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Abstract

This thesis consists of three essays on the subject of autoregressive time series of

order one.

The first essay derives an approximate bias of the ordinary least squares esti-

mator (OLS) of the autoregressive parameter for series with moderate deviations

from a unit root and for a fixed autoregressive coefficient. The result is used to de-

rive the asymptotic distribution of the indirect inference method for (moderately)

stationary, (moderately) explosive and explosive series with a fixed coefficient.

The essay also shows how one can construct a jackknife and a simple bias-reduced

estimator for stationary series by use of the bias function. A simple Monte Carlo

experiment provides evidence that the three estimators outperform OLS in terms

of their bias reduction capabilities.

Given the derived discontinuity of the bias function around the vicinity of

unity, the second essay proposes an optimal two-step local to unit root jackknife

estimator to try and overcome the problem. This particular version of the jack-

knife requires knowledge of the variances of the full-sample and sub-sample estima-

tors and the covariances between them. Hence, the essay derives their asymptotic

counterparts. Via those asymptotic moments, the essay explains analytically why

previous findings have found that using more sub-samples in the construction of

the jackknife produces smaller variance.

The third essay provides asymptotic theory for local to unit root autoregressive

processes with a drift. It is shown that the limiting distribution is a joint normal

with a mean zero and variance-covariance matrix which depends on the localising
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parameter. An interesting feature of this setup is that a consistent estimator of

the localising parameter can be constructed. Hence, one can construct a t-statistic

which has a standard normal limiting distribution to test the hypothesis of a unit

root by directly testing the null of the localising parameter being equal to zero.
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and α = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

7



List of Tables

2.1 Bias of OLS and jackknife estimators. . . . . . . . . . . . . . . . . 46

3.1 Values of asymptotic variances of full and sub-sample estimators

and covariances between them. . . . . . . . . . . . . . . . . . . . . 92

3.2 Values of weights for the optimal jackknife estimator. . . . . . . . 93

3.3 Values of normalised asymptotic variance for “optimal” jackknife

and CK estimators. . . . . . . . . . . . . . . . . . . . . . . . . . . 94

3.4 Bias of OLS and bias-minimising jackknife estimators. . . . . . . . 95

3.5 RMSE of OLS and bias-minimising jackknife estimators. . . . . . 96

3.6 Bias of OLS and RMSE-minimising jackknife estimators. . . . . . 97

3.7 RMSE of OLS and RMSE-minimising jackknife estimators. . . . . 98

4.1 Means of the estimators for α = −0.5. . . . . . . . . . . . . . . . 134

4.2 Variances of the estimators for α = −0.5. . . . . . . . . . . . . . . 135

4.3 Means of the estimators for α = 1. . . . . . . . . . . . . . . . . . 136

4.4 Variances of the estimators for α = 1. . . . . . . . . . . . . . . . . 137

8



List of Symbols and

Abbreviations

C[0, 1] the space of continuous real-valued functions on the unit interval

W (r) Wiener process with variance r defined on C[0,1]

∼ asymptotic equivalence

' approximately equal to

=d distributional equivalence

:= definitional equality

bxc integer part of x

→ convergence of a real-valued sequence

→p convergence in probability

⇒d weak convergence

o(1) tends to zero

op(1) tends to zero in probability

Op(1) bounded in probability

iid independent and identically distributed

E mathematical expectation

9



Chapter 1

Introduction

Economics and finance researchers and practitioners rely heavily on autoregressive

time series models. The assumption that the value of an asset, or GDP, inflation,

and so on, at time period t depends on the value of the same variable at the

previous period, t− 1, seems quite plausible to make. As such, to make any valid

inference, the properties of parameter estimators in stochastic difference equation

models need to be well understood.

This thesis is going to focus on autoregressive time series of order one. Suppose

that the body of data we are interested in analysing is generated in the following

way. Let Ω be the sample space consisting of the set of all possible outcomes, F

be a σ-algebra of subsets of Ω and P be a function defined on F that satisfies the

axioms of probability. Then (Ω, F, P ) is a probability space. Then, the observed

data are generated as a realisation

yt = α + ρnyt−1 + ut, t = 1, . . . , n, (1.1)

where ut is a stochastic process defined on (Ω, F, P ), y0 = Op(1) is also defined on

(Ω, F, P ), α is a constant, possibly zero, and ρn is a parameter allowed to depend

on the sample size, n. This setup is quite general and allows for great flexibility.

For example, for a fixed ρn = φ , with |φ| < 1, and ut is iid with mean zero and

a positive bounded variance, the process is stationary and ergodic. With other
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specifications, one can construct non-stationary and, even, explosive series. The

three essays that follow will impose different restrictions on the parameters, and ut,

in (1.1) and analyse the properties of the resulting series. Since the three chapters

are distinct, this introduction does not contain an overall literature review. These

are included separately in each essay for the subject at hand.

The thesis is organised as follows. Chapter 2 provides a discussion on finite

sample bias in autoregressive parameter estimation. Chapter 3 discusses an “opti-

mal” jackknife procedure for estimation of the autoregressive parameter. Chapter

4 introduces a drift in a local to unit root setup and shows how the localising

parameter can be estimated consistently under general conditions. Chapter 5

contains concluding remarks and discusses some future possible areas of research.

All estimation and simulations are conducted in Matlab.



Chapter 2

Least Squares Bias in Time Series

with Moderate Deviations from a

Unit Root
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Abstract

This chapter derives the approximate bias of the least squares estimator of the

autoregressive coefficient in discrete autoregressive time series where the autore-

gressive coefficient is given by αT = 1 + c/kT , with kT being a deterministic

sequence increasing to infinity at a rate slower than T , such that kT = o(T ) as

T →∞. The cases in which c < 0, c = 0 and c > 0 are considered, corresponding

to (moderately) stationary, non-stationary and (moderately) explosive series. The

result is used to derive the limiting distribution of the indirect inference method

for such processes with moderate deviations from a unit root and for explosive

series with a fixed coefficient which does not depend on the sample size. Second,

the result demonstrates why the jackknife estimator cannot be constructed for

explosive time series for values of the autoregressive parameter close to unity in

view of the discontinuity of the bias function, which the chapter derives. Lastly,

the expression is used to construct a bias-corrected estimator, and simulations are

carried out to assess the three estimators’ bias-reduction capabilities.
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2.1 Introduction

To try and make our task simpler, in most cases, we rely on asymptotic theory as

an approximation to finite sample distributions as asymptotic distributions usu-

ally have very simple forms. For example, by applying the central limit theorem

to the ordinary least squares (OLS) estimator of the autoregressive coefficient in

stationary time series, it can be shown that, under a particular set of assump-

tions, the former is asymptotically normally distributed with mean zero and a

well defined variance. From there, it is straightforward to construct confidence

intervals and utilise them for inference. However, it does not have to be the case

that any asymptotic distribution is shared by its finite sample counterpart. For

example, the exact maximum likelihood (MLE) and OLS estimators share the

same asymptotic distribution but differ in terms of their finite sample behaviour

as they treat the initial condition differently (the initial condition is asymptot-

ically negligible). Thus, having information on their asymptotic behaviour only

is not enough to be a guide on which estimator is to be preferred over the other

when applied to finite samples settings. In addition, asymptotic theory relies on

having an infinitely large sample, something too luxurious to have in practice. It

should also be noted that the OLS estimator has different properties when it is

applied to non-stationary and explosive series. All of the above-mentioned be-

comes very important, especially in macroeconomic settings, since observations

of GDP, inflation, etc. are very limited, as most of the macroeconomic variables

are usually available quarterly. Thus, it would be of help to know how estimators

perform in finite samples.

One of the main features of the OLS estimator of the autoregressive parameter

is that, on average, it is downward (negatively) biased for any finite sample. How-

ever, the bias vanishes asymptotically. This result holds regardless of whether the

data-generating process produces stationary, non-stationary or explosive series.

This chapter has been published as Stoykov (2018) and I am grateful to two anonymous
referees for useful comments and suggestions.
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This characteristic of the OLS method has been demonstrated both theoretically

and via simulations, with many authors having contributed to the topic. In terms

of stationary series, Hurwicz (1950) and White (1961) derived the result of the

bias by means of series expansions up to order O (T−4), where T is the sample size.

For the non-stationary case, Phillips (1987a) provides an expansion up to O (T−2)

order. However, fewer authors have focused on the explosive side. Le Breton and

Pham (1989) derive the first order term of the bias explicitly, and Phillips (2012)

derives only the asymptotic order of the bias. The above mentioned papers deal

with AR(1) processes with normally distributed errors. Shaman and Stine (1988)

extend the literature by considering AR models of higher order, which are driven

by normal errors, and Bao (2007) derives the bias for an AR(1) process where the

errors are allowed to follow any distribution.

These setups take the autoregressive coefficient as fixed and to be either

smaller, equal or bigger than one. This means one would need to know a priori

what the data generating process is. This, for example, could have applications

for modelling stock prices as returns are stationary. However, it will be misleading

to use the same results for near-integrated processes. As such, Phillips (2012) has

considered the local to unit root cases where the autoregressive coefficient is given

by αT = 1 + c/T for both c bigger and smaller than zero and by allowing for

c→ −∞ and c→∞.

Asymptotic theory for processes of the above mentioned form, where T (1 −

αT ) = O(1), are well-known (Phillips, 1987b, provides results under very general

conditions). However, recent advances in the literature show that non-degenerate

asymptotic theory exists for models in which αT is allowed to go to unity at either

a higher or lower than the previously considered O(T−1) rate. Andrews and

Guggenberger (2008) consider stationary AR models with T (1 − αT ) = o(1) and

Giraitis and Phillips (2006) analyse stationary models with T (1−αT )→∞. More

concretely, Phillips and Magdalinos (2007) (hereafter, PM) derive the limiting

distribution of the centered OLS estimator α̂T − αT , where αT = 1 + c/kT , with
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kT being a sequence which increases to infinity at a rate slower than T , such that

kT = o(T ) as T → ∞. PM consider, both, positive and negative values of c,

which corresponds to moderately stationary or moderately explosive processes.

The authors show that, in this case, the OLS estimator of the autoregressive

parameter follows an asymptotic distribution, which is equivalent to the one that

is obtained by considering a fixed autoregressive parameter. These results are

further augmented by the work of Phillips et al. (2010), who derive the Edgeworth

expansion of OLS and show that it is equivalent, up to the third term, to that of

the fixed case. This framework of moderate deviations from a unit root was utilised

by Phillips et al. (2011) to test the NASDAQ index for explosive behaviour and

by Figuerola-Ferretti et al. (2015) to test for bubbles in London Metal Exchange

metals prices.

Given those recent advancements in the literature and the interest of re-

searchers in utilising regressions with moderate deviations from a unit root, this

chapter aims to derive an approximate expansion of the bias of the OLS estimator

for such processes. Its advantage over that of an Edgeworth expansion is that the

former can be used to construct estimators which are very effective in reducing

the bias. Immediate candidates that could utilise such results are the jackknife

and indirect inference (IIE) estimators. The former aims to remove the first term

(or, in principle, first two, three, and so on, but usually this is not pursued) from

the asymptotic bias of an initial estimator, usually OLS or ML, and the latter

utilises a binding function which links the estimator to the true parameter. By

definition of the binding function, the bias expression provides the binding func-

tion. Phillips (2012) demonstrates how the binding function can be used to derive

the limiting distribution of the IIE. This chapter applies the same method to

derive the asymptotic distribution of the IIE for, both, (moderately) stationary

and (moderately) explosive series and also for explosive series with a fixed au-

toregressive coefficient. The result of this work also depicts a severe discontinuity

in the bias function in the vicinity of unity and, as such, demonstrates why the
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jackknife cannot be constructed for any explosive series which are relevant to eco-

nomics and finance. The chapter also proposes a simple bias-corrected estimator

for (moderately) stationary series, which is capable of removing the first-order

term of the bias but, unfortunately, does that at the expense of a slightly higher

variance in comparison with OLS. The chapter finishes with a simple Monte-Carlo

exercise, which assesses the bias-reduction capabilities of those three estimators

in comparison to OLS. The outcome shows some evidence in favour of the simple

bias-corrected estimator.

The chapter is organised as follows: section 2 summarises the main results and

provides a discussion. Section 3 concludes, and the technical details, graphs and

tables are collected in the Appendix.

For the bigger part of the paper, with the exception of the discussion in section

2, the lower script in αT is dropped out for notational simplicity and the symbol∑
will be used for summations running from t = 1 to T .

2.2 Main Results

Suppose xt satisfies the following stochastic difference equation

xt = αTxt−1 + ut, αT = 1 +
c

kT
for t = 1, . . . , T, (2.1)

where ut is iid as N(0, σ2) and kT is a sequence that increases to infinity, such that

kT = o(T ) as T → ∞. The distribution of x = (x1, ..., xT ) in (2.1) is uniquely

determined by specifying an initial condition for the process. The density function

of x for a constant initial condition, including zero, is given by

f(x) =
(
2πσ2

)−T/2
exp

{
−
∑

(xt − αxt−1)2

2σ2

}
.
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If the initial condition is specified not as a constant but as a random variable with

a distribution N
(

0, σ2

1−α2

)
, the density of x becomes

f ∗(x) =
(1− α2)

1/2

(2πσ2)T/2
exp

{
−(1− α2)x0 +

∑
(xt − αxt−1)2

2σ2

}
.

The model which this chapter will consider is the former. Unfortunately, when

|α| > 1 the exact MLE for the latter is inconsistent due to the specification of the

initial condition. Hamilton (1994, pp. 118-23) provides a discussion on why that

is the case. In particular, we will take x0 = 0. The centered MLE for the constant

initial condition, which coincides with the OLS estimator, is given by

α̂− α =

∑
xt−1ut∑
x2
t−1

.

By considering α̂T , the OLS estimator when the autoregressive coefficient is as-

sumed to be αT , under appropriate normalisations, PM showed, that for negative

c the estimator converges to a normal random variable, and for positive c the

limiting distribution is the standard Cauchy.

To derive the bias, we will make use of the joint moment generating function

(MGF) of the numerator and denominator of the result for α̂. We may assume

σ2 = 1 as α̂ is independent of σ2. Following the procedure of White, define

U =
∑
xtxt−1 and V =

∑
x2
t−1 such that their joint MGF is given by

E exp(Uu+ V v)

=

∫ ∞
−∞

exp(Uu+ V v)f(x)dx

= (2π)−T/2
∫ ∞
−∞

exp

{
−1

2

[
−2(α + u)U + (1 + α2 − 2v)V + x2

T

]}
dx

= (2π)−T/2
∫ ∞
−∞

exp

{
−1

2
xDTx

′
}

dx = |DT (u, v)|−1/2, (2.2)

where the second line follows from the fact that, for σ2 = 1, the density becomes

f(x) = (2π)−T/2 exp
{
−1

2
(V + x2

T − 2αU + α2V )
}

. The matrix in the third line
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is given by

DT (u, v) =



p(v) q(u) 0 0 · · · 0

q(u) p(v) q(u) 0 · · · 0

0 q(u) p(v) q(u) · · · 0

...
...

...
. . .

...
...

...
...

... q(u) p(v) q(u)

0 0 0 · · · q(u) 1


with p(v) = 1 +α2−2v and q(u) = −(α+u). The last equality in (2.2) is a result

which can be found in Cramér (1946, pp. 118-20). Shenton and Johnson (1965)

showed that

E(α̂− α) =

∫ ∞
0

∂

∂α
|DT (−v)|−1/2dv, (2.3)

where |DT (−v)| is the determinant of the matrix evaluated at u = 0 and −v.

The authors showed that the integrand and integral in (2.3) exist and are well-

defined. Now, the right hand side of (2.3) can be utilised to derive the approximate

bias (the details are given in the appendix). The results are summarised in the

following theorem.

Theorem 2.2.1. For the model considered in (2.1), with x0 = 0, as T → ∞,

the bias of the autoregressive coefficient E(α̂T − αT ) has the following asymptotic

expansion

E(α̂T − αT ) =



−2αT

T

{
1 +O

(
max

(
kT
T
, k−1

T

))}
[1 +O (T−1)] , c < 0,

−1.7814
T

[1 +O (T−1)] , c = 0,

−2π1/2c3/2T 1/2

k
3/2
T αT+1

T

{
1 +O

(
max

(
kT
T
, k−1

T

))}
[1 +O (T−1)] , c > 0.

Remark 1. The bias is negative for all values of c. Starting with c < 0,

which corresponds to |α| < 1, the first term of the expansion is −2αT/T . For

a fixed α the first order term of the expansion is −2α/T (White (1961)). Thus,

up to the first order term the two results are equivalent. However, the results
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differ in higher order terms. The second order term for the fixed case is 4α/T 2

(e.g. White), which is different from the result for c < 0 due to the presence of

the 1 + O
(
max

(
kT/T, k

−1
T

))
term. Furthermore, it is not clear what the second

order term of the expansion is until one specifies kT , as the result in Theorem

2.2.1 is very general. One consistent with the definition of kT parameterisation

would be to set kT = T δ, with δ ∈ (0, 1). In this case, the cut-off point is

δ = 1/2. Thus, for δ ∈ (0, 1/2], max
(
kT/T, k

−1
T

)
= k−1

T = T−δ and for δ ∈ [1/2, 1),

max
(
kT/T, k

−1
T

)
= kT/T = T δ−1. Finally, it is perhaps surprising that the second-

order term is not of order O
(
T−1

)
smaller in magnitude than the first in view of

the fixed coefficient expansion.

Remark 2. For c = 0, corresponding to α = 1, a unit root process, the

constant -1.7814 is a well known result (e.g. Tanaka (1996), p240). It is an

approximation (up to the fourth decimal) of the expectation of the functional∫ 1

0
W (r)dW (r)

/∫ 1

0
W (r)2dr, which is the leading term of the asymptotic bias

for the unit root process (see Phillips (1987a)).

Remark 3. For c > 0, which corresponds to |α| > 1, the first term of the ex-

pansion is −2π1/2c3/2T 1/2k
−3/2
T α

−(T+1)
T . From Le Breton and Pham, the respective

term from the expansion for a fixed α is −(π/2)1/2(α2 − 1)3/2T 1/2α−(T+1). Note

that α2
T−1 = (1+c/kT )2−1 = 2c/kT

(
1 +O

(
k−1
T

))
. Thus, for the first order term

of the expansion the two results are equivalent. The result of Le Breton and Pham

does not provide the second order term of the expansion for the fixed case and,

as such, comparison between the two cannot be made. Thus, the present paper

sheds some light into the higher order terms of the expansion on the explosive side.

Taking a closer look into the result, it is perhaps surprising that the second-order

term is not of order O
(
α−T

)
smaller in magnitude than the first. One would have

expected that the order would be a multiple of α−T as the consecutive terms in

the stationary and non-stationary cases are a multiple of T−1.

Remark 4. This formulation, namely αT = 1 + c/kT , suffers from the same

problem as the result of Le Breton and Pham. Their analytical result is dis-
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continuous in that the limits of their bias expressions α ↗ 1 and α ↘ 1 are

different. This is also the case in the analytical result of Theorem 2.2.1 from the

present chapter, namely, the limits c ↗ 0 and c ↘ 0 are not identical. This is

not surprising as the result from this chapter and that of Le Breton and Pham

are asymptotically equivalent up to the first term. The solid line in Figure 2.1

depicts the result with T = 24, kT =
√
T and c ∈ [−

√
T , 3], where the lower limit

of c is taken as −
√
T to match with αT = 1 + c/

√
T = 0. The lonely dot is the

result for c = 0. The graph also shows the simulated OLS bias for the autoregres-

sive coefficient of (2.1) with x0 = 0 and σ = 1 for comparison. The number of

replications is 10, 000, and the graph has been smoothed. It can be seen that for

negative values of c or high positive values of the parameter the analytical solution

provides a good approximation. It is also expected that adding additional terms

from the bias would improve the approximation. This, however, is not undertaken

in this work as the first term is enough to construct the jackknife and indirect

estimations. Those are discussed in subsequent remarks.

Remark 5. PM provide an interesting discussion on the comparison between a

fixed α = 1+c and the moderate deviations from a unit root given by αT = 1+c/kT

frameworks, where kT was parameterised in remark 1. Their aim is to find out

whether taking the limits δ → 0, 1 produces the correct rates of convergence and

asymptotic distributions. They show this to be the case only for the boundary

limit δ → 0. When kT = T δ from Theorem 3.2 of PM, as T →∞, we have

T 1/2+δ/2 (α̂T − αT )⇒d N(0,−2c) for c < 0, (2.4)

T δαTT
2c

(α̂T − αT )⇒d C for c > 0, (2.5)

where C is the standard Cauchy random variable. In comparison, it is well-known
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that for the model considered in (2.1), and a fixed α

T 1/2 (α̂− α)⇒d N
(
0, 1− α2

)
for |α| = |1 + c| < 1, (2.6)

αT

α2 − 1
(α̂− α)⇒d C for α = 1 + c > 1, (2.7)

where the result in (2.7) is due to White (1958). From (2.4) and (2.6) there is a

discrepancy between the terms −2c and 1 − α2 = −2c − c2, and from (2.5) and

(2.7) between 2c and α2−1 = 2c+ c2. Continuity can be achieved by substituting

c with c + c2/2T δ without affecting the asymptotic distributions and moments.

This argument does not apply for the case δ → 1, as discussed by PM.

In the same fashion, it would be interesting to check whether the same arguments

hold for the bias as well. From Theorem 3.1 of Le Breton and Pham, as T →∞

TE(α̂− α) converges to − 2α for |α| = |1 + c| < 1 (2.8)

T−1/2αT+1E(α̂− α) converges to (π/2)1/2(α2 − 1)3/2 for α = 1 + c > 1. (2.9)

For c < 0, Theorem 3.1 from Le Breton and Pham and Theorem 2.2.1 produce the

same result as δ → 0 without any adjustment. However, for c > 0 Theorem 2.2.1

and (2.9) involve an α2 − 1 = 2c + c2 term. Thus, continuity can be achieved by

the substitution proposed by PM. This result follows immediately by substituting

kT with 1 at the beginning of the integral expressions from the appendix and is

stated as a corollary to Theorem 2.2.1.

Corollary 2.2.2. For model (1) with x0 = 0 and a fixed α = 1 + c, as T → ∞,

the bias of the autoregressive coefficient E(α̂ − α) has the following asymptotic

expansion

E(α̂− α) =



−2(1+c)
T

[1 +O (T−1)] , c < 0,

−1.7814
T

[1 +O (T−1)] , c = 0,

−π1/2(2c+c2)3/2T 1/2

21/2(1+c)T+1 [1 +O (T−1)] , c > 0.
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There is nothing surprising regarding this result given the discussion around The-

orem 2.2.1. However, it shows the magnitude of the second order term on the

explosive side for a fixed autoregressive coefficient, which is new to the literature.

Lastly, as in the discussion of PM, taking the limit δ → 1 does not produce the

same asymptotic bias. These results are interesting. One would have perhaps

expected that there should be no need for adjustment for the asymptotic bias,

only for the asymptotic variance, in view of the fact that only the variances of the

asymptotic distributions depend on either 1 − α2 or α2 − 1 for the stationary or

explosive cases respectively.

Remark 6. It is also interesting to compare the convergence rates of the cen-

tered OLS estimator, stated in (2.4) and (2.5), to the orders of the bias from

Theorem 2.2.1. As pointed out by a referee, for c < 0, from (2.4), with T δ re-

placed by kT , we can see that the order of α̂T − αT is Op

(
1/
√
TkT

)
and the

corresponding order of the bias is O(1/T ). This can be explained by the fact that

the limiting distribution of the centered OLS estimator is a N(0,−2c) variate

which has a zero expectation. For c > 0, the centered OLS estimator converges

to a Cauchy variate with a convergence rate kTα
T
T and the corresponding order of

the bias is

E(α̂T − αT ) = O
(
T 1/2k

−3/2
T α−TT

)
=

(
T

kT

)1/2

O
(
k−1
T α−TT

)
,

which is slower than the consistency rate Op

(
k−1
T α−TT

)
due to T/kT → ∞. The

bias’ slower rate could be explained by the fact that the Cauchy distribution

has undefined moments. However, even though its first moment does not exist,

the standard central Cauchy distribution is centered around zero which helps in

explaining why E(α̂T − αT ) still goes to zero in the limit.

Remark 7. It is possible to derive the asymptotic distributions of the IIE for

positive and negative c by utilising the results from Theorem 2.2.1. Define the
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binding function bT (α) := E(α̂). The IIE is then defined as

α̃T = arg min
α
||α̂− bT (α)||,

for some metric || · ||. The idea behind the IIE is similar to that of the jackknife.

Even though they do it in different ways, they both aim at subtracting an expres-

sion of the bias from the original estimator. This should in theory work as we

know that on average OLS would underestimate the true parameter, as depicted

in Theorem 2.2.1.

