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Abstract—Getting good statistical models of traffic on network
links is a well-known, often-studied problem. A lot of attention
has been given to correlation patterns and flow duration. The
distribution of the amount of traffic per unit time is an equally
important but less studied problem. We study a large number of
traffic traces from many different networks including academic,
commercial and residential networks using state-of-the-art sta-
tistical techniques. We show that the log-normal distribution is a
better fit than the Gaussian distribution commonly claimed in the
literature. We also investigate a second heavy-tailed distribution
(the Weibull) and show that its performance is better than
Gaussian but worse than log-normal. We examine anomalous
traces which are a poor fit for all distributions tried and show
that this is often due to traffic outages or links that hit maximum
capacity.

We demonstrate the utility of the log-normal distribution
in two contexts: predicting the proportion of time traffic will
exceed a given level (for service level agreement or link capacity
estimation) and predicting 95th percentile pricing. We also show
the log-normal distribution is a better predictor than Gaussian
or Weibull distributions.

Index Terms—Traffic modelling, network planning, bandwidth
provisioning, traffic billing

I. INTRODUCTION

Internet traffic characterisation is an important problem for
network researchers and vendors. The subject has a long
history. Early works [1], [2] discovered that the correlation
structure of traffic exhibits self-similarity and that the durations
of individual flows of packets exhibit heavy-tails [3]. These
works were later challenged and refined (see Section VI for
a summary). By comparison the distribution of the amount
of traffic seen on a link in a given time period has seen
comparatively less research interest. This is surprising as this
quantity can be extremely useful in network planning.

In this paper we use a rigorous statistical approach to fitting
a statistical distribution to the amount of traffic within a given
time period. Formally, we choose some timescale T and let Xi

be the amount of traffic seen in the time period [iT, (i+1)T ).
We investigate the distribution of the random variable X over a
wide range of values of T . We show that the distribution of the
variable has considerable implications for network planning;
for assessing how often a link is over capacity and in particular
for service level agreements (SLAs), and for traffic pricing,
particularly using the 95th percentile scheme [4].

Previous authors have claimed that X has a normal (or
Gaussian) distribution [5]–[7]. Others claim X is Gaussian
plus a tail associated with bursts [8], [9]. A variable X has a
log-normal distribution if its logarithm is normally distributed
ln(X) ∼ N(µ, σ2) where µ ∈ R is the mean and σ > 0
is the standard deviation of the distribution. We use a well-
established statistical methodology [10] to show that a log-
normal distribution is a better fit than Gaussian or Weibull1

for the vast majority of traces. This holds over a wide range
of timescales T (from 5 msec to 5 sec). This paper is the most
comprehensive investigation of this phenomenon the authors
know about. We study a large number of publicly available
traces from a diverse set of locations (including commercial,
academic and residential networks) with different link speeds
and spanning the last 15 years.

The structure of the paper is as follows. In Section II we
describe the datasets used. In Section III we describe our best-
practice procedure for fitting traffic and demonstrate that log-
normal is the best fit distribution for our traces under a variety
of circumstances. We examine those few traces that do not
follow this distribution and find it occurs when a link spends
considerable time either having an outage or completely at
maximum capacity. In Section IV we demonstrate that the
log-normal distribution is the most useful for estimating how
often a link is over capacity. In Section V we show that the
log-normal distribution provides good estimates when looking
at 95th percentile pricing. In Section VI we give related work.
Finally, Section VII gives our conclusions.

II. NETWORK TRAFFIC TRACES

A key contribution of our work stems from the spatial and
temporal diversity of the studied traces. The dataset spans a
period of 15 years and comprises 229 traces.
CAIDA traces. We have used 27 CAIDA traces captured
at an Internet data collection monitor which is located at
an Equinix data centre in Chicago [11]. The data centre is
connected to a backbone link of a Tier 1 ISP. The monitor
records an hour-long traces four times a year, usually
from 13:00 to 14:00 UTC. Each trace contains billions
of IPv4 packets, the headers of which are anonymised.

1A variable X has a Weibull distribution with parameters k > 0 (known as
shape) and λ > 0 (known as scale) if its probability density function follows
f(x) = k

λ

(
x
λ

)k−1
exp(−(x/λ)k) when x ≥ 0 and is 0 otherwise.



