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Excessively high, neural synchronization has been associated with epileptic seizures,

one of the most common brain diseases worldwide. A better understanding of neural

synchronization mechanisms can thus help control or even treat epilepsy. In this paper,

we study neural synchronization in a random network where nodes are neurons with

excitatory and inhibitory synapses, and neural activity for each node is provided by

the adaptive exponential integrate-and-fire model. In this framework, we verify that

the decrease in the influence of inhibition can generate synchronization originating

from a pattern of desynchronized spikes. The transition from desynchronous spikes to

synchronous bursts of activity, induced by varying the synaptic coupling, emerges in a

hysteresis loop due to bistability where abnormal (excessively high synchronous) regimes

exist. We verify that, for parameters in the bistability regime, a square current pulse

can trigger excessively high (abnormal) synchronization, a process that can reproduce

features of epileptic seizures. Then, we show that it is possible to suppress such

abnormal synchronization by applying a small-amplitude external current on> 10% of the

neurons in the network. Our results demonstrate that external electrical stimulation not

only can trigger synchronous behavior, but more importantly, it can be used as ameans to

reduce abnormal synchronization and thus, control or treat effectively epileptic seizures.

Keywords: bistable regime, network, adaptive exponential integrate-and-fire neural model, neural dynamics,

synchronization, epilepsy

1. INTRODUCTION

Epilepsy is a brain disease that causes seizures and sometimes loss of consciousness (Chen et al.,
2014, 2015). Epileptic seizures are associated with excessively high synchronous activities (Li et al.,
2007; Jiruska et al., 2013; Wu et al., 2015) of neocortex regions or other neural populations (Fisher
et al., 2005; Sierra-Paredes and Sierra-Marcuño, 2007; Engel et al., 2013; Geier and Lehnertz, 2017;
Falco-Walter et al., 2018). Electroencephalography has been used to identify and classify seizures
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(Noachtar and Rémi, 2009), as well as to understand epileptic
seizures (Scharfman and Buckmaster, 2014). Abnormal activities
have a short period of time, lasting from a few seconds to minutes
(Trinka et al., 2015), and they can occur in small or larger
regions in the brain (McCandless, 2012; Kramer and Cash, 2012).
Two suggested mechanisms responsible for the generation of
partial epilepsy are the decrease of inhibition and increase of
excitation (McCandless, 2012). In experiments and simulations,
the reduction of excitatory and the increase of inhibitory
influence have been effective in suppressing and preventing
synchronized behaviors (Traub et al., 1993; Schindler et al., 2008).
Traub and Wong (1982) showed that synchronized bursts that
appear in epileptic seizures depend on neural dynamics.

Single seizures can not kill neurons, however recurrent ones
can do so and thus, can lead to chronic epilepsy (Dingledine
et al., 2014). Evidence that supports this further is provided by
abnormal anatomical alterations, such as mossy fiber sprouting
(Danzer, 2017), dendritic reconfigurations (Wong, 2005, 2008),
and neurogenesis (Jessberger and Parent, 2015; Cho et al., 2015).
In fact, such alterations change the balance between inhibition
and excitation (Holt and Netoff, 2013; Silva et al., 2003). Wang
et al. (2017) demonstrated that a small alteration in the network
topology can induce a bistable state with an abrupt transition to
synchronization. Some in vitro seizures generated epileptiform
activities when inhibitory synapses were blocked or excitatory
synapses were enhanced (Traub et al., 1994; White, 2002).
Several studies showed that epileptiform activities are related
not only with unbalanced neural networks, but also with highly
synchronous regimes (Uhlhaas and Singer, 2006; Andres-Mach
and Adamu, 2017).

Different routes to epileptic seizures were reported by
Silva et al. (2003). The authors considered epilepsy as a
dynamical disease and presented a theoretical framework where
epileptic seizures occur in neural networks that exhibit bistable
dynamics. In the bistable state, transitions can happen between
desynchronous and synchronous behaviors. Suffczynski et al.
(2004) modeled the dynamics of epileptic phenomena by means
of a bistable network.

