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Abstract

The purpose of this thesis is to develop the inverse scattering method for the nonlocal

semi-discrete nonlinear Schrödinger equation (known as Ablowitz-Ladik equation) with

parity-time symmetry proposed in Ablowitz and Musslimani’s paper.

This includes the eigenfunctions (Jost solutions) of the associated Lax pair, the scatter-

ing data and the fundamental analytic solutions. In addition, we study the spectral prop-

erties of the associated discrete Lax operator. Based on the formulated Riemann-Hilbert

problem, we derive the one- and two-soliton solutions to the nonlocal Ablowitz-Ladik

equation. Finally, we prove the completeness relation for the associated Jost solutions.

Based on this, we derive the expansion formula over the Jost solutions is evaluated. This

allows interpreting the inverse scattering method as a generalised Fourier transform.

We derive the dressing method based on the seed solution to the discrete nonlinear

Schrödinger equation. Explicit relations are obtained amongst the spectrum problem as-

sociated with the expansion over the negative and positive power of the eigenvalues. We

show a general formula for the Riemann-Hilbert problem based dressing method in terms

of the Lax representation associated with a given nonlinear equation.

Next, we study square barrier potentials for the Ablowitz-Ladik like of the discrete

nonlinear Schrödinger equation and a certain class of integrable systems of multi-component

generalisation of the Manakov model. We are interested in conditions distinguishing blow

up and not blow up solutions. From considering single and double excitations as initial

conditions, we conjecture the following: 1) if the Lax operator has no spectrum outside

nor inside the unit circle, there is no blow up; 2) when it does, mirror symmetric initial

conditions are sufficient, but not necessary, for bounded solutions; 3) to obtain bounded

solutions, each spectrum outside the unit circle needs (but is not sufficient) to have a re-

ciprocal counterpart on the inside. Numerical method used to evaluate the eigenvalues of

the Ablowitz-Ladik problem. Numerical simulations are also presented, illustrating our

analytical results.
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Chapter 1

Introduction

In this chapter, we will begin by setting the scene with a history of the soliton and inte-

grable equations. We will also introduce some related concepts for the inverse scattering

method (ISM): Lax representation, the direct and the inverse scattering transform (IST).

Also, we will show the connection between the Riemann-Hilbert problem (RHP) and the

ISM. In addition, we will outline important concepts: the PT and the CPT-symmetry.

Finally, we will give an overview of the thesis itself, highlighting the main results and

describing the aspects which have effectively motivated the research.

1.1 Soliton and the nonlinear evolution equations

Soliton theory has been the centre of the developments of nonlinear wave propagation

since the nineteenth century, in almost all applications. It began with the pioneering work

of J Scott Russell [38] who observed solitons. He built a wave tank in his laboratory in

order to study this phenomenon more closely; he made further important observations

of the properties of the solitary wave. At first, the scientific community of his time did

not seem impressed by Russel’s discovery; later scientists showed how Russell’s solitary

wave arose and can also be explained mathematically.

A soliton associates with a certain solution of a nonlinear equation with some specific

properties. Here are some definitions: solitons are caused by a cancellation of nonlinear

and dispersive effects in the medium [87]. A soliton is a solitary wave with finite energy

and the necessary conditions for its existence include nonlinearity and dispersion [71].

A soliton is a solution to a nonlinear equation or system which represents a wave of

permanent form, is localized and decaying at infinity and interacts with other solitons so

that after the interaction it retains its form [110]. Later, the argument over solitary water

waves was finally resolved by Korteweg et al. [38, 78] who published their theoretical

treatment when they introduced their famous equation. The Korteweg de Vries equation



1.1 The discovery of soliton 2

(KdV) is,

ut + uxxx − 6uxu(x, t) = 0, (1.1.1)

and the solitary wave solution of equation (1.1.1) is

u(x, t) = a sech2(γ(x− V t)), V = 2a = 4γ2, (1.1.2)

where u(x, t) is a real valued function, γ is the wave number, V is the speed, a is the

wave amplitude and x, t ∈ R where t is the time. This was the most important event of

the development of soliton theory. After that, this phenomenon attracted the attention of

scientists who tried to find the solution of the KdV equation numerically. They found

that the soliton of this equation has manifested waves with sharp peaks. These waves

move almost independently with constant speeds and pass through each other after col-

lisions [20, 54]. Furthermore, the solitary waves behave like stable particles; thus this

helped to discover the soliton. The behaviour of the soliton-like solution (solitary wave)

is very stable in the following sense: it is localised, the solution decays as x → ±∞. It

is of a travelling wave type. The wave profile u at any time t ≥ 0 and x ∈ R is cal-

culated by u(x, t) = f(x− ct), where f is a function on R and c denotes the speed of

prevalence (spread) [38]. Soliton solutions satisfy some kind of dispersion relation (taller

waves travel faster than smaller one). Furthermore, they obtain a sort of overlap principle.

This can be explained as follows: in linear waves when two solitary waves with different

speed travel together, the taller one will catch up after some finite time; an interaction

of both waves takes place and moments later they separate again; both keep their speeds

and shape but now the taller wave is in front of the smaller one. The nonlinear partial

differential equation (PDE) (1.1.1) governs reasonably shallow water waves which is ap-

plicable to the situation that Scott Russell saw [77]. This equation also acts as a model

in many physical phenomena. The KdV equation is a well-known equation for providing

single-soliton solutions (a right moving soliton u(x, t) = f(x − ct)). The discovery of

the soliton phenomenon led scientists and researchers to develop an interest in systems

that are integrable. Meanwhile, they have not yet reached a comprehensive definition of

integrability. Notable examples are the KdV, nonlinear Schrödinger equation (NLS), sine-

Gordon (SG) equations and many others. Some of integrable nonlinear partial differential

equations (PDEs):

• the cubic NLE describing waves on the surface of shallow water,

iqt + qxx + ε 2|q|2q = 0, ε = ±1, (1.1.3a)
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where q(x, t) is a complex valued function. When ε = 1, (1.1.3a) is called the

focusing NLS equation which admits soliton (kink) solutions and for ε = −1,

(1.1.3a) is called the defocusing NLS equation which admits anti-kink solitons.

This equation is a key model describing optic propagation in Kerr media [42] and

models quasi-monochromatic wave packets propagating in nonlinear media, and

also the NLS equation describes Langmuir waves in plasma, while the NLS equa-

tion is used in different applications, for instance in fluid mechanics [112]. The NLS

equation is presented in different formula; each one explains what the researchers

are trying to express; for instance (1.1.3b) [112] with constant boundary condition

q(x, t) = ρeiθ± , θ± ∈ [0, 2π]

iqt + qxx − 2(|q|2 − ρ2)q = 0, ρ ∈ R+. (1.1.3b)

• the SG equation is a nonlinear hyperbolic PDE of the form:

uxt = sin(u(x, t)), (1.1.4)

where equation (1.1.4) models solitons and many other problems in quantum me-

chanics, including applications; for instance, in relativistic field theory, it models

Josephson junctions [74].

A single-soliton solution to the NLS equation (1.1.3a) (ε = 1) [118] is

u(x, t) = 2i(ζ∗1 − ζ1)
c1e

(θ1−θ∗1)

e−(θ1+θ∗1) + |c1|2e(θ1+θ∗1)
, (1.1.5a)

by taking ζ1 = ξ + iη and c1 = e−2ηx0+iσ0 , then (1.1.5a) becomes:

u(x, t) = 2η sech[2η(x+ 4ξt− x0)] exp
{
−2iξx− 4i(ξ2 − η2)t+ iσ0

}
, (1.1.5b)

where ξ, η are the real and imaginary parts of ζ1, and x0, σ0 are real parameters. Equation

(1.1.5b) is a solitary wave solution with (2η) amplitude and (−4ξ) velocity.

1.2 The inverse scattering method

Often, linear partial differential equations can be solved by a Fourier transform; however,

it is difficult to solve nonlinear PDEs. Therefore, the IST is nowadays a subject of intense

research when it comes to solve nonlinear PDEs. In an explicit sense of this method,

the rapidly and decreasing boundary conditions make the dynamics quite simple because

of the recovery of the time evolution of the transition coefficients; both continuous and
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discrete spectra become linear. The KdV equation (1.1.1) undoubtedly the first nonlinear

PDE which is solved by the inverse scattering method. This method is the best key in

solving the Cauchy problem for the KdV equation. Gardner, Greene, Kruskal and Miura

created a method to derive the exact solution of the Cauchy problem for the KdV equation,

for rapidly decaying initial values [10, 45, 93]. Historically, equation (1.1.1) was derived

by Diederik Korteweg and Gustav de Vries as a mathematical model of water-waves in

shallow channels.

1.2.1 Lax representations

Peter D. Lax [80] considered a nonlinear PDE in evolutionary form

ut = K(u), u = u(x, t), (1.2.1)

where the nonlinear differential operatorK is a time independent operator (not considered

derivative with respect to t). He considered a pair of linear differential operators, L andA.

To find the eigenvalues and the eigenfunctions, L operator associated to (1.2.2a) spectral

problem

Lψ = λψ, (1.2.2a)

meanwhile, the operator A is related to the time evolution of the eigenfunctions

ψt = Aψ. (1.2.2b)

Proposition 1 If the spectral parameter is a fixed point, i.e λt = 0, then the relations

(1.2.2) lead to

Lt + [L,A] = 0, [L,A] = LA− AL. (1.2.3)

Proof: First, differentiate (1.2.2a) with respect to t

Ltψ + Lψt = λψt, (1.2.4a)

substitute (1.2.2b) in (1.2.4a)

Ltψ + LAψ = Aλψ, (1.2.4b)

then,

(Lt + LA− AL)ψ = 0. (1.2.4c)

To sum up, equation (1.2.3) is called the Lax equation and (1.2.2) are called a Lax pair (or

Lax operators) for (1.2.1). Writing nonlinear evolution equations (NLEEs) as a compati-
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bility condition of the linear equations (1.2.2), plays an important role for the solvability

of the equation under the IST.

Example 1 Lax operators for the nonlinear KdV and NLS equations.