The average captured data rate is 2.5 Gbps. At the
time of capturing, the monitored link had a capacity of
10 Gbps. Traces were captured between 2013 and 2016.
MAWI traces. The MAWI archive [12] consists of a
collection of Internet traffic traces, captured within the WIDE
backbone network that connects Japanese universities and
research institutions to the Internet. Each trace consists of IP
level traffic observed daily from 14:00 to 14:15 at a vantage
point within WIDE. Traces include anonymised IP and MAC
headers, along with an ntpd timestamp [12]. We have looked
at 107 traces (each one being 15 minutes long). Traces were
captured between 2014 and 2018. On average, each trace
consists of 70 million packets; the average captured data rate
is 422 Mbps. The monitored link had a capacity of 1 Gbps.
Twente University traces. We used 40 traffic traces captured
at five different locations (8 traces from each location). Traces
are diverse in terms of the link rates, types of users and
captured time [13]. Each trace is 15 minutes long. The first
location is a residential network with a 300 Mbps link, which
connects 2000 students (each one having a 100 Mbps access
link); traces were captured in July 2002. The second location
is a research institute network with a 1 Gbps link which
connects 200 researchers (each one having a 100 Mbps access
link); traces were captured between May and August 2003.
The third location is at a large college with a 1 Gbps link
which connects 1000 employees (each one having a 100 Mbps
access link); traces were captured between February and July
2004. The fourth location is an ADSL access network with a
1 Gbps ADSL link used by hundreds of users (each one having
a 256 Kbps to 8 Mbps access link); traces were captured
between February and July 2004. The fifth location is an
educational organisation with a 100 Mbps link connecting 135
students and employees (each one having a 100 Mbps access
link); traces were captured between May and June 2007.
Waikato University VIII traces. The Waikato dataset
consists of traffic traces captured by the WAND group at
the University of Waikato, New Zealand [14]. The capture
point is at the link interconnecting the University with the
Internet. All of the traces were captured using software that
was specifically developed for the Waikato capture point
and a DAG 3 series hardware capture card. All IP addresses
within the traces are anonymised. In our study, we have used
30 traces captured between April 2011 and November 2011.
Auckland University IX traces. The Auckland dataset
consists of traffic traces captured by the WAND group at
the University of Waikato [15]. The traces were collected
at the University of Auckland, New Zealand. The capture
point is at the link interconnecting the University with the
Internet. All IP addresses within the traces are anonymised.
In our study, we have used 25 traces captured in 2009.

III. FITTING A STATISTICAL DISTRIBUTION TO INTERNET
TRAFFIC DATA

In this section we present an extensive statistical analysis
applied to the datasets described in the previous section. The

aim is to discover which statistical distribution best fits the
traces. In contrast to the existing research (see Section VI), we
are basing our analysis on the framework proposed by Clauset
et al. [10], a comprehensive statistical framework developed
specifically for testing power-law behaviour in empirical data2.
The framework combines maximum-likelihood fitting meth-
ods with goodness-of-fit tests based on the Kolmogorov–
Smirnov statistic and likelihood ratios. The method reliably
tests whether the power-law distribution is the best model for
a specific dataset, or, if not, whether an alternative statistical
distribution (e.g., log-normal, exponential, Weibull) is. The
framework performs the tests described above as follows: (1)
the parameters of the power-law model are estimated for a
given dataset; (2) the goodness-of-fit between the data and
the power-law is calculated, under the hypothesis that the
power-law is the best fit to the provided traffic samples. If
the resulting p-value is greater than 0.1 the hypothesis is
accepted (i.e. the power law is a plausible fit to the given
data), otherwise the hypothesis is rejected; (3) alternative
distributions are tested against the power-law as a fit to the
data by employing a likelihood ratio test.

For the vast majority of the traces examined, the hypothesis
was rejected; i.e. the power-law distribution was not a good
fit. Consequently, we investigate alternative distributions by
performing the likelihood ratio (LLR) test (following Clauset’s
methodology), as follows:

<, p = fit.distributionCompare(powerlaw, alternative)

where < is the normalised LLR3 between the power-law and
alternative distributions and p is the significance value for this
test. < is positive if the power-law distribution is a better fit for
the data, and negative if the alternative distribution is a better
fit for the data. A p-value less than 0.1 means that the value
of < can be trusted to make a conclusion that one candidate
distribution (power-law or alternative, depending on the sign
of <) is a good fit for the data. In contrast, a p-value greater
than 0.1 means that there is nothing to be concluded from the
likelihood ratio test.

