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Abstract

In container intermodal transportation, a significant portion of the total cost arises from

the inland transportation of containers. There are many parties (shipping lines, haulage

companies, customers) sharing this operation as well as many restrictions that increase the

complexity of this problem and make it NP-hard. Shipping lines and haulage companies

tend to apply efficient optimization techniques to manage this process in a way to reduce the

overall cost and to ensure that customers are satisfied. In this thesis, we focus on container

inland transportation from the perspective of delivering 20ft and/or 40ft containers on

a heterogenous fleet of trucks, between a single port and a list of customer locations and

inland depots. We investigate three types of inland transportation problems: Homogenous

Container Sizes, Heterogenous Container Sizes and Stripe and Discharge of Containers.

Each of the above problems has its own complexity but all have been classified as

NP-hard problems. For this reason we will study these problems separately and the main

contributions are describing, modelling, solving and analysing of the:

• Homogenous Container Sizes: an efficient assignment Mixed Integer Linear Program-

ming (MILP) model is formulated which solves large scale instances in a reasonable

solution time and can be implemented on variants of the container drayage problem.

vi
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• Heterogenous Container Sizes: a Mixed Integer Linear Programming (MILP) model

for combining 20ft and 40ft, Stripe orders is designed, which solves more efficiently

than its previous analog. For realistic instances, a decomposition and aggregation

heuristic is designed and tested to be cost saving.

• Strip and Discharge of Containers: a Genetic Algorithm (GA) approach is designed

and tested for solving large scale problems within a quick computational time and

the result shows that combining the Strip and Discharge types with the usage of inland

empty depots is cost and fleet saving.

Keywords: Inland Transportation; Combining Orders; An Assignment MILP; Heuristic

Decomposition; Genetic Algorithm
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Chapter 1

Introduction

1.1 Containerization in Logistics: An Overview

In the period before the 1950s, freight transportation had experienced many problems, such

as damage to cargo and slow transportation [66]. This situation changed later, when the use

of containers began and became a common method for global trade transportation. Con-

tainers as shown in (Figure 1.1) are boxes made from solid material which are characterized

as secure and safe means for the transportation of goods and products for long distances

and times. Containers form the most integral part of the entire shipping industry, and are

created to store various kinds of products that need to be transported between different

regions and areas. Moving by containers will protect contents during the long journeys

they make and ensure that they are collected in one piece. The International Standard

Organisation (ISO) classifies containers into standard sizes: 20ft, 40ft, 45ft, 48ft and 53ft, in

which 20ft and 40ft are the most commonly used. Consequently, most trucks and vehicles

are designed to carry these two types [71]. As such, depending on the type of products to

2



1.1. Containerization in Logistics: An Overview 3

be shipped or the special services needed, container units may vary in dimensions. Var-

ious types of shipping containers are being used today to meet requirements of all kinds

of cargo shipping. For instance, the transportation of chilled and frozen products requires

a special type of container called reefers containers which are provided with temperature

regulators and have a carefully controlled low temperature, while dry storage containers

are used for shipping of dry materials. Furthermore, tanks storage containers are used for

transportation of liquid materials.

Figure 1.1: Containers (A container terminal at the Port of Felixstowe)

Rodrigue et al. [84] reported that the world traffic of containers, which is the number

of containers being transported, has grown significantly with an average annual growth of

9.5%. However, containers throughput, which refers to the number of containers handled at

ports, has an average annual growth of about 10.5% during the same period. This diverging

emphasizes that the global trade represented by supply chains becomes more complex.

The rising of both container traffic and throughput is related to the growth of international

trade and the adoption of containers as an important method for both maritime shipping

and inland transportation. Until 2009 the growth of containers throughput had increased
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continuously. However, the financial crisis of 2009-2010 resulted in a drop of about 49

million TEUs (9.3%) during that period. This was the first time that the global container

flow level came down. In 2015, the growth of container throughput continues to increase

to become about 687 million TEUs (see Figure 1.2).

Figure 1.2: Growth of Global containerized trade between 1980 and 2015. Source: Drewry Shipping
Consultants and own elaboration.

1.2 Intermodal Freight Transportation

Intermodal freight transportation, which is also called Multimodal transportation, is the

transportation of goods and products as a containerized cargo from their origins to desti-

nations by a combination of transportation modes [20] including trucks, rails and vessels

(Figure 1.3). As shown in Figure 1.3, the procedure of this operation usually starts by the

delivery of loaded containers from shippers directly to the port/terminal or to a rail yard

by truck and then to the terminal. A vessel or barge will then move the loaded containers

from the origin port to another destination port, from where the loaded containers will be
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delivered to the consignees by trucks or trains again. Combining different transportation

modes is vital in the freight transportation industry. Many important factors can affect

the decision of choosing the appropriate transportation modes, for instance, the overall

cost, the service circumstances, the delivery speed and facilities for handling and packing

at customers’ locations. Each transportation mode has its own features and advantages,

for instance, the benefit of using the truck (lorry) is the flexible and immediate delivery of

cargos, while rail transportation allows the delivery of a larger number of cargos with less

cost and less pollution.

Figure 1.3: The process of Intermodal Freight Transportation

Sea (ocean) transportation is required for the case of global transportation among coun-

tries and far regions [14]. Many factors contribute to the importance of intermodal freight

transportation [13] such as, the transportation cost from the economic perspective, the envi-

ronment impact and traffic flows. For instance, as reported by [19], developed intermodal

systems of transportation can decrease the emissions by 57% comparing to unimodal sys-

tems of transportation . As a result, intermodal freight transportation has attracted atten-

tion from academic researchers, business firms and governments to look at this operation

carefully.
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1.3 Inland (Drayage) Transportation of Containers

In contrast to sea transportation, inland transportation, which is also called drayage trans-

portation as defined by Harrison et al. [49], is executed by rail and trucks. When the vessel

arrives at the port, containers can be transported by rail, which is usually located at the

port, to the final rail hub. From the rail hub, containers are then delivered by trucks to

customers and vice versa. Another common type of inland transportation is that containers

are delivered directly from the port to customers by trucks [11]. In this domain, shipping

companies usually manage hundreds of the inland transportation orders every working

day. The shipping firms aim to execute all of their orders with smallest cost whilst satisfy-

ing customer requirements. However, the inland transportation takes a significant portion

of the total cost that arises from intermodal transportation. Therefore, it is important to

create an efficient strategy to manage this process in a way to ensure all parties are satisfied.

Below are examples of the inland transportation of orders which are planned by shipping

companies and executed by haulage contractors by trucks and rail.

An import by truck The first type of order is called an import order, which is the delivery

of loaded containers from the port/terminal to the destined customer location by trucks.

After stripping the container at customers, the empty container must be taken to a suitable

location for future use, such as a nearby depot or back to the original port (Figure 1.4). Note

that if containers and trucks are not separated after the service, it is called a Discharge of

containers. In contrast, if containers and trucks are separated after the service, this is called

a Strip of containers. A practical UK example: A truck drives a loaded container from the

port of Felixstowe to a customer in Cambridge, then the empty container is sent to a depot
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or directly to another customer or back to a container yard in the port of Felixstowe.

Figure 1.4: An import of orders by truck

An export by truck In opposite to the import of orders, export orders are executed by

trucks following the same sequence in reverse, namely that a suitable empty container is

picked from a depot or a port, driven to the customer location to collect the cargo, and then

the loaded container is delivered to the port to be placed on a departing ship (Figure 1.5).

A practical UK example: A truck picks up an empty container from a Northampton depot

to collect a cargo at a customer in Bedford and takes the loaded container to the port of

Felixstowe.

Figure 1.5: An export of orders by truck
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An order by rail and truck It is often cost saving to transport loaded containers for most

of the distance on a rail. For import orders delivering mostly by rail from the port will save

a long distance left to the customer. From the rail hub, containers are then delivered to

customers by trucks (Figure 1.6). The empty containers are then returned to the rail hub by

trucks for reuse. Of course, the export order executed by rail and truck follows the reverse

Figure 1.6: The delivery of orders by rail and truck

sequence. A practical UK example: A loaded container arriving on a ship at the port of

Felixstowe is delivered by a rail service for Birmingham. Then a truck collects the loaded

container from the Birmingham rail terminal to a customer in Derby and then returns the

empty container to the Birmingham rail terminal.

A combination of import and export It is also cost saving to combine an import order

with an export order in a matching case. In this scenario the empty container resulting

from the import customer is then delivered directly to the export customer, finally the

loaded container is delivered from the exporter customer back to the port (Figure 1.7). This

type of transportation is called Street-turn of empty containers. In this case, two empty

journeys from/to a depot/port are saved, in addition to the saving resulted from using a

single truck to execute two trips of orders. In contrast, there is another common empty

container strategy called Depot-turn, with which empty containers are delivered to depots
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for storing and reuse. A practical UK example: A truck collects a loaded container from

a terminal at the port of Felixstowe to an import customer in Cambridge, then the empty

container is sent to an export customer in Bedford, finally the loaded container is delivered

back to the port of Felixstowe.

Figure 1.7: A combination of import and export orders

Pairing 2×20ft containers The pairing of 2×20ft containers means that two loaded/empty

containers are paired in delivery by a single truck between the port and their destined

customer locations. This problem is linked to both shipping lines and haulage companies

as a carrier, as the aim of both parties is to save cost from the combination of orders. In the

UK and Europe, two 20ft containers can be carried on a single 40ft truck [71]. The pairing

process is typically performed on a slider chassis, which is able to carry either 2 × 20ft

containers or 1 × 40ft container as shown in Figure 1.8. From the perspective of shipping

companies, pairing two orders on a single truck can be cheaper than paying for two trucks

to carry them out separately. While for the haulage companies combining orders from two

separate shipping companies will earn the rate cost for both orders separately but only

having the fuel and resource cost of a single truck. Note that, the pairing process is subject
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to certain constraints, such as the gross weight and driving time regulations. Combining

orders in twinned pairs will naturally reduce the number of trucks required to execute the

transport plan. However, there is a further measure of truck utilisation to consider. Each

trip will have a duration and the shorter the trip, the more likely that the truck can do other

work that day. Therefore it is worth considering how to minimise individual and overall

durations alongside the main task of minimising cost.

Figure 1.8: Pairing 2×20ft containers on 40ft truck (https://en.wikipedia.org/wiki/Long-combination-vehicle,
10/08/2018)

1.4 Research Objectives, Scope and Organization

According to the United Nations Conference on Trade and Development [80] in 2014,

around 80% of the global trade volume is transported by sea and handled by ports. Con-

sequently, the demands of transporting containers from the port terminal to the receivers

are high and increasing as the years pass [20]. The most significant cost related to the total

transportation cost is caused by inland transportation, which illustrates the importance of

the inland transportation of containers. Indeed, the unplanned use of trucks (lorries) will

cause a high transportation cost, environment problems related to emissions increasing
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and also traffic flow problems. For these reasons, it is important to design efficient tech-

niques and strategies to plan and manage this operation effectively. From the perspective

of operational research and decision science, this thesis intends to develop efficient opti-

mization models to tackle the container inland transportation problems. Many research

efforts focused on solving these problems, however, several gaps in the current literature

are noticed, which this thesis aims to cover to some extent. This thesis comprises six

chapters as follows:

Chapter 1 is an introduction which provides an overview of the usage of containerization

in logistics, a background to intermodal freight transportation, a description of the inland

transportation of containers and finally the objectives and the scope of the thesis.

Chapter 2 investigates previous literature. Based on this investigation the literature

review is separated into three categories. The exact and heuristic (metaheuristic) methods

are also explained in this chapter.

In Chapter 3, we investigate the Pairing of Containers/Orders in Drayage Transportation

(PCDT) of homogenous container types on heterogeneous fleets. More specifically, we

consider the delivery of paired containers on 40ft trucks and/or individual containers on

20ft trucks, between a single port and a list of customer locations. An assignment Mixed

Integer Linear Programming (MILP) model is formulated, which solves the problem of how

to combine orders in delivery to save the total transportation cost when orders with both

single and multiple destinations exist. In opposition to the traditional models relying on the

Vehicle Routing Problem with Simultaneous Pickups and Deliveries and Time Windows

(VRP-SPDTW) formulation, this model falls into the assignment problem category which

is more efficient to solve on large size instances. Another merit for the proposed model is
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that it can be implemented on different variants of the container drayage problem: import

only, import-inland and import-inland-export. Results show that in all cases the pairing of

containers yields less cost compared to individual delivery and decreases empty tours.

In Chapter 4, we design a Mixed Integer Linear Programming (MILP) model for com-

bining orders in the inland, haulage transportation of containers. In this MILP model, the

pick up and delivery process of both 20 and 40 foot containers from the terminals to the cus-

tomer locations and vice versa are optimized using a heterogeneous fleet consisting of both

20ft and 40ft trucks/chasses. Important operational constraints such as the time window at

order receivers, the payload weight of containers and the regulation of the working hours

are considered. Based on an assignment model, this MILP solves problems with 100 orders

efficiently to optimality. To deal with larger instances, a decomposition and aggregation

heuristic method is designed. The basic idea of this approach is to decompose order loca-

tions geographically into fan-shaped sub-areas based on the angle of the order location to

the port, and solve the sub problems using the proposed MILP model. To balance the fleet

size amongst all subgroups, column generation is used to iteratively adjust the number of

allocated trucks according to the shadow-price of each truck type. Based on decomposed

solutions, orders that are ”fully” combined with others are removed and an aggregation

phase follows to enable wider combination choices across subgroups. The decomposition

and aggregation solution process is tested to be both efficient and cost-saving.

In Chapter 5, we reflect the real practice of haulage container transportation where both

pick-up and delivery, empty and loaded, Discharge and Strip of heterogenous container

types are combined. Heterogeneous fleets are considered to perform the inland trans-

portation. For managing the delivery of empty containers, the two common strategies,
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Depot-turn and Street-turn are both tested with examples capturing real geographical infor-

mation. A Genetic Algorithm (GA) approach is designed for solving large scale problems.

The result shows that solving the complicated problem using the developed GA is better

than solving the simplified problem using an exact method, even on small scale instances

where an optimal solution is achievable with the exact model. In addition, combining the

Strip and Discharge types with the usage of inland empty depots both saves transportation

cost and increases fleet utilization. The value of using inland depots is also evaluated.

In Chapter 6, conclusions of the research are drawn and the future research recommen-

dations are discussed.

To summarize, this thesis fills some gaps between the current academic study and the in-

dustrial operations of container inland transportation, and contributes to the development

of heuristic approaches to solving large-scale problems.



Chapter 2

Literature Review

Many studies have been established to consider the inland transportation of containers and

the majority of them focus on the usage of Operational Research/Optimization techniques.

A wide range of descriptions and classifications were introduced by Steenken et al. [93]

about the optimisation methods that had been used in the container terminal processes,

which was later expanded and updated by Stahlbock and VoB [92]. On the other hand,

Braekers et al. [5] described in more detail the operation of managing the transportation

of empty containers at multiple planning levels (strategic, tactical and operational). In this

chapter, we review the previous literature that addressed the container inland transporta-

tion problems, i.e. the haulage pickup and delivery of containers. As we can see in Figure

2.1, problems considered in this thesis are classified into three types, and accordingly the

literature review is categorized into three main subsections: homogenous container sizes,

heterogenous container sizes, strip and discharge of containers.

14
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Figure 2.1: Classifications of problems of this thesis

2.1 Homogenous Container Sizes

Due to its importance, inland transportation of containers has received attention from

both academia and industry over the last few years. In the container industry, the most

common types of containers used are the 20ft and 40ft containers. Therefore, these two

types are considered by most articles about inland transportation. In the existing literature,

some studies optimized the movement of containers of the same size. In this case, the

delivery and pickup of homogenous containers, 20ft or 40ft, were investigated. The aim

was to combine the delivery and pickup services so as to save overall transportation cost.

However, some articles focused only on loaded containers, while others focused on loaded

and empty containers. Except one paper [7] who studied the pairing of two 20ft containers

on one 40ft chassis, a large amount of literature focused on the transportation of a single

container per-truck. Note that the problem description in some articles were the same and

the difference was only seen in the developed methodology.

Jula et al. [56] introduced a transportation problem, where a set of loaded containers

should be transported to meet a list of pickup and delivery requests. For the same overall

transportation cost, pickup and delivery orders are paired before being assigned to delivery
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routes. By allocating a single node for each pickup and delivery pair, a multiple traveling

salesman problem with time window constraints (M-TSPTW) model was formulated. This

model solved limited size instances. If the problem became too large to handle with this

method, a hybrid method was then used, formed of dynamic programming techniques in

conjunction with genetic algorithms. A heuristic insertion method, which was updated

from Jaw et al. [54], was also developed and solutions obtained from this method were

compared with the M-TSPTW and hybrid method solutions. The results showed that the

heuristic insertion method outperformed the M-TSPTW and hybrid method. Later, Jula et

a. [55] studied the delivery of a single class of empty containers in the Los Angeles and Long

Beach port. A mathematical model was formulated and solved by a two phase optimization

method on different simulation scenarios. Imai et al. [53] studied the same problem as that

of Jula et al. [56]. However, in this research it assumed that the haulage company have

two types of truck, one type owned by the company and the other rented from outside.

The aim was to make use of the own fleet as much as possible so as to reduce the cost paid

for rental. The problem was formulated as a vehicle routing problem with full container

load (VRPFC), in which a homogenous size and type of containers was used. According

to the authors, the VRPFC was NP-hard, therefore a subgradient heuristic based on a

Lagrangian relaxation was developed to identify the near optimal solution for large sizes

instances. In the following years, Caris and Janssens [8, 9] investigated the same problem

as in Imai et al. [53]. In order to solve the problem, the authors proposed a two-phase

method, where the initial solution was constructed by an insertion heuristic. This initial

solution was then improved with local search techniques based on three neighbourhoods

and deterministic annealing approaches. Zhang et al. [107, 109] extended the work of
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Imai et al. [53] and Caris and Janssens [8, 9], by introducing two types of empty orders

(import and export empty containers) of the container truck transportation (CTT). The

problem was formulated mathematically as an extension of the multi travelling salesman

problem with time window (M-TSPTW) based on window partition [101]. A cluster and

reactive tabu search (RTS) method was developed to solve the problem. Later, Zhang et

al. [110] modified their previous research by restricting the number of empty containers

stored at depots to a limited number. The problem was also formulated as an extension

of the M-TSPTW based on the direct graph and solved by the reactive tabu search to

create routes visited by trucks. Similar to Zhang et al. [110], Nossack and Pesch [74]

formulated the same problem as a full truckload pickup and delivery problem with time

window (FTPDPTW) and solved by a two stage heuristic method. In the first stage, a route

construction heuristic was built. Then, another heuristic method was developed to improve

the constructed route. Braekers et al. [3] studied a similar problem to that of Nossack

and Pesch [74], however in this case empty containers were assumed to be delivered

directly from suppliers to demanders without the existence of inland depots. The problem

was formulated as an asymmetric multiple vehicle traveling salesman problem with time

window (am-TSPTW) followed by a sequential and integrated heuristic method based on a

deterministic annealing algorithm. For two different scenarios, Kopfer et al. [61] studied the

delivery of homogenous containers. The first scenario is when empty containers are reused

by the same owner, and the second is the sharing of the empty containers between more

than one owner. Two mathematical models were formulated to solve these two scenarios.

Later, Braekers et al. [4] considered and solved the same problem as a bi-objective problem

(minimizing distance and number of trucks) based on two phases hybrid deterministic
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annealing and tabu search approach. Recently, Song et al. [91] adapted the Braekers et

al. [4] approach by solving the problem as an asymmetric vehicle routing problem with

time window (a-VRPTW) based on an arc-flow formulation and a branch-and-price-and-

cut algorithm. Sterzik and Kopfer, [94] imposed a mixed integer programming (MIP)

model for the inland container transportation. This model varies from others in which it

considered vehicle routing, scheduling and allocating empty containers. According to the

authors, this problem was an extension of the pickup and delivery problems with time

window (PDPTW) in which trucks can be allocated to the nearest depot after completing

the service when not all pickup and delivery nodes are known in advance. A tabu search

heuristic was proposed to solve the problem. For different problem set-ups, Wang and

Yun [100] addressed the transportation of containers by trucks and trains. A mixed integer

programming model followed by a hybrid tabu search method was designed to solve

the problem. Xue et al. [104, 105] examined the separation of trucks and trailers for the

delivery and pick of containers. Mathematical models were formulated and solved by ant

colony optimization and tabu search methods. Schulte et al. [86] introduced a collaborative

planning model to be operated within a truck appointment system to investigate its impact

on emission and cost objectives. An optimization model based on the M-TSPTW was

developed.

On the other hand, the pairing of two 20ft loaded/empty containers on a 40ft chassis

was investigated in the paper of Caballini et al. [7]. A mathematical model for combining

the import, export and inland transportation trips was developed. The aim of combining

trips is to reduce the empty trips and the total cost.
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Having investigated these articles and building on their shortfalls, the aim of Chapter

3 [23] of this thesis is to further minimize the inland transportation cost of 20ft containers

by allowing the simultaneous transportation of two 20ft containers on 40ft trucks follow-

ing UK regulations. This significantly reduces the empty movements of the trucks on

their routes whilst respecting time windows and laws which must be abided by. Here we

propose a generic optimization model based on an assignment problem (rather than the

traditional VRP ideas), which can be adapted to the combination of containers in three

following ways: import (export) and inland; import and export; and import-inland-export.

2.2 Heterogenous Container Sizes

In addition to the transportation problem of homogenous container sizes, the heterogenous

container types combination problem in road transportation has also been studied widely.

This type of problem normally refers to the delivery of both 20ft and 40ft containers using

homogenous or heterogenous fleets. In this case 40 ft trucks can carry up to two 20ft

containers or one 40ft container. Some literature studied the problem from the perspec-

tive of managing the delivery of loaded and empty containers amongst their origins and

destinations in order to minimize the transportation cost, while other literature considered

fleet management aiming to minimize the number of required vehicles or to maximize fleet

utilization.

Chung et al. [16], formulated a mathematical model for the pickup and delivery of

both 20ft and 40ft containers as a single and multi-commodity problem. In a similar

fashion, Vidovic et al. [98, 99] suggested to construct an optimal delivery plan by merging
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the pickup and delivery task nodes into executable routes. A matching mathematical

model was formulated based on this idea which can be used for small size instances.