To derive the asymptotic distribution of the IIE we note that if bT (αT ) is invert-

ible, we have that α̃T = b−1
T (α̂) =: fT (α̂). Starting with c < 0, the derivative of

the binding function with respect to αT is

b′T (αT ) = 1 +O(T−1). (2.10)

For c < 0, corresponding to |αT | < 1, δ > 0 and any sequence sT →∞ for which

sT/(
√
kTT )→ 0, we have

sup
sT |αT−r|<δ

∣∣∣∣b′T (αT )− b′T (r)

b′T (r)

∣∣∣∣→ 0.

Using the fact that f ′T (r) = 1/b′T (r) and

f ′T (r)− f ′T (αT )

f ′T (α)
=
b′T (αT )− b′T (r)

b′T (r)
,

it follows that

sup
sT |r−αT |<δ

∣∣∣∣f ′T (r)− f ′T (αT )

f ′T (αT )

∣∣∣∣→ 0.

By considering (2.4), with T δ replaced by kT , (2.10) and applying Theorem 1 from

Phillips (2012), we have as T →∞

√
kTT (α̃T − αT ) ∼ 1

b′T (α)

√
kTT (α̂T − αT ) ∼

√
kTT (α̂T − αT )⇒d N(0,−2c).
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Hence, as in the fixed case, the IIE for the autoregressive parameter in moderately

stationary series has the same asymptotic distribution as OLS.

The two explosive cases can be tackled in a similar fashion. To facilitate

the discussion we will make use of the following lemma which is proven in the

appendix.

Lemma 2.2.3. For α = 1 + c and αT = 1 + c/kT , define g(α) := (π/2)1/2(α2 −

1)3/2T 1/2α−(T+1) and h(αT ) := 2(πT )1/2(αT − 1)3/2α
−(T+1)
T . Then, for c > 0, as

T →∞

a) g′(α) = o(1);

b) h′(αT ) = o(1).

Starting with the fixed case, from Corollary 2.2.2, bT (α) = α− g(α)(1 + o(1)) in

view of α = 1 + c. The derivative of the binding function is then given by

b′T (αT ) = 1 + o(1), (2.11)

by Lemma 1. By considering any δ > 0 and any sequence sT → ∞ for which

sT/α
T → 0, we have

sup
sT |r−α|<δ

∣∣∣∣f ′T (r)− f ′T (α)

f ′T (α)

∣∣∣∣→ 0.

By considering (2.7), (2.11), and applying Theorem 1 from Phillips (2012), we

have

αT

α2 − 1
(α̃− α) ∼ 1

b′T (α)

αT

(α2 − 1)
(α̂− α) ∼ αT

α2 − 1
(α̂− α)⇒d C,

where C is the standard Cauchy distribution.

The case of moderate deviations can be tackled in the same fashion. From Theo-

rem 2.2.1, the binding function is given by bT (αT ) = αT −h(αT )(1 + o(1)) in view

of (c/kT )3/2 = (αT − 1)3/2 by the definition of αT . The derivative of the binding

function is given by

b′T (αT ) = 1 + o(1), (2.12)
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by Lemma 1. Consequently, for δ > 0 and any sequence sT → ∞ for which

sT/(kTα
T
T )→ 0 we have

sup
sT |r−αT |<δ

∣∣∣∣f ′T (r)− f ′T (αT )

f ′T (αT )

∣∣∣∣→ 0.

By considering (2.5), with T δ replaced by kT , (2.12) and applying Theorem 1 from

Phillips (2012), we have as T →∞

kTα
T
T

2c
(α̃T − αT ) ∼ 1

b′T (α)

kTα
T
T

2c
(α̂T − αT ) ∼ kTα

T
T

2c
(α̂T − αT )⇒d C.

Thus, the IIE shares the same asymptotic distribution as OLS in the explosive and

moderately explosive cases as well. Figures 2.2 and 2.3 depicts non-parametric

estimates of the densities of the OLS and II estimators for αT = 1 + c/
√
T , with

c = {−10, 0.5} and large values of T = {3000, 500} for the stationary and explosive

sides respectively. We have utilised a normal kernel with fixed bandwidths of

hOLS = 1.06R−1/5σ̂OLS and hIIE = 1.06R−1/5σ̂IIE, where R = 10, 000 is the

number of replications and σ̂(.) denotes the estimated standard deviation. The

number of observations used differ in the two cases due to the fast exponential

convergence rate of the explosive side which causes numerical issues. We can

observe that it’s very difficult to distinguish between the two estimators for large

values of T .

Even though the expression of the binding function can be utilised to derive the

asymptotic distribution of the estimator, one should proceed with caution when

constructing the IIE for values of the autoregressive parameter close to unity.

Due to the non-linearity of the binding function, it would be best to use the

simulated binding function rather than the analytical expression. This is vital on

the explosive side as, otherwise, the estimator will minimise the distance at the

wrong value for α and consequently produce undesirable results. Furthermore,

once away from unity, using results such as the one from Theorem 1 provides

ground for construction of the IIE that does not rely on simulations. If such a
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result can be obtained for a general distribution of the error term, then simulations

can be completely bypassed as there would be no need for data generation which

is distribution dependent.

Remark 8. Another candidate which could utilise the result from Theorem

2.2.1 is the jackknife estimator. The idea behind it is to remove the first order

bias of an estimator, provided that it exists. The jackknife utilises sub-samples

and it requires an asymptotic expression for the bias of the original estimator

for the full-sample and a number of sub-samples. Construction of the jackknife

involves giving a weight to each of the full-sample and sub-sample estimators

such that the first-order term bias of the original estimator is removed. Chambers

(2013) and Chambers and Kyriacou (2013) demonstrate how bias reduction can

be achieved in stationary and non-stationary autoregressive series respectively.

Theorem 2.2.1 shows that the analysis of Chambers can be directly translated to

moderately stationary series. To demonstrate this, consider splitting the entire

sample T intom non-overlapping sub-samples each of length l, such that T = m×l.

The jackknife for stationary series is then defined as

α̂J = w1α̂ + w2
1

m

m∑
j=1

α̂j, j = 1, . . . ,m, (2.13)

where α̂j is the OLS estimator within each sub-sample. Chambers assumes that

the bias expansion of each sub-sample has the same form as that of the full sample.

In the fixed autoregressive coefficient case, this is justified as White (1961) showed

that the bias expression is the same for the first term of the bias regardless of

whether the initial condition is a constant or a stationary random variable. In

the moderate deviations case this would be justified too as the bias expression

for the full sample is asymptotically equivalent to that of the fixed case when the

initial condition is zero. We choose kT =
√
T , and under the above assumption
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and Theorem 2.2.1, we have

E(α̂T ) = αT −
2αT
T

+O
(
T−3/2

)
and E(α̂j;T ) = αT −

2αT
l

+O
(
l−3/2

)
,

for j = 1, . . . ,m. Note that since T and l are of the same magnitude they are

interchangeable under the big-oh notation. The optimal weights in (2.13) are

chosen such that the the jackknife would be biased of order O(T−3/2), which is of

a lower order than O(T−1), the order of OLS and ML. Consider the expectation

of the jackknife estimator for (moderately) stationary series

E(α̂J ;T ) = w1E(α̂T ) + w2
1

m

m∑
j=1

E(α̂j;T )

= w1

(
αT −

2αT
T

)
+ w2

1

m

m∑
j=1

(
αT −

2αT
l

)
+O

(
T−3/2

)
= (w1 + w2)αT − 2αT

(w1

T
+
w2

l

)
+O

(
T−3/2

)
.

Setting w1 + w2 = 1 and w1/T + w2/l = 0 yields the same optimal weights

w∗1 = m/(m− 1) and w∗2 = −1/(m− 1) as the ones founds in Chambers’ work.

The author of the present paper has attempted to construct the jackknife esti-

mator for mildly explosive autoregressive series but was unsuccessful due to the

severe right-hand discontinuity, which was subsequently derived in this paper. As

such, Theorem 2.2.1 depicts why it would be impossible to construct the jackknife

for mildly explosive series for positive values of c which are close to zero. The issue

can be tackled by either substituting what should be the correct explosive weights

by the ones applied to stationary series (Kruse and Kaufmann (2018) provide an

interesting comparison between a number of estimators) or by considering local

to unit root alternatives (Chambers and Kyriacou, 2018), where the approximate

bias function has been shown to be continuous at c = 0 (Phillips (2012)).

Remark 9. Another way to try and utilise the result in Theorem 2.2.1 is to

get an estimate of the bias and subtract it from the OLS estimator. However, as

with the jackknife, this would only work on the stationary side. More formally,
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construct ᾰT as

ᾰT = α̂T − b̂ias = α̂T −
(
−2α̂T

T

)
= α̂T

(
1 +

2

T

)
.

The expectation of the estimator is given by

E(ᾰT ) = E(α̂T )

(
1 +

2

T

)
=

(
αT −

2αT
T

+O
(
T−2

))(
1 +

2

T

)
= αT +O

(
T−2

)
and its variance by

V AR(ᾰT ) =

(
1 +

2

T

)2

V AR(α̂T ).

Thus, the bias-corrected estimator is biased of order T−2. Unfortunately, this

happens at the expense of having a higher variance. MacKinnon and Smith (1998)

propose a similar to this estimator to reduce bias in autoregressive series with an

intercept. However, they rely on simulations instead of an analytical expression

and, as such, their procedure would be more time consuming.

Remark 10. We finish the discussion by providing a simple Monte-Carlo ex-

periment, where a comparison is made between the OLS, II, bias-corrected and

jackknife estimators in terms of their bias. The latter three are constructed by

means of utilising the result from Theorem 2.2.1. We simulate data from (2.1)

with αT = 1 + c/
√
T , ut ∼ N(0, 1) and x0 = 0. The number of replications is set

at 10, 000, n = {30, 60, 90, 120} and c = {−5,−4,−3,−2,−1}. The results are

gathered in Table 2.1. It can be observed that each of the estimators reduces bias

dramatically in comparison to OLS. Furthermore, the simple bias-corrected esti-

mator seems to produce the lowest bias for most of the values of the parameters

considered.
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2.3 Conclusion

This chapter has had the aim to derive the approximate bias of the autore-

gressive parameter in the discrete time autoregressive process of order one. The

autoregressive coefficient is assumed to be of the form αT = 1 + c/kT , where c

is a constant and kT is a sequence that is increasing to infinity at a slower rate

than T , the sample size, such that kT = o(T ) as T → ∞. The bias is shown to

be negative for the three cases considered, namely c < 0, c = 0 and c > 0, corre-

sponding to (moderately) stationary, non-stationary and (moderately) explosive

series, respectively. The bias expression is shown to be discontinuous in that the

limits c↗ 0 and c↘ 0 are not identical in the final bias expression.

The results of the chapter are used to derive the limiting distribution of the

IIE for (moderately) stationary, (moderately) explosive series and explosive series

with a fixed coefficient. It is shown that the asymptotic distribution of the IIE

is identical to that of OLS in each of the three cases considered. The result is

also used to construct the jackknife estimator for (moderately) stationary series.

Furthermore, given the severe discontinuity this paper derives, it also shows why

the jackknife cannot be constructed on the explosive side for values of the au-

toregressive parameter close to one and also explains why construction of the IIE

on the same side of unity should be done by simulating the bias rather than by

using the analytical expression. Phillips (2012) had already derived the limiting

distribution of the IIE in the local to unit root case and shown that it’s different

from that of OLS. Nevertheless, the bias expression on the stationary side seems

satisfactory to utilise (unlike the explosive) even for values of the autoregressive

coefficient close to one. The final usage of the result is to construct a simple bias-

corrected estimator the idea of which is to just subtract an estimate of the bias

from the OLS estimator. The paper finishes by conducting a simple Monte-Carlo

exercise, the purpose of which is to compare the bias-reduction capabilities of the

II, jackknife and bias-corrected estimators to that of OLS’. The simulations pro-

vide some evidence that the simple bias-corrected estimator outperforms the rest
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for most of the values of the parameters considered.

The results of this chapter could be extended in a couple of directions. First,

it would be of interest to derive an expression such as the one found in Theorem

2.2.1 of the present paper for an error term which follows a general distribution.

Second, derivation of higher order moments. It would be interesting to observe

what form higher order centered moments would have on the explosive side as

we know that they can rewritten as a function of the first moment, which is

discontinuous at the vicinity of unity. It might also be of interest to derive those

on the stationary side as the first moment in the case of moderate deviations from

a unit root is equivalent to that of a fixed autoregressive parameter but only up

to the first term.

2.4 Appendix

Proof of Theorem 2.2.1. To evaluate the determinant in (2.3) we note that

it can be written in the form of a second order difference equation. Define κ :=

p(−v) = 1 + α2 + 2v such that

|DT (−v)| = κ|DT−1(−v)| − α2|DT−2(−v)|,

with initial conditions |D1(−v)| = 1 and |D2(−v)| = κ− α2. Denote the positive

root of the characteristic equation as

λ =
1

2

(
κ+
√
κ2 − 4α2

)
(2.14)

such that the solution to the homogeneous difference equation has the form

|DT (−v)| = C1λ
T + C2

(
α2

λ

)T
.



32

From the initial conditions the complete solution is given by

|DT (−v)| =
(
λ− α2

λ2 − α2

)
λT +

(
1− λ− α2

λ2 − α2

)
α2Tλ−T .

Phillips (2012) showed that |DT (−v)| is positive for all v > 0 meaning the inte-

grand in (2.3) is well-defined for all α, and Shenton and Johnson (1965) showed

that the improper integral is well-defined. They write that, for v small and posi-

tive, the integral converges since DT (0, 0) = 1 and for v large and positive

∂|DT (−ν)|−1/2

∂α
= O(ν−ω),

where 2ω = n − 5. Thus, the integrand in (2.3) converges for a large enough n

since it would bounded by a integrable function.

Taking the derivative in (2.3) leads to

E(α̂− α) = −1

2

∫ ∞
0

|DT (−v)|−3/2∂|DT (−v)|
∂α

dv.

Following Phillips (2012), define x = 1/λ. It follows that

x =
2

κ+
√
κ2 − 4α2

= 2
κ−
√
κ2 − 4α2

κ2 − (κ2 − 4α2)
=
κ−
√
κ2 − 4α2

2α2
,

from which it follows that

κ−
√
κ2 − 4α2 = 2α2x. (2.15)

From (2.14) and (2.15) we have

κ−
√
κ2 − 4α2 = 2α2x and κ+

√
κ2 − 4α2 =

2

x
,

and by adding them together we get κ = 1/x + α2x. From κ = 1 + α2 + 2v we
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can solve for v as a function of x

v =
1

2

{
1

x
+ α2x− α2 − 1

}
=

(1− x)(1− α2x)

2x
.

We write

v =
(1− x)(1− α2x)

2x
=


(1−x)(1−α2x)

2x
, x ∈ (0, 1], |α| ≤ 1,

(x−1)(α2x−1)
2x

, x ∈ [1,∞), |α| > 1,

with derivative

dv

dx
= −(1− α2x2)

2x2


< 0, x ∈ (0, 1], |α| ≤ 1,

> 0, x ∈ [1,∞), |α| > 1.

As pointed out by Phillips (2012), v = v(x) is a monotonic transformation over

the two domains specified and as such the variable of integration in (2.3) can be

changed. Applying the change of variable yields

λ− α2

λ2 − α2
=

1
x
− α2

1
x2
− α2

=
x(1− α2x)

1− α2x2
,

1− λ− α2

λ2 − α2
= 1− x(1− α2x)

1− α2x2
=

1− x
1− α2x2

,

leading to

|DT (−v)| = 1− α2x

1− α2x2

1

xT−1
+

1− x
1− α2x2

α2TxT

=


1−α2x+(1−x)α2T x2T−1

(1−α2x2)xT−1 = AT (x;α)
(1−α2x2)xT−1 , for |α| ≤ 1,

α2x−1+(x−1)α2T x2T−1

(α2x2−1)xT−1 = BT (x;α)
(α2x2−1)xT−1 , for |α| > 1,

(2.16)

with

AT (x;α) = 1− α2x+ (1− x)α2Tx2T−1,

BT (x;α) = α2x− 1 + (x− 1)α2Tx2T−1.

(2.17)
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Thus, for |α| ≤ 1, by changing the variable of integration from v to x and by

taking the derivative in (2.3) we have

E(α̂− α) =
∂

∂α

∫ ∞
0

|DT (−v)|−1/2dv

=
∂

∂α

∫ 0

1

[
AT (x;α)

(1− α2x2)xT−1

]−1/2 [
−1− α2x2

2x2

]
dx

=
1

2

∂

∂α

∫ 1

0

x
T−5
2

(
1− α2x2

)3/2
AT (x;α)−1/2dx.

(2.18)

Evaluating the derivative in (2.18) gives

∂

∂α

∫ 1

0

x
T−5
2

(
1− α2x2

)3/2
AT (x;α)−1/2dx

=
3

2

∫ 1

0

x
T−5
2

(
1− α2x2

)1/2
(−2αx2)AT (x;α)−1/2dx

− 1

2

∫ 1

0

x
T−5
2

(
1− α2x2

)3/2
AT (x;α)−3/2 ∂

∂α
AT (x;α)dx.

(2.19)

The derivative from the last line in (2.19) is

∂

∂α
AT (x;α) =

∂

∂α

(
1− α2x+ (1− x)α2Tx2T−1

)
= −2αx+ 2T (1− x)α2T−1x2T−1.

(2.20)

Combining (2.18)-(2.20), for c < 0, corresponding to |α| < 1, we have

E(α̂− α) =− 3α

2

∫ 1

0

x
T−1
2

(
1− α2x2

)1/2
AT (x;α)−1/2dx

+
α

2

∫ 1

0

x
T−3
2

(
1− α2x2

)3/2
AT (x;α)−3/2dx

− Tα2T−1

2

∫ 1

0

x
5T−7

2

(
1− α2x2

)3/2
AT (x;α)−3/2(1− x)dx.

(2.21)

To evaluate the expectation in (2.21), we start with the first integral. Setting

y = x2T−1 gives dy = (2T − 1)x2T−2dx = (2T − 1)y
2T−2
2T−1dx. Note that AT (x;α) =

1−α2x+O
(
α2T
)
. By substituting α = 1 + c/kT in the third line of the following

derivations and using the facts that y
b

2T−a = 1 + b
2T−a log y + O (T−2), kT = o(T )
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and kT
T
α2T = o(1) as T →∞, the integral becomes

∫ 1

0

x
T−1
2

(
1− α2x2

)1/2
AT (x;α)−1/2dx

=
1

2T − 1

∫ 1

0

y
−3T+3
4T−2

{
1− α2y

2
2T−1

1− α2y
1

2T−1 + (1− y
1

2T−1 )yα2T

}1/2

dy

=
1

2T

∫ 1

0

y−
3
4

 1−
(

1 + 2c
kT

+ c2

k2T

) (
1 + 2

2T
log y +O (T−2)

)
1−

(
1 + 2c

kT
+ c2

k2T

) (
1 + 1

2T
log y +O(T−2)

)
+O(α2T )


1/2

dy

×
[
1 +O

(
T−1

)]
=

1

2T

∫ 1

0

y−
3
4

−
2 log y

2T
− 2c

kT
− c2

k2T

− log y
T
− 2c

kT
− c2

k2T


1/2

dy
[
1 +O

(
T−1

)]

=
1

2T

∫ 1

0

y−
3
4

{
kT
T

2 log y + 4c+ 2c2

kT
kT
T

log y + 4c+ 2c2

kT

}1/2

dy
[
1 +O

(
T−1

)]
=

1

2T

∫ 1

0

y−
3
4

{
4c
[
1 +O

(
max

{
kT
T
, k−1

T

})]
4c
[
1 +O

(
max

{
kT
T
, k−1

T

})]}1/2

dy ×
[
1 +O

(
T−1

)]
=

1

2T

∫ 1

0

y−
3
4 dy

{
1 +O

(
max

(
kT
T
, k−1

T

))}[
1 +O

(
T−1

)]
.

The second integral can be dealt with in the same fashion

∫ 1

0

x
T−3
2

(
1− α2x2

)3/2
AT (x;α)−3/2dx

=
1

2T

∫ 1

0

y−
3
4

{
kT
T

2 log y + 4c+ 2c2

kT
kT
T

log y + 4c+ 2c2

kT
+ kT

T
α2Ty log y

}3/2

dy
[
1 +O

(
T−1

)]
=

1

2T

∫ 1

0

y−
3
4 dy

{
1 +O

(
max

(
kT
T
, k−1

T

))}[
1 +O

(
T−1

)]
.

The third integral becomes exponentially small as Tα2T−1 = o(1) as T →∞. By

combining the three integrals, for c < 0, we have

E(α̂− α) =

[
−3α

2

1

2T

∫ 1

0

y−
3
4dy +

α

2

1

2T

∫ 1

0

y−
3
4dy

]{
1 +O

(
max

(
kT
T
, k−1

T

))}
×
[
1 +O

(
T−1

)]
= −2α

T

{
1 +O

(
max

(
kT
T
, k−1

T

))}[
1 +O

(
T−1

)]
. (2.22)
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For c = 0, corresponding to |α| = 1, the algebra reduces to the one found in

Phillips (2012). From (2.19) as T →∞ we have

E(α̂− 1) =− 3

2

∫ 1

0

x
T−1
2

{
1 + x

1 + x2T−1

}1/2

dx

+
1

2

∫ 1

0

x
T−3
2

{
1 + x

1 + x2T−1

}3/2

dx

− T

2

∫ 1

0

x
5T−7

2

{
1 + x

1 + x2T−1

}3/2

(1− x)dx.

By setting y = x2T−1 the first integral becomes

∫ 1

0

x
T−1
2

{
1 + x

1 + x2T−1

}1/2

dx =
1

2T

∫ 1

0

y−
3
4

{
1 + y

1
2T−1

1 + y

}1/2

dy
[
1 +O

(
T−1

)]
=

21/2

2T

∫ 1

0

y−
3
4{1 + y}−1/2dy

[
1 +O

(
T−1

)]
.

The second and third integrals can be dealt in the same fashion. The second

becomes

∫ 1

0

x
T−3
2

{
1 + x

1 + x2T−1

}3/2

dx =
23/2

2T

∫ 1

0

y−3/4{1 + y}−3/2dy
[
1 +O

(
T−1

)]
,

and the third is given by

∫ 1

0

x
5T−7

2

{
1 + x

1 + x2T−1

}3/2

(1− x)dx = −23/2

4T 2

∫ 1

0

y
1
4{1 + y}−3/2 log ydy

[
1 +O

(
T−1

)]
.

Combining the three integrals yields

E(α̂− 1) =− 3

2

21/2

2T

∫ 1

0

y−
3
4{1 + y}−1/2dy

[
1 +O

(
T−1

)]
+

1

2

23/2

2T

∫ 1

0

y−3/4{1 + y}−3/2dy
[
1 +O

(
T−1

)]
− 1

2

(
−23/2

4T

∫ 1

0

y
1
4{1 + y}−3/2 log ydy

[
1 +O

(
T−1

)])
.
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Evaluating the expression numerically leads to the following approximation

E(α̂− 1) = −1.7814

T
+O

(
T−2

)
. (2.23)

Finally, consider the case in which c > 0, corresponding to |α| > 1. From (2.16)

and (2.17) we have

|DT (−v)| = α2x− 1 + (x− 1)α2Tx2T−1

(α2x2 − 1)xT−1
=

BT (x;α)

(α2x2 − 1)xT−1

From (2.3) and (2.16), we have, for c > 0,

E(α̂− α) =
∂

∂α

∫ ∞
0

|DT (−v)|−1/2dv

=
∂

∂α

∫ ∞
1

[
BT (x;α)

(α2x2 − 1)xT−1

]−1/2 [
α2x2 − 1

2x2

]
dx

=
1

2

∂

∂α

∫ ∞
1

x
T−5
2

(
α2x2 − 1

)3/2
BT (x;α)−1/2dx.

(2.24)

Evaluating the derivative in (2.24) gives

∂

∂α

∫ ∞
1

x
T−5
2

(
α2x2 − 1

)3/2
BT (x;α)−1/2dx

=
3

2

∫ ∞
1

x
T−1
2

(
α2x2 − 1

)3/2
BT (x;α)−1/22αx2dx

− 1

2

∫ ∞
1

x
T−5
2

(
α2x2 − 1

)3/2
BT (x;α)−3/2 ∂

∂α
BT (x;α)dx.