A. Fitting the log-normal distribution to Internet traffic data

Figure 1 shows the results of the LLR test for all 229
traces with log-normal, exponential and Weibull distribution as
the alternative to power-law. For this test we have aggregated
traffic at a timescale T = 100 msec. The points marked with
a circle are the ones with p > 0.1. It is clear that the log-
normal distribution (black line in Figure 1) is the best fit for
the studied traces; i.e. < < 0 and p < 0.1 for most traces
when the alternative distribution (to the power-law which is
almost always rejected) is the log-normal one4. The log-normal
distribution is not the best fit for 1 out of 27 CAIDA traces, 2
out 30 Waikato traces, 1 out of 25 Auckland traces, 5 out of

2We have used the source code discussed in [16].
3< is calculated as R/(σ

√
n), where R is the log likelihood ratio [10].

4For clarity, in Figures 1(e) and 2(e) we only plot traces 60 – 107. For
traces 1 – 59, < is less than 0 and the respective p-value is less than 0.1; i.e.
the alternative distribution is the best fit for the respective trace
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Fig. 1: Normalised Log-Likelihood Ratio (LLR) test results for all studied traces and candidate distributions. Aggregation
timescale T is 100 msec. Circled points in the plot are the ones with p-value greater than 0.1; i.e. likelihood test is inconclusive
with respect to fitting any of the candidate distributions to the traffic data.

40 Twente traces and 9 out of 107 MAWI traces. We examined
these traces in more detail and discuss them in Section III-B.

For the vast majority of traces the power-law distribution
is favoured over the exponential one (i.e. < > 0), as shown
in Figure 1. Thus, the exponential distribution cannot be
considered as a good model for our traffic traces. On the other
hand, the Weibull appears to be a better fit over the power-
law distribution; however, when compared to the log-normal
distribution, it still performs poorly (i.e. < > 0 or < < 0 but
p > 0.1) for a substantial amount of traces.

Identifying the log-normal distribution as the best fit for
the vast majority of traffic traces at T = 100 msec is very
encouraging. This specific traffic aggregation timescale has
been commonly studied in the literature [17], [18]. Next we
investigate what the best model is for a range of aggregation
timescales. The results are shown in Figure 2. As reflected
by the < and p-values, the log-normal distribution is the best
fit for the vast majority of captured traces at all examined
timescales (5 msec to 5 sec)5. This is a strong result suggesting
the generality of our observations. The good log-normal fit
at time scales as small as 5 msec is important for practical
applications of the log-normal model.

5Note that it is possible that the network traffic may not follow a log-normal
distribution at very fine or coarse aggregation granularities.

We also examined Q-Q plots for a large number of traces6.
The log-normal distribution appeared to be a better fit than
other tested distributions and no deviations from the expected
pattern were observed in the body or tail of the distribution.

B. Anomalous traces

As mentioned in Section III-A, there are a small number
of traces for which the log-normal distribution is not a
good fit (none of the other examined distributions is, either).
Figure 3(a) shows the PDF plot for one of the 8 anomalous
MAWI traces. Figure 3(b) shows the PDF for another MAWI
trace for which the log-normal distribution is a good fit. It is
obvious from Figure 3(a) that the link was either severely
underutilised (see large spike on the left part of the plot
area) or fully utilised (see smaller spike at the right part of
the plot area) for higher data rates. All traces for which the
log-normal distribution was not a good fit exhibited similar
behaviour and (aggregated) traffic patterns. On the contrary,
we did not observe any such behaviour for the majority of
traces for which the log-normal distribution was the best fit. A
likely explanation for the anomalous traces is that those traces
contain either periods of over-capacity (traffic is at 100% of
link capacity) or periods where the link is broken (no traffic).

6Due to lack of space, Q-Q plots are not included as we would have to
present plots for each trace, separately.
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Fig. 2: Normalised Log-Likelihood Ratio (LLR) test results for all studied traces and log-normal distribution. Aggregation
timescales are 5 sec, 1 sec, 100 msec and 5 msec. Circled points in the plot are the ones with p-value greater than 0.1, i.e.
likelihood test is inconclusive with respect to fitting the log-normal distribution to the traffic data.
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Fig. 3: PDF of an anomalous and non-anomalous trace.

