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Abstract
The composition and structure of plant-root-associated fungal communities are determined by local abiotic and biotic
conditions. However, the relative influence and identity of relationships to abiotic and biotic factors may differ across
environmental and ecological contexts, and fungal functional groups. Thus, understanding which aspects of root-
associated fungal community ecology generalise across contexts is the first step towards a more predictive framework.
We investigated how the relative importance of biotic and abiotic factors scale across environmental and ecological
contexts using high-throughput sequencing (ca. 55 M Illumina metabarcoding sequences) of >260 plant-root-associated
fungal communities from six UK salt marshes across two geographic regions (South-East and North-West England) in
winter and summer. Levels of root-associated fungal diversity were comparable with forests and temperate grasslands,
quadrupling previous estimates of salt-marsh fungal diversity. Whilst abiotic variables were generally most important, a
range of site- and spatial scale-specific abiotic and biotic drivers of diversity and community composition were observed.
Consequently, predictive models of diversity trained on one site, extrapolated poorly to others. Fungal taxa from the
same functional groups responded similarly to the specific drivers of diversity and composition. Thus site, spatial scale
and functional group are key factors that, if accounted for, may lead to a more predictive understanding of fungal
community ecology.

Introduction

The identity, abundance, and number of different species
contained within an ecosystem ultimately underpin all of
that ecosystem’s functions [1–3]. Consequently, changes in
community structure will have significant effects on eco-
system processes and functioning, and by extension, eco-
system services [4–6]. Therefore, elucidating the drivers of
diversity and community structure is of paramount impor-
tance if we are to manage ecosystems in the face of con-
tinued environmental change. Plant-root-associated fungi
are one such group known to significantly affect ecosystem
processes and functions [7–12] as they influence individual
plants and entire plant communities via a spectrum of plant–
fungal interactions, ranging from highly phytobeneficial to
highly phytodetrimental [13–16].

The development of molecular methods has sig-
nificantly improved our understanding of how root-
associated fungal communities are influenced by the
environment [17–20] and studies are beginning to address
this question over global scales [21–23]. A variety of
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biotic and abiotic drivers of fungal diversity and com-
munity composition have emerged, including variables
related to plant diversity, identity and traits [24–26],
edaphic variables such as pH, salinity and soil moisture
[17, 22] and climatic variables such as seasonality and
precipitation [19, 20, 26, 27]. However, previous studies
have covered a range of conditions (e.g., different spatial/
temporal scales, bioclimatic regions, habitat types etc.)
and fungal functional groups, and the extent to which any
identified drivers of community structure generalise
across different studied systems remains unclear. For
instance, the relative roles of biotic and abiotic factors in
modulating fungal diversity is widely debated, with plant
alpha- and beta-diversity, and plant identity [28–31], all
cited as being significant drivers, whilst others studies find
little, or no, effect of biotic variables in structuring fungal
communities, with abiotic variables dominating [32–34].
Furthermore, studies have recorded differing ecological
responses to environmental variables between fungal
functional groups [35–38]. This lack of generalisable
relationships between fungal communities and the biotic
and abiotic conditions of a given study system, suggests
that drivers of root-associated fungal community structure
may be dependent on environmental (the suite of all
interacting abiotic physical and chemical variables that
influence a species) and/or ecological (the surrounding
assemblage of all biotic interactions, in which a given
species is embedded) contexts. Thus, while a single
abiotic variable (e.g., pH) may be the main driver of root-
associated fungal community composition within an
ecosystem operating under one set of environmental and
ecological contexts, it may not be the main driver in
another, even if these two ecosystems ostensibly represent
the same type of habitat. This is because subtle changes in
one or more abiotic variable(s) may interact, and/or the
strength and nature of species interactions within that
ecosystem may change (e.g., dispersal limitation may
cause local endemism [39] and thus which species can
interact), respectively, leading to distinct environmental
and ecological contexts influencing fungal species. This
could then change the primary driver of fungal commu-
nity composition from one abiotic variable to another, or
between abiotic and biotic variables. Thus, models of
fungal diversity and community structure in relation to
environmental parameters are likely to generalise poorly
to new contexts, resulting in poor estimation of fungal
community structure in other ecosystems. However, how
well models of root-associated fungal diversity and
community structure established for a given environ-
mental or ecological context generalise to others remains
to be empirically tested.