(2.25)

The derivative from the last line in (2.25) is

∂

∂α
BT (x;α) = 2αx+ 2T (x− 1)α2T−1x2T−1. (2.26)

Combining (2.24)-(2.26), for c > 0 we have

E(α̂− α) =
3α

2

∫ ∞
1

x
T−1
2

(
α2x2 − 1

)1/2
BT (x;α)−1/2dx

− α

2

∫ ∞
1

x
T−3
2

(
α2x2 − 1

)3/2
BT (x;α)−3/2dx

− Tα2T−1

2

∫ ∞
1

x
5T−7

2

(
α2x2 − 1

)3/2
BT (x;α)−3/2(x− 1)dx,

(2.27)
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The first and second integrals in (2.27) become exponentially small since α2T =

e
2cT
kT {1 + o(1)} explodes as T →∞. One can show that result with an argument

similar to the one used in (A.17). As a result, the bias for c > 0 is determined by

the third integral only which, as T →∞, becomes

− Tα2T−1

2

∫ ∞
1

x
5T−7

2

(
α2x2 − 1

)3/2
BT (x;α)−3/2(x− 1)dx

= − Tα2T−1

2(2T − 1)

∫ ∞
1

y
5T−7−4(T−1)

2(2T−1)

 α2y
2

2T−1 − 1

α2y
1

2T−1 − 1 +
(
y

1
2T−1 − 1

)
yα2T


3/2

×
(
y

1
2T−1 − 1

)
dy

= − Tα2T−1

2(2T − 1)

∫ ∞
1

y
1
4

 α2y
2

2T−1 − 1

α2T
(
α−2T

(
α2y

1
2T−1 − 1

)
+
(
y

1
2T−1 − 1

)
y
)


3/2

×
(
y

1
2T−1 − 1

)
dy
[
1 +O

(
T−1

)]
= − Tα−T−1

2(2T − 1)2

∫ ∞
1

y
1
4


(

1 + 2c
kT

+ c2

k2T

) (
1 + 2

2T−1
log y

)
− 1

1
2T−1

y log y


3/2

× log ydy
[
1 +O

(
T−1

)]
= − Tα−T−1

2(2T − 1)2

∫ ∞
1

y
1
4

(2T − 1)
(

2
2T−1

log y + 2c
kT

+ c2

k2T

)
y log y


3/2

log ydy
[
1 +O

(
T−1

)]

= − Tα−T−1

2(2T − 1)1/2k
3/2
T

∫ ∞
1

y
1
4

{
2c
(
1 +O

(
max

(
kT
T
, k−1

T

)))
y log y

}3/2

× log ydy
[
1 +O

(
T−1

)]
= − Tα−T−1(2c)3/2

2(2T − 1)1/2k
3/2
T

∫ ∞
1

y
1
4{y log y}−3/2 log ydy

{
1 +O

(
max

(
kT
T
, k−1

T

))}
×
[
1 +O

(
T−1

)]
= − c3/2T 1/2

k
3/2
T αT+1

∫ ∞
1

y
1
4{y log y}−3/2 log ydy

{
1 +O

(
max

(
kT
T
, k−1

T

))}[
1 +O

(
T−1

)]
.
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Finally, setting log y = w such that dy = ewdw yields

− c3/2T 1/2

k
3/2
T αT+1

∫ ∞
1

y
1
4{y log y}−3/2 log ydy

{
1 +O

(
max

(
kT
T
, k−1

T

))}[
1 +O

(
T−1

)]
= − c3/2T 1/2

k
3/2
T αT+1

∫ ∞
0

e
5
4
w{wew}−3/2wdw

{
1 +O

(
max

(
kT
T
, k−1

T

))}[
1 +O

(
T−1

)]
= − c3/2T 1/2

k
3/2
T αT+1

∫ ∞
0

e−
1
4
ww−1/2dw

{
1 +O

(
max

(
kT
T
, k−1

T

))}[
1 +O

(
T−1

)]
= −2π1/2c3/2T 1/2

k
3/2
T αT+1

{
1 +O

(
max

(
kT
T
, k−1

T

))}[
1 +O

(
T−1

)]
. (2.28)

The three results of the bias from (2.22), (2.23) and (2.28) are collected in the

Theorem.

Proof of Lemma 2.2.3 We take the derivative directly yielding

g′(α) =

(
πT

2

)1/2
(3/2)(α2 − 1)1/22ααT+1 − (T + 1)αT (α2 − 1)3/2

α2(T+1)

=

(
πT

2

)1/2
3α(α2 − 1)1/2 − (T + 1)α−1(α2 − 1)3/2

αT+1

= O
(
T 3/2α−(T+2)

)
= o(1),

and

h′(αT ) = 2(πT )1/2 (3/2)(αT − 1)1/2αT+1
T − (T + 1)αTT (αT − 1)3/2

α
2(T+1)
T

= (πT )1/2 3(αT − 1)1/2 − 2(αT − 1)3/2(T + 1)α−1
T

αT+1
T

= (πT )1/2 3(c/kT )1/2αT − 2(c/kT )3/2(T + 1)

αT+2
T

. (2.29)

Now, the second term in the fraction above dominates the expression. Thus,

it would suffice to consider only that term and show it converges to zero, from

which it will follow that the entire expression converges to zero. To do this,

we first derive an asymptotically equivalent version of α
−(T+2)
T . By utilising the
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asymptotic equivalence log(1 + x) = x+O(x2) as x→ 0, we have as T →∞

α
−(T+2)
T =

(
1 +

c

kT

)−(T+2)

= exp

(
−(T + 2) log

(
1 +

c

kT

))
= exp

(
−(T + 2)

(
c

kT
+O

(
k−2
T

)))
= exp

(
−c(T + 2)

kT
(1 + o(1))

)
= exp

(
−cT
kT

(1 + o(1))

)
. (2.30)

Now, showing that (2.29) converges to zero is a straightforward consequence of

(2.30). We write

(πT )1/2(c/kT )3/2(T + 1)

αT+2
T

∼ 2π1/2c3/2(T/kT )3/2

ecT/kT
= o(1),

due to T/kt →∞ completing the proof.
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T α̂T α̃T α̂J ᾰT
c = −5
30 −0.0055 0.0003 −0.0009 −0.0001
60 −0.0124 −0.0006 −0.0021 −0.0010
90 −0.0097 0.0008 −0.0005 0.0006

120 −0.0085 0.0005 0.0002 0.0004
c = −4
30 −0.0169 0.0011 −0.0030 −0.0001
60 −0.0163 −0.0001 −0.0024 −0.0007
90 −0.0125 0.0004 −0.0011 0.0001

120 −0.0097 0.0009 0.0004 0.0008
c = −3
30 −0.0286 0.0017 −0.0054 −0.0003
60 −0.0198 0.0007 −0.0022 −0.0000
90 −0.0148 0.0004 −0.0008 0.0001

120 −0.0119 0.0002 −0.0008 −0.0000
c = −2
30 −0.0407 0.0018 −0.0095 −0.0011
60 −0.0234 0.0014 −0.0020 0.0005
90 −0.0170 0.0005 −0.0013 0.0001

120 −0.0134 0.0002 −0.0007 0.0000
c = −1
30 −0.0507 0.0041 −0.0150 0.0005
60 −0.0285 0.0005 −0.0060 −0.0005
90 −0.0191 0.0008 −0.0022 0.0004

120 −0.0148 0.0003 −0.0014 0.0001

Table 2.1: Bias of OLS and jackknife estimators.
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Abstract

This chapter considers the application of the variance minimising jackknife esti-

mator developed by Chen and Yu (2015) to local to unit root models. The weights

used to construct the estimator depend on the variances of the full and each of

the sub-sample estimators and the covariances between them. Thus, the joint

moment generating functions between each of the estimators have been derived

to compute the asymptotic moments. The numerical results from the moments

are used to explain why previous simulation studies find that utilising a higher

number of sub-samples produces smaller variance. Furthermore, simulation re-

sults demonstrate the excellent bias reducing performance of the estimator and

its lower variance in comparison with rival jackknives. A drawback of this con-

struction is the dependence of the weights on the true local to unit root parameter,

which is typically unknown. As such, this chapter proposes a two-step “optimal”

jackknife estimator to overcome the issue. Simulations outcome is encouraging

for the usage of the two-step estimator.
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3.1 Introduction

The ordinary least squares (OLS) estimator of the autoregressive coefficient

is consistent but suffers from a bias in finite samples, a result supported by both

analytical and simulation studies. For small samples, the bias can be substantial

and, thus, it would be beneficial to apply a bias reducing procedure or utilise an

estimator different from OLS. The problem is challenging due to the fact that

stationary, non-stationary and explosive processes have different properties. As a

result, finding a unifying framework that is applicable to all cases is not easy.

One method that could prove useful is the jackknife estimator which is due

to Quenouille (1956), with Tukey (1958) showing how one can use it to construct

non-parametric estimates of variance. The jackknife estimator utilises re-sampling

techniques and there are many ways in which it can be constructed. Essentially,

its aim is the removal of a first order bias in the original estimator by a weighted

combination between the full-sample and a set of sub-samples estimators. The

existence of a first-order bias can be justified by a Nagar-type expansion of the

original estimator. Miller (1974a) provides an excellent overview on the jackknife.

The original work of Quenouille and Tukey has led to a subsequent surge of

literature on the jackknife. In terms of regression analysis, Miller (1974b) showed

that the jackknife estimator is asymptotically normally distributed for iid er-

rors when applied to the linear regression model. Further contributions to the

literature were made by Shao and Wu (1987) who proved the asymptotic unbi-

asdeness and consistency of three variance jackknife estimators when applied to

linear regression models in the presence of error heteroskedasticity. In terms of

instrumental variable estimation, Angrist et al. (1999) studied the finite sample

properties of a jackknife instrumental variable estimator and found evidence that

its performance is superior compared to the two-stage least squares and limited

information maximum likelihood estimators, when applied to data with more in-

struments than endogenous variables. However, the estimator of Angrist et al.

has been criticised by Davidson and MacKinnon (2006) who find evidence on its
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bad performance in the case of weak instruments. Applications of the jackknife

estimator to panel data fixed effects have been considered by Hahn and Newey

(2004), and Dhaene and Jochmans (2015) extend further to dynamic panel data

models. In terms of pure time series, Künsch (1989) used both the bootstrap and

the jackknife to estimate standard errors in stationary time series and Phillips

and Yu (2005) demonstrated the gains that can be obtained by applying the jack-

knife in reducing bias in option pricing in countinuous time models. Chambers

(2013) explores the properties of the jackknife estimator when applied to station-

ary autoregressive processes, Chambers and Kyriacou (2013) study the properties

of the estimator in non-stationary processes and Chambers and Kyriacou (2018,

henceforth CK) consider the local to unit root case. Lastly, Chen and Yu (2015,

henceforth CY) propose a more efficient modified version of the CK estimator

which applies to unit root processes, which we shall label as an “optimal” jack-

knife estimator. The aim of this chapter is to extend the literature by constructing

an “optimal” jackknife for pure local to unit root processes which could be utilised

in applied work. The paper is organised in the following way.

Section 2 introduces the non-overlapping jackknife estimator which Chambers,

CK and CY considered, and the main advantages and drawbacks of the estima-

tor, such as the fact that it produces an outstanding performance in terms of

bias reduction but does that at the expense of a higher variance. Appropriate

procedures for constructing the weights are discussed, as well as the problems as-

sociated with them. The main issue with the weights is that they depend on the

analytical solution of the asymptotic bias which unfortunately has different forms

in stationary, non-stationary and explosive series (Le Bretton and Pham (1988)

and Theorem 2.2.1). Furthermore, if local to unit root alternatives are considered

construction of the weights depends on the true parameter generating the data,

something one is trying to estimate in the first place.

To set the stage, section 3 introduces the model. To construct the weights in

the local to unit root case one needs to derive the finite sample variances of the
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full-sample and sub-sample estimators, and the covariances between them. CY

state that the finite sample moments are difficult to obtain and thus they propose

to use their asymptotic counterparts. As such, the section explores a way in which

one can obtain the asymptotic moments by use of moment generating functions

(MGF). Since the solutions of the MGFs involve integrals which cannot be solved

analytically, one needs to apply numerical methods for evaluation. A discussion is

also provided on some interesting features of the numerical results of the moments

as the properties of the estimator change in the locally stationary, non-stationary

and locally explosive cases. More specifically, in explosive series the full-sample

estimator follows a Cauchy distribution asymptotically (White (1958) and Phillips

and Magdalinos (2007)), which also feeds through to the sub-sample estimators.

Thus, the moments in that case should be interpreted as pseudo moments as it

is a known fact that the Cauchy distribution is absent of finite moments. In

addition, the asymptotic moments are used to derive the asymptotic variance of

the “optimal” jackknife. We provide an analytical derivation of why choosing a

higher number of sub-samples produces smaller asymptotic variance, thus explain-

ing findings from previous simulation studies. This feeds through to finite sample

settings as subsequent sections show. The results hold regardless of whether the

data generated is locally stationary, non-stationary ot locally explosive. These also

explain why the “optimal” jackknife produces 10% smaller variance than CK.

Subsequent to all of the preliminaries, section 4 explores the “optimal” local

to unit root jackknife estimator and discusses its properties and performance via

simulations. The number of replications is set to 10,000, with normally distributed

innovations, and comparison is conducted against OLS and rival jackknife esti-

mators. The outcome of the exercise provides evidence in favour of the newly

constructed estimator as it provides the same level of bias reduction as the CK

bias minimising jackknife but also produces a lower variance.

The estimator performs well in simulations, however, it is impossible to apply

in practice as one needs to know the true parameter a priori to construct the
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weights. To overcome the problem, section 5 proposes a two-step “optimal” jack-

knife estimator. The idea behind it is to get an estimate of the true parameter

that is assumed to have generated the data and use it to construct the weights

and then use those weights in a second stage. Another simulation exercise is

performed to consider the features of the newly constructed two-step “optimal”

jackknife estimator. For the values of the autoregressive parameter and sample

sizes considered the estimator is found to perform excellently. Lastly, section 6

concludes and the appendix depicts all proofs.

For notational simplicity the following notation shall be used throughout.

Jγ(r) =
∫ r

0
e(r−s)γdW (s) denotes the Ornstein-Uhlenbeck (O-U) process which

satisfies the following stochastic differential equation dJγ(r) = γJγ(r)dr+ dW (r)

for some constant parameter γ. The processes Jγ(r) and W (r) will be denoted by

J and W , respectively, such that functionals of the form
∫ b
a
Jγ(r)dJγ(r) will be

denoted as
∫ b
a
JdJ .

3.2 Jackknife estimation of autoregressive time

series

The OLS estimator in autoregressive time series has been found to be biased

but consistent and this has been supported by simulation and theoretical studies

(e.g. Phillips, 2012). Figure 3.1 shows a smoothed graph of the simulated bias for

different sample sizes in an autoregressive model without an intercept. The value

of the autoregressive coefficient has been plotted on the abscissa and the value of

the bias on the ordinate. It can be observed that as the sample size increases the

bias diminishes. Furthermore, the bias increases as the value of the autoregressive

parameter approaches unity. Figure 3.2 depicts an even more severe bias around

unity when an intercept is estimated in the model. Thus, it would be plausible

to consider an estimator which could reduce bias for values of the autoregressive

coefficient in the vicinity of unity.
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The original jackknife (also sometimes referred to as ”delete 1” jackknife, see

Quenouille, 1956) works only with iid data and is inapplicable in time series set-

tings as removing observations heuristically would affect the correlation structure

of the process. One way to try to circumvent this issue is to use non-overlapping

blocks of sub-samples. Consider the case in which a researcher is interested in

the population parameter θ. Further, assume that they can utilise a full sample

estimator which satisfies

E(θ̂n) = θ +
a1

n
+
a2

n2
+O

(
n−3
)
, (3.1)

which is the case for most maximum likelihood estimations. Consider splitting

the entire sample of n observations into m non-overlapping blocks of sub-samples,

each of length l, such that n = m × l. Assume the sub-sample estimators θ̂j

(j = 1, . . . ,m) within each block satisfy

E(θ̂j) = θ +
a1

l
+
a2

l2
+O

(
l−3
)
. (3.2)

Then, the jackknife is constructed as

θ̂J = w1θ̂ + w2
1

m

m∑
j=1

θ̂j.

Theorem 1 from Chambers ensures that setting up the weights as w1 = m/(m−1)

and w2 = −1/(m−1), which we shall label as standard weights and the estimator

as Cm, completely removes the first order bias of the estimator in stationary au-

toregressive settings as long as the expansions in (3.1) and (3.2) exist. Chambers

analysed the asymptotic properties of the estimator in stationary AR(p) processes

and showed that it has the same asymptotic distribution as OLS. As such, the

jackknife is consistent and asymptotically normally distributed. What is more,

there is no asymptotic efficiency loss in comparison with OLS. The author also

shows, by means of simulations, that the jackknife is robust to different specifica-



54

tions and also performs extremely well in comparison with the median-unbiased

estimator and the bootstrap. However, in addition to the excellent bias reduction

Chambers also documented the estimator’s higher variance when constructed as

a bias-minimisation tool.

The above mentioned weights work in stationary cases but not in unit root

settings. Chambers and Kyriacou (2013) argue that the constants in (3.2) are no

longer identical across each of the sub-samples in the limit and the weights require

modifications to take this into account. Consider

yt = βyt−1 + εt, εt ∼ i.i.d(0, σ2), β = 1, t = 1, . . . , n, (3.3)

where y0 = 0. Then, the first-order bias minimising jackknife is defined as

β̂optJ = κoptβ̂n + δopt
1

m

m∑
i=1

β̂i,

with κopt = −
∑m

j=1 µj/µ̄, δopt = µ/µ̄ and µ̄ = µ −
∑m

j=1 µj, where µ and µj

are the respective constants in the asymptotic expansion of the full and each of

the sub-sample estimators. Again, simulation results conducted by the authors

highlight the outstanding bias reduction performance at the expense of a higher

variance for bias-minimising values of m.

To try to mitigate the adverse effects, CY propose to construct an optimisation

problem, which aims to minimise the variance of the above mentioned estimator.

The new estimator is defined as1 β̃CYm = bCYm β̃m −
∑m

j=1 a
CY
j,mβ̃j, where the weights

bCYm and aCYj,m are obtained as the solution to

min
bCY
m ,{aCY

j,m}mj=1

V ar
(
β̃CYm

)
1Following CY’s notation.
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subject to the constraints

bCYm =
m∑
j=1

aCYj,m + 1 and bCYm µ = m

m∑
j=1

aCYj,mµj.

The two constraints ensure that the first order term of the asymptotic bias is

eliminated. To obtain the optimal weights one needs to calculate the means of the

full and each of the sub-samples (µ, µ1, ..., µm), their variances and the covariances

between them, a topic which we shall return to in a subsequent section. By means

of simulations, CY showed that the newly constructed estimator performs as well

in terms of bias reduction and also has approximately 10% reduced variance in

comparison with the first-order bias minimising jackknife.

Theoretically, both estimators perform excellently, however applying them in

practice becomes cumbersome. The weights, as they were derived, would be

optimal only in a unit root case scenario, or having a value of the autoregressive

parameter exactly equal to one. This would hardly be the case in any given

empirical application. As such, CY analyse the performance of their estimator in

local to unit root settings. However, their simulation study finds further evidence

that the weights are no longer optimal the further away from unity the true

parameter is. In this case, the CY estimator exhibits more distortions as it involves

more terms that need to be calculated to construct the weights (variances and

covariances in addition to the means), which are theoretically incorrect once the

autoregressive parameter starts shifting away from unity. To depict the distortions

in the CY estimator we have simulated data from (3.3) with normally distributed

errors and 10, 000 replications for different values of the autoregressive parameters.

The means of the OLS, Cm and CY estimators constructed with m = 2 have been

plotted on Figures 3.3 and 3.4 for sample sizes n = 24 and n = 192, respectively. It

can be observed that the constant weights of CY do not produced the desired bias

reduction across all of the values considered. It is also interesting to note that the

constant weights of Chambers’ estimator produce the same shape as those of CY

in terms of bias reduction. This is not surprising as the jackknife is constructed by
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utilising weights applied to different estimators. When the weights are constant,

the two estimators should have similar shapes. In addition, CY only consider

values of m equal to either two or three. It would be interesting to consider the

performance of the estimator for bigger values of m as the analytical results from

this chapter provide a formal explanation of why choosing a higher number of

sub-samples reduces the jackknife’s variance.

Lastly, the OLS estimator has the following asymptotic expansion (due to Le

Breton and Pham): as n → ∞, for |β| < 1, n(E(β̂) − β) converges to −2β; for

|β| = 1, n(E(β̂) − β) converges to −1.7814; for |β| > 1, n−1/2|β|n(E(β̂) − β)

converges to −2−1/2π1/2β−1(β2 − 1)3/2. As a result, constructing the weights in

an ordinary fashion would be impossible, the reason being twofold: one does not

know the true parameter a priori and, secondly, the function is discontinuous and

unusable for autoregressive parameter values close to unity. In contrast, local to

unit root processes have the advantage that their asymptotic expansion satisfies

E(β̂n) = β + O (n−1), as n → ∞ (Phillips (2012)), which is continuous through

β = 1. This provides a framework in which the jackknife could prove useful in

locally stationary, non-stationary and locally explosive series.

3.3 Optimal jackknife estimation in local to unit

root models

Assume the variable of interest satisfies the following stochastic difference equa-

tion

yt = ρnyt−1 + ut, t = 1, . . . , n, (3.4)

where y0 = 0, ρn = eγ/n = 1 + γ/n + O(n−2) with γ being a constant and ut is

iid with zero mean and variance σ2. No assumption will be made regarding the

autoregressive coefficient in terms of whether it is smaller, equal or bigger than

unity: if γ < 0 then the process is (locally) stationary, when γ = 0 the process is

nonstationary and for γ > 0 the process is (locally) explosive. By construction,
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limn→∞ ρ = 1 and the model considered bares the name “local to unit root”.

Consider splitting the entire sample of n observations into m sub-samples, each

of length l such that n = m× l. The OLS estimators for the full sample and each

of the sub-samples are given by

ρ̂ =

n∑
t=1

ytyt−1

n∑
t=1

y2
t−1

and ρ̂j =

∑
t∈τj

ytyt−1∑
t∈τj

y2
t−1

,

where τj = {(j − 1)l + 1, . . . , jl}, for j = 1, . . . ,m. The limiting distributions of

the full-sample and sub-sample estimators have been derived by Phillips (1987b)

and CK, respectively, and are given by

n(ρ̂− ρn)
d⇒
∫ 1

0
JdW∫ 1

0
J2

,

l(ρ̂j − ρn)
d⇒

∫ j/m
(j−1)/m

JdW

m
∫ j/m

(j−1)/m
J2
.

In this scenario, formulating the usual jackknife with the standard weights fails to

completely remove the first order bias as the different sub-samples have different

limiting distributions. This issue is tackled by adjusting the second constraint.

Construct the jackknife estimator as ρ̂J = wρ̂ −
∑m

j=1 wj ρ̂j and minimise its

variance subject to the constraints that ensure the first order bias term of the

estimator is eliminated

min
w,{wj}mj=1

V ar
(
ρ̂J
)

s.t.

w =
m∑
j=1

wj + 1 and wµγ = m

m∑
j=1

wjµγ,j.

The subscript ’γ’ is used to distinguish from the case considered in section 2 where

the constant γ was equal to zero. It is convenient to rewrite the optimisation

problem in a matrix form, which would also facilitate the simulations which are
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carried in a subsequent section. We write

min
w
w′Ωw s.t. νw − 1 = 0 and µw = 0,

where w = [w,−w1,−w2, · · · ,−wm]′, ν = [1, 1, · · · , 1], a row vector of ones with

(m+ 1) elements, µ = [µγ,mµγ,1, · · · ,mµγ,m] and

Ω =



σ2
0 σ0,1 · · · σ0,m

σ0,1 σ2
1 · · · σ1,m

...
...

. . .
...

σ0,m σ1,m · · · σ2
m


,

where σi,k (i, k = 0, . . . ,m) denotes the covariance between the ith and kth sub-

samples, with the subscript 0 denoting the full sample and σ2
i denoting their

variances. The (m + 1) × (m + 1) covariance matrix Ω is symmetric due to

σ0,1 = σ1,0. The corresponding Lagrangian is

L(w;λ) =
1

2
w′Ωw + λ′(Cw − p),

where λ = [λ1, λ2]′, C = [ν ′µ′]′ and p = [1, 0]′. The 1/2 is introduced to facilitate

the optimisation and does not change the optimising valuesw∗. Taking the partial

derivatives and setting them equal to zero yields

∂L

∂w
= Ωw + C′λ = 0,

∂L

∂λ
= Cw − p = 0 .

The solution is given by

w∗
λ∗

 =

Ω C′

C 0


−1 0

p

 .
Since Ω is positive definite and since the constraints are linear, w∗ produces

a global minimum. It could also be observed that the matrix is partitioned.



59

It follows that we can decompose its inverse and solve directly for w∗ without

having to include the lagrange multipliers (the result can be found in Abadir and

Magnus (2005), p106). Thus, we can define the weights for the “optimal” jackknife

estimator as

w∗ =

[
Ω−1 − Ω−1C′ [CΩ−1C′]

−1
CΩ−1 Ω−1C′ [CΩ−1C′]

−1

] 0

p


= ΩC′[CΩ−1C′]−1p.