• the KdV equation (1.1.1) can be written as a compatibility condition of the form

(1.2.3), of a system of linear equations (1.2.2), where L and M ≡ A are given by

L =− ∂2

∂x2
+ u(x, t), (1.2.5a)

M =4∂3
x − 3u∂x − 3∂xu, (1.2.5b)

where u(x, t) is a real valued function.

• for the NLS equation (1.1.3a) the form of the two operators L andM ≡ A are given

L =i
∂

∂x
+ (q(x, t)− λσ3), (1.2.5c)

M =i
∂

∂x
+

2∑
k=0

Vkλ
k, (1.2.5d)

where q(x, t) is a complex valued function.

1.2.2 The direct and inverse scattering transform

Researchers have shown that the IST is not yet formulated to be uniformly applicable to

all NLEEs. However, there is a class of nonlinear PDEs that can be solved/integrated

by considering the scattering problem for a given linear differential operator. For PDEs

having a Lax representation, one can start with the corresponding scattering problem for

the operator L(λ). The Zakharov-Shabat (ZS) system used the following L(λ) operator

for the continuous NLS equation [105].

L(λ)χ ≡
(

i
d

dx
+ U(x, t, λ)

)
χ(x, t, λ) = 0, (1.2.6a)

where

U(x, t, λ) = q(x, t)− λσ3, σ3 =

 1 0

0 −1

 , q(x, t) =

 0 q+

q− 0

 . (1.2.6b)

The scattering problem is determined by the asymptotics of the eigenfunctions of the

operator L, called here, Jost solutions 1, and their ratio, known as the scattering matrix

1In quantum theory of scattering, they are also known as |in > and |out > states.
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T (λ, t), and its elements are called scattering data. The transformation to the scattering

data linearises the PDE. The whole IST, in fact, can be considered as a nonlinear analogue

of the standard Fourier transform. The function u(x, t) in Fig. 1.1 is a real valued function

u(x, 0)
Fourier Transform

û(λ, 0)
Tim

e
E

volution

û(λ, t)

Fourier Inverse
u(x, t)

Figure 1.1: The Fourier transform scheme.

equivalent to q(x, t) and û(λ, t) equivalent to T (λ, t). Consider the general formula of the

Cauchy problem for the NLS equation

qt =K(q), q(x, 0) = f(x), q := q(x, t), (1.2.7)

with boundary conditions q(x, 0) → ±∞. This method is demonstrated as three basic

steps. The following steps will explain briefly how it works. Furthermore, in Fig. 1.2 we

present these steps for the NLS; a similar scheme for the discrete NLS (DNLS) equation.

q(x, 0) R(x, 0)

T (λ, 0) T (λ, t)

R(x, t) q(x, t)

(I) (III)

(II)

Figure 1.2: The scattering problem scheme

1. Step I: The direct problem: The direct problem consists of finding the scattering

data (a±(λ), b±(λ); see (1.4.24) and a±(z), b±(z)) of operator L at a fixed value of

temporal parameter, say t from T (λ, t)|t=0), by using the initial condition q(x, 0) =

f(x).
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2. Step II: Time evolution of the scattering data: For the second step, we need to

determine the scattering data at an arbitrary time t ∈ R. From (1.2.2b), and from the

first step we have T (λ, t)|t=0, we will determine T (λ, t)|t∈R. We are now dealing

with a linear problem (1.2.2b) rather than a nonlinear one.

3. Step III: The inverse problem: This step follows from the Fourier transform

method; here, we need to recover q = q(x, t) from T (λ, t)|t∈R.

Remark 1 In this chapter and the next chapters, t-dependence is not always shown.

1.2.3 The AKNS scheme

Ablowitz, Kaup, Newell and Segur (AKNS) at Clarkson College (in Potsdam, New York

State, 1974) were developed some techniques for applying the IST to obtain the solution

of many equations such as the KdV, NLS and mKdV equations; this development is called

the AKNS scheme [6, 12, 34, 38, 54].

This section shows how the AKNS method scheme one to derive the family of inte-

grable NLEEs. Alternatively to the original Lax formulation (1.2.2), one can rewrite both

Lax operators as differential operators (1.2.5). Thus, the isospectrality condition (1.2.3) is

equivalent to the compatibility condition [L(λ),M(λ)] = 0, λt = 0, where L,M are two

linear operators. The KdV, mKdV, NLS, SG, and sinh-Gordon equations [54, 80, 118] are

all NLEEs because each of these equations can be written as the compatibility condition

of a Lax pair. We will show the compatibility condition for DNLS equation in chapter

3. Lax equation hold for particular types of eigenfunctions and it works better when the

operator L(λ) is the ZS system. There are two important conditions that the potential

should satisfy in (1.2.6a):

Condition 1. q(x) belongs to the space M of off-diagonal 2× 2 matrix valued functions,

whose matrix elements are complex Schwartz-type1 functions. This condition is

made for simplification and will help to outline the main ideas of the IST [49] .

Condition 2. The potential q(x) is such that the corresponding transition coefficients

a+(λ) and a−(λ) have a finite number of simple zeros in their regions of analyt-

icity located at λ±k :{
λ±k : a±k = 0, Imλ±k ≷ 0, k = 1, 2, . . . , N

}
. (1.2.8)

1The function f ∈ C∞ is called a Schwartz function if it goes to zero as |x| → ∞.
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The general formula of the second operator M of the ZS system is;

Mχ ≡
(

i
d

dt
+ V (x, t, λ)

)
χ(x, t, λ), (1.2.9a)

where M(λ) is a polynomial in λ,

V (x, t, λ) =
N∑
k=0

λN−kVk(x, t), (1.2.9b)

then, apply the two operators L,M in Lax representation

[L(λ),M(λ)] = 0, (1.2.10)

and equate the coefficients of the position powers of λ to zero; this gives:

[V0(x, t), σ3] =0, (1.2.11a)

i
dVk
dx

+ [q, Vk(x, t)]− [σ3, Vk+1(x, t)] =0, (1.2.11b)

for k = 0, 1, . . . , N − 1 and the λ-independent term gives:

−i
∂q

∂t
+ i

∂VN
∂x

+ [q(x, t), VN(x, t)] = 0, (1.2.12)

this is called the zero curvature equation.

Example 2 The compatibility condition with V (x, t, λ) = λ2V0 + λV2 + V3 can lead to

the NLS equation formula.

The special case of V (x, t, λ) is based on the constants that were obtained from (1.2.11)

and (1.2.12)

V (x, t, λ) = −iσ3qx − q+q−σ3 − 2λq(x, t) + 2λ2σ3, (1.2.13)

by matrix form

V (x, t, λ) =


−q+(x, t)q−(x, t) + 2λ2 −iq+

x (x, t)− 2λq+(x, t)

iq−x (x, t)− 2λq−(x, t) q+(x, t)q−(x, t)− 2λ2

 , (1.2.14)

then, from (1.2.12) one can easily derive the NLS equation

−iqt + σ3qxx + 2q+q−σ3q(x, t) = 0. (1.2.15)

In this case, the dispersion law f(λ) = 2λ2σ3, is calculated from (1.2.13) when q → ±∞.
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Example 3 This example confirms how the compatibility condition can also derive the

KdV equation. In this case, we need to define a cubic polynomial of λ : V (x, t, λ) =

λ3V0 + λ2V1 + λV2 + V3.

As in the first example, we need a special case of V (x, t, λ) based on the constants:

V0(x, t, λ) =− 4σ3, V1 = 4q(x, t), V2 = 2q+q−σ3 + 2iσ3qx,

V3 =− i(q+q−x − q−q+
x )σ3 − qxx − 2q+q−q(x, t). (1.2.16)

In this case, the dispersion law for the KdV equation is f(λ) = −4λ3σ3, which is calcu-

lated from (1.2.16) when q → ±∞. From the compatibility condition (1.2.10), one can

find the general form of the higher NLS equation

σ3qt + σ3qxxx + 2σ3(q+
x q
−q(x, t)+q+q−x q(x, t) + q+q−qx(x, t))

−2(q+q−x q(x, t)− q−q+
x q(x, t)) = 0, (1.2.17)

and for each q±(x, t) we have the higher-NLS system

q+
t + q+

xxx + 6(q+q−)q+
x (x, t) =0, (1.2.18a)

q−t + q−xxx + 6(q+q−)q−x (x, t) =0. (1.2.18b)

We can find also the KdV equation by reducing the system (1.2.18) and this done by

imposing a relation q+ = v(x, t) and q− = 1 [93]

vt + vxxx + 6vx v(x, t) = 0. (1.2.19)

Analogously, we can set the involution q+ = q− = p(x, t), then this leads to the modified

KdV (mKdV) equation, where p(x, t) is a real valued function,

pt + pxxx + 6px p
2(x, t) = 0. (1.2.20)

1.3 Riemann-Hilbert problem and the inverse scattering
method

The inverse scattering problem (ISP) is the problem of determining the potential that cor-

responds to a given set of scattering data in a differential equation. ISP uses different

strategies to find the solutions of differential equation; we are interested in the way that

ISP uses the RHP. The classical approach to the inverse problem based on the Gel’fand-

Levitan Marchenko (GLM) equation, is also called Volterra integral equation [41]. With-
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Inverse Scattering
Transform

Riemann-Hilbert
problem

Gel’fand-Levitan
Marchenko equation

Figure 1.3: The inverse scattering transform

out going into the details of the derivation of the GLM equation (1.3.1) (for more details

see [38]1, [54]2), it is based on the analytic properties of the Jost solutions of the operator

L. The GLM equation has the following form

K(x, z) = F (x, z) +

∫ ∞
x

dyK(x, y)F (y + z). (1.3.1)

From the scattering problem, there is a relation between the Jost solutions and the scatter-

ing data. Given scattering data, one determines the kernel F (x, z) of the GLM equation.

The last step of the solution of the ISP is the determination of the potential (u(x, t) in [38]

and q(x) in [54]), that correspond to the scattering data.

1.3.1 Sokhotski-Plemelj formula

For the basic tools for solving the RHP, we need to use the Sokhotski-Plemelj formula.

