

Pr

(
sup
θ∈ΘT

∣∣∣∣∣
T∑
t=1

ζtT (θ)

∣∣∣∣∣ ≥ η

)
≤ 2T 2G(K+1)d exp

{
−η2Tδ

(G+4)
T

4Cη + 8C̄2

}
+ o (1)

= 2d exp

{[
2G (K + 1)

lnT

Tδ
(G+4)
T

− η2

4Cη + 8C̄2

]
Tδ

(G+4)
T

}
+ o (1) ,

= o (1) ,
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since lnT

TδG+4T

= o (1) and T−1δ
−(G+4)
T = o (1) by Assumption 13. But:

M3,T = sup
θ∈ΘT

|H∗T (θ)−H∗,eT (θ)| = sup
θ∈ΘT

∣∣∣∣∣
T∑
t=1

ζtT (θ)

∣∣∣∣∣ ,
and thus M3,T = op (1).

Last, observe that:

hetT (θ) = T−1δ
−(G+2)
T E

[
K(2)
rs

(
γηt (A)

δT

)
Yst|Ft−1

]
Zit

= T−1δ
−(G+2)
T E

[
K(2)
rs

(
γηt (A)

δT

)
ηt,s (A) |Ft−1

]
Zit

+T−1δ
−(G+2)
T E

[
K(2)
rs

(
γηt (A)

δT

)
|Ft−1

]
Zite

′
sAZt,

and hence:

He
T (θ) = T−1

T∑
t=1

δ
−(G+2)
T E

[
K(2)
rs

(
γηt (A)

δT

)
ηt,s (A) |Ft−1

]
Zit

+T−1

T∑
t=1

δ
−(G+2)
T E

[
K(2)
rs

(
γηt (A)

δT

)
|Ft−1

]
Zite

′
sAZt.

The proof of Lemma 9 established that:

T−1

T∑
t=1

ZitZjtδ
−(G+2)
T E

[
K(2)
rs

(
γηt (A)

δT

)
|Ft−1

]
converges uniformly in probability to:

γ−(G+2)E
[
f

(2)
t,rs ((A− A0)Zt|Ft−1)ZitZjt

]
,

over Θ; see Equations (A.7) and (A.11). Hence:

T−1

T∑
t=1

δ
−(G+2)
T E

[
K(2)
rs

(
ηt (A)

πT

)
|Ft−1

]
Zite

′
sAZt,

converges uniformly in probability to:

γ−(G+2)E
[
f

(2)
t,rs ((A− A0)Zt|Ft−1)Zite

′
sAZt

]
.

The proof of Lemma 10 established that:

E

[
K(2)
rs

(
ηt (A)

πT

)
ηt,s (A) |Ft−1

]
= χrsπ

G
T

∫
RG
K (s) f

(1)
t,s (λt + πTx|Ft−1) dx

+πGT

∫
RG
K (s) f

(1)
t,r (λt + πTx|Ft−1) dx

+πG+1
T

∫
RG
K (s) f

(2)
t,rs (λt + πTx|Ft−1)xj dx,

32



see Equation (A.14), and thus:

T−1
T∑
t=1

δ
−(G+2)
T E

[
K(2)
rs

(
ηt (A)

πT

)
ηt,s (A) |Ft−1

]
Zit

= χrsγ
GT−1

T∑
t=1

δ−2
T

∫
RG K (s) f

(1)
t,s (λt + πTx|Ft−1) dxZit

+γGT−1
T∑
t=1

δ−2
T

∫
RG K (s) f

(1)
t,r (λt + πTx|Ft−1) dxZit

+γG+1T−1
T∑
t=1

δ−1
T

∫
RG K (s) f

(2)
t,rs (λt + πTx|Ft−1)xj dxZit.

By ULLN and noting that δT = o (1) it follows that:

T−1

T∑
t=1

δ
−(G+2)
T E

[
K(2)
rs

(
ηt (A)

πT

)
ηs,t (A) |Ft−1

]
Zit,

converges in probability uniformly over Θ to:

(G+ 1) γ−GE
[
f

(1)
t ((A− A0)Zt|Ft−1)Zit

]
,

and hence that He
T (θ) converges in probability uniformly over Θ to:

H0 (θ) = (G+ 1) γ−GE
[
f

(1)
t ((A− A0)Zt|Ft−1)Zit

]
+γ−(G+2)E

[
f

(2)
t,rs ((A− A0)Zt|Ft−1)Zite

′
sAZt

]
,

and thus M6,T = op (1). Combined with Equation (A.16) and the earlier results that

M1,T , . . . ,M5,T are op (1) this then implies that:

sup
θ∈Θ
|HT (θ)−H0 (θ)| = op (1) ,

and hence that:

sup
θ∈Θ
|vT,ij (θ)− v0,j (θ)| = op (1) ,

which in turn implies that:

sup
θ∈Θ

∥∥∥PT (θ)− (G+ 1) E
[
(Zt ⊗ IG) f

(1)
t ((A− A0)Zt|Ft−1)

]∥∥∥ = op (1) .