Many works reported that periodic electrical pulse stimulation
facilitates synchronization, while random stimulation promotes
desynchronization in networks (Cota et al., 2009). Electrical
stimulation can be applied in different brain areas, for instance
in the hippocampus, thalamus, and cerebellum (McCandless,
2012). The mechanism for electrical stimulation to cease seizures
is still not completely understood, however, signal parameters
such as frequency, duration, and amplitude can be changed to
improve the efficiency of the treatment of epilepsy (McCandless,
2012). The electrical stimulation has been used as an efficient
treatment for epilepsy in the hippocampus (Velasco et al., 2007).
In Antonopoulos (2016), the author studied external electrical
perturbations and their responses in the brain dynamic network
of the Caenorhabditis elegans soil worm. It was shown that
when one perturbs specific communities, keeping the others
unperturbed, the external stimulations propagate to some but not
all of them. It was also found that there are perturbations that
do not trigger any response at all and that this depends on the
initially perturbed community.

Neural network models have been used to mimic phenomena
related to neural activities in the brain. Guo et al. (2016a) built
a network model where the postsynaptic neuron receives input
from excitatory presynaptic neurons. They incorporated autaptic
coupling (Guo et al., 2016b) in a biophysical model. Delayed
models have been considered in biological systems (Khajanchi
et al., 2018), for instance, Sun et al. (2018) analyzed the influence
of time delay in neuronal networks. They showed that intra-
and inter-time delays can induce fast regular firings in clustered
networks. In this work, we build a random network with neural
dynamics to study synchronization induced in a bistable state
which is related to epileptic seizures. In particular, we consider
a network composed of adaptive exponential integrate-and-fire
(AEIF) neurons coupled by means of inhibitory and excitatory
synapses. The AEIF model mimics phenomenological behaviors
of neurons (Clopath et al., 2006) and is appropriate to study
even large networks (Naud et al., 2008). Borges et al. (2017)
verified that depending on the excitatory synaptic strength and
connection probability, a random network of coupled AEIF
neurons can exhibit transitions between desynchronized spikes
and synchronized bursts (Protachevicz et al., 2018). In the
network considered here, we observe the existence of bistability
when it is unbalanced, namely that the decrease of synaptic
inhibition induces a bistable state. We analyse the effects of the
application of external square current pulses (SCP) by perturbing
the neural dynamics on the network using parameters that lead
to a bistable state, such as the excitatory and inhibitory synaptic
conductances. We find that, depending on the duration and
amplitude of the external current, SCP can either trigger or
suppress synchronization in the bistability region, an idea that
can be used further to treat epilepsy by suppressing excessive
synchronization in affected brain regions.

2. METHODS

2.1. Neural Network Model
We build a random network of N = 1, 000 adaptive exponential
integrate-and-fire neurons (Brette and Gerstner, 2005) with
probability p for the formation of connections among them equal
to 0.1. The network consists of 80% excitatory and 20% inhibitory
neurons (Noback et al., 2005). The dynamics of each neuron
i, i = 1, . . . ,N in the network is given by the set of equations

Cm
dVi

dt
= −gL(Vi − EL)+ gL1T exp

(

Vi − VT

1T

)

+ Ii − wi +

N
∑

j=1

(V
j
REV − Vi)Mijgj + Ŵi,

τw
dwi

dt
= ai(Vi − EL)− wi, (1)

τs
dgi

dt
= −gi.

The membrane potential Vi and adaptation current wi represent
the state of each neuron i. The capacitance membrane Cm is
set to Cm = 200 pF, the leak conductance to gL = 12 nS,
the resting potential to EL = −70 mV, the slope factor to
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1T = 2.0 mV and the spike threshold to VT = −50 mV.
The adaptation current depends on the adaptation time constant
τw = 300 ms and the level of subthreshold adaptation ai that is
randomly distributed in the interval [0.19, 0.21] nS. We consider
the injection of current Ii to each neuron i in terms of the
relative rheobase current ri = Ii/Irheobase (Naud et al., 2008).
The rheobase is the minimum amplitude of the applied current
to generate a single or successive firings. The application of
this constant current allows neurons to change their potentials
from resting potentials to spikes. The value of the rheobase
depends on the neuron parameters. The external current arriving
at neuron i is represented by Ŵi. We consider the external current
according to a SCP with amplitude AI and time duration TI .
The random connections in the network are described by the
binary adjacency matrix Mij with entries either equal to 1 when
there is a connection from i to j or 0 in the absence of such
a connection. gi is the synaptic conductance, τs the synaptic
time constant, and VREV the synaptic reversal potential. We
consider τs = 2.728 ms, VREV = 0mV for excitatory synapses,
and VREV = −80 mV for inhibitory synapses. The synaptic
conductance decays exponential with a synaptic time constant τs.
When the membrane potential of neuron i is above the threshold
Vi > Vthres (Naud et al., 2008), the state variable is updated by
the rule

