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Abstract

There is well-documented evidence that the dependence structure of financial assets is often

characterized by considerable time variation. Financial markets are repeatedly subjected

to episodes of rapid growth and dramatic decline of asset prices, and the recent financial

crisis reinforced the need to model extreme events and sudden changes in the behaviour

of financial assets. In particular, financial returns have been shown to exhibit stronger

tail dependence during financial downturn. That is, extreme negative events are highly

correlated and tend to cluster together. Traditional static models, such as the multivariate

Normal distribution, are unable to capture these characteristics of the dependence struc-

ture, which resulted in copula models attracting attention and becoming popular over the

last decade. Copulas provide greater flexibility by allowing the dependence structure to

be modelled separately from marginal distributions. Furthermore, a rich class of higher

dimensional copulas with various types of asymmetric tail dependence can be constructed

through the use of vine copulas.

The objective of this research work is take into account the time-varying dependence

structure by combining copula theory with regime switching models that exhibit Markov

property. In this class of models the dependence structure is assumed to switch between

regimes according to a hidden state variable, with the purpose of accurately describing

the behaviour of financial time series. Furthermore, the goal is to extend this class of

models to higher dimensions where complex dependence characteristics are also present.

Applications of these models are not restricted to finance and can be useful in any context

where the dependence structure amongst random variables changes over time.
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Introduction 1

Introduction

There is well-documented evidence that the dependence structure of financial assets

is often characterized by considerable time variation. Financial markets are repeatedly

subjected to episodes of rapid growth and dramatic decline of asset prices, and the recent

financial crisis reinforced the need to model extreme events and sudden changes in the

behaviour of financial assets. In particular, financial returns have been shown to exhibit

stronger tail dependence during financial downturn. That is, extreme negative events

are highly correlated and tend to cluster together. Traditional static models, such as

the multivariate Normal distribution, are unable to capture these characteristics of the

dependence structure, which resulted in copula models attracting attention and becoming

popular over the last decade. Copulas provide greater flexibility by allowing the dependence

structure to be modelled separately from marginal distributions. Furthermore, a rich class

of higher dimensional copulas with various types of asymmetric tail dependence can be

constructed through the use of vine copulas.

The objective of this research work is take into account the time-varying dependence

structure by combining copula theory with regime switching models that exhibit Markov

property. In this class of models the dependence structure is assumed to switch between

regimes according to a hidden state variable.

In Chapter 1 we employ Silva Filho et al. (2012) specification to model the dynamic

dependence structure between S&P500 and FTSE100 stock indices. The dependence pa-

rameter of the chosen copulas evolves according to Patton (2006) framework, whilst the

intercept switches according to a first-order Markov chain. This modelling approach iden-

tifies two distinct regimes: one of high dependence and one of low dependence. Using

symmetrized Joe–Clayton copula we find that the low dependence regime is characterised

by asymmetric dependence, whilst mild asymmetry is detected in the high dependence

regime. We compute standard errors for parameters in our models using standardized

residuals bootstrap procedure.

In Chapter 2 we model the dependence structure in international financial returns us-

ing second-order regime switching vine copula. Gaussian copula is used as a main building
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block in the vine specification where the dependence parameters are held constant within

each regime. The model is applied to returns of the S&P500, FTSE100 and DAX stock

indices. The standard errors of the estimates are computed using Godambe information

matrix. Empirically, regimes of high dependence are identified. The model is then com-

pared against the benchmark model in which regime variable follows first-order process.

Information criteria such as AIC and BIC suggest that the second-order regime switching

model may be a better choice.

In Chapter 3 we examine the conditions under which models of this variety work well.

The sort of environment we are considering is where regime-switching copula is applied to

situations such as recessions, financial crises, all sorts of unusual events where one would

believe that a particular state is much less likely to occur than the other. For example,

if the government regulatory policy becomes more effective, one would expect crises to be

rare over time. The concern could be that applying Markov-switching models in situations

where one regime occurs only very rarely may be problematic since one is not in that regime

very frequently. Subsequently, the amount of information one obtains from that regime

is going to be small, and is likely that the characteristics of that regime will be poorly

determined. As a result, the usual asymptotic theory may not be particularly reliable

with regards to the parameters relevant to that regime, namely copula and transition

parameters. This is because the standard asymptotic theory is based on the assumption

that the probability transition matrix remains fixed as the sample size increases to infinity.

Hence, the asymptotic sequence in which the fraction of the time spent in one of the states

converges to something moderate or zero may not be informative about the finite sample

distributions. In this situation, the asymptotic theory that is generally used would not be

appropriate. The goal of this chapter is to provide a mathematical framework to analyse

scenarios under the alternative asymptotic sequence, and conduct an investigation through

a Monte Carlo study in order to examine finite sample properties of a Maximum Likelihood

Estimator under the alternative asymptotic sequence.



Preliminaries

1 Copula Theory

Let U1, . . . , Ud be independent random variables defined on the probability space (Ω,F ,P).

Suppose that each Ui is uniformly distributed on [0,1]. A d-dimensional copula C(u1, ..., ud)

is a multivariate distribution function in [0,1]d whose marginal distribution are uniform

in [0,1] interval. A d-dimensional copula has the following properties:

1. C (u1, . . . , uj , . . . , ud) = 0 if uj = 0 for at least one j ∈ {1, . . . , d}

2. C(1, . . . ,1, uj ,1, . . . ,1) = uj for all uj and j ∈ {1, . . . , d}

3. C is d-increasing, that is, for all a = (a1, . . . , ad) ∈ [0,1]d and b = (b1, . . . , bd) ∈ [0,1]d,

where ai ⩽ bi:

∆(a,b]C =
2

∑
i1=1

. . .
2

∑
id=1

(−1)∑
d
j=1 ijC (u1,i1, . . . , ud,id) ⩾ 0 (1)

where uj,1 = aj and uj,2 = bj for all j ∈ {1, . . . , d}

Sklar’s Theorem: IfX1, ...,Xd has joint cumulative distribution function F1,...,d(x1, ..., xd)

and marginal cumulative distribution functions F1(x1), ..., Fd(xd), then there exists appro-

priate copula C such that for all x1, ..., xd in R̄:

F1,...,d(x1, ..., xd) = C1,...,d (F1(x1), ..., Fd(xd)) (2)

When F1(x1), ..., Fd(xd) are continuous, then C1,...,d is unique. All U1 = F1(X1), ..., Ud =

Fd(Xd) have U(0,1) distributions, and C1,..,d(u1, ..., ud) is the joint cumulative distri-

3



2. The models for copula 4

bution function of (U1, ..., Ud). The joint probability density function f1,...,k(x1, ..., xd)

for an absolutely continuous F1,...,d(x1, ..., xd) with strictly increasing continuous margins

F1(x1), ..., Fd(xd) is:

f1,...,k(x1, ..., xd) = c1,..,d(u1, ..., ud)
d

∏
i=1

fi(xi) (3)

where c1,..,d(u1, ..., ud) =
∂dC1,..,d(u1,...,ud)

∂u1...∂ud
.

1.1 Conditional Copula

Patton (2006) extended theorem of Sklar (1959) to conditional distributions.

Theorem 1. Let FX ∣W (⋅∣w) be the conditional distribution of X ∣W = w, FY ∣W (⋅∣w) be the

conditional distribution of Y ∣W = w, FXY ∣W (⋅∣w) be the joint conditional distribution of

X,Y ∣W = w, and W be the support of W. Assuming that FX ∣W (⋅∣w) and FY ∣W (⋅∣w) are

continuous in x and y for all x ∈ W, there exist a unique conditional copula C(⋅∣w) such

that:

FXY ∣W (x, y∣w) = C(FX ∣W (x∣w)), FY ∣W (y∣w)∣w) (4)

In this extension of Sklar’s theorem it is important that the conditional variable, W, is

the same for both marginal distributions and the copula. If this condition is not met, then

FXY ∣W (x, y∣w) will fail to satisfy the condition for the joint conditional distribution.

2 The models for copula

There exist many functional forms that can be used as copulas. In this section we

present functional forms of copulas that will be used in subsequent chapters.
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2.1 Gaussian (Normal) Copula

Normal copula has the linear correlation coefficient ρ as its dependence parameter,

although it has no tail dependence.

CG(u1, u2∣ρ) = ∫

Φ−1(u1)

−∞
∫

Φ−1(u2)

−∞

1

2π
√

1 − ρ2
exp{

−(r2 − 2ρrs + s2)

2(1 − ρ2)
}drds

where Φ−1(⋅) is the inverse cumulative distribution function of a standard normal, and

ρ ∈ (−1,1).

2.2 Student (Student-t) copula

Student-t copula has also the linear correlation coefficient ρ as a measure of dependence.

Although Student-t copula has tail dependence, it imposes symmetry in both tails.

Ct(u1, u2∣ρ, ν) = ∫
t−1ν (u1)

−∞
∫

t−1ν (u2)

−∞

1

2π
√

1 − ρ2
(1 +

r2 − 2ρrs + s2

ν(1 − ρ2)
)

− ν+2
2

drds

where ν is the degree-of-freedom parameter, t−1
ν (⋅) is the inverse of the standard Student-t

cumulative distribution function, and ρ ∈ (−1,1).

2.3 Symmetrised Joe-Clayton copula (SJC)

Symmetrised Joe-Clayton copula (SJC) was proposed by Patton (2006, p. 542) and is

given by:

CSJC(u1, u2∣τU , τL) =
1

2
CJC (u1, u2∣τU , τL) +

1

2
(CJC (1 − u1,1 − u2∣τU , τL) + u1 + u2 − 1)

where τL ∈ (0,1) and τU ∈ (0,1) are the coefficients of lower and upper tail dependence

respectively, and CJC is the unmodified Joe-Clayton, which is also known as BB7 copula.

2.4 Gumbel copula

The distribution of Gumbel copula has the following form:

CG(u1, u2∣θ) = exp(− [(− log u1)
θ + (− log u2)

θ]
1
θ )
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2.5 Clayton copula

The distribution of Clayton copula has the following form:

CC(u1, u2∣θ) = (u−θ1 + u−θ2 − 1)
− 1
θ

2.6 Frank copula

The distribution of Frank copula has the following form:

CF (u1, u2∣θ) = −δ
−1 log([(1 − e−δ) − (1 − e−δu1)(1 − e−δu2)]/1 − e−δ)

2.7 Joe copula

The distribution of Joe copula has the following form:

CJ(u1, u2∣θ) = 1 − ((1 − u1)
δ + (1 − u2)

δ − (1 − u1)
δ(1 − u2)

δ)1/δ

2.8 BB1 copula

The distribution of BB1 copula has the following form:

CBB1(u1, u2∣θ, δ) = (1 + [(u−θ1 − 1)δ + (u−θ2 − 1)δ]
1
δ )

− 1
θ

where θ ≥ 1, δ > 0.

2.9 BB6 copula

The distribution of BB6 copula has the following form:

CBB6(u1, u2∣θ, δ) = 1 − (1 − exp{−[(−log(1 − ũθ1))
δ + (−log(1 − ũθ2))

δ]
1
δ )

1
θ})

where ũ1 = 1 − u1, ũ2 = 1 − u2, and θ ≥ 1, δ ≥ 1.
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2.10 BB7 copula

The distribution of BB7 copula has the following form:

CBB7(u1, u2∣θ, δ) = 1 − (1 − [(1 − ũθ1)
−δ + (1 − ũθ2)

−δ − 1]−
1
δ )

1
θ

where ũ1 = 1 − u1, ũ2 = 1 − u2. Given tail parameters τU and τL: θ = 1
log2(2−τU)

≥ 1, and

δ = −1
log2(τL)

> 0.

2.11 BB8 copula

The distribution of BB8 copula has the following form:

CBB8(u1, u2∣θ, δ) = δ
−1[1 − {1 − [1 − (1 − δ)θ]−1[1 − (1 − δu1)

θ][1 − (1 − δu2)
θ]}

1
θ ]

where θ ≥ 1,0 ≤ δ ≥ 1.

3 Inference Functions for Margins (IFM)

Let Ψ be a vector of functions with the same dimension as parameter vector α′ =

(δ′
1
, ...,δ′

d
,θ′). Consider a sample of size T with observed random vectors y1, . . . ,yT . The

vector of inference functions is:

Ψ(α,y) =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

∇δ1`1(δ1;y1)

⋮

∇δd`d(δd;yd)

∇θ`c(θ;δ1, ..., δd, y)

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

(5)

where `c(θ;δ1, ..., δd, y) is the copula log-likelihood, and `i(δi;yi) = ∑
T
t=1 logf(δi; yit) is

the log-likelihood for the univariate margin i = 1, . . . , d. Then, under regularity conditions

of score equations in asymptotic maximum likelihood theory, the IFM estimator, α̃, is the

root of (5). More specifically, this approach consists of:

(1) implementing d separate optimizations of the marginal log-likelihoods `i(δi;yi) in
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the first stage to obtain δ̃1, ..., δ̃d.

(2) optimizing the copula log-likelihood `c(θ; δ̃1, ..., δ̃d, y) over θ in the second stage

to get θ̃.



Chapter 1

Modelling dependence dynamics between S&P500 and

FTSE100 using copula with regime switching specifica-

tion

1.1 Introduction

Quantifying dependence between random variables is an important area of research in

financial econometrics. A conventional measure of association, namely linear correlation

coefficient, only measures linear dependence. It is an appropriate measure of dependence

only when random variables are represented by elliptical distributions. If this is not the

case, then the linear correlation coefficient may provide an inaccurate measure of the de-

pendence structure, and may lead to misleading conclusions (Aas, 2004). Copula functions

are powerful tools to capture non-linear dependence between random variables and, there-

fore, they have become increasingly popular in financial applications. There is growing

body of literature that provides evidence of deviations from multivariate normality and

asymmetric dependence of equity returns (Longin and Solnik, 2001; Ang and Chen, 2002;

Patton, 2006; Ang and Bekaert, 2002).

One of the main factors that exacerbated the financial crisis of 2007 was that banks and

financial institutions had built up excessive on- and off-balance sheet leverage (BIS, 2010).

This coupled with low capital level of insufficient quality and inadequate liquidity buffers

9
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resulted in the banking system not being able to absorb the ensuing systemic trading and

credit losses. Consequently, the loss of confidence in the solvency of financial institutions

resulted in a substantial contraction of credit availability and liquidity. The crisis has also

spread globally affecting financial markets in other countries. This would question the

benefits from international diversification of financial assets.

The financial crisis of 2007 has prompted the Basel Committee to revise and improve

the framework of capital requirements. Capital requirement is the amount of capital that

a financial institution is required to hold. It is determined as a percentage of a financial

institution’s asset value, where each asset’s value is weighted according to its riskiness.

In this paper we employ Silva Filho et al. (2012) specification to study time-varying

dependence structure between S&P500 and FTSE100 indices. This approach identifies two

regimes: one of high dependence and one of low dependence. In the low dependence regime

we find evidence of asymmetric dependence, in the sense that there is greater dependence

in the lower tail than in the upper tail 1. However, in the high dependence regime we only

find a mild asymmetry in the dependence structure. This asymmetry is characterised by

an increase in the strength of dependence in both tails, with a relatively greater increase

in the upper tail. This is a somewhat surprising result because empirical evidence from

various studies on the dependence structure across international financial markets would

suggest greater asymmetry during market downturn.

This chapter provides additional evidence on the time-varying dependence structure

between the US and the UK financial markets. Second, this chapter considers alternative

bootstrap procedure to block bootstrapping.

The paper is structured as follows. In section 1.2 we review the existing literature on

copula models with regime switching. Section 1.3 outlines the time varying dependence

structure modelling and Section 1.4 presents methodology on marginal distributions. In

section 1.5 we discuss estimation procedure. Section 1.6 presents empirical results and

concluding remarks are presented in section 1.7.

1In this paper we use interchangeably the definition of the asymmetric dependence to mean both that
the strength of the dependence may be different across various points in time and, that the strength of the
dependence may be different for negative and positive returns.
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1.2 Literature review

The combination of copulas and regime switching theory is a relatively recent practice.

Jondeau and Rockinger (2006) use regime switching Gaussian and Student-t copula to

model the dependence between indices. Rodriguez (2007) models the dependence structure

with switching-parameter copulas among daily returns from five East Asian stock indices

during the financial crisis, and daily returns from four Latin American stock indices. The

results of his study provide evidence that the dependence among stock indices changes

during periods of crisis. Garcia and Tsafack (2011) apply regime-switching model to analyse

the dependence structure in the international equity and bond markets. The model is

based on two regimes: one regime is normal with symmetric dependence and another

regime is characterised by asymmetric dependence structure. Doman (2008) analyses the

conditional dependence structure between daily returns on the indices listed on the Warsaw

Stock Exchange using a Markov-switching copula model. Their results provide additional

evidence that the dependence of returns is much stronger during bear markets than in bull

markets. Chollete et al. (2009) applies a regime-switching copula to model the dependence

structure among stock indices of the G5 and Latin American countries. The analysis

extends to higher dimensions and introduces a canonical vine copula. Long (2007) adds

regime-switching to the GARCH-copula in order to describe the dependence structure

between S&P500 and Nasdaq indices. His estimation results show that regime-switching

model outperforms the model without the regime-switching through assessment of log-

likelihood, AIC and BIC. Kenourgios et al. (2011) analyse financial contagion using a

multivariate regime-switching copula model. The study focuses on four emerging equity

markets (Brazil, Russia, India, China) and two developed markets, namely US and UK.

In this model, the Gaussian copula is used for the joint distribution, and a GJR-GARCH-

MA-t specification for the marginal distributions.
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1.3 Specification of time variation

Regime-switching models have been extensively applied in finance since they were in-

troduced in econometrics by Hamilton (1989). Following his approach, it is assumed that

a 2-dimensional time series vector xt = (x1t, x2t), t = 1, ..., T , depends on an unobserved

binary state variable which indicates the economy’s current regime. Furthermore, it is as-

sumed that the latent state variable evolves as a first-order Markov Chain with transition

probability defined as follows:

P =

⎛
⎜
⎜
⎝

p11 1 − p11

1 − p22 p22

⎞
⎟
⎟
⎠

(1.6)

where pkl represents the probability of moving to state l at time t+1 from state k at time

t. In this study we use three copulas presented in Preliminaries section 2. The dependence

parameter of each copula is allowed to vary over time according to a specification proposed

by Patton (2006), which is extended by allowing the intercept term to switch according to

a latent state variable:

θt,St = Λ(ωStc + βcθt−1,St−1 + ψt) (1.7)

where St is the latent binary state variable that follows a Markov Chain, Λ(⋅) is the logis-

tic transformation function that constrains the dependence parameter in the appropriate

interval, ψ corresponds to a forcing variable. For SJC copula it is defined as the mean

absolute differences between the u1 and u2
2:

ψt = αc
1

10
∑

10

j=1
∣u1,t−j − u2,t−j ∣ (1.8)

For the Gaussian copula it is given as:

ψt = αc
1

10
∑

10

j=1
Φ−1(u1,t−j) ⋅Φ

−1(u2,t−j) (1.9)

2 U1 ≡ F1(X1) and U2 ≡ F2(X2) are the probability integral transforms as in (2) and (3).
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where Φ−1(⋅) is the inverse cumulative distribution function of a standard normal.

and for Student copula is defined as follows:

ψt = αc
1

10
∑

10

j=1
t−1
ν (u1,t−j) ⋅ t

−1
ν (u2,t−j) (1.10)

where ν is the degree-of-freedom parameter, and t−1
ν (⋅) is the inverse of the standard

Student-t cumulative distribution function.

1.4 Marginal models

Given a 2-dimensional time series vector xt = (x1t, x2t), t = 1, ..., T , the copula-TGARCH

model can be represented as follows:

H(x∣µ,ht) = Cθt(F1(x1t∣µ1, h1t), F2(x2t∣µ2, h2t)∣µ,h; θt,St) (1.11)

where Cθt is the time-varying copula with parameter θt,St , and Fi(xit∣µi, hit) i = 1,2, are

the marginal distributions specified as a univariate TGARCH processes.

The evolution of a TGARCH(P,Q) process can be described by the following model

xit = µi + uit where uit = h
1
2

itεit (1.12)

hit = ωi +
P

∑
p=1

αipu
2
it−p +

O

∑
o=1

γiou
2
it−oI[uit−o<0] +

Q

∑
q=1

βiqhit−q (1.13)

where hit is the conditional variance given past information, and εit are i.i.d. random

variables, ωi, βi, αi > 0 assures that the conditional variance hit is positive and αi +βi < 1

ensures covariance stationarity. It is also assumed that the εit has a skewed-t distribution,

with its density given by:

f(εit∣υ,λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

bc(1 +
1

υ − 2
(
bεit + a

1 − λ
)

2

)

−(υ+1)
2

εit <
−a

b

bc(1 +
1

υ − 2
(
bεit + a

1 + λ
)

2

)

−(υ+1)
2

εit ≥
−a

b
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where constants a, b and c are defined as:

a = 4λc(
υ − 2

υ − 1
) , b2 = 1 + 3λ2 − a2, c =

Γ (υ+1
2 )

√

π(υ − 2)Γ (υ2)

with υ corresponding to the number of degrees of freedom, and λ representing the degree

of asymmetry. When λ is negative, we have a left-skewed density, meaning that there

is higher probability of observing large negative returns than large positive returns. We

follow Chollete et al. (2009) and Silva Filho et al. (2012) in that we model the marginal

distributions independent of the regime.

1.5 Estimation

The log-likelihood function has the following form:

L(θ∣x) =
T

∑
t=1

log(cθt(F1(x1t∣µ1, h1t), F2(x2t∣µ2, h2t)∣θt,St) ×
2

∏
i=1

fit(xit∣µit, hit)) (1.14)

Since the log-likelihood function in (1.14) is a separable function, the maximum likelihood

estimation procedure can be performed in two steps. This method known as the Inference

Functions for Margins (IFM) was proposed by Joe and Xu (1996). In the first step of this

procedure, the parameters of the univariate marginal distributions are estimated. In the

second step, these estimates are used to estimate the copula parameters. The log-likelihood

in (1.14) can be rewritten as:

L(θ∣x) =
T

∑
t=1

log(cθt (F1(x1t∣µ1, h1t), F2(x2t∣µ2, h2t)∣µ,h; θt,St) ×
2

∏
i=1

fit(xit∣µit, hit))

=
T

∑
t=1

log cθt (F1(x1t∣µ1, h1t), F2(x2t∣µ2, h2t)∣µ,h; θt,St) +

+
T

∑
t=1

log f1t(x1t∣µ1, h1t) +
T

∑
t=1

log f2t(x2t∣µ2, h2t) (1.15)
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Figure 1.1: Weekly Logarithmic Returns
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The copula part can be rewritten as:

T

∑
t=1

log cθt (u1t, u2t∣µ,h; θt,St) =
T

∑
t=1

log(
2

∑
St=1

cθt(u1t, u2t∣µ,h;St,wt−1)Pr(St∣wt−1)) (1.16)

where µ = (µ1, µ2)
′ and h = (h1, h2)

′. Due to the state variable St being unobservable,

in order to evaluate the log-likelihood we need to calculate the weights Pr(St∣wt−1) for

St = 1 and St = 2. The procedure is to apply filter as in Hamilton (1994) and Kim and Nel-

son (1999), which yields the following algorithm that should be iterated through t = 1, ..., T :

Step 1: Prediction of St

Pr(St = l∣wt−1) =
2

∑
k=1

pklPr(St−1 = k∣wt−1)

for l = 1,2 and pkl = Pr(St = l∣St−1 = k) is the transition probability between the states k

and l as introduced in (1.6).

Step 2: Filtering of St

Pr(St = l∣wt) =
ct(u1, u2∣St = l,wt−1)Pr(St = l∣wt−1)

∑
2
k=1 ct(u1, u2∣St = k,wt−1)Pr(St = k∣wt−1)



1.5. Estimation 16

Figure 1.2: Sample ACF of Returns

Figure 1.3: Sample ACF of Standardized Residuals

where wt = (wt−1, u1t, u2t)
′. At t = 1 the filter is initialized using stationary probabilities

of St:

π1 =Pr(S0 = 1∣w0) =
1 − p22

2 − p11 − p22
(1.17)

π2 =Pr(S0 = 2∣w0) =
1 − p11

2 − p11 − p22
(1.18)

Consequently, using this filter the probability distribution of St is obtained given the

information set up to time t. However, it would be useful to know the distribution of

St given the full sample information set, that is using all T observations. Therefore, the

smoothed probabilities for St, Pr(St = l∣wT ) = ∑
2
k=1Pr(St = l, ST = k∣wT ) can be calculated

recursively from the filtered probabilities. This smoothing process is carried out in the

following way as outlined in Hamilton (1994) and Kim and Nelson (1999):
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Table 1.1: Descriptive Statistics

S&P500 FTSE100

Mean 0.001580 0.001291
Median 0.003399 0.002214
Maximum 0.123746 0.166889
Minimum -0.283705 -0.265825
Std. Deviation 0.023637 0.023848
Skewness -1.504287 -1.100278
Kurtosis 18.64870 15.66106
Jarque-Bera 17330.95 11271.14

(0.000000) (0.000000)

Note: Jarque-Bera corresponds to Jarque-Bera test statistics with p-values in parentheses.

1. Filtered probabilities Pr(St = l∣wt) are obtained for l = 1,2 and t, .., T .

2. The smoothing algorithm is initialized at time t = T with Pr(ST = l∣wT )

3. The smoothed probability distribution for each t = T − 1, ...,1 is obtained by:

Pr(St = l∣wT ) = Pr(St = l∣wt)
2

∑
k=1

plkPr(St+1 = k∣wT )

∑
2
j=1 pjkPr(St = j∣wt)

(1.19)

where plk = Pr(St+1 = k∣St = l) are the transition probabilities between the states l

and k.

At t = 0 the smoothing algorithm calculates Pr(S0 = l∣wT ) which can be used in the filtering

process as the initial value. Subsequently, equation (1.16) can be maximised numerically

with respect to the model parameters following.

1.5.1 Estimation of Standard Errors

Once the estimates of the copula parameters are obtained, it would be of interest to

compute standard errors of those estimates, which can subsequently provide an idea of the

precision with which these parameters have been estimated. In what follows we discuss

one possible procedure to compute standard errors of the estimates.

Standardized residuals bootstrap (SRB)

The following algorithm is used to calculate standard errors using SRB procedure:
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Table 1.2: Marginal Distributions Estimation Results

S&P500 FTSE100

ωi 0.0009 0.0001
(0.000001) (0.000001)

αi 0.0340 0.1170
(0.0002) (0.0006)

γi 0.1343 −

(0.0011) −

βi 0.8750 0.8287
(0.0007) (0.0011)

υi 9.0788 6.7236
(5.9554) (1.8111 )

λi - 0.2712 − 0.1788
(0.0012) (0.0012)

log L 4089.0 3981.3
Q(10) 0.3016 0.4923
Q2(20) 1.0000 1.0000
KS 0.9288 0.9841
Berk 0.9951 0.6802

Note: In round brackets are the standard errors. Q and Q2: Ljung-Box Q statistic for auto-
correlation and squared autocorrelation in the residual terms, respectively. Last two rows show
goodness-of-fit tests for the probability integral transform of the margins. KS: Kolmogorov -
Smirnov test p-value, and Berk: Berkowitz test p-value for uniformity.

1. Sample a pair e∗t = (e∗1t, e
∗
2t) with replacement from the original standardized i.i.d.

residuals {et. . . . ,eT} obtained from marginal models in (1.12) and (1.13), and pro-
duce bootstrapped sample eb = (e∗1. . . . ,e

∗
T )

′.

2. Transform each bootstrapped time series data e∗i = (e∗i1. . . . , e
∗
iT )

′ for i = 1,2 using
skewed-t cumulative distribution function to produce u∗i = (u∗i1. . . . , u

∗
iT )

′ for i = 1,2.

3. Estimate parameter vector θ∗b of the regime-switching copula model using ub =

(u∗1. . . . ,u
∗
T )

′ where u∗t = (u∗1t, u
∗
2t).

4. Repeat steps (1) to (3) B times.

5. Calculate the standard errors for the parameters using the covariance matrix (B −

1)−1∑
B
b=1(θ

∗
b − θ

∗
)(θ∗b − θ

∗
)′, where θ∗ denotes the mean of the estimates across B

bootstrapped samples.

In order to maintain the cross-sectional dependence of the data, the above procedure

is carried out on entire rows of the standardized residuals.
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Table 1.3: Copula estimation results

Coefficient Gaussian Student Coefficient Symmetrised
Joe-Clayton

ω1
c 3.8150 3.8945 ω1

c,U 0.9557

(0.9986) (1.9123) (2.8364)
ω2
c 1.9227 2.2338 ω2

c,U -0.9758

(0.3160) (0.0983) (1.0582)
βc -2.1964 -2.3708 βc,U 3.8034

(1.2445) (0.9877) ( 1.9964 )
αc 0.2737 0.0496 αc,U -0.9094

(0.2414) (0.0800) (1.3791 )
υ1 − 7.2865 ω1

c,L -3.1403

− (2.0907) ( 2.2521)
υ2 − 7.1505 ω2

c,L 2.3388

− (1.5282) (1.7904)
− − βc,L -10.2920
− − (6.8713 )
− − αc,L -1.3621
− − (2.2746 )

p11 0.9878 0.9993 p11 0.9993
(0.4145) (0.4268) (0.0748)

p22 0.9853 0.9992 p22 0.9993
( 0.4141) (0.2322) (0.0748)

log L 454.8 468.8 460.8

Note: Standard errors in round brackets are estimated using standardized residuals bootstrap procedure
(SRB) as outlined in 1.5.1. The transition probability parameters p11 and p22 are defined in (1.6).

1.6 Empirical application

1.6.1 Data

The monthly data used for this study comprises S&P500 and FTSE100 indices for the

period May 10, 1983 to May 20, 2014, which gives us 1620 observations. The source of

the data is Datastream. The returns are logarithmic monthly returns. Table 1.1 presents

summary statistics of the data. Both means are much smaller relative to their standard

deviation. The S&P500 returns exhibit substantial skewness and high kurtosis, whilst

FTSE100 exhibits a relatively lower skewness and kurtosis. The Jarque-Bera test of nor-

mality of each return series strongly rejects the null, indicative of non-normality of both

series.
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1.6.2 Empirical Results

Table 1.2 shows estimation results for marginal models. The asymmetry coefficient

is negative for both series. This indicates that both series are negatively skewed. That

is, large negative returns are more likely than large positive returns, which is consistent

with Figure 1.1. The degrees of freedom parameters for S&P500 and FTSE100 are ap-

proximately 9 and 6 respectively. Low estimates indicate presence of heavy tails in both

distributions. In addition high estimates of the β coefficients for both series suggests high

volatility persistence. The reported p-values for the Ljung-Box Q statistic and sample

ACF plots in Figure 1.2 and 1.3 indicate both no autocorrelation and no squared autocor-

relation in the standardised residual terms. The results for Kolmogorov-Smirnov (KS) and

Berkowitz (Berk) tests for uniformity of the transformed standardised residuals are also

reported. High p-values suggest no evidence against the null of Uniform(0,1) distribution

of the transformed residuals.