Lemma 12 Suppose that Assumptions 1—14 are satisfied. Let θ =
(
γ, vec (A)′

)′
where

0 < γ <∞ and A ∈ A. Then:

lim
T→∞

E [BT (θ)] = B (θ) ,
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and:

BT (θ) = γGT−1

T∑
t=1

δ−GT (Zt ⊗ IG)K(1)

(
γ (Yt − AZt)

δT

)
K(1)

(
γ (Yt − AZt)

δT

)′
(Zt ⊗ IG)′ ,

B (θ) = E
[
ft ((A− A0)Zt|Ft−1) (Zt ⊗ IG)M (Zt ⊗ IG)′

]
,

whereM =
∫
RG K

(1) (x)K(1) (x)′ dx. In addition B (θ) is continuous.

Proof. Fix 0 < γ < ∞ and define πT = δT/γ. Then each element of E[BT (θ)] can be

expressed as a sum of terms of the form:

T−1

T∑
t=1

π−GT E

[
K(1)
r

(
ηt (A)

πT

)
K(1)
s

(
ηt (A)

πT

)
ZitZjt

]

= T−1

T∑
t=1

π−GT E

[
E

{
K(1)
r

(
ηt (A)

πT

)
K(1)
s

(
ηt (A)

πT

)
|Ft−1

}
ZitZjt

]
where 1 ≤ i, j ≤ K and 1 ≤ r, s ≤ G. Now:

E

{
K(1)
r

(
ηt (A)

πT

)
K(1)
s

(
ηt (A)

πT

)
|Ft−1

}
=

∫
RG
K(1)
r

(
u− λt
πT

)
K(1)
s

(
u− λt
πT

)
×ft (u|Ft−1) du

= πGT

∫
RG
K(1)
r (x)K(1)

s (x)

×ft (λt + πTx|Ft−1) dx, (A.17)

where λt = (A− A0)Zt and thus:

T−1

T∑
t=1

π−GT E

[
K(1)
r

(
ηt (A)

πT

)
K(1)
s

(
ηt (A)

πT

)
ZitZjt

]

= T−1

T∑
t=1

E

[∫
RG
K(1)
r (x)K(1)

s (x) ft
(
(A− A0)Zt + γ−1δTx|Ft−1

)
dxZitZjt

]
.

Since K(1) (x) and ft (u|Ft−1) are uniformly bounded in absolute value, by Assumptions

3 and 12, ft (u|Ft−1) is continuous, by Assumption 3, Zt has finite second moments, by

Assumption 11, and δT = o (1), it follows by dominated convergence that:

lim
T→∞

T−1

T∑
t=1

π−GT E

[
K(1)
r

(
ηt (A)

πT

)
K(1)
s

(
ηt (A)

πT

)
ZitZjt

]
= E

[∫
RG
K(1)
r (x)K(1)

s (x) ft ((A− A0)Zt|Ft−1) dxZitZjt

]
=MrsE [ft ((A− A0)Zt|Ft−1) ZitZjt] ,
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whereMrs is the (r, s)th element ofM and hence that:

lim
T→∞

BT (θ) = B (θ) = E
[
ft ((A− A0)Zt|Ft−1) (Zt ⊗ IG)M (Zt ⊗ IG)′

]
.

Lemma 13 Suppose that Assumptions 1—14 are satisfied. Let 0 < ν < ∞ be a scalar

constant and Θ = [e−ν , eν ]× vec (A); then:

sup
θ∈Θ
‖BT (θ)−B (θ)‖ = op (1) .

where θ =
(
γ, vec (A)′

)′
and where BT (θ) and B (θ) are given as in Lemma 12.

Proof. Observe that each element of BT (θ) can be written as sum of terms of the form:

γGT−1

T∑
t=1

δ−GT K(1)
r

(
ηt (A)

δT

)
K(1)
s

(
ηt (A)

δT

)
ZitZjt,

where 1 ≤ i, j ≤ K and 1 ≤ r, s ≤ G. Define:

htT (θ) =
(
TδGT

)−1K(1)
r

(
ηt (A)

δT

)
K(1)
s

(
ηt (A)

δT

)
ZitZjt,

h†tT (θ) =
(
TδGT

)−1K(1)
r

(
ηt (A)

δT

)
K(1)
s

(
ηt (A)

δT

)
ZitZjtχ

(
|ZitZjt| ≥ δ−2

T

)
,

and then define h∗tT (θ), hetT (θ), h†,etT (θ), h∗,etT (θ), HT (θ), H†T (θ), H∗T (θ), He
T (θ), H†,eT (θ),