We will start with a brief introduction to the Cauchy integral theorem [94]. Let F (z) be

defined by

F (z) =
1

2πi

∫
C

f(t) dt

t− z
, (1.3.2)

where C is a curve in the complex t-plane, f(t) is a complex-valued function prescribed

on C, and z is a point not on C. The curve C may be an arc or a closed contour. For

proper curves C and functions f , F (z) will be an analytic function of z. If C is a closed

contour, the positive orientation will be counterclockwise and t0 ∈ C, then the limits of

F (z) as z → t0 from the left and from the right (or from the inside and outside of C) if

limits exist, will be denoted by F+(t0) and F−(t0)), respectively. The principal value of

1Here, they have solved the ISP for the Sturm-Liouville equation.
2Here, they have solved the ISP for the ZS system.
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ε

Cε

C

t0
C1

ξ

z

Figure 1.4: The contours in Cauchy theorem.

the integral (2.2.21a) denoted by Fp(t0) has the following form

Fp(t0) ≡ 1

2πi
(P )

∫
C

f(t) dt

t− t0
, (1.3.3)

=
1

2πi
lim
ε→0

∫
C−Cε

f(t) dt

t− t0
, (1.3.4)

where Cε is part of the curve C contained within a small circle of radius ε, centered on t0.

The next step is to find a relation between FP (t0), F+(t0), and F−(t0). To derive such a

relation, if f(t) is analytic at point t0, then there exists a circle ξ with center t0 and radius

r > 0 such that f(t) is analytic in the semicircle {t : |t− t0| < r}. Let z be a point in the

left side of the curve C and inside the circle ξ, with the Cauchy theorem stating that∫
Cε

f(t)

t− z
dt =

∫
C1

f(t)

t− z
dt, (1.3.5)

where C1 is the arc of a circle with center t0 and radius ε < r, then

F (z) =

∫
C−Cε

f(t)

t− z
dt+

1

2πi

∫
C1

f(t)

t− z
dt, (1.3.6)

therefore letting z → t0 from left(+) in (1.3.6), then F+(t0) has the following form

F+(t0) =

∫
C−Cε

f(t)

t− t0
dt+

1

2πi

∫
C1

f(t)

t− t0
dt, (1.3.7)



1.3 Riemann-Hilbert problem and the inverse scattering method 12

by letting ε→ 0, and equation (1.3.7) becomes:

F+(t0) = Fp(t0) +
1

2
f(t0). (1.3.8)

We can follow the same steps to obtain F−(t0) after changing the sides of z and C1,

F−(t0) = Fp(t0)− 1

2
f(t0). (1.3.9)

The relations (1.3.8) and (1.3.9) are known as Plemelj formulas.

1.3.2 Multiplicative Riemann-Hilbert problem

Our work deals with the RHP with boundary conditions. The beginning of its use had an

original formula which deals with anN×N linear system of partial differential equations

(called Fuchsian system)
dΨ(λ)

dλ
= A(λ)Ψ(λ), (1.3.10)

where the rational function of λ, A(λ) is an N ×N matrix whose singularities are simple

poles. The Fuchsian system (1.3.10) generates a representation of the fundamental group

of the Riemann sphere (punctured at the poles of A(λ)) in the group, via its fundamental

solution Ψ(λ) along closed curves. The first application of the Riemann Hilbert method

to integrable partial differential equations is found in the works of Manakov, Shabat, and

Zakharov [120] and since then it has been widely used in soliton theory [94]. In general,

the RHP can be stated as follows: let Γ be an oriented contour, which divides the complex

λ-plane into two regions the positive direction will be counterclockwise Γ+\Γ and Γ−\Γ.

The contour Γ might have points of self-intersection, and a priori might have more than

one connected component. Also, let G(λ) be a matrix function defined on the contour Γ,

i.e. a map from Γ into the set of N × N invertible matrices. The RHP determined by

the pair (Γ;G) consists of finding an N ×N matrix-valued function F̃ (λ) ∈ CN×N with

the following properties. In particular, for the NLS equation, the classical RHP can be

presented as a matrix form (for example 2× 2); we take Γ = R.

1. The function F̃ (λ) is analytic for λ ∈ C/R.

2. The following jump condition is satisfied:

F̃+(λ) = F̃−(λ)G̃(λ), λ ∈ R, (1.3.11)

where F̃+(λ) and F̃−(λ) are supposed to be analytic functions into the upper Γ+

and lower Γ− half-planes, respectively, see Fig. 1.5. A matrix function G̃(λ), which
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is defined on the real line −∞ < x <∞, has the following form

G̃(λ) =

 1, −ρ−(λ)

ρ+(λ), 1

 . (1.3.12)

3. As λ→∞ along any direction outside R, then F̃+(λ)→ 1.

λ

Γ+
ε

Γ−ε

λ

Γ+
∞

Γ−∞

Γ+

Γ−

F̃+(λ)

F̃−(λ)

Figure 1.5: The close contours Γ± are denoted for the upper and lower half planes. The
contours Γ± = R ∪ Γε,± ∪ Γ±,∞ of integrations in the case where λ is on the real axis.

1.3.3 The additive Riemann-Hilbert problem

The original multiplicative jump condition (1.3.11) can be written in the additive form

log F̃+(λ)− log F̃−(λ) = log G̃(λ). (1.3.13)

An additive jump relation of the form F+(λ) = F−(λ) + f(λ) can always be resolved by

means of the contour integral (2.2.21a).

F (z) =
1

2πi

∫
Γ

f(t) dt

t− z
. (1.3.14)
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λ

F−(λ)

F+(λ)

F (λ)

Γ−

Γ+

Γ

Figure 1.6: The contour Γ and the regions Γ±/Γ for a generic RHP.

If we assume log F̃±(λ) = F±(λ) and log G̃(λ) = G(λ), re-write (1.3.13) as F+(λ) −
F−(λ) = G(λ), then the RHP has the following solutions:

F+(λ) =H(λ) +
1

2πi

∮
Γ

F (µ) dµ

µ− λ
, λ ∈ Γ+/Γ, (1.3.15a)

F−(λ) =H(λ) +
1

2πi

∮
Γ

F (µ) dµ

µ− λ
, λ ∈ Γ−/Γ, (1.3.15b)

whereH(λ) is an arbitrary entire (analytic) function of λ. A normalisation needs to have a

unique solution for the RHP; this is done by fixing the solutions at λ = λ0 ∈ Γ+, F+(λ) =

F+
0 :

H(λ0) = F+
0 −

1

2πi

∮
Γ

F (µ) dµ

µ− λ0

. (1.3.16)

From (1.3.7), (1.3.8) and Loiuville’s theorem, the solution of normalised RHP is provided

by:

F+(λ) =F+
0 (λ) +

1

2πi

∮
Γ

F (µ) dµ

(
1

µ− λ
− 1

µ− λ0

)
, λ ∈ Γ+/Γ, (1.3.17a)

F−(λ) =F+
0 (λ) +

1

2πi

∮
Γ

F (µ) dµ

(
1

µ− λ
− 1

µ− λ0

)
, λ ∈ Γ−/Γ. (1.3.17b)

The additive RHP can be solved also for function F±(x, λ), which may depend on an-

other parameter x. In chapter 3, we use the RHP in an additive form. In this, the spec-

tral representation for the Jost solutions obtained in Sec.1.3 are solutions of an additive

RHP for functions that are two-component vector functions depending analytically on the

spectral parameter z. In the DNLS equation, Ω = |z| = 1 is the continuous spectrum,

Γ± ≡ Ω±, z0 =∞. If we compare (3.6.3a) with the RHP, then F+(λ), F−(λ), F (λ), F+
0
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are:

F+(λ) ≡ χ̃+
n (z) = ϕ̃+

n =
ϕ+
n

a+
(z), (1.3.18a)

F−(λ) ≡ ξ−n (z), (1.3.18b)

F (λ) ≡ z−2nρ+(z)ξ+
n (z), (1.3.18c)

F+
0 ≡

(
1

0

)
. (1.3.18d)

Then equation (3.6.10) can be considered as an additive RHP (1.3.13) and the spectral

representation (3.6.15c) provides the solution to ξ−n (z, t) of this RHP. Analogously, tak-

ing:

F+(λ), F−(λ), F (λ), F+
0 to be

F+(λ) ≡ ξ+
n (z), (1.3.19a)

F−(λ) ≡ χ̃−n (z) = ϕ̃−n =
ϕ−n
a−

(z), (1.3.19b)

F (λ) ≡ −z2nρ−(z)ξ−n (z), (1.3.19c)

F+
0 ≡

(
0

1

)
. (1.3.19d)

1.4 Generating operators and integrable hierarchies

In this section, we will solve the set of recursion relations (1.2.11b), which come from the

AKNS to find the coefficients of the polynomial and the NLEE equation. This method

starts with the following initial condition:

V0 = c0σ3, (1.4.1)

where c0 is a constant. We need to define a form, which can help to find the off-diagonal

part of a traceless matrix 1, called the projectors:

π0 ≡
1

4
[σ3, [σ3, . ]]. (1.4.2)

1The trace of an n× n square matrix A is defined to be the sum of the elements on the main diagonal.
We call a matrix A is traceless when the trace of the matrix is equal to zero.
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So, each matrices Vk(x, t) can be split into a diagonal and an off-diagonal matrix:

Vk(x, t) =ωk(x, t)σ3 + V f
k (x, t), (1.4.3a)

V f
k (x, t) =π0Vk(x, t), (1.4.3b)

ωk(x, t) =
1

2
tr (Vk(x, t)σ3). (1.4.3c)

When the recursion relation (1.2.11b) starts with k = 0 :

i
dc0

dx
σ3 + [q(x, t), σ3]− [σ3, V1(x, t)] = 0, (1.4.4)

the first term dc0
dx

= 0, c0 is a constant, then V f
1 will be

V f
1 (x, t) = −c0q(x, t). (1.4.5)

For general k,

i
d(ωk(x, t)σ3 + V f

k (x, t))

dx
+ [q, (ωk(x, t)σ3 + V f

k (x, t))]