For larger problems, a variable neighbourhood search heuristic was proposed. Zhang

et al. [108] investigated the same problem using a multiple traveling salesman model

consisting of three tree search and an improved reactive tabu search algorithm. In another

article, Wen and Zhou [102] investigated the pickup and delivery of loaded and empty

containers as a local container vehicle routing problem with variable travelling time. To

solve the problem, an integer programming model followed by a genetic algorithm method

were formulated. In his thesis, Lai [62] addressed the delivery problem of a single or

two loaded/empty containers using homogenous and heterogeneous fleets of trucks. The

problems were presented as a vehicle routing problem with backhauls (VRPB). Then,

an integer linear programming (ILP) model was formulated and solved by an efficient

metaheuristic approach. The metaheuristic method constructed the initial solutions based

on the Clarke and Wright method, and improved it by several local search phases. Similarly,

Lai et al. [64] proposed a metaheuristic method that reduced the travelling distance of

routes by interchanging routes and nodes. The metaheuristic method also consisted of two

phases, the first phase was based on the Clarke and Wright method to create the initial

solution, while the second phase was based on a local search method to improve the initial

solution. Later, Lai et al. [63], adapted their previous research by formulating the problem

using an integer linear programming model and solved it using an adaptive guidance

metaheuristic. Schönberger et al. [85] investigated the pick up and delivery of loaded

and empty containers, however source/destination of empty containers in this case were

assumed to be unknown in advance. A mixed integer linear programming model, which
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is an extension of the pickup and delivery problem (PDP) with less than truckload (LTL)

orders was formulated to solve the problem. The model involved different types of stages

comprising: deciding the pickup and delivery locations, routing of empty containers and

routing of trucks. Popovic et al. [79] also considered the pickup and delivery of empty and

loaded containers by demonstrating a variable neighbourhood search (VNS) heuristic to

solve container drayage problems considering time windows (CDPTW). Similarly, Funke

and Kopfer [34] studied the transportation of heterogenous containers by improving a

neighbourhood search (NS) technique to optimize the container routing and scheduling.

Later, Funke and Kopfer [36] duplicated nodes within the graphical representation to

identify customers that are needed to be visited more than once. They then used a multi-

commodity flow model with multiple travelling salesperson ideas to ensure that each

container movement was covered and to minimize the distance and time travelled by

trucks on their routes.

In contrast, Reinhardt et al. [82] studied the delivery of single import and export orders,

in which each truck can only carry a single 20ft or 40ft container. Street turns strategy

was applied in which empty containers were delivered directly from import customers to

export ones to load and send it back to the port. An integer linear programming (ILP) model

was formulated. In the following years, Reinhardt et al. [83] adapted their previous work

by applying different mathematical models based on the vehicle routing and scheduling

problem. Many scheduling problems, such as balancing empty containers for multiple

storage depots and optimising the fleet size were investigated. For a different setup

problem, Tan et al. [96] built a model for the truck and trailer vehicle routing problem

(TTVRP) delivering loaded and empty containers. In this case trucks and trailers were
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assumed to be separated in different locations and the aim was to minimize the travelling

distance and the number of used trucks. A hybrid multiobjective evolutionary algorithm in

conjunction with genetic operators, variable length representation and local search heuristic

were developed to find solutions for the TTVRP. Nordsieck et al. [73] investigated the

drayage operations at a marine terminal by making use of the street turns strategy to deliver

empty containers directly from importers to exporters. A heuristic method was developed

to solve the problem. Recently, Ghezelsoflu et al. [38] addressed the heterogenous drayage

problem with a set-covering model which only allows to visit up to four locations.

On the other hand, some literature studied inland transportation from the prospective

of fleet management. Wang and Regan [101] developed a multiple traveling salesman

problem with time window constraints (m-TSPTW) for local truckload pickup and delivery

problems. An iterative method consisting of an over-constrained and an under-constrained

scheme and a specific time window partitioning scheme was described. In a similar fashion,

Gronalt et al. [44] studied the pickup and delivery of full truckloads between customers

considering the time windows (PDPTW). A relaxed problem formulation to estimate the

lower bound was presented and four different saving heuristics were proposed. Francis et

al. [33] presented a multi-resource routing problem (MRRP) method to model the drayage

operations in which the two resources, tractors and trailers, were assigned to perform

the delivery of loaded and empty containers. A variable radius method (VR) and greedy

randomized procedure were developed to solve the problem. These methods managed

the number of options considered for flexible tasks (either feasible origins for a known

destination or feasible destinations for a known origin). In contrast, both Coslovich et

al. [18] and Smilowitz [90] focused on the management of a fleet of trucks considering
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the resource costs (drivers and trucks), the routing costs and the container repositioning

cost. Coslovich et al. [18] formulated an integer programming problem and solved it

based on the decomposition of the problem into three simpler subproblems associated to

each type of the considered costs. Smilowitz [90] presented the problem as asymmetric

vehicle routing problem, which was adapted from Bodin et al. [2], and solved it based on

column generation embedded in a branch and bound method. Similarly, Cheung et al. [11]

studied the managing of drayage activities in the Hong Kong port. The authors claimed

that managing drayage operations was difficult since many resources such as drivers,

tractors, and chasses are required to be managed simultaneously. An attribute decision

model was formulated for this problem and solved by an adaptive labeling algorithm.

Namboothiri and Erera [72] studied the problem of managing a fleet of trucks and provided

a transportation service which included the pickup and delivery of containers to a port with

an appointment access system. A planning system based on an integer programming model

was developed. The model comprised several stages: the feasible customer requests were

firstly determined, followed by the best schedule vehicle routes, and finally the vehicle

numbers were minimized comparing to all available vehicles. To solve the problem, a

heuristic method based on column generation was developed. Shiri and Huynh [88]

extended the study of Namboothiri and Erera [72] by addressing the drayage assignment

problem, which involved the delivery and pickup of import and export containers. A

mathematical model which was an extension of the multiple traveling salesman problem

with time windows (M-TSPTW) was formulated. In addition, an algorithm based on

reactive tabu search (RTS) was created to solve the M-TSPTW model. Later, Shiri and

Huynh [89] designed a drayage scheduling model which assessed the U.S. chassis supply
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models. In this model trailers, trucks and containers are separated in different locations,

and the aim in this case was to ensure that containers and trailers were of the same sizes.

A mixed integer quadratic programming model, which was an extension of the M-TSPTW,

was formulated and solved by a reactive tabu search (RTS) algorithm combined with an

insertion heuristic.

Falling into the category of the delivery of heterogenous container types, the aim of

Chapter 4 [45] of this thesis is to develop a mixed integer linear programming (MILP)

model for combining orders for the pickup and delivery of both 20ft and 40ft containers by

a heterogeneous fleet. However, in this research the aforementioned literature is extended

by considering more realistic restrictions and combination possibilities based on a more

efficient assignment model structure. Unlike the PDP model structure that is commonly

used to tackle container delivery issues, the assignment-based model solves much more

efficiently, which finds optimal solutions for larger problems in several hours. For the

purpose of solving large size instances and balancing fleet size, a decomposition and

aggregation heuristic, based on the column generation approach, is designed.

2.3 Strip and Discharge of Containers

Historically, most container inland transportation literature considers one type of load-

ing/unloading rule out of Strip and Discharge. We therefore organise the literature review

accordingly. In the Strip case, a container (loaded or empty) is put onto/removed from the

carrying truck at a customer location. Literature considering the Strip only of containers

is summarised in Table 2.1. Most of it has already been explained in Subsections 2.1, 2.2.
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Literature Type of Containers Methodology

Wang and Regan [101] homogenous Heuristic

Jula et al. [55, 56] homogenous Heuristic

Chung et al. [16] heterogenous Exact

Francis et al. [33] homogenous Heuristic

Wen and Zhou [102] heterogenous Heuristic

Zhang et al. [107, 109, 110] homogenous Heuristic

Zhang et al. [108] heterogenous Heuristic

Kopfer et al. [61] homogenous Heuristic

Vidovic et al. [98, 99] heterogenous Heuristic

Braekers et al. [3, 4] homogenous Heuristic

Sterzik and Kopfer [94] homogenous Heuristic

Wang and Yun [100] homogenous Heuristic

Nossack and Pesch [74] homogenous Heuristic

Xue et al. [104, 105] homogenous Heuristic

Song et al. [91] homogenous Exact

Table 2.1: Literature considering Strip only of orders

As we can see from Table 2.1, some literature formed their research around the Strip of

loaded/empty homogenous containers, while others considered heterogenous container

sizes. Accordingly, various mathematical models and heuristic/metaheuristic methods

have been developed to tackle the Strip of containers. The literature which investigated the

Strip case claimed that this approach is cost and time saving, since that instead of staying

with containers during the service, trucks can leave to execute another trip and later empty

containers can be removed by another truck/trip.

On the other hand, in the Discharge case, containers and trucks are not separated dur-

ing/after the service. From this perspective, several articles that considered the Discharge

only of containers are summarised in Table 2.2. Again most of them have been illustrated
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Literature Type of Containers Methodology

Gronalt et al. [44] homogenous Heuristic

Tan et al. [96] heterogenous Heuristic

Imai et al. [53] homogenous Heuristic

Namboothiri and Erera [72] homogenous Heuristic

Caris and Janssens [8] homogenous Heuristic

Lai et al. [63, 64] heterogenous Heuristic

Reinhardt et al. [83] homogenous Exact

Shiri and Huynh [89] homogenous Heuristic

Schulte et al. [86] homogenous Exact

Ghezelsoflu et al. [38] heterogenous Exact

Table 2.2: Literature considering Discharge only of orders

in Subsections 2.1, 2.2. As shown in Table 2.2, some literature developed exact/heuristic

methods for the homogenous containers and others studied the heterogenous type. These

articles that considered the Discharge case argued that if a truck stays with a container

during the service to collect it when emptied, this will save an additional trip/truck. In

addition, this case is more convenient for customers, since drivers will take care of the

cargo and the container and will follow customer instructions during the service.

As we can see from Table 2.3, only four articles have investigated both cases of Strip and

Discharge. Ileri et al. [52] and Choi et al. [12] considered the problem of container transporta-

tion, where trucks (tractors) and chasses (trailers) are allocated to different depots. Ileri et

al. [52] formulated a set partitioning model based on column generation for the delivery of

homogenous containers, while Choi et al. [12] developed a genetic algorithm approach to

solve a heterogenous container case. Chapter 5 of this thesis is different from Ileri et al. [52]

as we investigated the heterogenous container types, and is different from Choi et al. [12] as
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Literature Strip Discharge Type of Containers Methodology

Ileri et al. [52] X X homogenous Exact

Choi et al. [12] X X heterogenous Heuristic

Zhang et al. [106] X X homogenous Heuristic

Funke and Kopfer [35] X X heterogenous Exact

Table 2.3: Classification of Literature based on Strip and Discharge of orders

they considered only the inland depots for managing empty containers, while we studied

both cases of Street-turn and Depot-turn. In the paper of Zhang et al. [106], the drayage

problem of homogenous containers was studied. A mixed integer nonlinear programming

model based on a determined-activities-on-vertex (DAOV) graph and a number of strate-

gies including a window partition based (WPB) strategy were displayed. Later, Funke

and Kopfer [35] adapted Zhang et al. [106] by formulating a mixed integer programming

model for the delivery of heterogenous containers. Nevertheless, Funke and Kopfer [35]

used homogenous trucks (only 40ft trucks) to perform the delivery whereas we use the two

types of 20ft and 40ft chassis. In addition, Funke and Kopfer [35] considered only a single

depot, while we used more than one inland depot for empty containers.

Moving from this scenario, the aim of Chapter 5 [46] of this thesis is to expand our

previous work in Chapters 3 and 4, in which we consider the individual Discharge and

Strip, by developing a Genetic Algorithm (GA) approach for solving the individual and joint

Strip and Discharge cases. For managing the delivery of empty containers, the Street-turn

and Depot-turn cases are applied. The value of using inland depots will be investigated.
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2.4 Methodology of the research

In Operational Research (OR) and Optimization, Combinatorial Optimization Problems

(COP) represent an attractive field for the interest of researchers. This class of problems

originates from the fact that many real world applications can be classified as a COP. The

planning and managing of different resources, various types of machines and sometimes

people require a decision making process to consider only integer (or binary) decisions.

The combinatorial optimization techniques can be used to achieve the optimal or the best

(near) solutions for this sort of problem, which aim to minimize the overall cost, maximize

profits and utilization of resources [51]. In this research we deal with a specific class of

COP, which is the inland transportation of containers as explained in Chapter 1 .

As explained by [38], optimization problems fall into the categories of discrete, contin-

uous, mixed (discrete and continuous), linear and nonlinear, based on the type of variables

and constraints of the problem. For example, a Linear Programming (LP) model is com-

prised of a linear objective function and constraints with continuous variables as follows:

Max/Min cTx (2.1)

s.t. ax ≤ b (2.2)

x ≥ 0 (2.3)

where x is a vector of continuous variables.

Similar to the LP, an Integer Linear Programming (ILP) model has linear constraints and

integer variables, while Mixed Integer Linear Programming (MILP) models, which we will

consider in later research is a type of ILP in which some variables are integer while others
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are continuous. The general formula of the MILP model is as follows [38]:

Max/Min cTx + gT y (2.4)

s.t. ax + hy ≤ b (2.5)

x ≥ 0 and integer, y ≥ 0 (2.6)

where x in this case is a vector of integer variables and y is a vector of continuous variables.

Common mathematical models are developed to solve typical combinatorial optimiza-

tion problems, for instance TSP, vehicle routing, job scheduling, set covering, Knapsack,

etc. Many solution techniques and algorithms are designed to solve these sorts of prob-

lems. In general, combinatorial optimization methods can be classified as exact methods

which are designed to achieve the optimal solution, and approximated methods such as

heuristics or meta-heuristics with which a best (near) optimal solution is expected [51].

As reported in [28] there are two common types of combinatorial optimization problems:

the first type is referred asP, which indicates the problems that can be solved in polynomial

time. This type of problems are characterised as easy to solve. While the second type is

the non-deterministic polynomial time problems, which is referred to asNP and this type

involves the problems where the algorithm is not able to find an estimated solution and

ensure the obtained solution is actually optimal in polynomial time. Sub types of the NP

class containsNP−complete andNP−hard. The problem is calledNP−complete if solutions

are sufficient to deal with any otherNP problem in polynomial time. While problems are

called as NP − hard, if the related problem that can be classified as a decision problem
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is NP − complete. In general, combinatorial optimization problems are real challenges

for researchers in many disciplines. For solving some regular and small problems, exact

methods can be applied as we will explain in Section 1.5, while for complex and large size

problems, exact methods are unsuitable, thus approximated methods should be developed

to solve this type of problem as we will explain in Sections 1.6 and 1.7.

2.5 Exact approaches (algorithms)

Exact algorithms are designed to find the optimal solution for combinatorial optimization

problems. These approaches are applied successfully to achieve the optimal solution for

problems with a small number of variables and constraints, or when special structure

appears in the constraint matrix . Some exact algorithms are illustrated as below:

Branch-and-Bound: An optimization method suggested by Land [65] to solve (mixed)

integer linear programming (ILP) models. This method is based on implicit enumeration

search of all possible candidate solutions and discarding non candidate solutions. The

process of discarding the non candidate solutions depends on the estimated upper and

lower bounds of the problem that required optimization. Thus, nodes with less or higher

objective function than the current best solution are ignored. The first step of this technique

begins by solving the problem using LP relaxation, then the feasible region for the LP

relaxation is branched in an attempt to find optimal solution of the (M)ILP. The process

terminates when the lower bound meets the upper bound and decision variables obtained

from the LP relaxation solution meet the integrality requirements, otherwise, the branching

process continues.
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The cutting-plane algorithm: This algorithm was introduced by Ralph Gomory in the

1950s to obtain solutions for integer programming and convex optimization problems.

The basic idea of this method is to specify and add a set of linear inequalities which are

called cuts to the formulated model to achieve the best integer solution to the problem.

The algorithm starts by solving the relaxed linear programming problem to find an initial

continuous solution, which will then be cut off with an integral constraint. After the linear

constraint is added, the modified linear programming relaxation will be solved again. The

procedure is repeated until an integer solution to the problem is obtained.

Branch-and-Cut: Another technique for solving integer linear programming (ILP) prob-

lems is called Branch-and-Cut [76], which is a combination of the Branch-and-Bound and

the cutting plane algorithms. The basic idea of this algorithm is to tighten the LP relaxation

by using the branch and bound and the cutting planes algorithms. The method starts by

solving the LP model without the integer values using the simplex algorithm. In case the

optimal solution is a non-integer value for a variable that is supposed to be integer, the

cutting plane algorithm is then used to add a new inequality constraint, which is satis-

fied by all feasible integer points but violated by the current fractional solution, such that

resolving it will yield a less fractional different solution. Next, the branch and bound is

started by splitting the current problem into multiple versions. Then, the obtained LP is

solved again by using the simplex method and the process is repeated.

Column Generation (CG): This method was first sugested by Ford and Fulkerson [32] in

the context of a multi-commodity network flow problem and was adapted by Dantzig and

Wolfe [24] to solve linear programming problems (LPs) with a decomposable structure.
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Later, Gilmore and Gomory [40] demonstrated its effectiveness in solving the cutting

stock problem. Some of LPs and ILPs arising in combinatorial optimization problems

are intractable to solve and the reason is the large number of variables involved in the

problem. The column generation procedure is based on a decomposition technique, for

solving a structured linear program (LP) with few rows but many columns (variables). The

column generation procedure decomposes the LP into a master problem and a subproblem.

The master problem contains a subset of the columns, each of which is an optimal solution

for the subproblems that have been solved. The subproblem, which is a separation problem

for the dual LP, is solved to identify whether the master problem should be enlarged with

additional columns or not. The column generation procedure alternates between the master

problem and the subproblem, until the former contains all the columns that are necessary

for finding an optimal solution of the original LP [27].

Generally speaking, column generation is a way of beginning with a small, manageable

part of a problem solving and analyzing that partial solution to discover the next part of the

problem to add to the model, and then resolving the enlarged model. Column generation

repeats that process until it achieves a satisfactory solution to the whole problem.

In order to illustrate CG, assume there is a LP:

Min z = cTx (2.7)

s.t. ax ≥ b (2.8)

x ≥ 0 (2.9)

Suppose that X is the domain of x, in the case of large size problems, it is difficult to include
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all the variables in the cardinality X, alternatively a subset such as J ⊆ X is suggested and

the restricted master problem (RMP) can be formulated as follows [27]:

Min z =
∑

j∈J

c jλ j (2.10)

s.t.
∑

j∈J

a jλ j ≥ b (2.11)

λ j ≥ 0,∀ j ∈ J (2.12)

In this case, each column in set (J) is associated with a variable λ j, indicating the number

of times a column is chosen in the solution of the RMP. Let λ and π be the primal and dual

optimal solutions of the RMP, the subproblem is then [27]:

z∗ := Min{c j − π
Ta j| j ∈ J} (2.13)

We assume that this problem is feasible, for otherwise the master problem would

be empty as well. If the subproblem solution is non-negative, namely no reduced cost

coefficient has negative value, the solution λ to the restricted master problem optimally

solves the master problem as well. Otherwise, we enlarge the RMP by the column derived

from the optimal solution to the subproblem, and repeat with re-optimizing the RMP.
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2.6 Heuristic approaches

The exact methods are usually unable to solve large size combinatorial problems, instead

heuristic (approximated) methods are preferred to obtain the best or near optimal solution.

The quality of the solution depends on the robustness and the performance of the created

heuristic approach. Indeed, many combinatorial optimization problems are NP − hard,

which means that it is difficult to use an exact method to obtain the optimal solution.

Alternatively, heuristic algorithms need to be designed to find a best (good) solution for

these problems. The early classical heuristic methods for vehicle routing problems were

proposed in the period between 1960 and 1990 [87]. For instance, the Clarke and Wright

savings algorithm [17], which is one of the most well-known classical heuristic techniques

for solving hard optimization problems. By assuming that a number of available vehicles

are used to deliver a load from a depot to a number of points (locations), the algorithm

is started by linking the selected two nodes (locations) and estimating the cost saving

of linking the paired nodes. Then the cost savings are ranked descendingly, and the

route is constructed by linking the node pairs based on the cost saving until all required

routes are obtained. Another common classical heuristic method is called the insertion

heuristic, which comprises two types: sequential insertion method [69] by inserting nodes

(locations) sequentially to construct routes one by one , and the parallel insertion type [15]

by constructing several routes in parallel. Recently, more modifications have been made to

the classical heuristic methods, to create new heuristic techniques based on the type and

complexity of the problem.
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Clustering (Decomposition) Heuristic method As mentioned above, exact optimization

approaches can only solve a limited size of problem with large computational times, thus

it is necessary to develop a heuristic method to tackle these issues. Clustering (decom-

position), is one of the common methods which is created to solve complex and large

size problems. Several clustering techniques have been proposed in transportation, for

instance, the sweep algorithm, which is also called fan-shaped clustering, was introduced

first by Gillett and Miller [39]. The basic idea of this algorithm is to cluster customers

geographically to reduce the size of the problem. The sweep algorithm starts by extending

a straight line from the depot and the line is rotated clockwise until some customers are

included in the first route based on the time and capacity of the vehicle. The sweep is

continued to begin a new route with the last customer that was removed from the first

route. The process is repeated until all customers are assigned to a specific route. In this

case all constructed routes need to be started and ended at the same depot [103]. Another

type of clustering which was suggested by Fisher and Jaikumar [31], is called seed-based

decomposition. This method is started by choosing a customer location as a seed point [6]

and linking each two customers in sequence to create a route. The process is repeated

until all un-assigned customers are allocated to a specific route. In the rectangle-shaped

clustering [21, 22], locations are partitioned into rectangular sectors. Based on the gravity

of the sector, the total distance of travelling from the depot to that centre of gravity and

then to customers can be estimated .
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2.7 Meta-heuristic approaches

The term Meta-heuristic was originally created by Glover [42], which comprises a collection

of methods for solving combinatorial optimization problems. This collection of methods

are classified as high performance heuristics, which usually require less effort than de-

signing a particular heuristic. Indeed, if they are implemented perfectly a near (good)

optimal solution can be obtained in an acceptable solution time. However, the process of

adapting the meta-heuristics to solve a particular class of problems is challenging. Ac-

cording to Gendreau [37] ”metaheuristics are divided into two categories: single-solution

metaheuristics where a single solution (and search trajectory) is considered at a time, such

as simulated annealing and tabu search methods, and population metaheuristics where a

multiplicity of solutions evolve concurrently such as the genetic algorithm ”. In addition,

Gendreau [37] emphasized that it is possible to differentiate within each type between

the constructive meta-heuristics, in which the solution is assembled randomly and the

improvement meta-heuristics, where solutions are modified iteratively.

Simulated Annealing (SA) This method was first suggested by Khachaturyan et al.