To test for context-dependency in fungal community
structure, an ideal model system would allow for large

(spatial and temporal) replication within sites, but also
across sites spanning biogeographic scales (here >100
km), in order to sample from a suite of environmental
and ecological contexts. Additionally, sites should con-
tain the same habitat in order to maximise comparability.
Salt marshes are globally important, widespread habitats
that provide valuable ecosystem services, including
coastal protection [40] and carbon sequestration [41].
The diversity of root-associated fungi in salt marshes is
under-explored, and these habitats are an ideal system in
which to examine context-dependency as they contain
distinct environmental and ecological contexts in rela-
tion to salt marsh zonation, are sufficiently large to allow
extensive spatial replication, and are widespread around
coastal areas, allowing for replication across biogeo-
graphic scales. The few existing studies of salt marsh
mycobiomes suggest an important role for abiotic
and biotic variables in structuring fungal communities
[42–45], but the relative importance of these variables in
driving diversity and community structure, and whether
these generalise between salt marsh systems, or fungal
functional groups is unclear (see [44]). Therefore, we
studied the root-associated fungal communities from six
UK salt marshes, spanning two geographically and
floristically distinct regions, in both summer and winter.
Importantly, few plant species were shared between
regions, representing distinct ecological contexts; while
within regions, each of the three sites differed in tidal
exposure creating distinct environmental (physicochem-
ical) contexts, allowing us to disentangle the importance
of context within a series of comparable habitats.
We quantified a range of biotic and abiotic factors that
have previously been shown to influence root-associated
fungal communities, and used them to model the
richness and community composition of fungal taxa
within different salt marshes, spatial scales, and func-
tional groups. If the ecological drivers of root-associated
fungal communities are context-specific, we hypothesise
that:

H1: (a) The identity, direction and predictive power of
biotic and abiotic drivers of root-associated fungal diversity
will differ between sites and spatial scales, and conse-
quently, (b) models of fungal richness will make inaccurate
predictions when applied to other sites.

H2: The relative importance of biotic and abiotic drivers
of root-associated fungal community structure will be
consistent within, but not between, spatial scales and,
biotic variables will be more important at larger spatial
scales, reflecting the floristic dissimilarity at the regional
level.

H3: Root-associated fungal taxa that share similar mod-
elled responses to biotic and abiotic variables comprise
clearly defined ecological groups (ecogroups) that in turn
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reflect the differing functional traits/attributes present within
the fungal community.

Materials and methods

Study sites and sampling

Sampling was conducted during winter (13/01/2013–05/02/
2013) and summer (01/08/2013–16/09/2013) from three salt
marsh sites in each of two regions, Essex (Abbotts Hall
(AH), Fingringhoe Wick (FW) and Tillingham Marsh
(TM)), and Lancashire (Cartmel Sands (CS), West Plain
(WP) and Warton Sands (WS)), within the UK (Table 1 and
Fig. 1a). A stratified random sampling design was used to
place 22 quadrats in each marsh during each season, whilst
maximising the range of spatial separation between samples
(full details in ref. [46]). From each quadrat, a sediment core
(5-cm diameter, 15-cm depth) was collected during each
season (264 cores in total). Cores were transported from the
field on dry ice before being frozen at −80 °C. Plant roots
were extracted, washed and dried at 75 °C for 5 days, before
being homogenised and stored at −80 °C for molecular
analyses. Pore water was extracted from 40 g of sediment
from each core by centrifugation at 15,000 rpm at 4 °C,
and used for salinity and pH analyses (Table S2). The-
composition of the plant community in each quadrat
was quantified as described previously [47] with the per-
centage cover of species, and above- and below-ground
biomass measured (Table S2). All plant data are available
via the Environmental Information Data Centre (EIDC)
database: [https://catalogue.ceh.ac.uk/eidc/documents#term=
CBESS&page=1].

Molecular methods

DNA was extracted from 0.05 g of homogenised dry roots
using MoBio PowerPlant DNA isolation kit following the
manufacturer’s instructions (MoBio Laboratories Inc.,
Carlsbad, CA, USA). In order to quantify the diversity and
composition of fungal communities associated with salt
marsh plant roots, the internal transcribed spacer (ITS1)
region was PCR-amplified from homogenised roots with the
primers ITS1f and ITS2 [48, 49]. These primers target all
major phyla of fungi (Ascomycota, Basidiomycota, Chy-
tridiomycota, Glomeromycota, Mucoromycotina and
Zygomycota), but exclude the unicellular animal–parasite
group Microsporidia. PCR products were bead purified
using Agencourt AMPure XP PCR Purification beads
(Beckman Coulter Ltd, High Wycombe, UK), before
sample-specific Nextera XT indices were added to ampli-
cons with a short (8) cycle PCR. After pooling samples in
equimolar concentrations, sequencing was conducted on an
Illumina HiSeq 2500 in rapid run mode (providing 2 × 300
bp sequences) at The Earlham Institute (formerly The
Genome Analysis Centre, Norwich Research Park, Nor-
wich, NR4 7UH, UK). A more detailed description of
molecular workflows is available in the Supplementary
Information (Methods S1).