H∗,eT (θ), H0 (θ), M1,T , . . . ,M6,T in the same way in relation to htT (θ) and hetT (θ) as given

in the proof of Lemma 9. Then:

sup
θ∈Θ
|HT (θ)−H0 (θ)| ≤M1,T +M2,T +M3,T +M4,T +M5,T +M6,T . (A.18)

First, observe that HT (θ) and He
T (θ) can be written in the form:

HT (θ) = T−1

T∑
t=1

δ
−(G+σ)
T ψ

(
γηt (A)

δT

)
m (Wt) ,

HT (θ) = T−1

T∑
t=1

δ
−(G+σ)
T E

[
ψ

(
γηt (A)

δT

)
m (Wt) |Ft−1

]
,

where σ = 0, ψ (x) = K(1)
r (x)K(1)

s (x) and m (Wt) = ZitZjt. Now:

∂ψ (x)

∂xl
= K(1)

rl (x)K(1)
s (x) +K(1)

r (x)K(1)
sl (x) ,
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and since supx
∥∥K(1) (x)

∥∥ < ∞ and supx
∥∥K(2) (x)

∥∥ < ∞, by Assumption 12, it follows
that supx

∥∥∥∂ψ(x)
∂x

∥∥∥ < ∞. In addition, |ZitZjt| ≤ ‖Wt‖2 by CS, E
{
‖Wt‖3} < ∞, by

Assumption 11, and δt = o (1), T−2δ
−(G+3)
T = o (1), by Assumption 13. Hence it follows

that M1,T and M5,T are both op (1) by Lemma 3.

Second, observe that H†T (θ) and H†,eT (θ) can be written in the form:

H†T (θ) = T−1

T∑
t=1

δ
−(G+σ)
T ψ

(
γηt (A)

δT

)
m†T (Wt) ,

H†,eT (θ) = T−1

T∑
t=1

δ
−(G+σ)
T E

[
ψ

(
γηt (A)

δT

)
m†T (Wt) |Ft−1

]
,

where m†T (Wt) = m (Wt)χ
(
|m (Wt)| > δ−2

T

)
. Fix r such that:

(G+ 2) < 2r ≤ (G+ 2 + τ) ,

and note that this then implies r > (G+ σ + 2) /2 since σ = 0 and hence that:

E {|m (Wt)|r} ≤ E
{
‖Wt‖2r} ≤ E

{
‖Wt‖G+2+τ

}
<∞,

by Assumption 11. Since supx

∥∥∥∂ψ(x)
∂x

∥∥∥ < ∞ and δT = o (1), by Assumption 7, then it

follows that M2,T and M4,T are both op (1) by Lemma 4, noting that ΘT ⊆ Θ.

Third, set ζtT (θ) = h∗tT (θ)− h∗,etT (θ) which implies that:

ζtT (θ) = T−1δ−GT

{
ψ

(
γηt (A)

δT

)
m∗T (Wt)− E

[
ψ

(
γηt (A)

δT

)
m∗T (Wt) |Ft−1

]}
.

Since |ψ (u)| =
∣∣K(1) (u)

∣∣ ≤ C2 for all u, by Assumption 12, and |m∗T (w)| ≤ δ−2
T for all w

then:

|ζtT (θ)| ≤ 2T−1δ
−(G+2)
T C2.

Now:

Var [ζtT (θ) |Ft−1] ≤ E
[
h∗tT (θ)2 |Ft−1

]
≤ E

[
htT (θ)2 |Ft−1

]
= T−2δ−2G

T E

[
K(1)
r

(
ηt (A)

πT

)2

K(1)
s

(
ηt (A)

πT

)2

|Ft−1

]
Z2
itZ

2
jt,
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where πT =δT/γ. Then by transformation of variables:

E

[
K(1)
r

(
ηt (A)

πT

)2

K(1)
1

(
ηt (A)

πT

)2

|Ft−1

]

=

∫
RG
K(1)
r

(
u− (A− A0)Zt

πT

)2

K(1)
s

(
u− (A− A0)Zt

πT

)2

ft (u|Ft−1) du

= πGT

∫
RG
K(1)
r (x)2K(1)

s (x)2 ft ((A− A0)Zt + πTx|Ft−1) dx ≤ πGTC
4

by Assumptions 3, 6 and 12, and thus:

Var [ζtT (θ) |Ft−1] ≤ γ−GT−2δ−GT C4Z2
itZ

2
jt,

so:

sup
θ∈ΘT

T∑
t=1

Var [ζtT (θ) |Ft−1] ≤ T−1δ−GT eGνC4

[
T−1

T∑
t=1

Z2
itZ

2
jt

]
.