− [σ3, (ωk+1(x, t)σ3 + V f
k+1(x, t))] = 0, (1.4.6a)

i
dωk(x, t)σ3

dx
+ i

dV f
k (x, t)

dx
+ [q, ωk(x, t)σ3] + [q, V f

k (x, t)]

− [σ3, ωk+1(x, t)σ3]− [σ3, V
f
k+1(x, t)] = 0, (1.4.6b)

the diagonal and off-diagonal parts are:

i
dωk(x, t)σ3

dx
+ [q, V f

k (x, t)] =0, (1.4.7a)

i
dV f

k (x, t)

dx
+ [q, ωk(x, t)σ3]− [σ3, V

f
k+1(x, t)] =0, (1.4.7b)

respectively. Multiply both sides of (1.4.7a) by σ3 and taking the trace, then equation

(1.4.7a) becomes:

i
dωk
dx

+
1

2
tr (σ3[q(x, t), V f

k (x, t)]) = 0, (1.4.8)

and by integrating both sides with respect to x

ωk(x, t) = ck +
i

2

∫ x

±∞
dλ tr (σ3[q(y, t), V f

k (y, t)]), (1.4.9)
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where ck is an integration real constant. In the next step, we need to apply (1
4
[σ3, . ]) to

both sides of equation (1.4.7b), we obtain:

i

4

[
σ3,

dV f
k

dx

]
+

1

4
[σ3, [q(x, t), σ3]ωk(x, t)] =

1

4

[
σ3,
[
σ3, V

f
k+1(x, t)

]]
, (1.4.10)

we can see the RHS of (1.4.10) gives the off-diagonal part. We only need to change the

commutator of the second term on the LHS and use equation (1.4.9) that yields:

V f
k+1(x, t) =

i

4

[
σ3,

dV f
k

dx

]
− 1

4
[σ3, [σ3, q(x, t)]ωk(x, t)]

=
i

4

[
σ3,

dV f
k

dx

]

− i

2
q(x, t)

∫ x

±∞
dλ tr (σ3[q(y, t), V f

k (y, t)])− ckq(x, t), (1.4.11)

where k = 1, . . . , N . We will denote a new operator Λ± which represents an integro-

differential (recursion) operator

Λ±X =
i

4

[
σ3,

dX

dx

]
− i

2
q(x, t)

∫ x

±∞
dλ tr (σ3[q(y, t), X(y, t)]). (1.4.12)

Therefore, the recurrent relation (1.2.11b) can be written in the following form:

V f
k+1(x, t) =Λ±V

f
k (x, t)− ckq(x, t), (1.4.13a)

V1(x, t) =− c0q(x, t), (1.4.13b)

and because the NLS equation comes from the off-diagonal part of V (x, t), we need to

use (1.4.3a), then the lambda-independence equation (1.2.12) becomes:

−i
∂q

∂t
+ i

∂VN
∂x

+ [q(x, t), σ3]ωN(x, t) = 0, (1.4.14)

and by applying −1
4
[σ3, . ] to both sides of equation (1.4.14) and using (1.4.9), one can

obtain the NLS equation with the special case:

i

4

[
σ3,

∂q

∂t

]
− Λ±V

f
N(x, t) + cNq(x, t) = 0, (1.4.15)

or using λ ≡ Λ±, then (1.4.15) becomes:

i

4

[
σ3,

∂q

∂t

]
+ f(Λ±)q(x, t) = 0, (1.4.16a)
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where

f(λ) =
N∑
p=0

cp λ
N−p. (1.4.16b)

Example 4 The NLS equation: We present an example of using the recursion operators

(1.4.12) and (1.4.13) to obtain the NLS equation, we start to find V f
N(x, t), N = 2:

V f
2 (x, t) = − i

2
c0 σ3 qx − c0 q(x, t). (1.4.17)

Substituting V f
2 (x, t) into (1.4.15) gives:

i

4

[
σ3,

∂q

∂t

]
− Λ±(− ic0

2
σ3qx − c1q(x, t)) + c2q(x, t) = 0. (1.4.18)

Finally, using the recursion operators (1.4.12) again, we have

−iqt −
c0

2
σ3qxx + ic1qx + c0q

+q−σ3q − 2c2σ3q(x, t) = 0, (1.4.19)

when c0 = 1 and c1 = c2 = 0, then equation (1.4.19) becomes the NLS equation:

−iqt + σ3qxx + 2q+q−σ3q(x, t) = 0, (1.4.20)

since q(x, t) =

 0 q+

q− 0

 , then equation (1.4.20) becomes:

−iq+
t + q+

xx + 2q+q−q+(x, t) =0, (1.4.21)

iq−t + q−xx + 2q+q−q−(x, t) =0, (1.4.22)

and when we apply q+(x, t) = ε(q−)∗(x, t) on (1.4.22), we will obtain local NLS equation

(1.1.3a).

1.4.1 Hierarchies and integrals of motion of soliton equations

As we showed in the previous subsection, for each NLEE, we have a different dispersion

law f(λ). Applying the IST to the ZS system (1.2.6a), one can solve each of the systems

of the form [54]:
i

4

[
σ3,

dq

dt

]
+ f(Λ)q(x, t) = 0, (1.4.23)
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where Λ is one of the so-called recursion operators Λ+,Λ− which is defined in (1.4.12)

On the other hand the scattering matrix T (λ, t) is

T (λ, t) =

 a+(λ) −b−(λ)

b+(λ) a−(λ)

 , (1.4.24)

we can calculate the scattering data for any moment t > 0 from

i
dT

dt
+ [f(λ)σ3, T (λ, t)] = 0, (1.4.25)

then, we have

i
da±

dt
= 0, i

db±

dt
∓ 2f(λ)b±(t, λ) = 0, (1.4.26)

a±(λ) are t-independent and also we can prove that they are analytic functions of λ for

λ ∈ C±. Then, a±(λ) can be expanded as a Taylor series:

± ln a±(λ) =
∞∑
k=1

Ckλ
−k, (1.4.27)

where Ck is an infinite number of integrals of motion. Then, ± ln a±(λ) can be expressed

as generating functionals of the integrals of motion for the hierarchy of NLEE.

1.5 Spectral theory of Lax operator

Here, we present briefly the basic concepts of the spectral theory of linear operators acting

on Hilbert space (for more details see [16, 68, 99]). For a linear operator acting on the

Hilbert space H (here, a linear transformation L(H), is a vector space in its own right

(from, and to a Hilbert space)), T ∈ L(H), we say λ ∈ C is a regular point of T if

(T − λ1) is bounded1 and invertible. We denote the set of all regular points ρ(T) the

resolvent set of T and σ(T) is the complement of ρ(T), called the spectrum of T .

1.5.1 Resolvent

Let T ∈ L(H) be a linear operator and λ ∈ ρ(T), thenRλ(T ) = (T −λ1)−1 is a resolvent

of T at λ. We need to look into the spectral decomposition from an analytical viewpoint.

For instance, for finite-dimensional space, let A be an arbitrary N ×N matrix and λ ∈ C
that is a larger eigenvalue λ > λ1 > λ2 > λ3 . . . of A. Then, the compact operator can

1If T is bounded then automatically (T − λ1) is bounded too.
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expand Rλ(T ) into a convergent power series as 1[68]:

Rλ(T ) = (A− λ1)−1 =
1

−λ(1− A
λ

)
=− 1

λ

∞∑
n=0

(
A

λ

)n
,

=− 1

λ
+ (−1

λ
)
A

λ
+ (−1

λ
)(
A

λ
)2 + . . . , (1.5.1a)

and then the residue of Rλ(A) is the coefficient of 1
λ

Res [Rλ(A)] = −1,
1

2πi

∮
Γ

dλ Rλ(A) = −1. (1.5.1b)

If we change the position of λ in (1.5.1a) 2

−λRλ(A) =1 +
A

λ
+ (

A

λ
)2 + . . . ,

−Res (λRλ(A)) =A,

then,

− 1

2πi

∮
Γ

dλ λRλ(A) = A, (1.5.1c)

and in general

− 1

2πi

∮
Γ

dλ (λ)nRλ(A) = An, for n = 0, 1, . . . . (1.5.2)

If we assume f(A) and f(λ) are power series 3, then equation (1.5.2) can be written as:

f(A) =− 1

2πi

∮
Γ

dλ f(λ)Rλ(A)

=
1

2πi

∮
Γ

dλ
−f(λ)

A− λ1

=
1

2πi

∮
Γ

dλ
f(λ)

λ1− A
. (1.5.3)

Formula (1.5.3) is looks as the generalisation of the Cauchy integral formula to operator

value functions. Next, we need to know the analytic behaviour of Rλ(A). Using the

theorem of the inverse of a matrix [84], we can write the resolvent of A as:

[Rλ(A)]jk =
[
(A− λ1)−1

]
jk

=
Cjk(λ)

det(A− λ1)
. (1.5.4)

Then,

[Rλ(A)]jk =
Cjk(λ)

p(λ)
, (1.5.5)

1The idea comes from the geometric series 1
1−x =

∑∞
n=0 x

n = 1 + x2 + x3 + . . . .
2Keeping in mind we are looking for the coefficient of 1

λ .
3f(A) = 1 +A+A2 + . . . and f(λ) = 1 + λ+ (λ)2 + . . . .
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where p(λ) is the characteristic polynomial ofA andCjk(λ) is the cofactor of the elements

of the matrix (A − λ1) and also a polynomial. Then, the rational function [Rλ(A)]jk of

λ has only poles as singularities and these poles are the eigenvalues of A. We defined a

contour Γ, which consists of small circles γj which circulate the isolated eigenvalues λj ,

then with f(A) = 1, (see Fig. 1.71)

1 =− 1

2πi

∮
Γ

dλ Rλ(A) = − 1

2πi

r∑
j=1

∮
Γ

dλ Rλ(A), (1.5.6)

then,

1 =
r∑
j=1

Pj, Pj = − 1

2πi

r∑
j=1

∮
γj

dλ Rλ(A), (1.5.7)

where Pj are orthogonal projection operators.{Pj} is a set of orthogonal projection oper-

ators. Then, equation (1.5.7) is a resolution of the identity (partition as spectral decompo-

sition theorem) 2.