We now need to calculate Ω which contains the variances of each of the estimators

and the covariances between them. We employ the procedure of CY and substitute

the finite sample expressions with their asymptotic counterparts:

n2V ar(ρ̂) = E

(∫ 1

0
JdW∫ 1

0
J2

)2

− µ2
γ + o(1);

l2V ar(ρ̂j) = E

∫ j/m(j−1)/m
JdW

m
∫ j/m

(j−1)/m
J2

2

− µ2
γ,j + o(1), j = 1, . . . ,m;

n2Cov(ρ̂, ρ̂j) = E

∫ 1

0
JdW∫ 1

0
J2

∫ j/m
(j−1)/m

JdW∫ j/m
(j−1)/m

J2

−mµγµγ,j + o(1), 1 ≤ j ≤ m;

n2Cov(ρ̂i, ρ̂j) = E

∫ i/m(i−1)/m
JdW∫ i/m

(i−1)/m
J2

∫ j/m
(j−1)/m

JdW∫ j/m
(j−1)/m

J2

−m2µγ,iµγ,j + o(1),

1 ≤ i < j ≤ m.

To get the required expectations, we will make use of the MGF. Let N(a, b) =∫ b
a
JdJ , D(a, b) =

∫ b
a
J2 and letMa,b(θ1, θ2) = E exp

(
θ1

∫ b
a
JdJ + θ2

∫ b
a
J2
)

denote

their joint MGF. Magnus (1986) showed that

E
(
N(a, b)

D(a, b)

)2

=

∫ ∞
0

θ2
∂2Ma,b(θ1,−θ2)

∂θ2
1

∣∣∣
θ1=0

dθ2
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and CK showed that

Ma,b(θ1, θ2) = exp

(
−θ1 + γ

2
(b− a)

)
Ha,b(θ1, θ2)−1/2

where Ha,b(θ1, θ2) = cosh((b−a)λ)−(1/λ)[θ1+γ+((θ1+γ)2−λ2)ν2] sinh((b−a)λ),

with λ =
√
γ2 − 2θ2 and ν2 = (e2aγ − 1)/(2γ).

Proposition 3.3.1. The second derivative of Ma,b(θ1, θ2) with respect to θ1 is

given by

∂2Ma,b

∂θ2
1

∣∣∣
θ1=0

= exp

(
−γ(b− a)

2

){
1

4
(b− a)2H

−1/2
0 +

3(1 + 2γν2)2

4λ2
H
−5/2
0 sinh2((b− a)λ)+

+
1

2λ
H
−3/2
0 [2ν2(1− (b− a)γ)− (b− a)] sinh((b− a)λ)

}
,

where H0 = cosh((b − a)λ) − (1/λ)[γ + (γ2 − λ2)ν2] sinh((b − a)λ), with λ =√
γ2 − 2θ2, and ν2 = (e2aγ − 1)/(2γ).

The expression above is amenable to numerical integration and can be used to

derive the asymptotic variances. For the full-sample case a = 0 and b = 1, and

for the sub-sample cases a = (j − 1)/m and b = j/m, for j = 1, . . . ,m. Note

that the integrals from the asymptotic variances and covariances involve terms

which are integrated with respect to a Brownian motion, whereas the result from

Proposition 3.3.1 involves terms which are integrated with respect to an O-U

process. To overcome this we utilise the procedure of CK. They showed that

N(a, b) =

∫ b

a

JdJ =

∫ b

a

JdW + γ

∫ b

a

J2,

from which follows that

∫ j/m

(j−1)/m

JdW =

∫ j/m

(j−1)/m

JdJ − γ
∫ j/m

(j−1)/m

J2.

This also holds with (j−1)/m = 0 and j/m = 1. Plugging this into the asymptotic
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expression yields

n2V ar(ρ̂) = E

(∫ 1

0
JdW∫ 1

0
J2

)2

− µ2
γ + o(1)

= E

(∫ 1

0
JdJ − γ

∫ 1

0
J2∫ 1

0
J2

)2

− µ2
γ + o(1)

= E

(∫ 1

0
JdJ∫ 1

0
J2
− γ

)2

− µ2
γ + o(1)

= E

(∫ 1

0
JdJ∫ 1

0
J2

)2

− 2γE

(∫ 1

0
JdJ∫ 1

0
J2

)
+ γ2 − µ2

γ + o(1).

The same procedure can be applied for each of the sub-sample terms

l2V ar(ρ̂j)

= E

∫ j/m(j−1)/m
JdW

m
∫ j/m

(j−1)/m
J2

2

− µ2
γ,j + o(1)

= E

 ∫ j/m(j−1)/m
JdJ

m
∫ j/m

(j−1)/m
J2

2

− 2γ

m
E

 ∫ j/m(j−1)/m
JdJ

m
∫ j/m

(j−1)/m
J2

+
γ2

m2
− µ2

γ,j + o(1),

for j = 1, . . . ,m. The first terms on the right-hand side can be obtained from

Proposition 3.3.1 and the second and fourth from CK. To obtain the covariances,

we utilise the same procedure.

LetMa,b,c,d(θ1, θ2, ϕ1, ϕ2) = exp
(
θ1

∫ b
a
JdJ + θ2

∫ b
a
J2 + ϕ1

∫ d

c
JdJ + ϕ2

∫ d

c
J2
)

denote the MGF of N(a, b), N(c, d), D(a, b) and D(c, d) with 0 ≤ a < b ≤ 1 and

0 ≤ c < d ≤ 1. CY showed that

E
(
N(a, b)

D(a, b)

N(c, d)

D(c, d)

)
=

∫ ∞
0

∫ ∞
0

∂2Ma,b,c,d(θ1,−θ2, ϕ1,−ϕ2)

∂θ1∂ϕ1

∣∣
θ1=0,ϕ1=0

dθ2dϕ2.

The following theorem derives the MGF of the four functionals for the two cases:

for a = 0, b = 1 and 0 ≤ c < d ≤ 1, which corresponds to the full sample - each

sub-sample cases and for 0 ≤ a < b ≤ c < d ≤ 1, which corresponds to the each

sub-sample with each sub-sample case.
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Theorem 3.3.2. The MGF M0,1,a,b(θ1, θ2, ϕ1, ϕ2) is given by

M0,1,a,b(θ1, θ2, ϕ1, ϕ2)

= exp

(
−θ1

2
− ϕ1

2
s− γ

2

)[
cosh(aλ)− p+ η

λ
sinh(aλ)

]−1/2

×
[
cosh(eλ)− θ1 + γ

λ
sinh(eλ)

]−1/2

×
[
cosh(sη)− (θ1 + γ − λ)kb + ϕ1 + λ

η
sinh(sη)

]−1/2

,

where ζ = λ =
√
γ2 − 2θ2, η =

√
γ2 − 2θ2 − 2ϕ2, e = 1 − b, s = b − a, $2

b =

(exp(2eλ) − 1)/(2λ), kb = [1− (θ1 + γ − λ)$2
b ]
−1

exp(2eλ), $2
a = (exp(2sη) −

1)/(2η), ka =
[
1− [(θ1 +γ−λ)kb+ϕ1 +(λ−η)]$2

a

]−1
exp(2sη), $2 = (exp(2aλ)−

1)/(2λ) and p = [(θ1 + γ − λ)kb + ϕ1 + (λ− η)]ka − ϕ1.

For 0 ≤ a < b ≤ c < d ≤ 1, the MGF Ma,b,c,d(θ1, θ2, ϕ1, ϕ2) is given by

Ma,b,c,d(θ1, θ2, ϕ1, ϕ2)

= exp

(
−θ1

2
s− ϕ1

2
e− γ

2
d

)
×
[
cosh(aγ)− (p+ θ1 + γ − η)ka − θ1 + η

γ
sinh(aγ)

]−1/2

×
[
cosh(qγ)− (ϕ1 + γ − λ)kc − ϕ1 + λ

γ
sinh(qγ)

]−1/2

×
[
cosh(eλ)− ϕ1 + γ

λ
sinh(eλ)

]−1/2

×
[
cosh(sη)− (ϕ1 + γ − λ)(kc − 1)kb + θ1 + γ

η
sinh(sη)

]−1/2

,

where δ = ζ = γ, λ =
√
γ2 − 2ϕ2, η =

√
γ2 − 2θ2, e = d − c, s = b − a,

q = c − b, $2
c = (exp(2eλ) − 1)/(2λ), kc = [1 − (ϕ1 + γ − λ)$2

c ]
−1 exp(2eλ),

$2
b = (exp(2qγ)−1)/(2γ), kb = [1−[(ϕ1+γ−λ)kc−ϕ1+λ−γ]$2

b ]
−1 exp(2qγ), $2

a =

(exp(2sη)−1)/(2η), ka =
[
1− [(ϕ1 +γ−λ)(kc−1)kb+θ1 +(γ−η)]$2

a

]−1
exp(2sη),

$2 = (exp(2aγ)− 1)/(2γ) and p = (ϕ1 + γ − λ)(kc − 1)kb.

The appendix contains the second derivative of both of the MGFs with respect to
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θ1 and has not been included here as they are not essential to the discussion.

Again, as in the case with the variances, one needs to adjust the terms of the

covariances. Starting with the full-sample with each sub-sample cases this can be

achieved in the following way

n2Cov(ρ̂, ρ̂j) = E

∫ 1

0
JdW∫ 1

0
J2

∫ j/m
(j−1)/m

JdW∫ j/m
(j−1)/m

J2

−mµγµγ,j + o(1)

= E

∫ 1

0
JdJ∫ 1

0
J2

∫ j/m
(j−1)/m

JdJ∫ j/m
(j−1)/m

J2

− γE
∫ 1

0
JdJ∫ 1

0
J2

+

∫ j/m
(j−1)/m

JdJ∫ j/m
(j−1)/m

J2

+

+ γ2 −mµγµγ,j + o(1), j = 1, . . . ,m.

The cases of each sub-sample with each sub-sample are straightforward:

n2Cov(ρ̂i, ρ̂j)

=E

∫ i/m(i−1)/m
JdW∫ i/m

(i−1)m
J2

∫ j/m
(j−1)/m

JdW∫ j/m
(j−1)/m

J2

−m2µγ,iµγ,j + o(1)

= E

∫ i/m(i−1)m
JdJ∫ i/m

(i−1)m
J2

∫ j/m
(j−1)/m

JdJ∫ j/m
(j−1)/m

J2

− γE
∫ i/m(i−1)m

JdJ∫ i/m
(i−1)m

J2
+

∫ j/m
(j−1)/m

JdJ∫ j/m
(j−1)/m

J2

+

+ γ2 −m2µγ,iµγ,j + o(1), 1 ≤ i < j ≤ m.

As in the asymptotic variance cases the first term can be obtained from Theorem

3.3.2 and the second and fourth terms from CK.

Table 3.1 depicts the normalised variances of the full-sample and each of the

first six sub-sample estimators (the diagonal entries) and the normalised covari-

ances between them (the off diagonal entries) for different values of γ. Although

not included in the present paper, the patterns that are observed in the table fol-

low for any number of sub-samples. It can be seen that the normalised variances

increase as γ decreases. The variance of the full sample is bigger than the first

sub-sample’s for negative γ, equal to it for γ = 0 and smaller than it for positive

γ. This is a consequence of the solution of the MGF and the details can be found
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in CK. Furthermore, the variances of each sub-sample are bigger than any of the

consecutive sub-samples. In terms of the cross-moments, the covariance between

the full-sample and each of the sub-samples increase as the number of the sub-

sample used increases, i.e. σ0,1 < σ0,2. This holds for all sub-samples with the

exception of the last one. On the other hand, the pattern for sub-samples is the

opposite, i.e σ1,2 > σ1,3, etc. Some of the entries in the table coincide with results

from previous studies, namely CY derived the variances of the full sample and

sub-sample estimators for γ = 0 and m = 2, 3, and Hansen (2014) derived the

variances for the full-sample for negative values of γ. However, most of the entries

are new to the literature.

Now that we have the asymptotic moments, we can construct the weights.

Table 3.2 depicts those for different values of γ. As m increases the weight that

is applied to the full sample estimator decreases for any γ. For example, when

γ = −10 and m = 2, w∗ = 2.1081, for m = 12, w∗ = 1.1357 and for m = 1000,

w∗ = 1.0111. The last result is not reported in Table 3.2. It seems that as m

gets large, w∗ approaches unity. In other words the jackknife estimator converges

to OLS as the number of sub-samples becomes large since the weights sum up to

one. Thus the local to unit root optimal jackknife estimator shares some of its

feature with the standard jackknife analysed by Chambers.

The results from Proposition 3.3.1 and Theorem 3.3.2 can also be used to

calculate an approximation (up to order O(n−1)) of the asymptotic variance of

the jackknife estimator for any fixed m. Table 3.3 contains numerical results

of n2V ar(ρ̂J) and n2V ar(ρ̂CK) as n → ∞ by utilising their respective optimal

weights. We can observe that the variance decreases as the number of sub-samples

increase. What is more, for any number of sub-samples the “optimal” jackknife

has smaller variance than CK. For values of γ close to zero the discrepancy is

approximately 10%. These asymptotic results translate to finite samples as the

following sections depict. Furthermore, Table 3.1 contains the asymptotic vari-

ance of OLS and we can make comparison for a number of values of γ. We will
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focus on the “optimal” jackknife only. For γ = 0 and m = 2 the jackknife has an

asymptotic variance bigger than OLS’s by almost a factor of two. It takes m = 6

to produce an asymptotic variance lower than OLS’. These results are important

as previous studies find evidence via simulations that m = 2 produces the small-

est bias. However, we can see why it also produces the highest variance. Thus,

if the researcher is interested in utilising the jackknife as a variance minimiser

than choosing a high number of sub-samples seems plausible. Some finite samples

simulations not reported here suggest that choosing m = n/4, or l = 4, produces

the smallest variance almost uniformly, which is consistent with those analytical

results. Choosing m = n/2 would not provide enough observations for estimation

within the sub-samples and typically does not perform well. This procedure is

going to be utilised for the finite-sample simulations that follow. Under the au-

thor’s knowledge this is the first attempt to explain analytically why choosing a

bigger m produces a smaller variance. Chambers and Kyriacou (2012) provide

simulations with similar outcome. Finally, the same analysis cannot currently be

applied to explain why m = 2 produces the smallest bias as this would require an

analytical expression of the second-order term of the bias of OLS as the jackknife

removes the first one. Unfortunately, this has not been derived yet for local to

unit root models.

3.4 Simulation studies

This section has the aim to investigate the performance of the “optimal” jack-

knife estimator in different settings via simulations. A comparison will be made

with the following estimators: OLS, Cm and CK2. Inclusion of the OLS estimator

is self-explanatory. The Cm estimator is included for a couple of reasons. Firstly,

it utilises optimal weights for the stationary case so it would be interesting to com-

pare our estimator to Cm on the stationary side. Secondly, Kruse and Kaufmann

2For parsimonious presentation of the results, the two-step estimator, which is the subject
of the next section, has also been included in these tables.
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(2015) find evidence that those weights perform best in terms of bias reduction for

mildly explosive processes in the samples of smallest sizes when compared with

different estimators: the bootstrap-aided estimator of Kim (2003), indirect infer-

ence and the approximately median-unbiased estimator of Roy and Fuller (2001).

Thus, it would also be interesting to compare our estimator to Cm on the explo-

sive side as well since, regardless of its excellent performance, Cm is theoretically

suboptimal. Comparison with the CK estimator is also self-explanatory since the

argument for the “optimal” jackknife estimator is that it performs as well as that

of CK’s in terms of bias reduction but, in addition, also has a reduced variance.

The CY estimator has not been included due to its shortcomings, which were

explained in section 2. The comparison will be made in terms of bias and RMSE

since the latter has the aim to capture the trade-off between bias reduction and

an increase in the variance. Non-jackknife estimators have not been included in

the study as Chambers, CK and Kruse and Kaufmann have done extensive sim-

ulations to show the superior bias reduction capabilities of the jackknife and we

only need be concerned with showing that our estimator produces the same bias

reduction and also has a smaller variance in comparison with CK’s.

The model considered is the one given by (3.4) with normally distributed error

terms with mean zero and a unit variance, i.e. ut ∼ N(0, 1), and the number of

replications is set at 10, 000. The number of observations considered start with

n = 36 and are then increased by the same amount for each further scenario

considered: n ∈ {36, 72, 108, 144}. The sample sizes are chosen such that we can

utilise a number of sub-samples. Furthermore, small samples are considered as

the negative effects of the bias are most well-pronounced in those situations. The

value of γ is taken such that it covers stationary, non-stationary and explosive

processes. The outcome of the simulations is reported in four tables: two for bias-

minimising and two for RMSE-minimising values of m. Previous studies find that

m = 2 produces the smaller bias. As RMSE in these settings is dominated by the

variance of the estimators we will choose m = n/4 for RMSE-minimisation.
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Looking at Tables 3.4 and 3.6, it can be observed that the bias decreases as

the sample size increases. Furthermore, it can also be seen that the biases of the

CK and “optimal“ jackknife are significantly lower in magnitude in comparison to

OLS. For the range of values of γ considered, the former two produce practically

the same level of bias reduction. Secondly, the CK and “optimal” jackknives

outperform Cm on the stationary side. This could be explained by the fact that

they remove different first order and leave different second order, and so on, terms

from the asymptotic bias. Note that the asymptotic bias on the stationary side

is given by E(ρ̂− ρ) = −2ρ/n+ O(n−2), which is different from the local to unit

root’s. Furthermore, the CK and “optimal” jackknives also outperform Cm on the

explosive side, which should not come as a surprise as by construction the former

two are optimal in this scenario and the latter is not. These result hold regardless

of whether we consider the bias or RMSE-minimising values of m.

Tables 3.5 and 3.7 contain a comparison between the RMSEs of the estimators

(the subscripts denote the value of m). In each scenario the “optimal” jackknife

produces a smaller variance than CK, something the estimator was constructed to

do in the first place. In addition, for m = 2 the “optimal” jackknife has a slightly

higher variance than Cm, which is the cost the estimator pays when constructed

as a bias-minimisation tool as explained in section 3. However, for m = n/4 it can

be observed that for all cases the “optimal” estimator has the smallest RMSE.

3.5 Two-step “optimal” jackknife estimation

The “optimal” jackknife estimator performs excellently in a controlled envi-

ronment as the values of γ that are used to construct the weights are known.

This, however, is not the case in applied situations as the idea of the estimator

is to reduce bias in the process of estimation of the autoregressive parameter. To

try and overcome this problem we propose a two-step estimator. The idea of the

estimator is to get an initial value of γ, denoted by γ̂, in a first step, use it to

construct the weights and then use those weights in the second step.
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To try and back γ out we apply the following procedure. Firstly, run a re-

gression and estimate ρ̂ as an estimate of the true ρ. Since it is assumed that

ρ = eγ/n, with γ being a constant, we reverse and solve for γ, which is given by

γ = n log ρ. The estimator of γ would then be given by γ̂ = n log ρ̂ and has the

following property as n→∞

γ̂ = n log((ρ̂− ρn) + ρn) = n log
(
(ρ̂− ρn) + 1 + γ/n+Op(n

−2)
)

= n (ρ̂− ρn) + γ +Op(n
−1),

Hence, we have that

γ̂ − γ = n(ρ̂− ρn) +Op(n
−1)⇒

∫ 1

0
JdW∫ 1

0
J2

.

Therefore, γ̂ would underestimate the true γ on average even asymptotically.

However, this is not a problem as the purpose of the two-step estimator is to

reduce bias in finite sample estimation of ρ rather than γ. We have carried out a

simulation with n = 254, m = 2 and γ = 0 with 10, 000 replications (this sample

size is not considered in any of the tables) and the difference between the bias of

the absolute terms of the “optimal” and two-stage “optimal” estimators is equal to

approximately −0.9×10−5. Thus, even though γ̂ does not converge in probability

to γ as the sample size gets large, we can still utilise the two-step estimator.

Furthermore, this construction does not rely on a normality assumption in (3.4).

Tables 3.4-3.7 contain the performance of the two-step “optimal” estimator.

Firstly, starting with m = 2, for higher absolute values of γ the two-step estimator

practically has the same performance as the “optimal” estimator in terms of both

bias and RMSE. For absolute values of γ closer to zero, the two-step estimator has

higher bias than the “optimal” estimator. It is interesting to note that the two-

step estimator produces smaller RMSE than the ”optimal” jackknife for some of

the values of the parameters considered. Furthermore, the two-step estimator also

has smaller bias and slightly higher variance than Cm. For m = n/4, the two-step
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estimator produces bias and RMSE comparable to that of the “optimal” jackknife

and always smaller bias than Cm. Furthermore, with the exception of 3 values of

n for γ = −10, and one value of n for γ = −5, the two-step estimator produces

smaller RMSE than Cm. The simulations studies provide evidence that the two-

step estimator performs better than Cm for values of the autoregressive coefficient

close to unity regardless of whether it is to be used as a bias or RMSE-minimising

estimator. In view of Chambers’ (2013) work, similar results are expected to

hold for departures from normality but have not been pursued here due to the

computational time required to conduct the simulations.

3.6 Conclusion

This chapter has had the aim to construct an “optimal” jackknife estimator

which attempts to overcome some of the problems with previous versions of the

jackknife documented in the literature when autoregressive time series are con-

sidered. The “optimal” local to unit root jackknife estimator is constructed as

a variance minimisation problem of the estimator considered by Chambers and

Kyriacou (2018). The unifying method is applicable to locally stationary, non-

stationary and locally explosive series. Construction of the estimator requires the

calculation of the variances of the full-sample and each of the sub-samples, and

the covariances between all of them. As such, the paper derives their asymptotic

counterparts by means of moment generating functions and provides a discussion

on some of the moments’ features. The results are used to provide a formal ex-

planation of findings from previous simulation studies, namely, why the jackknife

has smaller variance when the number of sub-samples utilised increases. Sim-

ulation studies provide evidence that the newly constructed estimator performs

outstandingly in terms of bias reduction and produces smaller variance than rival

jackknife estimators for the bigger part of the autoregressive coefficient consid-

ered. To overcome the problem of the weights’ dependence on the true parameter

generating the data, the chapter also proposes a two-step “optimal” jackknife es-
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timator, the idea of which is to get an estimate of the parameter and use it to

construct the weights. Simulation studies show that the there is not much loss in

the performance of the two-step estimator in comparison with the theoretical one.

What is more, the two step estimator performs better than the standard jackknife

for values of the autoregressive coefficient close to unity. The two-step procedure

is encouraging and could easily be utilised in applied frameworks. Future areas

of research could include unit root testing, with the jackknife developed in this

chapter being useful as it offers smaller variance than rival jackknife estimators.

Also the estimator has the advantage of being developed under the local-to-unity

framework, which is particularly suitable for unit root testing.

3.7 Appendix

Proof of Proposition 3.3.1 Magnus (1986) showed that

E
(
N(a, b)

D(a, b)

)2

=

∫ ∞
0

θ2
∂2Ma,b(θ1,−θ2)

∂θ2
1

∣∣∣
θ1=0

dθ2.

CK showed that for γ 6= 0 the MGF of
∫ b
a JdJ∫ b
a J

2
, where 0 ≤ a < b ≤ 1, is given by

Mγ;a,b(θ1, θ2) = exp

(
−θ1 + γ

2
(b− a)

)
Hγ;a,b(θ1, θ2)−1/2

where λ =
√
γ2 − 2θ2, ν2 = (e2aγ−1)/(2γ) and Hγ;a,b = cosh((b−a)λ)−(1/λ)[θ1+

γ + ((θ1 + γ)2 − λ2)ν2] sinh((b− a)λ). The first derivative is

∂Mγ;a,b

∂θ1

= −1

2
(b− a) exp

(
−θ1 + γ

2
(b− a)

)
H−1/2

− 1

2
exp

(
−θ1 + γ

2
(b− a)

)
H−3/2∂H

∂θ1

.



71

Taking the second derivative of the MGF with respect to θ1 and setting θ1 = 0

gives

∂2Mγ;a,b

∂θ2
1

∣∣∣
θ1=0

= exp

(
−γ(b− a)

2

){
1

4
(b− a)2H

−1/2
0 +

3

4
H
−5/2
0

[
∂H

∂θ1

∣∣∣
θ1=0

]2

+

+
1

2
H
−3/2
0

[
(b− a)

∂H

∂θ

∣∣∣
θ1=0
− ∂2H

∂θ2
1

∣∣∣
θ1=0

]}
.

This requires the following three expressions

H0 = cosh((b− a)λ)− 1

λ
[γ + (γ2 − λ2)ν2] sinh((b− a)λ)

∂H

∂θ1

∣∣∣
θ1=0

= −1

λ
[1 + 2γν2] sinh((b− a)λ)

∂2H

∂θ2
1

∣∣∣
θ1=0

= −2ν2

λ
sinh((b− a)λ).