Bioinformatic analyses

Analyses were carried out on forward reads only, as paired-
end overlapping of sequences was not possible due to the
length of the sequenced amplicon [50]. Sequences were
quality filtered with minimum quality threshold of Q20
using Qiime [51], and clustered into (97% similarity) OTUs

Table 1 Full details of sampling
locations and topological
characteristics

Site Region Tidal exposure Sediment
typea

Number of samples
sequencedb

Latitude Longitude

Fingringhoe Wick
(FW)

Essex Minimal Clay (summer) 14
(winter) 17

51.83 0.97

Abbotts Hall
(AH)

Essex Intermediate Clay (summer) 22
(winter) 15

51.79 0.87

Tillingham Marsh
(TM)

Essex Severe Clay (summer) 22
(winter) 22

51.69 0.94

Cartmel Sands
(CS)

Lancashire Minimal Sand (summer) 22
(winter) 13

54.18 −3.00

West Plain (WP) Lancashire Intermediate Sand (summer) 21
(winter) 18

54.15 −2.97

Warton Sands
(WS)

Lancashire Severe Sand (summer) 21
(winter) 11

54.14 −2.80

aAccording to Ford et al. [46]
bReflects the numbers of samples from which PCR products were successfully obtained, 22 samples were
collected from each site in each season
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with VSEARCH [52], following protocols described by
Dumbrell et al. [53]. Taxonomy was assigned to OTUs with
the RDP classifier, set to “fungalits_unite” mode [54, 55].
Fungal OTUs were then assigned to functional (trophic)
groups using FUNGuild [56]. Trophic group here refers to
the nutrient acquisition strategy of the fungus, which may
be pathotrophic (obtain nutrients by harming host cells),
saprotrophic (obtain nutrients from dead organic matter),
symbiotrophic (obtain nutrients by exchange with host) or a
combination of these, reflecting multiple feeding strategies,
resulting in six possible trophic groups.

Further details of bioinformatic analyses can be found in
the Supplementary Information (Methods S1). Raw
demultiplexed sequence data have been uploaded to the

European Nucleotide Archive (accession number
PRJEB20364).

Statistical analyses

In order to examine whether abiotic or biotic factors better
predict the richness and abundance of OTUs within each
site, we compared statistical models (details below) using
either abiotic or biotic variables (Table S1). We selected
variables for each model if there was strong evidence of
them being drivers of environmental fungal diversity and
community structure from the literature. Abiotic models
included the variables: site (when analysing data at the
regional or overall scales, Fig. 1b), season [19, 26], salinity

Fig. 1 Sampling strategy. a UK
map with sampling regions (left
panel) and sampling sites (right
panels). Site labels are as
follows; AH Abbotts Hall, FW
Fingringhoe Wick, TM
Tillingham Marsh, CS Cartmel
Sands, WP West Plain and WS
Warton Sands. Coordinates are
presented in WGS84 coordinate
system. b Schematic of fungal
OTU richness modelling
approach. Models were
conducted at the site level
(bottom row), regional level
(middle row) and with all data
pooled (top row)
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[43, 45], pH [17, 25, 57, 58] and soil moisture [34, 59, 60].
Biotic models consisted of the variables: plant species
richness [25, 26, 29], total root biomass [29] and percentage
cover of herbs/forbs, shrubs, grasses, sedges and rushes [28,
38, 61]. For percentage cover variables, we grouped plant
species into herbs/forbs, shrubs, grasses, sedges and rushes
as these groups reflect the broad differences in root mor-
phology and life history strategies (e.g., perennial vs.
annual) that we expected to affect fungal communities [25,
26, 62]. This modelling framework provides a more biolo-
gically intuitive interpretation of relationships between
explanatory and response variables than analyses that rely
on first reducing the dimensionality of the multiple expla-
natory variables (e.g., via principal components analysis
(PCA)). Moreover, statistical models describing fungal
diversity constructed on data from a given site/scale can be
used to forecast predictions of fungal diversity at other sites/
scales addressing Hypothesis H1b. This would not be
possible if we first reduced the dimensionality of our
explanatory variables, as ordination scores and loadings
would change between sites/spatial scales. Plant classifica-
tions followed those of Rose [63, 64]. All statistical ana-
lyses were carried out in R (version 3.4.4) [65].

Influence of the biotic and abiotic environment on
fungal diversity

To test the hypothesis that drivers of fungal richness will
change between sites and spatial scales, we applied a gen-
eralised linear modelling (GLM) approach to model fungal
OTU richness as a function of biotic or abiotic variables.
Analyses were conducted in a spatially nested manner
(Fig. 1b) by modelling OTU richness within each site, then
within each region (by pooling data from different sites in
the same region) and then overall (by pooling all data),
enabling comparisons between sites and at different spatial
scales. Negative binomial GLMs were used to model OTU
richness, and unequal library sizes were accounted for by
including log(library size) as the first term in each model.
Abiotic and biotic models were compared using Akaike’s
Information Criterion (AIC) and adjusted D2 [66]. To test
the generality of OTU richness models (H1b; that extra-
polating models of fungal richness would result in poor
predictions), models were parameterised (trained) on each
site as described, and then applied to environmental data
from the other sites to predict OTU richness. The ability of
models to predict OTU richness in other sites was quantified
using predictive error (root-mean-square error), between
predicted and observed values. Models that generalise well,
accurately predicting OTU richness in other sites, will have
low predictive error. To determine whether models gen-
eralise better within regions than between regions, ANOVA
tests were conducted on log transformed predictive errors.