[57, 58] and was improved and called Simulated Annealing (SA) by Kirkpatrick et al. [59]

to converge to the optimal solution of combinatorial optimization problems. The name

of simulated annealing was inspired by the process of annealing metallurgy, which is

a method of heating and slow cooling of solids to reduce its disorder and energy and

increasing its atoms size. This concept of slow cooling in a SA algorithm can be explained

as a gradual decreasing in the probability of choosing inferior solutions as an explored

solution. In metaheuristics the property of accepting the inferior solutions will reinforce
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the probability of reaching the global optimal solution extensively. In general, the basic

idea of SA is as follows: randomly or using an appropriate method the algorithm adopts

an initial solution and finds a neighborhood solution, which is close to the current solution

and tests the quality of the new solution. Based on a specific probability, the decision will

be made to replace the new solution with the old one, if it is the best; otherwise it will

be removed in case it is worse than the current solution. For combinatorial optimization

problems, simulated annealing requires a careful choosing of parameters and conditions

such as the number of iterations and the termination criteria.

Tabu Search (TS) [41] suggested the initial idea of this method which he later called

Tabu Search (TS) in [42]. TS is a metaheuristic search technique applied for solving various

optimization problems. The term tabu originated from ”taboo” which means forbidden. TS

is based on local search to explore widely the neighborhood space to find the best solution.

This method starts by creating an initial solution for the problem. Then, a neighborhood

search is started to find a solution better than the initial solution. A tabu list is created to

record the search moves and to avoid repetition of moves during the search process. The

tabu list allows to remove part of the old moves and record a new search moves. The

period of declaring moves of the tabu list is called tabu tenure. To avoid the preventing

of exploring more areas of search, TS usually uses an aspiration criterion. More promising

moves of search can be explored by using the aspiration criteria. It is worthwhile to use

two important mechanisms called intensification and diversification. In the intensification

process, the search for better solutions is intensified to encourage solutions close to the

recent solution. While in the diversification a new search space of areas can be explored [26].
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As referred in [43], a type of TS is called as probabilistic tabu search. In this type, a probability

is assigned to the neighborhood search. As a reason, a high probability is provided to some

important moves to reduce the cost of the solution, while, a low probability is provided for

moves that are caused to repeat old states of moves. Another type of tabu search named

as reactive tabu search was developed by Battiti and Tecchiolli [1]. An important feature of

reactive TS is the ability of adapting the tabu list automatically through the search process

based on the number of occurrences of old moves.

Variable Neighbourhood Search (VNS) Variable neighborhood search (VNS) was pro-

posed by Hansen and Mladenović [47, 48]. The basic idea of this technique is to increase

the neighborhood search of the search space. The process continues until a best solution

is found or a stopping criterion is achieved. In the VNS, the size of the neighborhood is

expanding up to a specific value. A new solution is produced using a process called shaking

by randomly generating a point from the current neighborhood. Choosing the appropriate

shaking process helps to change the solution without changing the important features of

the solution, which will lead to find a new optimal solution gradually. For instance, in the

travelling salesman problem, the shaking process is executed by swapping and exchanging

the visited cities iteratively. In order to reach a local optimum, the search is intensified in

the VNS.

Genetic Algorithm (GA) Genetic Algorithm (GA) is considered a meta-heuristic tech-

nique that arises from the evolution and natural selection process in cyclelife of creatures

in nature. The initial idea of GA was first developed by Holland [50]. Later, the genetic

algorithm became one of the popular optimization methods, which can be adopted to solve
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NP − hard and difficult optimization problems. The GA procedure starts by creating an

initial population of individuals called chromosomes, which represent the possible initial

solutions of the problem. Each chromosome consists of a series pieces called genes, which

usually represent parameters of the investigated problem. In order to evaluate the survival

of individuals, a fitness value is developed, i.e., the objective function in optimization prob-

lems. Individuals with small/high (based on the objective of the problem) fitness values are

then selected for the next reproduction process. The reproduction in GA starts by choosing

two chromosomes called as parents, then an operator called a crossover is applied to create

new offspring (children) by exchanging gene elements between the two parents. Another

operator in GA is called mutation. In the mutation operator, genes of individual children

obtained from the crossover are swapped randomly. In this case, a new population will

be generated from the mutation process which will be combined with the old population

to generate a new generation. The complete process of the GA is repeated until stopping

criteria are achieved. The outline of the genetic algorithm is as follows:

• Initialization: Create random population of chromosomes (solutions).

• Fitness values: Evaluate the fitness values of chromosomes.

• Selection: A portion of the initial population solutions are selected for the next

reproduction.

• Crossover: Crossover operator is applied for the selected parents to create new

offspring (children).

• Mutation: Mutation operator is applied to the genes of the new children.
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• Reproduction: Reproduce a new population by combining the resulting children

obtained from mutation with the constructed initial population.

• Stopping Criteria: Repeat the algorithm until certain criteria are achieved.

2.8 Summary

In this chapter, we have reviewed the literature concerned with inland transportation for the

three types of problems: Homogenous Container Sizes, Heterogenous Container Sizes and

Strip and Discharge of Containers Problem. The exact methods such as LP, ILP and MILP, in

addition to some algorithms (Branch-and-Bound, the cutting-plane algorithm, Branch-and-

Cut and Column Generation) that have been used for solving the exact models are explained

in this chapter. Heuristic approaches such as the clustering/decomposition method as well

as metaheuristics approaches such as SA, TS, VNS and GA are also reviewed.



Chapter 3

Homogenous Container Sizes

3.1 Introduction

In accordance with the International Standard Organisation (ISO) specification, containers

are classified into standard sizes in which 20- and 40-ft ones are the most commonly used.

Most truck chassis are designed to carry them [71]. Cheung et al. [11] referred to the inland

container transportation as the operation of moving loaded and empty containers amongst

terminals, rail hubs, customers and depots, which is also called drayage as defined by

Harrison et al. [49]. Under the influence of global integration, container transportation

has grown impressively around the world during the last decades. Considering the large

volume of inland container transportation demand and how costly it is, good management

strategies which are efficient enough to be suitable for large industrial implementations are

needed [70]. Although inland delivery covers a very short distance in the entire container

transportation, it is not as economical. As reported by [60, 68] about 25 - 40% of the

total transportation cost is accumulated in drayage, which is then raised by [75] to as

41
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high as 40 - 80%. This significant cost illustrates the importance of optimizing the inland

delivery routes, especially with a focus on reducing the unproductive routes to relocate

empty containers. Indeed, inefficient usage of trucks not only yields higher delivery

cost and emissions, but also brings pressure on the operations of the port and introduces

unnecessary traffic.

In order to reduce unnecessary traffic flow, most works in the field attempt to combine

pickup and delivery trips together to reduce empty movements of containers [3]. These

studies are then extended to the cases that further merge the route with inland deliver-

ies [30], and/or consider the usage of dual-carriage trucks [95]. No matter what specific

context is considered, almost all previous studies base their discussions around the general

Mixed Integer Linear Programming (MILP) model for the Vehicle Routing Problem with

Simultaneous Pickups and Deliveries and Time Windows (VRP-SPDTW), which is origi-

nally designed in generic vehicle routing literature [74]. The optimal decision tells which

link should be travelled by which truck. This makes perfect sense in the case where a

number of individual trips are combinable to form a single delivery/pickup route, but not

as necessary for container delivery since the latter normally just allows the combination of

no more than two (import only) or four (import and export) trips in one return route due

to the capacity of the vehicle (dual-carriage).

On the other hand, as in the VRP-SPDTW model, one has to start from transforming

the demand graph into one with a distinct node for every single task, the number of

nodes and links are largely increased which increases the difficulty of solving the problem,

and therefore makes the solution only solvable via heuristics. In comparison, Vidovic

et al. [97] proposed an alternative way which formulates the trip combination problem
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as a multiple assignment model. This formula tries to merge customer requests (import

and export) together to form full delivery routes and the optimal decision directly shows

which container should be paired with which other for transportation. Since the number of

containers to combine is no more than two if the truck can carry only one container at a time

or four if dual-carriage, the decision variable is at most 4 dimensional in its index. Based

on the observation of the authors, the multiple assignment model can be solved efficiently

by commercial software for instances having 63 containers which is much larger than 19

with the VRP-SPDTW model. Our study furthers this idea by including more realistic

restrictions on general practice, such as the working restriction for drivers, the ready

time of containers at and/or the expected departure from the port, and more importantly,

containers with multiple customer locations as its receivers. Although the last case is

infrequent in practice, the inclusion of it makes the model more adaptable. Later in this

chapter we will show how to make use of the multi-destination container term to extend

the initial, import only model to solve import-inland and/or inland-export problems.

In this chapter, we firstly propose an optimization model for the Pairing of Containers

in Drayage Transportation (PCDT). This model considers the joint delivery of import

containers only, namely the container movements from the port to inland customers. This

study is important in its own right as there are many countries, such as the United Kingdom,

doing many more imports than exports so that the demands are not always balanceable to

form round trips. In accordance with realistic situations, in the model we cover all major

restrictions for the drayage service such as the empty leg transportation, the heterogeneous

fleet size, the arrival time of vessels (containers), the time window restriction at customer

locations and/or the port, the working time regulations etc. The aim of the model is to
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minimize total distance travelled by all vehicles used and the penalty paid for potential

over time works by the truck driver. Major contributions of this initial model are twofold:

first it allows one container to have more than one receiver; second the model is more

efficient to solve than the traditional models based on pickup and delivery in vehicle

routing networks and therefore allow more accurate solution for large problems with

more than 300 containers. Considering the usage of multi-destination containers, we then

extend our parameter definitions to make the aforementioned optimization model also

applicable to the combination of import (export) with inland trips and also to import-

inland-export problems without using dual-carriage trucks. Taking use of our model the

solution difficulties for these three types of problems are similar, as there are no major

modifications to the model itself but just to the interpretation of the input data.

The rest of the Chapter is structured as follows. In Section 3.2 the problem statement

and the optimization model is described. A practical variant is demonstrated in Section

3.3, and numerical experiments are presented in Section 3.4. Section 3.5 is for the summary

of findings.

3.2 Problem Statement and Optimization Model

We start the description of the problem by defining some terms that will be used later. The

term order in this research is referred to as a customer request of delivering the content of

a loaded container from its origin to destination (examples for import, inland and export

orders are given in Table 3.5). Only 20ft containers are used for transportation, since the

delivery of 40ft container can only be carried out by 40ft trucks therefore we can simply
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assume all of them go without pairing to reduce the problem size. Note that in this study,

when we are talking about the delivery (pick up) of container, we mean Discharge, i.e.

the delivery (pick up) of the cargo inside the container rather than the container itself.

After discharging the container at customer locations (e.g. for import case), it should be

transported to a final empty storage which is normally the port or an inland depot, unless

it has been assigned to a specific final destination. Similarly, an empty container has to

be collected from an empty storage in order to start an inland or export trip, if the trip is

not performed right after an import delivery (so that we have an empty container to use

on the truck). One order comes with an origin (where the cargo departs), one (single-) or

two (multi-) destinations (where the receiver locates), the time window constraints at all

relevant locations (when the branches open), the available time of the container (when it

is ready to be collected), the payload weight (weight of cargo) and probably an assigned

final destination (where the empty goes to).

For multi-destination orders, we follow the full-twin assumption that is introduced

by [108], i.e., a truck that has begun to handle the first customer’s location of the container,

has to handle the second customer’s location before the truck starts to carry out a new order.

We assume all information are determined beforehand, including the visiting sequences

of customer locations for multi-destination orders. Note further that the order is defined

on a single container basis, namely if there is a customer request consisting of multiple

containers, we have to split it into multiple orders with the same data and allow the

customer to be visited by more than one truck. The model is developed from the perspective

of haulage companies who own a certain heterogeneous fleet of trucks and chassis, collect

orders from shipping lines and other customers and commit to make the delivery of
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containers in time to their destinations. Decisions are made on whether containers should

be assigned to an individual trip that is executed by a truck that is able to transport one

20ft container, or whether two containers should be paired in a specific order and served

by a truck that is able to transport two 20ft containers, as well as where to place the empty

container after delivery. The aim is to minimize the total travelling costs of the whole fleet

and the penalty costs for potential overtimes of trips. Note that we consider the working

time regulation for drivers and penalty cost only on a daily basis. We assume there are

adequate numbers of drivers employed so that no one will work overtime for more than

once during a week.

3.2.1 Parameters and Definitions

In following sections we will formulate an assignment model whose results will inform

how to serve every order. We will be starting from considering and defining parameters

for the import orders only (loaded containers starting from the port), and then extend the

data definition to cover the import-inland and the import-inland-export cases. In more

detail, we assume that the fleet consists of H1 20ft trucks and H2 40ft trucks. For the sake of

simplicity and clarity in modelling, we assume that a 40ft truck is not allowed to perform

single container transportation although in practice it might be possible. We assume all

containers/orders considered, denoted by N , are allowed to be paired with another in

transportation. We denote by P1 and P2 the sets of orders having single destination and

multiple (dual) destinations, respectively. Containers in subset Dp are the ones with final

empty destinations determined, whereas D0 are the ones without. An import order (loaded

container) i ∈ N is to be picked up from the port (L0) after its available time (Ai), delivered
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to its receivers (Li if single destination, L1
i and L2

i in the determined sequence if multiple

destinations) individually or paired within predetermined time window ([Ts
i ,T

e
i ] if single

destination, [Ts1
i ,T

e1
i ] and [Ts2

i ,T
e2
i ] if multiple destinations), and dropped off at the agreed

final empty destination Di if there is one or at a nearby empty storage that is chosen from

M0. The handling time at the port (hi) refers to the time of loading the container on the

truck, whereas the turnaround time at receivers (Oi) is the time taken to discharge the cargo

from container i. We denote by Wi as the container i’s payload weight (weight of cargo)

and by V the weight of truck, chassis and the empty container. The gross weight limit,

Vm
1 for 20ft truck and Vm

2 for 40ft truck, is applied to all delivery routes. In the case of

haulage companies to do the work, costs are normally determined based on banded rates,

increasing in a roughly linear fashion relative to distance. In this study, for a known list

of locations to visit, the cost is captured by a linear function to the total travel distance

including both the loaded legs and empty leg, which is denoted by ( f (., ..., .)). In addition

to the mileage cost, we also consider the potential penalty that the haulage company may

have to pay for overtime workings. According to the EU regulation, if a driver works more

than T = 9 hours then a penalty of C should be paid for any extra time working. However

working longer than Tmax = 11 hours in a day is strictly inadmissible.

Parameters

H1: total number of lorries available for single container delivery.

H2: total number of lorries available for paired containers delivery.

M0: set of port/depots/exporters as empty leg destinations.

N = P1 ∪ P2 = D0 ∪Dp: set of containers, in which: P1 is the set of containers with single

destination, P2 is the set of containers with multi destinations, D0 is the set of containers
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for which an empty leg destination is not yet determined and Dp is the set of containers

for which the empty leg destination is a known port or depot or exporter.

Ai, i ∈ N : available time of container (order) i for departure from the port.

hi, i ∈ N : handling time of container i at the port.

Oi, i ∈ N : turnaround time at order i’s customer location.

T: regular working hours.

Tmax: the maximum possible working time for one shift that is allocated by the regulation.

C: penalty cost for extra working hours.

L0: the port.

Li, i ∈ P1: customer location for single destination container i.

L1
i ,L

2
i , i ∈ P2: two consecutive customer locations for multi destination container i.

[Ts
i ,T

e
i ], i ∈ P1: the time window during which the container i (single destination) is meant

to arrive.

[Ts1
i ,T

e1
i ], i ∈ P2: time window in which the container i is meant to arrive at the first loca-

tion.

[Ts2
i ,T

e2
i ], i ∈ P2: time window in which the container i is meant to arrive at the second

location.

Di, i ∈ Dp: the empty leg destination that has been determined for orders inDp.

Wi, i ∈ N : the weight of container i, which contains both the cargo and the container weight.

V: weight of the lorry and chassis and the empty container.

Vm
1 : weight limit for individual delivery.

Vm
2 : weight limit for paired delivery.

f (., ..., .): travelling cost for a sequence of locations. We rescale the straightline distance by
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a constant factor to approximate the road distance between each pair of locations.

t(., ..., .): travel time for a sequence of locations.

M: large number.

3.2.2 Decision Variables

In order to capture the entire features of the model, two types of decision variables are

introduced as below. Binary variables xi jd and yid are the decision on how the container

should be transported, paired or individually and following what sequence; binary vari-

ables zi jd and uid are introduced to identify if penalty cost should be paid for extra working

time; Continuous variables si, vi, v1
i , v

2
i ,Tid,Ti jd are used to calculate the departure time of

containers from the port, the arrival times at customer locations and the total working time

of the paired and individual trips of the working plan.

Binary Variables

• xi jd =


1, if containers i and j are delivered paired to their destinations (single or

multi) on the same lorry and end at empty leg destination d.
0, otherwise

∀i , j ∈ N ,∀d ∈ M0.

• yid =


1, if container i is delivered individually to its destination (single or multi)

and end at empty leg destination d.
0, otherwise

∀i ∈ N ,∀d ∈ M0.

• zi jd =

{
1, if working hours for paired trip is higher than the regular working time
0, otherwise

∀i , j ∈ N ,∀d ∈ M0.
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• uid =


1, if working hours for individual trip is higher than the regular working

time
0, otherwise

∀i ∈ N ,∀d ∈ M0.

Continuous Variables

• si,∀i ∈ N : departure time of container i from the port.

• vi,∀i ∈ P1: arrival time of one-destination container i.

• v1
i , v

2
i ,∀i ∈ P2: arrival times of multi-destination container i at its two customer

locations.

• Tid,∀i ∈ N ,∀d ∈ M0: total working time of the individual trip of servicing container

i.

• Ti jd,∀i , j ∈ N ,∀d ∈ M0: total working time of the paired trip of servicing containers

i and j.

3.2.3 The mathematical model

An assignment Mixed-Integer Linear Programming (MILP) model for the paired/individual

delivery on 40ft/20ft chassis of import orders can be described as below. Note that this

model is constructed for import orders only. In the next section we will discuss how this

model can be implementable as well on import-inland and/or import-inland-export cases.
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min
∑
i∈P1

∑
j∈P1

∑
d∈M0

xi jd[ f (L0,Li,L j, d)] +
∑
i∈P2

∑
j∈P1

∑
d∈M0

xi jd[ f (L0,L1
i ,L

2
i ,L j, d)]+

∑
i∈P1

∑
j∈P2

∑
d∈M0

xi jd[ f (L0,Li,L1
j ,L

2
j , d)] +

∑
i∈P2

∑
j∈P2

∑
d∈M0

xi jd[ f (L0,L1
i ,L

2
i ,L

1
j ,L

2
j , d)]+

∑
i∈P1

∑
d∈M0

yid[ f (L0,Li, d)] +
∑
i∈P2

∑
d∈M0

yid[ f (L0,L1
i ,L

2
i , d)]+

∑
i∈N

∑
j∈N

∑
d∈M0

Czi jd +
∑
i∈N

∑
d∈M0

Cuid

(3.1)

s.t.∑
j∈N

∑
d∈M0

(xi jd + x jid) +
∑

d∈M0

yid = 1,∀i ∈ N ; (3.2)

si ≥ Ai + hi,∀i ∈ N ; (3.3)

si ≥ (A j + h j)
∑

d∈M0

(xi jd + x jid),∀i , j ∈ N ; (3.4)

si − s j ≤M ∗ (1 −
∑

d∈M0

(xi jd + x jid)),∀i , j ∈ N ; (3.5)

V + Wi

∑
d∈M0

yid ≤ Vm
1 ,∀i ∈ N ; (3.6)

V + (Wi + W j)
∑

d∈M0

(xi jd + x jid) ≤ Vm
2 ,∀i , j ∈ N ; (3.7)

vi = si +
∑
j∈P1

∑
d

x jid[t(L0,L j,Li) + O j] +
∑
j∈P2

∑
d

x jid[t(L0,L1
j ,L

2
j ,Li) + 2O j] +

(
∑
j∈N

∑
d

xi jd +
∑

d

yid)t(L0,Li),∀i ∈ P1;

(3.8)
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v1
i = si +

∑
j∈P1

∑
d

x jid[t(L0,L j,L1
i ) + O j] +

∑
j∈P2

∑
d

x jid[t(L0,L1
j ,L

2
j ,L

1
i ) + 2O j]

+(
∑
j∈N

∑
d

xi jd +
∑

d

yid)t(L0,L1
i ),∀i ∈ P2;

(3.9)

v2
i = si +

∑
j∈P1

∑
d

x jid[t(L0,L j,L1
i ,L

2
i ) + 2O j] +

∑
j∈P2

∑
d

x jid[t(L0,L1
j ,L

2
j ,L

1
i ,L

2
i ) + 3O j]

+(
∑
j∈N

∑
d

xi jd +
∑

d

yid)[t(L0,L1
i ,L

2
i ) + Oi],∀i ∈ P2;

(3.10)

Ts
i ≤ vi ≤ Te

i ,∀i ∈ P1; (3.11)

Ts1
i ≤ v1

i ≤ Te1
i ,∀i ∈ P2; (3.12)

Ts2
i ≤ v2

i ≤ Te2
i ,∀i ∈ P2; (3.13)

Tid ≥ vi + [Oi + t(Li, d)] − si −M(1 −
∑

d

yid),∀i ∈ P1; (3.14)

Tid ≥ v2
i + [Oi + t(L2

i , d)] − si −M(1 −
∑

d

yid),∀i ∈ P2; (3.15)

Ti jd ≥ v j + [O j + t(L j, d)] − s j −M(1 −
∑

d

xi jd),∀i ∈ N , j ∈ P1; (3.16)

Ti jd ≥ v2
j + [O j + t(L2

j , d)] − s j −M(1 −
∑

d

xi jd),∀i ∈ N , j ∈ P2; (3.17)

Tid ≤ T + M(uid),∀i ∈ N ; (3.18)

Ti jd ≤ T + M(zi jd),∀i, j ∈ N ; (3.19)

Tid ≤ Tmax,∀i ∈ N ; (3.20)

Ti jd ≤ Tmax,∀i, j ∈ N ; (3.21)
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yiDi +
∑
j∈N

(xi jDi + x jiDi) = 1,∀i ∈ Dp; (3.22)

∑
i∈N

∑
d

yid ≤ H1; (3.23)

∑
i∈N

∑
j∈N

∑
d

xi jd ≤ H2; (3.24)

si, vi, v1
i , v

2
i ,Tid,Ti jd ≥ 0,∀i, j ∈ N ,∀d ∈ M0; (3.25)

xi jd, yid,uid, zi jd ∈ {0, 1},∀i, j ∈ N ,∀d ∈ M0; (3.26)

Objective function (3.1) is to minimize the total travelling cost as well as the total penalty

cost for extra driving hours incurred from making the delivery for all collected orders from

the port (L0) to the final destinations. Constraint (3.2) is to ensure that all containers are

delivered paired or individually. Constraint (3.3) forces containers to depart after they

are ready to collect from the port, while constraint (3.4) means that all containers which

are paired with another must depart after both are ready. Constraint (3.5) ensures that all

containers that are paired depart at the same time. Constraints (3.6) and (3.7) guarantee

that the gross weight of the whole vehicle which includes weights of the vehicle, chas-

sis, containers and cargo do not exceed the maximum allowance. Constraints (3.8), (3.9)

and (3.10) calculate the arrival times at containers’ destinations, while constraints (3.11),

(3.12) and (3.13) impose the time window restriction at the customer location. Constraints

(3.14), (3.15), (3.16) and (3.17) calculate the total working time of the vehicle, by subtracting

from the final arrival time at the empty leg destination the departure time from the port.

