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ABSTRACT Deep learning technique-based visual odometry systems have recently shown promising
results compared to feature matching-based methods. However, deep learning-based systems still require
the ground truth poses for training and the additional knowledge to obtain absolute scale from monocular
images for reconstruction. To address these issues, this paper presents a novel visual odometry system
based on a recurrent convolutional neural network. The system employs an unsupervised end-to-end training
approach. The depth information of scenes is used alongside monocular images to train the network in order
to inject scale. Poses are inferred only from monocular images, thus making the proposed visual odometry
system a monocular one. The experiments are conducted and the results show that the proposed method
performs better than other monocular visual odometry systems. This paper has made twomain contributions:
1) the creation of the unsupervised training framework in which the camera ground truth poses are only
deployed for system performance evaluation rather than for training and 2) the absolute scale could be
recovered without the post-processing of poses.

INDEX TERMS Monocular visual odometry, unsupervised deep learning, recurrent convolutional neural
networks.

I. INTRODUCTION
Visual odometry (VO) has drawn enormous attentions from
both robotics and computer vision communities during the
last decades. It studies how a robot can estimate its move-
ment relative to a rigid scene through a camera (monocular,
stereo or omnidirectional) attached to it [1]. The traditional
VO systems consist of image correction, feature extraction
and representation, feature matching, transformation estima-
tion and pose graph optimization. They have shown some
outstanding performance through careful design and adjust-
ment step by step, which are very costly [2]. The technique
has been widely applied to augmented reality (AR), mobile
robots, wearable devices, etc.

Deep learning based VO systems developed in recent
years [3]–[6] have already shown promising performance in
terms of both translation and rotation estimation accuracy.
Ground truth poses of each input frame need be acquired
beforehand and fed into these networks for training. However,
ground truth poses are difficult and expensive to obtain.
In some systems, ground truth poses are even inferred

The associate editor coordinating the review of this manuscript and
approving it for publication was Yu-Huei Cheng.

and obtained by labeling collected images with traditional
VO or SLAM algorithms, which is an ill-posed problem.

This paper proposes an unsupervised training framework
which does not require the ground truth poses of a camera
in any form for training. Instead, the ground truth poses
of the camera are only used for performance evaluation.
Therefore, such unsupervised training eliminates the need
of the labor-intensive image labeling process. In addition,
the performance of our system can be easily improved by
further training with larger unlabeled dataset. Fig. 1 gives an
overview of our proposed VO system. The training dataset
includes a pair of monocular and depth images. Transforma-
tion matrices generated by the network are used to calculate
losses. Parameters in the network are then optimized by min-
imizing these losses. We use consecutive monocular images
for testing. The network directly yields poses on an absolute
scale.

Monocular VO is one of the most popular VO cate-
gories depending on the camera setup. However, the absolute
scale cannot be obtained based solely on monocular images.
Either external information or prior knowledge (ground truth
pose) is required at some stage during reconstruction or/and
training. In robotics, one typical way of obtaining scale
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FIGURE 1. Overview of the proposed visual odometry system.

during reconstruction is by combining a monocular cam-
era with other sensors such as Inertial Measurement Unit
(IMU) and optical encoder. Another solution is by providing
depth information of the scene in some way. This can be
achieved via employing RGB-D sensors (Microsoft Kinect,
Asus Xtion Pro, etc.) [7]–[9], stereo cameras [10], [11] or
3D LiDARs [12], [13]. This solution has been widely
deployed in self-driving cars and smart phones. In this paper,
we feed monocular images and depth information obtained
from 3D LiDARs into the training pipeline to inject abso-
lute scale and only use monocular images during testing.
We focus on the problem of continuously localizing a monoc-
ular camera on an absolute scale for the purpose of locating
people or robots.

As the global pose graph is obtained from a sequence of
images gradually rather than through a single calculation,
the deep learning network should consider the previous com-
putations before it outputs the pose of the current frame. Thus,
this paper proposes the use of a Recurrent Convolutional
Neural Network (RCNN) to meet such requirements, which
is based on the methodologies presented by Wang et al. [4]
and Li et al. [14]. More specifically, it is a combination of
a Convolutional Neural Network (CNN) for differentiating
patterns across space and a Recurrent Neural Network (RNN)
for recognizing patterns across time. Our RCNN is trained
based on an unsupervised end-to-end manner. Experiments
have been carried out on KITTI [15] odometry dataset and
results have shown that our VO system can be compared
to other state-of-the-art monocular VO systems in terms of
both translation and rotation accuracy even without scale
post-processing.