C. Fitting the log-normal and Gaussian distributions using the
correlation coefficient test

The linear correlation coefficient test has been widely used
to assess the fit of a distribution to empirical data. To reinforce
the results of Section III-A, we employ the linear correlation
coefficient assuming that the log-normal distribution is the best
fit (as we showed in Section III). We compare the results of
this test for both the log-normal and Gaussian distributions.
We use the linear correlation coefficient as defined in [19]:

γ =

∑n
i=1

(
S(i) − µ̂

)
(xi − x̂)√∑n

i=1

(
S(i) − µ̂

)2
.
∑n
i=1 (xi − x̂)

2
(1)

where S(i) is the observed sample i, and µ̂ = 1
n

∑n
i=1 S(i) is

the samples’ mean value. xi is sample i from the reference
distribution (log-normal in our case), which can be calculated
from the inverse CDF of the reference random variable xi =

F−1
(

i
n+1

)
and x̂ = 1

n

∑n
i=1 xi is the respective mean value.

The value of the correlation coefficient can vary between −1 ≤
γ ≤ 1, with a 1, 0 and −1 indicating perfect correlation,
no correlation and perfect anti-correlation, respectively. Strong
goodness-of-fit (GOF) is assumed to exist when the value of
γ is greater than 0.95 [17].

We measure the linear correlation coefficient for all datasets
at four different aggregation timescales (ranging from 5 msec
to 5 sec) and plot the results in Figures 4(a) to 4(e) for the log-
normal distribution and Figures 4(f) to 4(j) for the Gaussian
distribution. Traces are ordered by the value of γ for the
given timescale. It can be clearly seen that γ > 0.95 for most
traces when employing the test for the log-normal distribution,
but this is not the case for the Gaussian distribution. γ is
larger for smaller aggregation timescales indicating that the
log-normal distribution is an even better fit as the aggregation
gets finer. For very small values of T , i.e. lower than 1 msec,
data samples exhibit binary behaviour, where either a packet
is transmitted or not during each examined time frame [18].
We have examined γ for very short (and large) aggregation
timescales, and can confirm the absence of a model describing
the data (for brevity, we have omitted the relevant figures).
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Fig. 4: Correlation coefficient test results for all studied traces and different timescales.

Next, we calculate υγ (the variation of γ) for each dataset.
υγ gives an indication of the stability of γ for each dataset,
for all timescales tested. This metric is defined as:

υγ =
√
var(γT1

, γT2
, γT3

, γT4
) (2)

where T1 = 5 sec, T2 = 1 sec, T3 = 100 msec and T4 = 5
msec. Figures 4(k) to 4(o) show the results for each dataset
with the traces ranked by υγ . For log-normal model, υγ is very
small (below 0.045) for all traces, therefore we can conclude
that γ is almost constant for all studied aggregation timescales.
While υγ is higher for Gaussian model. Furthermore, the error
bars in Figures 4(p) to 4(t) represent the standard deviation of
the correlation coefficient at different timescales (see x-axis).
This again shows that for log-normal model γ is larger than
0.95 (at different T values) for most CAIDA and MAWI traces,
while it is larger than 0.9 for all other datasets. This is not the

case with the Gaussian model, where most γ values are less
than 0.9.

Overall, the correlation coefficient test reinforces the results
extracted in Section III-A, providing strong evidence that the
log-normal distribution is the best fit for all studied traces.
Superior performance of our model can also be seen from
comparison of our results for correlation coefficient with those
in [20] where the Gaussian model was used.

IV. BANDWIDTH PROVISIONING

It has been previously suggested that network link provi-
sioning could be based on fitted traffic models instead of rely-
ing on straightforward empirical rules [20]. In this way, over-
or under-provisioning can be mitigated or eliminated even in
the presence of strong traffic fluctuations. Such approaches
rely on having a statistical model that accurately describes



the network traffic. This is therefore an excellent area for
applying our findings on fitting the log-normal distribution to
Internet traffic data. In the literature, the following inequality
(the authors call it the “link transparency formula”) has been
used for bandwidth provisioning [18]:

P (A(T ) ≥ CT ) ≤ ε. (3)

In words, this inequality states that the probability that the
captured traffic A(T ) over a specific aggregation timescale
T is larger than the link capacity has to be smaller than
the value of a performance criterion ε. The value of ε is
chosen carefully by the network provider in order to meet
a specific SLA [20]. Likewise, the value of the aggregation
time T should be sufficiently small so that the fluctuations in
the traffic can be modelled as well, taking into account the
buffering capabilities of network switching devices7.