Vi → Vr = −58mV,

wi → wi + 70pA, (2)

gi → gi + gs,

where gs assumes the value of gexc when neuron i is excitatory
(i ≤ 0.8N) and ginh when neuron i is inhibitory (i > 0.8N). In
this work, we study the parameter space (gexc, ginh) and consider
a relative inhibitory synaptic conductance g = ginh/gexc. We
consider parameter values in which the individual uncoupled
neurons perform spike activities. The initial values ofV andw are
randomly distributed in the interval [−70,−50] mV and [0, 70]
pA, respectively. The initial gi value is equal to 0.

2.2. Synchronization
The synchronous behavior in the network can be identified by
means of the complex phase order parameter (Kuramoto, 1984)

R(t) exp(i8(t)) ≡
1

N

N
∑

j=1

exp(iψj(t)), (3)

where R(t) and 8(t) are the amplitude and angle of a centroid
phase vector over time, respectively. The phase of neuron j is
obtained by means of

ψj(t) = 2πm+ 2π
t − tj,m

tj,m+1 − tj,m
, (4)

where tj,m corresponds to the time of the m−th spike of neuron
j (tj,m < t < tj,m+1) (Rosenblum et al., 1996, 1997). We
consider that the spike occurs for Vj > Vthres. R(t) is equal
to 0 for fully desynchronized and 1 for fully synchronized
patterns, respectively.

We calculate the time-average order parameter R (Batista
et al., 2017) given by

R =
1

tfin − tini

∫ tfin

tini

R(t)dt, (5)

where tfin − tini is the time window. We consider tfin = 200s
and tini = 180s.

2.3. Synaptic Input
Wemonitor the instantaneous synaptic conductances arriving at
each neuron i through

IISCi (t) =

N
∑

j=1

(V
j
REV − Vi)Mijgj. (6)

The instantaneous synaptic input changes over time due to
the excitatory and inhibitory inputs received by neuron i. The
average instantaneous synaptic conductances is given by

Isyn(t) =
1

N

N
∑

i=1

IISCi (t). (7)

2.4. Coefficient of Variation
The m−th inter-spike interval ISImi is defined as the difference
between two consecutive spikes of neuron i,

ISImi = tm+1
i − tmi > 0, (8)

where tmi is the time of them−th spike of neuron i.

Using the mean value of ISIi, ISIi, and its standard deviation,
σISIi , we calculate the coefficient of variation (CV)

CVi =
σISIi

ISIi
. (9)

The average of CV (CV) is then obtained through

CV =
1

N

N
∑

i= 1

CVi. (10)

Finally, we use CV to identify spike (when CV < 0.5) and
burst fire patterns (when CV ≥ 0.5) (Borges et al., 2017;
Protachevicz et al., 2018).