Combining the results gives

∂2Mγ;a,b

∂θ1

∣∣∣
θ1=0

= exp

(
−γ(b− a)

2

){
1

4
(b− a)2H

−1/2
0 +

3(1 + 2γν2)2

4λ2
H
−5/2
0 sinh2((b− a)λ)+

+
1

2λ
H
−3/2
0 [2ν2(1− (b− a)γ)− (b− a)] sinh((b− a)λ)

}
,

an expression amenable for numerical integration.

Proof of Theorem 3.3.2. Using the techniques of Chambers and Kyriacou

(2012) and Chen and Yu (2015) one can derive the covariances by utilising the

MGFs. Let J(t) and Y (t) (t ∈ [0, 1]) be the O-U processes defined by

dJ(t) = γJ(t)dt+ dW (t), J(0) = 0

dY (t) = λY (t)dt+ dW (t), Y (0) = 0
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Then by Girsanov’s theorem E(f(X)) = E(f(Y )dµx
dµy

(s)) where

dµx
dµy

(s) = exp

{
(γ − λ)

∫ 1

0

s(t)dt− γ2 − λ2

2

∫ 1

0

s(t)2dt

}
.

For 0 ≤ a < b ≤ 1, let the MGF of
∫ 1
0 JdJ∫ 1
0 J

2

∫ b
a JdJ∫ b
a J

2
be M0,1,a,b(θ1, θ2, ϕ1, ϕ2) which is

given by

M0,1,a,b(θ1, θ2, ϕ1, ϕ2)

= E
[
exp

{
θ1

∫ 1

0

JdJ + θ2

∫ 1

0

J2 + ϕ1

∫ b

a

JdJ + ϕ2

∫ b

a

J2

}]
.

Then by Girsanov’s theorem

M0,1,a,b(θ1, θ2, ϕ1, ϕ2)

= E
[

exp

{
θ1

∫ 1

0

Y dY + θ2

∫ 1

0

Y 2 + ϕ1

∫ b

a

Y dY + ϕ2

∫ b

a

Y 2 + (γ − λ)

∫ 1

0

Y dY

− γ2 − λ2

2

∫ 1

0

Y 2

}]
.

By the Itô Calculus
∫ b
a
Y dY = 1

2
[Y (b)2 − Y (a)2 − (b− a)], setting λ =

√
γ2 − 2θ2

and denoting s = b− a we have

M0,1,a,b(θ1, θ2, ϕ1, ϕ2)

= exp

(
−θ1

2
− ϕ1

2
s− γ − λ

2

)
E
[

exp

{
(θ1 + γ − λ)

2
Y (1)2 +

ϕ1

2
[Y (b)2 − Y (a)2]

+ ϕ2

∫ b

a

Y 2

}]
.
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Now take the conditional expectation with respect to F b
0 , the sigma field generated

by W on [0, b]

E[M0,1,a,b(θ1, θ2, ϕ1, ϕ2)|F b
0 ]

= exp

(
−θ1

2
− ϕ1

2
s− γ − λ

2

)
exp

(
ϕ1

2

[
Y (b)2 − Y (a)2

]
+ ϕ2

∫ b

a

Y 2

)
× E exp

(
(θ1 + γ − λ)

2
Y (1)2

∣∣∣∣Y (b)

)
.

Define µb = exp(eλ)Y (b) and $2
b = (exp(2eλ) − 1)/(2λ), where e = 1 − b, such

that conditional on F b
0 , Y (b) ∼ N(µb, $

2
b ). Then, by Lemma 5 of Magnus (1986)

E exp

(
(θ1 + γ − λ)

2
Y (1)2

∣∣∣∣Y (b)

)
= [1− (θ1 + γ − λ)$2

b ]
−1/2 exp

{(
θ1 + γ − λ

2
kbY (b)2

)}
,

where kb = [1− (θ1 + γ − λ)$2
b ]
−1 exp(2eλ). Thus,

E
[
M0,1,a,b(θ1, θ2, ϕ1, ϕ2)|F b

0

]
= exp

(
−θ1

2
− ϕ1

2
s− γ − λ

2

)[
1− (θ1 + γ − λ)$2

b

]−1/2

× E exp

{(
θ1 + γ − λ

2
kb +

ϕ1

2

)
Y (b)2 − ϕ1

2
Y (a)2 + ϕ2

∫ b

a

Y 2

}
.

Now, introduce another process on [0, b] given by dZ(t) = ηZ(t)dt+dW (t), Z(0) =

0 and apply Girsanov’s theorem. The expectation of interest becomes

E exp

{(
θ1 + γ − λ

2
kb +

ϕ1

2

)
Z(b)2 − ϕ1

2
Z(a)2 + ϕ2

∫ b

a

Z2 + (λ− η)

∫ b

0

ZdZ

− λ2 − η2

2

∫ b

0

Z2

}
= exp

(
−λ− η

2
b

)
× E exp

{(
θ1 + γ − λ

2
kb +

ϕ1

2
+
λ− η

2

)
Z(b)2 − ϕ1

2
Z(a)2 − ϕ2

∫ a

0

Z2

}
,
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where η =
√
γ2 − 2θ2 − 2ϕ2. Now taking expectations w.r.t F a

0 yields

E
[
E
(
M0,1,a,b(θ1, θ2, ϕ1, ϕ2)|F b

0

)
|F a

0

]
=
[
1− (θ1 + γ − λ)$2

b

]−1/2
exp

(
−θ1

2
− ϕ1

2
s− γ − λ

2
− λ− η

2
b

)
× exp

(
−ϕ1

2
Z(a)2 − ϕ2

∫ a

0

Z2

)
× E exp

{(
θ1 + γ − λ

2
kb +

ϕ1

2
+
λ− η

2

)
Z(b)2

∣∣∣∣Z(a)

}
.

Define µa = exp(sη)Z(a) and $2
a = (exp(2sη) − 1)/(2η). Then, by Lemma 5 of

Magnus

E exp

{(
θ1 + γ − λ

2
kb +

ϕ1

2
+
λ− η

2

)
Z(b)2

∣∣∣∣Z(a)

}
=
[
1− [(θ1 + γ − λ)kb + ϕ1 + (λ− η)]$2

a

]−1/2

× exp

{[(
θ1 + γ − λ

2

)
kb +

ϕ1

2
+
λ− η

2

]
kaZ(a)2

}
,

where ka = [1− [(θ1 + γ − λ)kb + ϕ1 + (λ− η)]$2
a]
−1

exp(2sη). The MGF thus

far is:

E
[
E
(
M0,1,a,b(θ1, θ2, ϕ1, ϕ2)|F b

0

)
|F a

0

]
= exp

(
−θ1

2
− ϕ1

2
s− γ − λ

2
− λ− η

2
b

)
×
[
1− (θ1 + γ − λ)$2

b

]−1/2 [
1− [(θ1 + γ − λ)kb + ϕ1 + (λ− η)]$2

a

]−1/2

× E exp

{[(
θ1 + γ − λ

2

)
kb +

ϕ1

2
+
λ− η

2

]
kaZ(a)2 − ϕ2

∫ a

0

Z2

}
.
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Now, introduce another process on t ∈ [0, a] given by dX(t) = ζX(t)dt + dW (t),

X(0) = 0. Applying Girsanov’s theorem again to the expectation of interest yields

E exp

{[(
θ1 + γ − λ

2

)
kb +

ϕ1

2
+
λ− η

2

]
kaX(a)2 − ϕ2

∫ a

0

X2

+ (η − ζ)

∫ a

0

XdX − η2 − ζ2

2

∫ a

0

X2

}
= exp

(
−η − λ

2
a

)
× E exp

{[((
θ1 + γ − λ

2

)
kb +

ϕ1

2
+
λ− η

2

)
ka −

ϕ1

2
+
η − λ

2

]
X(a)2

}
,

where ζ = λ. Now, X(a) ∼ N(0, $2), where $2 = (exp(2aλ) − 1)/(2λ). Thus,

the unconditional expectation is given by

E exp

{[[(
θ1 + γ − λ

2

)
kb +

ϕ1

2
+
λ− η

2

]
ka −

ϕ1

2
+
η − λ

2

]
X(a)2

}
=
[
1− [(θ1 + γ − λ)kb + ϕ1 + (λ− η)]ka − ϕ1 + (η − λ)]$2

]−1/2
.

The MGF thus far is:

E
[
E
(
M0,1,a,b(θ1, θ2, ϕ1, ϕ2)|F b

0

)
|F a

0

]
= exp

(
−θ1

2
− ϕ1

2
s− γ − λ

2
− λ− η

2
b− η − λ

2
a

)
×
[
1− (θ1 + γ − λ)$2

b

]−1/2 [
1− [(θ1 + γ − λ)kb + ϕ1 + (λ− η)]$2

a

]−1/2

× [1− [(θ1 + γ − λ)kb + ϕ1 + (λ− η)] ka − ϕ1 + (η − λ)]$2
]−1/2

.

Define p = [(θ1 + γ − λ)kb + ϕ1 + (λ− η)] ka − ϕ1, such that the MGF becomes

E
[
E
(
M0,1,a,b(θ1, θ2, ϕ1, ϕ2)|F b

0

)
|F a

0

]
= exp

(
−θ1

2
− ϕ1

2
s− γ

2

)[
exp(−eλ)(1− (θ1 + γ − λ)$2

b )
]−1/2

×
[
exp(−sη)(1− ((θ1 + γ − λ)kb + ϕ1 + (λ− η))$2

a)
]−1/2

×
[
exp(−aλ)(1− (p+ η − λ)$2)

]−1/2
.
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Note that

exp(−eλ)
[
1− (θ1 + γ − λ)$2

b

]
= exp(−eλ)−

(
θ1 + γ

λ
− 1

)
exp(eλ)− exp(−eλ)

2

=
exp(eλ) + exp(−eλ)

2
− (θ1 + γ)

λ

(exp(eλ)− exp(−eλ))

2

= cosh(eλ)− θ1 + γ

λ
sinh(eλ).

In the same fashion

exp(−sη)
(
1− ((θ1 + γ − λ)kb + ϕ1 + (λ− η))$2

a

)
= cosh(sη)− (θ1 + γ − λ)kb + ϕ1 + λ

η
sinh(sη).

Lastly,

exp(−aλ)
(
1− (p+ η − λ)$2

)
= cosh(aλ)− (p+ η)

λ
sinh(aλ).

Thus

M0,1,a,b(θ1, θ2, ϕ1, ϕ2)

= E
[
E
(
M0,1,a,b(θ1, θ2, ϕ1, ϕ2)|F b

0

)
|F a

0

]
= exp

(
−θ1

2
− ϕ1

2
s− γ

2

)[
cosh(aλ)− p+ η

λ
cosh(aλ)

]−1/2

×
[
cosh(eλ)− θ1 + γ

λ
sinh(eλ)

]−1/2

×
[
cosh(sη)− (θ1 + γ − λ)kb + ϕ1 + λ

η
sinh(sη)

]−1/2

= exp

(
−θ1

2
− ϕ1

2
s− γ

2

)
H0,1,a,b(θ1, θ2, ϕ1, ϕ2)−1/2,
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where

H0,1,a,b(θ1, θ2, ϕ1, ϕ2) =

[
cosh(aλ)− p+ η

λ
cosh(aλ)

] [
cosh(eλ)− θ1 + γ

λ
sinh(eλ)

]
×
[
cosh(sη)− (θ1 + γ − λ)kb + ϕ1 + λ

η
sinh(sη)

]
,

ζ = λ =
√
γ2 − 2θ2, η =

√
γ2 − 2θ2 − 2ϕ2, e = 1− b, s = b− a,

$2
b = (exp(2eλ)− 1)/(2λ), $2

a = (exp(2sη)− 1)/(2η), $2 = (exp(2aλ)− 1)/(2λ),

ka =
[
1− [(θ1 + γ − λ)kb + ϕ1 + (λ− η)]$2

a

]−1
exp(2sη),

kb =
[
1− (θ1 + γ − λ)$2

b

]−1
exp(2eλ),

p = [(θ1 + γ − λ)kb + ϕ1 + (λ− η)] ka − ϕ1.

Denote M = M0,1,a,b(θ1, θ2, ϕ1, ϕ2) and H = H0,1,a,b(θ1, θ2, ϕ1, ϕ2). Taking the first

partial derivative gives

∂M

∂θ1

∣∣∣∣
θ1=0

= exp
(
−γ

2

){
−1

2
exp

(
−ϕ1

2
s
)
H
−1/2
0 − 1

2
exp

(
−ϕ1

2
s
)
H
−3/2
0

∂H

∂θ1

∣∣∣∣
θ1=0

}
,

where H0 denotes H evaluated at θ = 0. The second partial derivative is given by

∂
{
∂M
∂θ1

∣∣
θ1=0

}
∂ϕ1

∣∣∣∣∣
ϕ1=0

= exp
(
−γ

2

){1

4
sH
−1/2
00 +

3

4
H
−5/2
00

(
∂H0

∂ϕ1

∣∣∣∣
ϕ1=0

)(
∂H

∂θ1

∣∣∣∣
θ1=0,ϕ1=0

)
+

+H
−3/2
00

[
1

4
s

(
∂H

∂θ1

∣∣∣∣
θ1=0,ϕ1=0

)
+

1

4

(
∂H0

∂ϕ1

∣∣∣∣
ϕ1=0

)
− 1

2

(
∂
(
∂H
∂θ1

∣∣
θ1=0

)
∂ϕ1

∣∣∣∣∣
ϕ1=0

)]}
,
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from which we need

H00 =
1

λ2η
[(πηd−∆λc)λg − (∆λd− πηc)ηf ],

∂H0

∂ϕ1

∣∣
ϕ1=0

= − 1

λη
[πg + ∆f ]c,

∂H

∂θ1

∣∣
θ1=0,ϕ1=0

= − 1

λ2η
[(ηdf + λcg)λb+ (λdg + ηcf)ηa],

∂
(
∂H
∂θ1

∣∣
θ1=0

)
∂ϕ1

∣∣
ϕ1=0

=
1

λη
[ag − bf ]c,

where π = λb − γa, ∆ = γb − λa, a = sinh(eλ), b = cosh(eλ), c = sinh(sη),

d = cosh(sη), f = sinh(aλ) and g = cosh(aλ).

For 0 ≤ a < b ≤ c < d ≤ 1, Ma,b,c,d(θ1, θ2, ϕ1, ϕ2) can be derived in the same

fashion. Let J(t) and Y (t) (t ∈ [0, 1]) be the O-U processes defined by

dJ(t) = γJ(t)dt+ dW (t), J(0) = 0

dY (t) = λY (t)dt+ dW (t), Y (0) = 0

For 0 ≤ a < b ≤ c < d ≤ 1, let the MGF of
∫ b
a JdJ∫ b
a J

2

∫ d
c JdJ∫ d
c J

2
be Ma,b,c,d(θ1, θ2, ϕ1, ϕ2)

which is given by

Ma,b,c,d(θ1, θ2, ϕ1, ϕ2)

= E
[

exp

{
θ1

∫ b

a

JdJ + θ2

∫ b

a

J2 + ϕ1

∫ d

c

JdJ + ϕ2

∫ d

c

J2

}]
= E

[
exp

{
θ1

∫ b

a

Y dY + θ2

∫ b

a

Y 2 + ϕ1

∫ d

c

Y dY + ϕ2

∫ d

c

Y 2 + (γ − λ)

∫ d

0

Y dY

− γ2 − λ2

2

∫ d

0

Y 2

}]
,
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in line of Girsanov’s theorem. By using the Itô Calculus, setting λ =
√
γ2 − 2ϕ2

and denoting s = b− a, e = d− c we have

Ma,b,c,d(θ1, θ2, ϕ1, ϕ2)

= exp

(
−θ1

2
s− ϕ1

2
e− γ − λ

2
d

)
× E

[
exp

{
θ1

2

[
Y (b)2 − Y (a)2

]
+ θ2

∫ b

a

Y 2 +
(ϕ1 + γ − λ)

2
Y (d)2

− ϕ1

2
Y (c)2 − ϕ2

∫ c

0

Y 2

}]
.

Now take the conditional expectation with respect to F c
0 ,

E [Ma,b,c,d(θ1, θ2, ϕ1, ϕ2)|F c
0 ]

= exp

(
−θ1

2
s− ϕ1

2
e− γ − λ

2
d

)
× exp

(
θ1

2

[
Y (b)2 − Y (a)2

]
+ θ2

∫ b

a

Y 2 − ϕ1

2
Y (c)2 − ϕ2

∫ c

0

Y 2

)
× E exp

(
(ϕ1 + γ − λ)

2
Y (d)2

∣∣∣∣Y (c)

)
.

Define µc = exp(eλ)Y (c) and $2
c = (exp(2eλ)− 1)/(2λ), such that conditional on

F c
0 , Y (d) ∼ N(µc, $

2
c ). Then, by Lemma 5 of Magnus

E exp

(
(θ1 + γ − λ)

2
Y (d)2

∣∣∣∣Y (c)

)
=
[
1− (ϕ1 + γ − λ)$2

c

]−1/2
exp

(
ϕ1 + γ − λ

2
kcY (c)2

)
,
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where kc = [1− (ϕ1 + γ − λ)$2
c ]
−1

exp(2eλ). Thus,

E
[
Ma,b,c,d(θ1, θ2, ϕ1, ϕ2)|F b

0

]
=
[
1− (ϕ1 + γ − λ)$2

c

]−1/2

× exp

(
−θ1

2
s− ϕ1

2
e− γ − λ

2
d

)
exp

(
ϕ1 + γ − λ

2
kcY (c)2

)
× exp

{
θ1

2

[
Y (b)2 − Y (a)2

]
+ θ2

∫ b

a

Y 2

+

(
ϕ1 + γ − λ

2
kc −

ϕ1

2

)
Y (c)2 − ϕ2

∫ c

0

Y 2

}
.

Now, introduce another process on [0, c] given by dZ(t) = δZ(t)dt+dW (t), Z(0) =

0 and apply Girsanov’s theorem. The expectation of interest becomes

E exp

{
θ1

2

[
Z(b)2 − Z(a)2

]
+ θ2

∫ b

a

Z2 +

(
ϕ1 + γ − λ

2
kc −

ϕ1

2

)
Z(c)2 − ϕ2

∫ c

0

Z2

+ (λ− δ)
∫ c

0

ZdZ − λ2 − δ2

2

∫ c

0

Z2

}
= exp

(
−λ− γ

2
c

)
× E exp

{
θ1

2

[
Z(b)2 − Z(a)2

]
+ θ2

∫ b

a

Z2 +

(
(ϕ1 + γ − λ)(kc − 1)

2

)
Z(c)2

}
,

where δ = γ. Now taking expectations w.r.t F b
0 yields

E
[
E (Ma,b,c,d(θ1, θ2, ϕ1, ϕ2)|F c

0 ) |F b
0

]
=
[
1− (ϕ1 + γ − λ)$2

c

]−1/2
exp

(
−θ1

2
s− ϕ1

2
e− γ − λ

2
d− λ− γ

2
c

)
× exp

(
θ1

2

[
Z(b)2 − Z(a)2

]
+ θ2

∫ b

a

Z2

)
× E exp

{(
(ϕ1 + γ − λ)(kc − 1)

2

)
Z(c)2

∣∣∣∣Z(b)

}
.
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Define µb = exp(qγ)Z(b) and $2
b = (exp(2qγ)− 1)/(2γ), where q = c− b. Then,

by Lemma 5 of Magnus

E exp

{(
(ϕ1 + γ − λ)(kc − 1)

2

)
Z(c)2

∣∣∣∣Z(b)

}
=
[
1− (ϕ1 + γ − λ)(kc − 1)$2

b

]−1/2
exp

(
(ϕ1 + γ − λ)(kc − 1)

2
kbZ(b)2

)
,

where kb =
[
1− (ϕ1 + γ − λ)(kc − 1)$2

b

]−1
exp(2qγ). The MGF thus far is

E
[
E (Ma,b,c,d(θ1, θ2, ϕ1, ϕ2)|F c

0 ) |F b
0

]
=
[
1− (ϕ1 + γ − λ)$2

c

]−1/2 [
1− (ϕ1 + γ − λ)(kc − 1)$2

b

]−1/2

× exp

(
−θ1

2
s− ϕ1

2
e− γ − λ

2
d− λ− γ

2
c

)
× exp

{[
(ϕ1 + γ − λ)(kc − 1)

2
kb +

θ1

2

]
Z(b)2 − θ1

2
Z(a)2 + θ2

∫ b

a

Z2

}
.

Now, introduce another process on t ∈ [0, b] given by dX(t) = ηX(t)dt + dW (t),

X(0) = 0. Applying Girsanov’s theorem again to the expectation of interest yields

E exp

{[
(ϕ1 + γ − λ)(kc − 1)

2
kb +

θ1

2

]
Z(b)2 − θ1

2
Z(a)2 + θ2

∫ b

a

Z2

}
= E exp

{[(
(ϕ1 + γ − λ)(kc − 1)

2

)
kb +

θ1

2

]
X(b)2 − θ

2
X(a)2 + θ2

∫ b

a

X2

+ (γ − η)

∫ b

0

XdX − γ2 − η2

2

∫ b

0

X2

}
= exp

(
−γ − η

2
b

)
E exp

{[
(ϕ1 + γ − λ)(kc − 1)

2
kb +

θ1

2
+
γ − η

2

]
X(b)2

− θ1

2
X(a)2 − θ2

∫ a

0

X2

}
,
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where η =
√
γ2 − 2θ2. Now, take expectations with respect to F a

0

E
{
E
[
E (Ma,b,c,d(θ1, θ2, ϕ1, ϕ2)|F c

0 ) |F b
0

]
|F a

0

}
=
[
1− (ϕ1 + γ − λ)$2

c

]−1/2 [
1− (ϕ1 + γ − λ)(kc − 1)$2

b

]−1/2

× exp

(
−θ1

2
s− ϕ1

2
e− γ − λ

2
d− λ− γ

2
c− γ − η

2
b

)
× exp

(
−θ1

2
X(a)2 − θ2

∫ a

0

X2

)
× E exp

{(
(ϕ1 + γ − λ)(kc − 1)

2
kb +

θ1

2
+
γ − η

2

)
X(b)2

∣∣∣∣X(a)

}
.

Define µa = exp(sη)X(a) and $a = (exp(2sη) − 1)/(2η). Then by Lemma 5 of

Magnus (1986)

E exp

{(
(ϕ1 + γ − λ)(kc − 1)

2
kb +

θ1

2
+
γ − η

2

)
X(b)2

∣∣∣∣X(a)

}
=
[
1− [(ϕ1 + γ − λ)(kc − 1)kb + θ1 + (γ − η)]$2

a

]−1/2

× exp

(
(ϕ1 + γ − λ)(kc − 1)kb + θ1 + (γ − η)

2
kaX(a)2

)

where ka = [1− [(ϕ1 + γ − λ)(kc − 1)kb + θ1 + (γ − η)]$2
a]
−1

exp(2sη). Thus, the

entire MGF becomes

E
{
E
[
E (Ma,b,c,d(θ1, θ2, ϕ1, ϕ2)|F c

0 ) |F b
0

]
|F a

0

}
=
[
1− (ϕ1 + γ − λ)$2

c

]−1/2 [
1− (ϕ1 + γ − λ)(kc − 1)$2

b

]−1/2

×
[
1− [(ϕ1 + γ − λ)(kc − 1)kb + θ1 + (γ − η)]$2

a

]−1/2

× exp

(
−θ1

2
s− ϕ1

2
e− γ − λ

2
d− λ− γ

2
c− γ − η

2
b

)
× exp

{[
(ϕ1 + γ − λ)(kc − 1)kb + θ1 + (γ − η)

2
ka −

θ1

2

]
X(a)2 − θ2

∫ a

0

X2

}
.
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Now introduce another process dG(t) = ζG(t)dt+ dW (t), G(0) = 0 on t ∈ [0, a].

Applying Girsanov’s theorem again to the expectation of interest yields

E exp

{[
(ϕ1 + γ − λ)(kc − 1)kb + θ1 + (γ − η)

2
ka −

θ1

2

]
X(a)2 − θ2

∫ a

0

X2

}
= E exp

{[
(ϕ1 + γ − λ)(kc − 1)kb + θ1 + (γ − η)

2
ka −

θ1

2

]
G(a)2 − θ2

∫ a

0

G2

+ (η − ζ)

∫ a

0

GdG− η2 − ζ2

2

∫ a

0

G2

}
= exp

(
−η − γ

2
a

)
× E exp

{[
(ϕ1 + γ − λ)(kc − 1)kb + θ1 + (γ − η)

2
ka −

θ1

2
+
η − γ

2

]
G(a)2

}
.

where ζ = γ. Now G(a) ∼ N(0, $2), where $2 = (exp(2aγ)− 1)/(2γ). Thus,

E exp

{[
(ϕ1 + γ − λ)(kc − 1)kb + θ1 + (γ − η)

2
ka −

θ1

2
+
η − γ

2

]
G(a)2

}
=
[
1− {[(ϕ1 + γ − λ)(kc − 1)kb + θ1 + (γ − η)]ka − θ1 + (η − γ)}$2

]−1/2
.