We compare bandwidth provisioning using Meent’s approx-
imation formula [20] (assuming Gaussian) and using a log-
normal traffic model.
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Fig. 5: Data rate of a MAWI trace (T = 100 msec and
ε = 0.01). The horizontal lines represent the calculated link
capacity based on different models.

A. Bandwidth provisioning using Meent’s formula

To find the minimum required link capacity, Meent et
al. [20] proposed a bandwidth provisioning approach that is
based on the assumption that the traffic follows a Gaussian
distribution. Meent’s dimensioning formula is defined as fol-
lows [20]:

C1 = µ+
1

T

√
−2log(ε).υ(T ) (4)

where µ is the average value of the traffic, υ(T ) is the variance
at timescale T and ε is the performance criterion. The link
capacity is obtained by adding a safety margin value

Safety margin =
√
−2log(ε) .

√
υ(T )

T 2

to the average of the captured traffic (see Equation 4). This
safety margin value depends on ε and the ratio

√
υ(T )/T 2.

As the value of ε decreases the safety margin increases. For
example, when the value of ε decreases from 10−2 to 10−4,

7Large traffic fluctuations at very short aggregation timescales are smoothed
by the presence of buffers at network routers and switches.

then value of the safety margin increases by 40%. This is
different from conventional link dimensioning methods, where
the safety margin is fixed to be 30% above the average of the
presented traffic [20], [21]. Traffic tails are represented using
the Chernoff bound, as follows:

P (A(T ) ≥ CT ) ≤ e−SCTE
[
eSA(T )

]
. (5)

Here E
[
eSA(T )

]
is the moment generation function (MGF)

of the captured traffic A(T ).

B. Bandwidth provisioning based on the log-normal model

Here we investigate whether we could achieve more reliable
bandwidth provisioning by adopting the log-normal traffic
model. We calculate the mean and variance from the captured
trace and generate the respective log-normal model. Then,
we use the CDF function (F ) to solve the link transparency
formula shown in Equation 3. Hence, F is defined as F (C) =
P (A(T )/T < C), which can be solved to find C, as follows:

C2 = F−1 (1− ε) . (6)

C. Comparison of bandwidth provisioning approaches

In this section, we compare the bandwidth provisioning
approaches described above. The performance indicator is the
empirical value of the performance criterion, which is denoted
by ε̂ and defined as follows:

ε̂ =
# {Ai|Ai ≥ CT}

n
, i ∈ 1 . . . n. (7)

In words, this empirical value is the percentage of all the
data samples of the captured traffic which are measured larger
than the estimated link capacity. Ideally, ε̂ would be equal to
the target value of the performance criterion ε. The difference
between ε̂ and ε is due to the fact that the chosen traffic model
is not accurately describing the real network traffic. A simple
example of the described comparison approach is illustrated
in Figure 5, in which we plot the captured data rate for a
MAWI trace (T = 100 msec)8. The calculated capacity values
from each approach when the target ε is 0.01 are C1 = 344.8
Mbps and C2 = 444.3 Mbps (represented by the horizontal
lines in Figure 5). The empirical value can be calculated by
using Equation 7, which gives ε̂1 = 0.042 and ε̂2 = 0.012.
Obviously, with the first approach the network operator would
not be able to meet the target ε = 0.01, while with the second
approach the empirical value is close to the target.

We next compare results of bandwidth provisioning calcu-
lations based on the (a) Meent’s formula, (b) Weibull model
and (c) proposed log-normal model. Figure 6(a)-(d) shows
the average of the empirical value (avg(ε̂)) for all traces in
each dataset at T = 0.1 sec, T = 0.5 sec and T = 1 sec.
The value of T is chosen to be sufficiently small so that
the fluctuations in the traffic can be modelled as well. Each
model is tested for four different values of the performance