2.5. Instantaneous and Mean Firing-Rate
The instantaneous firing-rate in intervals of tstep = 1ms
is given by

F(t) =
1

N

N
∑

i= 1

(∫ t+tstep

t
δ(t′ − ti)dt

′

)

, (11)

where ti is the firing time of neuron i in the time interval (t ≤

ti ≤ t + 1) ms. This measure allows to obtain the instantaneous
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FIGURE 1 | Parameter space (g, r) for the (A) time-average order parameter (R), (B) the mean coefficient of variation (CV), and (C) the mean firing-rate (F ). Raster plot

that displays the spiking activity over time and membrane potential are shown for (D) desynchronized spikes for r = 2.0 and g = 5.5 (cyan triangle), (E) synchronized

spikes for r = 1.5 and g = 4 (magenta square), and (F) synchronized bursts for r = 2.0 and g = 2.5 (green circle). Here, we consider gexc = 0.4nS. In (G), we

illustrate a network composed of excitatory (red) and inhibitory (blue) neurons, where some inhibitory neurons are removed (black dashed circle). (H) Shows the

time-average order parameter for g vs. the percentage of inhibitory neurons removed from the network. The green dashed line corresponds to g = 2.9. The values of

CV and instantaneous firing-rate are shown in (I,J), respectively.

population activity in the network. The mean firing-rate can then
be calculated by means of

F =
1

ISI
, (12)

where ISI is the average ISI obtained over all N neurons in the
network, that is ISI = 1

N

∑N
i=1 ISIi.

3. RESULTS

3.1. Inhibitory Effect on Synchronous
Behavior
The balance between excitation and inhibition generates an
asynchronous activity in the network (Lundqvist et al., 2010;
Ostojic, 2014). However, for the unbalanced network we observe
synchronized spikes and bursts. Figures 1A–C show the time-
average order parameter (R), the mean coefficient of variation
(CV) and the mean firing-rate (F), respectively, for the parameter
space (g, r), where g is the ratio between inhibitory (ginh)
and excitatory (gexc) synaptic conductances, and r the relative
rheobase current. For gexc = 0.4nS and g > 6, we observe that
R < 0.5 and that CV < 0.5, corresponding to desynchronized
spikes. In Figure 1D, we see the raster plot and membrane
potential for 2 neurons in the network with a desynchronized
spike-pattern for g = 5.5 and r = 2 (blue triangle). For g = 4 and

r = 1.5 (magenta square), the dynamics exhibits synchronized
spikes (Figure 1E), as a result of setting R > 0.9 and CV < 0.5.
Figure 1F shows synchronized bursts of activity for g = 2.5 and
r = 2 (green circle), where R > 0.9 and CV ≥ 0.5. Within
this framework, we have verified the existence of transitions
from desynchronized spikes to synchronized bursting activities
without significant changes in the mean firing-rate.

The appearance of synchronous behavior cannot only be
related to the decrease of the inhibitory synaptic strength, but
also to a loss of inhibitory neurons. In particular, we show this
in Figure 1G which illustrates a network composed of excitatory
(red) and inhibitory (blue) neurons, where some inhibitory
neurons were removed (dashed circles). In Figure 1H, we see
that the synchronous behavior depends on g and the percentage
of removed inhibitory neurons. Figure 1I shows the transition
from spiking dynamics (CV < 0.5) to bursting dynamics (CV ≥

0.5), and Figure 1J shows the instantaneous firing-rate F(t). For
g = 2.9 and gexc = 0.4nS (green dashed line), the transition to
synchronized bursts occurs when 10% of inhibitory neurons are
removed from the network, and as a consequence F(t) reaches the
maximum value of 0.2.

Concluding, alterations in the inhibitory synaptic strength or
in the number of inhibitory neurons can induce transition to
synchronous patterns. Wang et al. (2017) presented results where
synchronization transition occurs as a result of small changes in
the topology of the network, whereas here, we study transitions
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FIGURE 2 | (A) The parameter space (g,gexc) for r = 2, where R is encoded in color. The black region corresponds to desynchronized activity, whereas colored

regions indicate R > 0.6 and the white region represents the bistable regime. (B) The bistable region indicated in the parameter space of (A) by means of a green

dashed line. (C,D) Show the raster plots and Isyn for desynchronized spikes (blue circle) and synchronized bursts (red square), respectively. We identify bistability by

checking when Rbackward − Rforward > 0.4 and consider two trials for each set of parameter values. (E) The synchronization probability as a function of gexc.

(F) R× gexc for σnoise equal to 25 pA and 250 pA.

caused due to changes in the inhibitory synaptic strength and the
emergence of a bistable regime.