Set µ4 = E
{
‖Wt‖4}, which is finite by Assumption 11; then:

E
{
‖Zt‖4} ≤ E

{
‖Wt‖4} = µ4,

and hence:

sup
θ∈ΘT

T∑
t=1

Var [ζtT (θ) |Ft−1] ≤ T−1δ−GT eGνC4 [µ4 + op (1)] ,

by the ergodic theorem and noting that π2
T = o (1). Hence:

Pr

(
sup
θ∈ΘT

T∑
t=1

Var [ζtT (θ) |Ft−1] > 2T−1δ
−(G+4)
T C̄3

)
= op (1) ,

where C̄3 = eGνC4µ4. In addition, Lemma 1 implies that the number of elements of

ΘT is less than or equal to T 2G(K+1)d. Hence, by setting a = η, b = 2T−1δ−GT C̄3 and

c = 2T−1δ
−(G+2)
T C2, Lemma 2 implies that for any fixed η > 0:

Pr

(
sup
θ∈ΘT

∣∣∣∣∣
T∑
t=1

ζtT (θ)

∣∣∣∣∣ ≥ η

)
≤ 2T 2G(K+1)d exp

{
−η2TδG+2

T

4C2η + 4C̄3

}
+ o (1)

= 2d exp

{[
2G (K + 1)

lnT

TδG+2
T

− η2

4C2η + 4C̄3

]
TδG+2

T

}
+ o (1) ,

= o (1) ,

since lnT

TδG+2T

= o (1) and T−1δ
−(G+2)
T = o (1) by Assumption 13. But:

M3,T = sup
θ∈ΘT

|H∗T (θ)−H∗,eT (θ)| = sup
θ∈ΘT

∣∣∣∣∣
T∑
t=1

ζtT (θ)

∣∣∣∣∣ ,
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and thus M3,T = op (1).

Last, observe that:

He
T (θ) = T−1

T∑
t=1

δ−GT E

[
K(1)
r

(
γηt (A)

δT

)
K(1)
s

(
γηt (A)

δT

)
|Ft−1

]
ZitZjt.

The proof of Lemma 12 established that:

E

{
K(1)
r

(
ηt (A)

πT

)
K(1)
s

(
ηt (A)

πT

)
|Ft−1

}
= πGT

∫
RG
K(1)
r (x)K(1)

s (x)

×ft ((A− A0)Zt + πTx|Ft−1) dx,

where πT = δT/γ; see Equation (A.17). By Assumptions 3 and 12 it follows that

ZitZjt
∫
RG K

(1)
r (x)K(1)

s (x) ft ((A− A0)Zt + πx|Ft−1) dx is a continuous function of A and

π and is bounded in absolute value by C2 |ZitZjt|. Since E {|ZitZjt|} <∞, by Assumption

11, then for any fixed 0 < π <∞ it follows by ULLN that:

T−1

T∑
t=1

ZitZjt

∫
RG
K(1)
r (x)K(1)

s (x) ft ((A− A0)Zt + πx|Ft−1) dx,

converges uniformly in probability to:

E

[
ZitZjt

∫
RG
K(1)
r (x)K(1)

s (x) ft ((A− A0)Zt + πx|Ft−1) dx

]
,

over
(
vec (A)′ , π

)′ ∈ vec (A) × [−π, π]. Since δT = o (1) and since θ ∈ Θ requires γ ∈

[e−ν , eν ] then supθ∈Θ |πT | = o (1) and hence it follows that He
T (θ) converges uniformly in

probability to:

H0 (θ) = γ−GE

[
ZitZjt

∫
RG
K(1)
r (x)K(1)

s (x) ft ((A− A0)Zt|Ft−1) dx

]
,

over θ ∈ Θ and thus that M6,T = o (1). Together with Equation A.18 and the results

shown earlier that M1,T ,. . . ,M5,tT are all op (1) this implies that:

sup
θ∈Θ
|HT (θ)−H0 (θ)| = op (1) ,

and hence that:

sup
θ∈Θ
|BT (θ)−B (θ)| = op (1) .
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Lemma 14 Under Assumptions 1—14:

(
TδGT

)−1/2
T∑
t=1

(Zt ⊗ IG)K(1)

(
Ut
δT

)
d−→ N (0, B0) .

Proof. Define:

gtT =
(
TδGT

)−1/2
(Zt ⊗ IG)K(1)

(
Ut
δT

)
, getT = E [gtT |Ft−1] , g∗tT = gtT − getT ,

so that: (
TδGT

)−1/2
T∑
t=1

(Zt ⊗ IG)K(1)

(
Ut
δT

)
=

T∑
t=1

getT +

T∑
t=1

g∗tT .

Then to establish the desired result it is suffi cient to establish that
T∑
t=1

getT = op (1) and

that
T∑
t=1

g∗tT
d−→ N (0, B0).