The MGF becomes

E
{
E
[
E (Ma,b,c,d(θ1, θ2, ϕ1, ϕ2)|F c

0 ) |F b
0

]
|F a

0

}
=
[
1− (ϕ1 + γ − λ)$2

c

]−1/2 [
1− (ϕ1 + γ − λ)(kc − 1)$2

b

]−1/2

×
[
1− [(ϕ1 + γ − λ)(kc − 1)kb + θ1 + (γ − η)]$2

a

]−1/2

×
[
1− {[(ϕ1 + γ − λ)(kc − 1)kb + θ1 + (γ − η)]ka − θ1 + (η − γ)}$2

]−1/2

× exp

(
−θ1

2
s− ϕ1

2
e− γ

2
(e+ s) +

λ

2
e+

η

2
b

)
.
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Note that

exp(−eλ)
[
1− (ϕ1 + γ − λ)$2

c

]
= exp(−eλ)−

(
ϕ1 + γ

λ
− 1

)
exp(eλ)− exp(−eλ)

2

=
exp(eλ) + exp(−eλ)

2
− (θ1 + γ)

λ

(exp(eλ)− exp(−eλ))

2

= cosh(eλ)− θ1 + γ

λ
sinh(eλ).

In the same fashion

exp(−qγ)
{

[(ϕ1 + γ − λ)kc − ϕ1 + λ− γ]$2
b

}
= cosh(qγ)− (ϕ1 + γ − λ)kc − ϕ1 + λ

γ
sinh(qγ)

and

exp(−sη)
[
1− ((ϕ1 + γ − λ)kb + θ1 + (λ− η))$2

a

]
= cosh(sη)− p+ θ1 + γ

η
sinh(sη),

where p = (ϕ1 + γ − λ)(kc − 1)kb. Lastly,

exp(−aγ)
[
1− [(ϕ1 + γ − λ)(kc − 1)kbka + (θ1 + γ − η)ka − θ1 + η − γ]$2

]
= cosh(aγ)− (p+ θ1 + γ − η)ka − θ1 + η

γ
sinh(aγ).
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Thus, the MGF is given by

Ma,b,c,d(θ1, θ2, ϕ1, ϕ2) = E
{
E
[
E (Ma,b,c,d(θ1, θ2, ϕ1, ϕ2)|F c

0 ) |F b
0

]
|F a

0

}
=

exp

(
−θ1

2
s− ϕ1

2
e− γ

2
d

)[
cosh(aγ)− (p+ θ1 + γ − η)ka − θ1 + η

γ
sinh(aγ)

]−1/2

×
[
cosh(sη)− p+ θ1 + γ

η
sinh(sη)

]−1/2 [
cosh(eλ)− ϕ1 + γ

λ
sinh(eλ)

]−1/2

×
[
cosh(qγ)− (ϕ1 + γ − λ)kc − ϕ1 + λ

γ
sinh(qγ)

]−1/2

= exp

(
−θ1

2
s− ϕ1

2
e− γ

2
d

)
Ha,b,c,d(θ1, θ2, ϕ1, ϕ2)−1/2,

where

Ha,b,c,d(θ1, θ2, ϕ1, ϕ2)

=

[
cosh(aγ)− (p+ θ1 + γ − η)ka − θ1 + η

γ
sinh(aγ)

]
×
[
cosh(sη)− p+ θ1 + γ

η
sinh(sη)

] [
cosh(eλ)− ϕ1 + γ

λ
sinh(eλ)

]
×
[
cosh(qγ)− (ϕ1 + γ − λ)kc − ϕ1 + λ

γ
sinh(qγ)

]
,

where δ = ζ = γ, λ =
√
γ2 − 2ϕ2, η =

√
γ2 − 2θ2, e = d− c, q = c− b, s = b− a,

$2
c = (exp(2eλ)− 1) /(2λ), kc = [1− (ϕ1 + γ − λ)$2

c ]
−1 exp(2eλ),

$2
b = (exp(2qγ)− 1) /(2γ), kb = [1− (ϕ1 + γ − λ)(kc − 1)$2

b ]
−1 exp(2qγ),

$2
a = (exp(2sη)− 1) /(2η), ka =

[
1− (p+ θ1 + γ − η)$2

a

]−1
exp(2sη),

$2 = (exp(2aγ)− 1) /(2γ), p = [(ϕ1 + γ − λ)(kc − 1)kb.

Denote M ′ = Ma,b,c,d(θ1, θ2, ϕ1, ϕ2) and H ′ = Ha,b,c,d(θ1, θ2, ϕ1, ϕ2). Taking the

first partial derivative gives

∂M ′

∂θ1

∣∣
θ1=0

= exp
(
−γ

2
d
){
−1

2
s exp

(
−ϕ1

2
e
)
H
′−1/2
0 − 1

2
exp

(
−ϕ1

2
e
)
H
′−3/2
0

∂H

∂θ1

∣∣
θ1=0

}
,
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where H ′0 denotes H ′ evaluated at θ = 0. The second partial derivative is given

by

∂
{
∂M ′

∂θ1

∣∣
θ1=0

}
∂ϕ1

∣∣∣∣∣
ϕ1=0

= exp
(
−γ

2
d
){1

4
esH

′−1/2
00 +

3

4
H
′−5/2
00

(
∂H ′0
∂ϕ1

∣∣∣∣
ϕ1=0

)(
∂H ′

∂θ1

∣∣∣∣
θ1=0,ϕ1=0

)

+H
′−3/2
00

1

4
e

(
∂H ′

∂θ1

∣∣∣∣
θ1=0,ϕ1=0

)
+

1

4
s

(
∂H ′0
∂ϕ1

∣∣∣∣
ϕ1=0

)
− 1

2

∂(∂H′∂θ1

∣∣
θ1=0

)
∂ϕ1

∣∣∣∣∣
ϕ1=0

},
from which we require

H ′00 =
1

γ2λη
[(φηd− ψγc)γg − (ψγd− φηc)ηf ],

∂H ′0
∂ϕ1

|ϕ1=0 = − 1

γλη
[(γc+ ηd)γg + (γd+ ηc)ηf ][v + h]a,

∂H ′

∂θ1

|θ1=0,ϕ1=0 = − 1

γλη
[φg + ψf ]c,

∂
{
∂H′

∂θ1
|θ1=0

}
∂ϕ1

∣∣∣
ϕ1=0

=
1

λη
[g − f ][v + h]ac,

where φ = πγv−∆λh, ψ = ∆λv−πγh, a = sinh(eλ), b = cosh(eλ), c = sinh(sη),

d = cosh(sη), f = sinh(aγ), g = cosh(aγ), h = sinh(qγ) and v = cosh(qγ).
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Figure 3.1: Bias of the OLS estimator for different sample sizes in regression
without an intercept.
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Figure 3.2: Bias of the OLS estimator for different sample sizes in regression with
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Figure 3.3: Bias of OLS, Cm and CY estimators for n = 24.
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nρ̂ lρ̂1 lρ̂2 lρ̂3 lρ̂4 lρ̂5 lρ̂6

γ = −10
nρ̂ 29.1455 0.8339 0.9043 0.9115 0.9119 0.9136 0.9144
lρ̂1 0.8339 12.9361 0.6458 0.0189 0.0007 0.0000 0.0000
lρ̂2 0.9043 0.6458 9.6851 0.5407 0.0162 0.0006 0.0000
lρ̂3 0.9115 0.0189 0.5407 9.6212 0.5385 0.0162 0.0006
lρ̂4 0.9119 0.0007 0.0162 0.5385 9.6190 0.5384 0.0162
lρ̂5 0.9136 0.0000 0.0006 0.0162 0.5384 9.6189 0.5384
lρ̂6 0.9144 0.0000 0.0000 0.0006 0.0162 0.5384 9.6189
γ = −1
nρ̂ 11.7605 0.3355 0.4031 0.4551 0.4946 0.5297 0.5141
lρ̂1 0.3355 10.3767 1.0519 0.3472 0.1763 0.1035 0.0654
lρ̂2 0.4031 1.0519 5.8032 0.8718 0.3415 0.1847 0.1122
lρ̂3 0.4551 0.3472 0.8718 4.9206 0.8292 0.3484 0.1948
lρ̂4 0.4946 0.1763 0.3415 0.8292 4.5116 0.8053 0.3517
lρ̂5 0.5297 0.1035 0.1847 0.3484 0.8053 4.2807 0.7901
lρ̂6 0.5141 0.0654 0.1122 0.1948 0.3517 0.7901 4.1378
γ = 0
nρ̂ 10.1122 0.2816 0.3451 0.4000 0.4457 0.4834 0.4638
lρ̂1 0.2816 10.1122 1.1053 0.4287 0.2531 0.1738 0.1295
lρ̂2 0.3451 1.1053 5.3612 0.8980 0.4167 0.2640 0.1886
lρ̂3 0.4000 0.4287 0.8980 4.2839 0.8248 0.4153 0.2740
lρ̂4 0.4457 0.2531 0.4167 0.8248 3.7065 0.7717 0.4087
lρ̂5 0.4834 0.1738 0.2640 0.4153 0.7717 3.3268 0.7294
lρ̂6 0.4638 0.1295 0.1886 0.2740 0.2740 0.7294 3.0507
γ = 1
nρ̂ 8.5810 0.2366 0.2945 0.3469 0.3895 0.4183 0.3876
lρ̂1 0.2366 9.8514 1.1555 0.5054 0.3236 0.2358 0.1832
lρ̂2 0.2945 1.1555 4.9217 0.9057 0.4700 0.3204 0.2410
lρ̂3 0.3469 0.5054 0.9057 3.6477 0.7827 0.4393 0.3101
lρ̂4 0.3895 0.3236 0.4700 0.7827 2.9032 0.6807 0.4008
lρ̂5 0.4183 0.2358 0.3204 0.4393 0.6807 2.3810 0.5925
lρ̂6 0.3876 0.1832 0.2410 0.3101 0.4008 0.5925 1.9831

Table 3.1: Values of asymptotic variances of full and sub-sample estimators and
covariances between them.
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m: 2 4 6 8 12
γ = −10
w∗ 2.1081 1.4004 1.2568 1.1941 1.1357
w∗1 −0.5216 −0.0828 −0.0299 −0.0137 −0.0034
w∗2 −0.5865 −0.1043 −0.0443 −0.0243 −0.0097
w∗3 −0.1042 −0.0449 −0.0255 −0.0117
w∗4 −0.1091 −0.0449 −0.0256 −0.0120
w∗5 −0.0450 −0.0256 −0.0121
w∗6 −0.0478 −0.0256 −0.0121
w∗7 −0.0260 −0.0121
w∗8 −0.0277 −0.0121
w∗9 −0.0121
w∗10 −0.0122
w∗11 −0.0127
w∗12 −0.0133
γ = −1
w∗ 2.6143 1.6332 1.4287 1.3370 1.2486
w∗1 −0.6133 −0.0910 −0.0322 −0.0150 −0.0044
w∗2 −1.0011 −0.1409 −0.0520 −0.0255 −0.0088
w∗3 −0.1813 −0.0659 −0.0335 −0.0125
w∗4 −0.2200 −0.0781 −0.0396 −0.0154
w∗5 −0.0946 −0.0452 −0.0178
w∗6 −0.1058 −0.0518 −0.0199
w∗7 −0.0610 −0.0219
w∗8 −0.0654 −0.0240
w∗9 −0.0265
w∗10 −0.0296
w∗11 −0.0333
w∗12 −0.0345
γ = 1
w∗ 3.0311 1.8567 1.5993 1.4791 1.3590
w∗1 −0.7262 −0.1125 −0.0444 −0.0238 −0.0102
w∗2 −1.3049 −0.1610 −0.0570 −0.0289 −0.0117
w∗3 −0.2513 −0.0755 −0.0358 −0.0136
w∗4 −0.3320 −0.1044 −0.0454 −0.0160
w∗5 −0.1479 −0.0588 −0.0190
w∗6 −0.1701 −0.0773 −0.0228
w∗7 −0.1005 −0.0274
w∗8 −0.1086 −0.0331
w∗9 −0.0403
w∗10 −0.0487
w∗11 −0.0569
w∗12 −0.0594

Table 3.2: Values of weights for the optimal jackknife estimator.
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m ρ̂J ρ̂CK m ρ̂J ρ̂CK
γ = −10

2 36.9700 37.1197 9 28.4627 28.5664
3 32.5204 32.6191 18 27.2839 27.4429
4 30.9052 30.9944 27 26.7696 26.9859
6 29.4493 29.5396 36 26.5625 26.8512

γ = −5
2 27.1401 27.5759 9 18.0669 18.3116
3 22.3865 22.6614 18 16.8454 17.1785
4 20.6593 20.8964 27 16.3183 16.7321
6 19.1088 19.3340 36 16.0590 16.5528

γ = −1
2 20.7446 22.6523 9 9.9461 10.8115
3 15.0235 16.1912 18 8.6384 9.5880
4 12.9582 13.9315 27 8.1138 9.1394
6 11.1325 12.0047 36 7.8479 8.9318

γ = 0
2 20.1932 22.6009 9 8.3392 9.5570
3 13.8789 15.4483 18 7.0015 8.2754
4 11.5970 12.9499 27 6.4915 7.8184
6 9.6037 10.8407 36 6.2387 7.6003

γ = 1
2 19.4208 21.1768 9 7.1144 8.5371
3 12.8999 14.3206 18 5.7850 7.2851
4 10.5046 11.8793 27 5.3006 6.8447
6 8.4167 9.8023 36 5.0620 6.6262

Table 3.3: Values of normalised asymptotic variance for “optimal” jackknife and
CK estimators.
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n ρ̂ ρ̂J,m ρ̂J,CK ρ̂∗J ρ̂∗J,2S
γ = −10
36 −0.0395 −0.00872 −0.00552 −0.00552 −0.00542

72 −0.0240 −0.00442 −0.00242 −0.00252 −0.00252

108 −0.0162 −0.00192 −0.00042 −0.00042 −0.00042

144 −0.0132 −0.00212 −0.00102 −0.00092 −0.00102

γ = −5
36 −0.0437 −0.01172 −0.00552 −0.00552 −0.00582

72 −0.0250 −0.00612 −0.00242 −0.00262 −0.00292

108 −0.0166 −0.00332 −0.00082 −0.00072 −0.00092

144 −0.0129 −0.00252 −0.00052 −0.00062 −0.00082

γ = −1
36 −0.0478 −0.02042 −0.00782 −0.00792 −0.01272

72 −0.0251 −0.00912 −0.00172 −0.00182 −0.00472

108 −0.0169 −0.00602 −0.00102 −0.00102 −0.00302

144 −0.0127 −0.00442 −0.00062 −0.00082 −0.00222

γ = −0.1
36 −0.0464 −0.02202 −0.00842 −0.00872 −0.01522

72 −0.0248 −0.01022 −0.00222 −0.00222 −0.00622

108 −0.0163 −0.00652 −0.00102 −0.00102 −0.00372

144 −0.0125 −0.00512 −0.00102 −0.00092 −0.00302

γ = 0
36 −0.0468 −0.02292 −0.00932 −0.00982 −0.01622

72 −0.0232 −0.00912 −0.00112 −0.00132 −0.00512

108 −0.0165 −0.00712 −0.00182 −0.00152 −0.00442

144 −0.0116 −0.00412 0.00012 −0.00002 −0.00202

γ = 0.1
36 −0.0453 −0.02202 −0.00862 −0.00912 −0.01562

72 −0.0238 −0.01002 −0.00202 −0.00232 −0.00622

108 −0.0159 −0.00642 −0.00092 −0.00102 −0.00362

144 −0.0122 −0.00502 −0.00082 −0.00092 −0.00292

γ = 1
36 −0.0405 −0.01672 −0.00322 −0.00392 −0.01112

72 −0.0211 −0.00892 −0.00192 −0.00202 −0.00602

108 −0.0140 −0.00532 −0.00042 −0.00072 −0.00332

144 −0.0109 −0.00442 −0.00082 −0.00072 −0.00282

Subscripts denote the value of m.

Table 3.4: Bias of OLS and bias-minimising jackknife estimators.
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n ρ̂ ρ̂J,m ρ̂J,CK ρ̂∗J ρ̂∗J,2S
γ = −10
36 0.1302 0.13892 0.14132 0.14092 0.14222

72 0.0715 0.07442 0.07562 0.07542 0.07612

108 0.0478 0.05102 0.05202 0.05192 0.05242

144 0.0382 0.03962 0.04032 0.04022 0.04062

γ = −5
36 0.1133 0.12042 0.12552 0.12442 0.12622

72 0.0620 0.06432 0.06702 0.06642 0.06722

108 0.0418 0.04352 0.04542 0.04502 0.04572

144 0.0319 0.03352 0.03512 0.03462 0.03512

γ = −1
36 0.1004 0.10502 0.11892 0.11382 0.11202

72 0.0524 0.05522 0.06342 0.05982 0.05912

108 0.0351 0.03652 0.04192 0.04022 0.03932

144 0.0266 0.02772 0.03182 0.03032 0.02972

γ = −0.1
36 0.0954 0.10122 0.11952 0.11162 0.10832

72 0.0505 0.05342 0.06392 0.06022 0.05742

108 0.0332 0.03522 0.04242 0.04012 0.03822

144 0.0254 0.02672 0.03202 0.03022 0.02892

γ = 0
36 0.0944 0.10042 0.11892 0.11092 0.10802

72 0.0475 0.05142 0.06262 0.05862 0.05562

108 0.0340 0.03552 0.04232 0.04042 0.03822

144 0.0241 0.02612 0.03202 0.02992 0.02862

γ = 0.1
36 0.0927 0.09892 0.11762 0.11762 0.10582

72 0.0488 0.05182 0.06252 0.06252 0.05592

108 0.0324 0.03482 0.04222 0.04222 0.03772

144 0.0250 0.02662 0.02662 0.03222 0.02882

γ = 1
36 0.0849 0.09682 0.12022 0.11342 0.10562

72 0.0444 0.04922 0.06072 0.05782 0.05362

108 0.0298 0.03342 0.04162 0.03912 0.03652

144 0.0230 0.02492 0.03052 0.02942 0.02712

Subscripts denote the value of m.

Table 3.5: RMSE of OLS and bias-minimising jackknife estimators.
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n ρ̂ ρ̂J,m ρ̂J,CK ρ̂∗J ρ̂∗J,2S
γ = −10
36 −0.0398 −0.02499 −0.01949 −0.01929 −0.01979

72 −0.0236 −0.015718 −0.010818 −0.010718 −0.011018

108 −0.0166 −0.011527 −0.007427 −0.007227 −0.007527

144 −0.0130 −0.009336 −0.005836 −0.005636 −0.005936

γ = −5
36 −0.0445 −0.02999 −0.02129 −0.02099 −0.02179

72 −0.0252 −0.018318 −0.011718 −0.011518 −0.012418

108 −0.0168 −0.012527 −0.007227 −0.007127 −0.007827

144 −0.0131 −0.010136 −0.005836 −0.005636 −0.006236

γ = −1
36 −0.0482 −0.03709 −0.02439 −0.02399 −0.02879

72 −0.0251 −0.020018 −0.011518 −0.011418 −0.014718

108 −0.0167 −0.013627 −0.007327 −0.007227 −0.009727

144 −0.0123 −0.010236 −0.005236 −0.005136 −0.007036

γ = −0.1
36 −0.0474 −0.03749 −0.02429 −0.02429 −0.03079

72 −0.0243 −0.020018 −0.011518 −0.011318 −0.015318

108 −0.0161 −0.013527 −0.007227 −0.007227 −0.010127

144 −0.0124 −0.010636 −0.005636 −0.005536 −0.007936

γ = 0
36 −0.0465 −0.03709 −0.02429 −0.02429 −0.03039

72 −0.0249 −0.020618 −0.012118 −0.011918 −0.016218

108 −0.0164 −0.013827 −0.007527 −0.007427 −0.010527

144 −0.0121 −0.010336 −0.005336 −0.005336 −0.007636

γ = 0.1
36 −0.0453 −0.03589 −0.02299 −0.02309 −0.02929

72 −0.0234 −0.019318 −0.011118 −0.011218 −0.015118

108 −0.0165 −0.014027 −0.007827 −0.007727 −0.010827

144 −0.0115 −0.009836 −0.004936 −0.005136 −0.007336

γ = 1
36 −0.0419 −0.00369 −0.02159 −0.02239 −0.02879

72 −0.0213 −0.017618 −0.009918 −0.010318 −0.014218

108 −0.0138 −0.011627 −0.006127 −0.006327 −0.009127

144 −0.0108 −0.009336 −0.004936 −0.005036 −0.007336

Subscripts denote the value of m.

Table 3.6: Bias of OLS and RMSE-minimising jackknife estimators.
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n ρ̂ ρ̂J,m ρ̂J,CK ρ̂∗J ρ̂∗J,2S
γ = −10
36 0.1302 0.12849 0.12869 0.12839 0.14199

72 0.0713 0.069018 0.068218 0.068118 0.069618

108 0.0496 0.047927 0.046927 0.046827 0.048027

144 0.0380 0.036636 0.035636 0.035536 0.036536

γ = −5
36 0.1149 0.11079 0.10999 0.10939 0.11249

72 0.0623 0.059018 0.057018 0.056618 0.059018

108 0.0422 0.040027 0.038227 0.038027 0.039927

144 0.0323 0.030736 0.029036 0.028736 0.030436

γ = −1
36 0.1012 0.09559 0.09329 0.09059 0.09519

72 0.0525 0.049218 0.045618 0.044018 0.047918

108 0.0347 0.032527 0.029427 0.028227 0.031327

144 0.0258 0.024336 0.021536 0.020536 0.023236

γ = −0.1
36 0.0960 0.09039 0.08789 0.08429 0.08919

72 0.0505 0.047418 0.043618 0.041318 0.045918

108 0.0333 0.031227 0.028027 0.026327 0.029927

144 0.0253 0.023936 0.021136 0.019636 0.022736

γ = 0
36 0.0960 0.09069 0.08869 0.08439 0.08969

72 0.0499 0.046718 0.042618 0.039918 0.044918

108 0.0334 0.031427 0.028027 0.026227 0.030027

144 0.0246 0.023236 0.020536 0.019136 0.022136

γ = 0.1
36 0.0933 0.08799 0.08609 0.08169 0.08709

72 0.0481 0.045118 0.041718 0.039218 0.043518

108 0.0338 0.031827 0.028527 0.026527 0.030427

144 0.0241 0.022736 0.020036 0.018636 0.021636

γ = 1
36 0.0876 0.08279 0.08149 0.07669 0.08189

72 0.0448 0.042118 0.039018 0.036118 0.040618

108 0.0292 0.027527 0.024827 0.022727 0.026327

144 0.0227 0.021536 0.019136 0.017236 0.020536

Subscripts denote the value of m.

Table 3.7: RMSE of OLS and RMSE-minimising jackknife estimators.
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Abstract

This essay investigates the asymptotic distribution of the ordinary least squares

estimator in discrete time autoregressive series with a drift. The autoregressive

coefficient is assumed to be of the local to unit root type and the disturbances

which drive the process are allowed to be dependent over time. The convergence

rates of the drift and autoregressive parameters are shown to be n1/2 and n3/2,

respectively, where n denotes the sample size. The higher than n rate allows deriv-

ing a limiting law for an estimator of the localising parameter given by ĉ = n log ρ̂.

The centred estimator ĉ converges to a normal variate with mean zero. This result

permits testing of the null hypothesis of a unit root directly via a t-statistic on ĉ.

The paper also proposes a different estimator of c and a Monte Carlo experiment

is run to assess finite sample performance. The limiting result depends on the

process possessing a drift, or whether a trend is included as an explanatory vari-

able. Hence, the essay also derives two more limiting distributions. The first one

is under the null hypothesis that the drift is zero and the autoregressive parame-

ter is unity, and the second is under the null that the autoregressive parameter is

unity and the trend is zero.
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4.1 Introduction

The purpose of this chapter is to discuss statistical inference in univariate processes

in which the autoregressive coefficient is of the local to unit root type discussed in

the previous chapter. However, the model studied here is also assumed to posses a

drift and is driven by weakly dependent errors. This is a general setup and permits

for autoregressive and moving-average components of the error term. The analysis

shows that the vector of estimators of the drift and autoregressive parameter have

a joint normal distribution in the limit, where the drift parameter estimator con-

verges at a rate n1/2 and the estimator of the autoregressive parameter converges

at rate n3/2. This permits construction of a t-test of the autoregressive coefficient

that has a standard normal distribution asymptotically. Hence, any rejection de-

cision can be based on the standard normal critical values. It is important to note

that all of this depends on the assumption that the drift exists in the data gen-

erating process. If that assumption is violated, the above-mentioned asymptotic

results fail and any t-test constructed about the autoregressive parameter would

have a non-standard limiting distribution that can be expressed as a functional of

Brownian motions. Similar results have been obtained for pure unit root processes

and an excellent text-book treatment is provided in Hamilton (1994). Since it is

assumed the data are generated with a drift, and whether or not it exists changes

asymptotic behaviour, it is natural to test the joint hypothesis that the drift pa-

rameter is equal to zero and the autoregressive parameter is equal to unity. As

such, this essay derives the limiting behaviour of the F-test for such a hypothesis.