The rest of the paper is organized as follows. Section II
reviews related literatures. The proposed network

architecture and the methodologies are detailed in Section III.
Training and experiment results are subsequently presented
and evaluated in Section IV. Finally, a brief conclusion and
future work are given in the last section.

II. RELATED WORKS
In this section, we review the previous works related to
visual odometry (VO) systems in terms of the traditional
feature based VO systems and the recent deep learning based
VO systems.

A. FEATURE BASED VO SYSTEM
In general, visual odometry tackles the problem of recov-
ering the position and orientation of an agent or a robot
in 3D world from associated images. Based on the type
of camera employed, VO systems can be divided into sev-
eral categories, namely monocular VO [16], stereo VO [17]
and omnidirectional VO [18]. Additional sensors are some-
times incorporated to boost the performance, such as depth
sensors [19] (LiDAR or RGB-D camera) and IMU [20].

Most traditional VO systems are feature based. More
specifically, after certain image features are extracted and
represented by descriptors, they are matched across a
sequence of images to calculate transformation matrices
between frames. The performance of these systems depends
heavily on the image features deployed. Speeded Up Robust
Features (SURF) and Scale Invariant Feature Transform
(SIFT) features were used by Kitt et al. [21] and Barfoot [22]
in their stereo VO systems respectively. Mur-Artal et al. [23]
and Mur-Artal and Tardós, [24] modified Oriented FAST and
rotated BRIEF (ORB) feature and proposed one of the state-
of-the-art SLAM systems.

ORB-SLAM is superbly fine-tuned and can be operated
in real-time without GPUs. Such systems are built on the
idea of parallel tracking and mapping (PTAM) [25]. They are
computationally efficient since a whole image is represented
by a sparse set of feature observations and only the features
are involved in calculation. An alternative to feature based
method was brought up by Newcombe et al. [26], [27],
namely dense tracking and mapping (DTAM), which can be
viewed as a direct method. DTAM relies on pixel intensity
and minimizes an error directly in sensor space. Therefore,
feature extraction and matching are not required.

However, due to the high computational demand of pro-
cessing every pixel in an image, GPUs inevitably need
to be employed to make the system run in real-time.
Engel et al. proposed a hybrid semi-dense system, namely
LSD-SLAM, which is operated in real-time with only a
CPU while maintaining the accuracy and robustness of dense
approaches [28], [29]. LSD-SLAM first builds up an inverse
depth map of an image for camera motion estimation. The
inverse depth map is semi-dense, which is estimated from
the image regions with severe gradient changes rather than
a whole image. In this way, the texture of the image is pre-
served and the computational complexity can be significantly
reduced. These systems usually need to be carefully designed
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FIGURE 2. Architecture of the convolutional neural network with input images.

and fine-tuned. In contrast, our method adopts an end-to-end
training framework and requires less engineering effort.

B. DEEP LEARNING BASED VO SYSTEM
In recent years, deep neural networks have been widely used
in the robotics and computer vision domain and have shown
remarkable robustness in challenging environments [30].
This is due to the more descriptive features extracted and the
extremely large and diverse data used for training. PoseNet
proposed by Kendall et al. [3] shows the first implementation
on pose estimation, which directly generates the six degrees
of freedom (6-DoF) of a camera from a single RGB input
image. Themodel GoogLeNet pre-trained on other classifica-
tion tasks is leveraged for pose regression [31]. The softmax
layers that originally output classification results are removed
and replaced by a seven-dimensional pose vector. The last
fully connected layers are also modified.

Since CNNs extracts more robust features than traditional
feature detectors, the system can achieve a high accuracy
even under some extreme conditions, such as intense lighting
and blur images. PoseNet can also be easily generalized to
other scenes through transfer learning technique. The model
on the new task can thus be trained with smaller dataset and
shorter time. Li et al. [5] incorporated another CNN stream
to PoseNet and fed depth images into this stream to enhance
the re-localization accuracy. ORB-SLAM is used to label the
collected images as ground truth. However, all of these deep
learning based methods require ground truth for training,
which can be quite expensive and labor-intensive.