Constraints (3.18) and (3.19) ensure that penalty is paid for extra working hours, while

Constraints (3.20) and (3.21) restrict the model from planning routes that exceed the max-
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imum working hours for one shift. Constraint (3.22) emphasises the fact that all orders

with pre-determined empty leg destination must be delivered to the allocated location.

Constraints (3.23) and (3.24) are there to ensure the total number of trucks used is no more

than the corresponding fleet size. Finally, constraints (3.25) and (3.26) define the domains

of the variables.

3.3 Practical Variant

Although the MILP model that is proposed in Section 3.2 is built to solve the pairing

problem for import trips of containers only, variants of it, however, can be applied in

numerous situations including both import, inland and/or export trips. Of course, the

coverage of different situations is subject to necessary small modifications and appropriate

interpretations of the parameters/data used. In this section we will discuss some major

applications and how to adapt the model to achieve our aims.

3.3.1 Import (Export) of Containers Only

The scale of container business is different from one country to another, and very rarely

a country has balanced import and export demands. In most developed countries like

the UK, import is dominant; whereas in most developing countries such as China, export

plays a far more important role than import. Although in general the pairing of import and

export orders benefits, the imbalance in demands gives rise to potential decompositions

of the entire delivery problem into subproblems having only import/export orders in it.

Therefore, in the first part, we discuss around the original application for the combination
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of import orders only. To make this model more realistic, after all containers are served

we consider an empty-leg trip to some inland depots where the empty containers are

temporarily stored or a trip directly to an exporter that may have short term demands (but

we do not consider the export trip explicitly). This makes a connection between the import

and export trips which is normally used in practice. The model also allows customer

specified empty-leg destination, which covers the case if a full container has already been

allocated for an empty destination after it is delivered. Note that in our model we also

allow a single container to be delivered to multiple (two) customer locations. This is seen

in situations where customers are running relatively small business and when customers

are sharing the cargo of a single container. Examples of combined routes are shown in

Figure (3.1).

Figure 3.1: Graphical illustration of application on the import of
containers

Based on the optimal decision of the model, there are four types of possible delivery

routes as shown in Figure 3.1:
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1. Deliver a container individually and then drop the empty container at an empty

destination (port/inland depot/exporter).

2. Deliver two containers jointly, which both have a single destination and then drop

the empty at an empty destination (port/inland depot/exporter).

3. Deliver two containers jointly, in which one has multiple destinations and then drop

the empty at an empty destination (port/inland depot/exporter).

4. Deliver two containers jointly, which both have multiple destinations and then drop

the empty at an empty destination (port/inland depot/exporter).

In contrast to import, the model can also be applied for the export-only case where

empty containers should be picked up either from a depot/port or from an importer, travel

for the pickup service and eventually deliver the loaded containers to the port.

3.3.2 Import (Export) and Inland Containers Transportation

In addition to the original problem setting, the MILP model can also be applied to the case

where import trips are combined with inland trips. Container, as a means of safety delivery,

is not only used in marine freight but also in inland transportation of bulk commodities.

As traditionally the last-mile delivery of containers is carried out by haulage companies

who also serve inland orders, the combination of import and inland trips are therefore

vital in reducing unproductive travels. Note that in Subsections 3.3.2 and 3.3.3, unless

stated in detail, we follow the problem statements and parameter descriptions proposed

in Section 3.2. Here we consider two types of orders, each is associated with one type

of container transportation requests, say the import orders and inland orders. An import
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order, like before, is a customer request of transporting a loaded container from the port

to a customer location; an inland order, on the other hand, refers to the customer request

of transporting one container’s cargo from one inland location to another. Note that for

the inland order, we assume that the customer does not own the container so that an

empty container should be transported to the origin to do the loading, before visiting

the destination for discharging. This defines the sequence following which the customer

nodes should be visited for inland orders, which is in line with the full-twin assumption

of multi-destination orders as mentioned before. So in this second scenario we take use

of the multi-destinations order set P2 to assemble inland orders, and all decision variables

relating to multi-destination orders are then interpreted as the “whether the inland order

should be served by an individual trip or by a paired trip with another order. ” In details,

xi jd = 1, i , j ∈ P2 means the inland order i should be combined with inland order j,

so a 20ft truck collects an empty container from the port/inland depot, picks up order

i’s cargo from L1
i , delivers it to L2

i , then uses the same empty container to collect order

j’s cargo at L1
j , delivers it to L2

j and finally drops the empty container to a nearby depot;

xi jd = 1, i ∈ P1, j ∈ P2 means the import order i should be combined with inland order j, so

a 20ft truck picks up the loaded container i (an import order) from the port, delivers it to

Li, then uses the same empty container to collect order j’s cargo at L1
j , delivers it to L2

j and

then drops the empty container to a nearby depot; xi jd = 1, i , j ∈ P1 means the import

order i is paired with another import order j, whereas yid = 1, i ∈ P2 (yid = 1, i ∈ P1) means

the inland (import) order i is served individually.

Note that there are no longer import orders with multiple destinations as all orders in

P2 are now interpreted as inland orders, therefore the usage of 40ft trucks in this case is
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only needed when two import orders are paired (xi jd = 1, i , j ∈ P1). Constraints (3.23)

and (3.24) are modified to:

∑
i∈N

∑
d

yid +
∑
i∈N

∑
j∈P2

∑
d

xi jd ≤ H1,

∑
i∈P1

∑
j∈P1

∑
d

xi jd ≤ H2

Weight constraints (3.6) and (3.7) should be modified accordingly as not in all paired cases

we have two containers on the truck simultaneously.

V + Wi

∑
d∈M0

(yid + xi jd) ≤ Vm
1 ,∀i ∈ N , j ∈ P2

V + (Wi + W j)
∑

d∈M0

xi jd ≤ Vm
2 ,∀i , j ∈ P1

Also for inland orders we need to set their “available time from the port”, Ai, as zero (start

of the day) so that it would not affect the departure time of the other container if it is paired,

and use the time window to reflect its earliest available time at its pick up location. All

other constraints stay the same as in the initial model.

Figure 3.2 shows graphically the possible delivery routes in optimal solution. In detail,

they are:

1. An import order which is followed by an inland order.

2. An import order which is followed by an inland journey starting directly from the

importer.

3. A single import order delivered individually.
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Figure 3.2: Graphical illustration for the import-inland trans-
portation

4. Two import orders are paired on a 40ft truck and delivered one after another.

5. A single inland order delivered individually.

6. Two inland orders are paired and served one after another.

The same structure can also be used for the inland-export case, in which loaded containers

are delivered from exporters to the port.

3.3.3 Import, Inland and Export Containers Transportation

Finally, we show that with small adaptations, our model can also be applied to the com-

bination of import, inland and export trips. This is the most widely studied variant in

existing literature which is believed very useful in reducing empty travels of containers

by constructing a closed tour starting and ending at the port. Like the variant above, for

this case we just need to adjust some interpretations of the model parameters, but a major

improvement can be seen in the size of problems that can be solved exactly. As proposed
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in Subsection 3.3.2, we keep using the “multi-destination” subgroup P2 to capture inland

orders. An export order, however, is defined as a customer request of transporting one

container’s cargo from a customer location to the port. As the destination for an export

order is fixed at the port, we only need to know the origin, which can be any customer

location, plus the standard parameters such as time windows and the weight of cargo

to complete the definition. So an export order can be represented by a container d with

single “destination” (which should be interpretated as origin here), d ∈ P1. Numerical

examples of export orders are given in Table 3.5 as containers 6, 7 and 8. In this section

we consider all orders types, say import, inland and export orders, each is associated with

the transportation of a single container’s cargo. Containers, which can be reused, are

bound with chassis and to be filled in/stripped at customer locations. Empty containers

are generated after the delivery of import/inland orders and are demanded before the pick

up of inland/export orders. The problem is to find out how to make the transportation of

all orders, individually or pairwisely, to achieve a minimum cost delivery plan satisfying

the time, weight and working hours restrictions. Note that we do not consider the usage

of 40ft trucks but only the combination of different types of trips on 20ft ones, because we

define the variable only in a way that the empty container can be reused.

Observe that if we construct a complete return route with an import, an inland and an

export order, the empty container is kept reused for the next task so that the empty leg

destination is no longer needed. Therefore in the model we are going to use the previous

“empty destination” d as the index for export orders, namely from Ld we load an empty

container with cargoes to be delivered to the port. xi jd = 1, i , d ∈ P1, j ∈ P2 is then

interpreted as a 20ft truck collects a loaded container i from the port, delivers its cargo to Li,
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then reuses the empty container to serve an inland order from L1
j to L2

j , after which the same

container is used to pick up cargo from Ld and delivers to the port. Note that in this case

the number of variables actually reduces, since the round trip is only allowed in one way:

import then inland then export. While to tackle with imbalances in these three types of

demands we also allow individual trips for every type of request and the combined trips for

every two types of request. So the decision variables are xi jd, i , d ∈ P1, j ∈ P2 for combined

trips with import, inland and export orders, xi jd, i ∈ P1, j ∈ P2, d ∈ M0 for combined trips

with import and inland orders, xi jd, i , j ∈ P1, d = port for combined trips with import

and export orders, yid, i ∈ P2, d ∈ P1 for combined trips with inland and export orders,

yid, i ∈ P1, d ∈ M0 for import trips, yid, i ∈ P2, d ∈ M0 for inland trips and yid, i ∈ P1, d = port

for export trips. Note that when d is not taken fromM0, an additional term (L0) should be

added to the travel distance and travel time function to include the travelling from Ld to

the port. Also the fleet size constraints (3.23) and (3.24) should be combined into one as H2

(40ft trucks) no longer exists:

∑
i∈N

∑
j∈N

∑
d

xi jd +
∑
i∈N

∑
d

yid ≤ H1,

as well as the weight constraints (3.6) and (3.7):

V + Wi

∑
d

(yid + xi jd + x jid) ≤ Vm
1 ,∀i ∈ N

As shown in Figure 3.3 and as we explained above, there will be different possibilities

for this case which are:

1. A loaded order as import, followed by an inland order and finally the export order is
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Figure 3.3: Graph explains the import-inland-export transporta-
tion

delivered to the port.

2. A loaded order as import, followed by an inland order and the empty container is

delivered to an empty storage (port/inland depot/exporter).

3. A loaded order as import followed by an export tour.

4. A single import order served individually.

5. A single export order served individually.

6. A single inland order served individually.

7. Empty container is picked up from a nearby empty storage (port/inland depot/exporter)

to start a single inland tour, which is then followed by an export trip.



3.4. Numerical examples 63

3.4 Numerical examples

In this section we construct small examples according to the three applications as discussed

in Section 3.3, and test our model against them to show the performance. The MILP model

is coded in MPL and solved by Cplex.

3.4.1 Example 1 – Import Only

In this example, 5 containers are to be delivered from a single port to a subgroup of 10

customer locations, (1, ..., 7), where (0, 8, 9, 10) are defined as port/depot/exporter. Data

is summarised in Table 3.1. For instance container 1, whose cargo weighs 8,900 (kg), is

available to pick up from the port at time 6.30 a.m and should be delivered to customer

location 1 between 8am and 2pm.

Containers Li Ai [Ts
i ,T

e
i ] Wi(kg)

1 1 6.30 a.m [8.00, 14.00] 8900
2 2 6.00 a.m [7.00, 16.00] 12900
3 3 7.00 a.m [9.00, 17.00] 22900
4 4 8.00 a.m [10.00, 16.00] 10900
4 5 8.00 a.m [10.00, 20.00] 10900
5 6 9.00 a.m [8.00, 18.00] 13900
5 7 9.00 a.m [9.00, 19.00] 13900

Table 3.1: Data for import-only example

Containers 1, 2, 3 are for single destination while containers 4 and 5 are allocated to

two destinations each. In addition, there are 8 lorries available for the import service, with

4 for paired delivery and 4 for single delivery. For all trucks a gross weight limitation of

44, 000kg is applied, which includes the truck (7, 500kg), the chassis (4, 800kg), the empty

container (2, 300kg) and the cargo (given in the table as Wi). Maximum working time of
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Figure 3.4: Solution for example 1 (import of containers)

Import Route Departure First importer Last Importer Penalty Final
containers sequence time(port) arrival time arrival time cost destination

2,4 L2,L4,L5 10.00 L2: 12.50 L5: 19.11 30 8
1 L1 12.50 L1: 14.00 - 0 0
3 L3 11.00 L3: 12.41 - 0 8
5 L6,L7 10.50 L6: 14.10 L7: 17.22 0 9

Table 3.2: Solution for example 1 (import of containers)

truck driver is set to 9 hours (according to UK regulation) and a penalty of 30 pounds

should be paid for any extra hours driven. Average service time at all customer locations

is 2 hours. The empty containers should be delivered to the depot/port/exporter which

minimizes the total travelling distance.

The solution to this example is displayed in Figure 3.4. In the solution there are four

trips, one travelled by a 40ft long lorry to carry containers 2 and 4 pair-wisely, three

travelled by 20ft long lorries to deliver containers 1, 3 and 5 individually. Dashed lines

represent the empty container movement. Table 3.2 gives more detailed information about

the departure and arrival times at all customer locations. The result makes perfect sense.

First, container 3 cannot be delivered pair-wisely as its weight is too high to combine
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with any other container. Second, it is impossible to combine containers 4 and 5 (both for

multi-destination) due to the time window constraints. Thirdly, although we need to pay

for the overdue in working time for the paired delivery route, the total distance travelled

is largely reduced compared with delivering containers 2 and 4 individually. Given these

observations, the solution displayed in Figure 3.4 is optimal.

3.4.2 Example 2 – Import-Inland Transportation

Now we implemented the MILP for the import-inland transportation. As given in Table 3.3,

there are 6 shipping requests of containers under consideration and two of them (container

4 and 6) are inland requests. Here we assume that the time window applies to the origin

and destination nodes, and the time window for the port are already existing in the model

as the available time to pick up containers. The weights of containers are also specified.

Containers Origin [Ts
i ,T

e
i ] Destination [Ts

i ,T
e
i ] Wi(kg)

1 port - L1 [8.00, 14.00] 8900
2 port - L2 [7.00, 16.00] 12900
3 port - L3 [9.00, 17.00] 12900
4 L4 [9.00, 16.00] L5 [10.00, 20.00] 10900
5 port - L6 [8.00, 18.00] 13900
6 L6 [8.00, 18.00] L7 [9.00, 19.00] 11900

Table 3.3: Data for import-inland example

paired Departure Import orders Inland order Final destination
orders time(port) arrival time arrival time (port/exporter/depot)

1,2 10.00 L1:11.11 , L2: 14.40 - 8
3,4 11.00 L3:12.43 L4: 19.11 8
5,6 10.50 L6: 14.10 L6: 14.10 9

Table 3.4: Solution for example 2 (import-inland transportation)

Solving this example by the MILP model, it creates paired delivery routes for all con-
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Figure 3.5: Solution for example 2 (import and inland delivery)

tainers like shown in Table 3.4 and Figure 3.5. Specifically, two import orders, containers 1

and 2 are paired to form a trip that departs from the port at 10am and finishes at depot 8;

import container 3 and inland container 4 are paired to form a trip that departs from the

port at 11am and finishes at depot 8; import container 5 and inland container 6 are paired

to form a trip that departs from the port at 10.50am and finishes at depot 9.

3.4.3 Example 3 – Import-Inland-Export transportation

In this example we tested the model for combining the import, inland and export orders

together. As seen in Table 3.5, 8 orders are considered to deliver from their origins to final

destinations, as well as the time windows and weight of each request of containers.

Looking at the results given in Table 3.6 and Figure 3.6 we can see, in this case the

code has paired orders 1, 3 and 6, so the 20ft long lorry carries a single loaded container

(container 1) and departs from the port at 11.00am to visit its allocated importer, location

1, at which the inland trip is started towards location 3, then picks up an export loaded
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Containers Origin [Ts
i ,T

e
i ] Destination [Ts

i ,T
e
i ] Wi(kg)

1 port - L1 [8.00, 14.00] 8900
2 port - L2 [7.00, 16.00] 12900
3 L1 [8.00, 14.00] L3 [9.00, 17.00] 12900
4 L4 [9.00, 16.00] L5 [10.00, 16.00] 10900
5 port - L6 [8.00, 18.00] 13900
6 L3 [8.00, 20.00] port - 11900
7 L5 [10.00, 21.00] port - 14900
8 L7 [9.00, 19.00] port - 13900

Table 3.5: Data for import-inland-export example

Figure 3.6: Solution for example 3 (import-inland-export trans-
portation)

container from location 3 to deliver to the port. On the other hand, import order 2 is

combined with inland order 4 and export order 7. This means a 20ft long lorry leaves from

the port at 10.00am carrying container 2, discharges it at location L2 at 12.50pm and the

empty truck is then moved to location 4 to start the inland tour from L4 to L5. The export

tour starts at 19.11 from location 5 to the port. Similarly, orders 5 and 8 are paired on a

20ft long lorry travelling from the port at 12.27pm and ending its return trip at the port

after picking up the export order from L7 at 19.00. Penalty cost is charged on route (2, 4, 7),

which violates the maximum working time regulation.
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paired departure import inland export import tour inland tour export tour
Orders time(port) tours tours tours arrival time arrival time arrival time

1,3,6 11.00 L0 − L1 L1 − L3 L3 − L0 L1:12.11 - L3:15.37
2,4,7 10.00 L0 − L2 L4 − L5 L5 − L0 L2:12.50 L4:16.00 L5:19.11
5,8 12.27 L0 − L6 - L7 − L0 L6:15.37 - L7:19.00

Table 3.6: Solution for example 3 (import-inland-export transportation)

3.4.4 Real Implementations

To test the performance of the MILP model for real life instances, geographical information

of the Port of Felixstowe, which is one of the major ports in the UK, and its major service

areas are considered. Orders are represented by the number of 20ft containers that should

be distributed from the port to inland customer locations, between a pair of inland locations

and from exporters/inland depots to the port. As for the convenience and diversity of tests,

apart from the geographical location all other data is randomly generated. Instance sizes

range from 10 to 300 orders per day are considered, which meets the basic service level

of a medium sized haulage company. Distances are calculated based on the straight line

distance which is rescaled by 1.3 as an approximation to the road-distance. The average

speed for lorries is randomly picked within [35, 40] mile/h and the penalty cost is 200

pounds/h for extra working hours. Loading containers at the port takes no time (h=0) as

it has been considered in the container available time, while at customer locations it takes

about 2 hours. As mentioned above the model is coded with MPL and solved by Cplex,

on a CPU with an Intel(R)Core(TM)i7-4790 processor. In what follows we will show the

numerical results of testing the model against three types of applications.

As it can be seen in Table 3.7, it explains the result for the import of containers. In each

instance we consider different numbers of loaded orders (containers), some have a single

destination while some others have dual destinations. More than 300 locations distributed
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# # Containers #Importers #Depots # Indv. fleet # Paired. fleet Cost CPU

Orders # single # multi avail. used avail. used indv. paired Penalty time(sec)

dest. dest.