Under the null, the limiting distribution is not the square of a random normal

since, when the drift is equal to zero, the process just become a local to unit root

and the limiting distribution for such a process is not normal.

The main feature of the model studied here is the rate of convergence of the

estimator of the autoregressive parameter. In essence, the explanatory variable

yt−1 in the regression behaves asymptotically like a trend. The n3/2 rate of conver-

gence can then be justified with that argument. However, the higher than n rate
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permits consistent estimation of the localising parameter. The essay shows that

there exists an asymptotic law for an estimator of the localising parameter that

has the same asymptotic distribution as the estimator of the autoregressive pa-

rameter with a rate of convergence n1/2. Consequently, this permits construction

of a t-test of the localising parameter that has an asymptotic standard normal

distribution and decision for rejection based on the critical values of a standard

normal variable. Therefore, one could test the null hypothesis of a unit root via a

t-test directly with the estimator of the localising parameter being equal to zero.

As far as the author is concerned, this is the first study which documents that the

localising parameter is consistently estimable in a process with a drift.

In applied work, when trending data are observed, it is natural to estimate

a model which includes an intercept, an autoregressive parameter and a trend.

Therefore, this paper also derives the joint distribution of the three estimators un-

der the same data-generating process. Since yt−1 behaves like a trend asymptoti-

cally including a trend as a separate explanatory variable would induce collinearity

in large samples. Thus, deriving an asymptotic law requires rewriting the model

and estimating it in a different way. It is shown that the limiting distribution is

non-normal and the rate of convergence of the autoregressive parameter reduces to

n. Due to the reduced rate of convergence, consistent estimation of the localising

parameter is impossible and any inference on that should be conducted via the

original regression. Again, since assumption that the trend parameter is equal to

zero is imposed, which is an auxiliary assumption, a test for joint significance is

a natural way to conduct inference. The essay derives the limiting distribution of

such a test as well.

The chapter is organised in the following way: section 2 derives asymptotic

laws in regression without a trend, section 3 derives those when a trend is added

to the regression, section 4 provides some evidence on the finite sample behaviour

of the localising parameter via Monte Carlo experiments, section 5 concludes and

the supplementary appendix contains two lemmas which facilitate the proofs from
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the main text.

The following notation will be employed throughout. The process J(r) =∫ r
0
ec(r−s)dW (s) denotes the Ornstein-Uhlenbeck process which satisfies dJ(r) =

cJ(r)dr+ dW (r) for a constant c. Lastly, the essay makes use of the lag operator

L which is defined as Ljyt = yt−j.

4.2 Asymptotic results for parameter estimation

We consider a time series process yt which satisfies the following assumption.

Assumption 4.2 Suppose y1, y2, . . . , yn are generated according to the following

stochastic difference equation

yt = α + ρnyt−1 + ut, t = 1, . . . , n, (4.1)

where the process is initiated at y0 = Op(1), α 6= 0 and ρn = ec/n. It is assumed

that ut is a zero mean, stationary and ergodic process with finite autocovariances

γj = E(utut−j) such that

(a) ω2 =
∑∞

j=−∞ γj is finite and nonzero;

(b) the scaled partial-sum process n−1/2
∑brnc

t=1 ut ⇒ ωW (r), with r ∈ [0, 1].

The assumptions on ut cover a wide range of processes including stationary

and invertible ARMA models under moment conditions and are standard in the

literature (see Elliot et al., 1996). The assumption on the autoregressive coefficient

allows for deviations from unity at a rate O(n−1) since ec/n = 1 + c/n+O(n−2) =

1+O(n−1). Thus, asymptotically ec/n → 1 but depending on the sign of c, for any

finite sample the processes can exhibit (locally) stationary or (locally) explosive

behaviour. For c = 0, we have unit root process since ec/n|c=0 = 1. Under those

assumptions, the process ζt = ρnζt−1 + ut =
∑t

j=1 ρ
t−j
n uj, with ζ0 = 0, satisfies

n−1/2ζbrnc ⇒ ωJ(r) as n → ∞ (Phillips, 1987). For the purposes of this essay,

estimation is conducted via the linear ordinary least squares (OLS) method.
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4.2.1 Autoregressive coefficient

The OLS estimators of the intercept and autoregressive coefficient in (4.1) are

given by  α̂
ρ̂n

 =

 n
∑n

t=1 yt−1∑n
t=1 yt−1

∑n
t=1 y

2
t−1


−1  ∑n

t=1 yt∑n
t=1 ytyt−1

 .
The deviations from the true parameters are then given by

 α̂− α

ρ̂n − ρn

 =

 n
∑n

t=1 yt−1∑n
t=1 yt−1

∑n
t=1 y

2
t−1


−1  ∑n

t=1 ut∑n
t=1 yt−1ut

 . (4.2)

The following theorem summarises the asymptotic distribution of the estimators.

Theorem 4.2.1. Let y1, y2, . . . , yn satisfy assumption 4.2. Then as n→∞

 n1/2(α̂− α)

n3/2(ρ̂n − ρn)

 =

 1 n−2
∑n

t=1 yt−1

n−2
∑n

t=1 yt−1 n−3
∑n

t=1 y
2
t−1


−1  n−1/2

∑n
t=1 ut

n−3/2
∑n

t=1 yt−1ut


⇒ N

(
0,Q−1ω2QQ−1

)
= N(0, ω2Q−1),

where

Q =

 1 c−2α(ec − c− 1)

c−2α(ec − c− 1) (2c3)−1α2(e2c − 4ec + 2c+ 3)

 .
Proof: The proof of the asymptotic law demonstrates that the first matrix in

(4.2) converges in probability to a constant matrix Q−1 which satisfies {Q−1}T =

Q−1. This follows from the fact that the deterministic term in (4.1) is of a higher

order than the stochastic. The second matrix is shown to converge to a joint

normal random variable with a variance-covariance matrix Q.
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We start by writing (4.1) recursively as

yt = α + ρnyt−1 + ut

= α

t∑
i=1

ρi−1
n + ρty0 +

t∑
j=1

ρt−jn uj

= α
t∑
i=1

ρi−1
n + ρtny0 + ζt, (4.3)

where ζt =
∑t

j=1 ρ
t−juj. Now, we consider the sums from the first matrix in (4.2)

and show their probability limits. For ease of notation we consider yt instead of

yt−1 since asymptotically they behave in the same way. For the sum
∑n

t=1 yt, we

have

n∑
t=1

yt =
n∑
t=1

(
α

t∑
i=1

ρi−1
n + ρtny0 + ζt

)

= α
n∑
t=1

t∑
i=1

ρi−1
n + y0

n∑
t=1

ρtn +
n∑
t=1

ζt. (4.4)

By Lemma 4.6.1 (a) with β(t/n) = 1, the first term satisfies

lim
n→∞

n−2α
n∑
t=1

t∑
i=1

ρi−1
n = α

∫ 1

0

∫ r

0

ecsdsdr =
α

c2
(ec − c− 1) .

To deal with the second term we note that

lim
n→∞

n−1

n∑
t=1

ρtn =

∫ 1

0

ecrdr,

which is just a Riemann sum. For the third, by applying Lemma 4.6.1 (b) with

β(t) = ect, δ(j) = e−cj and omitting the β(t) outside of ξt yields

lim
n→∞

n−3/2

n∑
t=1

ζt ⇒ ω

∫ 1

0

ecr
(
W (r)e−cr + c

∫ r

0

W (s)e−csds

)
dr

= ω

∫ 1

0

J(r)dr. (4.5)
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Therefore, in (4.4) we have that the first term is O(n2), the second is Op(n) and

the third is Op(n
3/2). It follows that

n−2

n∑
t=1

yt →p
α

c2
(ec − c− 1) =: q12. (4.6)

Similarly, we have

n∑
t=1

y2
t =

n∑
t=1

(
α

t∑
i=1

ρi−1
n + y0ρ

t + ζt

)2

=α2

n∑
t=1

(
t∑
i=1

ρi−1
n

)2

+ y2
0

n∑
t=1

ρ2t
n +

n∑
t=1

ζ2
t + 2y0

n∑
t=1

ρtnζt

+ 2αy0

n∑
t=1

t∑
i=1

ρt+i−1
n + 2α

n∑
t=1

t∑
i=1

ρi−1
n ζt. (4.7)

By Lemma 4.6.1 (a) the first term from the second line above satisfies

lim
n→∞

n−3α2

n∑
t=1

(
t∑
i=1

ρi−1
n

)2

= α2

∫ 1

0

(∫ r

0

ecsds

)2

dr

=
α2

2c3

(
e2c − 4ec + 2c+ 3

)
.

To deal with the second term we note that

lim
n→∞

n−1

n∑
t=1

ρ2t
n =

∫ 1

0

e2crdr,

which is just a Riemann sum. For the third, from Lemma 2.1 of Phillips (1987)

lim
n→∞

n−2

n∑
t=1

ζ2
t ⇒ ω2

∫ 1

0

J(r)2dr. (4.8)

To deal with the fourth and fifth terms we note that

lim
n→∞

n−3/2

n∑
t=1

ρtnζt ⇒ ω

∫ 1

0

ecrJ(r)dr,
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by Lemma 4.6.1 (b) and

lim
n→∞

n−22α
n∑
t=1

t∑
i=1

ρt+i−1
n = 2a

∫ 1

0

∫ r

0

ec(r+s)dsdr,

by Lemma 4.6.1 (a). Lastly, by Lemma 4.6.1 (c), the sixth satisfies

lim
n→∞

n−5/22α
n∑
t=1

t∑
i=1

ρi−1
n ζt ⇒ 2aω

∫ 1

0

∫ r

0

ecsJ(r)dsdr.

Consequently, we have the order the terms in (4.7) as follows: the first is O(n3),

second is Op(n), third is Op(n
2), fourth is Op(n

3/2), fifth is Op(n
2) and the sixth

is Op(n
5/2). It follows that

n−3

n∑
t=1

y2
t →p

α2

2c3

(
e2c − 4ec + 2c+ 3

)
=: q22. (4.9)

Now, we consider the elements from the second matrix in (4.2). For the first, we

have n−1/2
∑n

t=1 ut ⇒ ω
∫ 1

0
dW (r) by Lemma 4.6.1 (e) with β(t) = 1. The second

becomes

n∑
t=1

yt−1ut =
n∑
t=1

(
α

t−1∑
i=1

ρi−1
n + ρt−1

n y0 + ζt−1

)
ut

= α
n∑
t=1

t−1∑
i=1

ρi−1
n ut + y0

n∑
t=1

ρt−1
n ut +

n∑
t=1

ζt−1ut. (4.10)

By Lemma 4.6.1 (d) and (e) the first and second terms above satisfy

lim
n→∞

n−3/2α
n∑
t=1

t−1∑
i=1

ρi−1
n ut ⇒ αω

∫ 1

0

∫ r

0

ecsdsdW (r);

lim
n→∞

n−1/2

n∑
t=1

ρt−1
n ut ⇒ ω

∫ 1

0

ecrdW (r),

respectively. Lastly, by Lemma 2.1 of Phillips (1987) the third term satisfies

lim
n→∞

n−1

n∑
t=1

ζt−1ut ⇒ ω2

(∫ 1

0

J(r)dW (r) +
1

2
(1− λ)

)
, (4.11)
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where λ = γ0/ω
2. The order of the terms in (4.10) are as follows: the first is

Op(n
3/2), the second is Op(n

1/2) and the third is Op(n). Therefore, we have

n−3/2

n∑
t=1

yt−1ut ⇒ αω

∫ 1

0

∫ r

0

ecsdsdW (r). (4.12)

The quantities in (4.2) require appropriate scaling to achieve an asymptotic law.

However, unlike in the scalar case, this requires a scaling matrix. The appropriate

choice of scaling matrix in this case is

Γn =

n1/2 0

0 n3/2

 .
Then (4.2) can be rewritten as

Γn

 α̂− α

ρ̂n − ρn

 =

Γ−1
n

 n
∑n

t=1 yt−1∑n
t=1 yt−1

∑n
t=1 y

2
t−1

Γ−1
n


−1

×

Γ−1
n

 ∑n
t=1 ut∑n

t=1 yt−1ut


 . (4.13)

Or

 n1/2 (α̂− α)

n3/2 (ρ̂n − ρn)

 =

 1 n−2
∑n

t=1 yt−1

n−2
∑n

t=1 yt−1 n−3
∑n

t=1 y
2
t−1


−1

×

 n−1/2
∑n

t=1 ut

n−3/2
∑n

t=1 yt−1ut

 .
From (4.6) and (4.9)

 1 n−2
∑n

t=1 yt−1

n−2
∑n

t=1 yt−1 n−3
∑n

t=1 y
2
t−1


−1

→p

 1 q12

q12 q22


−1

= Q−1 (4.14)
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and from Lemma 4.6.1 and (4.12)

 n−1/2
∑n

t=1 ut

n−3/2
∑n

t=1 yt−1ut

⇒
 ω

1∫
0

dW (r)

aω
1∫
0

r∫
0

ecsdsdW (r)

 . (4.15)

The variables in (4.15) are both normal with mean zero. Their variances and

covariance can be derived by virtue of the Itô isometry. The variance of the first

is

E

(
ω

∫ 1

0

dW (r)

)2

= ω2

∫ 1

0

dr = ω2

and the variance of the second is

E

(
aω

∫ 1

0

∫ r

0

ecsdsdW (r)

)2

=
a2ω2

c2
E

(∫ 1

0

(ecr − 1) dW (r)

)2

=
a2ω2

c2

∫ 1

0

(ecr − 1)2 dr

= ω2q22. (4.16)

Their covariance is

E

{(
ω

∫ 1

0

dW (r)

)(
aω

∫ 1

0

∫ r

0

ecsdsdW (r)

)}
=
aω2

c
E

(∫ 1

0

dW (r)

∫ 1

0

(ecr − 1) dW (r)

)
=
aω2

c

∫ 1

0

(ecr − 1) dr

= ω2q12.

Therefore, (4.15) becomes

 n−1/2
∑n

t=1 ut

n−3/2
∑n

t=1 yt−1ut

⇒
 ω

1∫
0

dW (r)

aω
1∫
0

r∫
0

ecsdsdW (r)

 =d N


0

0

 , ω2

 1 q12

q12 q22




= N(0, ω2Q). (4.17)
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Finally, by virtue of Slutsky’s theorem, the asymptotic distribution of the centered

OLS estimators can be derived by combining (4.14) and (4.17) and is stated in

the theorem.

Hence, provided that the true α is different from zero, the limiting distribution

of the vector of OLS estimates converges to a joint normal distribution. Thus,

any t-test or F-test would have the standard critical values.

In passing by the proof of Theorem 4.2.1, we make use of equation (4.16) to

prove the following proposition.

Proposition 4.2.2. Define q2 := q22/α
2 = (1/2c3)(e2c − 4ec + 2c + 3). Then,

the following distributional equality holds:
∫ 1

0

∫ r
0
ecsdsdW (r) =d

∫ 1

0
J(r)dr =d

N(0, q2).

Proof: Phillips (1987) showed that
∫ 1

0
J(r)dr =d N(0, q2) and from (4.16) we

have that
∫ 1

0

∫ r
0
ecsdsdW (r) =d N(0, q2). Furthermore, two normal random vari-

ables which have the same first and second moments have identical characteristics

functions. The proof follows from the fact that the characteristic function of a

random variable defines its cumulative distribution uniquely.

As a consequence of Theorem 1, we have the following corollary.

Corollary 4.2.3. Let the assumptions from Theorem 4.2.1 be satisfied. Then, as

n→∞

n3/2(ρ̂n − ρn)⇒ N

(
0, ω2

(
2c4

α2(c(e2c − 1)− 2(ec − 1)2)

))
.

Proof: To show the result we only need invert the Q matrix and pick the

respective element. We write

Q−1 =

 1 q12

q12 q22


−1

=
1

q22 − q2
12

 q22 −q12

−q12 1

 .
Now, we are interested in the last element of the diagonal which after a bit of
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algebra becomes

1

q22 − q2
12

=
2c4

α2(c(e2c − 1)− 2(ec − 1)2)
,

from which the result follows immediately.

The numerator above is positive and Lemma 4.6.2 ensures that the denomi-

nator is positive as well. It is important to note that for α = 0 the asymptotic

theory would break as in this case the variance of ρ̂n would be undefined. This is

in line with the discussion from the previous paragraph that the normal limiting

distribution breaks.

It would be interesting to consider the case in which c = 0. We can do this

directly by taking the limit limc→0 Q−1 to derive the limiting distribution of OLS

under a unit root process with a drift. Since the result follows from Theorem 1,

we state it as a corollary.

Corollary 4.2.4. Let the assumptions from Theorem 4.2.1 be satisfied with c = 0.

Then as n→∞n1/2(α̂− α)

n3/2(ρ̂n − 1)

⇒ N


0

0

 , ω2

 1 α/2

α/2 α2/3


−1 .

Proof: We first start by taking

lim
c→0

q12 = lim
c→0

α

c2
(ec − c− 1).

Applying the l’Hopital’s rule twice to the fraction yields

lim
c→0

q12 = α/2.

We finish by taking

lim
c→0

q22 = lim
c→0

α2

2c3
(e2c − 4ec + 2c+ 3).
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Applying the l’Hopital’s rule thrice yields

lim
c→0

q22 = α2/3,

completing the proof.

If the sequence of disturbances is iid, Corollary 4.2.4 reduces to a result which can

be found in Hamilton (1994).

It is important to mention that if the true α is in fact equal to zero, then

asymptotic behaviour changes and with that any critical values for a t or F-test.

If the true value of α is in fact zero, we have

Proposition 4.2.5. Let y1, y2, . . . , yn satisfy assumption 4.2 with α = 0. Then,

 n1/2α̂

n(ρ̂n − ρn)

 =

 1 n−3/2
∑n

t=1 yt−1

n−3/2
∑n

t=1 yt−1 n−2
∑n

t=1 y
2
t−1


−1  n−1/2

∑n
t=1 ut

n−1
∑n

t=1 yt−1ut


⇒

 1 ω
∫ 1

0
J(r)dr

ω
∫ 1

0
J(r)dr ω2

∫ 1

0
J(r)2dr


−1

×

 ωW (1)

ω2
(∫ 1

0
J(r)dW (r) + (1/2)(1− λ)

)


≡ A−1
c Bc .

Proof: The dominating stochastic terms and their orders are given in (4.5),

(4.8) and (4.11). Define the scaling matrix as

Λn =

n1/2 0

0 n


and the rest of the proof follows the algebraic manipulations used to derive The-

orem 4.2.1.

The resulting distributions are non-normal and any critical values for rejection

will be different from the standard normal. Due to this asymptotic behaviour, it
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is natural to consider an F-test that α = 0 and ρn = 1. The null hypothesis can

be written in the form Rβ = r, where R = I2, the identity matrix of dimension

two, β = (α, ρn)′ and r = (0, 1)′. Define xt := (1, yt−1)′. Let b = (α̂, ρ̂n). The

F-test is, then, given by

F = (b− β)′R′

ω̂2R

(
n∑
t=1

xtxt
′

)−1

R


−1

R(b− β)/2

= (Λn(b− β))′

ω̂2Λn

(
n∑
t=1

xtxt
′

)−1

Λn


−1

Λn(b− β)/2

⇒ (2ω2)−1(A−1
0 B0)

′A0A
−1
0 B0

= (2ω2)−1B′0A
−1
0 B0.

Under the null hypothesis, the limiting distribution is not a Chi-squared variable

and any testing would require critical values from this non-standard distribution.

4.2.2 Localising parameter

This subsection considers limiting results regarding the localising parameter c.

Since ρ = ec/n, taking natural logs on both sides and solving for c yields c = n log ρ.

Thus, a natural estimator of c would be ĉ = n log ρ̂. The following theorem

provides an asymptotic law for the estimator.

Theorem 4.2.6. Let y1, y2, . . . , yn satisfy assumption 4.1 and let ĉ = n log ρ̂n.

Then as n→∞, we have

n1/2(ĉ− c)⇒ N

(
0, ω2

(
2c4

α2(c(e2c − 1)− 2(ec − 1)2)

))
.

Proof: The proof utilises the result from Corollary 1 and Proposition 2. By

utilising the asymptotic equivalence log(1 + x) = x + O(x2) as x → 0, we have



114

that

ĉ = n log ρ̂n = n log((ρ̂n − ρn) + ρn)

= n log
(

(ρ̂n − ρn) + 1 +
c

n
+O

(
n−2
))

= n

{
(ρ̂n − ρn) +

c

n
+O

(
n−2
)

+O

[(
(ρ̂n − ρn) +

c

n
+O

(
n−2
))2
]}

= n(ρ̂n − ρn) + c+O(n−1).

Now, if α 6= 0, we can utilise the fast convergence rate of ρ̂ yielding

n1/2(ĉ− c) = n3/2(ρ̂− ρ) +O(n−1/2)

⇒ N

(
0, ω2

(
2c4

α2(c(e2c − 1)− 2(ec − 1)2)

))
.

as required.

Thus, consistent estimation of the localising parameter depends on whether α

is equal to zero or not. In the former case, consistent estimation is not possible.

However, in the latter case it is. Furthermore, the asymptotic distributions of both

ρn and c are normal and depend on parameters which can be estimated consis-

tently. It is, therefore, straightforward to construct estimators which have N(0, 1)

limiting distributions and utilise those for inference. The results are gathered in

the following corollary to Theorems 4.2.1 and 4.2.6.

Corollary 4.2.7. Let the assumptions of Theorem 4.2.1 be satisfied. Also, assume

that we have ω̂ →p ω, for some ω̂. Furthermore, let α 6= 0 and define

f(c, α, ω) = (α2(c(e2c − 1)− 2(ec − 1)2)−12c4ω2.

Then, as n→∞

(a) tρ ≡ f(ĉ, α̂, ω̂)−1/2n3/2(ρ̂n − ρn)⇒ N(0, 1);

(b) tc ≡ f(ĉ, α̂, ω̂)−1/2n1/2(ĉ− c)⇒ N(0, 1).
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Proof: The proof is a straightforward application of Slutsky’s theorem since

f(ĉ, α̂, ω̂)−1/2 →p f(c, α, ω)−1/2.

Given Corollary 4.2.7, constructing tests for a hypothesised value ρ̄n or c̄ is

straightforward. Let our null hypothesis be ρ̂n = ρ̄n or ĉ = c̄. Then, under the

null, as n→∞

tρ̄n := f(ĉ, α̂, ω̂)−1n3/2(ρ̂n − ρ̄n)⇒ N(0, 1) (4.18)

and

tc̄ := f(ĉ, α̂, ω̂)−1n1/2(ĉ− c̄)⇒ N(0, 1). (4.19)

Estimating f(c, α, ω) in this way is inefficient due to the need of estimating three

parameters, taking exponents of those and multiplying them by each other. Fur-

ther possible loss of efficiency comes from the fact that ρ needs to be estimated

first, transformed and then multiplied by n. Thus, any variation in the estima-

tion of the autoregressive parameter would be then magnified by multiplying by

n. However, there is a way to estimate c without the need of ρ̂. The following

subsection derives such an estimator and also considers more efficient t-statistics

than the ones constructed in (4.18) and (4.19).

4.2.3 A second estimator of the localising parameter and

more efficient t-statistics

Since ec/n = 1 + c/n+O(n−2) we can rewrite (4.1) as

∆yt = α + c(yt−1/n) + ut + yt−1O(n−2)

= α + c(yt−1/n) + ηt,
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where ∆yt = (1− L)yt = yt − yt−1 and ηt = ut + yt−1O(n−2). The OLS estimator

of α and c is then given by

α̃
c̃

 =

 n
∑n

t=1 yt−1/n∑n
t=1 yt−1/n

∑n
t=1 y

2
t−1/n

2


−1  ∑n

t=1 ∆yt∑n
t=1(yt−1/n)∆yt

 ,
and the deviations from the true parameters are given by

α̃− α
c̃− c

 =

 n
∑n

t=1 yt−1/n∑n
t=1 yt−1/n

∑n
t=1 y

2
t−1/n

2


−1  ∑n

t=1 ηt∑n
t=1(yt−1/n)ηt

 . (4.20)

For α 6= 0, the correct scaling matrix is

Ψn =

n1/2 0

0 n1/2

 .
Multiplying both sides of (4.20) by Ψn yields

n1/2 (α̃− α)

n1/2 (c̃− c)

 =

 1 n−2
∑n

t=1 yt−1

n−2
∑n

t=1 yt−1 n−3
∑n

t=1 y
2
t−1


−1

×

 n−1/2
∑n

t=1 ηt

n−3/2
∑n

t=1 yt−1ηt

 . (4.21)

For α = 0, we have

n1/2α̃

c̃− c

 =

 1 n−3/2
∑n

t=1 yt−1

n−3/2
∑n

t=1 yt−1 n−2
∑n

t=1 y
2
t−1


−1  n−1/2

∑n
t=1 ηt

n−1
∑n

t=1 yt−1ηt

 . (4.22)

Note that n−1/2
∑n

t=1 ηt = n−1/2
∑n

t=1 ut + op(1) irrespective of the value of α.