Attentions have been recently drawn to the unsupervised
field due to the shortcomings of the aforementioned super-
vised methods. Zhou et al. [13] presented an unsupervised
deep learning framework for depth and camera motion esti-
mation. Their depth prediction and the pose estimation results

were promising. However, this method failed to recovery
absolute scale due to the limitation caused by using monoc-
ular images only. A scale factor needs to be calculated from
ground truth each time when a pose is estimated and the value
of the scale factor is non-constant.

RCNNs were first introduced by Liang and Hu [32] and
Ren et al. [33] for object recognition and detection, respec-
tively. Donahue et al. [34] also proposed a RCNN model
for activity recognition, image and video description tasks.
All of these works use video as input data. Wang et al. [4]
first employed a RCNN for pose estimation, which however
needs ground truth poses for training. In contrast, this paper
is focused on the unsupervised aspect, following our previous
work [14]. Instead of stereo vision, we use data from a
monocular camera and a LiDAR for training.

III. THE PROPOSED APPROACH
In this section, we discuss the proposed VO system in detail.
The network architecture is given first. The loss functions
used to penalize the system output are subsequently intro-
duced. Finally, the implementations of the network and loss
functions are presented.

A. SYSTEM ARCHITECTURE
The proposed RCNN is presented in Fig. 2 and Fig. 3. More
specifically, Fig. 2 shows the architecture of the Convolu-
tional Neural Network, which can be viewed as a feature
extractor. We take two consecutive monocular images each
time and feed them into the network for training. The images
are resized to 416×128×3 and then stacked along color chan-
nels. Conv represents convolutional layers. The blue cubes
represent feature maps with shapes under them. Fig. 3 shows
the architecture of the Recurrent Neural Network, which can
be viewed as a pose estimator. The network takes the last
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FIGURE 3. Architecture of the recurrent neural network with output poses.

TABLE 1. Specifics of the convolutional layers.

feature maps from the CNN and directly outputs translation
and rotation matrices. The numbers in blue and gray boxes
represent the size of vectors.

The number of hidden units in a LSTM cell was selected
arbitrarily or empirically in past works [4], [14], [34]. Since
our training dataset is relatively small, we decrease the
value to 256 to avoid over-fitting. The CNN takes two raw
RGB images as input and generates a featuremap. The feature
map is then fed into the RNN which finally generates a
transformation matrix between the input images.

It becomes clear that CNNs that are originally trained for a
specific task can be modified and reused for other related but
different tasks [35], [36] since the generic features learned
by a model, especially from lower convolutional layers, are
versatile and transferable [30]. Recently, several models have
been proposed and shown promising performance such as
AlexNet [37], GoogLeNet [31] and ResNet [38]. Our CNN is
based on the network originates fromVisual Geometry Group
neural network (VGG) [39]. Table 1 lists the specifics of each
modified convolutional layer.

Fig. 2 uses KITTI dataset as an example input. The
CNN model can be regarded as an image feature extractor
and descriptor. Assume that I1, I2, ..., It , ..., IN are a sequence

of monocular images used for training. The CNN takes every
two consecutive images as input and yieldsN−1 featuremaps
with the size of which are 4× 1× 512. The input images are
first resized to 416×128×3, stacked along color channels and
then fed into the network. There are 7 convolutional layers in
the CNN.

We use stride 2 to regulate the movement of all of the
convolutional filters (receptive field or kernel) for pixel-wise
operations across image space. This leads to lower output
volume. Since neighboring pixels are strongly correlated in
lower layers, the sizes of the filters in the first two convolu-
tional layers are 7× 7 and 5× 5, respectively. The size drops
to 3 × 3 for the rest layers to capture fine details. The zero-
padding decreases along with the kernel size from 3 to 2 and
then 1 so that the spatial dimension of the input volume can
be preserved.

Each convolutional layer is followed by a Rectified Linear
Unit (ReLU) nonlinear activation function. Batch normal-
ization, which is a commonly used technique for improving
performance of neural networks is not employed in our CNN.
Instead, it results in slow and unstable loss convergence in
our experiments. One possible reason is because batch nor-
malization normalizes the input layer by adjusting and scal-
ing the activations. The absolute differences between image
pixels or features are ignored and only relative differences
are taken into consideration. In this way, batch normalization
can reduce the training difficulty for classification tasks since
it can retain the structure of an image while highlighting
the inconspicuous regions. However, the contrast information
of an image needs to be preserved rather than stretched for
VO tasks. Thus, batch normalization is not applied in our
system.