Table 1.3 presents estimation results for the three copulas with regime-switching spec-

ification. High values for the transition probability parameters p11 and p22 indicate high

persistence of both regimes. The magnitude of the intercept in the dynamics of the de-

pendence parameter changes substantially between the two regimes for both Gaussian and

Student copula. For the Symmetrised Joe-Clayton copula, not only the magnitude of the

difference is considerable, but also the sign changes. Based on the AIC and BIC criteria,

the Student-t copula model provides a better fit to the data, which suggests presence of

heavy tails in the joint distribution of asset returns. Hence, the Student-t regime switching

copula model is the preferred model.

Figures 1.4, 1.5 and 1.6 show the evolution of the dependence parameters in two states,

which is displayed in Panels (a) and (b). The probability of being in high dependence state

is displayed in Panel (c).

Figure 1.4 displays the evolution of the dependence parameters for the Gaussian copula.

In the Gaussian copula, the dependence parameter is the linear correlation coefficient. In

the low dependence regime, the parameter oscillates between values of 0.4 and 0.5. In the

high dependence regime, it increases noticeably and remains between values of 0.75 and
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Figure 1.4: Normal Copula
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0.85. In Panel (c) it can be seen that there are three visible shifts into high dependence

regime before 2000. The first jump occurs starting from mid 1987 until mid 1988. It is

interesting to note that this period coincides with the October 19, 1987 stock market crash

which is referred to as “Black Monday”. The market crash of 1987 was characterised by

a swift and severe market decline, with the S&P500 and FTSE100 falling approximately

20 and 11 per cent respectively just in one day. Second jump occurs in 1992 and lasts for

less than a year. During this period the British Conservative government suspended its

membership of the European Exchange Rate Mechanism (ERM) by withdrawing the pound

sterling from the monetary system. This day is often referred to as “Black Wednesday”.

The third notable jump takes place in 1998, which is preceded by a series of frequent

jumps to and from the high dependence regime. This coincides with a sequence of world

financial and economic events in the late 1990s: the 1997 Asian and 1998 Russian financial

crises. The Asian financial crisis was initiated by rounds of currency depreciation which

exposed serious problems in the financial sector. This would, through multiple channels,

adversely affect the United States and the United Kingdom. The Russian financial crisis

resulted in the Russian government devaluing its currency, defaulting on all domestic debt

and declaring moratorium on its foreign debt.

Figure 1.5 presents results for the Student copula. Panel (a) shows that the parameter
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Figure 1.5: Student Copula
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in the low dependence regimes oscillates between 0.75 and 0.8, with a large jump in the

second half of 1987. In the high dependence regime this parameters varies around 0.45

and 0.55 and experiences a similar jump in the second half of 1987, followed by a large

outbursts of volatility that gradually settles down by the third quarter of 1988. Panel (c)

displays the filtered probability of being in high dependence regime. Before the 2000 it

can be seen that the probability of being in high dependence regime remains close to zero.

However, there can be observed jumps into high dependence regime in 1998. After 2001

there is a shift into the high dependence regime which persist until 2014 with a brief return

into the low dependence regime at the beginning of 2006. The probability of being in a

high dependence regime coincides most of the time with that identified in the Gaussian

copula case after year 2000.

Figure 1.6 presents results for the Symmetrised Joe-Clayton copula, which captures

dependence both in the upper and lower tail, without imposing them to be the same. In

the low dependence regime, the lower tail dependence parameter evolves around a constant

parameter value of 0.5. In the high dependence regime, the evolution of this parameter

seems not to change substantially. The upper tail dependence parameter, on the other

hand, remains below the constant parameter value of 0.36 in the low dependence regime,

but increases notably and oscillates around 0.5 most of the time in the high dependence
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Figure 1.6: Symmetrised Joe-Clayton Copula
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regime. The probability of being in a high dependence regime follows closely the probabil-

ity of being in a high dependence regime identified in the Student-t copula case.

... Figure 1.7 displays the evolution of the dependence parameters of all three copulas,

which is constructed as follows: if the probability of being in a high dependence regime

exceeds the value of 0.5, the evolution of the parameters from the high dependence regime

is plotted, and if it is equal or below the value of 0.5, then the evolution from the low depen-

dence regime is plotted. Panel displaying the dependence dynamics for the Symmetrised

Joe-Clayton copula suggests that during the low dependence regime, the dependence is

stronger in the lower tail than in the upper tail. However, in the high dependence regime,

the dependence in the upper tail increases and remains close to the dependence in the lower

tail. This result would seem to indicate that the high dependence regime is characterised

by a low asymmetry in the upper and lower tails compared to the low dependence regime.

The superimposed dashed red line represents an estimate of the corresponding static copula

parameters.

1.7 Conclusion

In this study we investigated time-varying dependence structure between S&P500 and

FTSE100. In order to model marginal distributions AR skew-t-GARCH and AR skew-
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Figure 1.7: Dependence dynamics
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t-TGARCH models were employed. To model the dependence structure three copulas

were estimated: the Gaussian copula, the Student-t copula, and the Symmetrized Joe-

Clayton copula. The Student-t regime switching copula model provides a better fit to the

data, which suggests existence of tail dependence, and presence of heavy tails in the joint

distribution of asset returns. This indicates the possibility of joint extreme losses happening

together. Time variation was modelled by allowing the parameter in each copula to evolve

according to Patton (2006) framework. Regime switching specification was introduced

by allowing the intercept in the evolution process of the parameter to vary according to

first-order Markov chain. This modelling approach identified two regimes over the sample

period: one of low dependence and one of high dependence. In the low dependence regime

we find a relatively higher dependence in the lower tail than in the upper tail, indicative

of the dependence asymmetry. In the high dependence regime we detect an increase in the

dependence in both tails, with a relatively stronger increase in the upper tail.



Chapter 2

Modelling dependence structure between stock indices

using a second-order regime-switching vine copula

2.1 Introduction

It is now widely accepted that the hypothesis of multivariate normality is not usually

supported by the data for financial time series. Vine copulas offer an alternative to elliptical

multivariate distributions that can be constructed in a tractable and flexible way. Joe

(1996) showed that multivariate distribution functions could be represented using pair-

copula construction (PCC). This class of structure is based on the decomposition of the

multivariate density into a product of marginal densities and bivariate copulae, which can

be from any family. This allows greater flexibility as several families may be mixed in one

pair-copula construction. However, for high-dimensional distributions there is a significant

number of different possible decompositions. To organize these numerous decompositions,

Bedford and Cooke (2001) introduced graphical models that are composed of a sequence of

trees called regular vines, which share some similarities to Bayesian networks. Subsequently

Aas et al. (2009) considered two classes of regular vine copulas called canonical vine (C-

vine) and the drawable vine (D-vine), and set them in an inferential context. Since financial

markets undergo episodes of rapid growth and dramatic decline of stock prices, adequate

models able to capture variations in dependence structure are required. The objective

of this chapter is to extend first order Markov switching R-vine model to a higher order

25
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regime-switching model. In addition, it is of interest to investigate any advantages of

regime switching vine copula relative to static vine copula model.

The structure of this chapter is as follows. Section 2.2 presents literature review and in

the Section 2.3 the required methodological background on vine copulas is presented. The

estimation results for the regime-switching vine copula models are presented in Section 2.6.

Section 2.7 provides concluding remarks.

2.2 Literature review

The literature combining copulas and regime switching theory experienced growth in

the last decade. However, most of studies focus on the application of Markov switching

theory to bivariate copula families and very few to higher dimensions. This is associated

with the difficulties of building multivariate distributions.

In the bivariate context, Rodriguez (2007) models the dependence structure with switching-

parameter copulas among daily returns from five East Asian stock indices during the fi-

nancial crisis, and daily returns from four Latin American stock indices. The results of

his study provide evidence that the dependence among stock indices changes during pe-

riods of crisis. Garcia and Tsafack (2011) applies regime-switching model to analyse the

dependence structure in the international equity and bond markets. The model is based

on two regimes: one regime is normal with symmetric dependence and another regime is

characterised by asymmetric dependence structure. Long (2007) adds regime-switching

to the GARCH-copula in order to describe the dependence structure between SP500 and

Nasdaq indices. His estimation results show that regime-switching model outperforms the

model without the regime-switching through assessment of log-likelihood, AIC and BIC.

Kenourgios et al. (2011) analyse financial contagion using a multivariate regime-switching

copula model. The study focuses on four emerging equity markets (Brazil, Russia, India,

China) and two developed markets, namely US and UK. Doman (2008) analyses the con-

ditional dependence structure between daily returns on the indices listed on the Warsaw

Stock Exchange using a Markov-switching copula model. Their results provide additional

evidence that the dependence of returns is much stronger during bear markets than in bull
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markets.

In the multivariate context, the first use of Markov switching theory combined with C-

vine copula was by Chollete et al. (2009). In their study the authors modelled time varying

dependence structure among stock indices of the G5 and Latin American countries. Stöber

and Czado (2014) extended initial approach by Chollete et al. (2009) to a general R-vine

model. In that study, the authors investigate the dependence structure of 9 exchange

rates against US Dollar, the dependence of daily log returns for 5 stock indices of the

eurozone and the dependence structure of daily log returns of individual stocks selected

from a German stock market. They find that regime switches are present in all kinds of

financial time series data sets and, therefore, Markov switching models could offer a more

accurate description of time varying dependence structure during different regimes. In this

chapter we extend these modelling frameworks to a second-order regime-switching vine

copula model.

2.3 Vine Copula Theory

In this section we present the theory of regular vine copula that is used to study the

dependence structure amongst three financial stock indices.

2.3.1 Regular Vine Copulas

The approach used to organise the pair-copula construction (PCC) is known as regular

vine tree sequence. A tree is an undirected graph in which any two nodes are connected

by exactly one edge. In other words a tree is a connected, undirected, acyclic graph. In

this construction, nodes denote standard uniform random variables, and edges represent

the appropriate pair-copula densities for the pair of uniform random variables.

Definition 1.1 A set of linked trees V = {T1, ..., Td−1} is a regular vine on n elements

if:

1. T1 is a tree with nodes N1 = {1, ..., d} and a set of edges E1.

2. Ti is a tree with nodes Ni = Ei−1 and edge set Ei for i = 2, ..., d − 1.



2.3. Vine Copula Theory 28

Figure 2.8: Graphical representation of a 3-dimensional vine copula

3. If a = {a1, a2} and b = {b1, b2} are two nodes in Ni connected by an edge, then exactly

one element of a equals one element of b for i = 2, ..., d − 1.

The third condition ensures that the decomposition into bivariate copulas is well defined

(Czado et al., 2012).

Regular vine copula

A regular vine on d variables is one in which two edges in tree j are joined by an edge

in tree j + 1 only if these edges share a common node (Kurowicka and Cooke, 2006). The

complete union Ae of an edge e = {a, b} ∈ Ei in tree Ti of a regular vine V is defined as:

Ae = {v ∈ N1 ∶ ∃em ∈ Em,m = 1, ..., i − 1, such that v ∈ e1 ∈ ⋯ ∈ ei−1 ∈ e}

That is, the complete union of an edge e is simply a set of all nodes in tree T1 that can be

reached from that particular edge e. The conditioning set of an edge e = {a, b} is defined as

De ∶= Aa∩Ab and the conditioned set associated with e = {a, b} are defined as Ce,a = Aa/De

and Ce,b = Ab/De. It can be shown that the conditioned sets are singletons and, therefore,

we can refer to edges by their labels {Ce,a,Ce,b∣De} ∶= {i(e), j(e)∣D(e)}, where i(e) and

j(e) are two nodes connected by an edge e. Subsequently, a regular vine copula can be

specified, given these sets, by associating a (conditional) bivariate copula with every edge

of the regular vine.

Definition 1.2 A regular vine copula C = ((V), B(V), θ(B(V))) in d dimensions is a

multivariate distribution function such that for a random vector U = (U1, ..., Ud)′ ∼ C with

uniform margins:
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1. V is a regular vine on n elements.

2. B(V) = {Ci(e),j(e)∣D(e)∣e ∈ Em,m = 1, ..., d − 1} is a set of d(d − 1)/2 copula families

that identify the conditional distributions of Ui(e), Uj(e)∣UD(e).

3. θ(B(V)) = {θi(e),j(e)∣D(e)∣e ∈ Em,m = 1, ..., d − 1} is the set of parameter vectors

associated with the copulas in B(V).

The probability density function f1∶d of x = (x1, . . . , xd)′ ∈ Rd of a d-dimensional regular

vine distribution F1∶d is as follows:

f1∶d(x∣V ,B,θ) = [
d−1

∏
m=1
∏
e∈Em

Ci(e),j(e)∣D(e) (Fi(e)∣D(e), Fj(e)∣D(e)∣θi(e),j(e)∣D(e))]

×[
d

∏
k=1

fk (xk)] (2.20)

where Fi(e)∣D(e) ∶= Fi(e)∣D(e) (xi(e)∣xD(e)) and Fj(e)∣D(e) ∶= Fj(e)∣D(e) (xj(e)∣xD(e)) . These

conditional distribution functions are determined as follows:

Fi(e)∣D(e) (xi(e)∣xD(e)) = FCe,a∣De
(xCe,a ∣xDe

)

=
∂CCa,a1 ,Ca,a2

(FCa,a1 ∣Da(xCa,a1
∣xDa),FCa,a2 ∣Da(xCa,a2

∣xDa))

∂FCa,a2 ∣Da(xCa,a2
∣xDa)

The likelihood L of a regular vine copula C = (V ,B,θ) given the observed data x =

(x1, ...,xN)′ ∈ RN×d is as follows:

L(V ,B,θ∣x) =
N

∏
k=1

f1∶d(xk∣V ,B,θ) (2.21)

2.3.2 Decomposition of a three dimensional distribution.

The possible number of different D - and C - vines becomes increasingly large as di-

mensions d increase. Aas et al. (2009) showed that for dimension d there are d!/2 distinct

C-vine trees and d!/2 distinct D-vine trees. The number of possible trees is even larger

for regular vines (Morales Napoles et al., 2010). If returns of particular stock index drives

returns of all other stock indices then a C-vine tree structure may be reasonable. In other
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cases, it may be reasonable to consider D-vine tree. Therefore, in order to keep the process

of model selection among vine specification feasible, we restrict our study to three financial

returns series. When d = 3, C− and D− vine coincide and this simplifies the decision re-

garding which vine tree structure to choose from. In fact, there are three possible different

vine trees in total.

If three continuous random variablesX1∶3 = (x1, x2, x3)
′ ∈ R3 have joint density f1∶3 with

marginal densities f1, f2 and f3 then we can decompose the joint density by conditioning:

f1∶3(x1, x2, x3) = f1(x1) ⋅ f2∣1(x2∣x1) ⋅ f3∣1,2(x3∣x1, x2) (2.22)

The conditional densities in (2.22) can be decomposed further using Sklar’s theorem as

follows:

f2∣1(x2∣x1) =
f1,2(x1, x2)

f1(x1)
(2.23)

= c12(F1(x1), F2(x2)) ⋅ f2(x2)

f3∣1,2(x3∣x1, x2) =
f1,3∣2(x1, x3∣x2)

f1∣2(x1∣x2)
(2.24)

= c13∣2(F1∣2(x1∣x2), F3∣2(x3∣x2)) ⋅

⋅ c23(F2(x2), F3(x3)) ⋅ f3(x3)

Thus, the three-dimensional multivariate density can be expressed as a product of pair-wise

copulas for (X1,X2) and for (X2,X3), pair-wise conditional copula for (X1,X3) given X2,

and individual marginal densities for X1,X2 and X3:

f1∶3(x1, x2, x3) = c12(F1(x1), F2(x2)) ⋅ c23(F2(x2), F3(x3)) ⋅ (2.25)

⋅c13∣2(F1∣2(x1∣x2), F3∣2(x3∣x2)) ⋅ f1(x1) ⋅ f2(x2) ⋅ f3(x3)

This decomposition is a particular case of both a C- and a D - vine copula, and is unique up

to re-labelling of the variables. Figure 2.8 shows the graphical specification corresponding

to the three-dimensional C− and D−vine. It consists of two trees Tj , j = 1,2. There are

three nodes and two edges in tree T1, and two nodes and one edge corresponding to a
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conditional pair-copula in T2.

2.4 The models for copula

In this section we will use 10 copulas presented in Preliminaries section 2 as building

blocks in our vine specifications. In our candidate set of vine copulas, we consider copula

families with different tail behaviour. Clayton and Survival Gumbel copulas have only

lower tail dependence, whilst BB6 copula has upper tail dependence only. Gaussian, Frank

and BB8 copulas have no tail dependence. Student-t, BB1 and BB7 have upper and lower

tail dependence, although Student-t copula imposes symmetric dependence in both tails.

2.4.1 Markov Switching

In order to capture variations in the magnitude of the dependence amongst financial

stock indices, we introduce a Markov regime-switching specification into vine copula model.

The Markov regime-switching vine (MS-V) copula can be characterized by specifying con-

ditional densities of the transformed uniform margins as follows Stöber and Czado (2014):

c(ut∣(V ,B,θ)1,...,p, St) =

p

∑
k=1

1{k}(St) ⋅ c(ut∣(V ,B,θ)k) (2.26)

Thus, we assume that vector ut at time t depends on a latent variable that indicates the

economy’s current regime. In other words, regime determines what the current copula is:

once we know what the current regime is, we know the copula for that t. Furthermore, it is

assumed that the latent state variable evolves as a first-order Markov Chain with transition

probability defined as follows:

P =

⎛
⎜
⎜
⎝

p11 1 − p11

1 − p22 p22

⎞
⎟
⎟
⎠

(2.27)

where plk represents the probability of moving to state k at time t+1 from state l at time

t. In our model regime does not affect vine structures Vk and the set B of copula families

identifying bivariate distributions and conditional bivariate distributions. Therefore, the
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MS-V copula is described by its parameters:

θ′ = (θ′c,θ
′
MS

) = ((θ′1, ...,θ
′
p),θ

′
MS

)

where θMS denotes parameters of the transition probability matrix, and θc denotes copula

parameters. It is also worth noting that the marginal distributions in this specification do

not depend on the regime, and hence are modelled separately.

The first challenge in estimating Markov regime-switching models is that the value of

St is unknown because it is unobservable. Therefore, in order to estimate regime-switching

model where the states are not known we can consider a decomposition of the joint density

of u1∶T = (u1, ...,uT ):

c(u1∶T ∣θ) = c(u1∣θ) ⋅
T

∏
t=2

c(ut∣u1∶(t−1),θ)

= [

p

∑
k=1

c(ut∣S1 = k,θc,k)P (S1 = k∣θMS)]

⋅
T

∏
t=2

[

p

∑
k=1

c(ut∣St = k,θc,k)P (St = k∣ut−1,θMS)]

Because the required probabilities are not observed, we make inferences on the probabilities

at time t using the available information up to period t−1. This constitutes the main idea

of the filter outlined in Hamilton (1994) and Kim and Nelson (1999), which we use in

order to calculate the filtered probabilities of the process being in each state, based on

the availability of the new information. This yields the following algorithm that should be

iterated through t = 1, ..., T :

Step 1: Prediction of St

Pr(St = l∣wt−1) =
2

∑
k=1

pklPr(St−1 = k∣wt−1)

for l = 1,2 and pkl = Pr(St = l∣St−1 = k) is the transition probability between the states k

and l as introduced in (2.27).
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Step 2: Filtering of St

Pr(St = l∣wt) =
ct(u1, u2∣St = l,wt−1)Pr(St = l∣wt−1)

∑
2
k=1 ct(u1, u2∣St = k,wt−1)Pr(St = k∣wt−1)

where wt = (wt−1, u1t, u2t)
′. At t = 1 the filter is initialized using stationary probabilities

of St:

π1 = Pr(S0 = 1∣w0) =
1−p22

2−p11−p22

π2 = Pr(S0 = 2∣w0) =
1−p11

2−p11−p22

The smoothed probabilities for St Pr(St = l∣wT ) = ∑
1
k=0Pr(St = l, ST = k∣wT ) can be

calculated recursively from the filtered probabilities in the following way as outlined in

Hamilton (1994) and Kim and Nelson (1999):

1. Filtered probabilities Pr(St = l∣wt) are obtained for l = 1,2 and t = 2, . . . , T .

2. The smoothing algorithm is initialized at time t = T with Pr(ST = l∣wT ).

3. The smoothed probability distribution for each t = T − 1, . . . ,1 is obtained by:

Pr(St = l∣wT ) = Pr(St = l∣wt)
2

∑
k=1

plkPr(St+1 = k∣wT )

∑
2
j=1 pjkPr(St = j∣wt)

(2.28)

where plk = Pr(St+1 = k∣St = l) are the transition probabilities between the states l

and k.

2.4.2 Extending regime process to a second-order process

The first-order Markov chain model in its original form is known to posses memoryless

property. That is, the one-step future evolution of the process is determined by the present

state only, and therefore, future and past states are conditionally independent. However,

this memoryless property may seem to be inappropriate for time series of financial variables

where long memories are present in the data-generating process.

Another restrictive assumption in our first-order Markov-switching model is that tran-

sition probabilities are constant. Real world consideration would suggest the plausibility

of allowing the transition probabilities to vary with time. It is reasonable to assume that
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the longer the economy is in the ‘crisis’ regime the more likely it is to exit and enter the

‘non-crisis’ regime. Therefore, it would be sensible not to exclude this possibility from the

outset and attempt to capture these dynamics in our model.

We can introduce some degree of flexibility into our model by weakening these restric-

tive assumptions. One way is to allow regime variable to depend on longer past state

sequence. This will allow to incorporate more historical information into our model. This,

however, comes with a price of having to estimate extra parameters in the transition prob-

ability matrix. Nevertheless, this modelling approach allows to include more states in a

highly parsimonious way. In addition, this is a variety of modelling in which the transition

parameters depend on how long the process has been in a particular state. For example, in

a case of a second-order regime-switching process, the probability that the regime variable

will transit into regime 1 given it is currently in regime 2, will depend upon whether the

regime variable was already in regime 1 or regime 2 in the last period.

In order to allow the regime random variable to follow a higher-order process, one

possibility that suggests itself is to use a model {Rt} satisfying the following property for

` ≥ 2:

P (Rt = i∣Rt−1 = jt−1,Rt−2 = jt−2, ...) = P (Rt = i∣Rt−1 = jt−1, ...,Rt−` = kt−`)

Therefore, in a case of a second-order process of regime {Rt} we have ` = 2, which satisfies

the following property:

P (Rt = i∣Rt−1 = jt−1,Rt−2 = jt−2) ≠ P (Rt = i∣Rt−1 = jt−1)

However, this stochastic process is no longer a Markov chain. We can redefine the model

in such a way as to produce a stochastic state process that possesses Markov property. Let

Zt = (Rt−`+1,Rt−`+2, ...,Rt), then {Zt} is a first-order Markov chain on S`, where S is the

state space of {Rt}. Therefore, the joint density of ut and Rt at time t is:

c(ut∣Rt = i,Rt−1 = j,θk)P (Rt = i∣u1−t,θ) (2.29)
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where i, j = 1,2 and k = 1, ...,4. In order to simplify our model we assume that:

c(ut∣Rt = i,Rt−1 = j,θ1) = c(ut∣Rt = i,θ1) (2.30)

and, therefore, we have that θ1 = θ2 and θ3 = θ4.

2.4.3 Marginal models

The first step in modelling the dependence structure is to model each marginal dis-

tributions separately. This is because most financial returns exhibit some degree of au-

tocorrelation and heteroskedasticity. In order to model marginal distributions of each of

our return series we start with initial broad specification searching and allow the data to

choose the model for asset return i:

φ(L)xit = αi + uit where uit = σitεit

σ2
it = g(σit−1, εit−1;σit−2, εit−2, . . .)

where φ(L) is a known lag polynomial denoting finite-order autoregressive model, and

g(⋅) is a known function representing conditional volatility model. Based on AIC and BIC

information criteria, the resulting model for the S&P500 returns is the skewed Student’s-t

GARCH(1,1) expressed as:

x1t = µ1 + u1t where u1t = h
1/2

1tu1t (2.31)

h1t = ω1 + α1u
2
1t−1 + β1h1t−1 (2.32)

where h1t is the conditional variance given past information, which allows capturing per-

sistence, and ε1t are i.i.d. random variables, ω1, β1, α1 > 0 assures that the conditional

variance h1t is positive and α1 + β1 < 1 ensures covariance stationarity.

...For the FTSE100 and DAX returns the resulting model is the skewed Student-t GJR-



2.4. The models for copula 36

Table 2.4: Descriptive Statistics

S&P500 FTSE100 DAX

Mean 0.001369 0.000804 0.001323
Median 0.003178 0.001688 0.003983
Maximum 0.123746 0.166889 0.150603
Minimum -0.157665 -0.125320 -0.197775
Std. Deviation 0.022907 0.023484 0.031577
Skewness -0.578704 -0.268820 -0.671595
Kurtosis 7.349300 7.604751 6.384020
Jarque-Bera 1096.356 1163.297 717.4673

(0.000000) (0.000000) (0.000000)

Note: Jarque-Bera corresponds to Jarque-Bera test statistics with p-values in parentheses.

GARCH(1,1) expressed as:

xit = µi + uit where uit = h
1/2

it εit (2.33)

hit = ωi + αiu
2
it−1 + γiu

2
it−1I[uit−1<0] + βiσ

2
it−1 (2.34)

where i ∈ {2 = FTSE100,3 = DAX}. The conditional variance expression now includes

the asymmetry term γ, which relaxes the assumption of symmetric response of volatility to

positive and negative shocks. This would suggest that in the UK and Germany, a negative

shock to equity returns is likely to cause a volatility to rise by more than a positive shock of

the same magnitude. In the literature these asymmetries are attributed to leverage effects,

characterised by an increase in the firm’s debt to equity ratio caused by a fall in a firm’s

stock value.

It is also assumed that the standardised residuals εit for i = 1,2,3 have a skewed t-

distribution. Its density is given by:

f(εit∣υ,λ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

bc(1 +
1

υ − 2
(
bεit + a

1 − λ
)

2

)

−(υ+1)
2

εit <
−a

b

bc(1 +
1

υ − 2
(
bεit + a

1 + λ
)

2

)

−(υ+1)
2

εit ≥
−a

b
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Table 2.5: Marginal Distributions Estimation Results

S&P500 FTSE100 DAX

ωi 0.00001 0.00003 0.00004
(0.000005) (0.00001) (0.00001)

αi 0.1162 0.0024 0.0356
(0.0313) (0.0016) (0.0174)

γi − 0.2127 0. 1306
− (0.0711) (0.0492)

βi 0.8665 0.8361 0. 8547
(0.0352) (0.0539) (0.0373)

υi 10.8750 9.4166 9.9571
(3.4733) (2.51665) (2.4097)

λi - 0.2696 - 0.1911 -0.2941
( 0.0402) (0.03699) (0.0379)

log L 3265.6 3230.4 2848.28
Q(10) 0.3016 0.4923 0.4959
Q2(20) 1.0000 1.0000 0.9340
KS 0.9764 0.8838 0.9692
Berk 0.9988 0.2620 0.8938

Note: In round brackets are the standard errors. Q and Q2: Ljung-Box Q statistic for autocorrelation
and squared autocorrelation in the residual terms, respectively. Last two rows show goodness-of-fit tests
for the probability integral transform of the margins. KS: Kolmogorov - Smirnov test p-value, and Berk:
Berkowitz test p-value for uniformity.

with constants a, b and c defined as:

a = 4λc(
υ − 2

υ − 1
) , b2 = 1 + 3λ2 − a2, c =

Γ (υ+1
2 )

√

π(υ − 2)Γ (υ2)

where υ correspond to the number of degrees of freedom and λ represents the degree of

asymmetry. When λ is negative, we have a left-skewed density, meaning that there is

higher probability of observing large negative returns than large positive returns.

Once the residuals from each marginal model are obtained, we standardize them by the

corresponding conditional standard deviation. These standardized residuals represent the

pseudo-observations with zero-mean, independent and identically distributed series upon

which the dependence modelling is based. All three marginal distributions are modelled

independent of the regime.
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2.5 Data

In this study we use weekly data which comprises S&P500, FTSE100 and DAX indices

for the period February 1, 1990 to November 18, 2014, which gives us 1299 observations.

The data was obtained from DATASTREAM. The stock indices returns are logarithmic

weekly returns.

Table 2.4 presents summary statistics of the data. The means for three returns are

much smaller relative to their standard deviation. The S&P500 and DAX returns exhibit

substantial skewness. The S&P500 and FTSE100 exhibit high kurtosis, whilst DAX ex-

hibits a relatively lower kurtosis. The Jarque-Bera test of normality of three returns series

strongly rejects the null, indicative of non-normality of all three series.

2.6 Empirical Results

The estimation results for marginal models are presented in Table 2.5. The asymme-

try coefficient is negative and statistically significant for all three series of returns, whilst

the coefficient for FTSE100 is relatively small compared to S&P500 and DAX. This in-

dicates that returns series under consideration are negatively skewed, which implies that

large negative returns are more likely to occur than large positive returns. The degrees

of freedom parameter for all three series is approximately 10, which is indicative of heavy

tails in distributions. In addition, the estimate of the β parameter for all three series

is approximately 0.8 which suggests high volatility persistence. The significance of the

γ parameter for FTSE100 and DAX points towards existence of ’leverage effects’, which

implies that volatility increases when the stock price falls. The reported high p-values for

Kolmogorov-Smirnov (KS) and Berkowitz (Berk) tests for uniformity do not show statis-

tical evidence against the null of Uniform(0,1) distribution of the transformed residuals.

Figure 2.9 displays a pair plot of the transformed residuals with scatter plot above the

diagonal and empirical contour plots below the diagonal.
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Figure 2.9: Transformed standardized residuals
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2.6.1 Markov switching vine copula estimation

In this sub-section we present estimation results for different copula family specifica-

tions. In order to keep modelling procedure simple, we impose all bivariate blocks to be

the same copulas. In addition, it is assumed that the vine structure in low dependence

regime is exactly the same as in the high dependence regime. However, the parameters

of each bivariate copulas in the vine are allowed to vary across both regimes. Table 2.6

presents estimation results for 10 vine copula candidates with different tail behaviour. The

estimation results suggest the presence of two regimes: one with high and one with low

dependencies. Based on the likelihood principle, the vine copula with Gaussian copulas

as a building block is suggested. Table 2.7 compares this competing model with the first-

order regime-switching Gaussian copula. The copula parameter estimates from the high

dependence regime do not seem to be statistically different from each other. However, this

is not the case for the parameter estimates in the low dependence regime, although the

magnitude of the difference does not seem to be immensely large, with the average absolute

difference being equal to 7.5.