(a) The contour Γ containing all eigenval-
ues.

(b) the small contours γj circulate the isolated
eigenvalues λj .

Figure 1.7: The arrows direction represent the integration in the positive sense.

1.6 Integrable discretisation: The Ablowitz-Ladik equa-
tion

Completely integrable infinite-dimensional systems are a subject of constant interest and

many investigations in different areas of Mathematics and Physics over the last five decades

1Integration in the opposite direction acquires a minus sign.
2Let A be a linear operator on a finite dimension complex inner product space V. Then for dis-

tinct eigenvalues there exist nonzero (hermitian) projectors P1, P2, . . . , Pr, which satisfies PjPj =
0,
∑r
j=1 Pj = 1 and

∑r
j=1 λjPj = A.
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[40, 54, 93] and they appear in a wide range of applications - from differential geometry

to classical and quantum field theory, fluid mechanics and optics.

Nonlinear partial differential equations are notoriously difficult to solve and so far

there is no general method to find solutions. However, there are certain types of nonlinear

PDEs whose initial value problems can be solved using the IST method [38, 40, 93, 120].

A special a class of completely integrable infinite-dimensional systems is the PDEs which

possess class of special solutions (soliton). The ISM is used to integrate the solutions to

this kind of PDEs [40, 93]. The NLS equation

iqt + qxx + 2|q2|q = 0, q = q(x, t), (1.6.1)

appeared at the very early stage of the development of the ISM [40, 93, 106] as one of

the classical examples of integrable equations by the ISM and has attracted significant at-

tention from the scientific community [30, 46, 120, 121]. It appears as a universal model

for weakly nonlinear dispersive waves, nonlinear optics and plasma physics [12]. The

NLS model has been generalised in several directions. The first one is to consider mul-

ticomponent generalisations. The first multi-component/vector generalisation of (1.6.1)

was proposed by S. V. Manakov in 1974 (see [93])

ivt + vxx + 2(v†,v)v = 0, v = v(x, t). (1.6.2)

Here, v is an n-component complex-valued vector and (·, ·) is the standard scalar product.

It is again integrable by the ISM [12, 40, 54, 93]. The multi-component NLS equation

(called the Manakov model) appears in studies of electromagnetic waves in optical me-

dia. Another direction, motivated by the applications of the differential geometric and Lie

algebraic methods to soliton type equations [18, 43, 52, 55, 57, 58, 63, 64, 85, 111, 119]

(for a detailed review see e.g., [54]), has led to the discovery of a close relationship be-

tween the multicomponent (matrix) NLS equations and the homogeneous and symmetric

spaces [43]. The first integrable discretisation of the NLS equation (1.6.1) was proposed

by Ablowitz and A. Ladik (AL) and has the form [2, 3, 4]:

iQn,t =
1

h2
(Qn+1 − 2Qn +Qn−1)± |Qn|2(Qn+1 +Qn−1). (1.6.3)

It is a differential-difference or semi-discrete equation (discrete in space and continuous

in time), and is in fact aO(h2) finite difference approximation of (1.6.1). The correspond-

ing scattering problem is usually called the AL scattering problem [5, 12, 13, 27, 47, 50,

51, 61]. Equation (1.6.3) also has several physical applications: it describes the dynamics
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of anharmonic lattices [107], self-trapping on a dimer [75], and various types of Heisen-

berg spin chains [72, 95] amongst other. Various discretisations of the NLS models were

studied [11, 29, 30, 109, 113, 114, 115, 116] including perturbation effects [35, 36]. The

nonlocal reductions of the NLS equation (1.6.1) and the AL equation (1.6.3) are of partic-

ular interest in regards to applications in PT-symmetric optics, especially in developing a

theory of electromagnetic waves in artificial heterogenic media[1, 19]. For an up-to-date

review, see for example [44, 122]. The initial interest in such systems was motivated by

quantum mechanics [23, 24, 88]. In [23, 24] it was shown that quantum systems with a

non-hermitian Hamiltonian admit states with real eigenvalues, i.e. the hermiticity of the

Hamiltonian is not a necessary condition to have a real spectrum. Using such Hamilto-

nians, one can build up new quantum mechanics [22, 23, 24, 88, 89, 90]. The point is

that in the case of a non-hermitian Hamiltonian with a real spectrum, the modulus of the

wave function for the eigenstates is time-independent even in the case of complex poten-

tials. There are a number of ideas that have a deep meaning which classify themselves

with symmetries. Symmetry can be described as a transformation that leaves the sys-

tem fundamentally unchanged after the transformation has been performed. Furthermore,

symmetries have been an essential ingredient in the understanding of the physical laws of

Nature. In this section, I will briefly concentrate on the Discrete Symmetries CP, T and

CPT. These three essential symmetries are defined as [28, 86, 108]

• Charge conjugation(C): reversing the electric charge and all the internal quantum

numbers. We can also say that the symmetry between positive and negative charges

causes the transformation of a particle into the corresponding anti-particle.

• Parity (P): space inversion; reversal of the space coordinates, but not the time.

• Time reversal (T): replacing t by −t. This reverses time-derivatives such as mo-

mentum.

Space inversion (parity) symmetry was discovered to be broken. Then, there was the

hope that the combination of P with charge conjugation (CP) was a good symmetry. Ex-

amination of the case of the neutrino is instructive at this point. The parity operation

on a neutrino would leave its spin in the same direction while reversing space coordi-

nates. Neither of these things is observed in nature; neutrinos are always left-handed,

anti-neutrinos always right-handed. But if you add the charge conjugation operation, the

result of the combined operation gives you back the original particle [26, 66, 96]. In quan-

tum mechanics, time-reversal transformation, T(ψ(t)) → ψ∗(−t) keeps the Schrodinger
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Figure 1.8: Mirror symmetry (inversion).

equation, i~∂ψ(t)/∂t = Hψ(t), invariant under a T transformation if the Hamiltonian H

is real [26].

The CPT theorem appeared for the first time in the work of Julian Schwinger [104],

and indicated that there is a connection between spin and statistics. For a short time, it was

thought that the CP-symmetry would always leave a system invariant, when the notable

example of the neutral Kaons has shown a slightly violation of the CP-symmetry, which

implied violation of T-symmetry as well. Then, the combination of all three symmetries

(CPT) is invariant if each of the independents is invariant [25, 33]. CPT-symmetry is

recognised to be a fundamental property of physical laws, which has the implication that

a "mirror-image" of our universe with all objects having their positions is reflected by an

arbitrary plane (corresponding to a parity inversion), all momenta reversed (corresponding

to a time inversion) and with all matter replaced by antimatter (corresponding to a charge

inversion) would evolve under exactly our physical laws [15, 117].

1.7 Parity-time symmetry and integrable equations

Integrable systems with parity-time (PT)-symmetry were studied extensively over the last

two decades [21, 23, 102]. Recently, in [9, 49] the nonlocal integrable equation of NLS

type with PT-symmetry was proposed, due to the invariance of the so-called self-induced

potential V (x, t) = ψ(x, t)ψ∗(−x,−t) under the combined action of parity and time re-

versal symmetry. The one–soliton solution for this model is derived and it was shown

that it develops singularities in finite time [7]. Soon after this, nonlocal PT-symmetric

generalisations were found for the AL model in [8]. The nonlocal reductions of the NLS

(1.6.1) and the AL equations (1.6.3) are of particular interest in regards to applications

in PT-symmetric optics, especially in developing the theory of electromagnetic waves in

artificial heterogenic media[1, 19]. For an up-to-date review, see for example [44, 122].

The initial interest in such systems was motivated by quantum mechanics [23, 24, 88].

In [23, 24], it was shown that quantum systems with a non-hermitian Hamiltonian admit
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states with real eigenvalues, i.e. the hermiticity of the Hamiltonian is not a necessary con-

dition to have a real spectrum. Using such Hamiltonians, one can build up new quantum

mechanics [22, 23, 24, 88, 89, 90]. The starting point is the fact that in the case of a

non-hermitian Hamiltonian with real spectrum, the modulus of the wave function for the

eigenstates is time-independent even in the case of complex potentials.

The first pseudo-hermitian Hamiltonian with real spectrum historically was the PT-

symmetric Hamiltonian in [23, 24, 59, 100]. Pseudo-hermiticity here, means that the

Hamiltonian H commutes with the operators of spatial reflection P and time reversal T:

PTH = HPT. The action of these operators is defined as P : x → −x and T : t →
−t. If we assume that the wave function is a scalar, then this leads to the action of the

operator of spatial reflection on the space of states: Pψ(x, t) = ψ(−x, t) and Tψ(x, t) =

ψ∗(x,−t). As a result, the Hamiltonian and the wave function are PT-symmetric, if

H(x, t) = H∗(−x,−t) and ψ(x, t) = ψ∗(−x,−t). Here, we also used the fact that the

parity operator P is linear and unitary while the time reversal operator T is antilinear and

antiunitary 1. The action of the P and T operators on the Hamiltonian induces

PQn(t) = Q−n(t), TQn(t) = Q∗n(−t), (1.7.1)

an action on the associated scattering problem (1.7.2) and to its potential (1.7.3)

Ψn+1(z, t) =Ln(z, t)Ψn(z, t),

Ψn+1(z, t) =(Z + Q̃n(t))Ψn(z, t),
(1.7.2)

where

Z =

 z 0

0 z−1

 , Q̃n =

 0 Q+
n

Q−n 0

 . (1.7.3)

This leads to the reduction (symmetry) condition [65]

Q−n (t) = ±(Q+)∗−n(t). (1.7.4)

The generic differential-difference system (1.7.2) satisfies the symmetry of the form [65]:

C[Ln(z)] := BL−n(z∗)†B−1 = Ln(z), (1.7.5)

where C is an automorphism of the Lie group SL(2,C). The particular choice B =

1 Antilinear operator: Let A be a linear operator in certain Hilbert space H. Let us suppose that
|Ψ〉, |ϕ〉 ∈ H and α, β ∈ C. An antilinear operator A satisfies the condition: A(α|Ψ〉+β|ϕ〉) = άA(|Ψ〉)+
β∗A(|ϕ〉). Antiunitary operator: A is said to be antiunitary if it is antilinear and AA† = A†A = 1 ↔
A−1 = A†.
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diag(1,−1) of the realisation of C will give Q−n (t) = ε(Q+
−n(t))∗.