The feature maps generated from the CNN are reshaped
and flattened to N − 1 chronological vectors. The RNN takes
these vectors as input and learns connections in the sequence
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of image. However, in practice, it is difficult to train a stan-
dard RNN to solve problems that require learning long-term
temporal dependencies, since the gradient of the loss function
decays exponentially with time until vanishes or explodes.
Thus, we adopt a popular solution by incorporating Long
Short-Term Memory (LSTM) units [40] into the RNN.

Compared to standard RNNs, LSTM networks introduce
three gates, namely input, forget and output gates, which
allow for a better control over the gradient flow and preser-
vation of long-term temporal dependencies. The key to an
LSTM network is updating the cell state through time, which
is represented by the green arrows in Fig. 3. Only one
LSTM layer is applied in the RNN. We follow Kawakami’s
suggestion [41] and set the biases of the forget gate to 1 to
reduce the scale of forgetting at the beginning of training.
The projection layer is not used in the LSTM cell, thus the
dimension of the output is also 256.

The output vectors from the RNN represents high-level
features of the transformation information between two con-
secutive frames. We then follow the idea proposed in [4] and
feed them into two fully connected layers to learn nonlinear
combinations of these features. The fully connected layers
have connections to all activations in the previous layer, thus
can realize high-level meaningful reasoning. Unlike other
deep learning based methods which output a single vector
representing 6-DoF, two parallel streams are introduced in our
system to infer translation and rotation independently. This is
due to the fact that rotation is highly nonlinear and always
harder to be trained.

A traditional solution based on practical experience is by
raising the weight of rotation loss. We further extend this idea
and use two separate streams to collect different features for
estimation. The dimension of the fully connected layers is 256
which is the same as the output dimension of the LSTM.
Each layer is followed by a Exponential Linear Unit (ELU)
activation function. Finally, the translation and rotation (rep-
resented by Euler angles) vectors are generated and used for
back-propagation.

B. LOSS FUNCTIONS
In this section, we introduce how the loss functions are
designed in our system. The loss functions or cost functions
describe how far off the pose our RCNN produced is from
the expected result. The loss indicates the magnitude of error
our model made on its inaccurate prediction. We minimize
the loss in order to make the output of the network closer
to the truth. In our system, the total loss consists of 2D and
3D spatial losses. The loss is calculated by using transforma-
tion matrices generated by our RCNN and pairs of consecu-
tive monocular images and point clouds.

Assume that I1, I2, ..., It , It+1, ..., IN is a sequence of
monocular images in chronological order used for training
and D1,D2, ...,Dt ,Dt+1, ...,DN are the associated depth
images. It and It+1, (1 ≤ t < t + 1 ≤ N ) are two
consecutive frames in this image sequence. To compute
2D spatial loss, we first project a point from It to It+1

using the transformation matrix and its depth value. A new
frame Ît can then be reconstructed from the projected point
in It+1. Finally, we compare Ît with It for loss calculation.
In terms of 3D spatial loss, we directly swap a point cloud to
its neighboring frame through the transformation matrix and
compare their difference.

1) 2D SPATIAL LOSS
Pairs of consecutive RGB images and point clouds are used
to compute 2D spatial loss. We first rescale the voxel values
of the point clouds to 0-255 and project the point clouds
to single-channel 2D depth images. Thus, each pixel in a
calibrated depth image represents the depth value of the
corresponding point in the associated monocular image.

Let pt (ut , vt ) and dt denote a point in It and its depth
value in Dt , respectively. We then try to project pt to the
frame It+1 at time t + 1. Assume the projected point in
It+1 is p̂t+1(ût+1, v̂t+1). Based on the pinhole camera model,
a scene view can be formed by projecting 3D points in the
world coordinate system into the image 2D plane using a
perspective transformation

dtpt = KPt (1)

or

dt

 utvt
1

 = K

 xtyt
zt

, (2)

where K is the camera intrinsic matrix, Pt (xt , yt , zt ) is the
voxel in the world coordinate system projected from point pt .
Note that in Equation 2, dt = zt .