This table also includes model selection information criteria. Based on Akaike Infor-

mation Criterion (AIC) and Bayesian Information Criterion (BIC), there is more support
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Table 2.7: Second-order regime switching copula estimation results

High Regime Low Regime

2nd order 1st order 2nd order 1st order

S&P500/FTSE100 0.7719 0.7669 0.3735 0.4556
(0.0168) (0.0538)

FTSE100/ DAX 0.8435 0.8411 0.3870 0.4716
(0.0104) (0.0641)

S&P500/DAX 0.4626 0.4536 0.1248 0.1854
(0.0344) (0.0574)

Transition probabilities

p1 p2 p3 p4
0.9856 0.0878 0.3284 0.4312

(0.1862) (0.2712) (0.5625) (0.7803)

Model Selection
Model LL AIC BIC
2nd order 1068.7 -2117.4 -2065.7
1st order 1059.6 -2103.4 -2061.8

Note: In round brackets are the standard errors for the parameters of the second-order regime
switching model. Parameter estimates for the first-order regime switching model have been
included for comparison only, and hence their standard errors have not been computed.

for the second-order regime-switching model, even with extra 2 parameters3. Hence, the

preferred model is the second-order regime-switching vine copula.

Figure 2.10 shows the plot of the smoothed probability of being in high dependence

regime. This is plotted against time, and a vertical axis having a unit length. The vertical

red lines represent economic and financial crises that took place throughout the world

during our sample period: starting with economic crisis in Mexico in 1990; Asian financial

crisis of 1997; followed by the Russian financial crisis in 1998; ensuing Argentine economics

crisis in 1998; the Dot-com bubble in early 2000s; the sharp drop in stock prices during

2002 in stock markets across the US, Canada, Asia, and Europe; and the financial crisis of

2007. From the graph it can be observed that most of the time the increase in probability of

being in high dependence regime coincides with the financial crises throughout the world.

This lends additional support to the empirical findings in the literature that the strength

of dependence increases during financial crises.

3The model-selection procedure is based on choosing the model for which the AIC and BIC is the
smallest.
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Figure 2.10: Smoothed Probability of being in HIGH regime (2nd order regime process)

1 = Economic crisis in Mexico; 2 = Asian financial crisis; 3 = Russian financial crisis; 4 = Argentine economics crisis;
5 = Dot-com bubble; 6 = sharp drop in stock prices across the US, Canada, Asia, and Europe; 7 = Financial crisis of
2007.

2.6.2 Dependence Measures

In order to relate results and compare the implied dependence strength by various

copulas in each regime, we can reparameterize copula’s parameter in terms of copula-based

Blomqvist’s β measure of dependence. The Blomqvist’s β is defined as follows:

β = 4C(
1

2
,
1

2
) − 1 (2.35)

There are other copula-based measures of dependence such as Kendall’s τ and Spear-

man’s ρ that are invariant under strictly increasing transformations. However, only Blomqvist’s

β will be used as it is computationally simpler to compute relative to above mentioned

measures of dependence. Table 2.8 presents estimates of Blomqvist’s betas for all bivariate

copulas in both regimes. Blomqvist’s betas computed for conditional copulas in the lower

trees are not straightforward to interpret, and, therefore, we only concentrate our attention

on the unconditional bivariate copulas in the first tree. Looking at the dependence between

S&P500 and FTSE100 the strongest dependence is implied by regime-switching Clayton
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Table 2.8: Blomqvist β estimates

Gaussian Clayton Survival Gumbel Frank Joe Student’s t BB1 BB6 BB7 BB8

12 Regime 1 0.56 0.87 0.82 0.62 0.45 0.55 0.52 0.52 0.46 0.58
Regime 2 0.24 0.36 0.41 0.31 0.06 0.31 0.30 0.13 0.34 0.24

23 Regime 1 0.64 0.60 0.74 0.68 0.50 0.63 0.59 0.59 0.53 0.64
Regime 2 0.25 0.44 0.49 0.37 0.04 0.33 0.33 0.11 0.33 0.27

13∣2 Regime 1 0.31 0.73 0.65 0.36 0.17 0.29 0.27 0.24 0.35 0.35
Regime 2 0.08 0.15 0.19 0.12 0.01 0.12 0.10 0.09 0.33 0.08

vine copula with Blomqvist’s beta being 0.87 in high dependence regime and 0.36 in low

dependence regime 4. This constitutes an increase in the strength of dependence by more

than 100 per cent when we move into ‘crisis’ regime. Similarly, the weakest dependence

is implied by Joe copula which amounts to 0.45 in the high dependence regime and 0.06

in the low dependence regime. The strongest dependence between FTSE100 and DAX is

implied by the Survival Gumbel copula which is 0.74 in the high dependence regime and

0.49 in the low dependence regime. For this pair of indices the weakest dependence is

implied by Joe copula with a Blomqvist’s beta being 0.5 in the high dependence regime

and 0.04 in the low dependence regime.

2.7 Conclusion

In this paper Markov switching vine copula is extended to a second-order regime switch-

ing vine copula. This modelling approach identified two regimes: one of high and one of low

dependence between international stock indices returns. In order to allow asymmetries in

the upper and lower tail-dependence, we have compared 10 vine copulas with different tail

behaviour. For the sample period under investigation, based on the principle of maximum

likelihood, Gaussian bivariate copulas were selected as main building blocks in the vine

copula specification. We also compared the selected model against the first-order regime

switching vine copula. The information criteria used to aid model selection procedure sug-

gests that the second-order regime switching vine copula may be an adequate choice for

the sample under study.

This finding seems to indicate the absence of heavy tails and tail asymmetry. In addi-

4Clayton vine copula is a vine copula in which all bivariate blocks consist of Clayton copulas. This
definition also applies to other vine copulas.
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tion, this specification implies that the downside risk vanishes asymptotically. In portfolio

risk management, this would indicate absence of non-linear portfolio dependence. How-

ever, our conclusion should not be solely based on the likelihood principle. It cannot at

this stage be conclusively judged which copula fits best the data at hand. It well may be

that some copulas fit better in the middle, whilst other fit better near the lower or upper

tail, or even both. Therefore, the fit in the tails should also be taken into consideration.



Chapter 3

Analysing asymptotic sequences of Markov regime-

switching Gaussian copula processes local to

absorbing states

3.1 Introduction

The standard procedure in the literature is to rely on the asymptotic theory based on the

assumption that the probability transition matrix remains fixed as the sample size increases

to infinity. This essentially means that as the sample gets increasingly large, the fraction

of time spent in both states settles down to their long-run proportions. Therefore, the

time spent in each state is non-negligible, and the parameter estimates in both regimes are

well behaved. In the alternative asymptotic sequence we might be concerned that we could

spend most of the time in one regime rather than in the other regime. Hence, the asymptotic

sequence in which the fraction of the time spent in one of the states converges to something

moderate may not be informative about the finite sample distributions. The asymptotic

theory that is generally used would not be appropriate under these circumstances. This

state of the world, where recessions last only a short period of time, would be more relevant

and interesting to investigate. The purpose of this chapter is to conduct an investigation

through a Monte Carlo study in order to examine under what conditions models of this

variety work well, and if there are systematic ways in which they tend to not work so well.

45
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Analysing sequences of processes is a well-established technique. For example, a se-

quence of local alternatives is examined in the analysis of the asymptotic power of a con-

sistent test. The sequences of processes have also been considered in the study of nearly

non-stationary AR(1) processes. For example, Chan and Wei (1987) studied the limiting

distribution of the least-squares estimate of the coefficient in the AR(1) model. In another

study, Andrews (2001) considered testing problems when parameters in the null hypothe-

sis lie on the boundary of the maintained hypothesis space. The author provides general

asymptotic results that take these testing problems into account.

This chapter is structured as follows. Section 3.2 provides a brief introduction to a

Markov Chain theory, and also a mathematical description of the two alternative asymp-

totic sequences that will be analysed in this study. Section 3.3 reports and discusses results

from a Monte Carlo study. Section 3.5 provides concluding discussion.

3.2 Framework for alternative sequences

The situation we are considering is local to the limit of the transition probability matrix

with one or more absorbing states. First, we present briefly a theory of Markov chains

where the transition probability matrix is fixed. We consider a discrete-time Markov chain

in which the state can change at each discrete time point. Given a sequence of discrete

random variables S0, S1, S2, ... taking values in some finite or countably infinite set Ω, a

sequence Sn is said to be a Markov chain if the following Markov property is satisfied:

P (Sn+1 = j∣Sn = i, Sn−1 = in−1, ..., S0 = i0) = P (Sn+1 = j∣Sn = i) (3.36)

We can therefore define one-step transition probabilities for a two-state Markov process

as follows:

pij = P (Sn+1 = j∣Sn = i) ∀i, j = 1,2 (3.37)

where St denotes the state at date t. We can then collect these probabilities to construct
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the transition probability matrix:

P =

⎛
⎜
⎜
⎝

p11 p12

p21 p22

⎞
⎟
⎟
⎠

where pij ≥ 0 for all i, j = 1,2 so that p11 + p12 = 1 and p21 + p22 = 1

The basic model of interest is a regime-switching copula model. We use bivariate

time series generated from a regime-switching Gaussian copula model, where the true data

generating process is specified to be:

c(ut∣Θ, St) =
2

∑
k=1

1{k}(St) ⋅ c(ut∣θk) (3.37)

where Θ is a vector of population parameters which includes parameter vectors θ1 in state

1, and θ2 in state 2 ; St is the latent state variable defined in (3.37); c(ut∣θk) is a bivariate

Gaussian copula which has the following form:

c(u1t, u2t∣θk) =
1

2π
√

1 − ρ2
exp{−

(Φ−1(u1)
2 − 2ρΦ−1(u1)Φ−1(u2) +Φ−1(u2)

2)

2(1 − ρ2)
}

where Φ−1(⋅) is the inverse cumulative distribution function of a standard normal, and

ρ ∈ (−1,1).

This specification implies that the copula density of a vector ut at time t depends on

a random variable St that indicates the current regime. In this specification, the Gaussian

copula is chosen for both regimes.

The general framework that is being considered is a sequence of processes {M(n)}
∞

n=1

associated with a sequence of run lengths {T (n)}
∞

n=1, with accompanying transition matrices

{p
(n)
ij }

∞

n=1
and initial draw distributions {π

(n)
j }

∞

n=1
, where each π

(n)
j is determined by p

(n)
ij .

In this sequence, the copula parameters in each state remain the same. Given a finite

value of n, the probability transition matrix is well-behaved5. Nevertheless, as n increases

to infinity, the probability transition matrix converges to a limit matrix, which will be

5Here “well-behaved” means that all states can be reached from any other state with a non-negligible
probability.
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defined in the next section.

3.2.1 Alternative asymptotic sequences

In this subsection we consider two alternative asymptotic sequences. In particular, we

consider a limit of sequences of transition matrices. This is about situations where we are

local to a limit as a consequence of considering a sequence of processes where each process

is indexed by the run length. Consequently, the higher the run length is, the closer we

are to the limit. In this framework, the general asymptotic theory is discontinuous in the

transition probability parameter.

Case 1

The first asymptotic sequence involves a transition matrix converging to a matrix in

which all elements of the first column are equal to one, and all elements of the second

column are equal to zero:

lim
T→∞

PT =

⎛
⎜
⎜
⎝

1 0

1 0

⎞
⎟
⎟
⎠

(3.38)

The implications of this is that, as the run length T increases, the chain will tend to

spend most of the time in state 1 and, some of the time in state 2.

We can define transition matrix P as a function of G, M and T :

PT = I −M − T −1G

where

M =

⎛
⎜
⎜
⎝

0 0

−1 1

⎞
⎟
⎟
⎠

and G =

⎛
⎜
⎜
⎝

g11 g12

g21 g22

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

100 −100

100 −100

⎞
⎟
⎟
⎠

Using this construction, we can find the corresponding probability transition matrix PT

for any T :

PT =

⎛
⎜
⎜
⎝

1 0

0 1

⎞
⎟
⎟
⎠

−

⎛
⎜
⎜
⎝

0 0

−1 1

⎞
⎟
⎟
⎠

− T −1

⎛
⎜
⎜
⎝

g11 g12

g21 g22

⎞
⎟
⎟
⎠
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=

⎛
⎜
⎜
⎝

(1 − T −1g11) −T −1g12

(1 − T −1g21) −T −1g22

⎞
⎟
⎟
⎠

(3.39)

In this specification it is evident that, in order for the transition probabilities to be positive

and lie between 0 and 1, the following restrictions have to be placed on elements of the G

matrix 6:

1. g11 > 0 , g21 > 0, g12 < 0 and g22 < 0

2. g11 + g12 = g21 + g22 = 0

The ergodic distribution can also be derived as follows:

πT1 =
1 − (−T −1g22)

[1 − (1 − T −1g11)] + [1 − (−T −1g22)]
=

T + g22

T + g11 + g22
(3.40)

πT2 =
1 − (1 − T −1g11)

[1 − (1 − T −1g11)] + [1 − (−T −1g22)]
=

g11

T + g11 + g22
(3.41)

Evidently, ergodic probabilities depend on T with the following limits:

lim
T→∞

πT1 = 1

lim
T→∞

πT2 = 0

We can also derive the expected number of state transitions by chain between date 0 and

date T:

N e
T =

2T [1 − (1 − T −1g11)][1 − (−T −1g22)]

[1 − (1 − T −1g11)] + [1 − (−T −1g22)]
=
T2g11 + 2g11g22

T + g11 + g22
(3.42)

Similarly, it is evident that the expected number of state transitions also depends on T

with the following limit:

lim
T→∞

N e
T = 2g11 (3.43)

We can also derive the expected number of transitions from state 2 to state 2 for a given

6These restrictions are still not sufficient to ensure that the elements of the transition probability matrix
PT are non-negative. There exist certain combinations of run length T and matrix G (which we do not
consider in this study) such that the resulting PT matrix is negative. This is, however, not a serious issue,
as there is a simple modification to matrix PT that ensures non-negativity. More details on the procedure
can be found in Appendix A.2.1.
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run length T , which we denote as E (nT22). There is only one way in which the Markov

chain can have a transition from state 2 to state 2 at date t. In particular, at date (t -1)

the chain is in state 2, and then in the next time period t it remains in state 2. Using

(3.41) and (3.39), we can derive the unconditional probability of this event happening for

a given run length T :

Pr (STt−1 = 2, STt = 2) = Pr (STt = 2 ∣ STt−1 = 2)Pr (STt−1 = 2)

= pT22 π
T
2

= −
g22

T

g11

T + g11 + g22
(3.44)

= −
g22 g11 T −1

T + g11 + g22

The expected number of state transitions from state 2 to state 2 between date 0 and date

T is simply:

E (nT22) = T pT22 π
T
2 =

−g22 g11

T + g11 + g22
(3.45)

which tends to 0 as T tends to infinity, lim
T→∞

E (nT22) = 0.

Case 2

The second case concerns a scenario where the transition matrix approaches an identity

matrix I as T →∞:

lim
T→∞

PT =

⎛
⎜
⎜
⎝

1 0

0 1

⎞
⎟
⎟
⎠

(3.46)

The implication of this is that, as the run length T increases, the chain will either tend

to spend most of the time in state 1 or, most of the time it will spend in state 2.

We begin by defining P as a function of G and T:

PT = I − T −1G

where G is a square matrix:
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G =

⎛
⎜
⎜
⎝

g11 −g12

−g21 g22

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

100 −100

−900 900

⎞
⎟
⎟
⎠

To insure ergodicity, the following restrictions have to be placed on elements of the G

matrix7:

1. g11 > 0, g12 < 0, g21 > 0 and g22 > 0

2. g11 + g12 = g21 + g22 = 0

Therefore, we can easily find the structure of PT for any T :

PT =

⎛
⎜
⎜
⎝

(1 − T −1g11) −T −1g12

−T −1g21 (1 − T −1g22)

⎞
⎟
⎟
⎠

(3.47)

The usefulness of this expression is that we can derive the ergodic distribution for chain

given T as follows:

π1,T =
1 − (1 − T −1g22)

[1 − (1 − T −1g22)] + [1 − (1 − T −1g11)]
=

g22

g11 + g22
(3.48)

π2,T =
1 − (1 − T −1g11)

[1 − (1 − T −1g22)] + [1 − (1 − T −1g11)]
=

g11

g11 + g22
(3.49)

We can also derive the expected number of state transitions by chain given T :

N e
T =

2T [1 − (1 − T −1g22)][1 − (1 − T −1g11)]

[1 − (1 − T −1g22)] + [1 − (1 − T −1g11)]
=

2g22g11

g11 + g22
(3.50)

This specification allows to explore what happens when the transition matrix is close

to the identity matrix.

Similarly, we can derive the expected number of transitions from state 1 to state 1 for

a given run length T , denoted as E (nT11). As it was discussed previously, there is only one

way in which the Markov chain can have a transition from state 1 to state 1 at date t.

In particular, at date (t -1) the chain is in state 1, and then in the next time period t it

remains in state 1. Using (3.47) and (3.49), we can derive the unconditional probability of

7See comments in footnote 6 on page 49.
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this event happening for a given run length T :

Pr (STt−1 = 1, STt = 1) = Pr (STt = 1 ∣ STt−1 = 1)Pr (STt−1 = 1)

= pT11 π
T
1

=
(1 − g11 T −1)g22

g11 + g22

The expected number of state transitions from state 1 to state 1 between date 0 and date

T is simply:

E (nT11) = T pT11 π
T
1

=
(T − g11)g22

g11 + g22

(3.51)

which tends to infinity as T tends to infinity, lim
T→∞

E (nT11) = ∞.

In a similar vein, we can also derive the expected number of state transitions from state

2 to state 2 for a given run length T :

E (nT22) = T pT22 π
T
2

=
(T − g22)g11

g11 + g22

(3.52)

which also increases to infinity as T tends to infinity, lim
T→∞

E (nT22) = ∞.

3.3 Monte Carlo simulations

In this section, we study the behaviour of the standardised sampling error in each

element of the vector of parameter estimates θ̂ = (θ̂1, θ̂2, p̂11, p̂21)
′ from the Markov regime-

switching copula model in (3.37). The estimated density plots of their sampling distribu-

tions from a set of Monte Carlo simulations are provided to illustrate their finite sample

distributions.

3.3.1 Alternative asymptotic sequence Case 1

First we report results for the Case 1 of the alternative asymptotic sequence described

by specification in (3.38) and (3.39). In this scenario the transition matrix parameter
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Table 3.9: Summary statistics for the rescaled sampling error θs1 = (θ̂1 − θ1)/se(θ̂1) when states are observed.

p11 = p21 = 0.9 p11 = p21 = 0.95 p11 = p21 = 0.975 p11 = p21 = 0.9875 p11 = p21 = 0.9938 p11 = p21 = 0.9969 p11 = p21 = 0.9984

T=1,000

Mean -0.0259 -0.0228 -0.022 -0.0235 -0.0228 -0.0208 -0.0211
Median -0.0441 -0.0471 -0.0427 -0.0463 -0.0606 -0.0435 -0.0474
Interquartile 1.3783 1.3718 1.3742 1.3901 1.4072 1.4094 1.4183
Std 1.0217 1.0081 1.008 1.0077 1.0077 1.0086 1.0103
Skewness 0.0208 0.0143 0.0319 0.0365 0.038 0.0351 0.0309
Kurtosis 2.8379 2.8009 2.7629 2.71 2.7171 2.7032 2.7063
Min -3.0392 -3.1854 -3.1802 -3.2139 -3.2775 -3.2366 -3.351
Max 2.9356 2.6451 2.7173 2.6018 2.5141 2.5284 2.5421

T=2,000

Mean -0.0128 -0.0108 -0.0139 -0.0101 -0.0122 -0.0102 -0.0098
Median -0.0249 -0.0094 -0.008 -0.0049 -0.0256 -0.0146 -0.0176
Interquartile 1.4135 1.3941 1.3813 1.3909 1.3877 1.3622 1.3525
Std 1.0224 1.0194 1.0259 1.0254 1.0281 1.0288 1.0281
Skewness -0.0031 -0.0035 -0.0436 -0.0565 -0.0571 -0.0516 -0.0535
Kurtosis 2.8333 2.8531 2.9423 2.944 2.9795 2.9877 3.0026
Min -3.0294 -3.0604 -3.2914 -3.1995 -3.3214 -3.2734 -3.2341
Max 2.8661 3.1613 2.9844 3.0703 3.0618 3.0949 3.1337

T=4,000

Mean -0.0436 -0.0353 -0.0349 -0.0294 -0.0317 -0.0298 -0.0295
Median -0.0285 -0.0281 -0.0153 -0.0227 -0.0436 -0.0382 -0.0401
Interquartile 1.3196 1.3431 1.3208 1.31 1.3192 1.3313 1.3273
Std 1.0076 1.0075 1.0105 1.0062 1.0066 1.0073 1.0069
Skewness -0.1627 -0.1401 -0.125 -0.0961 -0.0975 -0.0921 -0.0988
Kurtosis 3.0525 3.1515 3.1742 3.1162 3.1464 3.1517 3.15
Min -3.1814 -3.4569 -3.2754 -3.1684 -3.1746 -3.2373 -3.2186
Max 3.5566 3.796 3.8065 3.7875 3.6728 3.6469 3.6125

T=8,000

Mean -0.0414 -0.0379 -0.0399 -0.0329 -0.0314 -0.032 -0.0312
Median -0.058 -0.0409 -0.0412 -0.0497 -0.0585 -0.056 -0.0439
Interquartile 1.3972 1.3998 1.3983 1.4022 1.3985 1.3794 1.3621
Std 1.0241 1.0181 1.0269 1.0269 1.0277 1.0294 1.0288
Skewness 0.0825 0.0251 -0.0052 0.0008 0.0035 0.0029 0.0015
Kurtosis 2.9428 2.8849 2.8838 2.927 2.9282 2.9458 2.9442
Min -3.2448 -3.0608 -3.3185 -3.3139 -3.3585 -3.3624 -3.3809
Max 3.2442 3.2508 3.2375 3.3039 3.2998 3.2941 3.289

T=16,000

Mean -0.0392 -0.038 -0.046 -0.036 -0.0374 -0.0367 -0.0372
Median -0.0457 -0.047 -0.0848 -0.0721 -0.0761 -0.0693 -0.0735
Interquartile 1.3374 1.3702 1.3681 1.3636 1.3166 1.3528 1.3444
Std 1.0028 0.998 0.9998 0.9975 0.9992 1.0008 1.0005
Skewness 0.0715 0.0367 0.0664 0.0667 0.0774 0.0817 0.0804
Kurtosis 3.208 3.235 3.2251 3.2508 3.2941 3.2962 3.2832
Min -3.6168 -3.5249 -3.5667 -3.5652 -3.5471 -3.5748 -3.588
Max 3.3799 3.2643 3.4862 3.4623 3.6523 3.6423 3.6427

T=32,000

Mean -0.0285 -0.0273 -0.0302 -0.0242 -0.0282 -0.0288 -0.0294
Median 0.0074 -0.0104 -0.0041 -0.0133 -0.0056 -0.0012 -0.0172
Interquartile 1.3027 1.3592 1.3345 1.3326 1.3369 1.3375 1.3289
Std 1.0004 0.9972 0.9925 0.9919 0.9919 0.9928 0.9923
Skewness -0.0359 -0.0152 -0.0217 -0.02 -0.0207 -0.0195 -0.0209
Kurtosis 3.0672 3.0471 3.0494 3.0709 3.1088 3.1117 3.1263
Min -3.1782 -3.3269 -3.3651 -3.524 -3.5962 -3.6084 -3.6021
Max 3.0913 2.9709 2.9165 2.8973 2.9642 3.0047 3.0745

T=64,000

Mean -0.0398 -0.0398 -0.0355 -0.0298 -0.0294 -0.0303 -0.0301
Median -0.0377 -0.0372 -0.0211 -0.0149 -0.0222 -0.0119 -0.0038
Interquartile 1.3578 1.3532 1.385 1.395 1.4044 1.3889 1.3939
Std 1.0173 1.008 1.0008 1.002 0.9999 1.0021 1.0018
Skewness 0.007 0.0136 0.0455 0.0582 0.0384 0.0468 0.0434
Kurtosis 3.1573 3.109 3.0346 3.0331 3.0091 3.0033 3.0046
Min -3.0212 -3.1341 -3.1186 -3.0878 -3.1479 -3.1423 -3.098
Max 3.4186 3.3441 3.3134 3.2412 3.2078 3.2313 3.1876
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Figure 3.11: Distribution of the rescaled sampling error θs1 = (θ̂1 − θ1)/se(θ̂1) when states are observed.

p11 = p21 = 0.9 p11 = p21 = 0.95 p11 = p21 = 0.975 p11 = p21 = 0.9875 p11 = p21 = 0.9938 p11 = p21 = 0.9969 p11 = p21 = 0.9984
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values change with the run length in a fashion that results in the expected number of time

periods spent in one state being constant rather than proportional to the run length.

Observed states

The standard analysis would suggest that if we could observe the state we were in,

this would be playing an important role in the estimation of parameters of interest. If

one could observe the states, then effectively the entire data could be split into state 1

data and state 2 data. One would have one amount of observations in state 1 and one

amount of observations in state 2, and this would greatly simplify the estimation procedure

of parameters of interest. In what follows, we present the simulations results when states

are fully observed, and comment on the limiting behaviour.

The rescaled sampling error in copula parameter θ1 in state 1

Let’s consider a world in which one could observe the states. Figure 3.11 shows the

sampling distribution of θs1 = (θ̂1 − 0.8)/se(θ̂1) in the high occupancy state. Along the main

diagonal we can observe the behaviour of the rescaled sampling error under the alternative

asymptotic sequence Case 1 described in (3.38). Under this sequence, the run length T

and the transition probability matrix P are allowed to vary, whilst the G matrix is held

constant.

The behaviour of the rescaled sampling error under the usual asymptotic sequence can

be examined by moving vertically down the column. Under this sequence, the P matrix is

held constant whilst the matrix G and the run length T are allowed vary. Moving across

columns along each row of the Figure 3.11, one can also analyse how behaviour changes

whilst holding the run length fixed at a particular T , and varying matrices P and G. These

combinations can provide a good sense of how would things progress if matrix G would get

close to zero, or away from zero, and at what point noticeable issues would start to arise.

When states can be observed, one knows with absolute certainty whether the stochastic

system was in state 1 or state 2, and hence the copula parameter estimates do not depend

as such on transition parameters p11 and p21. They solely depend on the values of copula

pair when the stochastic system was in state 1 or state 2. In other words, the data could
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be effectively split into whether it was generated from state 1 or state 2. As one goes down

the main diagonal, the heuristic theory would suggest that the rescaled distribution of the

sampling error would converge to the standard normal distribution, which seems to be the

case when conducting a visual inspection of the plots. For example, as one moves down

the main diagonal by one cell, the run length T doubles, and the number of time periods

spent in state 1 more than doubles by the fixed amount equal to g11. In essence, one

would get more information about the state 1 than under the usual asymptotic sequence

for a given increase in the sample size, whilst remaining away from the boundary of the

parameter space. Consequently, the expected amount of time spent in state 1 will increase

to infinity as the run length T increases to infinity. Hence, moving sufficiently far down

the asymptotic sequence, one has a large enough sample from state 1, and therefore copula

parameters from the high occupancy state 1 are being well determined most of the time,

and the usual asymptotics seem to work well most of the time. The behaviour under

the usual asymptotics can be analysed by moving vertically down the columns. In this

standard asymptotic sequence, T and G vary whilst matrix P is being held fixed. This

results in the expected number of time periods spent in state 1 to double as the run length

doubles.

We could also analyse what happens as one moves along one of the rows across columns.

This would imply that for a given fixed T the transition probability matrix P and matrix

G would vary, resulting in the number of time periods spent in state 1 to increase by

g11. As a result, one would obtain additional information about the copula parameter

in state 1, and hence one would expect sampling behaviour to improve. Evidently, the

amount of additional information one would obtain would depend on how far away from

zero the G matrix is. The superimposed reference standard normal distribution makes any

discrepancies easily comparable, and the plots seem to indicate that there are no noticeable

discrepancies in all cells. Furthermore, from the summary statistics presented in Table 3.9

it can be seen that the interquartile range, standard error, skewness and kurtosis, all remain

close to the reference distribution. The rate at which the sampling distribution is shrinking

seems to be broadly in line with what the heuristic theory would suggest, that is at the rate
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Table 3.10: Summary statistics for the rescaled sampling error θs2 = (θ̂2 − θ2)/se(θ̂2) when states are observed.1

p11 = p21 = 0.9 p11 = p21 = 0.95 p11 = p21 = 0.975 p11 = p21 = 0.9875 p11 = p21 = 0.9938 p11 = p21 = 0.9969 p11 = p21 = 0.9984

T=1,000

Mean 0.0022 0.0192 0.0228 0.0173 0.0671 0.2529 0.1849
Median -0.0805 -0.0044 -0.0706 -0.1361 -0.2278 -0.2682 -0.3198
Interquartile 1.289 1.2895 1.2399 1.3441 1.2798 1.2231 0.9326
Std 0.9928 0.9861 1.0114 1.1012 1.4295 1.9918 1.6242
Skewness 0.4497 0.3106 0.7512 2.4241 4.5379 3.6487 3.3254
Kurtosis 3.2786 3.2613 4.5423 25.0647 39.0807 17.6538 14.5257
Min -2.5225 -2.7457 -2.5205 -2.3596 -1.6897 -1.1948 -0.8449
Max 3.847 3.6843 5.8109 13.4444 13.9418 11.2563 7.9594

T=2,000

Mean 0.0165 0.0375 0.0204 -0.003 -0.0158 0.1133 0.0650
Median -0.0288 -0.0041 -0.0453 -0.1299 -0.1718 -0.2271 -0.2288
Interquartile 1.3623 1.3593 1.3822 1.3308 1.3092 1.3569 1.3271
Std 1.0085 0.9961 1.0132 1.028 1.0575 1.6964 1.4893
Skewness 0.3277 0.1517 0.4191 0.6754 0.9306 4.9632 4.5803
Kurtosis 3.0401 2.8772 3.079 3.8952 4.6588 39.2973 38.4247
Min -2.5208 -2.7928 -2.5555 -2.499 -2.3896 -1.6897 -1.6897
Max 3.6891 3.0305 3.9088 4.7459 5.384 15.8291 14.5264

T=4,000

Mean 0.0125 0.0129 -0.0091 -0.0174 -0.032 -0.0047 0.0736
Median -0.0284 0.0207 -0.0343 -0.0698 -0.101 -0.1906 -0.2388
Interquartile 1.4018 1.3824 1.3787 1.3663 1.3466 1.361 1.2773
Std 1.0037 1.0032 0.9764 1.0413 1.0338 1.1236 1.6586
Skewness 0.299 0.065 0.1761 0.4114 0.5107 2.5336 5.0509
Kurtosis 2.9486 2.7182 2.7838 3.1906 3.3683 26.6224 41.7284
Min -2.5889 -2.6396 -2.9119 -2.6352 -2.6287 -2.1394 -1.6897
Max 3.7365 3.0624 2.9077 4.0682 4.0697 13.9347 15.6304

T=8,000

Mean 0.0338 0.0119 -0.005 -0.0153 0.0005 -0.0085 0.0048
Median -0.0158 -0.0069 -0.0183 -0.0475 -0.0628 -0.0953 -0.1623
Interquartile 1.3413 1.4163 1.3631 1.339 1.2612 1.3258 1.3398
Std 1.0084 1.0072 0.9816 1.0195 1.0204 1.0172 1.2082
Skewness 0.1865 0.0216 0.1598 0.2617 0.3875 0.6818 4.0959
Kurtosis 2.9969 2.7829 2.9478 3.3169 3.421 4.0203 54.2844
Min -2.7498 -2.8376 -2.7588 -3.0098 -2.6839 -2.4151 -2.1616
Max 4.0113 3.0602 3.193 3.8564 3.8725 5.2102 18.1697

T=16,000

Mean 0.01 -0.0391 -0.046 0.0023 0.0003 -0.0024 -0.0144
Median 0.021 -0.014 -0.0713 -0.0698 -0.0434 -0.0981 -0.1207
Interquartile 1.4854 1.3538 1.3109 1.3941 1.3128 1.2777 1.3705
Std 1.0372 0.9754 0.9765 1.0046 0.9596 0.9564 1.0077
Skewness 0.0616 -0.0375 0.1682 0.2513 0.2964 0.4948 0.6572
Kurtosis 2.8417 2.8552 2.9389 3.0173 3.1056 3.3612 3.8727
Min -3.1526 -3.6499 -3.2333 -2.8064 -2.5062 -2.252 -2.4444
Max 3.6007 2.8835 4.0139 3.8634 3.6276 3.5028 4.7747

T=32,000

Mean 0.0041 -0.0255 -0.0411 -0.0031 0.0106 -0.0002 0.0046
Median 0.0111 -0.032 -0.0407 -0.0249 -0.0362 -0.0425 -0.0242
Interquartile 1.3653 1.2966 1.3 1.2536 1.2963 1.3026 1.3943
Std 1.0259 0.9897 0.9845 0.9947 0.9829 0.9741 1.0101
Skewness -0.077 -0.0456 0.0201 0.1984 0.1342 0.2338 0.2911
Kurtosis 3.0131 3.0823 2.9908 3.1692 3.5089 3.0939 3.1006
Min -3.3324 -3.1044 -2.8953 -2.9944 -4.1167 -3.2703 -2.8103
Max 2.9448 3.45 3.2925 3.5756 3.5953 3.9835 4.3914

T=64,000

Mean -0.0099 -0.0268 -0.0411 -0.012 0.0295 0.0304 0.0245
Median 0.0052 -0.0681 -0.0356 -0.0206 0.0546 0.0376 -0.0126
Interquartile 1.3781 1.3325 1.3489 1.3604 1.3289 1.3956 1.4232
Std 1.0171 0.9958 0.9739 0.9954 1.0209 1.0108 1.0283
Skewness 0.0141 0.0541 0.0222 0.0795 0.0694 0.0275 0.1892
Kurtosis 2.9655 3.07 3.0996 3.0128 3.2001 2.9128 2.9231
Min -3.6939 -3.4258 -3.1378 -3.3478 -3.4211 -3.0548 -2.5846
Max 3.2602 3.1786 3.224 3.0645 3.1615 3.3964 3.6168

Note: 1 Summary statistics are conditional on spending a positive number of time periods in State 2.
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Figure 3.12: Distribution of the rescaled sampling error θs2 = (θ̂2 − θ2)/se(θ̂2) when states are observed1.

p11 = p21 = 0.9 p11 = p21 = 0.95 p11 = p21 = 0.975 p11 = p21 = 0.9875 p11 = p21 = 0.9938 p11 = p21 = 0.9969 p11 = p21 = 0.9984
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Note: 1 The distribution is conditional on spending a positive number of time periods in State 2. The superimposed red line

is the standard Normal distribution. Number of replications is N = 1,000.
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T − 1
2 . There is also evidence to suggest that the Maximum Likelihood Estimator (MLE) of

θ1 is mean and median unbiased.