First, for each i = 1, . . . , G define the ith element of getT to be:

getT,i = E

[(
TδGT

)−1/2K(1)
i

(
Yt − A0Zt

δT

)
Zt|Ft−1

]
=

(
TδGT

)−1/2
[∫

RG−1

∫
R
K(1)
i

(
u

δT

)
ft (u|Ft−1) duidu−i

]
Zt,

where ui denotes the ith element of u and u−i denotes the vector consisting of the elements

of u other than ui. Using integration by parts it follows that:∫
R
K(1)
i

(
u

δT

)
ft (u|Ft−1) dui =

[
δTK

(
u

δT

)
ft (u|Ft−1)

]ui=∞
ui=−∞

−δT
∫
R
K
(
u

δT

)
f

(1)
t,i (u|Ft−1) dui.

But: ∣∣∣∣δTK( u

δT

)
ft (u|Ft−1)

∣∣∣∣ ≤ L0δT

∣∣∣∣K( u

δT

)∣∣∣∣ ,
by Assumption 3, and for all fixed u−i:

lim
ui→±∞

∣∣∣∣Kj ( u

δT

)∣∣∣∣ = 0,

by Assumption 12. Hence: [
δTK

(
u

δT

)
ft (u|Ft−1)

]ui=∞
ui=−∞

= 0,
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and thus: ∫
R
K(1)
i

(
u

δT

)
ft (u|Ft−1) dui = −δT

∫
R
K
(
u

δT

)
f

(1)
t,i (u|Ft−1) dui

so:

gei,tT = −
(
TδGT

)−1/2
ZtδT

∫
RG
K
(
u

δT

)
f

(1)
t,i (u|Ft−1) du

= −
(
TδGT

)−1/2
δG+1
T Zt

∫
RG
K (x) f

(1)
t,i (δTx|Ft−1) dx.

Thus we have that:
T∑
t=1

geitT = T 1/2δ
(G/2)+1
T

(
T−1

T∑
t=1

Zt

)
ψtT,i,

where:

ψtT,i =

∫
RG
K (x) f

(1)
t,i (δTx|Ft−1) dx.

A second order Taylor series expansion of f (1)
t,i (δTx|Ft−1) around x = 0 then gives:

f
(1)
t,i (δTx|Ft−1) = f

(1)
t,i (0|Ft−1) + δT

G∑
j=1

xj f
(2)
t,ij (0|Ft−1)

+

(
1

2

)
δ2
T

G∑
j=1

G∑
k=1

xjxk f
(3)
t,ijk (ϑδTx|Ft−1) ,

for some 0 ≤ ϑ ≤ 1, where f (2)
t,ij (u|Ft−1) denotes the (i, j)th element of f (2)

t (u|Ft−1) and

f
(3)
t,ijk (u|Ft−1) denotes the (i, j, k)th element of f (2)

t (u|Ft−1). But f (1)
t,i (0|Ft−1) = 0, by

Assumption 3, and
∫
RG xK (x) ds = 0, by Assumption 12. Hence:

ψtT,i =

(
1

2

)
δ2
T

G∑
j=1

G∑
k=1

∫
RG

xjxkK (x) f
(3)
t,ijk (ϑδTx|Ft−1) dx,

where ϑ may vary with x, and by CS it follows that:

∣∣ψtT,i∣∣ ≤ (1

2

)
δ2
T

G∑
j=1

G∑
k=1

∫
RG

∣∣∣xjxkK (x) f
(3)
t,ijk (ϑδTx|Ft−1)

∣∣∣ dx.
Since supu

∥∥∥f (3)
t (u|Ft−1)

∥∥∥ ≤ C, by Assumption 9, and since
∫
RG ‖x‖

2 |K (x)| dx ≤ C, by

Assumption 12, it follows that: ∣∣ψtT,i∣∣ ≤ G2C2

2
δ2
T , (A.19)
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and since T−1
∑T

t=1 Zt = Op (1), by the ergodic theorem, then:

T∑
t=1

geitT =
G2C2

2
T 1/2δ

(G/2)+1
T δ2

TOp (1) = Op

[(
TδG+6

T

)1/2
]

= op (1) ,

by Assumption 13. This then implies that
T∑
t=1

getT = op (1).

Second, fix λ 6= 0 and define:

ztT = λ′g∗tT , σ2
tT = Var (ztT ) , ΣT =

T∑
t=1

σ2
tT , ηtT =

ztT√
ΣT

.