Influence of the biotic and abiotic environment on
fungal abundances

To test our hypothesis that the relative importance of biotic
and abiotic variables to fungal community structure will
also differ across sites and scales, we modelled fungal
community composition in each site using multivariate
negative binomial GLMs [67]. We treated the number of
sequences in each OTU as its abundance, and included
library size as an offset term. An offset term is a model term
for which the coefficient is fixed at 1, rather than estimated.
This is commonly used in ecological studies to account for
different sampling depths, and here, we utilise this to
incorporate the effects of varying library sizes on the counts
of OTUs by assuming proportionality between OTU counts
and the library size of each sample [68, 69]. Whilst these
numbers are not truly quantitative, by also considering
overall library sizes in our models they effectively represent
relative, rather than absolute, abundance. The fit of biotic
and abiotic models was compared using OTU-specific AIC
scores. A model was considered to have support over the
other model, if the difference in AIC (ΔAIC) > 2 [70]. The
total AIC across all OTUs (ΣAIC) for each model was
calculated to make comparisons at the community level.
These ΣAIC comparisons are only valid for comparing
between models for a given site/scale, and not valid for
comparing models across sites/scales as dependent variables
differ. As with the OTU richness models, OTU abundance
modelling was conducted in a spatially nested manner
(Fig. 1b).

Consistency of environmental responses within
functional groups

To test whether functionally similar fungi show similar
relationships to biotic or abiotic variables, we first
grouped fungal OTUs into ecogroups. To do this, we
used finite mixture modelling [71]. These models require
a user-specified number of groups (originally referred to
as “archetype species” [71] and “ecogroups” here for
clarity) into which OTUs are clustered based on their
modelled response to environmental gradients, which
was set to equal the number of fungal functional groups
(6). This was done to allow for a “maximal association”
scenario, whereby each functional group corresponded to
exactly one ecogroup. For this analysis, data from
all sites were pooled (Fig. 1b) and rarefied OTU
abundances (12,738 sequences per sample) were mod-
elled independently with biotic or abiotic variables,
as described above. OTUs were assigned to whichever
ecogroup achieved the highest membership probability.
A contingency table was calculated, summarising the
number of OTUs from each functional group in each

Are drivers of root-associated fungal community structure context specific?



ecogroup. To test for the association between these two
classifications, Chi-Squared tests were used, with P-
values calculated on 10,000 permutations. For clarity,
ecogroups were defined independently for biotic and
abiotic variables, thus abiotic ecogroup 1 is independent
from biotic ecogroup 1.

Further details of statistical methods used are described
in Methods S2.

Results

From the 218 salt-marsh plant-root samples from which
PCR products were successfully obtained, we recovered
~99.6 million ITS DNA sequences which, after stringent
quality filtering, were reduced to ~55.8 million sequences.
One sample was excluded from further analyses due to
insufficient sequence numbers. Remaining samples had a
median of 170,349 sequences. These sequences clustered
into 4638 non-singleton OTUs. Most OTUs were assigned
to a phylum, whilst ~25% were identified to species level
(Fig. S1). Taxonomic assignments showed that most sites
were dominated by 3–4 fungal classes, with the Sordar-
iomycetes, Dothideomycetes and Agaricomycetes particu-
larly abundant (Fig. S2). Functional assignments of fungal
OTUs revealed that the majority of OTUs were not assigned
to a functional group (Fig. S3). Of those that were assigned,
saprotrophs were the most abundant, followed by symbio-
trophic and pathogenic fungi.

Approximately 33% of all OTUs were shared between
Essex and Lancashire sites. However, Lancashire contained
more unique OTUs than Essex (2328 unique OTUs vs. 769,
respectively). Compositionally, Essex and Lancashire
communities were distinct (Fig. 2) and variation between
the three sites in each region was higher in Lancashire than
Essex. Furthermore, winter and summer samples from
Lancashire appeared to contain compositionally distinct
communities, whilst there was no clear separation between
communities sampled in winter and summer from Essex.

In terms of environmental variability, the six salt marshes
differed in both biotic and abiotic characteristics (Fig. 3).
Essex salt marsh sediments were notably more saline
compared with Lancashire sediments (Table S2), but also
more variable (Fig. S4), whilst a similar range of sediment
pH and moisture values were observed across the regions.
With respect to the plant communities, Essex marshes
contained a greater abundance of shrub species, whereas
Lancashire marshes were dominated by grasses, sedges and
rushes (Table S2 and Fig. 3). Notably, variability in biotic
variables tended to increase at larger spatial scales (e.g.,
regional and overall, compared with site), and more mark-
edly than abiotic variables (Fig. S4).