The rescaled sampling error in copula parameter θ2 in state 2

Next let’s consider the distribution of the standardised sampling error associated with

state 2. Figure 3.12 shows the sampling distribution of θs2 in the low occupancy state. The

behaviour along the main diagonal seems to be consistent with the heuristic theory. That

is, the distribution of θs2 is not converging to the standard normal because the amount of

information about the state 2 is not going to infinity. No matter how long one makes the

run length T , one will not spend an increasing number of time periods in state 2, because

under the alternative asymptotic sequence Case 1, the number of time periods spent in state

2 remains stochastically bounded away from infinity. Whilst it is theoretically conceivable

that the number of time periods spent in state 2 could be very large if one just happens to

have a really unusual set of realisations, it would nevertheless be very unlikely. Hence, the

sampling distribution of a parameter in state 2 is not going to concentrate down. That

is, the plots indicate that if matrix P is allowed to vary in the fashion described in (3.38),

this will induce a constant expected number of time periods spent in state 2. Nevertheless,

the rescaled distribution of the sampling error is not far from the standard normal. It can

be noticed that, if one makes G matrix sufficiently large, then one will tend to be in state

2 a lot more of the time. This characteristic would seem to indicate which diagonal one

has to get to for the usual asymptotics to work reasonably well. If one moved sufficiently

down to a lower finite diagonal, the parameter θ2 would be reasonably well estimated most

of the time, as a result of having more observations from state 2. This is consistent with

the heuristic theory which would suggest that the larger the G matrix is, the further away

the P matrix is from the boundary for a given run length. Consequently, the larger the

G matrix, the greater the fraction of time one would spend in the low occupancy state,

and the better things would behave. However, the usual asymptotics would still not apply

because the amount of time spent in state 2 would be stochastically bounded.

If one goes vertically down the column, both the run length T and matrix G will in-

crease, whilst matrix P is being held constant. Hence, we would expect the usual asymp-
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totics to work. In the usual asymptotic framework, the proportion of time spent in state

2 is going to a constant, which means that the total number of time periods spent in

state 2 is increasing to infinity. Hence, the unconditional probability of being in state 2 is

non-zero.

We can also analyse how things behave when G and P change, whilst keeping the run

length T constant. If one fixes T and varies P , then the number of time periods spent in

state 2 is getting smaller and smaller because P is getting closer and closer to the boundary

case presented in (3.38). Therefore, one is simultaneously changing both the steady state

probability of being in state 2 and the probability of transiting from state 2 to state 2.

Consequently, this makes it less likely to ever be in state 2, and at the same time making

it less likely to remain in state 2 given one is currently in state 2. This results in the

number of time periods spent in state 2 to halve as one moves across the columns. The

consequence of this is that there is less and less information about state 2, which in turn

leads to poor estimates of the parameter θ2. Therefore, the usual asymptotic theory would

not work well in this setting.

On closer inspection of the summary statistics in Table 3.10, one can assess whether

the degree of kurtosis or skewness is associated with different values of the matrix G. In

accordance with our anticipations, it can be noted that the closer the matrix G is to zero,

the more problematic is the behaviour of the rescaled sampling error. This can be seen

in the top right part of the table where the median becomes strongly biased, whilst the

mean is never strongly biased in most of the cells. In addition, the interquartile range

increases, and so does the standard deviation. This region also tends to produce positive

skewness and considerable excess kurtosis8. This would create issues for applying the

usual asymptotic formulae of the covariance matrix. It is easier to discern considerable

discrepancies by looking at the PP plots in Figure 3.28. The PP plots indicate that there

are only noticeable discrepancies in the upper right corner. Below that region the PP plots

are pretty close to a straight 45○ line, with the black and the red line essentially being

8 When there are no observations from state 2, whatever estimate of θ2 is obtained, it will spurious. For
this reason, realisations with no observations from state 2 have been omitted from the estimation. There
are six cells in total for which this is the case.
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indistinguishable from one another. Also one can notice that it takes longer for the usual

asymptotics to work reasonably well in the last column.

The rescaled sampling error in transition probability parameter p11

Now let’s consider Figure 3.13 which displays distributions of the rescaled sampling

error in p11, which we denote as ξ11 = (p̂11 − p11)/se(p̂11). Along the main diagonal it can

be observed that the usual asymptotic theory seems to work well most of the time. This

behaviour is not surprising because this is what the heuristic theory would suggest. As

the run length T doubles, the expected number of transitions from state 1 to state 1 more

than doubles by a small amount. This is because when one moves down the main diagonal,

one is simultaneously changing the probability of transiting from state 1 to state 1, so that

it is more likely that one remains in state 1 given one is currently in state 1. As a result,

most of the time is spent in high occupancy state 1. Consequently, the information about

the parameter p11 is increasing to infinity and, therefore, it is consistently estimated. In

addition, there do not seem to be considerable issues, such as skewness, arising as a result

of transition probability matrix P getting closer to the boundary case.

If one fixes T and varies P and G, then the expected number of transitions from state 1

to state 1 increases by slightly less than g11. This is the behaviour observed as one moves

across columns. As a result of G getting close to zero, an additional information about

the transition parameter p11 is obtained, and hence, one would expect that the sampling

behaviour would improve only so much. However, the closer the G matrix is to zero, the

closer is the transition probability matrix P to the boundary. An additional information

obtained is not sufficient to reduce the uncertainty about the estimate of p11 in line with the

advancement towards the boundary of the parameter space. Consequently, the distribution

becomes deeply skewed. Furthermore, the number of transitions from state 1 to state 2,

approaches zero. Due to the properties of MLE of the transition probabilities of a Markov

chain, this will result in obtaining an estimate of the transition probability p11 as being

equal to one with increasingly higher probability. This intrinsic characteristic results in a

plot that exhibits a sharp peak at the positive value of (1 − p11). Hence, it is important

to note that the abundance of estimates being equal to one is not due to the numerical
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Table 3.11: Summary statistics for the rescaled sampling error ξ11 = (p̂11 − p11)/se(p̂11) when states are observed.

p11 = p21 = 0.9 p11 = p21 = 0.95 p11 = p21 = 0.975 p11 = p21 = 0.9875 p11 = p21 = 0.9938 p11 = p21 = 0.9969 p11 = p21 = 0.9984

T=1,000

Mean -0.0489 -0.0535 -0.0641 -0.0604 -0.0193 0.0189 0.0113
Median -0.0558 -0.0669 0.0693 0.0967 0.083 0.0639 0.4482
Interquartile 1.3226 1.4291 1.4676 1.451 1.6202 1.1388 0.8028
Std 1.0133 1.0369 1.0186 1.0142 1.0068 0.9835 0.9588
Skewness -0.1892 -0.1606 -0.149 -0.2861 -0.5135 -0.5372 -0.7523
Kurtosis 3.4539 2.8071 2.9931 2.8936 3.342 3.2205 3.4858
Min -4.7001 -3.2901 -3.5577 -3.425 -4.4154 -3.95 -3.582
Max 3.3173 2.9831 3.1784 2.3973 2.4987 1.7669 1.2494

T=2,000

Mean -0.0196 -0.042 -0.0618 -0.0553 0.0045 0.0231 0.0103
Median 0.0079 -0.0079 -0.0435 -0.0658 0.1192 0.0915 0.0673
Interquartile 1.2864 1.3429 1.4857 1.2309 1.4324 1.6101 1.1351
Std 0.9974 1.015 1.0406 0.9909 0.9931 0.9858 0.9687
Skewness -0.1638 -0.2184 -0.1321 -0.2121 -0.2731 -0.305 -0.5405
Kurtosis 3.2607 2.9439 3.0716 3.1384 3.2892 2.9696 3.2401
Min -3.4643 -3.5039 -4.2769 -3.375 -4.2086 -3.5475 -3.9194
Max 3.1325 2.4994 2.7588 2.9882 2.9683 2.4994 1.7673

T=4,000

Mean -0.0103 -0.0048 -0.0016 -0.012 0.0238 0.0091 -0.0104
Median 0.0111 0.0689 0.0436 0.0519 -0.0327 0.1303 0.0958
Interquartile 1.3562 1.4644 1.4667 1.3051 1.4175 1.4233 1.6048
Std 1.0395 1.0468 1.0358 1.0107 0.9848 0.9885 0.9983
Skewness -0.1912 -0.232 -0.1316 -0.1706 -0.0976 -0.2069 -0.3014
Kurtosis 3.1878 2.9957 2.928 2.9517 2.7612 2.7147 2.8874
Min -4.1198 -3.9883 -3.2364 -3.1587 -2.6764 -2.7227 -3.5237
Max 3.1183 2.719 3.0785 2.9385 2.9941 2.4024 2.4997

T=8,000

Mean -0.0122 -0.0004 -0.0124 -0.0101 0.0344 0.0215 -0.0178
Median 0.0138 0.05 -0.0009 -0.0266 0.097 -0.0163 0.1359
Interquartile 1.3897 1.4199 1.3402 1.3369 1.2888 1.4087 1.4187
Std 1.0208 1.0374 0.996 1.0196 1.0008 1.0169 1.0268
Skewness -0.0649 -0.0944 -0.0156 -0.0654 -0.1083 -0.2083 -0.419
Kurtosis 2.8404 2.8374 2.72 3.0367 3.1416 2.9559 3.1894
Min -3.6513 -3.2297 -2.9908 -3.9455 -3.4929 -3.2431 -4.4126
Max 2.9456 2.6562 3.1066 3.1398 3.2391 2.7965 2.6864

T=16,000

Mean 0.0131 0.0075 -0.0011 -0.0139 0.0392 0.0387 -0.0007
Median 0.0097 0.0177 -0.0038 -0.0358 0.0377 0.1193 -0.0081
Interquartile 1.3066 1.2843 1.3409 1.3425 1.2157 1.2807 1.4043
Std 0.9741 0.9958 0.9982 1.026 1.0098 0.9866 1.026
Skewness 0.0327 -0.0683 -0.0705 -0.171 -0.0237 -0.1893 -0.3743
Kurtosis 2.8894 3.0443 2.8437 2.9635 3.1254 3.1579 3.1551
Min -3.0158 -2.9555 -2.96 -3.7487 -3.9208 -3.7295 -4.227
Max 3.3105 2.8892 2.9341 3.2889 3.3721 3.104 2.9985

T=32,000

Mean 0.0089 0.0094 0.0002 -0.0316 0.0411 0.0333 -0.021
Median -0.0108 0 0.0349 -0.0025 0.0529 0.0687 -0.0113
Interquartile 1.2435 1.3091 1.3226 1.3368 1.3617 1.4086 1.4187
Std 0.9537 0.9724 0.9712 1.0332 1.0509 1.008 1.013
Skewness 0.1083 0.0549 -0.0695 -0.2352 -0.1339 -0.2529 -0.2916
Kurtosis 3.039 2.9263 2.6938 3.2001 2.9577 2.9287 3.3573
Min -2.9159 -2.7948 -2.867 -3.598 -3.3879 -3.4571 -4.8399
Max 3.2082 3.1047 2.5885 3.5317 2.914 2.8839 2.6826

T=64,000

Mean 0.0297 0.0151 0.0049 -0.0094 0.0396 0.0386 0.0039
Median 0.0264 0.0312 0.0256 -0.036 0.0247 0.0266 -0.0158
Interquartile 1.2434 1.3249 1.3373 1.3778 1.3669 1.3519 1.3041
Std 0.9645 0.9704 0.9985 1.017 1.0212 0.9779 1.0023
Skewness -0.0331 -0.036 -0.098 -0.0698 -0.0525 -0.0808 -0.0777
Kurtosis 3.2684 3.2582 3.109 3.2913 2.9911 3.06 3.1275
Min -3.6638 -3.3034 -3.1363 -3.4484 -3.4727 -3.5341 -3.1273
Max 3.5654 3.6404 3.3322 3.4017 2.9584 2.942 3.894
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Figure 3.13: Distribution of the rescaled sampling error ξ11 = (p̂11 − p11)/se(p̂11) when states are observed.

p11 = p21 = 0.9 p11 = p21 = 0.95 p11 = p21 = 0.975 p11 = p21 = 0.9875 p11 = p21 = 0.9938 p11 = p21 = 0.9969 p11 = p21 = 0.9984
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Note: The superimposed red line is the standard Normal distribution. Number of replications is N = 1,000
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rounding error issues associated with being close to the boundary of the parameter space.

Summary statistics displayed in Table 3.11 reveal that, when matrix G is very close to

zero, and the sample size is close to T = 1000, the MLE of p11 is strongly median biased.

However, the mean is never strongly biased.

The usual asymptotic sequence is described as we move vertically down the column.

This implies that the transition probability matrix P is being held fixed, whilst matrix G

and the run length T are allowed to vary. This results in the expected number of transitions

to double as the run length T doubles. The consequence of this is that there is more and

more information about the transitions from state 1 to state 1, so that the parameter p11

is well estimated, and therefore the usual asymptotics work well.

The rescaled sampling error in transition probability parameter p21

Next we consider the behaviour of the rescaled sampling error in the transition param-

eter from state 2 to state 1, denoted as ξ21. In Figure 3.14 the main diagonal displays the

sampling behaviour under the alternative asymptotic sequence Case 1. As the run length T

doubles, the expected number of transitions from state 2 to state 1 is slowly increasing to

g11 = 100. This happens as a result of a simultaneous change in the probability transition

matrix P towards the boundary case, so that it is less likely that one remains in state 2

given one is currently in state 2. Therefore, the expected number of transitions from state

2 to state 2 is decreasing. Subsequently, this will result in estimates of p21 being equal

to one with increasingly higher probability. This explains the multitude of parameter esti-

mates being equal to one, which is not a result of the numerical rounding error issues. It is

evident from Figure 3.14 that under the alternative asymptotic sequence Case 1, the lim-

iting distribution is not the standard normal distribution. Furthermore, it seems like the

deviation from the standard normal is not stable, and indisputably intensifying as the run

length T gets larger. Therefore, one would expect the supremum of the difference between

the standardised sampling error and the standard normal distribution to be increasing.

From the plots one can learn that there is a variety of ways in which the regular

asymptotic theory would be wrong. First, there is higher and higher probability that the

estimates of p21 would lie on the boundary of the parameter space. Hence, as one moves



3.3. Monte Carlo simulations 65

Table 3.12: Summary statistics for the rescaled sampling error ξ21 = (p̂21 − p21)/se(p̂21) when states are observed.1

p11 = p21 = 0.9 p11 = p21 = 0.95 p11 = p21 = 0.975 p11 = p21 = 0.9875 p11 = p21 = 0.9938 p11 = p21 = 0.9969 p11 = p21 = 0.9984

T=1,000

Mean 0.0395 0.0612 0.0911 0.0314 0.0093 0.0192 0.0363
Median 0.0927 0.1189 0.8002 0.3976 0.1982 0.0989 0.0494
Interquartile 1.3154 1.4077 1.2804 0 0 0 0
Std 0.9901 0.9603 0.9388 0.994 0.9574 0.8111 0.3719
Skewness -0.381 -0.4457 -1.2554 -3.3979 -5.7710 -12.5021 -28.3020
Kurtosis 3.2945 2.993 4.3947 19.8273 40.5249 189.7384 802.0012
Min -4.0041 -3.3253 -5.1275 -10.2045 -10.3706 -15.7293 -10.4945
Max 2.4987 1.6214 0.8002 0.3976 0.1982 0.0989 0.0494

T=2,000

Mean 0.0006 0.0121 0.0854 0.0254 0.0196 0.0229 0.0260
Median 0.0807 0.0704 0.2079 0.5624 0.2803 0.1399 0.1399
Interquartile 1.3395 1.3989 1.7087 1.3434 0 0 0
Std 0.9896 0.9608 0.9373 0.9668 0.9699 0.8767 0.8629
Skewness -0.2531 -0.3039 -0.7084 -1.6953 -4.0017 -8.5381 -8.7130
Kurtosis 2.8246 2.9629 3.0298 5.3119 19.8805 83.9897 88.1432
Min -3.1419 -3.2796 -3.6343 -4.8367 -7.1948 -11.0551 -11.0551
Max 2.8801 2.2936 1.132 0.5624 0.2803 0.1399 0.1399

T=4,000

Mean 0.0058 0.0474 0.0835 0.0242 0.0199 0.0335 0.0084
Median 0.0529 0.0791 0.2088 0.7955 0.3965 0.1979 0.0989
Interquartile 1.4375 1.3559 1.3846 1.3258 0 0 0
Std 1.0267 0.9773 0.9498 0.9788 0.9969 0.9386 1.1010
Skewness -0.1887 -0.21 -0.557 -1.1163 -2.7644 -6.1602 -12.5458
Kurtosis 2.8875 2.787 3.2038 3.6722 10.7684 42.8437 163.4872
Min -3.1742 -3.0059 -3.5916 -4.2285 -6.281 -8.8502 -15.7229
Max 3.2242 2.6261 1.6011 0.7955 0.3965 0.1979 0.0989

T=8,000

Mean -0.0123 0.0295 0.042 0.0226 -0.0154 0.0344 0.0013
Median -0.0465 0.0646 0.1282 0.1972 0.5607 0.2799 0.1399
Interquartile 1.3893 1.3716 1.4685 1.7476 1.5206 0 0
Std 1.0426 0.9714 0.9655 1.0039 1.0129 0.9588 1.0232
Skewness -0.0193 -0.1181 -0.3732 -0.8084 -1.7547 -4.0113 -7.9433
Kurtosis 2.9307 2.9513 2.9062 3.3373 5.8999 19.0226 68.8264
Min -3.3247 -3.2772 -3.6231 -4.3296 -5.1356 -7.1848 -11.0485
Max 3.309 3.0252 2.2644 1.125 0.5607 0.2799 0.1399

T=16,000

Mean -0.0041 0.0589 0.0557 0.0138 0.0181 0.0624 0.0433
Median -0.0082 0.0563 0.1141 0.2405 0.793 0.3959 0.1978
Interquartile 1.4091 1.3288 1.3831 1.4725 1.3081 0 0
Std 1.0371 0.9885 0.9865 0.9999 0.9997 0.893 0.8683
Skewness -0.0268 -0.1101 -0.3299 -0.5301 -1.345 -2.4659 -5.6902
Kurtosis 2.9009 3.1172 2.9535 3.0224 4.8777 7.7684 34.8855
Min -3.4651 -3.2932 -3.0866 -3.7125 -4.7721 -4.5722 -6.8348
Max 3.2752 3.1223 2.5821 1.5911 0.793 0.3959 0.1978

T=32,000

Mean -0.0163 0.062 0.0386 0.0106 0.0071 0.0727 0.0545
Median -0.0578 0.1096 0.0403 0.0441 0.2152 0.5599 0.2797
Interquartile 1.4112 1.331 1.4412 1.3863 1.7855 0 0
Std 1.0516 1.032 1.0147 1.0019 1.0086 0.9541 0.8908
Skewness 0.0637 -0.132 -0.1473 -0.3651 -0.9255 -2.1016 -3.9797
Kurtosis 2.8272 3.0645 2.6865 3.0881 3.8017 8.1438 18.4977
Min -3.4657 -3.2718 -3.0589 -3.8372 -4.235 -6.2654 -6.6058
Max 3.197 3.775 2.5784 2.2501 1.1215 0.5599 0.2797

T=64,000

Mean 0.003 0.0616 0.0321 -0.026 0.0082 0.0546 0.0452
Median -0.0125 0.0525 0.0642 0.0217 0.238 0.7918 0.3956
Interquartile 1.3772 1.3213 1.3516 1.3579 1.4084 1.2927 0
Std 1.0051 1.0017 1.0295 1.0204 1.0082 0.945 0.973
Skewness 0.0604 0.0562 -0.2278 -0.281 -0.6596 -1.1678 -3.0001
Kurtosis 3.0186 2.9654 2.9196 2.9713 3.5757 4.0835 13.2121
Min -3.1155 -2.7626 -3.0658 -3.7262 -4.5437 -4.8702 -7.8602
Max 3.8844 3.1942 2.7498 2.562 1.5861 0.7918 0.3956

Note: 1 Summary statistics are computed conditional on spending a positive number of time periods in State 2.
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Figure 3.14: Distribution of the rescaled sampling error ξ21 = (p̂21 − p21)/se(p̂21) when states are observed.1

p11 = p21 = 0.9 p11 = p21 = 0.95 p11 = p21 = 0.975 p11 = p21 = 0.9875 p11 = p21 = 0.9938 p11 = p21 = 0.9969 p11 = p21 = 0.9984
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Note: 1 The distribution is conditional on spending a positive number of time periods in State 2. The superimposed red line

is the standard Normal distribution. Number of replications is N = 1,000.
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further down the main diagonal in Figure 3.14, it can be observed that the usual asymptotic

theory would allocate a substantial positive probability mass outside the boundary, that is

the non-feasible region beyond the value of (1 − p21). This would result in the distortion

away from the standard normal distribution by showing considerable deep skewness. This

is not surprising since the standard normal distribution does not provide an adequate

approximation when the mean of a distribution lies close to the boundary of the parameter

space. Second, the distribution of the rescaled sampling error noticeably accumulates at

the positive value of (1 − p21). In addition, one can notice strong skewness characterised

by large negative values outside the region where the standard normal distribution would

assign most of its probability mass. Third, plots reveal that there is not enough probability

mass in the centre of a distribution, which is conceivably a more serious distortion from

normality. One can also notice that as both p21 and p11 approach the value of 1, the

behaviour of their rescaled sampling errors, ξ21 and ξ11 respectively, considerably differs

from each other. Indeed, the heuristic theory would suggest that the limiting distribution of

ξ21 is a degenerate distribution with all of its probability mass centred at the lim
p21↗1

(1−p21).

This can be deduced by noting that the expected number of transitions from state 2 to

state 2 along the main diagonal is approaching lim
T→∞

E (nT22) = 0, as it is shown in (3.45).

According to the analytic formulae of the MLE, the p̂21 is computed as the number of times

state 2 is followed by state 1, divided by the total transitions from state 2 to any state.

Therefore, regardless of how many times one visits state 2, if it is not followed immediately

by state 2, the estimate of p21 will always equal 1 by construction of the MLE. This will

result in the MLE of the transition probability p21 to be biased in finite samples, although

being consistent.

Under the usual asymptotic sequence, that is as we move vertically down the column,

the expected number of transitions from state 2 to state 1 doubles as the run length T

doubles. The consequence of this is that there is more and more information about the

transitions from state 2 to state 1, so that the parameter p21 is well estimated. Therefore,

the behaviour of the rescaled sampling error ξ21 approaches that of a standard normal.

Also, the expected number of transitions from state 2 to state 1 doubles as the run length
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T doubles.

If one moves along any row across columns, one changes matrices P and G whilst

holding run length T constant. This induces a simultaneous change in the steady state

probability of being in state 2, and the probability of transiting from state 2 to state 1.

Consequently, the process is less likely to be in state 2. Furthermore, given the process is

already in state 2, it is less likely to remain in state 2. This results in the expected number

of transitions to decrease by slightly less than a half as one moves across the columns.

Therefore, the information about the transition parameter p21 decreases, and the general

asymptotic theory does not apply. The closer the G matrix is to zero for a given run length,

the worse things behave.

In summing up the simulation results, there seem to be three interconnected factors at

work that drive the observed distortions under the alternative asymptotic sequence Case

1. First, is that the expected number of time periods spent in state 2 is stochastically

bounded. That is, no mater how large one makes the run length T by moving very far

down the alternative asymptotic sequence, the expected number of time periods spent in

state 2 is unlikely to increase. In other words, the probability of seeing the number of time

periods spent in state 2 being really large is very small. Second, this alternative asymptotic

sequence pushes the parameter p21 to the upper boundary, which creates distortions. When

one is near the boundary, normal distribution may not work necessarily well, because it

might be assigning a substantial probability mass outside the parameter space. Third,

due to the transition probability parameters being close to the boundary of the parameter

space, the distribution of the rescaled sampling error results in having a sharp peak and

inherent discreteness. This is due to the way the MLE of p21 is constructed.

Unobserved states

Let’s now consider a more plausible world in which one cannot observe the states.

When states cannot be observed, it adds an additional aspect to the estimation problem.

This undoubtedly makes it interesting to assess what are the consequences of not being

able to observe the states. The empirical results have been obtained for both observed and

unobserved case, so it is possible to carry out comparison on what is the nature and the
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magnitude of the differences in these results, and what seems to be driving these differences.

The simulation results in the observed case confirmed that there is inherently going to be

a problem even if one could observe the states, because the number of time periods spent

in state 2 is not increasing to infinity. Hence, the estimates of the copula parameter for

that state will not be converging to the true parameter value, but will remain blurred and

spread out.

The rescaled sampling error in copula parameter θ1 in state 1

In Figure 3.15 along the main diagonal we can notice that the behaviour of the rescaled

sampling error under the alternative asymptotic sequence is not substantially affected by

the lack of observability of the states. The behaviour under the usual asymptotics seems

also not to be considerably affected. This is not surprising because one gets a lot of

information about the copula parameter θ1 in state 1, and one is not getting close to the

boundary point of a parameter space, because the transition probability matrix P is being

held fixed.