By construction {(ztT ,Ft)}∞t=−∞ is a martingale difference array since ztT =

(λ′gtT )−E(λ′gtT |Ft−1). Theorem 24.3 of Davidson (1994) implies that
∑T

t=1 ηtT con-

verges in distribution to a standard normal provided that (a)
∑T

t=1 Var (ηtT ) = 1 for all

T , (b)
∑T

t=1 η
2
tT

p−→ 1, and (c) max1≤t≤T |ηtT | = op (1). If there exists 0 < Σ0 < ∞

such that ΣT → Σ0 as T → ∞ then these conditions are satisfied provided that (b’)∑T
t=1 z

2
tT

p−→ Σ0 and (c’) max1≤t≤T |ztT | = op (1), in which case it follows that
∑T

t=1 ztT

converges in distribution to a N (0,Σ0). Now observe that:

σ2
tT = E

(
z2
tT

)
= E

[
(λ′gtT )

2 − 2 (λ′gtT ) (λ′getT ) + (λ′getT )
2
]

= E
[
(λ′gtT )

2
]
− E

[
(λ′getT )

2
]
,

so:

ΣT = E

[
T∑
t=1

(λ′gtT )
2

]
− E

[
T∑
t=1

(λ′getT )
2

]
.

Then:

E

[
T∑
t=1

(λ′gtT )
2

]
=

T∑
t=1

λ′E (gtTg
′
tT )λ,

so by the law of iterated expectations it follows that:

E (gtTg
′
tT ) = T−1E [(Zt ⊗ IG) ΓetT (Z ′t ⊗ IG)] ,

where:

ΓetT = δ−GT E

{[
K(1)

(
Ut
δT

)
K(1)

(
Ut
δT

)′]
|Ft−1

}
= δ−GT

∫
RG
K(1)

(
u

δT

)
K(1)

(
u

δT

)′
ft (u|Ft−1) du

=

∫
RG
K(1) (x)K(1) (x)′ ft (δTx|Ft−1) dx.
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Then by Assumption 1 we have that:

E

(
T∑
t=1

gtTg
′
tT

)
= E

{
(Zt ⊗ IG)

[∫
RG
K(1) (x)K(1) (x)′ ft (δTx|Ft−1) dx

]
(Z ′t ⊗ IG)

}
−→ E [ft (0|Ft−1) (Zt ⊗ IG)M (Z ′t ⊗ IG)] = B0,

by dominated convergence, since E
(
‖Zt‖2) <∞, by Assumption 11, and since:

0 ≤
∫
RG
K(1) (x)K(1) (x)′ ft (δTx|Ft−1) dx ≤ C

∫
RG
K(1) (x)K(1) (x)′ dx,

in the positive semi-definite sense, by Assumptions 3 and 12. Thus:

E

[
T∑
t=1

(λ′gtT )
2

]
= λ′B0λ+ o (1) .

In addition, from above we have that:

(λ′getT ) = −
(
TδGT

)−1/2
δG+1
T λ′ (Zt ⊗ IG)

∫
RG
K (x) f

(1)
t (δTx|Ft−1) dx,

and hence by CS it follows that:

(λ′getT )
2 ≤

(
TδGT

)−1
δ2G+2
T ‖λ′ (Zt ⊗ IG)‖2

∥∥∥∥∫
RG
K (x) f

(1)
t (δTx|Ft−1) dx

∥∥∥∥2

.

Now: ∥∥∥∥∫
RG
K (s) f

(1)
t (δT s|Ft−1) ds

∥∥∥∥2

=
G∑
i=i

(∫
RG
K (s) f

(1)
t,i (δT s|Ft−1) ds

)2

=
G∑
i=1

ψ2
tT,i ≤ G

(
G2C2

2
δ2
T

)2

,

by Equation (A.19). In addition, ‖λ′ (Zt ⊗ IG)‖2 ≤ G ‖λ‖2 ‖Zt‖2, so we have that:

T∑
t=1

(λ′getT )
2 ≤

(
TδGT

)−1
δ2G+2
T

(
G∑
i=1

ψ2
tT,i

)(
T∑
t=1

‖λ′ (Zt ⊗ IG)‖2

)

≤ T
(
TδGT

)−1
δ2G+2
T G

(
G2C2

2
δ2
T

)2

G ‖λ‖2

(
T−1

T∑
t=1

‖Zt‖2

)
,

and hence that:

E

[
T∑
t=1

(λ′getT )
2

]
≤ T

(
TδGT

)−1
δ2G+6
T

(
G6C4

4

)
‖λ‖2 E

(
T−1

T∑
t=1

‖Zt‖2

)
= O

(
δG+6
T

)
= o (1) ,
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since E
(
T−1

∑T
t=1 ‖Zt‖

2
)

=E
(
‖Zt‖2) <∞, by Assumptions 1 and 11, and since δG+6

T =

o (1), by assumption 13. Hence we have that:

ΣT = E

[
T∑
t=1

(λ′gtT )
2

]
− E

[
T∑
t=1

(λ′getT )
2

]
= λ′B0λ+ o (1) ,

and since B0 is non-singular, by Lemma 7 above, then ΣT is positive for all T suffi ciently

large and hence
∑T

t=1 Var (ηtT ) = 1 for all T suffi ciently large.