On the other hand, based on 3D linear transformation
theory, we have

P̂t+1 = R̂t−>t+1Pt + t̂t−>t+1 (3)

or

P̂t+1 = R̂t−>t+1dtK−1pt + t̂t−>t+1, (4)

where P̂t+1 is the voxel in the world coordinate system
projected from p̂t+1. R̂t−>t+1 (converted from Euler angles)
and t̂t−>t+1 are the rotation matrix and translation vector
generated by the RCNN, respectively. The size of rotation
matrix R̂t−>t+1 is 3×3, whereas the size of translation vector
t̂t−>t+1 is 3 × 1. We can then project P̂t+1(x̂t+1, ŷt+1, ẑt+1)
to the image 2D plane through

d̂t+1

 ût+1v̂t+1
1

 = K

 x̂t+1ŷt+1
ẑt+1

 , (5)

where d̂t+1 is the depth value of p̂t+1(ût+1, v̂t+1) and d̂t+1 =
ẑt+1. In this way, we can derive p̂t+1 from pt by

p̂t+1 =
1
ẑt+1

K (R̂t−>t+1dtK−1pt + t̂t−>t+1). (6)

We then use the framework proposed by
Jaderberg et al. [42] to reconstruct It . More specifically,
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the value of pt in the reconstructed image Ît is generated by
the top left, top right, bottom left and bottom right neighbors
of p̂t+1 in It+1. Similarly, we can reconstruct image It+1 by

p̂t =
1
ẑt
K (R̂t+1−>tdt+1K−1pt+1 + t̂t+1−>t ), (7)

where pt+1 is a point in It+1, p̂t is the projected point in It ,
dt+1 is the depth value of pt+1, P̂t (x̂t , ŷt , ẑt ) is the voxel in
the world coordinate system projected from p̂t , R̂t+1−>t =
R̂−1t−>t+1, t̂t+1−>t = −R̂

−1
t−>t+1 t̂t+1−>t .

Finally, the 2D spatial loss can be represented by

L2D =
N−1∑
t=1

(
|It − Ît | + |It+1 − Ît+1|

)
. (8)

2) 3D SPATIAL LOSS
3D spatial loss is computed by using point clouds and trans-
formation matrices generated from the RCNN. Assume Ct
and Ct+1, (1 ≤ t < t + 1 ≤ N ) are two consecutive point
clouds which are inverse-projected from Dt and Dt+1 to the
world coordinate system. Let ct denote a point in Ct , we then
project this point to Ct+1 through transformation matrix.
Based on 3D linear transformation theory, the projected point
can be derived by

ĉt+1 = R̂t−>t+1ct + t̂t−>t+1. (9)

The reconstructed point cloud Ĉt+1 can thus be obtained.
We can also reconstruct Ĉt from Ct+1 by

ĉt = R̂t+1−>tct+1 + t̂t+1−>t , (10)

where ct+1 is a point in Ct+1 and ĉt is the projected point
in Ĉt .
Finally, we employ a strategy similar to Iterative Closest

Point (ICP) algorithm proposed byChen andMedioni [43] for
3D spatial loss calculation. Similar strategy is also adopted by
Mahjourian et al. [44].

L3D =
N−1∑
t=1

(
|Ct − Ĉt | + |Ct+1 − Ĉt+1|

)
. (11)

The total loss can thus be acquired by

L = λ2DL2D + λ3DL3D, (12)

where λ2D and λ3D are the weights for 2D and 3D spatial
losses, respectively.

C. IMPLEMENTATION
Fig. 4 presents an overview of the network and loss function
implementations and how back-propagation operates in the
proposed RCNN. In the figure, we use two pairs of consecu-
tive monocular and depth images for illustration. No ground
truth poses are used for training. The transformation matrix
generated from the network is used for loss calculation. The
transformation matrix T̂t−>t+1 directly generated from the
network and its inverse T̂−1t−>t+1 are used for loss calculation.

FIGURE 4. Overview of the training process.

Specifically, we use the monocular image It , depth infor-
mation Dt at time t and the transformation matrix T̂t−>t+1
to reconstruct the monocular image Ît+1 at time t + 1. Sim-
ilarly, the reconstructed monocular image Ît at time t can
be obtained by the monocular image It+1, depth information
Dt+1 at time t + 1 and the inverse of the transformation
matrix T̂−1t−>t+1. The 2D spatial loss L2D can thus be calcu-
lated by Equation 8. We then use the depth information Dt at
time t and the transformation matrix T̂t−>t+1 to reconstruct
the depth information D̂t+1 at time t + 1.