However, the behaviour of the rescaled sampling error markedly deteriorates as G gets

very close to zero. This can be observed by moving along any row across the columns,

which imposes the run length T to be fixed whilst changing matrices P and G. The

summary statistics in Table 3.13 indicate strong mean bias and relatively milder median

bias of the MLE. We can also detect a substantial increase in uncertainty, deeper skewness

and stronger kurtosis. These distortions happen in the upper right region of Figure 3.15

and the corresponding region in Table 3.13. In these regions, the number of transitions

from state 1 to state 2 is very low, and so is the expected number of time periods spent

in state 2. In the observed case it was noticed that as a result of spending a negligible

number of time periods in state 2, it translated into distortions in the distribution of the

rescaled sampling error in p11. Although the likelihood function for the unobserved case is

different, it is expected that a similar nature of distortions would be present in this case,

such as severe kurtosis, considerable skewness, large negative values, and high uncertainty

in the parameter estimates. It is through the construction of the likelihood function that

these distortions, associated with low occupancy state 2, “contaminate” the estimates of
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Table 3.13: Summary statistics for the rescaled sampling error θs1 = (θ̂1 − θ1)/se(θ̂1) when states are not observed.

p11 = p21 = 0.9 p11 = p21 = 0.95 p11 = p21 = 0.975 p11 = p21 = 0.9875 p11 = p21 = 0.9938 p11 = p21 = 0.9969 p11 = p21 = 0.9984

T=1,000

Mean -0.0241 -0.0045 0.0712 0.258 0.4989 0.7226 0.7859
Median 0.032 0.0364 0.0674 0.1207 0.1843 0.2569 0.2719
Interquartile 1.2847 1.3307 1.315 1.3704 1.3927 1.4405 1.4522
Std 1.0013 0.9874 1.0736 1.5221 2.1434 2.5586 2.5842
Skewness -0.1906 -0.1829 0.3345 3.512 4.2634 3.4162 3.6936
Kurtosis 3.2541 3.2043 4.8828 27.967 31.9466 20.3767 21.5365
Min -3.5181 -3.9573 -3.4735 -3.5053 -7.0123 -9.1715 -7.2812
Max 3.2177 3.2241 6.4576 15.0475 21.4938 20.1206 19.6761

T=2,000

Mean -0.0266 -0.0077 0.0211 0.0794 0.3136 0.619 1.0469
Median -0.0307 -0.0384 0.037 0.0244 0.1133 0.152 0.2348
Interquartile 1.3132 1.3328 1.3247 1.3449 1.3087 1.3892 1.492
Std 0.9855 0.977 0.9891 1.0512 1.9575 2.6823 3.6915
Skewness -0.051 -0.0436 -0.0179 0.5344 7.5599 5.6097 4.4205
Kurtosis 2.9463 2.7839 2.8124 5.5442 90.1374 44.4286 25.7951
Min -3.2589 -2.6567 -2.9553 -4.2076 -2.9608 -3.5546 -8.9242
Max 2.9323 2.7739 2.8884 6.4213 25.8446 26.2346 27.7361

T=4,000

Mean -0.0412 -0.0436 -0.0355 -0.0042 0.0417 0.455 0.8524
Median 0.0283 0.023 0.0065 0.017 0.0454 0.1471 0.1967
Interquartile 1.3078 1.3413 1.3147 1.3477 1.327 1.4137 1.4936
Std 0.9825 0.9898 0.9872 0.9977 1.0965 2.6837 3.6897
Skewness -0.1111 -0.1256 -0.0971 -0.0188 1.3205 7.7765 6.1287
Kurtosis 2.8202 2.7877 2.802 2.9645 12.8807 87.1306 49.9224
Min -3.1256 -3.0527 -2.9126 -3.0722 -2.783 -2.8627 -2.7084
Max 2.6277 3.0458 2.8314 3.1283 10.3888 37.7109 40.5088

T=8,000

Mean -0.016 -0.0012 -0.0013 0.003 0.0201 0.1954 0.6511
Median -0.0337 0.0291 0.0209 -0.0054 0.0559 0.0621 0.0883
Interquartile 1.3276 1.2767 1.3163 1.3393 1.3196 1.351 1.4028
Std 0.9889 0.9889 0.9869 0.9876 0.9871 1.8909 4.1106
Skewness 0.0247 -0.0113 -0.066 -0.057 -0.0214 9.685 9.0691
Kurtosis 2.8186 2.8929 2.9571 2.9456 2.9026 141.2008 99.6973
Min -2.9032 -2.6584 -2.9015 -3.0586 -2.9106 -2.8852 -4.737
Max 2.8375 2.9666 3.1302 3.175 3.4079 30.129 52.0006

T=16,000

Mean 0.0075 0.0037 0.0008 0.0043 -0.0035 0.0297 0.1956
Median 0.0082 -0.0288 -0.017 -0.0015 0.0052 0.0351 0.0806
Interquartile 1.3676 1.3271 1.3288 1.3728 1.3452 1.3568 1.3301
Std 1.0058 0.9888 0.9893 0.9779 0.9893 0.992 2.5086
Skewness -0.0028 0.004 -0.0128 -0.0622 -0.0929 -0.039 22.6185
Kurtosis 2.9268 3.0195 2.8919 2.8729 2.9222 3.0206 636.8162
Min -2.9103 -3.2652 -3.3712 -3.3039 -3.4503 -3.2897 -3.4406
Max 2.9491 3.1936 2.8813 2.821 2.8693 3.2152 71.0131

T=32,000

Mean -0.0177 -0.0096 -0.0064 0.009 -0.0027 -0.003 0.0195
Median -0.0155 -0.016 -0.03 0.0001 -0.0467 -0.007 -0.019
Interquartile 1.3377 1.3282 1.3594 1.3116 1.3785 1.4079 1.3922
Std 1.014 1.0018 1.0125 1.0103 1.022 1.0118 1.1555
Skewness -0.0334 -0.0541 -0.0187 0.0153 0.0283 0.0216 3.2978
Kurtosis 3.038 3.0789 3.0587 3.0796 2.9973 3.1216 49.7778
Min -3.2156 -3.4001 -3.4444 -3.1129 -3.3167 -3.1708 -3.0798
Max 3.5473 3.1508 3.2132 3.3656 3.1985 3.3784 17.0563

T=64,000

Mean -0.0178 -0.0223 -0.0218 -0.0088 -0.019 -0.0223 -0.0237
Median -0.0102 -0.024 -0.0453 -0.0466 -0.0516 -0.0716 -0.0548
Interquartile 1.335 1.3789 1.3544 1.3646 1.4106 1.3522 1.3759
Std 1.0202 1.0089 1.0099 1.0048 1.0048 1.0047 0.9995
Skewness -0.0143 0.0067 0.0089 0.0551 0.0622 0.029 0.0456
Kurtosis 2.8006 2.7604 2.9033 2.9415 2.8729 2.9045 2.8701
Min -3.0918 -2.7973 -2.9227 -2.9427 -3.0869 -3.1624 -3.0629
Max 2.9693 3.2347 3.1313 3.1433 3.2013 3.098 3.3231
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Figure 3.15: Distribution of the rescaled sampling error θs1 = (θ̂1 − θ1)/se(θ̂1) when states are not observed.

p11 = p21 = 0.9 p11 = p21 = 0.95 p11 = p21 = 0.975 p11 = p21 = 0.9875 p11 = p21 = 0.9938 p11 = p21 = 0.9969 p11 = p21 = 0.9984
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θ1. However, unlike in the observed case, the abundance of the parameter estimates being

equal to one may well be due to the numerical rounding error issues. When states cannot

be observed, the probability of being in a particular state has to be estimated from the data

given the copula parameters in both states. These results indicate that when the expected

number of time periods spent in both states is substantial, then the lack of observability

would not be to a great extent important. However, if the expected occupancy time in

a particular state is negligible, then the distortions in the parameter estimates associated

with the low occupancy state will “contaminate” the parameter estimates associated with

the high occupancy state. Therefore, the lack of observability would have a stronger impact

on the distribution of the rescaled sampling error.

The rescaled sampling error in copula parameter θ2 in state 2

Now we examine the consequences of not being able to observe the states on the be-

haviour of the rescaled sampling error θs2. In Figure 3.16 along the main diagonal we

can notice a sizeable distortion in the behaviour of the rescaled sampling error under the

alternative asymptotic sequence. When conducting a visual inspection of the plots, the

presence of a deep positive skewness can be easily noticed, accompanied by high kurtosis

and strong mean bias. Table 3.14 presents summary statistics confirming these distortions.

We can easily calculate the expected number of time periods spent in state 2 to be 100

using (3.41), and it would seem that this amount of information would not be sufficient for

the usual asymptotics to work well when the states cannot be observed. The simulation

results from the observed case suggested that if states could be observed, this amount of

information would be sufficient for the usual asymptotics to describe reasonably well the

behaviour of the rescaled sampling error. Therefore, we could obtain more information if

we moved to a lower sub-diagonal, where the expected number of time periods spent in

state 2 would increase, and we would expect the behaviour to improve. Indeed, we can no-

tice that the behaviour under the alternative asymptotics is reasonably well approximated

by the standard normal distribution as we move down to lower sub-diagonals.

The behaviour under the usual asymptotics seems to be unsurprisingly unaffected.

Although, as it was mentioned previously, one would need a somewhat larger sample for
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Table 3.14: Summary statistics for the rescaled sampling error θs2 = (θ̂2 − θ2)/se(θ̂2) when states are not observed.

p11 = p21 = 0.9 p11 = p21 = 0.95 p11 = p21 = 0.975 p11 = p21 = 0.9875 p11 = p21 = 0.9938 p11 = p21 = 0.9969 p11 = p21 = 0.9984

T=1,000

Mean 0.2142 0.3838 0.6396 0.8263 0.7307 0.4903 0.297
Median -0.0481 -0.0781 -0.0922 -0.0602 0.0629 0.2705 0.1712
Interquartile 1.3386 1.2916 1.0628 1.1907 1.1379 0.6452 0.266
Std 1.2057 1.7274 2.0994 2.1514 1.4857 0.8498 0.4672
Skewness 2.0834 6.0144 3.4425 3.3227 2.7588 3.4336 4.3646
Kurtosis 11.75 69.2473 18.556 18.0814 13.3652 21.9872 38.963
Min -3.2258 -2.5567 -1.6852 -1.8195 -0.6203 -0.5519 -0.1868
Max 9.7197 26.0762 16.975 18.3819 12.9378 9.1917 6.4504

T=2,000

Mean 0.1243 0.2058 0.3512 0.5602 0.6661 0.6107 0.4382
Median -0.0637 -0.1 -0.1133 -0.11 -0.0758 0.0825 0.2556
Interquartile 1.3388 1.3331 1.2104 0.9573 1.0933 1.0018 0.6071
Std 1.0352 1.2013 1.527 1.8962 1.7254 1.2417 0.7313
Skewness 0.838 1.7448 2.976 3.454 2.7896 3.1115 3.6029
Kurtosis 3.828 8.4357 16.6546 18.5489 12.5581 17.6279 26.1744
Min -2.8977 -3.618 -3.4573 -1.7193 -1.1702 -0.9564 -0.5044
Max 4.379 8.0175 12.0208 16.6062 11.4745 11.1202 8.5492

T=4,000

Mean 0.0966 0.1617 0.2535 0.515 0.6295 0.8299 0.6535
Median -0.0812 -0.0822 -0.1463 -0.0929 -0.0769 0.0355 0.3455
Interquartile 1.3906 1.3634 1.2759 1.1435 1.0332 1.4271 1.0531
Std 1.0879 1.1486 1.3619 2.1512 1.9929 1.81 1.1292
Skewness 0.9 1.4104 2.9279 5.3001 3.441 2.5718 2.5969
Kurtosis 4.253 6.3469 19.4398 44.1399 18.8309 11.0901 12.6662
Min -2.3324 -1.9237 -2.517 -2.2342 -1.5101 -1.0567 -0.8431
Max 5.9044 6.7001 12.4565 25.7057 17.9748 12.2014 8.9751

T=8,000

Mean 0.0835 0.0989 0.1518 0.2028 0.3449 0.6364 0.7246
Median -0.0211 -0.0307 -0.0458 -0.0534 -0.0841 -0.0934 -0.0156
Interquartile 1.4159 1.2804 1.2318 1.241 1.0358 0.9613 1.3257
Std 1.0677 1.0624 1.0554 1.0823 1.425 1.9822 1.6121
Skewness 0.7455 1.0267 1.4105 1.5743 3.1752 3.0593 2.4543
Kurtosis 4.2745 4.8658 6.3291 6.7328 16.9411 14.3254 11.1297
Min -2.2924 -2.0897 -1.7707 -2.3587 -1.7232 -2.0709 -1.9292
Max 5.8558 5.9862 6.1544 6.4604 11.4091 14.8505 12.7056

T=16,000

Mean 0.0743 0.0832 0.1131 0.1706 0.2222 0.4776 0.7347
Median -0.0001 -0.0297 -0.0434 -0.0651 -0.121 -0.1039 -0.1009
Interquartile 1.3107 1.3216 1.2931 1.274 1.1704 1.0968 1.108
Std 1.0146 1.0171 1.0097 1.0873 1.1759 1.8849 2.0153
Skewness 0.4225 0.638 0.7945 1.3871 2.3251 4.0823 2.7455
Kurtosis 3.2145 3.6653 3.7475 5.9607 13.5275 25.3694 12.3638
Min -2.6192 -2.3545 -1.9371 -1.7823 -2.1778 -1.4766 -1.33
Max 3.7333 4.3826 4.3659 6.5199 11.1859 17.2948 14.3835

T=32,000

Mean 0.0415 0.0342 0.0413 0.1215 0.1591 0.2185 0.3925
Median -0.0202 -0.007 -0.0448 -0.0326 -0.0394 -0.0887 -0.0837
Interquartile 1.4174 1.2733 1.291 1.2417 1.2042 1.1555 1.0021
Std 1.0071 1.0037 0.9841 0.9869 1.0392 1.0936 1.5845
Skewness 0.2478 0.3708 0.6329 1.088 1.5962 1.9346 4.6666
Kurtosis 2.881 3.6145 3.6956 5.1893 7.2497 9.2389 43.1191
Min -2.4478 -3.0454 -2.1069 -1.7501 -1.5925 -2.2456 -1.6921
Max 3.5193 4.6302 4.2963 5.7998 5.8959 8.0756 21.6642

T=64,000

Mean 0.0282 0.0052 -0.0184 0.0373 0.0967 0.1592 0.2556
Median -0.0141 -0.034 -0.0891 -0.0923 -0.0474 -0.0853 -0.0267
Interquartile 1.2701 1.3476 1.3597 1.2587 1.2494 1.2072 1.0521
Std 0.9789 0.991 0.971 0.9923 0.9984 1.032 1.1443
Skewness 0.3018 0.2657 0.3575 0.912 0.933 1.4491 1.9576
Kurtosis 2.9451 3.0108 2.8361 4.3087 4.0773 6.0911 8.2316
Min -2.3291 -2.567 -2.2457 -2.0137 -2.0798 -1.7719 -2.2903
Max 3.1993 4.0498 3.3773 4.3861 4.8324 5.594 6.144
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Figure 3.16: Distribution of the rescaled sampling error θs2 = (θ̂2 − θ2)/se(θ̂2) when states are not observed.

p11 = p21 = 0.9 p11 = p21 = 0.95 p11 = p21 = 0.975 p11 = p21 = 0.9875 p11 = p21 = 0.9938 p11 = p21 = 0.9969 p11 = p21 = 0.9984
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the usual asymptotics to start to work reasonably well.

Next, if we fix the run length T and move across the columns, the matrix G does not

need to get very close to zero for the behaviour of the rescaled sampling error to start to

deteriorate. Examination of the first cell for T = 1000 in Table 3.14 indicates the presence

of distortions in the form of a strong positive skewness, high kurtosis and a sizeable mean

bias equal to 0.21. This can also be noticed by the visual inspection of the first plot in

Figure 3.16.

The rescaled sampling error in transition probability parameter p11

Now we consider Figure 3.17 which displays distributions of the rescaled sampling error

in p11 when states are unobserved. Along the main diagonal the sampling behaviour under

the alternative asymptotic sequence Case 1 is displayed. There is a noticeable impact

as a result of not being able to observe the states. The most prominent is a moderate

negative skewness and increasing kurtosis. Table 3.15 provides the summary statistics

which confirm the observed distortions. It is interesting to note that the interquartile

range is never far off from the reference distribution. It is not trivial to establish what the

limiting distribution of the rescaled sampling error will be, however it seems plausible to

conjecture that the limiting distribution will not be the standard normal distribution. As

expected, the behaviour under the usual asymptotics is unaffected, although larger samples

are required for distortions to wash away, with skewness being the most pronounced and

the most persistent amongst others.

If one moves along any row by fixing T and changing matrices P and G, the behaviour

of the rescaled sampling error deteriorates rapidly well before G gets very close to zero.

These distortions appear in the form of deep negative skewness, severe kurtosis, very large

negative values, increased standard deviation and strong mean bias. Surprisingly, the

median bias is never strong in most of the cells.

The rescaled sampling error in transition probability parameter p21

Next we consider the behaviour of the rescaled sampling error in p21. In Figure 3.18

the main diagonal displays the distribution of ξ21 when states are not observed under the
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Table 3.15: Summary statistics for the rescaled sampling error ξ11 = (p̂11 − p11)/se(p̂11) when states are not observed.

p11 = p21 = 0.9 p11 = p21 = 0.95 p11 = p21 = 0.975 p11 = p21 = 0.9875 p11 = p21 = 0.9938 p11 = p21 = 0.9969 p11 = p21 = 0.9984

T=1,000

Mean -0.0563 -0.1263 -0.448 -1.5654 -3.4586 -5.3302 -5.7882
Median 0.0147 0.0157 0.0284 -0.0713 -0.0801 -0.0853 -0.0572
Interquartile 1.3367 1.2483 1.1682 1.252 1.4145 1.3123 1.1576
Std 0.9906 0.9943 2.5839 6.6473 12.7759 19.4855 20.589
Skewness -0.4763 -1.542 -11.9007 -6.73 -5.6728 -6.2991 -6.4197
Kurtosis 3.4574 11.8081 187.4717 55.298 41.6755 52.335 59.3035
Min -4.1805 -9.6552 -44.9221 -73.4098 -146.0597 -220.4332 -283.0834
Max 2.6489 1.8858 1.4217 0.9537 0.7191 0.4506 0.2761

T=2,000

Mean -0.024 -0.0544 -0.1095 -0.4818 -2.2035 -4.75 -8.7758
Median 0.0577 0.0207 0.0469 0.044 -0.0544 -0.0792 -0.0762
Interquartile 1.2413 1.3633 1.2025 1.1263 1.1292 1.2881 1.4009
Std 0.964 0.9571 0.9548 3.5303 11.9097 19.7314 31.9542
Skewness -0.5309 -0.4993 -1.0916 -15.8249 -8.0958 -6.464 -5.698
Kurtosis 3.608 3.0735 5.2549 325.1056 75.4821 54.5856 43.5069
Min -4.4138 -3.7528 -5.7708 -82.8932 -140.1175 -261.7335 -356.5173
Max 2.5637 2.1154 1.8799 1.3156 0.9496 0.6552 0.4753

T=4,000

Mean -0.0514 -0.0754 -0.0883 -0.1918 -0.6913 -5.226 -9.7038
Median -0.0137 0.0023 0.0274 0.0193 0.014 -0.1141 -0.1553
Interquartile 1.285 1.3146 1.3495 1.2991 1.1419 1.2985 1.7388
Std 1.0116 0.9857 0.9776 1.1395 6.7212 25.8314 39.3149
Skewness -0.2976 -0.5253 -0.6899 -2.7095 -17.3268 -6.6447 -5.5202
Kurtosis 3.2164 3.7799 3.6891 20.1325 317.8163 51.1818 36.3957
Min -3.4824 -5.0763 -4.3563 -11.732 -138.0518 -267.7412 -353.2354
Max 3.1062 2.3626 2.0943 1.6159 1.2327 1.2164 0.6151

T=8,000

Mean -0.062 -0.0911 -0.1331 -0.1606 -0.2317 -1.7301 -7.7418
Median -0.0248 -0.0567 -0.0369 -0.0378 -0.0095 -0.0378 -0.1504
Interquartile 1.3299 1.2886 1.3082 1.2725 1.198 1.2026 1.3958
Std 1.0165 1.0156 1.0055 0.9581 1.1585 18.2802 49.489
Skewness -0.3711 -0.2297 -0.4577 -0.7444 -3.7885 -21.8464 -9.5633
Kurtosis 3.4223 3.0989 3.3996 3.841 41.0975 534.5617 102.7791
Min -4.4218 -3.4552 -3.8461 -4.7746 -16.0981 -484.64 -651.5851
Max 2.973 3.0176 2.6687 1.7944 1.5027 1.1514 0.8183

T=16,000

Mean -0.0594 -0.0699 -0.1055 -0.123 -0.1097 -0.3091 -2.4028
Median -0.0271 -0.0589 -0.0615 -0.0331 -0.0052 -0.0056 -0.0721
Interquartile 1.2252 1.3006 1.3487 1.3037 1.2958 1.2258 1.2517
Std 0.951 0.9814 1.0052 0.9629 0.9452 1.5709 26.2608
Skewness -0.0497 -0.2519 -0.2513 -0.3623 -0.741 -5.9556 -25.2797
Kurtosis 3.2193 3.2414 3.0212 2.9897 3.432 58.3969 713.1538
Min -3.2464 -3.8713 -3.9226 -3.7004 -3.5339 -18.498 -763.3198
Max 2.9212 2.534 2.9538 2.1567 1.656 1.8234 1.1395

T=32,000

Mean -0.0248 -0.0581 -0.0882 -0.1387 -0.0974 -0.1498 -0.5771
Median -0.0023 -0.0039 -0.0626 -0.0676 -0.0135 0.0202 0.0534
Interquartile 1.34 1.3213 1.3283 1.2948 1.2111 1.2284 1.1144
Std 0.9987 0.9697 0.9954 0.9625 0.9782 1.1906 8.2594
Skewness -0.1941 -0.1415 -0.2062 -0.4031 -0.6769 -7.33 -27.2103
Kurtosis 3.3361 3.1195 3.2255 3.3584 3.8206 132.9369 790.7627
Min -3.7145 -3.319 -4.1968 -4.2067 -4.8837 -22.8005 -246.0657
Max 3.2208 3.3776 3.0992 2.4646 2.2187 1.914 1.3661

T=64,000

Mean 0.0175 -0.0315 -0.0617 -0.1095 -0.0536 -0.0584 -0.1064
Median 0.0671 0.0275 -0.0406 -0.0586 -0.0033 0.0518 0.0572
Interquartile 1.3282 1.2968 1.3963 1.3126 1.2544 1.2088 1.1882
Std 0.9958 1.004 0.9955 0.9917 0.9514 0.9287 0.9445
Skewness -0.1421 -0.1561 -0.1329 -0.1153 -0.2934 -0.7446 -1.196
Kurtosis 3.1212 3.2065 2.7552 2.9862 3.2804 4.1234 6.4015
Min -4.017 -3.7251 -3.117 -3.263 -3.5971 -5.0606 -5.8649
Max 2.8312 3.1619 2.7204 3.0436 2.6751 2.0159 1.9083
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Figure 3.17: Distribution of the rescaled sampling error ξ11 = (p̂11 − p11)/se(p̂11) when states are not observed.

p11 = p21 = 0.9 p11 = p21 = 0.95 p11 = p21 = 0.975 p11 = p21 = 0.9875 p11 = p21 = 0.9938 p11 = p21 = 0.9969 p11 = p21 = 0.9984
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Table 3.16: Summary statistics for the rescaled sampling error ξ21 = (p̂21 − p21)/se(p̂21) when states are not observed.

p11 = p21 = 0.9 p11 = p21 = 0.95 p11 = p21 = 0.975 p11 = p21 = 0.9875 p11 = p21 = 0.9938 p11 = p21 = 0.9969 p11 = p21 = 0.9984

T=1,000

Mean -0.1893 -0.3696 -0.5074 -0.439 -0.3139 -0.1784 -0.1104
Median 0.0314 0.1791 0.0652 0.019 0.0048 -0.0249 -0.0213
Interquartile 1.3383 0.9215 0.3168 0.136 0.1208 0.1055 0.0611
Std 0.9786 1.0681 1.6469 1.9073 1.5462 0.8861 0.7578
Skewness -1.234 -2.5 -4.6594 -7.9734 -10.0978 -15.8916 -20.5374
Kurtosis 4.516 10.806 29.6972 83.2534 122.3703 332.1948 490.7491
Min -4.4099 -7.2621 -14.7856 -29.0554 -24.4431 -21.0806 -19.7901
Max 1.0993 0.7609 0.2921 0.1409 0.0447 0.0121 0.0193

T=2,000

Mean -0.1316 -0.2992 -0.5049 -0.479 -0.362 -0.2286 -0.1507
Median 0.0715 0.1653 0.1009 0.0303 0.0089 0.002 -0.03
Interquartile 1.3698 0.9915 0.6106 0.2056 0.1265 0.1385 0.1022
Std 1.0402 1.0661 1.4715 1.7564 1.424 0.7495 0.5282
Skewness -1.0317 -1.9189 -4.0218 -7.5687 -7.8856 -7.7216 -11.2435
Kurtosis 4.2783 6.8278 26.044 82.787 79.8384 84.4878 175.3221
Min -5.0152 -6.3243 -14.1381 -27.0362 -18.5432 -11.367 -9.9867
Max 1.5137 0.8308 0.5056 0.2509 0.0643 0.0156 0.0198

T=4,000

Mean -0.0503 -0.1591 -0.4407 -0.5884 -0.4766 -0.4372 -0.2994
Median 0.0617 0.1658 0.157 0.0498 0.0147 0.004 0.0006
Interquartile 1.2631 1.1252 0.7472 0.2403 0.0474 0.1783 0.157
Std 0.9973 0.9697 1.3335 2.0711 2.027 2.1453 1.4132
Skewness -0.7666 -1.6256 -3.3414 -7.6593 -9.7487 -12.8899 -11.7417
Kurtosis 3.6874 6.3211 17.1904 101.5993 139.036 211.3321 164.1825
Min -4.1794 -6.3515 -10.0031 -36.4308 -37.4911 -42.6609 -22.5713
Max 1.9719 1.1969 0.5706 0.2152 0.1303 0.027 0.0098

T=8,000

Mean -0.0378 -0.1201 -0.3455 -0.4994 -0.5542 -0.4648 -0.4161
Median 0.0493 0.1038 0.2165 0.0794 0.0243 0.007 0.0019
Interquartile 1.2699 1.2685 0.9951 0.3607 0.0443 0.1022 0.1915
Std 0.9777 0.9736 1.1171 1.5149 2.1297 2.3456 2.727
Skewness -0.5229 -1.0799 -2.3201 -3.7431 -7.2527 -14.9384 -22.5082
Kurtosis 3.3347 3.9227 9.6468 19.9597 73.2803 301.105 599.4694
Min -3.6171 -3.9508 -7.6755 -13.5907 -29.7585 -54.2479 -75.9934
Max 2.2424 1.452 0.6489 0.3489 0.1208 0.0473 0.0219

T=16,000

Mean -0.0195 -0.0495 -0.2217 -0.4264 -0.5837 -0.4678 -0.4338
Median 0.0391 0.0841 0.2091 0.133 0.0401 0.0114 0.0032
Interquartile 1.3137 1.3249 1.0845 0.6001 0.0946 0.0723 0.0481
Std 0.9883 0.9735 1.0797 1.3754 2.4197 1.7741 2.098
Skewness -0.4749 -0.8092 -2.0114 -4.028 -7.5376 -7.1616 -13.4301
Kurtosis 3.2032 3.6773 7.8031 27.469 73.6 64.4645 226.3301
Min -3.5674 -3.9381 -6.4101 -15.652 -31.0252 -20.2575 -42.0843
Max 2.3721 1.8629 1.1831 0.4026 0.1439 0.0593 0.0244

T=32,000

Mean -0.0356 -0.0267 -0.1443 -0.3792 -0.5433 -0.4789 -0.4982
Median 0.0447 0.0941 0.1898 0.1903 0.0641 0.0184 0.0052
Interquartile 1.3696 1.3231 1.2316 0.809 0.2992 0.0531 0.0039
Std 1.0245 1.0476 1.0859 1.2455 1.813 1.6962 2.4104
Skewness -0.3558 -0.8132 -1.7328 -3.2885 -5.3718 -6.0945 -11.0289
Kurtosis 3.049 4.0516 6.7915 18.745 41.4748 50.5622 156.9684
Min -3.4542 -4.8292 -6.0863 -10.8867 -20.3003 -20.4111 -43.3808
Max 2.8021 2.083 1.2598 0.6217 0.3004 0.171 0.0468

T=64,000

Mean -0.0391 0.0015 -0.0606 -0.2674 -0.5268 -0.5973 -0.476
Median 0.0084 0.0947 0.1408 0.1688 0.1019 0.0322 0.009
Interquartile 1.3694 1.4237 1.2894 1.0274 0.5944 0.0259 0.0059
Std 1.0278 1.0127 0.9937 1.0748 1.4684 2.2672 2.3701
Skewness -0.2561 -0.3447 -1.121 -2.9005 -3.093 -6.4552 -9.3714
Kurtosis 2.9975 2.745 4.4756 18.9468 14.1069 54.9377 106.1803
Min -3.7943 -3.2563 -5.0878 -11.4335 -11.9519 -24.9104 -32.8855
Max 2.648 2.2684 1.4188 0.7008 0.3393 0.1256 0.0369
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Figure 3.18: Distribution of the rescaled sampling error ξ21 = (p̂21 − p21)/se(p̂21) when states are not observed.

p11 = p21 = 0.9 p11 = p21 = 0.95 p11 = p21 = 0.975 p11 = p21 = 0.9875 p11 = p21 = 0.9938 p11 = p21 = 0.9969 p11 = p21 = 0.9984
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alternative asymptotic sequence Case 1. It can be observed that, as the run length T

doubles, the behaviour deteriorates very rapidly. From Table 3.16 it can be noted that

both skewness and kurtosis increase quickly, accompanied by a strong mean bias and

increasingly large negative values. The standard deviation also increases but less rapidly,

and the median bias remains low for most of the cells on the main diagonal. Again,

establishing the limiting distribution would involve non-trivial derivations. However, it

is reasonable to assume that the limiting distribution will not be the standard normal

distribution.

The usual asymptotics in the unobserved case work well, but as it is evident from the

last column in Figure 3.18, a much larger sample size would be required for the behaviour

to get close to the reference distribution for that particular specification of the P matrix.

Next, we can examine the behaviour of the rescaled sampling error by moving across

the columns. It can be seen that the matrix G does not need to get very close to zero

for the behaviour of the rescaled sampling error to start to deteriorate. Examination of

the first plot in Figure 3.18 for the run length T = 1000, reveals pronounced distortions

as compared to the observed case in Figure 3.14. As we move to the next plot across the

columns, the behaviour gets substantially distorted away from the reference distribution,

whilst in the observed case we could observe a much milder relative distortion. Summary

statistics in Table 3.16 indicate a strong negative skewness, high kurtosis and a sizeable

mean bias equal to 0.37.

In summing up the simulation results, the lack of observability of the states seems to add

an additional layer of distortions which affect the behaviour of rescaled sampling errors in

the parameters of interest. First, the simulation results reveal that the parameter estimates

in the high occupancy state 1 are negatively affected as a result of not being able to observe

the states. This implies that the behaviour in high occupancy state is not insensitive to

what happens in the low occupancy state. That is, the stronger distortions are in the low

occupancy state 2, the more striking the “contamination” effect is in the high occupancy

state 1. Second, the inability to perfectly distinguish one state from another means that

samples of considerable size are required for the behaviour of the standardised sampling



3.3. Monte Carlo simulations 81

errors to be well approximated by the usual asymptotic theory. In particular, skewness

present in the rescaled sampling error in θ1 under the alternative asymptotic sequence Case

1 washes away with run lengths larger than T = 1000. For the rescaled sampling error in θ2

the notable distortions do not seem to wash away as the run length increases, because the

expected number of time periods spent in state 2 remains stochastically bounded. However,

if we move sufficiently down to a lower sub-diagonals, meaning that for each specification of

P we have a larger sample, then the behaviour under the alternative asymptotic sequence

Case 1 is reasonably well approximated by the standard asymptotic theory. There are also

distortions present in the rescaled sampling error in p11, but it remains unclear whether

they will wash away further down the sequence. Having said that, the plots seem to suggest

increasing negative skewness and kurtosis. Again, if we move to a lower sub-diagonals then

the behaviour improves, although it is still unclear what will be the limiting distribution.

For the rescaled sampling error in p21 we do not expect distortions to go away regardless

of the sample size, because the expected number of state transitions from state 2 to state

1 remains stochastically bounded, and at the same time P is getting closer to a boundary.

Although we cannot tell with certainty the limiting distribution it will converge to, it is

quite conceivable that it will not be the standard normal distribution.

3.3.2 Alternative asymptotic sequence Case 2

In this section we report results for the alternative asymptotic sequence Case 2 described

by specification in (3.46). Under this asymptotic sequence, the parameter values of the

transition probability matrix change with the run length in a fashion that results in the

expected number of time periods spent in both regimes proportional to the run length.