As a result, we obtain the nonlocal AL equation with PT-symmetry, proposed in [8]:

iQ+
n,τ = (Q+

n+1 − 2Q+
n +Q+

n−1)− εQ+
n (Q+)∗−n(Q+

n+1 +Q+
n−1), ε = ±1. (1.7.6)

1.8 Aims of thesis

This thesis aims:

1. to study the spectral properties of the semi-discrete Lax operators with nonlocal

symmetries (resolvent, the completeness of Jost solutions);

2. to develop the IST for differential-difference Lax-operators of the AL type. This

includes: the associated Jost solutions, scattering matrix, and the fundamental ana-

lytic solutions (FASs);

3. to obtain one-and two-soliton solutions to the RHP;

4. to study not just single box initial data to calculate the soliton solution to the non-

local discrete and continuous NLS equations. The blow up and bounded solutions

are discussed;

5. to study not just single box initial data to find the type of the solution to the nonlocal

discrete Manakov NLS equations.

1.9 Outline of the thesis

We started our work in chapter 1 by discussing the history of the discovery of solitons

and the NLEEs. Undoubtedly, the Riemann problem is the key tool to solve the ISP; for

that, a short introduction was presented. Furthermore, we introduced a short introduction

about the spectral theory, as basic information for what we will introduce in chapter 4.

In addition, integrable discritisation of the AL equation, the PT and CPT-symmetry are

introduced.

The core of this thesis, is to study the spectral properties of the semi-discrete with

nonlocal symmetries; therefore we start in chapter 2 with the ZS and all the properties

that can be related to build the presentation of the DNLS equation. This chapter includes:

an introduction to the direct scattering problem of the ZS system. Next, the resolvent of

the spectral problem is introduced which includes the Wronskian relations, completeness
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of the "Squared" solutions and expansions over the "Squared" solutions. Finally, the

involution of the local and nonlocal ZS system are presented.

The AL system with PT-symmetry is introduced in chapter 3. We start with the IST

for the AL problem. This includes: the scattering problem, the Jost solutions and the

FASs. Taking into consideration the time evolution equation using the zero curvature

equation is derived. Such analysis is based on Lax operators for the DNLS equation. Evi-

dently, the calculation of the time evolution of the scattering data is introduced. We study

and outline the local and nonlocal DNLS equations. Additionally, the Riemann problem

is used to analyse the one-and two- soliton solutions to the nonlocal DNLS equation that

takes into account the nonlocal involution. We find the relation between the matrix RHP

and the ISP for the AL system. This is the main idea of the dressing method, which is used

to find the solution of the nonlocal DNLS equation. The results of this chapter appear in

[65].

The completeness of the Jost solutions is intended for the expansion over the Jost

solution in chapter 4. We start with the spectral theory of the discrete Lax operator; this

includes the resolvent of Ln and the new formula of the FASs. In this chapter we prove

the formula of the completeness of the Jost solutions for the nonlocal DNLS equation.

The results of this chapter appear in [65].

In chapter 5, the square barrier potential for the nonlocal NLS equation for two mod-

els continuous and discrete types is studied. We illustrate and analysis the general math-

ematical steps for two models to outline the conditions of having blow up or not blow

up solutions. Next, we have presented numerical simulations for each model which are

supported by providing different examples.

The discrete Manakov nonlocal NLS equation is presented in chapter 6. To continue

what we have studied in chapter 5 the condition of having blow up or not blow up solutions

for the nonlocal DNLS equation, in this chapter we have used one more condition to

confirm whether the solution of the Manakov equation is blow up or not. The analytic

approach and numerical examples are presented.

Finally, chapter 7 summarises the main results in the thesis and concludes with sug-

gestions for further research.



Chapter 2

The Zakharov-Shabat system

2.1 Introduction

In this chapter, we will present some properties for the ZS system (see [54]). Here, we

start to outline the direct scattering problem for the system as well as the properties of the

FASs χ±(x, λ) which are used to construct the kernel of the resolvent R±(x, y, λ) of the

operator L(λ). We also show the completeness of the square solutions and the expansions

of the square solutions.

2.2 Direct scattering transform

2.2.1 Jost solutions and scattering matrix

Here, we present a scattering problem for the ZS system (1.2.6a). From the theory of

linear differential equations, a solution χ(x, λ) of (1.2.6a) is called fundamental when

detχ(x, λ) 6= 0 and does not depend on x. Another advantage of the theory of linear

differential equations, is that any two fundamental solutions ψ(x, λ) and φ(x, λ) must be

linearly dependent.

φ(x, λ) = ψ(x, λ)T (λ), λ ∈ R, (2.2.1a)

where T (λ, t) is the scattering matrix

T (λ) =

 a+(λ) −b−(λ)

b+(λ) a−(λ)

 , (2.2.1b)

and

detψ(x, λ) = detφ(x, λ) = 1 and detT (λ) = 1. (2.2.1c)

Both solutions ψ(x, t, λ) and φ(x, t, λ) are called Jost solutions (functions), and, in partic-

ular, they are introduced by their asymptotics for x→∞ or x→ −∞ to be plane waves:
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lim
x→∞

exp(iλσ3x)ψ(x, λ) =1, (2.2.2a)

lim
x→−∞

exp(iλσ3x)φ(x, λ) =1, (2.2.2b)

where 1 is a 2× 2 identity matrix.

2.2.2 Analytic properties of the Jost solution

In this section, we will define ξ(x, λ) and ϕ(x, λ) as an eigenfunctions which are success-

fully satisfied as associated systems, whose solutions are related to ψ(x, λ) and φ(x, λ)

ξ(x, λ) =ψ(x, λ)eiλσ3x, (2.2.3a)

ϕ(x, λ) =φ(x, λ)eiλσ3x. (2.2.3b)

Furthermore, ξ(x, λ) and ϕ(x, λ) are solutions of the following linear differential equa-

tions:

i
dξ

dx
+ q(x)ξ(x, λ)− λ [σ3, ξ(x, λ)] =0, (2.2.4a)

i
dϕ

dx
+ q(x)ϕ(x, λ)− λ [σ3, ϕ(x, λ)] =0, (2.2.4b)

with the boundary conditions:

lim
x→∞

ξ(x, λ) = 1, lim
x→−∞

ϕ(x, λ) = 1. (2.2.5)

The system (2.2.4) with (2.2.5) can be represented as a system of integral equations

ξ(x, λ) =1+ i

∫ x

∞
dy e−iλσ3(x−y)q(y)ξ(y, λ)eiλσ3(x−y), (2.2.6a)

ϕ(x, λ) =1+ i

∫ x

−∞
dy e−iλσ3(x−y)q(y)ϕ(y, λ)eiλσ3(x−y). (2.2.6b)

In addition, equation (2.2.6a) can be written in detail as

ξ(x, λ) = 1+ i

∫ x

∞
dy


q+(y)ξ21(y, λ) q+(y)ξ22(y, λ)e−2iλ(x−y)

q−(y)ξ11(y, λ)e2iλ(x−y) q−(y)ξ12(y, λ)

 . (2.2.7)
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Similarly, the explicit representation for ϕ(x, λ) can be written as ξ(x, λ) in equation

(2.2.7) but the lower limit will be −∞.

2.2.3 The fundamental analytic solutions and its inverse

The properties of the fundamental solutions (φ and ψ) are supposed to construct the FASs

of the ZS system which are obtained by combining the pairs of columns of the Jost func-

tions with the same analyticity properties:

χ+(x, λ) =(ϕ+, ξ+)e−iλσ3x = (φ+, ψ+), (2.2.8a)

χ−(x, λ) =(ξ−, ϕ−)e−iλσ3x = (ψ−, φ−), (2.2.8b)

since ξ+, ξ− are fundamental solutions to (1.2.6a), they are therefore linearly dependent

and can be represented as:

χ+(x, λ) =ψ(x, λ)

 a+ 0

b+ 1

 = φ(x, λ)

 1 b−

0 a+

 , (2.2.9a)

χ−(x, λ) =ψ(x, λ)

 1 −b−

0 a−

 = φ(x, λ)

 a− 0

−b+ 1

 . (2.2.9b)

Now, we can find a relation between the scattering data and the determinant of the fun-

damental analytic solution. Since det ψ = det φ = 1, we can find easily from equation

(2.2.9b) that

det(χ+)(x, λ) = det(ψ)det

 a+ 0

b+ 1

 = a+(λ), det(χ−)(x, λ) = a−(λ). (2.2.10)

In order to show that the inverse of the FASs, (χ+ and χ−), are also FASs, we will use the

cooperation of the inverse of the fundamental solution ψ(x, λ). First we need to calculate

the inverse of matrix ψ as ψ−1 = ψ̂ which satisfies the ZS system (1.2.6a)

i
dψ̂

dx
− ψ̂(x, λ)(q(x)− λσ3) = 0, (2.2.11)

since

ψ−1(x, λ) = ψ̂(x, λ) =

 ψ+
2 −ψ+

1

−ψ−2 ψ−1

 (x, λ). (2.2.12)
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Then, substituting equation (2.2.12) in equation (2.2.1a) yields

T (λ, t) =

 a+(λ) −b−(λ)

b+(λ) a−(λ)

 =

 ψ+
2 −ψ+

1

−ψ−2 ψ−1

φ+
1 φ−1

φ+
2 φ−2

 , (2.2.13a)

=

 ψ̃+(x, λ)

−ψ̃−(x, λ)

 (φ+, φ−)(x, λ), (2.2.13b)

where vector H̃ is defined as H̃ = (H2,−H1). One of the scattering data a+(λ) can be

found from equation (2.2.13b)

a+(λ) = ψ̃+(x, λ)φ+(x, λ), (2.2.14)

or a+(λ) can be obtain from equation (2.2.13a),

a+(λ) = (ψ+
2 φ

+
1 − ψ+

1 φ
+
2 ) = −W (ψ+, φ+). (2.2.15)