5 5 16 4 5 4 5 3 67.3 381.2 200 00:03

10 6 4 15 5 5 4 5 3 67.1 210 - 00:02

7 3 14 6 5 4 5 3 82.5 242.1 - 00:02

44 6 44 7 25 24 20 13 292.5 568.8 - 08:72

50 43 7 43 8 15 14 25 18 192.8 1011.3 600 07:41

40 10 42 9 25 24 15 13 446.6 737.1 - 11:79

88 12 91 10 40 40 40 30 596.6 1512.6 200 114:00

100 90 10 90 11 45 44 45 28 609.3 1378.8 - 89:00

80 20 81 20 45 44 35 28 784.8 1227.9 - 86:00

135 15 128 23 70 70 70 40 1081.9 1567.4 - 97:00

150 110 40 136 15 60 60 60 45 973.4 2467.9 - 124:00

115 35 131 20 60 60 45 56 926.2 2431.3 - 174:00

175 25 185 16 70 70 70 65 1134.6 3535.1 200 463:00

200 180 20 183 18 100 100 80 50 1580.2 2267.5 - 270:04

185 15 180 21 60 60 75 70 914.6 3750.9 - 223:00

230 20 234 17 130 130 100 60 2218.6 2800.5 400 600:04

250 220 30 230 21 110 110 90 70 1340.7 2441.7 - 561:00

210 40 226 25 80 80 90 85 1096.2 4025.6 - 879:03

265 35 275 26 100 100 110 100 3051.4 7959.6 - 1235:04

300 260 40 280 21 150 150 130 75 2393.9 2353.9 - 1302:00

255 45 270 31 140 140 120 80 2003.4 2144.6 - 1212:00

300 50 319 32 170 170 140 90 2730.6 3405.5 - 1920:00

350 310 40 325 26 160 160 130 95 2811.9 3955.9 - 1838:00

305 45 316 35 150 150 120 100 2418.2 3960 - 1922:00

Table 3.7: Results for large size instances drawn from real geographical data – import only

Orders Without pairing With pairing Cost
gap

Import Inland #
tours

O.F CPU Indiv. paired O.F CPU (%)

time(sec) tours tours time(sec)
5 5 10 634.1 00:03 6 2 532.9 00:03 16%
25 25 50 2225.5 00:54 20 15 1800.6 11:03 19%
50 50 100 5071.8 02:40 34 33 3976.4 86:00 22%
70 80 150 8162.6 07:98 88 31 7328.4 203:00 10%
130 70 200 10206 17:58 102 49 8232.7 215:00 19%
150 100 250 13926.1 26:75 46 102 9607.6 526:00 31%
250 50 300 12128.8 59:17 36 132 7379.2 1323:00 39%
300 50 350 14470 165:00 70 140 9140.4 1992:00 37%

Table 3.8: Results for different real instances of the import-inland transportation
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Orders Without pairing With pairing Cost
gap

Imp. Inl. Exp. #
tours

O.F CPU Indiv. paired paired O.F CPU (%)

time(sec) tours 2 or-
ders

3 or-
ders

time(sec)

4 5 6 15 952.7 00:01 3 6 - 855.8 00:03 10%
19 25 29 73 3450 00:10 10 24 5 2845 85:00 17%
31 49 55 135 5711.7 00:46 3 33 22 3182.1 119:00 44%
62 80 87 229 11341.8 00:98 34 66 21 9769.8 398:00 14%
107 75 93 275 14902.1 01:85 63 67 26 12150.1 1581:00 18%
121 100 129 350 16645.7 02:94 20 57 72 11407.8 1832:00 31%

Table 3.9: Results for different real instances of the import-inland-export transportation

around southeast England are considered as the number of customers (importers) where

the loaded containers should be delivered to. We also consider different numbers of inland

depots (where empty containers should be delivered to) across examples. A number of

20ft and 40ft long trucks are available to use, which can carry one or two 20ft containers

respectively. It is clear from the results that in some cases a penalty should be paid for

extra working hours for some planned routes. Looking at the results we can see, it is not

always economical to use up the entire 40ft fleets. There are three main reasons for this

observation: first, some containers are not able to be paired with others due to the weight

restriction; second, the penalty paid for extra working hours of a paired trip might be

higher than the extra distance travelled by sending two individual trucks, especially when

many containers are nominated for multiple destinations; thirdly, the existence of inland

depots makes the individual delivery less costly than doubling the total travel distance

of the paired trip, as empty containers can be easily dropped at a nearby depot. A major

notice should be put on the solution time of the model, as in all existing literature that

are known by the authors, no one can solve this type of problem with 350 orders within
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about half an hour, not to mention after the inclusion of multi-destination orders which is

introduced for the first time in this work. Based on the result we have the reason to believe,

the assignment model as proposed does solve more efficiently than the VRP-SPDTW on the

same type of container pairing problems. On the other hand, the result of the import-inland

delivery is shown in Table 3.8, where a number of import orders that should be delivered

from the port to their destinations and a number of inland orders that should be delivered

from one inland location (origin) to another (destination). In order to see by how much the

combined delivery can reduce transportation costs, the solution of the MILP is compared

with a trivial solution where all orders are served individually by 20ft trucks. The result for

this benchmark solution is given under “Without pairing” columns, whereas the solution

of the MILP is displayed under “With pairing”. Note that the “With pairing” case also

allows individual delivery. The optimal decision is simply picked up by the MILP model

minimizing the total working cost (transportation plus penalty). The result shows that the

minimum cost (O.F) for the paired case is 10-39% less than the cost (O.F) for the individual

delivery across all cases that we have tested. In general, when the inland orders take a high

proportion in the overall orders pool, the improvement of pairing is less significant over

individual delivery. This is due to the fact that, with existences of inland depots, finding a

nearby depot to start/end the inland trip is not difficult. So the necessity of combining the

trip with an import or another inland order is diluted. On the other hand, as there is only

one port which is normally far away from customer locations, the combination of orders

for import delivery is more vital in reducing transportation cost. This also justifies our

initial argument that emphasises should be made to the pairwise delivery import/export

orders only.
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Table 3.9 shows the result for the combination of import-inland-export orders. Similar

as the import-inland case, allowing combination of tours saves at most 44% of the total

delivery cost. Notice that Table 3.9 gives the detailed number of tours that combined 1, 2

or 3 containers, these in turn represents the number of import/inland/export tours that are

served individually, the number of import-inland/import-export/inland-export tours that

are served pair-wisely, and the number of import-inland-export tours. The individual tour

in this case is largely reduced with combination, which justifies the preference of using

combined delivery as well.

3.5 Summary

In this chapter the delivery of 20ft orders (containers) from their origins to destinations

is investigated, an assignment MILP optimization model is formulated for the Pairing of

Containers/Orders in Drayage Transportation (PCDT) with the aim of minimizing the trav-

elling cost and penalty paid for over time working. A great number of realistic restrictions

are considered in the model such as time windows at customer locations, and working time

regulations, ready time of containers at the port, the usage of inland depots to reduce empty

travels, etc. In addition, this work also allows containers to be delivered to multi destina-

tions for discharging, which is economically convenient for customers running relatively

small business. The model can be implemented for different types of transportation such

as the import (delivery) of containers, import-inland as well as the import-inland-export.

The decision of delivering orders paired or individually can be made efficiently by solving

the MILP model using commercial software like Cplex. Even under a dense inland depot
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setting, a 23% operations cost reduction is achievable on average across all testing exam-

ples. Testing on numerical examples drawn from realistic geographical data shows that

up to 350 orders can be solved using the MILP model within a reasonable time (about 30

minutes), which outperforms traditional models that are based on the VRP-SPDTW which

normally solves instances up to 75 Vidovic et al. [99]. Without needing any heuristics, more

accurate and reliable solution can be achieved efficiently by the proposed model.



Chapter 4

Heterogenous Container Sizes

4.1 Introduction

The inland container transportation can be classified as a pickup and delivery problem.

Parragh et al. [78] provided an extensive classification and explanation of the pickup and

delivery of vehicle routing problems. However, inland container transportation is an

extension of these types since it comprises the pickup and delivery of different types of

containers (loaded and empty) between customers, the port and inland depots [67]. Falling

in the category of vehicle routing problem, this problem can be classified as a vehicle routing

problem with pickup and delivery (VRPPD) or as a vehicle routing problem with backhauls

(VRPB). The PDVRP of containers can be described where trucks are able to visit import

and export customers in any feasible sequence, while for the VRPB, all import customers

should be served before export customers.

In this chapter, we expand Chapter 3 by considering both heterogeneous truck types

and container sizes (20ft and 40ft). We design a Mixed Integer Linear Programming (MILP)

74
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model for the combination of orders in the inland transportation of containers by truck. In

this model, the pickup and delivery of both 20 and 40 foot containers from the terminal to

customers locations and vise versa are considered. We assume that all customers use the

Stripe strategies, which means containers are loaded onto/removed from the truck together

with their contents. Empty movements are treated as separate requests, with zero payload

weight. The model is an extended version of our previous work, which considered only

20ft, fully loaded shipments. All other practical restrictions remain, such as the time

window of the required work for both the port and all customer locations, the weight

restrictions for single and double chassis types, the penalty cost for the potential overtime

working of truck drivers, etc. Based on the same assignment structure as in Chapter 3, this

model solves efficiently the problem in question: examples with up to 100 orders can be

solved by CPLEX, which generates the optimal delivery plan satisfying all constraints.

In order to deal with larger instances, a decomposition and aggregation heuristic is

designed. The basic idea of this approach is to decompose the locations of orders geo-

graphically into small subgroups and solve the subgroups problems by the formulated

MILP, to obtain the optimal order-combination plan within each subproblem. For the sake

of constructing more combined routes which save delivery cost in general, decomposi-

tion is proposed based on the angles of the customer location to the port, which creates

fan-shaped subareas for each decomposed order group. To balance fleet sizes amongst all

subgroups and to achieve the best heuristic optimal solution, column generation is used

to iteratively adjust the number of allocated trucks according to the shadow-price of each

truck type. The decomposed model is smaller in size and solves efficiently, but the quality

of the result is not highly optimal since we prevent some combination choices through
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decomposition. Therefore in the second phase, we do aggregation by removing the “best”

combined orders, e.g. the order combinations that have already used the full truck load,

in order to reduce the problem size. A new MILP is constructed for the aggregated data,

and solved as usual. This decomposition and aggregation approach is tested to be both

efficient and cost-saving through intensive numerical experiments.

This chapter is structured as follows. In Section 4.2 the problem description and the

optimisation model are described. The heuristic approach is demonstrated with an example

in Section 4.3. Numerical experiments are presented in Section 4.4. Section 4.5 draws the

summary.

4.2 Problem Description and Optimization Model

Figure 4.1: Combination Possibilities of import/export 20/40ft orders
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In order to describe the problem, the basic terminology of this chapter will be defined

in this section. The transportation of a customer’s request of a 20ft or 40ft container from

its origin to its destination is referred to as an order. The process of transporting a container

from the port to the customer location is called an import order. In contrast, the collection

of a container from the customer location to the port is defined as an export order. Figures

4.1, 4.2 and 4.3 illustrate the different possibilities of combining orders of the problem.

Figure 4.2: Combination Possibilities of import/export 20/40ft orders
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It is assumed that a haulage company has a number of heterogenous trucks in its fleet:

20ft and 40ft trucks/chassises that are available for the service. The import and export

of orders (20ft and 40ft containers) should be collected by the company from the order

origin and delivered to the order destination. It is assumed that the whole container is

left at the customer’s location at the end of the service, and the empty truck continues its

route to fulfil other orders. Each order is allocated for a single customer location, has a

specific time window for delivery/pick up and a payload weight of the container, including

the cargo. Furthermore, we assume all information and data of the problem are known

in advance. Based on these assumptions, a decision should be made on which orders

should be combined to form a route as shown in Figures 4.1, 4.2 and 4.3, to minimize the

total traveling cost and the penalty cost of violating the working time regulation for truck

drivers.

Figure 4.3: Individual delivery of import/export 20/40ft orders
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4.2.1 Parameters

In this section we illustrate the parameters of the model. Let H1 and H2 denote the number

of 20ft and 40ft trucks that are available during the day, respectively. Let N be a set of

containers which consists of: P1 as a set of 20ft import orders, P2 as a set of 20ft export

orders, P3 as a set of 40ft import orders and P4 as a set of 40ft export orders. Note that

here we represent the needs of taking a container from the port to a customer location as

an ”import” order, regardless of whether this container is a real ”import” (loaded) order

or a request to re-locate an empty container for the following export services. This means

in this study, we ignore the fact that some containers might be loaded and some others

are empty, and simply describe an ”order” as a customer request of delivering a container

from its origin to its destination. We are not concerned about how the empty container will

be processed and re-located after fulfilling the current delivery request. If there is such a

need, a new order could be generated to capture it. Orders should be picked up from their

origins, either from the port (Lo) for import orders or from a customer location (Li, i ∈ N)

for export orders with a specific available time (Ai) and a handling time (h). The service

time for orders to be striped at the customer’s location is denoted as (O). The travel time

t(., ..., .) for a sequence of locations is restricted by the driving hours regulation, where the

maximum possible working time Tmax applies for a single shift. If it is violated, a penalty

cost C should be paid for per unit of the extra working time. Each order has an earliest and

latest time window [Ts
i ,T

e
i ] to arrive at its destination. The payload weight of containers is

defined as (Wi, i ∈ N), while the weight of the truck chassis is denoted by (V). Note that for

an order with an empty container, the payload weight Wi is zero. When delivered jointly,

the weight limit Vm
2 for the whole truck is considered. From the perspective of haulage
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companies, the delivery cost f (., ..., .) is estimated based on the distance between locations.

4.2.2 Decision Variables

In order to capture the characteristics of the optimization model, two types of decision vari-

ables are introduced. Binary variables xi jkl, xi jk, xi j and xi are created to denote the decision

on how the orders should be combined for delivery. For example, xi jkl = 1 means orders i, j,

k and l should be delivered on the same route, following the sequence of i to j to k and then

to l. Another set of binary variables yi jkl, yi jk, yi j and yi are defined to identify if a penalty

cost should be paid for the associated delivery route for extra working hours. Moreover,

continuous variables vi are introduced to compute the arrival times for order i at its receiver.

Binary Variables

• xi jkl =


1, if containers i, j, k and l are delivered on the same route,

following the sequence of i, j, k and then l.
0, otherwise

∀i , j ∈ P1,∀k , l ∈ P2 or ∀i , k ∈ P1,∀ j , l ∈ P2.

• xi jk =


1, if containers i, j and k are delivered on the same route,

following the sequence of i, j and then k.
0, otherwise

∀i , j ∈ P1,∀k ∈ P2 ∪ P4 or ∀i ∈ P1 ∪ P3,∀ j , k ∈ P2

or ∀i , k ∈ P1,∀ j ∈ P2 or ∀i , k ∈ P2,∀ j ∈ P1.

• xi j =


1, if containers i and j are delivered on the same route,

following the sequence of i and then j.
0, otherwise

∀i ∈ P1 ∪ P3,∀ j ∈ P2 ∪ P4 or ∀i , j ∈ P1

or ∀i , j ∈ P2 or ∀i ∈ P2,∀ j ∈ P1.
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• xi =

{
1, if container i is delivered individually to its destination.
0, otherwise

∀i ∈ P1 ∪ P2 ∪ P3 ∪ P4.

• yi jkl =


1, if working hours for the combined route xi jkl is higher than the

maximum regulation working time.
0, otherwise

∀i , j ∈ P1,∀k , l ∈ P2 or ∀i , k ∈ P1,∀ j , l ∈ P2.

• yi jk =


1, if working hours for the combined route xi jk is higher than the

maximum regulation working time.
0, otherwise

∀i , j ∈ P1,∀k ∈ P2 ∪ P4 or ∀i ∈ P1 ∪ P3,∀ j , k ∈ P2

or ∀i , k ∈ P1,∀ j ∈ P2 or ∀i , k ∈ P2,∀ j ∈ P1.

• yi j =


1, if working hours for the combined route xi j is higher than the

maximum regulation working time.
0, otherwise

∀i ∈ P1 ∪ P3,∀ j ∈ P2 ∪ P4 or ∀i , j ∈ P1

or ∀i , j ∈ P2 or ∀i ∈ P2,∀ j ∈ P1.

• yi =


1, if working hours for the individual route xi is higher than the

maximum regulation working time.
0, otherwise

∀i ∈ P1 ∪ P2 ∪ P3 ∪ P4.

Continuous Variables

• vi,∀i ∈ P1 ∪ P2 ∪ P3 ∪ P4: arrival time for order i at its destination.

4.2.3 Mathematical Model

A Mixed Integer Linear Programming (MILP) model is formulated to find the best com-

bination decisions for delivery route planning. The model consists of the most important

practical constraints that are normally used in industry.
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min
∑
i∈P1

∑
j∈P1

∑
k∈P2

∑
l∈P2

( f (Lo,Li,L j,Lk,Ll,Lo)xi jkl + f (Lo,Li,Lk,L j,Ll,Lo)xik jl)+

∑
i∈P1

∑
j∈P1

∑
k∈P2∪P4

f (Lo,Li,L j,Lk,Lo)xi jk +
∑

i∈P1∪P3

∑
k∈P2

∑
l∈P2

f (Lo,Li,Lk,Ll,Lo)xikl+

∑
i∈P1

∑
k∈P2

∑
j∈P1

f (Lo,Li,Lk,L j,Lo)xik j +
∑
k∈P2

∑
i∈P1

∑
l∈P2

f (Lo,Lk,Li,Ll,Lo)xkil+

∑
i∈P1∪P3

∑
k∈P2∪P4

f (Lo,Li,Lk,Lo)xik +
∑
i∈P1

∑
j∈P1

f (Lo,Li,L j,Lo)xi j+

∑
k∈P2

∑
i∈P1

f (Lo,Lk,Li,Lo)xki +
∑
k∈P2

∑
l∈P2

f (Lo,Lk,Ll,Lo)xkl +
∑

i∈P1∪P2∪P3∪P4

f (Lo,Li,Lo)xi+

∑
i∈P1

∑
j∈P1

∑
k∈P2

∑
l∈P2

(Cyi jkl + Cyik jl) +
∑
i∈P1

∑
j∈P1

∑
k∈P2∪P4

Cyi jk +
∑

i∈P1∪P3

∑
k∈P2

∑
l∈P2

Cyikl

+
∑
i∈P1

∑
k∈P2

∑
j∈P1

Cyik j +
∑
k∈P2

∑
i∈P1

∑
l∈P2

Cykil +
∑

i∈P1∪P3

∑
k∈P2∪P4

Cyik +
∑
i∈P1

∑
j∈P1

Cyi j+

∑
k∈P2

∑
i∈P1

Cyki +
∑
k∈P2

∑
l∈P2

Cykl +
∑

i∈P1∪P2∪P3∪P4

Cyi;

(4.1)

s.t.∑
j∈P1

∑
k∈P2

∑
l∈P2

(xi jkl + x jikl + xik jl + x jkil) +
∑
j∈P1

∑
k∈P2∪P4

(xi jk + x jik) +
∑
k∈P2

∑
l∈P2

(xikl + xkil)

+
∑
k∈P2

∑
j∈P1

(xik j + x jki) +
∑
j∈P1

(xi j + x ji) +
∑
k∈P2

(xik + xki) +
∑
k∈P4

xik + xi = 1,∀i ∈ P1;

(4.2)

∑
i∈P1

∑
j∈P1

∑
l∈P2

(xi jkl + xi jlk + xik jl + xil jk) +
∑

i∈P1∪P3

∑
l∈P2

(xikl + xilk) +
∑
i∈P1

∑
j∈P1

(xi jk + xik j)

+
∑
i∈P1

∑
l∈P2

(xkil + xlik) +
∑
l∈P2

(xkl + xlk) +
∑
i∈P1

(xik + xki) +
∑
i∈P3

xik + xk = 1,∀k ∈ P2;

(4.3)
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∑
k∈P2

∑
l∈P2

xikl +
∑

k∈P2∪P4

xik + xi = 1,∀i ∈ P3; (4.4)

∑
i∈P1

∑
j∈P1

xi jk +
∑

i∈P1∪P3

xik + xk = 1,∀k ∈ P4; (4.5)

V + (Wi + W j) ≤ Vm
2 + M[1 −

∑
k∈P2

∑
l∈P2

(xi jkl + x jikl + xik jl + x jkil) −
∑

k∈P2∪P4

(xi jk + x jik)

−

∑
k∈P2

(xik j + x jki) − (xi j + x ji)],∀i< j ∈ P1;

(4.6)

V + (Wi + Wk) ≤ Vm
2 + M[1 − (

∑
j∈P1

∑
l∈P2

x jkil −

∑
j∈P1

x jki −

∑
l∈P2

xkil − xki)],

∀i ∈ P1,∀k ∈ P2;

(4.7)

V + (Wk + Wl) ≤ Vm
2 + M[1 −

∑
i∈P1

∑
j∈P1

(xi jkl + xi jlk + xik jl + xil jk)−

∑
i∈P1∪P3

(xikl + xilk) −
∑
i∈P1

(xkil + xlik) − (xkl + xlk)],∀k<l ∈ P2;

(4.8)

vi ≥ Ai + h + to,i −M[1 −
∑
j∈P1

∑
k∈P2

∑
l∈P2

(xi jkl + xik jl) −
∑
j∈P1

∑
k∈P2∪P4

xi jk−

∑
k∈P2

∑
l∈P2

xikl −

∑
j∈P1

∑
k∈P2

xik j −

∑
j∈P1∪P2∪P4

xi j − xi],∀i ∈ P1;

(4.9)

vi ≥ Ai + h + to,i,∀i ∈ P3; (4.10)

vk ≥ Ai + h + t0,k −M[1 −
∑
l∈P2

xkil − xki],∀i ∈ P1,∀k ∈ P2; (4.11)

vi ≥ A j + h + to,i −M[1 −
∑
k∈P2

∑
l∈P2

(xi jkl + xik jl) −
∑

k∈P2∪P4

xi jk−

∑
k∈P2

xik j − xi j],∀i , j ∈ P1;

(4.12)

v j ≥ vi + O + ti, j −M[1 −
∑
k∈P2

∑
l∈P2

xi jkl −

∑
k∈P2∪P4

xi jk − xi j],∀i , j ∈ P1; (4.13)
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vk ≥ v j + O + t j,k −M[1 −
∑
i∈P1

∑
l∈P2

(xi jkl + x jkil + xil jk) −
∑
i∈P1

(xi jk + x jki)−

∑
l∈P2

(xl jk + x jkl) − x jk],∀ j ∈ P1 ∪ P3, k ∈ P2 ∪ P4;

(4.14)

vl ≥ vk + O + tk,l −M[1 −
∑
i∈P1

∑
j∈P1

xi jkl −

∑
j∈P1

x jkl − xkl],∀k , l ∈ P2; (4.15)

v j ≥ vk + O + tk, j −M[1 −
∑
i∈P1

∑
l∈P2

xik jl −

∑
l∈P2

(xik j + xkjl) − xkj],∀k ∈ P2, j ∈ P1; (4.16)

Ts
i ≤ vi ≤ Te

i ,∀i ∈ P1 ∪ P2 ∪ P3 ∪ P4; (4.17)

t(o, i, j, k, l, o)xi jkl ≤ Tmax + M(yi jkl),∀i, j, k, l; (4.18)

t(o, i, j, k, o)xi jk ≤ Tmax + M(yi jk),∀i, j, k; (4.19)

t(o, i, j, o)xi j ≤ Tmax + M(yi j),∀i, j; (4.20)

t(o, i, o)xi ≤ Tmax + M(yi),∀i ∈ P1 ∪ P2 ∪ P3 ∪ P4; (4.21)∑
i∈P1

∑
k∈P2

xik +
∑
i∈P1

xi +
∑
k∈P2

xk ≤ H1; (4.22)

∑
i∈P1

∑
j∈P1

∑
k∈P2

∑
l∈P2

(xi jkl + xik jl) +
∑
i∈P1

∑
j∈P1

∑
k∈P2∪P4

xi jk +
∑

i∈P1∪P3

∑
k∈P2

∑
l∈P2

xikl+

∑
i∈P1

∑
k∈P2

∑
j∈P1

xik j +
∑
k∈P2

∑
i∈P1

∑
l∈P2

xkil +
∑
i∈P1

∑
k∈P4

xik +
∑
i∈P3

∑
k∈P2∪P4

xik +
∑
i∈P1

∑
j∈P1

xi j+

∑
k∈P2

∑
i∈P1

xki +
∑
k∈P2

∑
l∈P2

xkl +
∑

i∈P3∪P4

xi ≤ H2;

(4.23)

vi ≥ 0,∀i ∈ N ; (4.24)

xi jkl, xi jk, xi j, xi, yi jkl, yi jk, yi j, yi ∈ {0, 1},∀i, j, k, l ∈ N ; (4.25)

The objective (4.1) is to minimize the total travelling cost between the port and customer

locations and the total cost of penalty related to the extra driving hours of all trips. Con-

straints (4.2)-(4.5) forces all orders to be delivered combined or individually. Constraints
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(4.6)-(4.8) are designed in order to ensure that the maximum allowance weight is not vio-

lated for the total weight of the combined route, which includes the weight of the vehicle,

chassis, cargo and containers. The arrival times of combined and individual orders to the

final destination is calculated by constraints (4.9)-(4.16). Constraint (4.17) guarantees that

the arrival time of the order at its destination is between the assigned earliest and latest time

window for each order. Constraints (4.18)-(4.21) ensure that if the maximum allowance

working time for a truck route is violated, a penalty is paid in the objective. Constraints

(4.22) and (4.23) restrict the total number of 20ft and 40ft trucks used to be less than or equal

to the fleet size of each type. Finally, constraints (4.24) and (4.25) determine the domain of

variables.