This implies that as the run length increases one spends on average longer time periods

in both states. The consequence of this characteristic on the behaviour of the rescaled

sampling errors is interesting, and it will be analysed next for both observed and unobserved

scenarios.
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Table 3.17: Summary statistics for the rescaled sampling error θs1 = (θ̂1 − θ1)/se(θ̂1) when states are observed.

p11 = 0.9 p11 = 0.95 p11 = 0.975 p11 = 0.9875 p11 = 0.9938 p11 = 0.9969 p11 = 0.9984
p21 = 0.9 p21 = 0.45 p21 = 0.225 p21 = 0.1125 p21 = 0.0563 p21 = 0.0281 p21 = 0.0141

T=1,000

Mean -0.0259 -0.0157 -0.004 -0.0225 -0.0233 -0.017 -0.0167
Median -0.0441 -0.0306 -0.0409 -0.0076 -0.0056 -0.0158 -0.0317
Interquartile 1.3783 1.3633 1.412 1.422 1.4007 1.442 1.4148
Std 1.0217 1.0134 1.0112 1.0125 1.0017 1.0174 1.0048
Skewness 0.0208 -0.0418 -0.0506 -0.0263 -0.0196 -0.0208 0.0349
Kurtosis 2.8379 2.7422 2.6846 2.6474 2.6409 2.7103 2.8402
Min -3.0392 -3.1212 -2.7517 -3.2135 -2.7031 -3.0253 -3.0092
Max 2.9356 2.746 2.8168 2.9592 2.7176 3.3447 3.2658

T=2,000

Mean -0.0128 -0.0022 0.0000 -0.011 -0.0074 -0.0143 -0.0057
Median -0.0249 -0.0292 0.0128 0.036 0.0341 -0.0095 0.0243
Interquartile 1.4135 1.417 1.4008 1.3735 1.3897 1.3733 1.4179
Std 1.0224 1.0345 1.0374 1.0231 1.0228 1.0256 1.0321
Skewness -0.0031 -0.0095 -0.0848 -0.1187 -0.0933 -0.0598 -0.0303
Kurtosis 2.8333 2.8982 2.9464 2.8669 2.9118 2.9405 2.9917
Min -3.0294 -3.0587 -3.5622 -3.2344 -3.3857 -3.3189 -3.5629
Max 2.8661 3.127 3.2029 2.979 3.3883 3.1587 3.0667

T=4,000

Mean -0.0436 -0.0255 -0.0236 -0.021 -0.0271 -0.0397 -0.0218
Median -0.0285 0.0157 -0.0316 -0.0185 -0.0329 -0.0606 -0.0333
Interquartile 1.3196 1.3434 1.3035 1.277 1.3096 1.2846 1.2732
Std 1.0076 1.0265 1.0186 1.0025 1.0011 1.0133 1.0105
Skewness -0.1627 -0.1309 -0.1146 -0.1048 -0.1097 -0.0848 -0.0853
Kurtosis 3.0525 3.2294 3.1669 3.079 3.0282 3.1141 3.0424
Min -3.1814 -3.4241 -3.4161 -3.0973 -3.0353 -3.4053 -3.2639
Max 3.5566 4.1956 3.8281 3.7891 3.501 3.5573 3.323

T=8,000

Mean -0.0414 -0.0273 -0.0379 -0.042 -0.0356 -0.0437 -0.0257
Median -0.058 -0.023 -0.019 -0.0505 -0.0315 -0.0532 -0.0299
Interquartile 1.3972 1.371 1.4064 1.3927 1.3693 1.4316 1.4133
Std 1.0241 1.0171 1.0344 1.0247 1.0203 1.0435 1.028
Skewness 0.0825 0.0396 0.0141 -0.0335 0.0062 0.0283 -0.0196
Kurtosis 2.9428 2.9261 2.8492 2.937 2.8947 2.882 2.8869
Min -3.2448 -3.268 -3.2204 -3.2988 -3.2818 -3.3153 -3.3541
Max 3.2442 3.2043 3.3816 2.9237 3.2264 3.5496 3.0955

T=16,000

Mean -0.0392 -0.0436 -0.049 -0.0448 -0.0413 -0.0419 -0.0366
Median -0.0457 -0.0252 -0.0539 -0.0599 -0.0958 -0.081 -0.0699
Interquartile 1.3374 1.3971 1.3878 1.3438 1.3149 1.3695 1.3916
Std 1.0028 1.0071 1.0023 1.0028 0.9842 1.0112 1.0046
Skewness 0.0715 0.0056 0.0647 0.0001 0.0335 0.0921 0.0187
Kurtosis 3.208 3.1581 3.1103 3.1607 3.0359 3.1882 3.121
Min -3.6168 -3.6645 -3.2458 -3.514 -3.1446 -3.3168 -3.2946
Max 3.3799 3.0068 3.0235 3.0241 2.9905 3.5243 3.6894

T=32,000

Mean -0.0285 -0.0346 -0.0375 -0.038 -0.0364 -0.0369 -0.0268
Median 0.0074 -0.0368 -0.0101 0.0047 -0.0362 -0.026 0.0086
Interquartile 1.3027 1.3754 1.2632 1.3783 1.3371 1.3644 1.3955
Std 1.0004 1.0012 0.9899 0.9969 0.9787 0.996 0.9962
Skewness -0.0359 -0.0458 -0.047 -0.07 -0.0363 -0.0505 -0.0512
Kurtosis 3.0672 3.0172 3.1061 3.0992 3.0095 3.0714 2.9846
Min -3.1782 -3.3337 -3.3716 -3.7367 -3.33 -3.5555 -3.5919
Max 3.0913 3.067 2.9292 2.8461 2.7531 2.9773 2.9479

T=64,000

Mean -0.0398 -0.0493 -0.0458 -0.0315 -0.0277 -0.0306 -0.0231
Median -0.0377 -0.0128 -0.043 -0.0437 -0.0282 -0.0375 -0.0309
Interquartile 1.3578 1.4007 1.3575 1.338 1.4151 1.3967 1.3917
Std 1.0173 1.0035 0.9988 0.9918 0.9979 1.008 1.0043
Skewness 0.007 -0.0267 0.0344 0.0285 0.0364 -0.0149 -0.0241
Kurtosis 3.1573 3.0231 3.0309 3.1084 2.9746 2.9626 3.0002
Min -3.0212 -3.4194 -3.4131 -3.4362 -3.3675 -3.4759 -3.6106
Max 3.4186 3.3348 3.2812 3.2191 2.9852 3.1265 3.2827
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Figure 3.19: Distribution of the rescaled sampling error of θs1 = (θ̂1 − θ1)/se(θ̂1) when states are observed.

p11 = p21 = 0.9 p11=0.95, p21=0.45 p11=0.975, p21=0.2250 p11=0.9875, p21=0.1125 p11=0.9938, p21=0.0563 p11=0.9969, p21=0.0281 p11=0.9984, p21=0.0141
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Note: The superimposed red line is the standard Normal distribution. Number of replications is N = 1,000.
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Observed states

First we consider a world in which we could observe the states. As we have seen ear-

lier, the consequence of this assumption is that the estimation procedure is much more

straightforward, the behaviour of the rescaled sampling errors is relatively better, and it

is considerably easier to pin down the limiting behaviour. When states can be observed,

we know with absolute certainty in which state we are in, and hence, the copula param-

eter estimates do not depend on the transition parameters p11 and p21. In what follows,

we present the empirical results from Monte Carlo simulations when states can be fully

observed.

The rescaled sampling error in copula parameter θ1 in state 1

Figure 3.19 displays the sampling distribution of θs1 in the high occupancy state. Along

the main diagonal we can observe the behaviour of the rescaled sampling error under the

alternative asymptotic sequence Case 2 described in (3.46). That is, the G matrix is held

constant whilst the run length T and the probability transition matrix P are allowed to

vary. As one moves down the main diagonal, the heuristic theory would suggest that

the distribution of the rescaled sampling error would converge to the standard normal

distribution. The visual inspection of the plots and the summary statistic in Table 3.17

seem to suggest that this is indeed the case. The copula parameters from state 1 are being

well determined, and the usual asymptotics seem to work reasonably well in all plots on

the main diagonal. This is not surprising as one moves down the main diagonal by one cell,

the run length T doubles, and the number of time periods spent in state 1 also doubles.

Therefore, a large enough sample from state 1 can be obtained by moving sufficiently far

down the asymptotic sequence. In addition, the distribution of the sampling error in θ1

seems to be shrinking at the rate T − 1
2 , which is broadly in line with what the heuristic

theory would suggest.

We can also analyse the behaviour under the standard asymptotic sequence by moving

vertically down the column. Under this regular asymptotic sequence, the matrix P is held

fixed whilst the run length T and matrix G vary. This results in the expected number
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of time periods spent in state 1 to double as the run length T doubles. Therefore, the

information about the copula parameter θ1 in state 1 would increase to infinity, and the

distribution of the rescaled sampling error would converge to the standard normal distri-

bution. The plots in Figure 3.19 and the summary statistics in Table 3.17 indicate that the

behaviour of the rescaled sampling error is reasonably well approximated by the reference

standard normal distribution.

We could also analyse how the behaviour of the rescaled sampling error changes as G

gets close to zero for a given run length T . This is the behaviour observed as one moves

along any row across columns. This would also imply that for a given fixed T the transition

probability matrix P would vary, resulting in the expected number of time periods spent

in state 1 to remain constant. In particular, in the first plot for T = 1000, the expected

number of time periods spent in state 1 is 900, which remains the same as we move across

columns. However, the expected number of transitions from state 1 to state 1 increases

by g22
10 , using equation (3.51). In other words, the steady state probability of being in

state 1 remains constant, and once the process is in state 1, it will tend to remain in that

state longer. Furthermore, as a result of an increasing standard deviation of the number

of transitions from state 1 to state 1, there will be some sample realisations providing

more information about the copula parameter θ1, and some providing less information,

but on average it will be sufficiently high, that is 900. Therefore, it is expected that the

behaviour of the rescaled sampling error in θ1 will be reasonably well approximated by

the standard normal distribution. The plots in Figure 3.19 indicate that there are no

noticeable discrepancies between the rescaled sampling error in θ1 and the superimposed

reference distribution. The summary statistics in Table 3.17 indicate that the standard

error, interquartile range, skewness and kurtosis remain close to the reference distribution.

In addition, summary statistics suggest that the MLE of θ1 is mean and median unbiased.

The rescaled sampling error in copula parameter θ2 in state 2

Next we consider the distribution of the rescaled sampling error in θ2 associated with

state 2. Figure 3.20 displays the sampling distribution of θs2 in state 2. The behaviour

along the main diagonal seems to be consistent with the heuristic theory, which suggests
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Table 3.18: Summary statistics for the rescaled sampling error θs2 = (θ̂2 − θ2)/se(θ̂2) when states are observed.1

p11 = 0.9 p11 = 0.95 p11 = 0.975 p11 = 0.9875 p11 = 0.9938 p11 = 0.9969 p11 = 0.9984
p21 = 0.9 p21 = 0.45 p21 = 0.225 p21 = 0.1125 p21 = 0.0563 p21 = 0.0281 p21 = 0.0141

T=1,000

Mean 0.0022 0.0195 0.0346 -0.0102 -0.0173 0.0276 -0.0234
Median -0.0805 -0.0741 -0.0384 -0.0559 -0.068 -0.0872 -0.1074
Interquartile 1.289 1.3891 1.3839 1.4231 1.4529 1.4775 1.5386
Std 0.9928 1.0293 1.0057 1.0999 1.3241 2.5322 1.7149
Skewness 0.4497 0.2987 0.2914 0.1754 0.2895 16.0983 2.3071
Kurtosis 3.2786 3.1222 3.0732 3.5472 7.181 399.1133 23.417
Min -2.5225 -2.8721 -2.7108 -4.1221 -6.7582 -6.5598 -6.2941
Max 3.847 3.6409 3.6816 4.8946 8.9171 62.9695 16.1848

T=2,000

Mean 0.0165 0.0645 0.0236 -0.0007 0.0182 0.079 -0.0449
Median -0.0288 0.0295 0.022 -0.0193 -0.0106 -0.0446 -0.1127
Interquartile 1.3623 1.387 1.3043 1.5006 1.4156 1.5273 1.578
Std 1.0085 1.007 0.9709 1.0565 1.1023 3.1179 1.7075
Skewness 0.3277 0.1212 0.08 0.2748 0.1138 23.303 1.7134
Kurtosis 3.0401 2.8653 2.9277 3.2613 3.4884 666.1515 29.0591
Min -2.5208 -2.9266 -2.6946 -2.8135 -3.7304 -9.5582 -9.5582
Max 3.6891 3.5598 3.4862 4.3225 3.7842 89.0523 20.6222

T=4,000

Mean 0.0125 0.0653 0.0275 -0.0015 0.0187 0.0182 0.0031
Median -0.0284 0.0309 -0.0174 -0.0444 0.0136 -0.0509 -0.0083
Interquartile 1.4018 1.3925 1.3624 1.3981 1.4625 1.4546 1.4893
Std 1.0037 1.0005 0.9653 1.0294 1.0822 1.1163 1.2973
Skewness 0.299 0.033 0.088 0.1222 0.1888 0.2213 0.2371
Kurtosis 2.9486 2.8324 2.8026 2.9683 3.4615 3.5413 6.4771
Min -2.5889 -3.243 -2.9053 -2.7674 -4.2996 -3.9324 -6.4284
Max 3.7365 3.1367 2.9454 4.024 4.2879 4.7994 8.3161

T=8,000

Mean 0.0338 0.0589 0.0054 -0.0417 -0.0093 0.0014 0.0311
Median -0.0158 0.0772 0.0096 -0.048 -0.0388 0.0055 0.0407
Interquartile 1.3413 1.3706 1.3818 1.3338 1.377 1.3985 1.3847
Std 1.0084 1.0268 0.9923 1.0015 1.0527 1.0444 1.0904
Skewness 0.1865 0.007 -0.0222 0.0297 0.0828 0.0414 0.0818
Kurtosis 2.9969 3.2375 2.8123 2.9715 3.1572 3.1324 3.6981
Min -2.7498 -3.4764 -3.0638 -3.6479 -3.0551 -3.4249 -4.1133
Max 4.0113 4.2386 3.1597 3.6019 4.0984 3.2969 5.1488

T=16,000

Mean 0.01 0.0042 -0.0279 -0.0225 -0.008 0.0016 0.0142
Median 0.021 -0.0067 -0.044 0.0197 0.0067 -0.0051 -0.0067
Interquartile 1.4854 1.3849 1.3983 1.3451 1.3403 1.4057 1.3401
Std 1.0372 1.0219 1.0016 0.9702 1.0068 1.0003 0.9946
Skewness 0.0616 0.0717 -0.0093 -0.0373 0.0773 0.0347 0.0881
Kurtosis 2.8417 3.0979 2.7256 2.9359 3.0503 3.0093 3.4265
Min -3.1526 -2.9301 -3.573 -2.8844 -2.9947 -3.4958 -3.2106
Max 3.6007 4.092 3.4092 3.3597 3.3711 3.2766 3.4652

T=32,000

Mean 0.0041 -0.0064 -0.0616 -0.0268 -0.0146 0.0181 0.0264
Median 0.0111 -0.0048 -0.064 -0.0003 -0.0347 0.0326 -0.0087
Interquartile 1.3653 1.361 1.39 1.3884 1.282 1.3412 1.3473
Std 1.0259 1.0397 1.0375 1.0084 0.9949 0.9754 0.9895
Skewness -0.077 0.1052 0.0784 0.0562 -0.0106 0.0747 0.2435
Kurtosis 3.0131 3.1745 2.8054 3.0731 3.04 2.9917 3.3679
Min -3.3324 -3.1464 -2.7893 -3.2913 -3.1533 -3.1689 -2.9629
Max 2.9448 3.8927 3.6356 3.749 2.8317 3.3389 4.1745

T=64,000

Mean -0.0099 -0.0188 -0.0607 -0.0281 0.0033 -0.0026 0.0043
Median 0.0052 -0.0223 -0.0893 -0.0214 -0.0138 -0.0241 -0.0182
Interquartile 1.3781 1.4274 1.3507 1.3585 1.3486 1.2344 1.3488
Std 1.0171 1.0123 1.0031 0.998 1.0192 0.9859 0.9796
Skewness 0.0141 0.1522 -0.0038 -0.1914 0.0441 0.1617 0.0684
Kurtosis 2.9655 2.6785 2.954 3.1169 3.2344 3.1907 2.9449
Min -3.6939 -2.7812 -3.3811 -3.576 -3.2956 -3.1396 -3.278
Max 3.2602 2.7958 2.8631 2.7204 3.632 3.1799 3.2792

Note: 1 Summary statistics are conditional on spending a positive number of time periods in state 2.
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Figure 3.20: Distribution of the rescaled sampling error θs2 = (θ̂2 − θ2)/se(θ̂2) when states are observed.1

p11 = p21 = 0.9 p11=0.95, p21=0.45 p11=0.975, p21=0.2250 p11=0.9875, p21=0.1125 p11=0.9938, p21=0.0563 p11=0.9969, p21=0.0281 p11=0.9984, p21=0.0141
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Note: 1 The distribution is conditional on spending a positive number of time periods in State 2. The superimposed red line

is the standard Normal distribution. Number of replications is N = 1,000.
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that the distribution of the rescaled sampling error would converge to the standard normal

distribution. This is because under the alternative asymptotic sequence Case 2, the number

of time periods spent in state 2 also doubles when the run length T doubles and, therefore,

the expected number of time periods spent in state 2 increases to infinity as the run length

T goes to infinity. Hence, the distribution of an appropriately rescaled sampling error state

2 is going to settle down. The rate T − 1
2 seems to be broadly in line with what the heuristic

theory would suggest. The copula parameter θ2 from state 2 is being well determined, and

the usual asymptotic theory works reasonably well in all plots on the main diagonal.

The behaviour under the standard asymptotics is described by each column, where

both the run length T and matrix G increase whilst matrix P is being held constant. This

implies that the total number of time periods spent in state 2 is going to infinity, and hence

the proportion of time periods spent in state 2 is going to a constant. As T increases to

infinity, the behaviour of the rescaled sampling error is starting to be better and better

approximated by its limiting standard normal distribution. From Table 3.18 we can notice

that a sizeable positive skewness present in the first cell for T = 1000 is gradually washed

away with larger T .

We can also analyse how things behave as we let matrix G get very close to zero, whilst

keeping the run length T constant. This is achieved by moving across the columns along

each row. If one fixes T and varies G, this will also induce a change in P in such a way that

the expected number of state transitions will halve with each move across the columns.

This is because the matrix P is getting closer and closer to the boundary case presented

in (3.46). However, the expected number of time periods spent in state 2 is remaining

constant. In particular, in the first plot for T = 1000, the expected number of time periods

spent in state 2 is 100, and the expected number of state transitions is 180, using (3.49)

and (3.50) respectively. In the next cell, the expected number of time periods in state

2 remains at 100, but the expected number of state transitions from state 2 to state 1

drops to 90. The steady state probability of being in state 2 remains constant, but the

expected number of transitions from state 2 to state 2 increases by g22
10 , using equation

(3.52). However, as it was mentioned previously, the expected number of transitions from
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state 1 to state 1 also increases by the same amount g22
10 . Therefore, we would expect

the standard deviation of the number of time periods spent in each state to increase as G

gets close to zero. This will result in some sample realisations providing more information

about the copula parameter θ2, some providing very little information, and some providing

no information at all. The explanation of why there will be some sample realisations with

zero time periods spent in state 2, is because the expected number of time periods of 100

spent in state state 2 remains the same, and it is considerably lower than the expected

number of time periods spent in state 1, which is 900. Hence, given a small sample size

T = 1000 and increased standard deviation of the number of time periods spent in each

state, it is becoming more and more likely to obtain a sample realisation with zero time

periods spent in state 2 as matrix G gets closer to zero.

...The plots in the upper right region in Figure 3.20 reflect these features in the be-

haviour of the rescaled sampling error. It can be noticed that the centre of the distribution

is reasonably well approximated by the standard normal distribution, whilst there are also

observations that lie considerably far down in the tails, where the reference distribution

would assign a very tiny probability. These are the observations that have been obtained

from those realisations with a small number of time periods spent in state 2, and hence

they contain more noise and uncertainty. The mixture of reasonably decent estimates and

poorly determined estimates seems to result in the usual asymptotics not working very

well. The summary statistics in Table 3.18 indicate that the degree of skewness and kur-

tosis of the standardized sampling error are associated with the value of G. The closer the

matrix G is to zero, the more prominent distortions in the behaviour of the standardized

sampling error become. Moreover, the smaller is the sample size T , the more rapidly the

behaviour deteriorates. The plots in the first two rows in Figure 3.20 and the corresponding

cells in Table 3.18 reveal distinguishable strong distortions in the behaviour of the rescaled

sampling error starting from sixth cell onwards. In addition, the median becomes biased,

whilst the mean is never strongly biased in most of the cells. The distortions are in the

form of noticeable positive skewness and strong kurtosis 9.

9 Under the alternative asymptotic sequence 2 there are also replications in which there are no obser-
vations from state 2. We know that whatever estimate of θ2 is obtained it will be inherently spurious. For
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Table 3.19: Summary statistics for the rescaled sampling error ξ11 = (p̂11 − p11)/se(p̂11) when states are observed.

p11 = 0.9 p11 = 0.95 p11 = 0.975 p11 = 0.9875 p11 = 0.9938 p11 = 0.9969 p11 = 0.9984
p21 = 0.9 p21 = 0.45 p21 = 0.225 p21 = 0.1125 p21 = 0.0563 p21 = 0.0281 p21 = 0.0141

T=1,000

Mean -0.0489 -0.0648 -0.0761 -0.0682 -0.0402 -0.0363 -0.0653
Median -0.0558 -0.0349 -0.0295 0.0000 0.1412 -0.0312 0.3121
Interquartile 1.3226 1.4481 1.4084 1.393 1.4257 1.2632 0.974
Std 1.0133 1.0409 1.0196 0.9953 1.0242 1.0306 1.0237
Skewness -0.1892 -0.2177 -0.2213 -0.3037 -0.704 -0.7519 -1.0669
Kurtosis 3.4539 2.8376 3.0417 2.9126 3.8373 3.6076 4.8327
Min -4.7001 -3.5784 -3.7089 -3.0963 -4.392 -4.349 -5.8268
Max 3.3173 2.9314 3.2175 2.2652 2.378 1.6788 1.1862

T=2,000

Mean -0.0196 -0.0463 -0.0774 -0.0634 -0.0134 -0.01 -0.0357
Median 0.0079 -0.0081 -0.0602 -0.016 0.0387 -0.0056 -0.033
Interquartile 1.2864 1.3589 1.3805 1.3016 1.3453 1.3714 1.205
Std 0.9974 1.0201 1.0322 0.9784 0.9934 0.994 0.9711
Skewness -0.1638 -0.2087 -0.1587 -0.2474 -0.3352 -0.4268 -0.6938
Kurtosis 3.2607 2.962 2.9572 3.0944 3.3225 3.1906 3.6535
Min -3.4643 -3.3337 -3.7768 -3.3411 -3.4923 -4.1677 -4.3843
Max 3.1325 2.6558 2.9252 2.8043 2.8234 2.3748 1.6779

T=4,000

Mean -0.0103 -0.0127 -0.0185 -0.0305 0.009 -0.0218 -0.0425
Median 0.0111 0.0781 0.0053 0.0419 0.0632 0.0526 0.0061
Interquartile 1.3562 1.4477 1.4583 1.3386 1.381 1.4151 1.4116
Std 1.0395 1.0435 1.0386 1.0092 1.0059 1.0155 1.0173
Skewness -0.1912 -0.2027 -0.1381 -0.185 -0.1903 -0.351 -0.4912
Kurtosis 3.1878 2.9321 2.7675 2.9236 2.8833 2.9705 3.2591
Min -4.1198 -3.7901 -2.9738 -3.4066 -3.0533 -3.7796 -3.7472
Max 3.1183 2.6772 2.9007 2.8136 2.9869 2.8126 2.3733

T=8,000

Mean -0.0122 -0.016 -0.0267 -0.0229 0.0222 -0.0125 -0.0397
Median 0.0138 0.0081 -0.0132 -0.0133 0.0664 0.0285 0.0431
Interquartile 1.3897 1.3868 1.4107 1.3315 1.4049 1.3631 1.3639
Std 1.0208 1.04 1.0074 1.0139 1.0117 1.0327 1.019
Skewness -0.0649 -0.096 -0.0158 -0.0663 -0.1604 -0.3148 -0.5049
Kurtosis 2.8404 2.945 2.7497 2.9508 3.015 3.1533 3.5505
Min -3.6513 -3.7604 -3.0563 -3.5888 -3.4235 -3.5552 -4.7998
Max 2.9456 2.7899 3.2222 2.9805 3.0203 2.8838 2.5334

T=16,000

Mean 0.0131 -0.0034 0.0006 -0.0206 0.0271 0.0109 -0.0155
Median 0.0097 0.0019 0.0074 0.0347 0.0383 0.0535 0.0589
Interquartile 1.3066 1.3303 1.3637 1.4261 1.4094 1.2666 1.3583
Std 0.9741 1.0029 0.9985 1.032 1.0196 1.002 1.0287
Skewness 0.0327 -0.0942 -0.0962 -0.179 -0.0801 -0.2555 -0.4483
Kurtosis 2.8894 2.9977 2.7989 2.9813 3.2856 3.182 3.5493
Min -3.0158 -3.1363 -2.9608 -3.6954 -4.1504 -3.6145 -5.1877
Max 3.3105 2.9238 2.6752 3.2521 3.3776 3.0825 2.7687

T=32,000

Mean 0.0089 0.0041 0.0066 -0.0311 0.0387 0.0105 -0.0315
Median -0.0108 -0.0169 0.008 0.0119 0.0441 0.0562 -0.0112
Interquartile 1.2435 1.3039 1.3604 1.377 1.3837 1.4045 1.3088
Std 0.9537 0.9827 0.9758 1.0464 1.066 1.0232 1.0195
Skewness 0.1083 0.1108 -0.0873 -0.2224 -0.1778 -0.3296 -0.3271
Kurtosis 3.039 2.8597 2.6958 3.1605 3.1527 2.9845 3.4679
Min -2.9159 -2.8454 -2.8261 -3.9422 -4.0807 -4.7017 -5.2579
Max 3.2082 2.8075 2.674 3.3246 3.3906 2.365 2.8305

T=64,000

Mean 0.0297 0.0104 0.014 -0.0143 0.0331 0.0217 -0.0157
Median 0.0264 0.0267 0.011 -0.0126 0.0051 0.0339 0.0151
Interquartile 1.2434 1.2844 1.3361 1.4023 1.4085 1.3458 1.324
Std 0.9645 0.9765 0.9941 1.0099 1.015 0.9939 1.0104
Skewness -0.0331 -0.0179 -0.0239 -0.0377 -0.0444 -0.1118 -0.1477
Kurtosis 3.2684 2.9938 3.0036 3.1543 2.9269 2.8444 3.0043
Min -3.6638 -2.9635 -3.0832 -3.2335 -3.1705 -3.6821 -3.4006
Max 3.5654 3.37 3.3409 3.5159 2.9356 2.6278 3.3023



3.3. Monte Carlo simulations 91

Figure 3.21: Distribution of the rescaled sampling error ξ11 = (p̂11 − p11)/se(p̂11) when states are observed.

p11 = p21 = 0.9 p11=0.95, p21=0.45 p11=0.975, p21=0.2250 p11=0.9875, p21=0.1125 p11=0.9938, p21=0.0563 p11=0.9969, p21=0.0281 p11=0.9984, p21=0.0141
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Note: The superimposed red line is the standard Normal distribution. Number of replications is N = 1,000
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The rescaled sampling error in transition probability parameter p11

Figure 3.21 displays distributions of the rescaled sampling error in p11, which we denote

as ξ11. Along the main diagonal it can be observed that the usual asymptotics seems to

work well most of the time, except that the mild negative skewness, which arises as a result

of transition probability matrix P getting closer to the boundary case, is not washed away.

This behaviour is not surprising because this is what the heuristic theory would suggest.

As the run length T doubles, the expected number of transitions from state 1 to state

1 will more than double by the fixed amount g22
10 . This is because as we move down the

main diagonal, we are simultaneously changing the probability of transiting from state 1

to state 1 in a way that it is more likely that one remains in state 1 given one is currently

in state 1. Therefore, as T goes to infinity, the information about the parameter p11 also

goes to infinity, and hence, the distribution of the rescaled sampling error will converge to

the standard normal distribution.

Under the usual asymptotic sequence, which is described by each column, the expected

number of transitions from state 1 to state 1 doubles as the run length T doubles. Conse-

quently, there is more and more information about the transitions from state 1 to state 1,

so that the parameter p11 is consistently estimated and, therefore, the usual asymptotics

work well.

If we move across columns along any row, then T is held fixed whilst P and G vary.

This will result in the expected number of transitions from state 1 to state 1 to increase

by g22
10 . Subsequently, as G approaches zero additional information about the transition

parameter p11 is gained. However, as it was mentioned previously, the expected number

of transitions from state 2 to state 2 will also increase by g22
10 . As a consequence, once we

move to a particular state, we will tend to remain in that state longer, and this will result

in some sample realisations providing more information about the transition parameters,

and some sample realisations providing less information about the transition parameters.