Similarly, the depth information D̂t at time t can be
obtained by the depth information Dt+1 at time t + 1 and the
inverse of the transformation matrix T̂−1t−>t+1. The 3D spatial
loss L3D can thus be calculated by Equation 11. We then
calculate the total loss L based on Equation 12. The total
loss is then back propagated through the network, adjusting
its weights and making it closer to the truth in the next
round. The orange arrows show how a pixel or a voxel can
be projected to its neighboring frame. Depth images are used
for both 2D and 3D spatial loss calculation, thus the abso-
lute scale can be recovered. Algorithm 1 presents a detailed
implementation scheme.

IV. EXPERIMENTS
In this section, we first present the training details and then
compare the performance of our VO system with other state-
of-the-art algorithms in terms of both translation and rotation
accuracy.

A. TRAINING
We trained the proposed RCNN on a DELL workstation with
an Intel Core i7-4790K@4.0GHzCPU and aNvidia GeForce
GTX Titan X 12GB Memory GPU. The model implemen-
tation environment is TensorFlow [45], which is an open
source software library originating from Google’s Machine
Intelligence research organization for numerical computation
using data flow graphs. For fair comparison in Section IV-B,

VOLUME 7, 2019 18081



Q. Liu et al.: Using Unsupervised Deep Learning Technique for Monocular Visual Odometry

Algorithm 1 Implementations of the RCNN and Loss
Functions
Input : Consecutive monocular images {I1, I2, ..., IN }

Associated depth images {D1,D2, ...,DN }
Output: Trained RCNN
function prepare_Training_Data

for i in (1 : N + 1) do
if i > (Nseq − 1)/2 and i < N − (Nseq − 1)/2
then

resize Ii to 416× 128× 3;
project Velodyne point cloud to depth image
Di;
resize Di to 416× 128× 1;
stack Ii and Di horizontally;
save camera intrinsics matrix file;

end
end
split data into two parts for training and testing;

end
function build_Training_Graph

prepare training data and camera intrinsics matrix
path;
design data augmentation based on luminance γ ,
scale sx , sy and rotation rd ;
design the RCNN;
design total loss L = λ2DL2D + λ3DL3D;

end
function Train

load hyper parameters;
set thres_Epoch = 30 based on experimental
experience;
if epoch<thres_Epoch then

feed training data into the RCNN;
compute L;
adjust the RCNN parameters;
if step%500 = 0 then

collect summary;
save network;

end
else

break
end

end

we adopted the same training dataset presented by
Zhou et al. [13] based on KITTI dataset only.

Before training, we resized the monocular images to
416 × 128 with 3 RGB channels and projected associated
3D point clouds to 2D single-channel depth images. Each
point in a depth image represents the depth value of the cor-
responding point in the monocular image. Since KITTI data
is relatively limited, online data augmentation technique is
applied to enlarge the dataset and the results are shown
in Fig. 5. More specifically, the augmentation processing
includes:

FIGURE 5. Data augmentation. (a) Original monocular image without
data augmentation. (b) Luminance correction. (c) Image rescale and
cropping. (d) Clockwise image rotation.

• Luminance: The input monocular images are randomly
corrected by gamma γ ∈ [0.7, 1.3].

• Scale: The input monocular and depth images are ran-
domly scaled by scale factors sx ∈ [1, 1.2] and sy ∈
[1.0, 1.2] along X-axis and Y-axis, respectively. The
images are then randomly cropped to 416× 128.

• Rotation: The input monocular and depth images are
randomly rotated by r ∈ [−5, 5] degrees. Nearest-
neighbor interpolation is used.

Note that the camera equipped on the KITTI car has a
wider field-of-view than the LiDAR sensor, thus we only
used the cropped region presented in [46] for loss calculation,
as shown in Fig. 6.

We then fed pairs of monocular and depth images into
the RCNN and trained the network from scratch. No ground
truth poses were used during training. We employed the
Adam optimization algorithm [47], which is an extension to
Stochastic Gradient Descent (SGD) method and has recently
been widely adopted in deep learning. We followed their idea
and set the exponential decay rates for the first and second
moment estimates β1 = 0.9 and β2 = 0.999, respectively.
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FIGURE 6. Region of interest for loss calculation. Ignored region is grayed
out. X-axis: from 15 to 401. Y-axis: from 53 to 126.