3.2. Bistable Regime
Next, we analyse synchronization in the parameter space (g, gexc).
In particular, Figure 2A shows R with values depicted in the
color bar. The black region corresponds to desynchronized spike
activity, while the remaining colored regions are associated with
burst activities. The white region represents the bistable regime,
where desynchronized spikes or synchronized bursts are possible
depending on the initial conditions. In the bistable regime,
decreasing gexc (backward direction), R is higher than increasing
gexc (forward direction), as shown in Figure 2B for g = 3, r = 2,
and gexc = [0.35, 0.45] nS (green dashed line in Figure 2A).
We identify bistability (white region) in the parameter space
when the condition Rbackward − Rforward > 0.4 is fulfilled. The
raster plot and instantaneous synaptic input for desynchronized
spikes (blue circle) and synchronized bursts (red square) are
shown in Figures 2C,D, respectively. When the dynamics on
the random network is characterized by desynchronized spikes,
the instantaneous synaptic inputs exhibit Isyn(t) ≈ 50pA. For
synchronized bursts, Isyn(t) ≈ 0 when a large number of neurons
in the network are silent (i.e., not firing), and Isyn(t) > 200 pA
during synchronous firing activities. In Figure 2E, we compute
the probability of occurrence of excessively high synchronicity
within the bistable regime. We observe a small synchronization
probability value in the bistable region. This result has a
biological importance due to the fact that the seizure state is
a relatively small probability event compared with the normal
state. DaQing et al. (2017) showed that noise can regulate seizure
dynamics in partial epilepsy. Figure 2F displays R × gexc for

FIGURE 3 | Phase space (w1,V1) (A,C) and time evolution of w1 (B,D) for

spikes (blue) and burst activity (red). The gray regions correspond to

dV1/dt < 0 and the black line represents dV1/dt = 0 (V-nullcline).

Gaussian noise with mean 0 and standard deviation σnoise equal
to 25 pA and 250 pA. We verify that the bistable region decreases
when the noise level increases.

In the bistable regime, we investigate the evolution of a
trajectory for a finite time interval in the phase space (wi,Vi)
and the time evolution of wi shown in Figure 3 for i = 1,
where the gray regions correspond to dVi/dt < 0. The boundary
between the gray and white regions (black line) is given by
dVi/dt = 0, the Vi-nullcline (Naud et al., 2008). During spiking
activity, the trajectory (see Figure 3A) and time evolution of
wi (see Figure 3B) do not cross the Vi-nullcline. For bursting
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activities (see Figures 3C,D), we observe that wi lies in the
region enclosed by theVi-nullcline. The emergence of the bistable
behavior is related to changes in the Vi-nullcline caused by the
variation of Isyn.

3.3. External Square Current Pulse
Here, following a similar idea as in Antonopoulos (2016), we
investigate the effect of the application of SCP on the bistable
regime. We apply SCP considering different values of AI , TI , and
number of removed inhibitory neurons. The SCP is immediately
switched off after TI and the analysis of the effect on the
dynamical behavior is started.

FIGURE 4 | (A) The parameter space (TI,AI ) in the bistable regime, where the

color bar indicates the time the system shows synchronized burst behavior

after the application of SCP. Instantaneous firing-rate for values for (B) white

circle (AI = 25pA, TI = 0.2s) and (C) green square (AI = 150pA, TI = 0.2s).

Note that in this figure gexc = 0.4nS, g = 3 and r = 2.

Initially, we apply SCP to all neurons in the network with
parameter values in the bistable regime with desynchronous
behavior (white region in Figure 2A). Figure 4A displays the
time (in color scale) that the neurons show a synchronized
pattern after the application of SCP. In the black region, we
see that SCP does not change the dynamical behavior, namely
the neurons remain in a regime of desynchronized behavior.
The yellow region depicts the values of TI and AI of the
SCP that induce a change in the behavior of the neurons
from desynchronized spikes to synchronized bursts. Picking up
one point close to the border of the black and blue regions
(white circle), we see that the instantaneous firing-rate (F(t)) of
Equation 11 (see Figure 4B, blue line) exhibits low-amplitude
oscillations corresponding to desynchronized spikes. For TI