Although the expected occupancy time in either of the regimes remains constant, its stan-

dard deviation will be higher the closer the G matrix is to zero for a given T . This will

this reason, realisations with no observations from state 2 have been omitted from the estimation of θ2.
There are six cells in total in the upper right region for which this is the case.
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Table 3.20: Summary statistics for the rescaled sampling error ξ21 = (p̂21 − p21)/se(p̂21) when states are observed.

p11 = 0.9 p11 = 0.95 p11 = 0.975 p11 = 0.9875 p11 = 0.9938 p11 = 0.9969 p11 = 0.9984
p21 = 0.9 p21 = 0.45 p21 = 0.225 p21 = 0.1125 p21 = 0.0563 p21 = 0.0281 p21 = 0.0141

T=1,000

Mean 0.0395 0.0291 0.1894 0.2609 0.6729 1.3187 2.1721
Median 0.0927 0.0197 0.0588 0.0468 0.1369 0.2189 0.2955
Interquartile 1.3154 1.3935 1.3389 1.4534 1.5804 1.504 1.8989
Std 0.9901 1.0252 1.0499 1.1648 2.8143 5.1102 8.2099
Skewness -0.381 0.2396 0.6573 1.1735 8.3548 7.5207 7.3312
Kurtosis 3.2945 2.8336 3.9122 5.4951 102.5884 74.2075 65.8915
Min -4.0041 -2.5769 -2.3935 -2.0102 -1.7778 -1.7003 -1.1937
Max 2.4987 3.2647 4.6926 6.9853 40.9402 58.7546 83.6905

T=2,000

Mean 0.0006 0.0269 0.1321 0.2192 0.3108 0.6999 1.6034
Median 0.0807 -0.0073 0.08 0.0999 0.0761 0.1417 0.2481
Interquartile 1.3395 1.4729 1.387 1.3886 1.3844 1.538 1.7568
Std 0.9896 1.0418 1.0396 1.1268 1.3328 3.5676 6.7098
Skewness -0.2531 0.2193 0.419 0.9551 3.146 14.7468 9.6887
Kurtosis 2.8246 2.8128 3.4386 4.8047 25.6939 306.5324 130.4943
Min -3.1419 -2.8262 -2.5457 -2.2 -2.1337 -2.0147 -1.6885
Max 2.8801 3.265 4.6455 6.4721 14.0809 83.1123 118.3859

T=4,000

Mean 0.0058 0.041 0.1073 0.1515 0.2198 0.3707 0.6069
Median 0.0529 -0.0049 0.0555 0.0778 0.0673 0.1462 0.1579
Interquartile 1.4375 1.3452 1.4456 1.3366 1.3387 1.3724 1.6431
Std 1.0267 1.0092 1.0232 1.0158 1.1022 1.3451 2.2539
Skewness -0.1887 0.1303 0.4278 0.5796 0.8995 2.2282 7.8922
Kurtosis 2.8875 3.194 3.3352 4.0637 4.5248 13.929 114.8868
Min -3.1742 -3.3554 -2.6429 -2.2723 -2.7353 -2.0326 -2.3883
Max 3.2242 4.0727 4.4278 5.5376 5.2188 12.1052 40.0698

T=8,000

Mean -0.0123 0.0079 0.057 0.0938 0.1247 0.195 0.2611
Median -0.0465 0.0073 0.0043 -0.0007 0.0482 0.059 0.0426
Interquartile 1.3893 1.3665 1.3392 1.4059 1.2995 1.3479 1.4337
Std 1.0426 0.9917 1.0165 1.0423 1.0402 1.0764 1.2338
Skewness -0.0193 0.0948 0.3308 0.4087 0.6789 0.9819 1.6273
Kurtosis 2.9307 2.9839 3.1657 3.19 4.4633 5.1428 9.4829
Min -3.3247 -2.8294 -3.0889 -2.909 -2.4663 -2.258 -2.1665
Max 3.309 3.5551 3.8465 3.9479 5.6071 6.068 10.7513

T=16,000

Mean -0.0041 -0.0081 -0.0088 0.0576 0.0562 0.0751 0.1385
Median -0.0082 -0.0258 -0.0087 -0.0192 -0.027 -0.0075 0.0123
Interquartile 1.4091 1.3402 1.38 1.395 1.2475 1.287 1.4517
Std 1.0371 0.996 1.0093 1.0274 1.0096 1.0016 1.135
Skewness -0.0268 0.0322 0.1577 0.3856 0.51 0.5031 0.9542
Kurtosis 2.9009 3.0062 2.9383 3.0844 3.491 3.3422 4.4959
Min -3.4651 -3.3853 -2.9658 -2.5854 -2.8364 -2.3674 -2.454
Max 3.2752 2.9628 3.3413 3.5545 3.9817 4.401 5.2288

T=32,000

Mean -0.0163 -0.0056 -0.0175 0.0586 0.0325 0.0411 0.0753
Median -0.0578 0.015 0.0108 0.0028 -0.0303 -0.0164 -0.0188
Interquartile 1.4112 1.3732 1.3898 1.411 1.3245 1.3299 1.3739
Std 1.0516 0.9939 1.0384 1.0371 1.0168 0.9995 1.0615
Skewness 0.0637 -0.0766 0.1037 0.1257 0.3659 0.3253 0.5873
Kurtosis 2.8272 2.9707 3.0203 2.8559 3.1868 3.1741 3.6853
Min -3.4657 -2.9962 -3.4553 -3.2396 -2.6533 -2.5065 -2.8725
Max 3.197 3.193 3.2003 3.5318 3.7566 3.774 4.7224

T=64,000

Mean 0.003 0.0244 0.0039 0.0317 0.0333 0.0346 0.0863
Median -0.0125 0.0089 0.0203 -0.0209 -0.0222 -0.0081 0.0219
Interquartile 1.3772 1.2626 1.3064 1.3291 1.4256 1.3546 1.3657
Std 1.0051 1.0133 1.0317 0.9902 1.0378 1.0044 1.0336
Skewness 0.0604 0.0488 -0.02 0.1799 0.2835 0.2437 0.2033
Kurtosis 3.0186 3.2372 3.117 3.0333 3.1296 3.2025 2.8657
Min -3.1155 -3.0404 -3.3822 -3.0386 -2.8231 -2.9453 -2.8124
Max 3.8844 3.7509 3.2513 3.9013 4.1507 4.3426 3.4128

Note: Summary statistics are conditional on spending a positive number of time periods in State 2.
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Figure 3.22: Distribution of the sampling error ξ21 = (p̂21 − p21)/se(p̂21) when states are observed.1

p11 = p21 = 0.9 p11=0.95, p21=0.45 p11=0.975, p21=0.2250 p11=0.9875, p21=0.1125 p11=0.9938, p21=0.0563 p11=0.9969, p21=0.0281 p11=0.9984, p21=0.0141
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Note: 1 The distribution is conditional on spending a positive number of time periods in State 2. The superimposed red line

is the standard Normal distribution. Number of replications is N = 1,000.
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result in a strong mixing of distributions, characterised by multiple modes and higher kur-

tosis. The peak that we observe on the right of the distribution depicted in the top right

plot for T = 1000 is due to some replications, 179 out of 1000, having zero number of time

periods spent in state 2. Hence, there cannot be any transitions from state 1 to state 2,

and due to the construction of the MLE, this will result in the estimates of p11 being equal

to one. Hence, we observe a peak at the positive value of (1−p11). The summary statistics

in Table 3.19 indicate presence of high kurtosis in the upper right region for T = 1000

and G close to zero. In addition, there is a distortion in the form of a negative skewness

and strong median bias. Mean bias is never strong in all cells. Interestingly, the standard

deviation of 1.02 remains close to the reference distribution.

The rescaled sampling error in transition probability parameter p21

Next we consider the behaviour of the rescaled sampling error in the transition param-

eter p21 denoted as ξ21. In Figure 3.22 the main diagonal displays the sampling behaviour

under the alternative asymptotic sequence Case 2. As the run length T doubles, the ex-

pected number of transitions from state 2 to state 1 remains constant, which is shown

in (3.50). This is the result of simultaneous change in the probability transition matrix

P towards the boundary case presented in (3.46), so that it is less likely that one will

leave state 2 given one is currently in state 2. Hence, the expected number of transitions

from state 2 to state 1 remains constant, whilst the expected number of transitions from

state 2 to state 2 is increasing to infinity as T goes to infinity. In other words, under the

alternative asymptotic sequence Case 2, the expected number of transitions from state 2

to state 1 remains stochastically bounded away from infinity. At this stage it is not clear

whether the distribution of the rescaled sampling error in p21 to settle down. However,

the distribution of the rescaled sampling error is not substantially far from the standard

normal distribution, which can be observed by comparing it to the superimposed reference

distribution. Furthermore, it seems like the deviation from the standard normal is stable

as the run length T gets larger. Therefore, one would expect the supremum of the differ-

ence between the rescaled sampling error and the standard normal distribution to remain

bounded. From Table 3.20 we also see that the positive skewness does not wash away,
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although the mean and the median bias remain reasonably low.

Under the usual asymptotic sequence the expected number of transitions from state

2 to state 1 doubles as the run length T doubles. The consequence of this is that the

information about the transitions from state 2 to state 1 increases to infinity, so that the

parameter p21 is consistently estimated. Therefore, the behaviour of the rescaled sampling

error ξ21 approaches that of a standard normal distribution.

If one moves across columns along any row, one changes P and G whilst holding the

run length T constant. This induces a change in the probability of transiting from state 2

to state 1, whilst the steady state probability of being in state 2 remains constant. As a

result, one is less likely to leave state 2, given one is in state 2. This results in the expected

number of transitions from state 2 to state 1 to decrease by a half as one moves across

the columns. Therefore, the information about the transition parameter p21 is decreasing,

and the usual asymptotic theory does not seem to work well as G decreases. The closer

to zero the G matrix is for a given run length, the worse things start to behave. This is

manifested in terms of increasing positive skewness, severe kurtosis, large positive values,

strong mean bias and relatively milder median bias.

In summing up the empirical results, there seem to be key differences that distinguish

the behaviour under the asymptotic sequence Case 2 from the alternative asymptotic se-

quence Case 1 presented in previous section.

First, is that the expected number of time periods spent in state 2 increases to infinity

as T goes to infinity. Second, the expected number of transitions from one state to a

different state remains constant, but the expected number of transitions from one state to

the same state increases to infinity. Third, this alternative asymptotic sequence Case 2

pushes the parameter p21 to the lower boundary of the parameter space, which is manifested

in the positive skewness. However, normal distribution might not work well in the vicinity

of the boundary of the parameter space because it assigns a probability mass beyond the

boundary.
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Table 3.21: Summary statistics for the rescaled sampling error θs1 =
(θ̂

1
−θ

1
)

se(θ̂
1
) when states are not observed.

p11 = 0.9 p11 = 0.95 p11 = 0.975 p11 = 0.9875 p11 = 0.9938 p11 = 0.9969 p11 = 0.9984
p21 = 0.9 p21 = 0.45 p21 = 0.225 p21 = 0.1125 p21 = 0.0563 p21 = 0.0281 p21 = 0.0141

T=1,000

Mean 0.0519 0.0562 0.0424 0.029 0.0336 0.0607 0.0994
Median 0.0317 0.021 -0.031 0.0155 -0.0085 0.0174 0.0301
Interquartile 1.2925 1.3565 1.4252 1.411 1.3539 1.3969 1.3177
Std 1.0087 1.0008 1.0052 1.0109 0.9901 0.9976 1.0673
Skewness 0.2663 0.18 0.1045 0.1262 0.0563 0.1904 1.5196
Kurtosis 3.3251 2.932 2.6878 2.8936 2.7544 2.8898 14.3547
Min -2.9023 -2.7396 -2.927 -3.0424 -3.1747 -3.1036 -3.0436
Max 4.1156 3.7358 3.4315 3.5851 2.8237 3.2363 10.3155

T=2,000

Mean 0.0536 0.084 0.0745 0.0528 0.0507 0.0388 0.0584
Median 0.0411 0.0542 0.0306 0.0589 0.0402 0.0093 0.0487
Interquartile 1.327 1.4438 1.4249 1.4118 1.391 1.3354 1.4151
Std 1.0194 1.0287 1.0368 1.0314 1.0137 1.0198 1.0497
Skewness 0.1326 0.1648 0.0953 0.0825 0.0914 0.117 0.6641
Kurtosis 3.0094 2.7752 2.8788 2.7559 2.9188 2.9679 7.3204
Min -2.8969 -2.7038 -2.7503 -2.6469 -3.0681 -3.053 -3.12
Max 3.4223 3.4186 3.4656 3.2391 3.3402 3.7438 8.7495

T=4,000

Mean -0.0062 0.0354 0.0147 0.0074 0.0049 -0.0092 -0.002
Median -0.0082 0.0375 0.0041 -0.0225 -0.024 -0.0392 -0.0425
Interquartile 1.2771 1.3895 1.3172 1.354 1.3009 1.2931 1.2525
Std 0.9515 1.0028 1.0043 1.0096 0.9925 1.009 1.006
Skewness 0.0409 0.0279 0.0638 0.1096 0.0547 0.0806 0.0485
Kurtosis 3.0199 3.1734 3.1279 3.076 2.997 3.1533 3.114
Min -2.8946 -3.4104 -3.1645 -3.0603 -2.9989 -3.1241 -3.307
Max 2.9798 4.109 4.1303 4.2259 3.815 3.8645 3.5271

T=8,000

Mean -0.0045 0.0263 -0.0055 -0.0141 -0.0119 -0.0238 -0.0144
Median -0.015 0.0477 -0.0571 -0.0457 -0.0301 -0.0633 -0.0461
Interquartile 1.33 1.3251 1.3965 1.387 1.3652 1.3752 1.392
Std 0.979 0.9829 1.0026 1.0278 1.0202 1.0414 1.0287
Skewness 0.1792 0.1435 0.1166 0.0963 0.0858 0.0907 0.0621
Kurtosis 3.0096 3.0299 2.8581 2.9531 2.934 3.0076 2.9484
Min -2.743 -2.7822 -2.9149 -3.3267 -3.1494 -3.3805 -3.287
Max 3.2785 3.3805 3.5652 3.2785 3.2432 3.7203 3.2452

T=16,000

Mean -0.0013 0.0117 -0.0201 -0.0269 -0.0258 -0.0287 -0.0285
Median -0.0302 0.0114 -0.019 -0.0575 -0.0469 -0.0492 -0.0547
Interquartile 1.3677 1.3533 1.3484 1.3485 1.3206 1.3497 1.4034
Std 0.9887 0.977 0.99 1.0117 0.9921 1.0173 1.0086
Skewness 0.246 0.1159 0.1085 0.089 0.1098 0.1816 0.0869
Kurtosis 3.2655 3.0989 3.0547 3.0698 3.0835 3.2787 3.1828
Min -3.3257 -2.8828 -3.1533 -3.4349 -3.1415 -3.3765 -3.3136
Max 3.9566 3.5397 3.596 3.1137 3.6125 3.5311 3.7855

T=32,000

Mean 0.0037 0.0221 -0.0007 -0.005 -0.0115 -0.0237 -0.0211
Median 0.05 0.0419 0.0161 0.012 -0.0364 -0.029 -0.003
Interquartile 1.3462 1.2941 1.3087 1.3167 1.3154 1.3824 1.3763
Std 1.0036 0.9959 0.9892 0.9955 0.9774 0.9997 0.9996
Skewness 0.0077 0.027 -0.0023 0.0019 0.0248 -0.0127 -0.0006
Kurtosis 3.0617 3.0742 3.0799 3.0227 2.9721 3.0444 2.9842
Min -3.6062 -2.9916 -3.1965 -3.321 -3.0534 -3.234 -3.4149
Max 3.6186 3.3179 3.1856 3.0462 2.952 2.9526 2.9637

T=64,000

Mean -0.0031 -0.0122 -0.0268 -0.0133 -0.0196 -0.0243 -0.02
Median -0.0282 -0.0209 -0.0441 -0.0098 -0.0353 -0.0296 -0.0103
Interquartile 1.2681 1.3326 1.2766 1.2905 1.3591 1.3869 1.3597
Std 0.9843 0.9837 0.9845 0.9821 0.9925 1.0031 1.005
Skewness 0.0846 0.0454 0.1012 0.0989 0.096 0.028 0.0147
Kurtosis 3.2744 3.1763 3.0878 3.0474 2.9441 2.9381 3.0143
Min -3.1642 -3.1755 -2.897 -2.8592 -3.0852 -3.25 -3.6424
Max 3.4553 3.3666 3.3315 3.4566 3.0984 3.2226 3.3576
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Figure 3.23: Distribution of the rescaled sampling error of θs1 = (θ̂1 − θ1)/se(θ̂1) when states are not observed.

p11 = p21 = 0.9 p11=0.95, p21=0.45 p11=0.975, p21=0.2250 p11=0.9875, p21=0.1125 p11=0.9938, p21=0.0563 p11=0.9969, p21=0.0281 p11=0.9984, p21=0.0141
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Note: The superimposed red line is the standard Normal distribution. Number of replications is N = 1,000
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Unobserved states

Next we consider a world in which the states cannot be observed. In previous section

it was confirmed that not being able to observe the states adds an additional complication

to the estimation problem. Therefore, we expect to observe, to some degree, similar conse-

quences of not being able to observe the states. However, it will be interesting to see what

will be the nature and the magnitude of the differences under the alternative asymptotic

sequence Case 2.

The rescaled sampling error in copula parameter θ1 in state 1

In Figure 3.23 along the main diagonal we can observe that the behaviour of the rescaled

sampling error under the alternative asymptotic sequence Case 2 is not substantially af-

fected by the lack of observability. Unsurprisingly, the behaviour under the usual asymp-

totics seems also to be unaffected. This is because as the run length T increases, the

amount of information about the copula parameter θ1 in state 1 increases to infinity, and

the rescaled sampling error becomes better and better approximated by the standard nor-

mal distribution. Moreover, we are not getting close to the boundary of the parameter

space because the transition probability matrix P is being held constant.

We could also analyse the impact of not being able to observe the states on the behaviour

of the rescaled sampling error as G gets very close to zero. From the plots it can be observed

that the behaviour of the rescaled sampling error does not deteriorate rapidly, and G has

to get very close to zero in order for the distortions to become noticeable. The summary

statistics in Table 3.26 indicate that these distortions appear in the form of high positive

skewness and stronger kurtosis. In addition, there is a sizeable mean bias, although absence

of strong median bias. These distortions can be observed in the upper right region of Figure

3.23. Also, in this region the expected number of time periods spent in state 1 has higher

variability. In some realisations we would spend a modest number of time periods in state

1, and in some realisations we will spend most of the time in state 1. When we spend all

of the time in state 1 this implies that none of the time will be spent in state 2. This

will result, in contrast to the observed case, in severe distortions in the behaviour of the
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rescaled sampling error in θ2, which will “contaminate” the distribution of the rescaled

sampling error in θ1 due to the way the likelihood function is constructed. Furthermore,

it is suspected that potentially all of the parameters will be “contaminated”.

These results indicate that the lack of observability does not seem to affect substantially

the estimates of θ1. One of the most notable feature of the alternative asymptotic sequence

Case 2 is that, nowhere in the plots the expected number of time periods spent in either

state decreases below its initial level, that is the expected number of time periods in the

first cell at T = 1000. This could potentially explain why the lack of observability does not

create severe distortions in the behaviour of the rescaled sampling error in θ1 compared to

the alternative asymptotic sequence Case 1.

The rescaled sampling error in copula parameter θ2 in state 2

Next we consider the distribution of the rescaled sampling error in θ2. Figure 3.24

displays the sampling distribution of θs2 in state 2.

The behaviour along the main diagonal does not seem to be substantially affected by the

lack of observability. At the run length T = 1000, there seem to be some minor distortions

such as considerable mean bias, notable negative skewness, and slight kurtosis. However,

it can be observed that as the run length T increases these distortions gradually wash

away, and the rescaled sampling error begins to be well approximated by the reference

distribution. This is because under this alternative asymptotic sequence, the number of

time periods spent in state 2 doubles when the run length T doubles, and the expected

number of time periods spent in state 2 increases to infinity as the run length T increases

to infinity. The copula parameter θ2 from state 2 is being well determined, and the usual

asymptotic theory works reasonably well in most of the plots down the main diagonal.

If one goes vertically down the column, the behaviour of the rescaled sampling error is

starting to be better and better approximated by the standard normal distribution. We

can notice that the mean bias, high kurtosis, and a negative skewness present in the first

cell for T = 1000 are gradually washed away with larger T .

We can also analyse how things behave as we keep the run length T constant and let

matrix G get very close to zero. As we move across the columns along each row in Figure
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Table 3.22: Summary statistics for the rescaled sampling error θs2 =
(θ̂

2
−θ

2
)

se(θ̂
2
) when states are not observed.

p11 = 0.9 p11 = 0.95 p11 = 0.975 p11 = 0.9875 p11 = 0.9938 p11 = 0.9969 p11 = 0.9984
p21 = 0.9 p21 = 0.45 p21 = 0.225 p21 = 0.1125 p21 = 0.0563 p21 = 0.0281 p21 = 0.0141

T=1,000

Mean -0.2236 -0.2134 -0.1542 -0.1505 -0.1081 0.0358 1.0256
Median -0.0497 -0.0935 -0.0761 -0.0392 -0.0476 -0.0243 0.0000
Interquartile 1.3468 1.4083 1.2815 1.3445 1.3504 1.196 1.0816
Std 1.1552 1.1106 1.0463 1.0393 1.6286 3.2679 9.6125
Skewness -1.2151 -0.9723 -0.5451 -0.7754 10.7641 8.9906 11.1605
Kurtosis 6.4128 5.5525 4.0212 4.2621 219.6702 117.414 144.4863
Min -6.8697 -6.9778 -4.8038 -4.5557 -5.8852 -15.0514 -14.2115
Max 2.546 2.3882 3.1749 2.5136 34.4135 48.1079 152.4146

T=2,000

Mean -0.1276 -0.0772 -0.0532 -0.1201 -0.0844 -0.0669 0.2421
Median -0.0296 -0.0007 0.0278 -0.06 -0.015 -0.0097 -0.0505
Interquartile 1.3911 1.3722 1.3347 1.3766 1.2848 1.3186 1.3932
Std 1.0352 1.0382 0.9914 1.0096 1.0261 1.9109 5.7849
Skewness -0.5243 -0.5099 -0.4543 -0.3933 -0.4173 18.6735 19.7766
Kurtosis 3.6559 3.4675 3.8368 3.2781 3.3389 500.3111 456.8184
Min -4.3375 -4.3751 -4.7899 -3.7606 -3.5482 -6.2583 -4.4325
Max 2.8894 2.8433 2.9538 2.5513 3.2549 50.7179 146.8918

T=4,000

Mean -0.0983 -0.0615 -0.0596 -0.1007 -0.0885 -0.0811 0.0456
Median -0.0041 -0.0116 0.0073 -0.0578 -0.0423 -0.0406 -0.0435
Interquartile 1.3981 1.3834 1.3505 1.468 1.3534 1.3836 1.3781
Std 0.9927 1.0273 0.9965 1.0164 1.0319 1.0243 4.7327
Skewness -0.304 -0.4685 -0.3398 -0.3185 -0.3599 -0.329 29.2494
Kurtosis 3.0296 3.4236 3.1763 2.9948 3.0992 3.285 901.6457
Min -3.9192 -4.4226 -3.9267 -3.6319 -4.0577 -4.4529 -5.8015
Max 2.8681 2.4978 2.607 3.5215 2.431 2.6478 145.8088

T=8,000

Mean -0.0652 -0.0582 -0.0603 -0.1162 -0.082 -0.0677 -0.0393
Median -0.0582 -0.0182 -0.0057 -0.0753 -0.0415 -0.0089 0.0068
Interquartile 1.3428 1.3581 1.274 1.36 1.413 1.3541 1.3453
Std 1.0227 1.0088 0.9993 1.0029 1.0258 1.019 0.995
Skewness -0.2254 -0.3289 -0.3002 -0.2391 -0.2401 -0.3142 -0.3153
Kurtosis 3.1067 3.2088 3.221 3.073 2.8969 3.2169 2.9539
Min -4.332 -4.0683 -4.2374 -3.7841 -3.9605 -4.0735 -3.6412
Max 2.6046 2.6965 2.7203 3.5689 2.9308 3.1357 2.2889

T=16,000

Mean -0.0513 -0.0646 -0.0574 -0.0614 -0.0414 -0.0476 -0.0402
Median -0.0096 -0.0519 -0.0041 -0.0147 -0.0058 -0.0254 -0.0055
Interquartile 1.4126 1.3857 1.4016 1.2958 1.3394 1.3244 1.3456
Std 1.0713 0.9961 1.0163 0.982 0.9896 0.9747 0.9446
Skewness -0.225 -0.1425 -0.2395 -0.1829 -0.1162 -0.1715 -0.2696
Kurtosis 3.4506 2.9504 3.0453 3.1743 3.013 3.0797 3.2704
Min -4.5942 -4.0956 -3.4779 -3.9179 -3.662 -3.8821 -3.8722
Max 3.194 2.8369 2.8237 3.3344 2.8541 2.6788 2.5253

T=32,000

Mean -0.0166 -0.0445 -0.0917 -0.0521 -0.0241 -0.0084 -0.0138
Median 0.0527 -0.0399 -0.0374 -0.028 -0.0054 0.0246 -0.0163
Interquartile 1.4155 1.3866 1.4077 1.3388 1.2873 1.3061 1.3313
Std 1.024 0.9992 1.0482 1.0198 0.9861 0.9593 0.9664
Skewness -0.2119 -0.1099 -0.151 -0.1094 -0.1772 -0.0781 -0.0003
Kurtosis 3.0391 2.7856 3.1057 3.1656 3.314 2.9657 2.9409
Min -3.9216 -3.1235 -3.809 -3.7391 -4.0901 -3.1434 -3.54
Max 2.7802 2.4493 3.0179 3.5289 3.081 3.1956 3.1559

T=64,000

Mean -0.0261 -0.0469 -0.1015 -0.054 -0.0176 -0.0323 -0.0227
Median -0.0075 -0.0497 -0.0762 -0.0232 -0.0038 -0.0572 -0.0062
Interquartile 1.2835 1.3308 1.3709 1.3203 1.3113 1.2851 1.3353
Std 0.9851 0.9943 0.9954 1.0099 1.012 0.9738 0.9625
Skewness -0.0485 -0.0736 -0.1162 -0.2292 -0.0985 0.0565 0.0079
Kurtosis 3.0462 2.8721 3.1561 3.1451 3.3001 3.1705 2.7938
Min -3.1698 -3.5756 -3.8194 -3.8242 -3.7815 -3.3252 -3.1829
Max 3.3653 3.1096 2.6458 2.8785 3.2984 3.4873 2.7864

Note: Summary statistics are conditional on spending a positive number of time periods in state 2.
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Figure 3.24: Distribution of the rescaled sampling error of θs2 = (θ̂2 − θ2)/se(θ̂2) when states are not observed.

p11 = p21 = 0.9 p11=0.95, p21=0.45 p11=0.975, p21=0.2250 p11=0.9875, p21=0.1125 p11=0.9938, p21=0.0563 p11=0.9969, p21=0.0281 p11=0.9984, p21=0.0141
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Note: The superimposed red line is the standard Normal distribution. Number of replications is N = 1,000
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3.24, we can observe the lack of observability results in similar set of distortions as in the

observed case. However, summary statistics in Table 3.22 indicate that the closer the G

matrix is to zero, the stronger is the mean bias and kurtosis, accompanied by a higher

standard deviation and larger positive values.

The rescaled sampling error in transition probability parameter p11

Figure 3.25 displays distributions of the rescaled sampling error in p11 when states can-

not be observed, which we denote as ξ11. The behaviour under the alternative asymptotic

sequence along the main diagonal is not substantially affected by the lack of observability,

and the usual asymptotic theory seems to work well most of the time. However, as a result

of the transition probability matrix P getting closer to the boundary case, a mild negative

skewness is present and does not seem to wash away with larger T .

Under the usual asymptotic sequence, which is displayed by each column, the param-

eter p11 is consistently estimated. The negative skewness is gradually washed away with

increasing T and, therefore, the usual asymptotics work well.

If we move across the columns along any row, the behaviour starts to deteriorate more

rapidly, as opposed to the observed case. Consequently, as G gets very close to zero

severe distortions begin to emerge. These are manifested in the form of strong mean bias,

increased standard deviation, deep negative skewness, strong kurtosis, and large negative

values. The median bias does not seem to be strong in most of the scenarios.