Biotic and abiotic drivers of fungal richness

At the site level, abiotic variables were better predictors of
OTU richness than biotic variables in all sites except
Cartmel Sands. However, the difference in the fit of these

Fig. 2 NMDS plot of similarity between fungal communities, based on
Jaccard’s dissimilarity index. Each point represents a root-associated
fungal assemblage collected from our soil cores. The closer points are,
the more similar their community composition. Fungal communities
showed clear regional distinctions, but seasonal differences were more
subtle

Fig. 3 A biplot of principal component analyses (PCA) on abiotic and
biotic variables across the six study sites. Essex marshes (red points)
appear distinct from Lancashire marshes (purple points), whilst dif-
ferences between individual sites appear to be driven by specific
environmental variables

A. K. Alzarhani et al.



models varied considerably by site (Fig. 4) according to
AIC and adjusted D2. Furthermore, the identity and direc-
tion of relationships with individual biotic or abiotic vari-
ables was markedly different between sites (Table 2 and
S3). For example, OTU richness was significantly higher in
winter than summer at Fingringhoe Wick (coefficient=
0.87, P<0.001) and Warton Sands (coefficient= 0.83,
P<0.001), but significantly lower at West Plain (coefficient
=−0.36, P<0.01). Salinity and pH were only significant
predictor variables in one site each (Tillingham and Cartmel
Sands, respectively), and none of the abiotic variables
showed statistically significant relationships in Abbotts
Hall. Similarly, within the biotic variables, root biomass
was correlated positively to OTU richness in Warton Sands
(coefficient= 0.05, P= 0.05), but correlated negatively to it
in West Plain (coefficient=−0.02, P<0.01). The environ-
mental drivers of fungal diversity are therefore highly
dependent on site at the smallest spatial scale within our
study.

Also, at a regional scale, abiotic variables were
superior predictors of OTU richness than biotic variables,
although the difference in performance was less marked in
Lancashire compared with Essex (Table 2). Similarly to
the site level, the relationships between individual vari-
ables and OTU richness were dependent on the region. In
Essex, aside from site–site differences in OTU richness,
no abiotic variables were significantly related to OTU
richness. In contrast, beyond differences accounted for by
site, salinity and soil moisture were both significantly
related to OTU richness within Lancashire. No biotic
variables were significantly related to OTU richness
within Essex, but root biomass (coefficient= 0.02,
P<0.05) and percentage cover by rushes (coefficient=
−0.01, P<0.01) were both significant in Lancashire.
Results at the regional scale therefore suggest that drivers
of fungal diversity are similarly context-dependent at
larger spatial scales.

When all data were pooled, the model loaded with
abiotic variables better predicted fungal OTU richness,
compared with the biotic model (Table 2). Despite this, site-
specific differences were the only statistically significant
abiotic relationship, and no other individual abiotic vari-
ables were significantly related to fungal OTU richness.
Contrastingly, plant species richness, root biomass and
percentage cover by herbs, shrubs, grasses and rushes, all
showed significant relationships with fungal OTU richness.

To further test the context-dependency of drivers of
fungal diversity, site level models of OTU richness were
used to predict OTU richness in other sites. In support of
the different drivers across sites identified previously, most
models performed poorly when predicting OTU richness in
other sites (Fig. 4a). Unsurprisingly, models had the least
predictive error when trained and applied within the same

Fig. 4 Predictive error of operational taxonomic unit (OTU) richness
models when used to predict other sites’ OTU richness. a The pre-
dictive error of an OTU richness model when trained on data from a
given site (x-axis) and used to predict OTU richness in another site (y-
axis). Asterisks indicate the predictive error of models which were
trained and applied on the same site. Lower values indicate closer fit
between observed and predicted values. Site labels are as follows: AH
Abbotts Hall, FW Fingringhoe Wick, TM Tillingham Marsh, CS
Cartmel Sands, WPWest Plain, WS Warton Sands. b Predictive error
of models when applied to a site from a different, or the same, region
to the site from which they were trained. Horizontal lines and numbers
represent group-wise comparisons, and the corresponding adjusted
Tukey P-values

Table 2 AIC and adjusted D2 of fungal operational taxonomic unit
(OTU) richness models loaded with abiotic and biotic variables for
each site and spatial scale

Site/Scale Abiotic variables Biotic variables

AIC Adj-D2 AIC Adj-D2

Fingrinhoe Wick 309.4 0.82 368.4 0 (−0.14)

Abbotts Hall 353.6 0.24 358.6 0.15

Tillingham 442.9 0.54 458.2 0.36

Cartmel Sands 395.9 0.25 379.8 0.54

West Plain 466.5 0.57 467.3 0.58

Warton Sands 369.8 0.42 390 0 (−0.03)

Essex 1175.2 0.41 1211.7 0.18

Lancashire 1262.3 0.52 1288.4 0.39

Overall 2444.4 0.59 2509.9 0.44

A lower AIC and higher adjusted D2 indicate better model fit

Are drivers of root-associated fungal community structure context specific?



region (Fig. 4b; ANOVA, biotic; F2,33= 5.70, P<0.01,
abiotic; F2,33= 5.26, P<0.05). Models trained and applied
to Essex sites made better predictions than those trained
and applied within Lancashire, although this difference
was only significant for biotic variables (biotic
models; P<0.01, abiotic models; P= 0.09), suggesting
that whether, or not, these drivers are generalisable may
depend on the floristic or environmental similarity between
sites.