Therefore, the inverse of χ+ and χ− can be obtained by equating both sides of equation

(2.2.9a) and (2.2.9b), respectively

χ̂+ =
1

a+

 ψ+
2 −ψ+

1

−φ+
2 φ+

1

 =
1

a+

 ψ̃+(x, λ)

−φ̃+(x, λ)

 , (2.2.16)

where ψ̃+ = (ψ2,−ψ1) and

χ̂− =
1

a−

 φ−2 −φ−1
−ψ−2 ψ−1

 =
1

a−

 φ̃−(x, λ)

−ψ̃−(x, λ)

 . (2.2.17)

2.2.4 Asymptotic behaviour of FASs for λ→∞

Contour integration methods played an important role in this section. This section will

point out that the analytic property of χ±(x, λ) is not enough. So, defining new functions

η±(x, λ)

η±(x, λ) = χ±(x, λ)eiλσ3x, (2.2.18)

will help us to find additional properties to check what will happen when λ→∞. When

we differentiate (2.2.18) with respect to x, we get:

i
dη+

dx
= i

dχ+

dx
eiλσ3x − χ+eiλσ3x(λσ3), (2.2.19)
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and as χ± satisfies the ZS system, η±(x, λ) satisfies

i
dη±

dx
+ q(x)η± − λ[σ3, η

±] = 0. (2.2.20)

From the FASs χ+ and χ− (see (2.2.9b)), the following equations (2.2.21) are hold only

for all λ ∈ C

χ+(x, λ) −→
x→∞

e−iλσ3x

 a+ 0

b+ 1

 ,

χ+(x, λ) −→
x→−∞

e−iλσ3x

 1 b−

0 a+

 ,

Imλ & 0, (2.2.21a)

χ−(x, λ) −→
x→∞

e−iλσ3x

 1 −b−

0 a−

 ,

χ−(x, λ) −→
x→−∞

e−iλσ3x

 a− 0

−b+ 1

 ,

Imλ . 0. (2.2.21b)

Now, we will find the asymptotic behaviour for the scattering data from λ =∞. For that,

the asymptotic expansions of η±(x, λ) over the inverse powers of λ have the form:

η±(x, λ) = 1+
∞∑
k=1

η±k (x)λ−k, λ ∈ C±. (2.2.22)

If we insert (2.2.22) into (2.2.20), we get the first relation from the term λ0 is

q(x)− [σ3, η
±
1 ] = 0, (2.2.23)

which can be considered as the initial condition. The second relation from the terms λ−k

is

i
d

dx
η±k (x) + q(x)η±k (x)− [σ3, η

±
(k+1)(x)] = 0. (2.2.24)

Equation (2.2.24) is close to the one for Vk(x, t) in the zero curvature equation (1.2.12).

So, they are solved in an analogous way by splitting η±k (x),

η±k (x) = (η±k (x))d + (η±k (x))f . (2.2.25)

So, at k = 1,

η±1 (x) = (η±1 (x))d + (η±1 (x))f , (2.2.26)
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substituting the above equation into (2.2.23), then we get:

(η±(x))f =
1

2
σ3q(x) =

1

4
[σ3, q(x)], (2.2.27)

and the diagonal part of (η±)d(x) is calculated using (2.2.24) with k = 1, using the

behaviour of η±(x, λ) for x→ ±∞ and since η± = χ±eiλσ3x

(η+
1 (x))d = − i

2

∫ x

−∞
dy q−(y)q+(y) σ3, (2.2.28)

therefore,

(η+
1 )(x) =

1

2

−i
∫ x
−∞ dyq−(y)q+(y) q+(x)

−q−(x) i
∫ x
∞ dyq−(y)q+(y)

 , (2.2.29a)

(η−1 )(x) =
1

2

−i
∫ x
∞ dyq−(y)q+(y) q+(x)

−q−(x) i
∫ x
−∞ dyq−(y)q+(y)

 . (2.2.29b)

Continuing this procedure, we can subsequently find η±2 (x), η±3 (x), . . . . When we take

k = 1 in (2.2.22) then,

η+(x, λ) =1+ η+
1 (x)λ−1, λ ∈ C, (2.2.30)

and from (2.2.21) η+(x) we will obtain:
a+(λ) 0

b+(λ)e2iλx 1

 =


1− i

2λ

∫ x
−∞ dyq−(y)q+(y) 1

2λ
q+(x)

− 1
2λ
q−(x) 1 + i

2λ

∫ x
∞ dyq−(y)q+(y)

 , (2.2.31)

and

a+(λ) = lim
x→∞

(η+(x, λ))11 = 1− i

2λ

∫ x

−∞
dyq−(y)q+(y) +O(λ−2), (2.2.32a)

b+(λ) = lim
x→∞

(η+(x, λ))21 =
−1

2λ
q−(x)e−2iλx = O(λ−1). (2.2.32b)

By analogy, we can find a−(λ), b−(λ) from equation (2.2.29b)

a−(λ) = lim
x→∞

(η−(x, λ))22 = 1 +
i

2λ

∫ x

−∞
dyq−(y)q+(y) +O(λ−2), (2.2.33a)

b−(λ) =− lim
x→∞

(η−(x, λ))12 =
−1

2λ
q−(x)e−2iλx = O(λ−1). (2.2.33b)
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2.3 The spectrum of L(λ)

In this section, the FASs are used to construct new functions called the resolvent of L.

Our aim is to find the discrete eigenvalues, i.e all λ that do not belong to the spectrum

of L. The spectrum of L is the complement set of the set of the points that render the

resolvent of L bounded. The resolvent functions are introduced as:

R+(x, y, λ) =
1

i
χ+(x, λ)

−θ(y − x) 0

0 θ(x− y)

 χ̂+(y, λ), (2.3.1a)

R−(x, y, λ) =
1

i
χ−(x, λ)

 θ(x− y) 0

0 −θ(y − x)

 χ̂−(y, λ), (2.3.1b)

where θ(x) is the step function and dθ
dx

= δ(x)

θ(x) =


1, for x > 0,

1/2, for x = 0,

0, for x < 0.

(2.3.2)

Then,

• the differentiation of equation (2.3.1) with respect to x makes R+ satisfy

i
dR+

dx
+ (q(x)− λσ3)R+(x, y, λ) = δ(x− y)1. (2.3.3)

• R± are analytic functions of λ for Imλ ≶ 0, respectively, at all points λ 6= λ±k and

at λ±k , the function R±(x, y, λ) has poles.

The kernel of the resolvent of the operator of L, R(x, y, λ), must satisfy the above condi-

tions where:

Rλf ≡
∫ ∞
−∞

dyR(x, y, λ)f(y), (2.3.4)

R(x, y, λ) =

R+(x, y, λ), Imλ > 0,

R−(x, y, λ), Imλ < 0.
(2.3.5)

In order to ensure that the integral operator Rλ is well defined. Then, R±(x, y, λ) should

fall fast enough for x, y → ±∞. So, when x, y →∞, then

R+(x, y, λ)⇒ lim
x,y→∞

1

i

−θ(y − x ) e−iλ (x−y) 0

− b+

a+ e
iλ(x+y) θ(x − y) eiλ (x−y)

 . (2.3.6)
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For Imλ 6= 0, Imλ > 0 all matrix elements of R+ fall off exponentially when x and y tend

independently to ∞. In other words, λ±k are simple discrete eigenvalue of the operator

L. In addition, the behaviour of the solutions χ± is described in the neighborhood of the

points λ±k from (2.2.9a) detχ± = a±(λ). According to the condition that we mentioned

in Condition 2 (in chapter 1), both a±(λ±k ) have a simple pole, so a±(λ±k ) = 0 and by

equating both side of (2.2.9a)

φ±k (x) = ±b±k ψ
±
k (x), (2.3.7a)

where

φ±k (x) = φ±(x, λ±k ) and ψ±k (x) = ψ±(x, λ±k ). (2.3.7b)

2.3.1 The Wronskian relations

The Wronskian relation plays an essential role in proving that the IST is a generalised

Fourier transform. The Wronskian relations are the map from the potentials M and the

scattering data of L, (L-operator). This can help formulate the idea that the IST is a

generalised Fourier transform.

The first Wronskian relation starts with the identity representation

(χ̂σ3χ(x, λ)− σ3)|∞−∞ = −i

∫ ∞
−∞

dx
d

dx
(iχ̂σ3χ)(x, λ), (2.3.8)

the ZS system associated with (2.2.11), then χ̂ satisfies:

i
dχ̂

dx
− χ̂(x, λ)(q(x)− λσ3) = 0, (2.3.9)

and (2.3.8) becomes:

(χ̂σ3χ(x, λ)− σ3)|∞−∞ = −i

∫ ∞
−∞

dxχ̂[U(x, λ), σ3]χ(x, λ), (2.3.10a)

or

(χ̂σ3χ(x, λ)− σ3)|∞−∞ = −i

∫ ∞
−∞

dxχ̂[q(x), σ3]χ(x, λ). (2.3.10b)

In addition, the LHS of equation (2.3.10b) can be represented by the coefficients of the
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Jost functions by using the asymptotic behaviours of χ±(x, λ) (2.2.21)

(χ̂+σ3χ
+(x, λ)− σ3)|∞−∞ =− 2

 0 b−(λ)

b+(λ) 0

 , (2.3.11a)

(χ̂−σ3χ
−(x, λ)− σ3)|∞−∞ =− 2

 0 b−(λ)

b+(λ) 0

 . (2.3.11b)

Meanwhile, equation (2.3.11) will help show that the reflection coefficients can be ex-

pressed by the potential functions. The Wronskian relations (2.3.10b) (with χ ≡ χ+) can

define ρ± and τ± as integrals of the potential q(x) multiplied by some bilinear combina-

tion of the eigenfunctions of L. In order to express this reflection

ρ±(λ) =
b±(λ)

a±(λ)
, τ±(λ) =

b∓(λ)

a±(λ)
, λ ∈ R. (2.3.12)

The following relation is to represent the Wronskian relation by the reflection coefficient

function ρ+(λ). We need to replace χ ≡ χ+(x, λ) and multiply both sides of equation