4.3 Heuristic decomposition and aggregation approach

The container combination problem for inland transportation is classified as NP-hard [79],

which means exact optimization approaches can only solve limited size instances. In

section 4.2 we have formulated a MILP model which solves problems with up to 100

orders in acceptable time by CPLEX. In practice however, a port may operate thousands

of containers per day by road. Therefore, an efficient solution approach, for example,

heuristic method, is needed. A well designed heuristic has the capability of finding near

optimal solutions for large problems in a reasonable time, which in this application is,

several hours. In this section a decomposition and aggregation heuristic is developed. The

method consists of two stages: firstly decompose orders into small subgroups and find a

solution for each subgroup by using the formulated MILP model (See section 4.4 for more
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detailed results), secondly remove the best (optimally) combined orders and aggregate the

remaining orders to form the second stage MILP model. Column generation is applied in

both stages to balance fleet sizes assigned to subgroups.

4.3.1 Decomposition of orders

Stage 1 aims to reduce the solution time so as to increase the size of the problem that can

be managed. A simple decomposition method based on customer locations is therefore

proposed. Considering the aim of combining import and export orders to form a closed

delivery route starting and finishing at the port, in this study we deploy the fan-shaped

clustering approach [39] to enable geographical decomposition of customer locations. This

approach gives the highest possibility of creating closed routes starting and ending at the

same depot [103] and therefore is believed to be more suitable than other decomposition

strategies such as rectangle-shaped [21], [22], ring-shaped [29], seed-based [31] decomposi-

tions etc. To create the decomposition, the polar angle of each order’s location with respect

to the port and the baseline of the seashore is calculated. Acording to the angles, orders

are decomposed into fan-shaped subgroups and MILP like (4.1) is constructed for each

subgroup to find the optimal combination within it.

Nevertheless, the decomposition stops the combination of orders between different

subgroups, and introduces a question on how to allocate the fleet to serve each subgroup

so as to minimize the total delivery cost. It is not hard to imagine, too small fleet sizes

may lead to infeasibility and too large fleet may lead to capacity loss. Especially in case

when capacity is very limited, how to allocate the fleet amongst service areas forms a vital

decision.
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4.3.2 Column Generation

In order to balance the fleet size for all subgroups and to decrease the cost gap between

the heuristic decomposition and the MILP model, a column generation method is applied.

Column generation is an iterative method [32] which consists of two parts: a set of subprob-

lems to generate all columns (potential parts of optimal solution), and a master problem

to maintain all generated columns. They are solved iteratively, with the master problem

to inform the shadow-price of global constraints and subproblems to identify whether the

master problem should be enlarged with additional columns or not. Column generation

procedure alternates between the master problem and the subproblem, until the former

contains all the necessary optimal columns.

4.3.2.1 Subproblem

Decomposition prevents orders in one subgroup to be combined with the ones in another.

Therefore, a separate subproblem can be formulated for every single subgroup. Suppose

a subgroup is formed, whether an order is delivered, the arrival time of the order, if it

violates the driving regulation and the weight limit are all irrelevant to other subgroups.

It follows that the subproblems are formed by removing the ”global constraints” on fleet
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sizes using Lagrangian Relaxation:

min f (x) + f (y) + π1(H1 −

∑
i∈P1

∑
k∈P2

xik +
∑
i∈P1

xi +
∑
k∈P2

xk)

+ π2(H2 −

∑
i∈P1

∑
j∈P1

∑
k∈P2

∑
l∈P2

(xi jkl + xik jl) +
∑
i∈P1

∑
j∈P1

∑
k∈P2∪P4

xi jk +
∑

i∈P1∪P3

∑
k∈P2

∑
l∈P2

xikl+

∑
i∈P1

∑
k∈P2

∑
j∈P1

xik j +
∑
k∈P2

∑
i∈P1

∑
l∈P2

xkil +
∑
i∈P1

∑
k∈P4

xik +
∑
i∈P3

∑
k∈P2∪P4

xik +
∑
i∈P1

∑
j∈P1

xi j+

∑
k∈P2

∑
i∈P1

xki +
∑
k∈P2

∑
l∈P2

xkl +
∑

i∈P3∪P4

xi);

s.t. (4.2) − (4.21), (4.24) − (4.25)

(4.26)

Where f (x) and f (y) represents the x and y relevant parts in the original objective (4.1),

respectively. π1, π2 are the Lagrangian Multipliers for constraints (4.22) and (4.23), respec-

tively. Obtaining the optimal solution of (4.1) for every subgroup f ∗s , s ∈ A, we can generate

columns based on whether this new column improves on the existing ones in the RMP. If

the solution of all subproblems has non negative reduced cost the iteration is terminated,

otherwise the RMP is enlarged by adding more columns and resolved.

4.3.2.2 Restricted Master Problem (RMP)

In this problem, all constraints following decomposition fall in a single subproblem, apart

from the fleet size restrictions. We treat them as global constraints which have to be dealt

with in the Restricted Master Problem (RMP). In the RMP, columns represent the number

of 20ft and 40ft trucks needed by the optimal solution for each subgroup. Each iteration

comprises solving the RMP to determine the optimal solution and the dual multipliers.
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The RMP can be formulated as follows:

min
∑
s∈A

f ∗sλs (4.27)

s.t.
∑
s∈A

q1
sλs ≤ H1; (4.28)

∑
s∈A

q2
sλs ≤ H2; (4.29)

∑
s∈Ak

λs = 1,∀k; (4.30)

0 ≤ λs ≤ 1,∀s ∈ A; (4.31)

The column set is indicated byA= {Ak, k = 1, ....,m}, which compromises the set of columns

generated by subproblem k: Ak. Each column is associated with a variable λs, which is

restricted between 0 and 1 and indicates the number of times a column is chosen in the

solution. q1
s and q2

s represent the number of 20ft and 40ft trucks required by the optimal

solution of solving the corresponding subproblem s ∈ A.

4.3.3 An example

In this section we demonstrate an example to illustrate how the decomposition-column

generation approach works. Geographical locations of the port and a set of 20 orders are

shown in Figure 4.4. Assume that the order set comprises : 8 × 20ft import orders, 6 × 20ft

export orders, 3× 40ft import orders and 3× 40ft export orders. The available fleet consists

of 8 × 20ft trucks and 6 × 40ft trucks. The example is firstly solved as a whole by the MILP

model, as shown in Figure 4.5 which illustrates the optimal solution.
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Figure 4.4: Geographical location of the port and a set of orders

Figure 4.5: Optimal solution of the example

In this case, most orders are delivered jointly with others, creating two routes combining

four orders, one route combining three orders and four routes combining two orders. Only

one order is delivered individually (the order 7). As in Table 4.1, the result shows that

the minimum cost is 1194 and the number of the used trucks are 2 × 20ft and 6 × 40ft,

respectively. We can see when there is no decomposition, the model tends to use as many

40ft trucks as possible to reduce empty trips.

Now we decompose the example into four subgroups like what is shown in Figure 4.6,
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and solve for each area separately. In this experiment the fleet is simply allocated according

to the proportional number of the corresponding container sizes, i.e.

no. of 20ft trucks for group k = [
no. of 20ft orders in group k

no. of all 20ft orders
×H1] (4.32)

Orders are combined separately within each subgroup and the minimum cost obtained

Figure 4.6: Fan-shaped decomposition and the solution

from the decomposition solution is 1505, which is 26% higher than the cost of the optimal

solution. This is due to the fact that the fleet is not allocated wisely by just considering the

proportional number of orders. To automatically balance the fleet sizes amongst subgroups,

the column generation approach as stated in section 4.3.2 is applied and the result is shown

in Figure 4.7. Note that, decomposing orders as subgroups prevents some orders to be

combined with others, so that links between orders 5, 11, 2 and 14 are broken as they

fall into three different subgroups. Since trucks are allocated to each subgroup, the four

combined routes 8, 1, 12 and 9 are also prevented due to the existence of order 17 in
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subgroup 2 which has only one 40ft truck in service.

Comparing to the MILP solution, the decomposition uses relatively more 20ft (6× 20ft)

trucks and relatively less 40ft (5 × 40ft), although there are 6 × 40ft available. In this case,

one more 40ft truck is allocated to the second subgroup, which enables the optimal route

combination of orders 5, 11, 2 and 14 again. This reduces the total case by 11.43% to 1333,

and used the full truck load of four out of six 40ft trucks.

Figure 4.7: Fan-shaped decomposition with column generation and the solution

It is clear from the result that the cost is still higher than the MILP, therefore we will

develop an aggregation step to reduce the problem size and the cost as will be explained

later.
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# # Orders # fleet # # # # Min. Total CPU
Orders group in group available used Indiv. 2

com-
bined

3
comb.

4
comb.

index routes routes routes routes cost cost Time(sec)
20ft 40ft 20ft 40ft of

groups
MILP - Optimal solution
20 - - 8 6 2 6 1 4 1 2 - 1194 03:22
decomposition solution

1 5 2 1 2 1 2 - 1 - 241
2 6 3 1 3 1 2 2 - - 613

20 3 5 2 2 - 2 - 1 1 - 508 1505 01:76
4 4 1 2 1 1 - 2 - - 143

decomposition with column generation solution
1 5 2 1 2 - 1 - 241
2 6 1 2 2 - - 1 441

20 3 5 8 6 - 2 - 1 1 - 508 1333 03:44
4 4 1 1 - 2 - - 143

Table 4.1: Results for the optimal solution, decomposition and decomposition with column generation of the
example

4.3.4 Aggregation of orders

Looking at the previous example we can see that the decomposition does introduce signif-

icant gaps to the real optimal solution, since it prevents the combination of orders across

subgroups. In this section we will discuss how to aggregate to create more combined de-

liveries so as to further reduce cost. Obviously, in the decomposed optimal solution some

routes are already dense and have fully used the truck load, e.g. the routes combining

four 20ft orders. For this type of route, relaxing the boundary of decomposition may shift

part of the route combination to its neighbour area but would not significantly reduce the

delivery cost since orders in the same subgroup are believed to be closer to each other.

Nevertheless, orders that are loosely combined with others or equivalently, orders that

are delivered on routes that still have spare capacity for accommodating one/several more

orders, should be the ones to be considered further. Therefore, in the second stage, we

remove the ”well-combined” orders from the list, which include:

• 4 × 20ft

• 1 × 40ft + 2 × 20ft
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• 2 × 40ft

and aggregate all the remaining orders to solve another MILP. By doing this, the size of the

problem is largely reduced and so is the computation time. Based on the above explanation

of the aggregation, orders 1,3, 5, 6, 7, 8, 9, 12, 16, 18, 19 and 20 are removed from the optimal

solution of the decomposed model for the previous example where the cost to deliver them

is 651 (see Table 4.2 for more information). This leaves 8 orders for the aggregation problem.

Here we consider 2 options for aggregation:

• Aggregate every two adjacent subgroups as in Figure 4.8.

• Aggregation as a whole as in Figure 4.9.

Note that these are the two extreme ways of doing aggregation, which can also be done

at other levels in between. According to the real data, the best aggregation strategy can

be selected by experience considering customer density, driving time, travelling speed and

solution time for the MILP. The result in Table 4.2 shows that the total minimum cost of the

aggregation as two subgroups is 1245, which is the same as aggregating as a whole. It can

be seen that in both cases the cost is about 7% smaller than the decomposition with column

generation, and being very close to the real optimal solution (just 4% higher).

Comparing the optimal delivery routes of the MILP and that of the decomposition-

and-aggregation method, many routes are the same except the routes relating to orders 2,

5, 7, 11, 14, 15 and 19. In the optimal solution these orders form a 4-combined route of

20ft orders, a 2-combined route of 40-ft orders and a single delivery route, whereas in the

heuristic solution they form a 3-combined and two 2-combined routes. The used fleet size
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# # # # fleet # # # # Min. Cost of Total CPU
Orders groups of

groups
available used Indiv. 2 com-

bined
3
comb.

4
comb.

Removed

20ft 40ft 20ft 40ft routes routes routes routes cost orders cost time(sec.)
decomposition with column generation solution

1 5 2 1 2 - 1 - 241
2 6 1 2 2 - - 1 441

20 3 5 8 6 - 2 - 1 1 - 508 - 1333 02:44
4 4 1 1 - 2 - - 143

aggregation of every two adjacent subgroups solution
8 1 4 1 1 - 2 - - 218

2 4 8 2 1 1 - 2 - - 376 651 1245 03:31
aggregation as a whole solution
8 1 8 8 2 2 2 - 4 - - 594 651 1245 04:65

Table 4.2: Results for the aggregation of the example

varies in different methods. However, in all methods, all available 40ft trucks tend to be

used rather than the 20ft trucks to reduce the total cost.

Figure 4.8: Aggregation of orders as two subgroups
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Figure 4.9: Aggregation of orders as a whole

4.4 Numerical Results

In this section we present the numerical results for the mixed integer linear programming

(MILP) model, the heuristic decomposition-column generation and the decomposition-

aggregation approach. Note that both methods are coded in MATLAB R2015b and executed

via CPLEX 12.6.1, on a CPU with an Intel(R)Core(TM)i7-4790 processor.

4.4.1 Results for the MILP model

Geographical data on customer locations are simulated from the real service area of the

Port of Felixstowe, which is the largest container port in the UK. A haulage company,

who holds a number of 20ft and 40ft trucks is assumed to fulfil the import and export

container orders starting and finishing at the port terminal. Distances between the port

and customers’ locations and between each pair of customers are calculated based on the

straight-line distance and rescaled to approximate the road distance. According to the UK
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# Number and Type of Containers # fleet # # 2 # 3 # 4 Min. CPU

Orders # 20ft # 20ft # 40ft # 40ft available used Indiv. combined combined combined

Import Export Import Export routes routes routes routes cost time(sec.)

20ft 40ft 20ft 40ft

3 3 2 2 3 2 3 2 - 5 - - 795 00:01

10 4 2 1 3 2 3 2 3 2 1 2 - 559 00:15

5 3 1 1 4 2 3 2 2 1 2 - 507 00:09

8 6 3 3 6 4 6 4 2 6 2 - 1227 01:69

20 7 8 2 3 5 5 4 5 2 3 4 - 1175 02:72

9 7 2 2 7 3 7 3 2 6 2 - 1228 04:13

15 15 10 10 15 16 3 16 - 8 10 1 2521 1183:69

50 17 13 9 11 18 17 1 17 - 8 6 4 2458 1081:71

14 16 11 9 16 16 4 16 1 9 9 1 2526 1099:93

20 20 20 20 25 20 20 20 - 40 - - 5871 11491:28

80 22 18 22 18 20 25 16 25 8 28 4 1 4672 11171:65

25 15 18 22 23 23 15 23 2 30 6 - 4549 9234:34

25 25 25 25 30 30 15 30 - 36 8 1 7220 75443:75

100 20 30 20 30 35 35 20 35 19 28 7 1 8370 63247:46

23 23 26 28 33 38 3 38 2 24 10 5 7454 48186:13

40 40 20 20 40 35 - - - - - - - Out

120 45 35 15 25 42 30 - - - - - - - of

35 45 25 15 35 40 - - - - - - - Memory

Table 4.3: Results for testing the MILP model on different scale of instances.

working driving regulation, a penalty cost (200 pounds/h) applies for any extra working

hours driven. Average speed for trucks is estimated at (40) mile/h. It is assumed that the

available time for the collection of import containers is known in advance and the service

time at customers’ locations is approximated to 2 hours. A variant number of orders of

20ft and 40ft import/export containers and different fleet sizes represented by 20ft and 40ft

trucks under service are tested.

As in Table 4.3, the MILP is tested for different size of instances with 10, 20, 50, 80, 100

and 120 orders. For each instance, different types of orders and fleet sizes are applied.

The result shows that the model constructs some routes by combining four orders (2× 20ft

import orders + 2 × 20ft export orders) in some instances, especially when the number of

orders increases and also the density. It is also clear from the result that the model always

intends to use the full available 40ft fleet rather than the 20ft trucks, due to the fact that
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# Number and Type of Containers # fleet # # 2 # 3 # 4 Min. Penalty CPU

Orders # 20ft # 20ft # 40ft # 40ft available used Indiv. combined combined combined

Import Export Import Export routes routes routes routes cost cost time(sec.)

20ft 40ft 20ft 40ft

Results for smaller fleet size

15 15 10 10 15 10 15 10 - 25 - - 3430 - 958:87

50 17 13 9 11 12 12 11 12 - 20 2 1 3050 - 1073:99

14 16 11 9 10 15 6 15 1 12 7 1 2641 - 1116:46

Results for increased distances

15 15 10 10 15 16 3 16 - 9 8 2 6124 400 1150:10

50 17 13 9 11 15 16 3 16 - 9 8 2 6158 400 1140:32

14 16 11 9 16 16 4 16 1 9 9 1 7229 800 1129:50

Table 4.4: Results for smaller fleet size and increased distances.

doing pairwise delivery on 40ft trucks reduces the number of empty trips so as to reduce

the total delivery cost. It is obvious from the result that the computation time increases

dramatically with the size of the numerical instances. Within each instance category, the

smaller the number of 20ft orders under consideration the quicker to find the optimal

solution. Nevertheless, the MILP solves to optimality instances with up to 100 orders in 21

hours, which is already larger than what can be managed using the VRP-SPDTW model

which normally solves instances with up to 63 orders [97].

In order to test the sensitivity of the MILP, the model is applied to two modified cases

on 50 container examples. In the first case, a smaller fleet size is used and as seen in Table

4.4, less 4 combined routes are constructed which leads to a larger delivery cost compared

to the original case in Table 4.3. While in the second case, distances between the port and

customers’ locations are increased. In this case as shown in Table 4.4, the total cost is larger

since a penalty cost should be paid for extra working time particulary for the 4 combined

routes which take a longer time to complete.
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4.4.2 Results for heuristic decomposition and aggregation approach

In this section, the results of the decomposition and aggregation method will be explained.

To find the weakness from the optimal solution obtained with the MILP model, the same

data of the two instance scales: 50 and 100 orders are tested, each has three different ex-

amples. Results of applying the decomposition (D), the decomposition-column generation

(D+CG) and the decomposition-and-aggregation (D+CG+Agg) are summarised in Table

4.5. In all test examples, orders are allocated into five subgroups in the decomposition

stage, and assembled into one in the aggregation stage. The number of orders in every

subgroup varies, but due to the fact that the decomposition is done according to the polar

angle, the proposed scheme works better than dividing orders evenly into subgroups.

Note that in the decomposition step (D), we use the same proportional heuristic to split

the fleet into subgroups, as stated in formula (4.32). The column generation step (D+CG)

actively reassign fleets, especially the 40ft trucks, amongst subgroups to construct more

cost-saving routes. For example, in Instance 50-1, increasing the number of 40ft trucks

from 6 to 7 in subgroup 4 reduces the subgroup cost by 181, meanwhile taking the required

40ft truck from subgroup 5 increases its cost by 150. Therefore 31 is saved in total by this

fleet transition. In another example, Instance 100-1, decomposition with the proportional

heuristic for fleet allocation (D) creates an infeasible solution for subgroup 1 due to the

assignment of inadequate 20ft trucks, although spare ones are actually available in other

subgroups. Implementing the column generation step this lack of trucks is quickly sorted

out, which creates at least a feasible delivery plan.

Looking at the result we can see, doing only decomposition, even with column gen-

eration to balance fleets, increases the total cost by 15.1-28.7% on 50 orders instances and



4.4. Numerical Results 100

# Orders # fleet # # # # Min. Cost Total (%) CPU
Instance group in group available used Indiv. 2 com-

bined
3
comb.

4
comb.

of worse

index routes routes routes routes cost Removed cost than time(sec.)
20ft 40ft 20ft 40ft orders MILP

50-1
MILP - - 15 16 3 16 - 8 10 1 2521 - 2521 - 1183:69

1 2 1 - 1 - - 1 - - 89
2 5 2 2 1 2 2 - 1 - 264

D 3 5 1 3 - 3 1 2 - - 273 - 3275 29.9 03:03
4 24 8 6 8 6 5 8 1 - 1841
5 14 3 5 1 5 1 3 1 1 808
1 2 1 - - 1 - - 89
2 5 1 2 2 - 1 - 264

D+CG 3 5 15 16 - 3 1 2 - - 273 - 3244 28.7 20:88
4 24 6 7 6 3 4 - 1660
5 14 3 4 2 4 - 1 958

D+CG+Ag 1 19 15 4 4 4 1 4 2 1 816 1781 2597 3.0 75:44

50-2
MILP - - 18 17 1 17 - 8 6 4 2458 - 2458 - 1081:71

1 27 10 9 4 9 4 5 3 1 1737
2 6 2 3 - 3 - 3 - - 233

D 3 1 1 - 1 - 1 - - - 59 - 3029 23.2 05:03
4 1 1 - 1 - 1 - - - 39
5 15 4 5 2 5 2 3 1 1 961
1 27 2 10 3 4 4 1 1626
2 6 2 2 2 2 - - 295

D+CG 3 1 18 17 1 - 1 - - - 59 - 2980 21.2 20:88
4 1 1 - 1 - - - 39
5 15 2 5 2 3 1 1 961

D+CG+Ag 1 13 18 3 2 3 - 3 1 1 522 2132 2654 8.0 35:34

50-3
MILP - - 16 16 4 16 1 11 5 3 2537 - 2537 - 1116:74

1 14 3 6 1 6 1 3 1 1 925
2 5 2 2 1 2 1 2 - - 191

D 3 1 1 - 1 - 1 - - - 44 - 3031 19.5 04:03
4 1 1 - 1 - 1 - - - 20
5 29 9 8 7 8 4 8 3 - 1851
1 14 2 5 1 5 1 - 1026
2 5 3 1 3 1 - - 250

D+CG 3 1 16 16 1 - 1 - - - 44 - 2921 15.1 22:73
4 1 1 - 1 - - - 20
5 29 3 10 4 4 3 2 1581

D+CG+Ag 1 14 16 2 4 2 - 5 - 1 641 2015 2656 4.7 61:16

100-1
MILP - - 30 30 15 30 - 36 8 1 7220 - 7220 - 75443:75

1 8 3 2 - - - - - - Inf.
2 15 4 5 4 5 3 6 - - 1254

D 3 31 9 10 5 10 3 9 2 1 2399 - Inf. - 10:13
4 31 9 10 5 10 1 12 2 - 2724
5 14 5 3 4 3 1 5 1 - 1132
1 9 4 2 3 3 - - 513
2 15 4 5 3 6 - - 1254

D+CG 3 31 30 30 5 10 3 9 2 1 2399 - 8022 11.1 57:83
4 31 5 10 1 12 2 - 2724
5 14 4 3 1 5 1 - 1132

D+CG+Ag 1 39 30 3 15 3 - 15 3 - 2772 4607 7379 2.2 4245:00

100-2
MILP - - 35 35 20 35 19 28 7 1 8370 - 8370 - 63247:46

1 9 4 3 2 3 2 2 1 - 411
2 12 4 4 2 4 1 4 1 - 888

D 3 23 7 9 3 9 3 7 2 - 1507 - 8789 5.0 11:23
4 32 11 11 9 11 11 7 1 1 3560
5 24 9 8 7 8 8 5 2 - 2423
1 9 4 2 3 3 - - 513
2 12 4 3 2 5 - - 1050

D+CG 3 23 35 35 3 9 3 7 2 - 1507 - 8626 3.1 54:45
4 32 7 12 9 7 3 - 3345
5 24 5 9 7 4 3 - 2211

D+CG+Ag 1 44 35 11 20 11 19 11 1 - 4074 4364 8438 0.8 5940:00

100-3
MILP - - 38 33 3 33 2 24 10 5 7454 - 7454 - 48186:13

1 9 4 2 4 2 3 3 - - 513
2 15 5 6 1 6 1 5 - 1 960

D 3 31 12 10 4 10 - 11 3 - 2323 - 7768 4.2 13:52
4 31 10 12 4 12 3 12 - 1 2840
5 14 7 3 4 3 1 5 1 - 1132
1 9 4 2 3 3 - - 513
2 15 3 5 1 7 - - 1119

D+CG 3 31 38 33 4 10 - 11 3 - 2323 - 7726 3.7 51:35
4 31 4 12 3 12 - 1 2840
5 14 2 4 1 2 3 - 931

D+CG+Ag 1 34 38 4 13 4 3 11 3 - 2350 5156 7506 0.7 4040:00

Table 4.5: Results of all Methods for 50 and 100 orders
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3.1-11.1% on 100 orders instances. The suboptimality gap is reducing as problem size goes

up, since the denser the orders are, the better chance to construct combined routes in each

subgroup and therefore the closer the solution is to the optimal one. On the other hand, by

doing the aggregation the total cost is reduced to 3.0-8.0% higher than the MILP optimal

solution for 50 orders and to only 0.7-2.2% higher for 100 orders examples, which means the

resulting solutions are very close to optimality. However, the time it takes to perform the

decomposition-and-aggregation approach is much less than solving the MILP. Instances

with 50 orders are solved in 1.25 minutes while the MILP needs about 20 minutes, and

instances with 100 orders are managed in 1.65 hours which is just 7% of the CPLEX time of

21 hours.