8Note that in all subsequent figures we have also included results for a
Weibull model to get insights about bandwidth provisioning using a heavy-
tailed distribution.
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Fig. 6: Link dimensioning based on (a-d) log-normal model, (e-h) Weibull model and (i-l) Meent’s formula: avg(ε̂) for different
datasets (M: MAWI, T: Twente, C: CAIDA, W: Waikato, A: Auckland), aggregation timescales (100 msec, 500 msec and 1
s), and target values of ε (0.5, 0.1, 0.05 and 0.01). Error bars represent stderr |ε− ε̂|.

criterion: ε = 0.5, ε = 0.1, ε = 0.05 and ε = 0.01. In
Figure 6(a)-(d) we clearly see that the log-normal model is
able to satisfy the required performance criterion ε at different
aggregation time-scales for all datasets. In contrast, Meent’s
formula failed to allocate sufficient bandwidth, which results in
missing the target performance criterion ε for all datasets and
target performance values, as depicted in Figure 6(i)-(l) (see
horizontal red line). The Weibull distribution performs better
comparing to Meent’s formula, but bandwidth provisioning
using the log-normal model is far superior, as can be seen
from Figures 6(a)-(d) and 6(e)-(h).

V. 95TH PERCENTILE PRICING SCHEME BASED ON
LOG-NORMAL MODEL

Traffic billing is typically based on the 95th percentile
method [22]. Traffic volume is measured at border network
devices (typically aggregated at time intervals of 5 minutes)
and bills are calculated according to the 95-percentile of the
distribution of measured volumes; i.e. network operators calcu-
late bills by disregarding occasional traffic spikes. Forecasting
future bills, which is important for ISPs and clients, can be
done using a model of the traffic calculated through previously
sampled traffic. In this section, we apply our findings on
Internet traffic modelling in predicting the cost of traffic
according to the 95th percentile method. For each network

trace we calculate the actual 95th percentile of the traffic
volume. The majority of the studied traffic traces were 15-
minute long but operators typically use measurements traffic
volumes for much longer periods, therefore we scale down the
calculation of the 95th percentile by dividing each trace (900
seconds) into 90 groups (10 seconds length each). The authors
appreciate that by using 15-minute rather than day long traces
we omit any study of diurnal effects in the distribution. We
note that the sum of several log-normal distributions is itself
very accurately represented by a log-normal distribution [23].
Hypothetically, therefore, if 96 consecutive 15-minute traces fit
a log-normal distribution (with different parameters for each)
then the resulting 24 hour trace is also likely to be a good
fit to a log-normal. We also note that the distributions tested
were on a level playing field in that they would all be affected
equally by the shorter duration of the data sets.

We calculate the 95th percentile for the observed traffic. We
then fit a Gaussian, Weibull and log-normal distribution to each
trace (for T = 100 msec) and calculate the 95th percentile
of the fitted distribution. We plot the actual 95th percentile
against the three predictions in Figure 7 with a red reference
line to show where perfect predictions would be located. It is
clear that the log-normal model provides much more accurate
predictions of the 95th percentile than the Gaussian model. As
with the bandwidth dimensioning case discussed in Section IV,
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Fig. 7: 95th percentile values (actual vs predicted rates) based on log-normal, Weibull and Gaussian models. An ideal model
would result in points in the plot area that fall exactly on the red line.

TABLE I: Goodness of fit (GOF) using normalised root mean
squared error (NRMSE)

Model/Dataset CAIDA Waikato Auckland Twente MAWI
Log-normal 0.0399 0.0401 0.1058 0.0979 0.1528

Weibull 0.2410 0.1148 0.2984 0.2123 0.4145
Gaussian 0.5544 0.4193 0.6866 0.5741 0.9828

the Weibull is better than the Gaussian model but worse than
the proposed log-normal model.

We employ the normalised root mean squared error
(NRMSE) as a goodness of fit to the results in Figure 7.
NRMSE measures the differences between values predicted by
a hypothetical model and the actual values. In other words, it
measures the quality of the fit between the actual data and the
predicted model. Table I shows the NRMSE for all datasets
and the three considered models. It is clear that the lowest
NRMSE value is for the log-normal model, which is the best
model compared to the Gaussian and Weibull ones.