and AI values in the yellow region, F(t) (see Figure 4C, red
line) exhibits a high-amplitude oscillation after the application
of SCP, corresponding to synchronized bursts. For sufficiently
large amplitudes, the change in the behavior induced by SCP
does not depend on time. Importantly, perturbations with small
amplitudes applied for short times is a sufficient condition
for the induction of synchronous burst activity in the bistable
regime. Therefore, our results suggest that even small excitatory
stimuli in a random neural network arriving from other parts
might be sufficient for the initiation of excessively high neural
synchronization, related to the onset of epileptic seizures. Thus,
further work on other neural networks that resemble brain
activity might provide more insights on epileptogenesis.

Similarly, we apply SCP when the neurons in the network
show synchronized bursts of firing activity in the bistable regime.
Here, we aim to suppressing the synchronous behavior by means
of applying SCP. We consider SCP with positive and negative
amplitudes applied to 10% of the neurons in the randomnetwork.
Figure 5A shows how long the bursts remain synchronized after
SCP is switched off (color bar). We verified that both negative
and positive amplitudes exhibit regions where the synchronous
behaviors are suppressed, namely there is a transition from
synchronized bursts to desynchronized spikes. In addition, for
TI > 0.4 s and considering the absolute value of the amplitudes,
the transition occurs for positive values with smaller amplitudes
than for negative values. In Figure 5B, we show the dependence

FIGURE 5 | (A) The parameter space (TI,AI ), where the color bar indicates the time the system shows synchronized burst behavior after the application of SCP.

(B) Number of perturbed neurons as a function of AI. Note that in this figure we consider gexc = 0.4nS, g = 3 and r = 2.
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of the percentage of the perturbed neurons by the stimulus
on the time the neurons remain in the bursting synchronous
regime. The black region represents parameters for which the
dynamics on the network does not remain synchronous, and
therefore, synchronization is suppressed. In this figure, TI = 1s.
These results allow us to conclude that desynchronous behavior
is achieved for AI > 15pA and for at least 10% of the
perturbed neurons.

4. DISCUSSION AND CONCLUSION

In this paper, we studied the influence of inhibitory synapses on
the appearance of synchronized and desynchronized fire patterns
in a random network with adaptive exponential integrate-and-
fire neural dynamics. When the inhibitory influence is reduced
by either decreasing the inhibitory synaptic strength or the
number of inhibitory neurons, the dynamics on the network
is more likely to exhibit synchronous behavior. The occurrence
of synchronization results from the lack of balance between
excitatory and inhibitory synaptic influences.

We found parameter values that shift to a bistable regime
where the neurons can either exhibit desynchronous spiking
or synchronized bursting behavior. In the bistability region, a
desynchronous (synchronous) behavior becomes synchronous
(desynchronous) by varying forward (backward) gexc. The onset
of synchronization is thus associated with a hysteresis-loop.

We showed that, in the bistable regime, synchronized bursts
can be induced by means of applying square current pulses.
Our study also showed that outside the bistable regime, square
current pulses do not induce synchronization. Furthermore, in
the bistable regime, when neurons are synchronized, square
current pulses can be used to suppress it. Positive amplitudes of
square current pulses are more effective in ceasing synchronized
bursts than negative ones. In addition, we showed that when
one applies square current pulses to >10% of the neurons in the
network, it is enough to desynchronize the dynamics. Our work
shows that a decrease of inhibition contributes to the appearance
of excessively high synchronization, reminiscent of the onset

of epileptic seizures in the brain, thus confirming previous
experimental results and theoretical models. Both decreasing the
number of inhibitory neurons and the inhibitory strength, induce
excessively high synchronization, related to epilepsy.

Finally, within this framework, we hypothesize that low
amplitude stimuli coming from some brain regions might be
capable of inducing an epileptic seizuremanifested by high neural
(abnormal) synchronization in other brain regions. Therefore,
the work in this paper supports the common approach of
the induction of square current pulses to control or treat
epileptic seizures, since we have shown that such external
perturbations not only can induce, but more importantly
can suppress synchronous behavior in random networks with
neural dynamics.
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