Third, observe that: ∑T

t=1
z2
tT − λ′B0λ = W1,T +W2,T ,

where:

W1,T =
∑T

t=1
z2
tT −

∑T

t=1
E
(
z2
tT |Ft−1

)
,

W2,T =
∑T

t=1
E
(
z2
tT |Ft−1

)
− λ′B0λ.

Now define:

φtT = (λ′g∗tT )
2 − E

[
(λ′g∗tT )

2 |Ft−1

]
= z2

tT − E
(
z2
tT |Ft−1

)
,

soW1,T =
∑T

t=1 φtT , and observe that {(φtT ,Ft)} is a martingale difference array. By the

von Bahr-Esseen inequality, see von Bahr and Esseen (1965), for any 1 < p ≤ 2:

E

(∣∣∣∣∣
T∑
t=1

φtT

∣∣∣∣∣
p)
≤ 2

T∑
t=1

E (|φtT |
p) ,

and by CR, J and the law of iterated expectations:

E (|φtT |
p) = E

(∣∣∣(λ′g∗tT )
2 − E

[
(λ′g∗tT )

2 |Ft−1

]∣∣∣p)
≤ 2p−1

[
E
(
|λ′g∗tT |

2p
)

+ E
{∣∣∣E [(λ′g∗tT )

2 |Ft−1

]∣∣∣p}]
≤ 2p−1E

(
|λ′g∗tT |

2p
)

+ 2p−1E
{

E
[(
|λ′g∗tT |

2p
)
|Ft−1

]}
= 2pE

(
|λ′g∗tT |

2p
)
,

so:

E

∣∣∣∣∣
T∑
t=1

φtT

∣∣∣∣∣
2p
 ≤ 2p+1

T∑
t=1

E
(
|λ′g∗tT |

2p
)
.
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But then by the law of iterated expectations:

E
(
|λ′g∗tT |

2p
)

= E

(∣∣∣∣λ′T−1/2δ
−G/2
T (Zt ⊗ IG)K(1)

(
Yt − A0Zt

δT

)∣∣∣∣2p
)

=
(
TδGT

)−p
E

{
E

[(∣∣∣∣λ′ (Zt ⊗ IG)K(1)

(
Yt − A0Zt

δT

)∣∣∣∣2p
)
|Ft−1

]}
,

while by CS and Assumption 3:

E

[(∣∣∣∣λ′ (Zt ⊗ IG)K(1)

(
Yt − A0Zt

δT

)∣∣∣∣2p
)
|Ft−1

]

≤ ‖λ′ (Zt ⊗ IG)‖2p
∫
RG

∥∥∥∥K(1)

(
u

δT

)∥∥∥∥2p

ft (u|Ft−1) du

≤ Gp ‖λ‖2p ‖Zt‖2p δGT

(∫
RG

∥∥K(1) (x)
∥∥2p

ft (δTx|Ft−1) dx

)
≤ GpL0 ‖λ‖2p ‖Zt‖2p δGT

(∫
RG

∥∥K(1) (x)
∥∥2p

dx

)
.

Thus:

E (|W1,T |p) ≤ 2p+1GpL0 ‖λ‖2p (TδGT )−p+1
(∫

RG

∥∥K(1) (s)
∥∥2p

ds

)
E

(
T−1

T∑
t=1

‖Zt‖2p

)
.

Now since supx
∥∥K(1) (x)

∥∥ ≤ C, by Assumption 6, and
∫
RG
∥∥K(1) (x)

∥∥ dx <∞, by Assump-
tion 12, then

∫
RG
∥∥K(1) (x)

∥∥2p
dx <∞. In addition, since 1 < p ≤ 2 then E

(
‖Zt‖2p) <∞,

by Assumption 11, and hence E
(
T−1

∑T
t=1 ‖Zt‖

2p
)

= Op (1) by Assumption 1 and the er-

godic theorem. In addition, TδGT →∞, by Assumption 13, and hence
(
TδGT

)−p+1
= o (1).

But then E(|W1,T |p) = o (1) so W1,T = op (1) since Lp convergence implies convergence in

probability.

Fourth, observe that:

E
(
z2
tT |Ft−1

)
= E

{
[λ′ (gtT − getT )]

2 |Ft−1

}
= E

[
(λ′gtT )

2 |Ft−1

]
− (λ′getT )

2
,

and hence:

W2,T =

T∑
t=1

E
[
(λ′gtT )

2 |Ft−1

]
−

T∑
t=1

(λ′getT )
2 − λ′B0λ.