4.4.3 Results for different decomposition levels

In this section we test the different levels of decomposition-and-aggregation approach, to

see the tradeoff between the performance and the solution time. Here we take a problem

with 200 orders for example. From Table 4.3 we can see the solution time of a 20-order

example is around 2.8s and for 50-order ones is around 1121s. When going above 50,

the solution time increases very fast to hours. Therefore in this test, we consider the de-

composition levels leading to roughly 20 or 50 orders in every subgroup, which means

decomposing the entire problem into 9 and 5 subgroups, respectively. Similarly in the

aggregation stage, to avoid a very long solution time, we choose the aggregation level

that yields up to 50 orders per aggregated group, and solve the resulting MILP to see the

influence of different decomposition levels. As seen in Table 4.6, decomposing into more

subgroups definitely increases total cost, in all three stages of the solution process. Nev-
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# # Orders # fleet # # # # Min. Cost Total CPU
Method group of

groups
available used Indiv. 2 com-

bined
3
comb.

4
comb.

of

index routes routes routes routes cost Removed cost time(sec.)
20ft 40ft 20ft 40ft orders

200- 5 groups
1 38 12 9 10 9 7 7 3 2 2619
2 39 11 13 1 13 - 6 5 3 2669

D 3 45 12 15 2 15 2 4 9 2 3145 - 15076 4338:00
4 42 13 10 12 10 9 7 5 1 4277
5 36 12 8 9 8 4 9 2 2 2366
1 38 10 9 7 7 3 2 2619
2 39 1 13 - 6 5 3 2669

D+CG 3 45 60 55 6 13 2 8 9 - 3423 - 14986 47812:88
4 42 6 13 6 5 6 2 3754
5 36 11 7 4 11 2 1 2521
1 22 13 2 8 7 - - 1555

D+CG+Ag 2 43 60 8 17 6 8 12 1 2 3166 9765 14486 52150:44

200- 9 groups
1 16 6 2 6 2 2 4 2 - 1324
2 27 7 9 4 9 4 6 1 2 1894
3 24 6 8 1 8 - 4 4 1 1694
4 16 5 4 3 4 1 3 3 - 1415

D 5 30 7 11 - 11 - 5 4 2 2207 - 15957 180:00
6 25 8 6 8 6 7 5 - 2 2318
7 24 8 6 6 6 5 3 3 1 2458
8 16 6 3 6 3 5 2 1 1 1313
9 22 7 6 4 6 2 5 2 1 1334
1 16 6 2 2 4 2 - 1324
2 27 4 9 4 6 1 2 1894
3 24 1 8 - 4 4 1 1694
4 16 1 5 1 1 3 1 1234

D+CG 5 30 60 55 2 10 1 6 3 2 2207 - 15732 565:00
6 25 6 7 7 2 2 2 2286
7 24 4 7 4 2 4 1 2130
8 16 7 3 5 4 1 - 1474
9 22 7 4 2 7 2 - 1489
1 28 13 4 8 7 2 - 1930

D+CG+Ag 2 40 60 9 17 5 8 12 - 2 2952 9905 14787 4421:00

Table 4.6: Results of all Methods for varies number of groups of 200 orders

ertheless, the final decomposition-and-aggregation result for the 9-group decomposition

is just 2% higher than that is for the 5-group, while the latter takes 14.5 hours to achieve

compared to 1.2 hours for the former. Therefore in practical applications, decomposing

into subgroups with 20-30 orders achieves a good balance between the solution time and

optimality.

4.4.4 Results for larger instances

Finally, a set of large size instances: 120, 150, 200, 300 and 400 orders are tested. Table

4.7 summarises the result of solving the large size instances by the three processes. For

each instance, orders are decomposed into a different number of subgroups based on the

resulting number of orders in each subgroup. For example, the 120 and 150 orders are
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# # Decomposition Decomp. + Column Generation Decomp. + Column Gen. + Aggregation

Orders groups time cost time cost Saving (%)from time cost Saving (%) from

(sec.) (sec.) Decomposition (sec.) Decomposition

120 6 23:00 11490 72:00 10855 5.5 2086:00 10026 12.7

150 6 169:00 13751 380:00 12992 5.5 1195:00 12369 10

200 9 180:00 15957 565:00 15732 1.4 4421:00 14787 7.3

300 12 665:00 23876 7588:00 22870 4.2 10919:00 21582 9.6

400 15 788:00 35000 12435:00 33767 3.5 22216:00 30941 11.6

Table 4.7: Results for larger instances

decomposed into 6 subgroups, while the 200, 300, 400 are decomposed into 9, 12 and 15

subgroups, respectively. The average cost saving of solving the different instances with the

decomposition-column generation is 4.02%, while the average improvement after doing

the aggregation is 10.24%. Examples with up to 200 orders can be managed efficiently in 1.2

hours. For very large instances the solution time is still high. It can be seen that the solution

time increases linearly with problem size for the Decomposition-only approach. Therefore

if the solution time is very restricted, one can also divide the orders together with the

fleets completely into parts, and solve each part using the Decomposition-and-aggregation

approach independently from others.

4.5 Summary

This chapter investigates the transportation of two types of orders: 20ft and 40ft containers

on road with both 20ft and 40ft long trucks. For this purpose a Mixed Integer Programming

(MILP) model is proposed. The aim of this model is to minimize the travelling cost and

penalty cost for violating the working time regulation. The most important practical

restrictions are captured in this model such as the collection time of containers at the

port/terminal, the regulation of the working time and the time windows at customers’
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locations. The MILP model can be implemented to obtain the decision of delivering orders

as: 4 combined orders, 3 combined orders, 2 combined orders or individual delivery based

on the aforementioned restrictions of the problem. The MILP model is tested for different

size of instances drawn from real geographical data in which the result shows that the

model is capable to solve efficiently the problem with up to 100 orders by using the CPLEX

software package.

In order to deal with larger instances, a decomposition and aggregation heuristic ap-

proach is designed in which the locations of orders are decomposed geographically into

small subgroups and solved by the formulated MILP model. In order to balance the fleet

size amongst all subgroups, a column generation method is used. Orders are then aggre-

gated by removing the best combined orders, in order to reduce the problem size and to

improve the cost obtained from the MILP and the initial decomposition problems with up

to 400 orders are solved with this methodology. The result shows that the suboptimality of

the proposed decomposition-and-aggregation approach is between 0.7-8.0% on the test ex-

amples, but consumes just 7% of the CPLEX solution time. For very large instances where

the optimal solution is not achievable, results are compared with an industrial-standard

simple decomposition approach. The proposed method improves this decomposition cost

by 10% on average, which is also easily mergeable with the simple decomposition to meet

practical needs on the solution time and accuracy.



Chapter 5

Strip and Discharge of Containers

5.1 Introduction

In inland transportation, customers are classified into two groups, importers who re-

ceive loaded containers from the port/terminal and exporters who send the loaded con-

tainers to the port. On the other hand, empty containers should be moved between

importers/exporters, the port and container depots based on the required supply and de-

mand. In the container industry, some shipping lines own a fleet of trucks to perform the

transportation, while some others outsource inland delivery to local haulage companies.

This chapter considers the former case where a shipping line can decided where to col-

lect/drop the empty containers that are demanded at some customer locations and how

many empty boxes to collect/drop at all inland depots.

In the container industry, an order can be defined as a request to deliver a 20ft or 40ft

equivalent cargo from its origin to destination, in containers. In practice, two major types

of container loading/unloading rules are deployed, say the ”Strip” and ”Discharge”. In the

105
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Strip case, the container, together with its cargo (if not empty), is put onto/removed from the

carrying truck at customer locations. The customer then deals with the container by load-

ing/removing its cargo and make another request for the pick-up/removal of empty/loaded

containers. This process will generate many empty requests, and normally the customer

does not care about where the empty box comes from/goes to. While in the Discharge case,

only the cargo will be loaded onto/unloaded from the delivery truck; containers and trucks

are not separated after services. Traditional studies separate these two types of delivery

mode when planning the route. However, there is a great potential for merging all possible

types together to reflect the practical situation, as the handling of one type does not affect

the other given there is relevant equipment at the customer location. In this work, we

propose a methodology to maintain the joint delivery of both types, so as to reduce the

overall transportation cost.

The combination of containers for inland transportation is classified as NP-hard [79],

thus even managing one type (Strip or Discharge of containers) or the joint case is also

NP-hard. In this case exact optimization approaches are believed to be time prohibitive

and can only solve limited size instances. For this purpose, a Genetic Algorithm (GA)

approach for combining the inland transportation of heterogenous (20ft and 40ft) loaded

and empty containers is developed in this chapter. We investigate the delivery process of 12

different order types, which covers all types of container transportation modes in practice,

between the port/depots and customer locations using a heterogeneous fleet consisting of

both 20ft and 40ft trucks. Both common modes of the container transportation, say Strip

and Discharge, are considered in this research. The two cases are investigated separately

and jointly to evaluate the benefit of combining these two types of containers delivery in
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reality. The genetic algorithm approaches are also designed based on the two common

strategies for managing the empty containers, say the Street-turn where empty containers

are delivered directly from import customers to serve exporter customers, and the Depot-

turn where empty containers can be stored at/collected from inland depots for later reuse.

We also evaluate the usage of inland depots as a means of saving cost in empty container

management. A comparison of numerical experiments indicates that it is worthwhile

to combine all these types of transportation with the existence of the inland depots. In

addition, inland empty depots help saving delivery cost by allowing more flexible delivery

routes and improving truck utilization. The developed GA method solves large size

instances (1000 orders) in about 500 seconds.

The structure of this chapter is as follows. The problem statement is described in Section

5.2. The genetic algorithm is demonstrated in Section 5.3, and the computational results

are presented in Section 5.4. Section 5.5 presents summary of this chapter.

5.2 Problem description

In this research, we consider a shipping line managing the transportation of orders (loaded/

empty containers) between the port, inland depots and customers (importer/exporter). Two

common types of trucks, i.e. 20ft truck which carries a single 20ft container at a time and

40ft truck which carries a single 40ft container, a single or two 20ft containers at a time are

selected to perform the delivery. All routes are supposed to start from and end at the port;

the leading cost of travelling from the home depot of the trucks to the port is ignored. We

consider both Strip and Discharge orders, by allowing them to be delivered jointly on the
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same route/truck if it is profitable.

Figure 5.1: Types of orders

The full list of order types we are considering is summarised in Figure 5.1. As we can see

there are 12 different order types, covering loaded, empty; 20ft, 40ft; Strip, Discharge, which

covers all types of container transportation modes in practice. The developed methodology

will allow the combination of all these types to construct the most cost efficient route for

this very practical case.

Given the existence of empty containers, there are two major strategies for storing and

relocating empty containers: Depot-turn and Street-turn. In the Depot-turn case (see Figure

5.2), empty containers are stored in the port and/or inland depots. All empty container

movements have to originate from or terminate at a depot/port, rather than be moved

directly from an empty supplier (normally an importer) to an empty demander (normally

an exporter).

Figure 5.2: Empty movement with Depot-turn
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Figure 5.3: Empty movement with Street-turn

However, in the Street-turn case (see Figure 5.3), the direct movement of empty contain-

ers between two customer locations is allowed. It is obvious that the Depot-turn is easier to

manage, since the closest container depot for every customer location can be identified be-

forehand, so all of the empty movement requests come with a fixed origin and destination.

On the other hand, the Street-turn case is more efficient, due to the obviously less number of

movements one has to perform. In this research, we allow both types of empty movements

(Street-turn or Depot-turn), as long as the delivery route is feasible and cost saving.

Note that in the Depot-turn case, how many empty containers are available at each depot,

or how to balance the number of empty containers at depots to meet future needs, are out

of the scope of this research. We simply select the least cost depot to drop/collect the empty

container (which might be different from the closest depot from/to the customer who is

requesting the empty, depending on the actual route the vehicle is travelling), and assume

all empty container depots have infinite/sufficient number of storage/capacity available.

To demonstrate some types of orders we are managing in this research, we give some

examples in Table 5.1 and elaborate their transportation with figures. For instance, order

1 is an Import-Full (IF) Strip order, which is to be picked from the port and delivered to

location L1. As shown in Figure 5.4 (Order 1), a truck carrying order 1, which is a loaded

container, travels from the port to location L1, at where the container is removed together

with its cargo and the truck leaves to somewhere else to serve a new order. The cargo is

then removed from the container by the customer which leaves an empty container at L1
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Order Origin Destination Type Payload
Weight(kg)

Size Demonstration

1-IF Port L1 Strip 13000 20ft Figure 5.4

2-IE L1 NULL Strip 0 20ft Figure 5.4

3-IF Port L2 Discharge 15000 20ft Figure 5.5

4-IF Port L1 Strip 13500 20ft Figure 5.6

5-IF Port L2 Discharge 15500 20ft Figure 5.6

6-EE NULL L3 Strip 0 20ft Figure 5.6

7-EF L4 Port Discharge 20000 40ft Figure 5.6

Table 5.1: Input of orders for the Strip, Discharge, Depot and Street turn cases

for later collection. To complete the service, Order 2, an Import-Empty (IE) order, is then

generated to remove the empty container from L1, which has zero payload weight and

no designated destination. It can be relocated to a depot for later usage, or directly to an

empty demander to meet another request. In contrast to the Strip case, order 3 is a Discharge

IF order. A truck carrying it from the port to location L2, unloads its cargo at the customer

location and then the same truck moves away carrying the emptied container (see Figure

5.5).

Figure 5.4: Strip of Orders

As said earlier, in this work we consider the joint delivery of all types of orders (Strip and

Discharge) following both the Depot-turn and the Street-turn empty strategies. An example
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Figure 5.5: Discharge of Orders

Figure 5.6: An example of combined delivery route

route is shown in Figure 5.6, where the truck performs 20ft IF Strip (Order 4) and Discharge

(Order 5) orders to L1 and L2, followed by a Street-turn empty (Order 6) movement between

L2 and L3, then collect another empty container from an inland depot (Depot-turn) to meet

an EF Discharge demand (Order 7) at L4. We see that all delivery possibilities are allowed

to be considered and combined in the same route and by the same truck. Based on the

description of the problem, we aim to manage the combination of the different types of

Strip and Discharge orders including the Street-turn and Depot-turn cases within the allowed

daily working time. The objective is to optimize the delivery plan in this general and mixed

context to minimize the total transportation cost. Indeed, we aim to minimize the distance

travelled by each truck to avoid paying a penalty for violating the allowed working time.
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5.3 Genetic algorithm approach

The idea of a genetic algorithm (GA) was first proposed by John Holland [50] as a biological

evolution process for life cycle. Later, GA has been used as an optimization technique for

solving difficult combinatorial optimization problems [25,47,81]. To solve a problem using

GA, an initial generation of solutions are randomly created based on the nature of the

problem. These solutions are then evaluated by defining a specific fitness function which

usually represents the objective function and results of certain feasibility checks. Then the

genetic operators (crossover and mutation) are applied to create offsprings of the selected

solutions in the current generation, based on their fitness values. The process continues

until the best solution is found (when known) or a certain maximum number of generations

have been examined.

The inland transportation problem is classified as NP-hard [79], thus exact methods can

only be applied to small instances and become prohibitive in time for real size problems.

Due to the efficiency of the GA for solving complex and large size integer optimization

problems, we apply it to our application to find near-optimal combinations in container

delivery. Figure 5.7 demonstrates the general structure of GA. The explicit components

of the developed genetic algorithm for solving the inland transportation problem are

described in more details in the following subsections.
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Figure 5.7: Graph of the GA algorithm

5.3.1 Chromosome representation of the problem

In this problem, the term chromosome is referred to as the sequence following which the

order is to be considered for delivery. In this study, we use fixed length chromosomes which

have the same length as the number of orders. Equivalently, the chromosome is defined

as a permutation of all orders. Nevertheless, we have more than one truck and many

order types; which truck is travelling which route, whether the chromosome is feasible

are both important questions to answer. To deal with feasibility, we insert stoppers to the

chromosome to break it into feasible and executable routes; each stopper means a new

truck is allocated to perform the following task. To demonstrate the insertion process, we

consider an example of 12 orders. The example also include two depots (D1, D2), single

port (P) and 4 trucks (2 × 20ft, 2 × 40ft). As shown in Figure 5.8(A), a chromosome is a
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Figure 5.8: Chromosome representation of Strip and Discharge with depot case

random permutation of all orders. To make it an executable delivery plan, we insert the

port (P) and depots (D1, D2) to the sequence so as to separate the chromosome into sub

sequences, each representing a feasible route for a truck to travel (see Figure 5.8(B)). In

details, the first truck (Truck1) starts from the port (P), taking a 20ft loaded Strip container

to deliver it to location (1), then travelling to location (3) to collect a 20ft empty container.

Since the next task is to deliver a 40ft empty container to location (7), the truck visits

Depot (D1) to drop the 20ft empty on it and then collects a 40ft empty for the following

order. This ”check and insert” process continues until accommodating order 6, when a

40ft loaded container that occupies the full capacity of the truck is collected and to be

delivered to the port (where a route finishes). Since inserting any other orders after order 6

will create an infeasible route, a stopper (P) is then inserted to terminate the current route

of the first truck. A new truck (route) is then considered to perform the rest of orders

in the chromosome. The process is repeated until all feasible orders are considered for

the chromosome (solution). In the end, when we have inserted all stoppers and depots

into the chromosome, we can then examine each route to see which type of truck (20ft

or 40ft) is needed to perform it so as to know the total number of trucks needed. It is

obvious that using this insertion heuristic we can not pre-see the number of trucks we are

going to use to execute all routes following the sequence as given in each chromosome.
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Sometimes we may need less trucks than available but sometimes more. However, the

only infeasibility that we can introduce for a chromosome is the larger number of trucks

used, rather than creating completely un executable delivery plans, as if we include a

certain number of routes/trucks and depot visiting options in the chromosome itself. Large

number of infeasible solutions will slow down the convergence process of the GA, that is

why we try to avoid infeasibility by running this insertion process to convert a sequence

into executable solutions. The infeasibility in terms of extra trucks needed, e.g. we need

three 40ft trucks in Figure 5.8 example but we just have 2, will then be penalised in the

fitness function.

5.3.2 Constructing the initial population

To construct the initial population for the genetic algorithm, a number of chromosomes

(solutions) are generated based on random permutation. As mentioned before, stoppers

are used to ensure that all constructed routes are feasible. Note that we still denote the

order permutation in figure 5.8(A) as the chromosome, rather than the extended executable

delivery plan (Figure 5.8(B)). So although the number of trucks used and the number of

nodes each truck is visiting are unpredictable, all chromosomes still have the same length.

5.3.3 Fitness value and evaluation

After constructing the initial population, the next step is to evaluate the quality of the

chromosomes so as to rank them for future GA operations. The original objective of this

problem is to minimize the total traveling cost to satisfy all orders. Nevertheless, the quality

of a chromosome also depends on its feasibility. As said before, the only infeasibility one
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can expect after inserting all depots and stoppers is on the number of trucks. So in the

fitness function we also add a term representing the penalty we have to pay for extra trucks

needed. We define the fitness value (Fit) for solution (i) as:

Fit(i) = OBJ(i) + PENALTY(i) (5.1)

= [TTD(i) + WTP(i)] + [PT20(i) + PT40(i)] (5.2)

where OBJ(i) is the original objective function which comprises: TTD(i) as the total

traveling distance of solution (i), WTP(i) as the total penalty cost for violating the maximum

allowed daily working time. PENALTY(i) represents the penalty of violating the fleet size

constraint, with PT20(i) for 20ft trucks and PT40(i) for 40ft trucks. Note that the PT20 and

PT40 are set to very large values so as to avoid violating the fleet capacity constraints.

5.3.4 Selection process

The new population of chromosomes/solutions is created by performing certain recombi-

nation processes such as crossover and mutation. An appropriate selection process should

be applied to choose parents. In this study, we apply the Roulette Wheel Selection (RWS)

approach [77], which select parents according to their proportional performance; indi-

viduals with a smaller fitness values have a higher probability to be selected to generate

offspring.
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5.3.5 Genetic algorithm operators

After selecting solutions as parents from the initial population, a new population of off-

spring (children) could be constructed. Genetic operators represented by crossover and

mutation are used to create the new populations as described later.