Furthermore, for α 6= 0, n−3/2
∑n

t=1 yt−1ηt =
∑n

t=1 yt−1ut + op(1) and, for α = 0,

n−1
∑n

t=1 yt−1ηt = n−1
∑n

t=1 yt−1ut + op(1). Hence, the matrices on the right hand

sides of both (4.21) and (4.22) asymptotically behave in the same way as the ones
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from Theorem 4.2.1 and Proposition 4.2.5, respectively, and α̃ and c̃ have the

same limiting distribution as α̂ and ĉ. The result is stated as a theorem.

Theorem 4.2.8. Let y1, y2, . . . , yn satisfy assumption (1). Then as n→∞

(a)

n1/2(α̃− α)

n1/2(c̃− c)

 =

 1 n−2
∑n

t=1 yt−1

n−2
∑n

t=1 yt−1 n−3
∑n

t=1 y
2
t−1


−1  n−1/2

∑n
t=1 ut

n−3/2
∑n

t=1 yt−1ut


⇒ N

(
0,Q−1ω2QQ−1

)
= N(0, ω2Q−1), α 6= 0;

(b)

n1/2α̃

c̃− c

 =

 1 n−3/2
∑n

t=1 yt−1

n−3/2
∑n

t=1 yt−1 n−2
∑n

t=1 y
2
t−1


−1  n−1/2

∑n
t=1 ut

n−3/2
∑n

t=1 yt−1ut


⇒ A−1

c Bc, α = 0.

From Theorems 4.2.6 and 4.2.8, we have ĉ − c̃ →p 0. Thus, the asymptotic

behaviour of ĉ and c̃ is the same. Section 4 provides a discussion between the

finite sample performance of the two estimators.

To construct more efficient t-statistics than those given in (4.18) and (4.19) we

recall that (
∑n

t=1 y
2
t−1,

∑n
t=1 y

2
t−1)→p (q2

12, q22). Hence, we can define a t-statistic

as

t̃ρ̄n :=
n3/2(ρ̂n − ρ̄n)

(n3σ̂2)1/2
, (4.23)

where

n3σ̂2 = n3ω̂2

[
0 1

] n
∑n

t=1 yt−1∑n
t=1 yt−1

∑n
t=1 y

2
t−1


−1 0

1


= ω̂2

[
0 1

]
Γn

 n
∑n

t=1 yt−1∑n
t=1 yt−1

∑n
t=1 y

2
t−1


−1

Γn

0

1


= ω̂2

[
0 1

]Γ−1
n

 n
∑n

t=1 yt−1∑n
t=1 yt−1

∑n
t=1 y

2
t−1

Γ−1
n


−1 0

1


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→p ω
2

[
0 1

]
Q−1

0

1


=

ω2

q22 − q2
12

. (4.24)

Combining this with Corollary 4.2.3, it follows that under the null

t̃ρ̄n =
n3/2(ρ̂n − ρ̄n)

(n3σ̂2)1/2
⇒ N(0, 1). (4.25)

By the same line of analysis we obtain

t̃c̄ =
n1/2(ĉ− c̄)
(n3σ̂2)1/2

⇒ N(0, 1). (4.26)

Evidence of the better finite sample performance of the estimators constructed

in this section will be provided in section 4 where Monte Carlo experiments are

conducted.

4.3 Trend fitted in estimation

Often enough in empirical work, researchers fit a trend in the model when they

have evidence that the data is trending. Hence, typically the autoregression

utilised has the form

yt = α + ρnyt−1 + δt+ ut, t = 1, . . . , n.

Under assumption 4.1 δ = 0. In this case, when α 6= 0, the component yt−1 would

be asymtotically equal to a time trend. To see why, consider the first sum in the

last line of (4.3) for a fixed t.

t∑
i=1

ρi−1 =
ect/n − 1

ec/n − 1
= t

(
1 +O(ct/n)

1 +O(c/n)

)
→ t,
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as n→∞. In fact, for c = 0, the above expression reduces to t, the linear trend we

get algebraically under a unit root process. Since a time trend is already included

as a separate variable, this would induce collinearity between the explanatory

variables in large samples. One way to overcome the problem is to rewrite the

model as

yt = (1− ρn)α + ρn(yt−1 − α(t− 1)) + (δ + ρnα)t+ ut

≡ α∗ + ρ∗ζt−1 + δ∗t+ ut, (4.27)

where α∗ ≡ (1 − ρn)α, ρ∗ = ρn, δ∗ ≡ (δ + ρnα) and ζt being the process utilised

in section 2 with ζ0 = ρtny0. Under the hypothesis that ρ ∼ 1 + c/n and δ = 0,

we have that α∗ ∼ (c/n)α and δ∗ = ρnα. The OLS estimates of the parameters

in (4.27) satisfy


α̂∗ − α∗

ρ̂∗ − ρ

δ̂∗ − δ∗

 =


n

∑n
t=1 ζt−1

∑n
t=1 t∑n

t=1 ζt−1

∑n
t=1 ζ

2
t−1

∑n
t=1 ζt−1t∑n

t=1 t
∑

t=1 tζt−1

∑n
t=1 t

2


−1 

∑n
t=1 ut∑n

t=1 ζt−1ut∑n
t=1 tut

 .

In this case, we should define the scaling matrix as

Υn :=


n1/2 0 0

0 n 0

0 0 n3/2

 .
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Applying the same procedure as in (4.13) yields


n1/2(α̂∗ − α∗)

n(ρ̂∗ − ρ)

n3/2(δ̂∗ − δ∗)

 =


1 n−3/2

∑n
t=1 ζt−1 n−2

∑n
t=1 t

n−3/2
∑n

t=1 ζt−1 n−2
∑n

t=1 ζ
2
t=1 n−5/2

∑n
t=1 ζt−1t

n−2
∑n

t=1 t n−5/2
∑

t=1 tζt−1 n−3
∑n

t=1 t
2


−1

×


n−1/2

∑n
t=1 ut

n−1
∑n

t=1 ζt−1ut

n−3/2
∑n

t=1 tut



⇒


1 ω

∫ 1

0
J(r)dr 1

2

ω
∫ 1

0
J(r)dr ω2

∫ 1

0
J(r)2dr ω

∫ 1

0
rJ(r)dr

1
2

ω
∫ 1

0
rJ(r)dr 1

3


−1

×


ω
∫ 1

0
dW (r)

ω2
(∫ 1

0
J(r)dW (r) + 1

2
(1− λ)

)
ω
∫ 1

0
rdW (r)

 =: Cc
−1Dc.

Note that the asymptotic distribution in this case is independent from the value of

α. However, for α 6= 0 we can utilise ĉ→p c. One can use the above convergence

result for hypothesis testing. Define zt = (1, yt−1, t)
′. Then, construct the t-

statistic for the autoregressive coefficient as

tρ̂∗ =
n(ρ̂∗n − ρ̄n)

(n2σ̂2
ρ̂∗)

1/2
,

where

n2σ̂2
ρ̂∗ = n2ω̂2

[
0 1 0

]( n∑
t=1

ztzt
′

)−1 [
0 1 0

]′

= ω̂2

[
0 1 0

]
Υn

(
n∑
t=1

ztzt
′

)−1

Υn

[
0 1 0

]′
⇒ ω2

[
0 1 0

]
Cc
−1

[
0 1 0

]′
.
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The asymptotic distribution of the t-statistic is then given by

tρ̂∗ =
n(ρ̂∗n − ρ̄n)

(n2σ̂2
ρ̂∗)

1/2

⇒
[
0 1 0

]
Cc
−1Dc

[
0 1 0

]′(
ω2

[
0 1 0

]
Cc
−1

[
0 1 0

]′)−1/2

.

Since the asymptotic values are obtained by simulations, the results are not re-

duced down to scalars and are left in matrix forms for reasons of brevity. It is

only important to note that the results are not divergent. Furthermore, since it

is assumed that the true value of δ is zero, which is an auxiliary hypothesis which

affects the asymptotic properties, it is natural to consider an OLS F test of the

joint hypothesis that δ = 0 and ρ∗n = 1. The hypothesis is of the form Rβ = r,

where

R =

0 1 0

0 0 1

 ,β =

[
α∗ ρ∗ δ∗

]′
, r =

[
1 0

]′
.

Let b = (α̂∗, ρ̂∗, δ̂∗)′ and define

Υ̃n =

n 0

0 n3/2

 .
The F-test is given by

F = (b− β)′R′

ω̂2R

(
n∑
t=1

ztzt
′

)−1

R′


−1

R(b− β)/2

= (b− β)′R′Υ̃n

ω̂2Υ̃nR

(
n∑
t=1

ztzt
′

)−1

R′Υ̃n


−1

Υ̃nR(b− β)/2.
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Note that Υ̃nR = RΥn, which implies that

F = (RΥn(b− β))′

ω̂2RΥn

(
n∑
t=1

ztzt
′

)−1

ΥnR′


−1

RΥn(b− β)/2

⇒ (2ω2)−1(RC0
−1D0)

′ {RC0R
′}RC0

−1D0.

Just as in the previous case, for reasons of brevity, we will not multiply the

matrices out.

4.4 Monte Carlo Simulations

The purpose of this section is to asses finite sample behaviour via simulations.

The focus is on the theory presented in section 2. First, an assessment will be

carried out between the two estimators c̃ and ĉ. Consequently, we provide graphs

with non-parametric estimates of

tc̃ =
n1/2(c̃− c̄)
(n3σ̂2)1/2

⇒ N(0, 1)

for different c̄, n and α. We compare this with a random normal variable with

mean zero and variance one. We simulate data from (4.1), with ut being iid as

N(0, 1), n = {100, 200, 300, 400}, c = {−10,−1, 0, 1} and α = {−0.5, 0, 0.5, 1}.

The number of replications are set at R = 10, 000. The non-parametric estimator

of density that is utilised is

f̂(xj) =
1

hR

R∑
i=1

K

(
xj − xi
h

)
,

for j = 1, . . . , R, where the data has been sorted in ascending order, i.e. xj−1 ≤

xj. We utilise Silverman’s (1986) rule of thumb for the bandwidth, such that

h = 1.06sR−1.05, where s denotes estimated standard deviation of the data. We

also use the normal kernel, such that K(x) = (2π)−1/2e−x
2/2. Hence, the non-
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parametric estimate of density becomes

f̂(xj) =
1

hR
√

2π

R∑
i=1

exp

(
−(xj − xi)2

2h2

)
.

Figures 4.1-4.4 compare the non-parametric estimates of densities of the nor-

malised c̃ and that of a normal random variable with mean zero and variance one

for the cases in which α 6= 0. For the case in which α = 0, there is no normalisation

as we know that c̃ = Op(1) by Theorem 4.2.8. The estimator c̃ was preferred over

ĉ as typically researchers are interested in the hypothesis c̄ = 0 against c̄ < 0 and

the following paragraph provides evidence that c̃ performs better for such values

of c. For α 6= 0 and c 6= −10, we can see that, pratically, there is no difference

between the normalised c̃ and the standard normal random variable. For the case

in which c = −10, the estimator does not perform as well due to the argument

expressed in the previous paragraph - the asymptotic normality depends on how

quickly the deterministic part dominates the stochastic. In fact, for c = −10,

we have ρ ' 0.9. Thus, any finite sample from this data generating process will

behave as trend stationary and the localising parameter estimator would not be

able to estimate the true parameter accurately.

Given the discussion in the previous paragraph, we will focus our attention

on α 6= 0 and values of c such that the generated data resembles series with a

drift. Furthermore, following Elliot et al, we will parameterise the error term as

an MA(1) and an AR(1) process in the following way

1) iid: ut ∼ N(0, 1);

2) MA(1): ut = ηt + θηt−1;

3) AR(1): ut = φut−1 + ηt,

where ηt ∼ N(0, 1), θ = {−0.8, 0.8} and φ = {−0.5, 0.5}. The initial conditions

for the MA(1) case are η0 ∼ N(0, 1) and for the AR(1) case u0 ∼ N(0, 1). Tables

4.1-4.4 depict the outcome for the ĉ and c̃ estimators. Firstly, we note that on
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average the two estimators, with one exception, always underestimate the true

parameter. This is to be expected as we know that on average the estimator of

the autoregressive parameter is negatively biased in finite samples. Recall that

n1/2(ĉ−c) = n3/2(ρ̂n−ρn)+op(1) and n1/2(c̃−c) = n3/2(ρ̂n−ρn)+op(1). Secondly,

it should be noted that the bias and variance of the estimators diminish as the

sample size increases, providing evidence on the consistency of the estimators.

Interestingly, for c ≤ 0, c̃ outperforms ĉ uniformly in both bias and variance

estimates. However, for c > 0 we can observe the converse, again uniformly. One

way to explain this result would be to consider the behaviour of ρ̂. For a fixed

ρ > 1, Wang and Yu (2015) showed that (ρ̂− ρ) converges with a rate ρn for iid

errors. Moreover, the variance of ρ̂ on the explosive side decreases quickly and

this permits ĉ to perform better than c̃.

Lastly, we note that whenever α = 1 the estimators perform best. This is to

be expected since the asymptotic normality depends on the assumption that the

deterministic part in (4.1) dominates the stochastic. The higher |α| is, everything

else held constant, the quicker this happens.

4.5 Conclusion

This essay studies local-to-unit root autoregressive time series which have a drift

and are driven by errors, which are allowed to be correlated over time. This per-

mits fitting an ARMA process as an error term. The drift and autoregressive

parameter estimators are shown to have a joint normal limiting distribution with

rates n1/2 and n3/2, respectively. The variance-covariance matrix of that distri-

bution depends on the localising parameter. It is shown that this model permits

for consistent estimation of the localising parameter and an asymptotic law is

obtained with a consistency rate of n1/2. This result is obtained by taking advan-

tage of the quicker than n consistency rate of the estimator of the autoregressive

parameter. The asymptotic distribution of the estimator for c is the same as the

one of the autoregressive parameter. Having a consistent estimator of c allows
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for the construction of t-statistics which converge to a standard normal random

variable. Since the consistent estimator of c and its asymptotic normality depend

on the assumption that the drift is different from zero, it is natural to consider an

F-test of that hypothesis. Hence, the essay also derives the limiting distribution

of the F-test under the null that the drift parameter is zero and the autoregressive

parameter is unity.

In applied work, when researchers are faced with trending data they typically

fit a trend as an explanatory variable in the model. Hence, the essay also de-

rives the limiting distribution of the vector of parameters when the autoregressive

parameter is of the local to unit root setup. It is interesting to note that the

consistency rate of the estimator of the autoregressive parameter drops down to

n. Thus, if any estimation of c is to be conducted, it should be done via the

original regression without a trend included as an explanatory variable.

The paper also discusses a second linear estimator of the localising parameter

and the features of those are discussed in a Monte Carlo experiment. Simulation

results provide evidence that the estimators performs well in finite samples when

the model is approximately linear. Since, the asymptotic normality depends on

that linearity, for values of the localising parameter that are small we find that

the estimators suffer in small samples.

Results such as the ones found in Theorems 4.2.1, 4.2.6 and 4.2.8 could find

applications in macroeconomic settings. Empirical data on US log GDP per capita

and other developed economies seem to be well approximated by a linear trend.

If one is allowed to make a priori assumption of a drift in the data, the testing

procedures developed in this chapter would provide as easy to implement unit

root testing procedures which follow a normal limiting distribution.
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4.6 Supplementary Appendix:

A central role to our proofs will play the partial sums St =
∑t

j=1 uj and the

functional

Wn(r) =
1

n1/2
Sbnrc =

1

n1/2
Sj−1,

j − 1

n
≤ r <

j

n
.

For a continuous function h under assumption 1, we have h(Wn(r))⇒ h(ωW (r))

by he functional central limit and continuous mapping theorems.

Lemma 4.6.1. Let β, γ, δ and φ be bounded continuous functions on [0, 1] and

define ξt =
∑t

j=1 β(t/n)δ(j/n)uj. Then as n→∞

(a) lim
n→∞

n−2

n∑
t=1

t∑
i=1

β(t/n)2γ(i/n) =

∫ 1

0

∫ r

0

β(r)2γ(s)dsdr;

(b) lim
n→∞

n−3/2

n∑
t=1

β(t/n)ξt ⇒ ω

∫ 1

0

β(r)2

(
W (r)δ(r)−

∫ r

0

W (s)δ′(s)ds

)
dr;

(c) lim
n→∞

n−5/2

n∑
t=1

t∑
i=1

γ(i/n)ξt

⇒ ω

∫ 1

0

β(r)

∫ r

0

γ(q)

(
W (r)δ(r)−

∫ r

0

W (s)δ′(s)ds

)
dqdr;

(d) lim
n→∞

n−3/2

n∑
t=1

t∑
i=1

γ(i/n)ut ⇒ ω

∫ 1

0

∫ r

0

γ(s)dsdW (r);

(e) lim
n→∞

n−1/2

n∑
t=1

β(t/n)ut ⇒ ω

∫ 1

0

β(r)dW (r).

Those results also hold jointly.
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Proof: Let µ(β(t/n)) = β(t/n)2. Then for (a) we obtain

lim
n→∞

n−2

n∑
t=1

t∑
i=1

β(t/n)2γ(i/n)

= lim
n→∞

n−1

n∑
t=1

µ(β(t/n))

n(t/n)∑
i=1

γ(i/n)

∫ i/n

(i−1)/n

ds

= lim
n→∞

n−1

n∑
t=1

µ(β(t/n))

n(t/n)∑
i=1

∫ i/n

(i−1)/n

γ(s)ds+ o(1)

= lim
n→∞

n−1

n∑
t=1

µ(β(t/n))

∫ t/n

0

γ(s)ds+ o(1)

=

∫ 1

0

∫ r

0

µ(β(r))γ(s)dsdr.

The result follows by the definition of µ(ν). For part (b) we have

n−3/2

n∑
t=1

β(t/n)ξt = n−3/2

n∑
t=1

β(t/n)
t∑

j=1

β(t/n)δ(j/n)uj

= n−1

n∑
t=1

β(t/n)2

n(t/n)∑
j=1

δ(j/n)

∫ j/n

(j−1)/n

dWn(s)

=

∫ 1

0

µ(β(r))

∫ r

0

δ(s)dWn(s)dr + op(1).

We apply integration by parts to the inner integral, which is permissible since δ(s)

is continuous and Wn(s) is increasing and of bounded variation. This yields

∫ r

0

δ(s)dWn(s) = Wn(r)δ(r)−
∫ r

0

Wn(s)δ′(s)ds. (4.28)

By the functional central limit and continuous mapping theorems, from (4.28),

we get

lim
n→∞

n−3/2

n∑
t=1

β(t/n)ζt ⇒ ω

∫ 1

0

β(r)2

(
W (r)δ(r)−

∫ r

0

W (s)δ′(s)ds

)
dr.
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The proof of (c) is entirely similar to that of (a) and (b). To show (d) we write

n−3/2

n∑
t=1

t∑
i=1

γ(i/n)ut =

∫ 1

0

∫ r

0

γ(s)dsdWn(r) + op(1)

=

∫ 1

0

φ(r)dWn(r) + op(1),

where φ(r) =
∫ r

0
γ(s)ds. By integration by parts again we obtain

∫ 1

0

φ(r)dWn(r) = φ(r)Wn(r)−
∫ 1

0

Wn(r)φ′(r)dr.

Thus,

lim
n→∞

n−3/2

n∑
t=1

t∑
i=1

γ(i/n)ut ⇒ φ(r)W (r)−
∫ 1

0

W (r)φ′(r)dr.

Reversing the integration by parts delivers the result. The proof of (e) is entirely

similar to that of (d). Joint convergence follows from the fact that every linear

combination of variables on the left hand side convergences to the same linear

combination of variables on the right hand side.

Lemma 4.6.2. Define g(c) = c(e2c − 1)− 2(ec − 1)2. Then, ∀c ∈ R, g(c) ≥ 0.

Proof: We have g′(c) = 2ce2c − 3ec + 4ec − 1. At c∗ = 0, g′(c∗) = 0. Conse-

quently we have

g′′(c)|c=0 = 4ec(cec − ec + 1)|c=0 = 0;

g(3)(c)|c=0 = 4ec(2cec − ec + 1)|c=0 = 0;

g(4)(c)|c=0 = 4ec(4cec + 1)|c=0 = 4;

g(0) = 0.

Since c∗ is unique and the first nonzero derivative evaluated at c∗ is even, g(c)

has a global minimum equal to zero showing the function is non-negative, as

required.
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Figure 4.1: Density estimates of standardised ĉ vs standard normal for n = 100
and α = −0.5.
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Chapter 5

Conclusion

This thesis has aimed to expand our understanding of autoregressive time series

of order one. It consists of three essays: one on autoregressive bias, one on bias

reduction and one on parameter estimation in non-stationary series with a drift.

The first essay derives the approximate bias of the OLS estimator for series

with moderate deviations from a unit root and a fixed autoregressive coefficient.

The result is then utilised to derive the asymptotic distribution of the indirect

inference method. Those estimators are of importance as the essay shows that

the bias can be substantial in small samples. Even though the mathematical

machinery used to derive those results depends on the normality assumption,

this is a step in the right direction of coping with the problem of bias in finite

samples. Future research could possibly expand the class of models which we

can derive those results for and, consequently, reduce the bias’ negative effect on

parameter estimation. In addition, once the literature is developed enough to

cover general models of this kind, the IIE could be constructed in a completely

analytical fashion without the need of simulating pseudo-datasets. This would

immensely safe computational time and erase, if any, errors due to misspecifying

the error distribution in the process of simulating data. This, however, would be

possible for values of the autoregressive parameter sufficiently away from unity.

Essay two derives analytically the asymptotic second moments of the full-

sample and each of the sub-samples estimators in the local to unit root model.
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The result is used to construct an “optimal” jackknife estimator for such mod-

els. Furthermore, this permits numerical calculation of the jackknife estimator’s

asymptotic moments and this is used to formally explain why previous simulations

find that using a higher number of sub-samples produces a smaller variance for

the jackknife. The two-step estimator developed here finds applications where the

analytical IIE is unusable, i.e. for values of the autoregressive parameter close to

unity. It would be interesting to know if this estimator can be utilised for unit root

testing. Since the localising parameter cannot be estimated consistently, one way,

possibly, to circumvent this would be in the spirit of power envelope functions.

Essay three discusses parameter estimation in local to unit root autoregression

with a drift. The main feature of the model is that it permits consistent estimation

of the localising parameter of the autoregressive parameter. Thus, one could

test the null-hypothesis of a unit root by directly constructing a t-statistic of

the localising parameter being equal to zero, which is shown to have a standard

normal limiting distribution. These results could straightforwardly be utilised in

applied work by finding a suitable dataset which satisfies the assumptions of the

model. Suitable candidates involve log GDP per capita of developed countries.

One way to improve on those results would be to seek more efficient estimates of

the parameters and, thus, be able to improve on any unit root testing procedure.

The results from Chapters 2 and 3 are important not only from a theoreti-

cal perspective but also from practitioners’ point of view. The OLS estimator is

the best unbiased linear estimator once the Gauss-Markov assumptions are sat-

isfied. However, the strict exogeneity assumption in autoregressive time series

fails which results in OLS being biased. This leads to a failure of the estimator’s

optimal properties in finite samples. It turns out that it is possible to construct a

jackknife estimator which outperforms OLS in mean and variance dimensions in

finite samples. This could potentially be employed in models where forecasting is

the main goal since estimators with smaller bias and variance would typically be

preferred in such settings.
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Extending results, such as the ones in this thesis, for autoregressive series of

higher order is possible but far from straightforward. Deriving an approximate

bias for general autoregressive series requires an immense algebraic effort. In

terms of extending the jackknife results from chapter 3 in such fashion, this could

possibly be achieved by assuming one root on the unit circle and the rest bigger

the unity. Then, asymptotic distributions for the autoregressive parameter could

follow in the spirit of the augmented Dickey Fuller test and asymptotic moments

would be the same as the ones derived in chapter 3. Those and other questions

that stem from this thesis provide exciting opportunities for future research.