Now, observe that:

E (gtTg
′
tT |Ft−1) = T−1 (Zt ⊗ IG)

[∫
RG
K(1) (x)K(1) (x)′ ft (δT s|Ft−1) dx

]
(Z ′t ⊗ IG) ,
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and define BT,0 = BT (α0), where BT (·) is the same as in the statement of Lemma 12.

Then CS and T imply that:

E
(∣∣∣λ′ [∑T

t=1
E (gtTg

′
tT |Ft−1)

]
λ− λ′BT,0λ

∣∣∣)
≤ G ‖λ‖2 E

[∫
RG
‖Zt‖2

∥∥K(1) (x)
∥∥2 |ft (δTx|Ft−1)− ft (0|Ft−1)| dx

]
≤ G ‖λ‖2 δTE

[∫
RG
‖Zt‖2 ‖x‖

∥∥K(1) (x)
∥∥2
∥∥∥f (1)

t (ϑδTx|Ft−1)
∥∥∥ dx]

≤ G ‖λ‖2 δTC
2E
{
‖Zt‖2} = o (1)

where 0 ≤ ϑ ≤ 1 by MVT, since
∥∥∥supu f

(1)
t (u|Ft−1)

∥∥∥ ≤ C, by Assumption 9,∫
RG ‖x‖

∥∥K(1) (x)
∥∥2
dx ≤ C, by Assumption 12, and E

{
‖Zt‖2} < ∞, by Assumption

11. It follows by M that:

λ′
[∑T

t=1
E (gtTg

′
tT |Ft−1)

]
λ− λ′BT,0λ = op (1) ,

and since BT,0 converges in probability to B0, by Lemma 13, then:

W2T = λ′
[∑T

t=1
E (gtTg

′
tT |Ft−1)

]
λ− λ′B0λ = op (1) .

Since W1T = op (1) from earlier it follows that:∑T

t=1
z2
tT = λ′B0λ+ op (1) .

Fifth, note that for any p > 1 such that E
(
|ztT |2p

)
<∞ for all (t, T ) then by M:

Pr

{
max

1≤t≤T
|ztT | > ε

}
= Pr

{
max

1≤t≤T
|ztT |2p > ε2p

}
≤

T∑
t=1

Pr
{
|ztT |2p > ε2p

}
≤ ε−2p

T∑
t=1

E
(
|ztT |2p

)
.

Now by CR, J and the law of iterated expectations:

E
(
|ztT |2p

)
= E

(
|λ′ (gtT − getT )|2p

)
= E

(
|(λ′gtT )− (λ′getT )|2p

)
≤ 22p−1

[
E
(
|λ′gtT |2p

)
+ E

(
|E (λ′gtT |Ft−1)|2p

)]
= 22p−1

[
E
(
|λ′gtT |2p

)
+ E

{
E
(
|(λ′gtT )|2p

)
|Ft−1

}]
= 2pE

(
|λ′gtT |2p

)
.
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But:

λ′gtT =
(
TδGT

)−1/2
λ′ (Zt ⊗ IG)K(1)

(
Ut
δT

)
,

so by CS and the law of iterated expectations:

E
(
|λ′gtT |2p

)
≤

(
TδGT

)−p
E

{
‖λ′ (Zt ⊗ IG)‖2p

∥∥∥∥K(1)

(
Ut
δT

)∥∥∥∥2p
}

=
(
TδGT

)−p
E

[
‖λ′ (Zt ⊗ IG)‖2p

E

{∥∥∥∥K(1)

(
Ut
δT

)∥∥∥∥2p

|Ft−1

}]
.

Now:

E

{∥∥∥∥K(1)

(
Ut
δT

)∥∥∥∥2p

|Ft−1

}
=

∫
RG

∥∥∥∥K(1)

(
u

δT

)∥∥∥∥2p

ft (u|Ft−1) du

=

∫
RG

δGT
∥∥K(1) (s)

∥∥2p
ft (δT s|Ft−1) ds

≤ C2pδGT ,

since supu ft (u|Ft−1) ≤ C for all u, by Assumption 3, supx
∥∥K(1) (x)

∥∥ ≤ C, by Assump-

tion 6, and
∫
RG
∥∥K(1) (x)

∥∥2
dx ≤ C, by Assumption 12. Therefore we have that:

Pr

{
max

1≤t≤T
|ztT | > ε

}
= ε−2p22pT

(
TδGT

)−p
E
(
‖λ′ (Zt ⊗ IG)‖2p

)
C2pδGT

≤ O
[(
TδGT

)−(p−1)
]

= o (1) ,

since E
(
‖λ′ (Zt ⊗ IG)‖2p

)
< ∞ for all 1 < p ≤ 2, by Assumption 11, and TδGT → ∞, by

Assumption 13.

This then establishes that
∑T

t=1 ztT
d−→ N (0, λ′B0λ) for all fixed λ and hence we have

that:
T∑
t=1

gtT
d−→ N (0, B0) .
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