5.3.5.1 Crossover

The ”subschedule preservation crossover”, which was designed by Cheng and Gen [10]

as a permutation based operator, is applied to construct new offspring. In this crossover

method a sequence number of elitists are chosen randomly from the first parent to start

the new children, then the remaining elitists to complete the first children are taken from

the second parent without repetition. Similarly, to create the second children the process is

started this time from the second parent. Note that we apply the subschedule preservation

crossover on the preliminary constructed chromosomes which we demonstrated in Figure

5.8(A), since it is difficult to apply this method on the executable route in Figure 5.8(B).

Figure 5.9 illustrates the crossover process for two chromosomes (parents). Firstly, orders

3, 5, 1 and 7 are selected from the first parent (Parent 1) to generate the first part of Child

1 as shown in Figure 5.9(A). To complete the chromosome (solution) of Child 1, the rest of

orders are then taken from Parent 2 without any repetition for orders. In the same way, to

construct the first part of Child 2, orders 5, 2, 6 and 3 are selected from Parent 2 and the

rest of orders are collected from Parent 1 as in Figure 5.9(B).
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Figure 5.9: Crossover of orders

5.3.5.2 Mutation

Mutation is a genetic algorithm operator which applies to allow more exploration for the

search space and to avoid sticking at a local optimum. In the mutation process, two

orders are selected randomly from the same chromosome (solution) which is also chosen

randomly from the current population. The two orders are then swaped to obtain a new

chromosome. As illustrated in Figure 5.10(A), Order 7 and Order 1 are selected randomly

from a chromosome of 9 orders length. Then the two selected orders are exchanged to

generate the new solution as given in Figure 5.10(B).

Figure 5.10: Mutation of orders
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5.3.6 Stopping criterion

The above procedures of this genetic algorithm is repeated until the stopping criteria is

reached. For this problem, the stopping criteria used is the maximum number of genera-

tions.

5.3.7 An example

To further demonstrate how the developed genetic algorithm approach can be applied

and its performance, an example is given in this subsection. To benchmark the devel-

oped genetic algorithm, an upper bound can be obtained from the Mixed Integer Linear

Programming model (MILP) for container inland transportation which we formulated in

Chapter 4. The previous MILP model deals with order combinations for inland delivery

under a similar context, say managing a single port and number of inland depots, planning

the route for a number of orders including both loaded and empty ones using 20ft and 40ft

fleets. The biggest difference is that this MILP model allows no more than four nodes to

be visited on a single route, since it only considers Strip orders without an inland depot

not Street-turn options. So no matter whether the container that is on the truck is loaded

or empty, it has only one pair of (origin, destination) where exactly one end is fixed at the

port.

This limits the transportation capacity of the truck and in the maximum case (40ft

truck transporting 20ft orders), no more than four orders can be combined for the route.

Therefore under the context of running without inland depot, we can use the MILP model

to give us an upper bound on the exact cost of servicing the same group of Strip orders
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Figure 5.11: Solution of the MILP model for Strip only without depot case

using the same fleet, suppose the Street-turn is allowed so that more than four nodes can

be visited.

Assume that a number of 12 orders of Strip type comprise: 2×20ft import loaded orders,

2 × 20ft import empty orders, 2 × 20ft export loaded orders, 2 × 20ft export empty orders,

1× 40ft import loaded order, 1× 40ft import empty order, 1× 40ft export loaded order and

1× 40ft export empty order. The available fleet sizes are 3× 20ft trucks and 3× 40ft trucks.

Figure 5.11 illustrates the solution of the MILP model for this example. In this case, all

orders are delivered jointly with others, creating one route combining 4 orders, four routes

combining 2 orders. The total cost is 1175 and the number of the used trucks are 2 × 20ft

trucks and 3 × 40ft trucks, respectively.

The same example is then solved by the genetic algorithm. The only modification that

we have to make to the GA as given in Section 5.3.1 is for the insertion of an inland depot.
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Figure 5.12: Solution of the GA approach for Strip only without depot
case

Since an inland depot is no longer available in this example, upon any infeasible request

based on empty containers, we initiate a new truck from the port. In this case all empty

requests are matched perfectly using Street-turn and only 3× 40ft trucks are used as shown

in Figure 5.12. The total cost is 964. Note that this cost includes a penalty of 100/hour for

the truck servicing eight orders, since it violated the maximum allowed working time by

one hour. Nevertheless, paying the penalty is still worthwhile here as the total travelling

distance is largely reduced.

To show how different settings can affect the solution and the benefit of allowing

combined transportation of different types of containers, we consider the following three

cases: Strip only with depot, Discharge only, Strip and Discharge with depot. Figure 5.13

shows the solution of the Strip only with depot case for the same set of the 12 orders that

we have used for the Strip only without depot case, while this time we add inland depots

so as to facilitate the Depot-turn option. Although, a penalty cost of 100/hour should be
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Figure 5.13: Solution of the GA approach for Strip only with depot
case

paid for one of the trucks for violating the allowed working time, the total cost for this case

is 903 which is less than for the Strip without depot case. The number of used trucks is

only 2 × 40ft trucks, which is also less than for the Strip without depot case. Then, a set

of 10 orders of discharge type for different locations is solved for the discharge only case

as illustrated in Figure 5.14. In this case, the total cost is 1060 and the number of the used

trucks for this case are 1 × 20ft trucks and 3 × 40ft trucks, respectively.

The set of orders for the two cases (12 Strip and 10 Discharge) are then aggregated to

be solved by the general Strip and Discharge with depot case. As illustrated in Figure 5.15,

there are 6 routes which require 6×40ft trucks. In this case the two depots (depot1, depot2)

should be visited to drop/collect empty containers and the total cost for this case is 1708

which is less compared to the total cost of considering Strip and Discharge orders separately

(1060 + 903 = 1963). This justifies our motivation of aggregating different types together.
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Figure 5.14: Solution of the GA approach for Discharge
only without depot case
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Figure 5.15: Solution of the GA approach for the Strip
and Discharge with depot case

5.4 Computational experiments

A summary of some computational experiments is presented in this section for randomly

generated instances. In these instances, depending on the size of the instances, geographi-

cal information is simulated according to the Port of Felixstowe, which is one of the largest

container ports in the UK, and its major service areas distributed around the east of Eng-

land. A shipping line, who own a number of 20ft and 40ft trucks is assumed to fulfil the
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transportation of orders between the port terminal, customers (importers and exporters)

and a number of inland depots. Distances between the port and customers’ locations

and between each pair of customers are calculated based on the straight-line distance and

rescaled to approximate the road distance. A penalty cost (200 pounds/h) applies for any

extra working hours ( more than 11 hours per day), according to the UK driving regulations.

The service time at customer locations is approximated to 2 hours and the average speed

for trucks is estimated at (40) mile/h. A varying number of orders of 20ft and 40ft loaded

and empty containers are considered for delivery. All solution approaches (MILP, GA)

are coded in MATLAB R2015b and executed on a CPU with an Intel(R)Core(TM)i7-4790

processor. The MILP is solved by CPLEX 12.6.1. For the GA, each example is solved 25

times to eliminate the impact of the random process. The reported result is an average of

these 25 simulation runs. Other parameters of GA, such as the population sizes, number

of generations, crossover and mutation rates, etc. are selected ad-hocly for every example.

5.4.1 Results for Strip only without depot case using the MILP and GA

In this section we test to see the gap of the developed GA approach from the upper bound

solution obtained from solving the MILP model (formulated in Chapter 4) for small size

instances. As shown in Table 5.2, the MILP and the GA are tested for different sizes of

instances with 12, 20, 50, 70 and 100 orders. For each instance, the number of orders for

each type of container is given in the second and third column of Table 5.2, in the form

of (IF, EF, IE, EE). The result shows that for all instances the GA improves the MILP by

8-13% in the operations cost of the final delivery plan. The number of the used trucks

for the GA is also less than the number required by the MILP solution. Note that the



5.4. Computational experiments 125

# Number and Type of orders # fleet (Average
of) penalty

(Average
of)

Standard CPU (%)

Orders # 20ft # 40ft available average used for extra total cost deviation time(sec.) Improvement

Strip Strip 20ft 40ft 20ft 40ft working
time

on MILP

MILP solution for Strip only without depot

12 (2,2,2,2) (1,1,1,1) 3 3 2 3 - 1175 - 00:16 -

20 (3,3,3,3) (2,2,2,2) 5 5 4 5 - 2307 - 00:06 -

50 (8,8,8,8) (5,5,4,4) 15 20 - 18 200 5060 - 43:63 -

70 (10,10,10,10) (8,7,8,7) 25 35 - 25 1200 8949 - 358:23 -

100 (15,15,10,10) (13,12,13,12) 35 45 - 40 600 10778 - 2885:33 -

GA solution for Strip only without depot

12 (2,2,2,2) (1,1,1,1) 3 3 0.08 2.28 200 1064.8 35.494 02:46 9%

20 (3,3,3,3) (2,2,2,2) 5 5 0.76 4.04 392 2102.2 85.171 03:08 9%

50 (8,8,8,8) (5,5,4,4) 15 20 0.48 12.76 432 4644.4 191.24 05:05 8%

70 (10,10,10,10) (8,7,8,7) 25 35 0.52 19.08 1144 7753.8 254.57 07:15 13%

100 (15,15,10,10) (13,12,13,12) 35 45 0.68 30.12 848 9377.6 404.27 10:18 13%

Table 5.2: Results for solving small examples by MILP and GA.

number of the used trucks is fractional in the GA solution as reported in the table, since

we run the GA for 25 times and took the average. Moreover, the computational times

for the GA are just a few seconds which are much smaller than the solution times of the

MILP for instances larger than 50. From the percentage improvement of GA model on the

MILP costs, we can see that the GA performs well as a solution approach, which provides

solutions well below the theoretical upper bounds (MILP) for small instances. Note that

the MILP solution (exact optimal) is a theoretical upper bound of the true optimum of

the problem solved by the GA, as the MILP allows no more than 4 orders on each route

which restricts allowing the empty movements with Street-turn. Inland depots have been

ruled out by the problem settings. We compare the GA solution with this upper bound

simply because an exact model under the same problem settings is not available through

current literature. Amongst those models that are available, the MILP model (formulated

in Chapter 4) is the one that solves largest size instances in affordable computation time.

So despite there are gaps in the solution caused both by the problem settings and by the
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GA as a meta-heuristic approach, the comparison still informs us about how good the

designed GA is in solving this type of problem to some extent. This actually shows a

common situation in practice. When a problem is too difficult to solve to optimality, one

can choose to simplify the modelling or to simplify the solution approach (like use GA to

solve the non-restricted situation). Suppose by doing the latter is justified better than doing

the former (like restrict to 4 orders to define the MILP model to allow exact solution), we

still contribute to the problem by directing a correct way to tackle it.

5.4.2 The value of combining Strip and Discharge orders

In this section, we investigate how much one can save by combining Strip orders with

Discharge ones. To achieve this aim, we use GA to solve three problem settings: Strip only

with depot, Discharge only and the Strip and Discharge with depot cases. In Table 5.3 we

summarize the results for instances with 25, 50, 250, 500 and 1000 orders, solved separately

and jointly. We can see from Figures 5.16, 5.17 that the GA for the Strip and Discharge

only cases is not improving after running for about 300 generations. While for the joint

case it needs about 800 generations as shown in Figure 5.18. As illustrated in Table 5.3,
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Figure 5.16: GA performance for
Strip only
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Discharge only
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Figure 5.18: GA performance for
Joint case

the result shows that the average cost is reduced by 6-16% than the summation of the two
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# Number and Type of orders # fleet Penalty
of

Mean of Stand. CPU Saving
cost(%)

Orders # 20ft # 40ft # 20ft # 40ft available average used extra
working

total
cost

dev. time(sec.) from
sepa-
rate

Strip Strip Disch. Disch. 20ft 40ft 20ft 40ft time cases

25-Strip (4,4,4,3) (3,3,2,2) - - 5 10 0.3 6.2 228 1923.6 97.4 02:32 -

25-Disch. - - (8,7) (5,5) 5 10 1.1 9.04 316 3214.3 55.47 02:25 -

50-
Separate

(4,4,4,3) (3,3,2,2) (8,7) (5,5) 10 20 1.4 15.24 544 5137.9 152.87 04:57

50-Joint (4,4,4,3) (3,3,2,2) (8,7) (5,5) 10 20 0.4 15.04 508 4811.9 124.9 41:94 6%

50-Strip (8,8,7,7) (5,5,5,5) - - 10 20 0.52 11.84 484 4049.4 154.7 03:64 -

50-Disch. - - (15,15) (10,10) 10 20 2 19.24 716 6957.8 133.61 03:48 -

100-
Separate

(8,8,7,7) (5,5,5,5) (15,15) (10,10) 20 40 2.52 31.08 1200 11007.2 288.31 07:12

100-Joint (8,8,7,7) (5,5,5,5) (15,15) (10,10) 20 40 0.9 30.3 1116 9802.2 218.12 68:44 11%

250-Strip (40,40,35,35) (25,25,25,25) - - 50 110 5.92 68.48 3304 27233 558.73 09:35 -

250-
Disch.

- - (75,75) (50,50) 50 110 23.6 108.28 4532 43280 621.64 09:12 -

500-
Separate

(40,40,35,35) (25,25,25,25) (75,75) (50,50) 100 220 29.52 176.76 7836 70513 1180.37 18:47

500-Joint (40,40,35,35) (25,25,25,25) (75,75) (50,50) 100 220 9.68 169.16 6732 59554 773.36 273:64 16%

500-Strip (80,80,70,70) (50,50,50,50) - - 100 250 12.56 147 7792 61421 834.22 18:50 -

500-
Disch.

- - (150,150) (100, 100) 100 250 45.92 244.68 9184 91515 1315.9 18:08 -

1000-
Separate

(80,80,70,70) (50,50,50,50) (150,150) (100,100) 200 500 58.48 391.68 16976 152936 2150.12 36:58

1000-
Joint

(80,80,70,70) (50,50,50,50) (150,150) (100,100) 200 500 26.28 360.64 15084 131616 1114.5 532:88 14%

Table 5.3: Results for combining the Strip and Discharge orders with depot case

subproblems obtained by disaggregating over order type, which is the common type of

research that has been established in container delivery. The smaller overall cost is not just

obtained by saving travelling distance, but also through shorter over-time working of truck

drivers which reduces the paid penalty cost. The number of used trucks is also reduced for

the joint case compared to the separate case. For instance, in the example of 1000 orders,

servicing the Strip and Discharge orders separately needs 58 20ft trucks and 392 40ft trucks.

While for the joint case we just need 26 20ft and 361 40ft trucks, which means that in total

60 (trucks and drivers) will be saved from working. However, the computational time to

perform the joint case is larger (still acceptable) compared to the two individual cases, since

that larger number of orders is solved jointly.
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# Number and Type of orders # fleet Penalty
of

Mean
of

Stand. CPU Cost (%)

Orders # 20ft # 40ft # 20ft # 40ft available average used extra
working

total
cost

dev. time(sec.) worse
than

Strip Strip Disch. Disch. 20ft 40ft 20ft 40ft time with
depot case

50-with
depot

(4,4,4,3) (3,3,2,2) (8,7) (5,5) 10 20 0.4 15.04 508 4811.9 124.9 41:94

50-
without

(4,4,4,3) (3,3,2,2) (8,7) (5,5) 10 20 0.32 15.52 572 5117.2 118.69 35:04 6%

100-
with
depot

(8,8,7,7) (5,5,5,5) (15,15) (10,10) 20 40 0.92 30.28 1116 9802.2 218.12 68:44

100-
without

(8,8,7,7) (5,5,5,5) (15,15) (10,10) 20 40 0.8 31.56 1216 10629 189.82 54:64 8%

500-
with
depot

(40,40,35,35) (25,25,25,25) (75,75) (50,50) 100 220 9.68 169.16 6732 59554 773.36 273:64

500-
without

(40,40,35,35) (25,25,25,25) (75,75) (50,50) 100 220 17.04 196.2 7244 67571 1034.4 231:33 12%

1000-
with
depot

(80,80,70,70) (50,50,50,50) (150,150) (100, 100) 200 500 26.28 360.64 15084 131616 1114.5 532:88

1000-
without

(80,80,70,70) (50,50,50,50) (150,150) (100, 100) 200 500 50.68 437.12 15836 149941 1232.7 461:36 12%

Table 5.4: Results for comparing the Strip and Discharge case, with and without depots.

5.4.3 The value of the inland depots

In this section, we will evaluate the value of using the inland depots in the inland trans-

portation. For this purpose, we test the genetic algorithm for the Strip and Discharge

without depot case. The same data for the Strip and Discharge with depot case is used, but

this time without the existence once of inland depots. As shown in Table 5.4, the average

total cost is increased by 6-12% for the inclusion of depots. Indeed, without depots we need

more trucks to satisfy all orders than if there is a depot. It is clear that the use of inland

depots has major benefits. The reduced overall cost is obtained from better routes that can

be constructed as more flexible combinations are allowed, and a higher truck utilization.

5.5 Summary

In this chapter the transportation of two types of orders: 20ft and 40ft loaded and empty

containers using a fleet of 20ft and 40ft long trucks is investigated. A Genetic Algorithm
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(GA) approach is developed for this purpose. Both cases of the transportation which are

the Strip and Discharge of containers have been considered in this research. The two major

strategies for storing and relocating empty containers which are the Street-turn and Depot-

turn cases are also considered. These cases are investigated separately and jointly. The

result shows that:

1. GA is a better approach than solving the simplified problem using an exact method.

2. It is worthwhile to combine Strip and Discharge orders in delivery.

3. Inland empty depots help saving delivery cost by allowing more flexible delivery

routes and improving truck utilization.



Chapter 6

Conclusions and future work

This chapter is in two parts. The first part presents the main conclusions whereas the

second part highlights future work and directions for worthwhile research.

6.1 Main conclusions

The inland transportation takes a significant portion of the total cost that arises from

intermodal transportation. In addition, there are many parties (shipping lines, haulage

companies, customers) who share this operation as well as many restrictions that increase

the complexity of this problem and make it NP-hard. Therefore, it is important to create

an efficient strategy to manage this process in a way to ensure all parties are satisfied.

In Chapter 2, a comprehensive literature review of pre existing literature of container

inland (drayage) transportation is presented. Some studies consider the movement of

one individual container per truck, of the size 20/40ft, while some others focus upon the

delivery of one 40ft and the pairing of two 20ft containers per truck. Articles are also

130



6.1. Main conclusions 131

reviewed based on the stripe and discharge category of containers. Methodology of the

research is illustrated in this chapter.

In Chapter 3, the Pairing of Containers/Orders in Drayage Transportation (PCDT) from

the perspective of delivering paired containers on 40ft truck and/or individual containers

on 20ft truck, between a single port and a list of customer locations is investigated. An

assignment Mixed Integer Linear Programming (MILP) model is formulated, which solves

the problem of how to combine orders in delivery to save the total transportation cost when

orders with both single and multiple destinations exist. In opposition to the traditional

models relying on the Vehicle Routing Problem with Simultaneous Pickups and Deliveries

and Time Windows (VRP-SPDTW) formulation, this model falls into the assignment prob-

lem category which is more efficient to solve on large size instances. Another merit for the

proposed model is that it can be implemented on different variants of the container drayage

problem: import only, import-inland and import-inland-export. Results show that in all

cases the pairing of containers yields less cost compared to the individual delivery and

decreases empty tours. The proposed model can be solved to optimality efficiently (within

half an hour) for over 300 orders.

In Chapter 4, a Mixed Integer Linear Programming (MILP) model is designed for

combining orders in the inland, haulage transportation of containers. In this MILP model,

the pick up and delivery process of both 20 and 40 foot containers from the terminals to

the customer locations and vice versa are optimized using heterogenous fleet consisting

of both 20ft and 40ft trucks/chasses. Important operational constraints such as the time

window at order receivers, the payload weight of containers and the regulation of the

working hours are considered. Based on an assignment model, this MILP solves problems
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with 100 orders efficiently to optimality.

To deal with larger instances, a decomposition and aggregation heuristic is designed.

The basic idea of this approach is to decompose order locations geographically into fan-

shaped sub-areas based on the angle of the order location to the port, and solve the sub

problems using the proposed MILP model. To balance the fleet size amongst all subgroups,

column generation is used to iteratively adjust the number of allocated trucks according

to the shadow-price of each truck type. Based on decomposed solutions, orders that

are ”fully” combined with others are removed and an aggregation phase follows to enable

wider combination choices across subgroups. The decomposition and aggregation solution

process is tested to be both efficient and cost-saving.

In Chapter 5, we reflect the real practice of haulage container transportation where both

pick-up and delivery, empty and loaded, Discharge and Strip of heterogenous container

types are combined. Heterogenous fleets are considered to perform the inland trans-

portation. For managing the delivery of empty containers, the two common strategies,

Depot-turn and Street-turn are both tested with examples capturing real geographical infor-

mation. A Genetic Algorithm (GA) approach is designed for solving large scale problems.

The result shows that solving the complicated problem using the developed GA is better

than solving the simplified problem using an exact method, even on small scale instances

where an optimal solution is achievable with the exact model. In addition, combining the

Strip and Discharge types with the usage of inland empty depots both saves transportation

costs and increases fleet utilization. The value of using inland depots is also evaluated.
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6.2 Suggestions for further work

The large number of decision variables and constraints included in the inland transporta-

tion of containers models prohibits the exact mathematical models in this thesis and other

literature from solving larger size problems. Thus, creating and developing new solution

techniques such as exploiting structural property and hybrid methods to obtain the exact

solution will be difficult and challenging for future research.

In this thesis, we assumed that information and data of the studied problems are de-

terministic and known in advance. However, these assumptions are sometimes unsuitable

in reality because of uncertainty and ambiguity. Uncertainty for container transportation

usually exists in cases such as changing the time windows of orders, the late arrival time of

a vessel to the port, the breakdown of trucks and traffic congestion. Therefore, stochastic

and dynamic optimization techniques are needed to tackle uncertainty and help to make

the best decisions in the container delivery industry.

Here, we investigate the delivery of container inland transportation from the perspec-

tive of single objective function mathematical models, however, usually companies target

to achieve more than one objective at the same time such as minimizing the delivery cost,

maximizing truck utilization, minimizing waiting time at customer locations, minimizing

idle time and minimizing the number of drivers required for the service,...etc. Therefore,

this calls upon the use of multi-objective optimization to achieve several aims simultane-

ously.
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