The relative roles of the biotic and abiotic
environment on fungal community composition

In partial agreement with our hypothesis (H2), the propor-
tion of OTUs whose abundance was predicted better by
biotic or abiotic variables differed between sites, although in
all sites, more OTUs were predicted better by abiotic vari-
ables, than by biotic variables (Fig. 5, Table S4). In contrast,
at the regional level this trend reversed, as the abundances
of most OTUs were better modelled by biotic variables with
71.9% (Essex) and 66.4% (Lancashire) of OTUs having
AIC support for biotic variables compared with 13.9%
(Essex) and 19.4% (Lancashire) for abiotic variables.
Similarly to the site level, ΣAICs for each model in each
region still supported abiotic variables in both Essex and
Lancashire (Table S4). This shows that for OTUs whose
abundance was predicted better by abiotic OTUs, the dif-
ference in AIC outweighed the majority of OTUs, whose
abundance was predicted better by biotic variables. At the
largest scale (overall) in our study, abiotic variables were
again better predictors of OTU abundances as 1164 of the

1999 OTUs analysed showed support for abiotic variables,
compared with 588 for biotic variables (Table S4). At this
spatial scale, ΣAIC for each set of variables also supported
abiotic variables (ΣAIC= 4,353,897) over abiotic variables
(ΣAIC= 14,674,391).

Environmental responses of functional groups

Finite-mixture models were used to group OTUs into
ecogroups based on their modelled response to environ-
mental variables. These ecogroups showed markedly
different ecological preferences according to their mod-
elled responses to biotic or abiotic variables (Fig. 6).
Biotic ecogroups were differentiated by their predicted
relationships with root biomass, whilst other differences
between ecogroups were more specific to certain biotic
variables. For example, biotic ecogroup 1 showed a
notably stronger positive relationship with plant species
richness, whereas biotic ecogroup 3 showed a far stronger
negative relationship to shrub cover than other ecogroups
(Fig. 6). Abiotic ecogroups showed considerably different
seasonal dynamics (e.g., ecogroups 2 and 4), whereas
differences between the ecogroups in response to other
abiotic variables were more subtle. Abiotic ecogroup
3 showed little response to pH, whereas most other abiotic
ecogroups had negative relationships between their
abundance and pH (Fig. 6). The extent by which the
functional composition of ecogroups differed from
expected was variable (e.g., abiotic ecogroup 1 vs. 2,
Fig. 7). However, for both (biotic and abiotic) sets of
ecogroups, Fisher’s exact tests revealed significant
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association between fungal functional groups and
ecogroups (biotic; Fisher’s P<0.001, abiotic; Fisher’s
P<0.001). This indicates that ecogroups are made up of
disproportionate numbers of OTUs from each functional
group. Consequently, a change to any of these variables
would be predicted to disproportionately affect the
abundance of certain functional groups.

Discussion

Salt marsh fungal communities

This study significantly extends our knowledge of the
diversity and ecology of root-associated fungi in the natural

environment. We analysed > 55 million fungal ITS gene
sequences from 218 samples from six different UK salt
marshes, and found a highly diverse mycobiome compris-
ing > 4000 OTUs. This represents a fourfold increase in the
diversity of fungi previously recorded in salt marsh habitats
[44], and is comparable with forests [58, 72] and tropical
soils [73], implicating salt marshes as significant reposi-
tories of fungal biodiversity. Furthermore, our study is one
of a few that have attempted to understand the drivers of
root-associated fungal diversity in salt-marsh environments.
Our analyses reveal complex relationships between the
environment and fungal community structure and diversity,
with few, if any, general unifying relationships, suggesting
that context-dependency is an important aspect of fungal
ecology that deserves greater attention.
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Abiotic variables determine fungal richness, but not
in a generalisable manner

Across sites and spatial scales, fungal OTU richness was
more closely linked to the abiotic, than the biotic, variables.
However, the fit, direction of relationships, and statistical
significance of these relationships were highly context-
dependant, changing between sites and scales. In contrast to
previous research, we found relatively few statistically
significant relationships between abiotic variables and fun-
gal diversity. Salt marshes present gradients of salinity in
relation to tidal exposure and successional stage, that may
influence fungal diversity [43, 44, 74, 75]. Yet, we observed
an inconsistent relationship between salinity and fungal
diversity that varied between regions, with negative rela-
tionships in Lancashire, and no relationship in Essex sites.
Notably, Lancashire sites were less saline and with less
variability in salinity than Essex sites (Table S2; Fig. S4)
and therefore, the regional fungal metacommunity may
contain fewer halo-tolerant species.