VI. RELATED WORK

Reliable traffic modelling is important for network plan-
ning, deployment and management; e.g. for traffic billing and
network dimensioning. Historically, network traffic has been
widely assumed to follow a Gaussian distribution. In [5],
[7], the authors studied network traces and verified that
the Gaussianity assumption was valid (according to simple
goodness-of-fit tests they used) at two different timescales.
In [24], the authors studied traffic traces during busy hours
over a relatively long period of time and also found that the
Gaussian distribution is a good fit for the captured traffic.
Schmidt et al. [8] found that the degree of Gaussianity is

affected by short and intensive activities of single network
hosts that create sudden traffic bursts. All the above mentioned
works agreed on the Gaussian or ‘fairly Gaussian’ traffic at
different levels of aggregations in terms of timescale and
number of users. The authors in [19], [25] examined the levels
of aggregation required to observe Gaussianity in the modelled
traffic, and concluded that this can be disturbed by traffic
bursts. The work in [9], [26] reinforces the argument above,
by showing existence of large traffic spikes at short timescales
which result in high values in the tail. Compared to existing
literature, our findings are based on a modern, principled
statistical methodology, and traffic traces that are spatially
and temporally diverse. We have tested several hypothesised
distributions and not just Gaussianity.

An early work drawing attention to the presence of heavy
tails in Internet file sizes (not traffic) is that of Crovella and
Bestavros [2]. Deciding whether Internet flows could be heavy-
tailed became important as this implies significant departures
from Gaussianity. The authors in [27] provided robust evidence
for the presence of various kinds of scaling, and in particular,
heavy-tailed sources and long range dependence in a large
dataset of traffic spanning a duration of 14 years.

Understanding the traffic characteristics and how these
evolve is crucial for ISPs for network planning and link di-
mensioning. Operators typically over-provision their networks.
A common approach to do so is to calculate the average
bandwidth utilisation [6] and add a safety margin. As a rule of
thumb, this margin is defined as a percentage of the calculated
bandwidth utilisation [21]. Meent et al. [20] proposed a
new bandwidth provisioning formula, which calculates the



minimum bandwidth that guarantees the required performance,
according to an underlying SLA. This approach relies on the
statistical parameters of the captured traffic and a performance
parameter. The underlying fundamental assumption for this to
work is that the traffic the network operator sees follows a
Gaussian distribution. Same approach has been used in [18].

The 95th percentile method is used widely for network
traffic billing. Dimitropoulos et al. [22] have found that the
computed 95th percentile is significantly affected by traffic
aggregation parameters. However, in their approach they do
not assume any underlying model of the traffic; instead, they
base their study on specific captured traces. Stanojevic et
al. [4] proposed the use of Shapley value for computing
the contribution of each flow to the 95th percentile price
of interconnect links. Works [28]–[31] propose calculating
the 95th percentile using experimental approaches. Xu et
al. [32] assume that network traffic follows a Gaussian dis-
tribution“through reasonable aggregation” and propose a cost
efficient data centre selection approach based on the 95th
percentile.

VII. CONCLUSION

The distribution of traffic on Internet links is an important
problem that has received relatively little attention. We use
a well-known, state-of-the-art statistical framework to investi-
gate the problem using a large corpus of traces. The traces
cover several network settings including home user access
links, tier 1 backbone links and campus to Internet links.
The traces are from times from 2002 to 2018 and are from a
number of different countries. We investigated the distribution
of the amount of traffic observed on a link in a given (small)
aggregation period which we varied from 5 msec to 5 sec. The
hypotheses compared were that the traffic volume was heavy-
tailed, that the traffic was log-normal and that the traffic was
normal (Gaussian). The vast majority of traces fitted the log-
normal assumption best and this remained true all timescales
tried. Where no distribution tested was a good fit this could be
attributed either to the link being saturated (at capacity) for a
large part of the observation or exhibiting signs of link-failure
(no or very low traffic for part of the observation).

We investigate the impact of the distribution on two sample
traffic engineering problems. Firstly, we looked at predicting
the proportion of time a link will exceed a given capacity.
This could be useful for provisioning links or for predicting
when SLA violation is likely to occur. Secondly, we looked
at predicting the 95th percentile transit bill that ISP might be
given. For both of these problems the log-normal distribution
gave a more accurate result than a heavy-tailed distribution
or a Gaussian distribution. We conclude that the log-normal
distribution is a good (best) fit for traffic volume on a normally
functioning internet links in a variety of settings and over a
variety of timescales, and further argue that this assumption
can make a large difference to statistically predicted outcomes
for applied network engineering problems.

In future work, we plan to test the stationarity of the traffic
traces.
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