The rescaled sampling error in transition probability parameter p21

Next we consider the behaviour of the rescaled sampling error in the transition param-

eter p21, which we denote as ξ21. In Figure 3.26 the main diagonal displays the sampling

behaviour under the alternative asymptotic sequence Case 2. It can be observed that the

lack of observability does not affect substantially the behaviour of the rescaled sampling

error, except a noticeable distortion in the first plot for T = 1000. This distortion comes in

the form of strong mean bias, deep skewness, high kurtosis, and negative values of consid-

erable size. As T increases, these distortions wash away except for the skewness, which is

now positive due to the matrix P approaching the boundary case as in (3.46).
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Table 3.23: Summary statistics for the rescaled sampling error ξ11 =
(p̂

11
−p

11
)

se(p̂
11
) when states are not observed.

p11 = 0.9 p11 = 0.95 p11 = 0.975 p11 = 0.9875 p11 = 0.9938 p11 = 0.9969 p11 = 0.9984
p21 = 0.9 p21 = 0.45 p21 = 0.225 p21 = 0.1125 p21 = 0.0563 p21 = 0.0281 p21 = 0.0141

T=1,000

Mean -0.0339 -0.1289 -0.1821 -0.2084 -0.2888 -0.6596 -1.9039
Median 0.0159 -0.0191 -0.0422 -0.0078 -0.0434 -0.1961 -0.0327
Interquartile 1.3623 1.41 1.4108 1.2894 1.1941 1.3834 1.1786
Std 0.995 1.0132 1.0367 1.0106 1.0435 3.4582 10.7911
Skewness -0.341 -0.5574 -0.8131 -1.1304 -1.9835 -16.5913 -10.5307
Kurtosis 3.1718 3.2812 3.8803 5.1382 11.8552 326.1477 123.2791
Min -3.8917 -4.8469 -5.1487 -5.3621 -9.6015 -73.4215 -152.5791
Max 2.4786 2.0229 1.7821 1.5207 1.2394 0.9264 0.4419

T=2,000

Mean -0.0796 -0.1219 -0.167 -0.2002 -0.1887 -0.2783 -0.747
Median -0.0259 -0.0702 -0.0781 -0.0798 -0.0697 0.0306 -0.1402
Interquartile 1.2924 1.3278 1.352 1.3502 1.3469 1.323 1.2349
Std 0.9917 0.9898 1.0152 0.9992 0.9706 1.5514 5.7968
Skewness -0.2652 -0.3576 -0.5256 -0.7153 -0.831 -13.8216 -17.3225
Kurtosis 3.0192 3.1889 3.1942 3.8115 3.7096 321.292 356.9663
Min -3.5577 -4.3003 -4.0062 -5.4423 -4.0543 -37.1658 -137.9045
Max 2.7155 2.3567 2.069 1.7741 1.4875 1.254 1.0257

T=4,000

Mean -0.0349 -0.0984 -0.1137 -0.1194 -0.1221 -0.1811 -0.2333
Median -0.0154 -0.0137 -0.0375 -0.0248 -0.0127 0.041 0.083
Interquartile 1.3981 1.3319 1.3609 1.3187 1.4136 1.4268 1.3238
Std 1.0051 1.0002 1.0217 0.9904 0.9862 1.061 1.1113
Skewness -0.2775 -0.3399 -0.5308 -0.4983 -0.5247 -0.9572 -2.3476
Kurtosis 3.1185 3.2387 3.5913 3.1077 3.0145 3.892 17.9237
Min -3.8332 -4.3582 -4.619 -3.5705 -4.0676 -5.3192 -12.3392
Max 2.7144 3.0899 2.7111 2.6592 2.0975 1.53 1.455

T=8,000

Mean -0.0422 -0.0822 -0.0897 -0.1041 -0.0627 -0.1142 -0.1556
Median 0.0188 -0.0524 -0.0647 -0.0515 0.0036 0.0184 0.0602
Interquartile 1.3858 1.313 1.3528 1.3838 1.3537 1.4268 1.2842
Std 1.0022 0.977 0.9907 1.012 0.9913 1.057 1.0449
Skewness -0.2265 -0.2303 -0.269 -0.3932 -0.3869 -0.8095 -1.163
Kurtosis 3.1854 3.1025 3.1239 3.5195 3.0225 3.9478 5.0137
Min -4.1972 -3.4538 -3.9472 -5.111 -3.4502 -4.5372 -6.2562
Max 3.3559 3.8965 2.4817 2.4698 2.4559 1.9989 1.6488

T=16,000

Mean -0.0358 -0.0848 -0.06 -0.0894 -0.0208 -0.0495 -0.1019
Median -0.0334 -0.0351 -0.0261 -0.0545 0.0266 0.077 0.079
Interquartile 1.3644 1.3642 1.2838 1.3562 1.3622 1.3267 1.365
Std 0.9911 1.0113 0.9943 1.012 0.9958 1.0144 1.0543
Skewness -0.1414 -0.2037 -0.2748 -0.3225 -0.3679 -0.6426 -1.0382
Kurtosis 2.9962 3.0774 3.2534 3.3009 3.4885 3.7067 5.346
Min -3.3132 -3.8849 -3.6678 -4.4295 -4.8757 -4.4314 -6.9244
Max 2.6554 2.6877 2.5626 2.7828 2.7155 2.5487 2.0026

T=32,000

Mean -0.0338 -0.0638 -0.0587 -0.1092 -0.0131 -0.0299 -0.0923
Median -0.0049 -0.0708 -0.0303 -0.0574 0.0408 0.0447 -0.0035
Interquartile 1.2892 1.2724 1.3402 1.4096 1.3559 1.3501 1.3639
Std 0.9693 0.9821 0.969 1.0299 1.0385 1.0218 1.0407
Skewness -0.0352 0.0084 -0.1082 -0.352 -0.3283 -0.5418 -0.7561
Kurtosis 3.1686 3.1709 2.87 3.1571 3.3073 3.5626 4.6477
Min -3.3123 -3.4008 -3.2421 -3.951 -4.316 -5.5968 -6.6865
Max 3.1646 3.1511 2.6879 2.5878 2.9641 2.4345 2.2469

T=64,000

Mean -0.0001 -0.0129 -0.0293 -0.0651 0.0043 -0.006 -0.0601
Median 0.0228 0.0405 -0.0351 -0.0448 0.0045 -0.0009 0.0356
Interquartile 1.3122 1.2853 1.2959 1.3605 1.3312 1.3941 1.3506
Std 0.999 0.9892 1.002 1.0162 1.0037 1.0009 1.0235
Skewness -0.0914 -0.0864 -0.0789 -0.1484 -0.1511 -0.2294 -0.3749
Kurtosis 3.1371 3.2002 3.0025 3.0644 2.8262 2.8734 3.1441
Min -3.3984 -3.3801 -3.47 -3.4604 -2.8991 -3.3799 -3.6325
Max 3.0249 3.3295 2.7462 3.0531 2.644 2.399 2.9874
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Figure 3.25: Distribution of the sampling error ξ11 = (p̂11 − p11)/se(p̂11) when states are not observed.

p11 = p21 = 0.9 p11=0.95, p21=0.45 p11=0.975, p21=0.2250 p11=0.9875, p21=0.1125 p11=0.9938, p21=0.0563 p11=0.9969, p21=0.0281 p11=0.9984, p21=0.0141
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Note: The superimposed red line is the standard Normal distribution. Number of replications is N = 1,000
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Table 3.24: Summary statistics for the rescaled sampling error ξ21 =
(p̂

21
−p

21
)

se(p̂
21
) when states are not observed.

p11 = 0.9 p11 = 0.95 p11 = 0.975 p11 = 0.9875 p11 = 0.9938 p11 = 0.9969 p11 = 0.9984
p21 = 0.9 p21 = 0.45 p21 = 0.225 p21 = 0.1125 p21 = 0.0563 p21 = 0.0281 p21 = 0.0141

T=1,000

Mean -0.3849 0.0569 0.1253 0.2241 0.4395 0.6824 0.9905
Median 0.0000 0.1194 0.0722 0.0747 0.1632 0.1866 0.1064
Interquartile 1.0495 1.3731 1.4417 1.4426 1.4966 1.4423 1.4414
Std 0.9678 0.9893 1.0209 1.0862 1.2639 1.6465 2.3835
Skewness -1.773 -0.1339 0.3063 0.7704 1.3436 2.4741 4.0862
Kurtosis 6.7263 2.8034 3.157 3.6489 5.5325 13.042 31.8631
Min -5.6082 -3.3261 -2.4182 -2.1496 -1.5984 -1.6765 -1.4301
Max 0.8599 2.9302 4.4582 5.3057 7.9245 14.764 29.6176

T=2,000

Mean -0.2797 0.006 0.1047 0.2274 0.3039 0.4695 0.8527
Median 0.0000 0.035 0.0792 0.1245 0.1513 0.1852 0.2505
Interquartile 1.1991 1.3914 1.2993 1.3658 1.306 1.493 1.6079
Std 0.9533 1.0188 0.9743 1.0793 1.1223 1.3662 2.1783
Skewness -1.2745 -0.0529 0.2569 0.6677 1.392 1.9997 3.6697
Kurtosis 4.7255 2.8316 3.1041 3.7577 7.2337 10.4834 23.0977
Min -5.0138 -3.6094 -2.5252 -2.2678 -2.2092 -1.7638 -1.4872
Max 1.1415 2.9387 3.9478 4.718 7.4231 10.7146 19.9154

T=4,000

Mean -0.1827 0.0631 0.1145 0.1566 0.2327 0.3326 0.485
Median 0.0081 0.0234 0.0849 0.0869 0.0958 0.1252 0.1597
Interquartile 1.3534 1.3302 1.2742 1.2172 1.305 1.3963 1.5268
Std 0.986 0.9949 0.9894 1.0006 1.057 1.1801 1.6763
Skewness -1.0931 0.0385 0.2419 0.5255 0.8152 1.2147 4.4768
Kurtosis 4.6757 3.0831 3.178 3.6604 4.4609 5.5571 41.3229
Min -5.4894 -3.1055 -2.4272 -2.6426 -2.4018 -1.8763 -2.0245
Max 1.2968 3.4173 4.3088 4.4904 5.5975 6.7211 20.5657

T=8,000

Mean -0.1138 0.0257 0.0623 0.1089 0.1275 0.1799 0.2336
Median 0.0675 0.0195 0.0072 0.0314 0.0535 0.0764 0.0509
Interquartile 1.3973 1.3657 1.3405 1.3338 1.2633 1.2582 1.3628
Std 1.0174 0.9738 1.0092 1.0253 1.0044 1.0242 1.1616
Skewness -0.7951 0.078 0.3 0.4437 0.422 1.0048 1.2327
Kurtosis 3.3273 3.099 3.0964 3.4339 3.3407 6.2366 6.1014
Min -3.947 -2.9831 -2.9465 -2.6065 -2.5219 -2.3264 -2.5353
Max 1.7258 3.6394 3.2874 4.1816 4.1755 7.3735 7.6038

T=16,000

Mean -0.046 0.0221 0.011 0.0837 0.0483 0.0618 0.1182
Median 0.0657 -0.0148 -0.0131 -0.0174 -0.0534 -0.0173 -0.0206
Interquartile 1.3053 1.3841 1.419 1.4219 1.3122 1.3408 1.467
Std 0.9825 1.0113 1.016 1.0432 1.0011 0.9722 1.1073
Skewness -0.6589 0.0268 0.1405 0.3848 0.3797 0.4438 0.8423
Kurtosis 3.556 3.1245 2.9762 2.957 3.0377 3.2265 4.1902
Min -3.9647 -3.6126 -3.0755 -2.6906 -2.9613 -2.2061 -2.3116
Max 1.975 3.4555 3.5565 3.5824 3.348 3.7694 5.1955

T=32,000

Mean -0.0579 -0.0017 0.0022 0.0943 0.0387 0.0329 0.0691
Median 0.0588 -0.0552 0.0014 0.0407 -0.0244 -0.0005 -0.0167
Interquartile 1.4026 1.4527 1.4481 1.4037 1.3758 1.3593 1.3789
Std 1.0288 1.0199 1.0382 1.0424 1.0181 0.9977 1.0438
Skewness -0.5151 0.0806 0.0311 0.131 0.248 0.2744 0.4935
Kurtosis 3.1665 2.7391 2.8494 2.8236 3.0725 3.0205 3.3554
Min -4.8628 -2.9666 -3.2233 -3.2495 -2.9247 -2.7005 -2.5706
Max 2.1404 3.2585 3.4512 3.3576 3.2366 3.9689 4.3857

T=64,000

Mean -0.0547 -0.0099 0.0234 0.0549 0.0296 0.0278 0.0841
Median -0.0154 -0.0421 0.0163 0.0474 -0.0451 0.0201 0.0253
Interquartile 1.3847 1.347 1.3416 1.4567 1.4391 1.4016 1.3653
Std 1.0146 1.0053 1.038 1.0218 1.0245 1.0018 1.0322
Skewness -0.3746 0.1632 0.0152 0.049 0.2708 0.1678 0.1847
Kurtosis 3.3018 3.0944 3.1649 2.8102 2.8063 3.0691 2.9042
Min -4.9195 -2.9295 -3.298 -3.1249 -2.6533 -3.1707 -2.9994
Max 2.4577 3.4271 3.3687 3.2953 3.367 3.9431 3.2219
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Figure 3.26: Distribution of the rescaled sampling error ξ21 = (p̂21 − p21)/se(p̂21) when states are not observed.

p11 = p21 = 0.9 p11=0.95, p21=0.45 p11=0.975, p21=0.2250 p11=0.9875, p21=0.1125 p11=0.9938, p21=0.0563 p11=0.9969, p21=0.0281 p11=0.9984, p21=0.0141
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Note: The superimposed red line is the standard Normal distribution. Number of replications is N = 1,000
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At this point, one important feature deserves attention in the estimation procedure

when states are not observed. When states cannot be observed, the likelihood is constructed

in such a way that both p21 and p22 enter the optimisation procedure. Consequently, it is

expected that because the expected number of transitions from state 2 to state 2 is going

to infinity, p22 will be consistently estimated. Hence, due to the sum of probabilities being

equal to one, p21 + p22 = 1, p21 will also be consistently estimated. In this case, we expect

the distribution of the sampling error in p21 to be better and better approximated by the

standard normal distribution, although a mild positive skewness is expected to remain.

If we move vertically down the columns, the information about the transitions from

state 2 to state 1 increases to infinity, and the behaviour of the rescaled sampling error ξ21

approaches that of a standard normal distribution.

If we move across the columns along any row, the behaviour improves in the second

column, and then starts to deteriorate. The improvement in the behaviour is not entirely

surprising. If one moves across columns along any row, the P matrix is changing towards

the boundary case as in (3.46). In the second cell the P matrix is such that the parameter

p21 = 0.45 has moved away from the upper boundary. Consequently, as G gets very close to

zero severe distortions begin to emerge, where p21 = 0.0141 is now close to its lower bound-

ary. These distortions are manifested in the form of increased standard deviation, deep

positive skewness, strong kurtosis, large positive values, strong mean bias and relatively

milder median bias. In addition, another possible cause of distortions is that the change in

P towards the boundary case results in both the expected number of transitions from state

1 to state 1, and from state 2 to state 2 to increase. As it was mentioned previously, the

consequence of this is that, once we move to a particular state, we will tend to remain in

that state longer. This will result in some sample realisations providing more observations

from state 2, and some sample realisations providing less observations from state 2. Those

sample realisations with less observations from state 2 will provide less information about

the copula parameter θ2, thus creating distortions that could potentially “contaminate”

not only estimates of p21, but also all other parameter estimates.
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3.4 Empirical application

In this section, we provide an example of applying the alternative asymptotic framework

considered in previous sections. We use data from Section 2.5, which comprises S&P500

and FTSE100 indices for the period February 1, 1990 to November 18, 2014, amounting

to 1299 observations. We fit to the data the regime-switching copula model introduced in

(3.37), and obtain its parameter estimates, which are presented in Table 3.25. There is a

notable difference in the magnitude of the dependence parameters in both states. In low

dependence state the copula parameter is 0.5293, and in the high dependence state the

parameter is 0.8184. In Figure 2.10 of Chapter 2 we observed that the high dependence

state often coincided with financial crises, hence we can label this state as a financial crisis

state. In addition, states seem to be persistent as suggested by high parameter estimate

for the probability of transiting from state 1 to state 1, p11, and low parameter estimate

for the probability of transiting from state 2 to state 1, p21.

Typically, one would be interested in carrying out inference on the estimated copula

and the transition probability matrix parameters. In this situation, one would need the

critical value for the test statistic, which requires the knowledge of the distribution of the

test statistics under the null hypothesis. However, the true distribution of the statistic

is often unknown, or may be analytically intractable. Therefore, one would generally

proceed by using approximations of the underlying distribution based on asymptotic theory.

Nevertheless, approximations assume that the sample size is sufficiency large so that the

test statistic converges to the relevant limiting distribution. In the context of regime-

switching copula models, increasing the sample size implicitly assumes that observations

from both states also increase in proportion. This essentially means that the transition

probability matrix P remains fixed.

Previous sections considered two alternative asymptomatic sequences that relax the

assumption of a constant transition probability matrix. In this section we are interested

in applying the alternative asymptotic sequence Case 1. That is, a situation in which

the expected number of time periods spent in one of the states is constant as the sample

size increases. This scenario is fairly conceivable in the context of financial crises. If the
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government regulatory policy becomes more effective in preventing future financial crises,

one would expect them to be rare over time.

Similar to previous sections, we construct a framework to incorporate these types of

scenarios. Using the parameter estimates from Table 3.25, and rounding to two decimal

digits, the transition probability matrix P is of the following form:

P =

⎛
⎜
⎜
⎝

0.98 0.02

0.02 0.98

⎞
⎟
⎟
⎠

Using equation (3.39) for a given sample size under consideration T0 = 1,229, the resulting

G matrix is:

G =

⎛
⎜
⎜
⎝

25.98 −25.98

1273.02 −1273.02

⎞
⎟
⎟
⎠

However, in order to implement the framework under the alternative asymptotic sequence

Case 1, some further modification to G is required. This is because the elements of the first

column of the P matrix are different, and hence the resulting diagonal elements of matrix G

are also different. This means that equation (3.41) does not simplify to πT2 =
g11

T+g11+g22
=
g11
T .

If g11 = −g22, then multiplying πT2 by T would lead to a constant expected occupancy

time in crisis state, i.e. equal to g11. If g11 ≠ −g22, then the expected occupancy time

will decrease as the sample size increases, and will approach g11 in the limit. In order to

keep the expected occupancy time constant, the following modification is applied to the G

matrix:

GT =

⎛
⎜
⎜
⎝

g11 g12

gT21 gT22

⎞
⎟
⎟
⎠

where gT22 = (
g11
π0
2T0

− 1)T − g11, π0
2 is the ergodic (or steady state) probability of being in

state 2 (i.e. financial crisis), T0 = 1,299 is the original sample size, T is an arbitrary sample

size we are interested in such that T0 ≤ T , and gT21 = −g
T
22. This specification ensures that,

given initial sample size T0, the expected occupancy time in state 2 remains constant as

the sample size T increases to infinity. Using equation (3.39) and the modified GT matrix,
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Table 3.25: Parameter estimates of the regime-switching copula.

θ1 θ2 p11 p21

0.5293 0.8184 0.9814 0.0186
(0.0277) (0.0147) (0.0079) (0.0084)

Note: In brackets are the standard errors.

the resulting P matrix for any T is of the following form:

P T =

⎛
⎜
⎜
⎝

(1 − T −1g11) −T −1g12

( 1
π0
2T0

− 1
T ) g11 ( 1

T −
1

π0
2T0

) g11 + 1

⎞
⎟
⎟
⎠

where the following restrictions have to be placed on elements of the GT matrix to ensure

that the transition probabilities are non-negative and lie between 0 and 1:10

1. g11 > 0 , gT21 > 0, g12 < 0 and gT22 < 0.

2. g11 + g12 = gT21 + g
T
22 = 0.

Next, we demonstrate that for parameters of the crisis state, under the modified alter-

native asymptotic sequence Case 1, the standard asymptotic theory may provide a poor

approximation of the distribution of the test statistic under the null hypothesis even as

T →∞. We consider the classical t-test. In sufficiently large samples, a confidence level α

test would be to reject H0 ∶ θ = θ0 if ∣
(θ̂−θ)

se(θ̂)
∣ exceeds the upper α/2 quantile of the N(0,1)

distribution.

First, we simulate data of length T with N = 1,000 replications from the regime-

switching copula model in (3.37) using the parameter estimates from Table 3.25. In

essence, we assume that after the time period under consideration, financial crises will

not occur, which means that the expected number of time periods spent in crisis state

will be stochastically bounded. Next, we calculate the test statistic from the simulated

data for all parameters of interest. Figure 3.27 displays the sampling distributions of the

test statistics for all parameters when the null hypothesis is true. The distribution of the

t-statistic for copula parameter in non-crisis regime is displayed in the first row. As we

10Similar to previous cases, there still exist certain combinations of run length T and matrix G such that
the resulting PT matrix is negative. There is a simple modification to matrix PT ensuring non-negativity,
the details of which can be found in Appendix A.2.1.
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Figure 3.27: Sampling distribution of the t-statistic θs1, θs2, ξ11, and ξ21.

p11=0.98, p21=0.02 p11=0.99, p21=0.03 p11=0.995, p21=0.035 p11=0.9975, p21=0.0375 p11=0.9988, p21=0.0388 p11=0.9994, p21=0.0394 p11=0.9997, p21=0.0397
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Note: The superimposed red line is the standard Normal distribution. θs1 = (θ̂1 − θ1)/ŝe(θ̂1), θ
s
2 = (θ̂2 − θ2)/ŝe(θ̂2)

ξ11 = (p̂11 − p11)/ŝe(p̂11), and ξ21 = (p̂21 − p21)/ŝe(p̂21). Number of replications is N = 1,000

move across columns, the sample size increases, and the true sampling distribution seems

to be well approximated by the standard normal distribution. From the last two rows of

Table 3.26, we can observe that the 0.025 and 0.975 quantiles of the sampling distribution

are not very far from the quantiles of the reference standard normal distribution, −1.96

and 1.96 respectively.

These results also seem to indicate negligible parameter estimate bias of θ1. In the

second row of Figure 3.27, the sampling distribution of the t-statistic for copula parameter

in crisis regime does not seem to be settling down as the sample size increases. It remains

reasonably skewed with slight kurtosis, although the interquartile range seems to be close

to reference distribution. This suggests that the centre of the sampling distribution can be

well approximated by the standard normal. In addition, there seem to be some unusual

draws from time to time that induce strong skewness in the sampling distribution. Not
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Table 3.26: Summary statistics for the sampling distribution of the t-statistic θs1, θs2, ξ11, and ξ21.

T=1,299 T=2,598 T=5,196 T=10,392 T=20,784 T=41,568 T=83,136

p11 = 0.98 p11 = 0.99 p11 = 0.995 p11 = 0.9975 p11 = 0.9988 p11 = 0.9994 p11 = 0.9997
p21 = 0.02 p21 = 0.03 p21 = 0.035 p21 = 0.0375 p21 = 0.0388 p21 = 0.0394 p21 = 0.0397

θs1

Mean 0.0629 0.0828 0.0664 0.0698 0.1114 0.0399 0.0607
Median 0.0549 0.0813 0.0453 0.0500 0.1342 0.0189 0.0635
Interquartile 1.3338 1.3830 1.3119 1.2616 1.3097 1.3244 1.4154
Std 1.2159 0.9894 1.0102 0.9780 0.9757 1.0054 1.0335
Skewness -2.1145 -0.0836 0.0730 0.0238 -0.0737 0.0026 0.0025
Kurtosis 20.8740 3.0489 3.2136 3.1237 3.0111 2.8507 2.8932
Min -10.6080 -4.4439 -3.7932 -3.5566 -3.1686 -3.0350 -2.8975
Max 3.8261 2.8339 4.0357 3.4589 3.1191 3.1615 3.0465
0.025 quantile -1.9272 -1.8860 -1.9328 -1.8345 -1.8163 -1.9017 -1.9124
0.975 quantile 2.2496 1.9834 2.1165 2.1054 1.9863 1.9720 2.0394

θs2

Mean -0.0007 0.0493 0.0811 -0.0638 0.0699 0.0057 0.1195
Median -0.0292 -0.0231 -0.014 -0.0099 0.0109 -0.0397 0.0347
Interquartile 1.3127 1.302 1.3155 1.2784 1.2701 1.3232 1.3471
Std 1.2285 1.0428 1.008 3.1441 1.0179 1.7371 1.0446
Skewness -4.1336 0.4933 0.4805 -26.467 0.3123 -11.7179 0.4366
Kurtosis 74.208 4.4586 3.4015 790.2427 3.694 234.077 3.5971
Min -20.104 -3.393 -2.503 -93.7566 -3.351 -36.8022 -2.9759
Max 5.1386 5.6613 3.8779 7.8481 4.1094 4.9649 4.8427
0.025 quantile -1.8369 -1.7684 -1.7118 -1.9727 -1.8331 -1.8019 -1.7180
0.975 quantile 2.1015 2.3100 2.2468 2.1467 2.2473 2.4404 2.3449

ξ11

Mean -0.2188 -0.2111 -0.1633 -0.2422 -0.2515 -0.3236 -0.274
Median 0.0377 -0.0077 0.0292 -0.0473 -0.0843 -0.1641 -0.058
Interquartile 1.3718 1.3607 1.3229 1.3701 1.3369 1.3824 1.3321
Std 1.2155 1.0518 1.0253 1.0359 1.0133 1.4848 1.1233
Skewness -2.403 -1.0425 -1.163 -0.9563 -1.1759 -10.6674 -1.4093
Kurtosis 15.7342 4.4246 5.9031 4.2959 6.1298 222.2656 6.1765
Min -11.65 -5.4684 -6.6947 -5.5252 -7.4367 -32.461 -6.4936
Max 1.6336 1.793 1.6704 1.5177 1.5879 1.566 1.6321
0.025 quantile -3.1441 -2.8203 -2.4699 -2.6390 -2.6741 -2.9014 -3.1159
0.975 quantile 1.3007 1.2856 1.3077 1.2544 1.1615 1.2209 1.2373

ξ21

Mean 0.2989 0.2291 0.1583 0.2036 0.1941 0.2207 0.1885
Median 0.0124 0.115 0.0025 0.0543 0.0537 0.0596 0.0266
Interquartile 1.3697 1.3897 1.3518 1.3734 1.353 1.2639 1.3285
Std 1.3666 1.0331 1.0264 1.0317 1.0869 1.0496 1.0903
Skewness 2.9942 0.623 0.7954 0.7501 1.4179 1.1715 1.18
Kurtosis 21.0444 3.2676 3.9549 4.1134 8.0925 5.844 6.1493
Min -1.7701 -2.057 -1.9974 -2.0673 -2.3041 -1.974 -2.141
Max 12.9879 4.603 4.7411 6.1679 8.0763 6.6052 7.0364
0.025 quantile -1.2658 -1.4223 -1.4721 -1.4327 -1.3745 -1.3439 -1.4194
0.975 quantile 3.5035 2.4971 2.5537 2.5507 2.6243 2.6262 2.6112

Note: Number of replications is N = 1,000. θs1 = (θ̂1 − θ1)/ŝe(θ̂1), θs2 = (θ̂2 − θ2)/ŝe(θ̂2), ξ11 = (p̂11 − p11)/ŝe(p̂11), and ξ21 =
(p̂21 − p21)/ŝe(p̂21).

surprisingly, the 0.025 and 0.975 quantiles presented in Table 3.26 seem to be considerably

far from the quantiles of the reference distribution for any given sample size. Therefore,

these results suggest that regardless of the sample size, the exact and asymptotic p-values

will be different, which can lead to contradictory conclusions about the hypothesis of

interest. The plots for t-statistics associated with transition probability parameters p11

and p21 exhibit strong negative and positive skewness, respectively. The corresponding

quantiles also seem to be considerably far away from the reference distribution.
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3.5 Conclusion

In this study we examined through a Monte Carlo study finite properties of the maxi-

mum likelihood estimator of a Markov regime-switching Gaussian copula processes, where

the transition probability matrix is local to absorbing states. Of particular interest was to

examine the finite sample properties of copula parameter estimates in both states under

the alternative asymptotic sequences. Two alternative asymptotic sequences have been

considered: first where the transition probability matrix approaches a matrix in which the

first column consists of elements equal to one, and the second column consists of elements

equal to zero; and second, where transition probability matrix converges to an identity

matrix.

In Case 1 of the alternative asymptotic sequence, the simulation results revealed that

when states can be observed, the standard asymptotic theory works well for the rescaled

sampling error in θ1. Nevertheless, the standard asymptotic theory does not apply for

the rescaled sampling error in θ2. On the other hand, given that we choose a diagonal for

which the expected number of time periods spent in state 2 is not below 100, the behaviour

does not seem to be far from the standard normal distribution. We have also considered

the impact due to the lack of observability on the behaviour of the rescaled sampling

errors. This created additional complexities in the estimation procedure, which resulted

in the “contamination” of the behaviour in the rescaled sampling error in θ1 in state 1. In

particular, for a given sample size T , the deterioration was detected in the behaviour of the

rescaled sampling error in θ1. The closer the G matrix was to zero, the stronger and the

more pronounced the deterioration was. It was proposed that this was due to the result

of having negligible or, in some realisations, none of the observations from state 2 when

G was very close to zero. Subsequently, the distortions in the behaviour of the rescaled

sampling error in θ2 would “contaminate” the behaviour of the rescaled sampling error in

θ1. Nonetheless, as T increases to infinity, and as long as we stay sufficiently far away from

the region where G was close to zero, the regular asymptotic theory is expected to work

well, although non-trivial mathematics would be required to conclude about the limiting

distribution.
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In the alternative asymptotic sequence Case 2, where the transition matrix approaches

an identity matrix, the standard asymptotic theory works well for copula parameters in

both states. As T increases to infinity, the rescaled sampling errors in θ1 and θ2 are well

behaved and converge to the standard normal distribution. This is because the expected

number of time periods spent in each regime increases to infinity as T goes to infinity and,

therefore, the regular asymptotic theory works well. Furthermore, for a given run length

T , the lack of observability does not seem to substantially “contaminate” the behaviour of

the rescaled sampling error in θ1, even when the matrix G is very close to zero.

Simulation results suggest that if the regime switching state of the world is described by

the alternative asymptotic sequence Case 1, computation of the covariance matrix based

on the standard asymptotic theory could be inaccurate. If the regime switching state

of the world is described by the alternative asymptotic sequence Case 2, then the usual

asymptotic theory works well, and if the sampling error is standardised correctly using

the usual asymptotic formulae for the covariance matrix, then it would be asymptotically

distributed as a standard normal.

We have also applied the developed framework to the real data, in order to examine

the finite sample distribution of the t-statistic under the alternative asymptotic sequence

Case 1. These results suggest that regardless of how large the sample size is, the exact

and asymptotic p-values will be different. The implication of these findings is that relying

on standard asymptotic approximations could lead to erroneous conclusions about the

hypotheses of interest.
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Appendix A.1

A.1.1 Standard errors of the estimates using Godambe information

Let Y1, . . . ,YT be a random sample from a density g, and let the realizations be

y1, . . . ,yT . Let also Ψ be a vector of functions with the same dimension as parameter

vector α′ = (δ′
1
, ...,δ′

d
,θ′). The vector of inference functions is:

T

∑
t=1

Ψ(α,yt) (A1.1)

Suppose α̃ = α̃(y, ..., yT ) is the only root satisfying:

T

∑
t=1

Ψ(α̃, yt) = 0 (A1.2)

also suppose α∗ is the only root satisfying:

Eg [Ψ(α∗,Y )] = 0 (A1.3)

Assuming the regularity conditions of score equations in asymptotic maximum likelihood

theory hold for Ψ. Then we have:

T 1/2(α̃ −α∗) Ð→N(0,G(α∗)−1
) (A1.4)

where G(α∗) is the Godambe information matrix (Godambe, 1960), where the inverse is

given by:

G(α∗)−1
= H−1J(H−1

)′ (A1.5)

where

H = −Eg [
∂Ψ(α∗,Y )

∂α′
] , J = Eg [Ψ(α∗,Y ),Ψ′(α∗,Y )] (A1.6)

Due to the recursive nature of the log-likelihood for the Markov regime-switching mod-
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els with unobserved states, the analytical expressions for H and J in (A1.6) cannot be

obtained. Therefore, the numerical estimates have been used instead.

Appendix A.2

A.2.1 Ensuring non-negativity of the transition probability matrix PT under

the alternative asymptotic sequence

In this section we address the possibility of obtaining negative elements of a probabil-

ity matrix for particular combinations of matrix G and run length T . We consider an

alternative asymptotic sequence Case 1 where the transition matrix converges to a matrix

in which all elements of the first column are equal to one, and all elements of the second

column are equal to zero. We can define transition matrix P as a function of g1, g2 and T :

PT =

⎛
⎜
⎜
⎝

e−
g1
T (1 − e−

g1
T )

e−
g2
T (1 − e−

g2
T )

⎞
⎟
⎟
⎠

In this specification it is evident that, in order for the transition probabilities to be

positive and lie between 0 and 1, the following restrictions have to be placed on g1 and g2:

1. g1 ≥ 0, g2 ≥ 0

The ergodic distribution can also be derived as follows:

πT1 =
1 − (1 − e−

g2
T )

[1 − (1 − e−
g1
T )] + [1 − (1 − e−

g2
T )]

=
1

1 + e
g2
T − e

g2−g1
T

πT2 =
1 − (1 − e−

g1
T )

[1 − (1 − e−
g1
T )] + [1 − (1 − e−

g2
T )]

=
e
g1
T − 1

e
g1
T + e

g1−g2
T − 1

Evidently, ergodic probabilities depend on T with the following limits:

lim
T→∞

πT1 = 1

lim
T→∞

πT2 = 0

We can also derive the expected number of state transitions by chain between date 0 and
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date T:

N e
T =

2T [(1 − (1 − e−
g2
T ))(1 − e−

g1
T )]

[1 − (1 − e−
g2
T )] + [(1 − e−

g1
T )]

=
2T (1 − e−

g1
T )

1 + e
g2
T − e−

g2−g1
T

Similarly, it is evident that the expected number of state transitions also depends on T

with the following limit:

lim
T→∞

N e
T = 2g1

In the similar vein, the non-negativity of the transition probability matrix PT can

be ensured under the alternative asymptotic sequence Case 2, although the derivation is

omitted here.
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Figure 3.28: The PP-plot of the standardized distribution of estimates of θs2 when states are observed, (conditional
on spending a positive number of time periods in State 2)

p11 = p21 = 0.9 p11 = p21 = 0.95 p11 = p21 = 0.975 p11 = p21 = 0.9875 p11 = p21 = 0.9938 p11 = p21 = 0.9969 p11 = p21 = 0.9984
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Figure 3.29: Distribution of the rescaling sampling error ξ21 = (p̂21 − p21)/se(p̂21) when states are observed, restricted
X-axis. Alternative asymptotic sequence Case 1.
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Note: 1 The distribution is conditional on spending a positive number of time periods in State 2. The superimposed red line

is the standard Normal distribution. Number of replications is N = 1,000.
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