Differences in OTU richness between winter and sum-
mer samples were observed in multiple sites, but the mag-
nitude and direction of these differences were site
dependent, reflecting similar inconsistencies observed
across studies [19, 26, 76]. The fungi recorded here com-
prise various trophic modes (symbiotrophic, saprotrophic
and pathotrophic), which target different plant-derived
resources. Thus, seasonal patterns in the availability of
live and dead biomass (e.g., ref. [77]) could drive shifts in
diversity by stimulating different fungal trophic pathways.
As seasonal dynamics of living and dead plant biomass are
species-specific [78], differences in floristic composition
across sites, could potentially explain site-specific changes
in fungal diversity between winter and summer samples.

Few biotic variables appeared to influence fungal rich-
ness; root biomass was only a statistically significant driver
in two sites, where it had inconsistent effects on fungal
richness. This was contrary to our expectation, as increased
root biomass should provide greater colonisation area, thus
supporting more species via a species–area relationship.
Furthermore, plant species richness was only significant for
the pooled Lancashire, and overall datasets, but not within
any individual site. Increasing plant richness might increase
fungal richness by diversifying the pool of resources and
ecological niches available to fungi, although we did not
observe this relationship in most sites and scales. One
possibility is that root biomass and plant richness are poor
proxies for the ecological niche space available to fungi.
Instead, specific root traits, such as root exudates and dif-
ferentiation of root morphologies, may be better predictors
of root-associated fungal diversity [24, 79, 80], but are also
more challenging to quantify. For example, Essex salt
marshes contained a greater abundance of shrubs, which

often have woody root systems that resist colonisation by
arbuscular mycorrhizas (Glomeromycota) [42], thereby
reducing the available niche space to AM fungi and, by
extension, the number of AM fungal species.

One potential explanation for the strong degree of
context-dependency observed in this study is that site-
and/or scale-dependent variability in environmental
parameters may determine what is perceived as most
important in structuring root-associated fungal commu-
nities. For example, in sites with a greater variance in
salinity, salinity may emerge as a more “statistically sig-
nificant” predictor than in sites where variance in salinity
is smaller, and the same would hold for other abiotic or
biotic variables. This is because within the statistical
framework employed here, increased variability in pre-
dictor variables would lead to greater precision of para-
meter estimates, and an associated decrease in P values.
However, P values alone are a poor indicator of a vari-
able’s predictive usefulness. If the form (shape and
direction) of the relationships between salinity (as an
example) and fungal community structure is consistent
across sites, then parameter estimates would be broadly
similar in each site regardless of within-site variance in
salinity. Thus, while P values may vary, the form of
modelled relationships and predictive usefulness of
highlighted variables should not. Given the variability in
estimated parameters, statistical significance and pre-
dictive performance observed within our study (Fig. 4 and
Table S3), we don’t believe that observed patterns of
context-dependency are merely statistical artefacts
resulting from site- or scale-dependent variance in the
predictor variables. Moreover, as difference across sites
and scales in within-site variability of abiotic and/or biotic
variables reflects local patterns of environmental hetero-
geneity, it forms a biologically relevant aspect of context
that should be considered.

Drivers of fungal community composition are
context-specific

The relative importance of biotic and abiotic variables on
fungal community composition was highly context-
dependent, shifting between sites and spatial scales. Within
sites, the relative abundance of most fungal OTUs was best
predicted by abiotic factors, supporting previous work on
the role of abiotic properties in modulating fungal com-
munity structure [17, 57, 59]. In Essex sites, the proportion
of OTUs whose abundance was better predicted by abiotic
factors was remarkably consistent (Fig. 5), perhaps
reflecting the more similar fungal community composition
between sites, as compared with Lancashire sites. This
result agrees with our finding that the drivers of fungal
diversity were more similar and generalisable between
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Essex sites, suggesting similar ecological processes in these
marshes.

While abiotic factors were more important than biotic
factors within sites, at the regional level this trend reversed,
and biotic factors became better predictors. This is likely
due to the distinct plant communities in each study region
outweighing differences in abiotic variables [47]. This
explanation is supported by the fact that biotic variables
tended to become increasingly variable as we increased the
spatial scale at which data were modelled (Fig. S4). Sedi-
ment characteristics and climate also differ notably between
the two regions, but these variables are likely to be rea-
sonably homogeneous within each site in a region. There-
fore, whilst these variables could influence fungal
community composition at the landscape scale [27], we
suggest that plant community differences are still likely to
hold more explanatory power.

As with all environmental microbial ecology studies, it is
impossible to measure all of the relevant environmental
parameters and, inevitably, some environmental variables
may remain unmeasured. However, the primary aim of our
study was not to identify the main drivers of fungal com-
munity structure per se, but rather to test their consistency
between different sites and spatial scales, in which case our
consistent sampling design and measurements of environ-
mental variables are sufficient. Another potential caveat of
our study is that, to some extent, differences in plant
community composition are themselves related to abiotic
environmental gradients, and thus, biotic effects may actu-
ally be indirect abiotic influences [81, 82]. To disentangle
the effects of plant community structure from the abiotic
environment would require experimental approaches,
beyond the scope of this study. Instead, given that biotic
variables were not strongly collinear with abiotic variables
(Fig. 3), we assume that indirect effects of the abiotic
environment acting on plant community structure are
reflected in the abiotic variables themselves, and that rela-
tionships between biotic variables and fungal communities
are not confounded.