FIGURE 7. Training loss. X-axis: training steps. Y-axis: total loss.

We set N = 5 and trained the RCNN for 40 epochs in
total. The batch size is 32. Our learning rate schedule is step-
decay based. The initial learning rate was set to 0.0002 and
dropped to 0.0001 after 3/4 of the total training steps to allow
more fine-grained weight updates. No batch normalization
was used since we found that it resulted in slow and unstable
loss convergence in our experiments.

The total loss against training steps is shown in Fig. 7. The
noisy light line represents the raw data of the total loss and
the dark line is the smoothing result of the total loss. The
smoothing algorithm we use is a moving average. Given a
point ploss at step sp, it replaces ploss with an average of the
points in the range of [sp − 5000, sp + 5000]. The range
is reduced on both sides of sp to fit exactly the number of
elements available if there are less than 5,000 steps to the
left. This means that the smoothed value is higher than its
true value and gradually becomes close to its true value until
the desired range is reached. We have removed the data after
step 24,000 since the smoothed total loss remains almost
constant. As can be seen from Fig. 7, the total loss dropped
rapidly before 9,000 steps and then reduced slowly. Finally,
it reached 0.7 at step 24,000.

At the same time, the disparity image between a monocular
image and its projected image were used to visualize and
monitor the training process. Fig. 8(a) shows the disparity at
the beginning of training and Fig. 8(b) shows the disparity

FIGURE 8. Change of disparity during training. (a) Disparity at the
beginning of training. (b) Disparity at the end of training.

at the end of training. It is clear that the images grew darker
during training, i.e., the disparity was narrowed.

B. PERFORMANCE EVALUATION
Performance evaluation was carried out on a desktop with
an Intel Core i7-3370 @3.4GHz CPU and a Nvidia GeForce
GTX 980 4GB Memory GPU. Our proposed VO system was
compared with other state-of-the-art VO systems based on
KITTI Odometry dataset. The benchmark includes 22 stereo
sequences and ground truth poses are provided for
00-10 sequences. The images were captured on a vehicle
at 10 Hz which was moving in a city, rural areas and on
highways at speed ranging from 0 km/h to 90 km/h. The
scenes in the dataset are not static. Moving objects include
cars and pedestrians. All these factors produce disturbance to
VO systems and make the task more challenging.

Our system can generate VO on an absolute scale without
data post-processing. During testing, the network took only
consecutive monocular images as input and directly gener-
ated poses. Thus our system is still a monocular VO sys-
tem. We compare the proposed method to other state-of-
the-art monocular VO systems, namely SfMLearner [13],
VISO2-Mono. VISO2-Stereo [48] which is a stereo VO sys-
tem is also used as a reference. No loop-closure detection
(automatic or manual tagging) was applied and the same
parameter set was used for all sequences.

Our system and SfMLearning are unsupervised deep learn-
ing based, whereas VISO2-Mono and VISO2-Stereo are
feature based. Since SfMLearning relies on ground truth
poses for scale recovery, we post-processed the SfMLearn-
ing results for comparison. VISO2-Mono recovers absolute
scale through a fixed camera height. VISO2-Stereo directly
outputs poses on an absolute scale since it employs stereo
sequences for testing. The input image resolution of our
system and SfMLearning is 416×128, whereas VISO2-Mono
and VISO2-Stereo adopt a 1242× 376 setting.

Fig. 9 shows the trajectories of KITTI Odometry from
Sequence 02 to Sequence 10. The results were generated
by our system, SfMLearner and VISO2-Mono. Ground truth
trajectories are provided as a reference. Sequence 01 is omit-
ted since the sequence was captured on a highway with
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FIGURE 9. Trajectories of KITTI Odometry sequence 02-10 which are produced by our system, SfMLearner and VISO2-Mono. Ground truth trajectories
are provided as a reference. SfMLearner results are post-processed with ground truth poses for scale recovery. Only 2D trajectories (X-axis and Z-axis)
are provided for clearer presentation. The vertical Y-axis is omitted. Note that Sequence 09 and 10 are not used for training. (a) Sequence 02.
(b) Sequence 03. (c) Sequence 04. (d) Sequence 05. (e) Sequence 06. (f) Sequence 07. (g) Sequence 08. (h) Sequence 09. (i) Sequence 10.

rare features. Thus, all methods including VISO2-Stereo
failed to recover the absolute scale. As can be seen from
Fig. 9, the proposed method outperforms other monocular
VO systems. The generated trajectories are the closest to the
ground truth ones. It should be noticed that Sequence 09

and 10 are not used for training. However, the results of these
two sequences show the pre-trained model can be generalized
and applied to other similar scenes.