Our analyses of the relationships between fungal diver-
sity and community structure and the environment show
high levels of context-dependency. Consequently, extra-
polating models from one site to another resulted in poor
quality predictions of fungal diversity. Previous research
has hinted that drivers of microbial diversity are dependent
on both environmental and ecological context, with few
generalisable predictors [25, 83]. However, this study is the
first to explicitly test this. Our results show that context-
dependency may hinder the search for unifying “macro-
ecological” relationships in microbial ecology and that
seeking to understand drivers of community structure from
a single site or spatial scale is unwise. Despite this, we also
found aspects of fungal community ecology that do appear

to generalise across ecological and environmental contexts.
For example, within most sites, abiotic variables were more
important predictors of fungal diversity and community
structure than biotic variables. Thus, measuring relevant
aspects of the abiotic environment should be prioritised if
attempting to predict fungal diversity or community struc-
ture within a site.

Functional group is an important contextual aspect
of fungal ecology

We observed an association between fungal ecogroups and
functional groups. Therefore, how environmental gradients
influence fungal taxa depends on their function, as is
commonly observed in experimental studies that show dif-
ferential responses between fungal functional groups to
warming [84, 85], nitrogen addition [86], CO2 [87] and
plant species richness and identity [26, 38, 88].

Whilst substantial experimental evidence exists for dif-
fering ecologies across fungal functional groups, few stu-
dies have demonstrated this in natural settings. The few
observational studies that explicitly examine the ecologies
of functionally dissimilar groups of microorganisms, tend to
rely on broad taxonomy as a proxy for function. For
example, Powell et al. [89] observed varying roles for niche
and neutral community assembly mechanisms between
bacteria and fungi in soils, with fungal communities less
predictable by niche processes and more prone to stochastic
neutral assembly. However, in these studies taxonomy and
functionality may be confounding each other at such a
broad taxonomic resolution. A more specific study was
conducted by Peay et al. [73], who found contrasting
responses of fungal functional groups to plant species
richness. Specifically, they observed that the richness of
fungal groups whose trophic mode primarily depended on
the host plant (mycorrhizal and pathogenic fungi) showed
positive relationships with plant diversity, whereas sapro-
trophic fungi (which do not depend primarily on plants)
were largely invariant to plant diversity. Similarly, Mom-
mer et al. [90] showed contrasting responses of plant
pathogenic and endophytic fungi to increased levels of plant
species richness. These results support our finding that
functionally distinct fungi show differing ecological
preferences in response to single or multiple environmental
gradients. Consequently, moving from taxonomy-, to
functional trait-based approaches may provide a more
generalisable framework for understanding fungal
community ecology, as is the case in “macro-organismal”
research [91].

In salt-marsh ecosystems, the potential for environmental
change to differentially influence the relative abundance of
different fungal functional groups could have major impli-
cations for ecosystem processes and functions. For example,
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abiotic ecogroup 1 was composed of ~1.5 times the
expected number of symbiotrophic fungal OTUs. This
ecogroup was found to have a negative predicted relation-
ship with pH, suggesting that fungi in this group will gen-
erally increase in abundance in more acidic sediments.
Whilst the impacts of climate change on salt-marsh sedi-
ments are largely focussed on carbon cycling, acidification
of coastal waters coupled with increased inundation as sea
levels rise may decrease sediment pH. In turn, this may
increase the abundance of certain symbiotrophic fungi, and
by extension may up-regulate the ecosystem processes they
contribute to (e.g., ref. [92]). However, more in-depth stu-
dies are still required to determine the functionality of many
plant-associated fungal groups [93], and the relationship
between their abundance and ecosystem processes [94].

Conclusions

Our study of fungal communities from six UK salt marshes
revealed highly context-dependent drivers of fungal com-
munity structure and diversity. By carrying out a spatially
replicated study, we found that abiotic variables were
generally superior predictors of community structure and
diversity across sites and spatial scales. Yet, the identity
and direction of relationships differed between sites and
spatial scales to such an extent that extrapolating them to
other sites generally resulted in poor predictions of fungal
diversity. Furthermore, we detected associations between
fungal responses to abiotic and biotic variables and the
functional groups these fungi belong to. This may suggest
that environmental gradients have the potential to effect
fungal functional groups differentially. Combined, our
results highlight that site, spatial scale and functional
group are important contextual aspects that alter the
community ecology of fungi. Therefore, understanding
which aspects of fungal community ecology can be gen-
eralised across sites, spatial scales or functional groups is
critical for managing ecosystems and the process they
support in the face of environmental change. Appropriate
replication with respect to these contextual factors is
essential to elucidate generalisable aspects of fungal
ecology, and to move towards a more predictive frame-
work of their community ecology.
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