The detailed translational and rotational errors are listed
in Table 2. We adopt Root Mean Square Error (RMSE)
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FIGURE 10. Trajectories of KITTI Odometry sequence 11-15 and 17-20 which are produced by our system and VISO2-Mono. VISO2-Stereo trajectories are
provided as a reference. No ground truth poses are provided for these sequences. Only 2D trajectories (X-axis and Z-axis) are provided for clearer
presentation. The vertical Y-axis is omitted. (a) Sequence 11. (b) Sequence 12. (c) Sequence 13. (d) Sequence 14. (e) Sequence 15. (f) Sequence 17.
(g) Sequence 18. (h) Sequence 19. (i) Sequence 20.

recommended by KITTI for evaluation. The translational
errors are measured in percent (%), whereas the rotational
errors are measured in degrees per meter (◦/m). Each value
in the table was obtained by averaging errors of all possible
subsequences of length 100, 200,..., 800 meters. From the

table we can see our method generated lower errors than other
monocular systems in terms of both translation and rotation
and can be compared to a stereo VO system. We can further
reduce the rotational errors by manually increasing the ratio
of the training images captured when the vehicle is turning.
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TABLE 2. Translational and rotational errors. VISO2-Stereo results are provided as a reference. SfMLearner poses are post-processed with ground truth
poses for scale recovery. Sequence 09 and 10 are not used for training.

Since KITTI dataset is relatively small, the overall perfor-
mance of our network can also be improved by employing
larger dataset for training.

The trajectories of KITTI Odometry from Sequence 11 to
15 and from Sequence 17 to 20 are presented in Fig. 10.
VISO2-Stereo trajectories are also provided as a reference.
No ground truth poses are provided for these sequences. Thus,
quantitative evaluation cannot be carried out. We can see the
performance of our method is close to VISO2-Stereo (our tra-
jectories are closer to VISO2-Stereo than VISO2-Mono). The
deviations of the estimated rotation and translation matrices
inevitably exist due to significant speed changes and sharp
turns. In addition, in the casewhen the car bumps, the distance
from the camera to the ground changes. Therefore, using a
fixed value to recover absolute scale is not reliable. From
the figures we can tell our method generally outperforms
VISO2-Mono in terms of translation estimation
(Figure 10a, 10d, 10e, 10f, 10g) and rotation estimation
(Figure 10b, 10c, 10h).

Although the proposed method outperforms other monoc-
ular VO systems in terms of translation and rotation accuracy,
the processing time is longer. We set batch size to 1 for pose
generation. The processing time is 0.09 second per pose based
on a Nvidia GeForce GTX 980 GPU and the input image size
being 416 × 128 × 3, whereas VISO2-Mono and VISO2-
Stereo systems require only a CPU to achieve a similar speed.
Compared to other deep learning based methods, we require
no ground truth poses for training or scale post-processing,
but still need depth information for injecting the scale.

V. CONCLUSION
This paper proposed a monocular visual odometry sys-
tem based on deep learning technique. The system oper-
ates in an unsupervised end-to-end training manner.

Consecutive monocular images and depth information are
used for training. As no ground truth pose labeling is
needed, the proposed system requires less human effort and
is cheap to run. For testing, the proposed system takes only
monocular images as input and directly generates poses
on an absolute scale. Experiments were carried out on
KITTI dataset. Results have shown that our system outper-
forms other monocular VO systems in terms of translation
and rotation accuracy and can be compared to stereo VO sys-
tems. The pre-trained model can also be generalized to other
scenes. The performance of the system can be improved by
further training.

The proposed method requires high computing power and
is difficult to achieve real-time performance. In the future,
we will continue improving its computing efficiency based
on the unsupervised training manner. Depth information will
be incorporated during testing in order to boost system per-
formance for real-time navigation of autonomous robots and
the visual guidance of blind people.
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