(2.3.10b) by σ+. Dividing by a+(λ), then the trace yields

(χ̂+σ3χ
+(x, λ)− σ3)|∞−∞ =− i

∫ ∞
−∞

dx χ̂+[q(x), σ3]χ+(x, λ), (2.3.13a)

2b+(λ)

a+(λ)
=

i

a+(λ)

∫ ∞
−∞

dx tr([q(x), σ3]

χ+(x, λ)σ+χ̂+(x, λ)), (2.3.13b)

where σ+ =

 0 1

0 0

 . To simplify (2.3.13b), we need to define a new function E+
+(x, y)

E+
+(x, λ) = χ+(x, λ)σ+χ̂+(x, λ), (2.3.14)

where tr([q(x), σ3]E+
+) = tr(q(x)[σ3,E

+
+]) and the skew-symmetric scalar product J., .K

for any two matrices is defined as:

JX, Y K ≡ 1

2

∫ ∞
−∞

dx tr(X(x), [σ3, Y ]) = −JY,XK. (2.3.15)

By applying the properties of the matrices, we will obtain a new formula for the reflection



2.3 The spectrum of L(λ) 37

coefficient function ρ+(λ). Then, the RHS of equation (2.3.13b) becomes:

2b+(λ)

a+(λ)
=

i

a+(λ)

∫ ∞
−∞

dx tr([q(x), σ3]E+
+),

2ρ+(λ) =
i

a+(λ)

∫ ∞
−∞

dx tr(q(x)[σ3,E
+
+]), (2.3.16a)

then,

ρ+(λ) =
i

a+(λ)
Jq(x),E+

+(x, λ)K. (2.3.16b)

Another Wronskian relation can be defined from equation (2.3.16a)

ρ+(λ) =
i

a+(λ)

∫ ∞
−∞

dx tr(q(x)[σ3,E
+
+(x, λ)]). (2.3.17)

By defining Φ+(x, λ) to be the off-diagonal of E+
+, the so-called "squared" solutions of L

Φ+(x, λ) = a+(λ)ε+f
+ (x, λ) =

 0 (φ+
1 (x, λ))2

−(φ+
2 (x, λ))2 0

 . (2.3.18)

Then, applying equation (2.3.18) in equation (2.3.17), and a new formula will appear for

the reflection coefficient ρ+(λ)

ρ+(λ) =
i

a+(λ)

∫ ∞
−∞

dx tr(
1

a+
q(x)[σ3,Φ

+](x, λ))

=
i

(a+(λ))2

∫ ∞
−∞

dx tr(q(x)[σ3,Φ
+](x, λ)), (2.3.19)

by using the properties of σ3 in equation (2.3.19)

ρ+(λ) =
i

(a+(λ))2

∫ ∞
−∞

dx tr(2q(x)Φ+(x, λ)). (2.3.20)

In case q(x) ' 0 as x→ ±∞ the limits of the Jost function φ(x, λ) and ψ(x, λ) in (2.2.2)

confirm that φ+
2 (x, λ) = 0, φ+

1 (x, λ) = e−iλx, ψ+
1 (x, λ) = 0 and ψ+

2 (x, λ) = eiλx. Then,

from equation (2.2.15), a+(λ)→ 1. The off-diagonal matrix Φ+(x, λ) = (φ+
1 (x, λ))2σ+.

Therefore the final representation for equation (2.3.20) will be

ρ+(λ) = 2i

∫ ∞
−∞

dx q−(x)e−2iλx. (2.3.21)

The main goal is to show that this interpretation holds true for any potential q(x) ∈ M.

For our purpose, we need to find a new formula for any potential from (2.3.10b). Let us

recall (2.3.16b) acting with the off-diagonal Φ± and the skew-symmetric scalar product

ρ±(λ) =
i

(a±(λ))2
Jq(x),Φ±(x, λ)K, (2.3.22)
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and

τ±(λ) =
i

(a±(λ))2
Jq(x),Ψ±(x, λ)K. (2.3.23)

Then, the general "squared" solutions Φ±(x, λ) and Ψ±(x, λ) are defined as

Φ±(x, λ) =a±(λ)E±±(x, λ)f =

 0 ±(φ±1 (x, λ))2

∓(φ±2 (x, λ))2 0

 , (2.3.24a)

Ψ±(x, λ) =a±(λ)E±∓(x, λ)f =

 0 ∓(ψ±1 (x, λ))2

±(ψ±2 (x, λ))2 0

 . (2.3.24b)

2.3.2 Completeness of the "Squared" solutions

The Wronskian relation is the transition from the potential q(x) to the scattering data

Tk, k = 1, 2, which is related to the expansion of the "squared" solutions

T1 = {ρ+(λ), ρ−(λ), λ ∈ R, λ±k , C
±
k , k = 1, . . . , N}, (2.3.25)

T2 = {τ+(λ), τ−(λ), λ ∈ R, λ±k ,M
±
k , k = 1, . . . , N}, (2.3.26)

where

C±k =
b±k
ȧ±k
, M±

k =
1

b±k ȧ
±
k

, ȧ±k =
da±

dλ

∣∣∣∣
λ = λ±k

. (2.3.27)

The completeness and uniqueness of the solution of the ISP depends on the invertibility of

the map q(x)→ T. Therefore, the contour integration method is used with the following

Green function

G(x, y, λ) =


G+(x, y, λ), forλ ∈ C+,

1/2(G+(x, y, λ) +G−(x, y, λ)), forλ ∈ R,
G−(x, y, λ), forλ ∈ C−,

(2.3.28)

where

G±(x, y, λ) =G±1 (x, y, λ)θ(x− y)−G±2 (x, y, λ)θ(y − x), (2.3.29)

G±1 (x, y, λ) =
1

(a±(λ))2
Ψ±(x, λ)⊗Φ±(y, λ), (2.3.30)

G±2 (x, y, λ) =
1

(a±(λ))2

(
Φ±(x, λ)⊗Ψ±(y, λ) +

1

2
Θ±(x, λ)⊗Θ±(y, λ)

)
, (2.3.31)
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where ⊗ denotes the tensor product1 [84] and

Θ±(x, λ) = a+(λ)(χ±(x, λ)σ3χ̂
±(x, λ)). (2.3.32)

The poles of the Green functions G± are concurrent with λ±k . So, when a±(λ) have first-

order zeros at λ±k , then G± would have second-order poles at these points

JG(x, y) =
1

2πi

(∮
C+

dλ G+(x, y, λ)−
∮
C−

dλ G−(x, y, λ)

)
,

=
N∑
k=1

(
Res
λ=λ+

k

G+(x, y, λ) + Res
λ=λ−k

G−(x, y, λ)

)
, (2.3.33)

and

JG(x, y) =− i

2
δ(x− y)Π0

− i

2π

∫ ∞
−∞

d λ

(
Ψ+(x, y)⊗Φ+(y, x)

(a+(λ))2
− Ψ−(x, y)⊗Φ−(y, x)

(a−(λ))2

)
,

=
N∑
k=1

(
X+
k (x, y) +X−k (x, y)

)
, (2.3.34)

where

Res
λ=λ±k

G±(x, y, λ) = X±k (x, y)

=
1

(ȧ±k )2

(
Ψ±k (x)⊗ Φ̇±k (y) + Ψ̇±k (x)⊗Φ±k (y)− 2ä±k

ȧ±k
Ψ±k (x)⊗Φ±k (y)

)
. (2.3.35)

Then, the completeness relation for the "squared" solutions are

δ(x− y)Π0 =− 1

π

∫ ∞
−∞

d λ

(
Ψ+(x, y)⊗Φ+(y, x)

(a+(λ))2
− Ψ−(x, y)⊗Φ−(y, x)

(a−(λ))2

)
+ 2i

N∑
k=1

(
X+
k (x, y) +X−k (x, y)

)
, (2.3.36a)

Π0 = σ+ ⊗ σ− − σ− ⊗ σ+, (2.3.36b)

where σ+ =

 0 1

0 0

 and σ− =

 0 0

1 0

.

1A tensor product of two matrices Am×n and Bp×q is the mp× nq block matrix.
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2.3.3 Expansions over the "Squared" solutions

The completeness relation allows one to expand any element X(x) of the phase space M.

If X(x) is an off-diagonal matrix valued function, which falls off for |x| → ∞. So, we

can rewrite the X(x) matrix as

X(x) = X+(x)σ+ +X−(x)σ−. (2.3.37)

Using (2.3.36b) we can obtain X(x) from the following relation:

1

2
tr 1([σ3, X(x)]⊗ 1)Π0 = −X(x), (2.3.38)

where tr 1 is the first position of the tensor product. Therefore, when we multiply equation

(2.3.36a) on the right by 1
2
[σ3, X(x)]⊗ 1, take tr 1 , and integrate over dx, the following

relation is the expansion of X(x) over the system Φ±

X(x) =
1

π

∫ ∞
−∞

dλ (ψ+
X(λ)Φ+(x, λ)− ψ−X(λ)Φ−(x, λ))

− 2i
N∑
k=1

(ψ±X,kΦ̇
±
k + ψ̇±X,kΦ

±
k ), (2.3.39)

where

ψ±X(λ) =
JΨ±(x, λ), X(x)K

(a±(λ))2
, ψ±X,k(λ) =

JΨ±k (x, λ), X(x)K
(ȧ±k )2

, (2.3.40a)

ψ̇±X,k =
1

(ȧ±k )2

s
Ψ̇±k (x)− ä±k

ȧ±k
Ψ±k (x), X(x)

{
. (2.3.40b)

Analogously, the expansions of X(x) over the system Ψ± can be obtained by multiplying

(2.3.36a) from the right by 1
2
1⊗ [σ3, X(x)], taking tr2, and integrating over dx

X(x) =− 1

π

∫ ∞
−∞

dλ (φ+
X(λ)Ψ+(x, λ)− φ−X(λ)Ψ−(x, λ))

− 2i
N∑
k=1

(φ±X,kΨ̇
±
k + φ̇±X,kΨ

±
k ), (2.3.41)

where

φ±X(λ) =
JΦ±(x, λ), X(x)K

(a±(λ))2
, ψ±X,k(λ) =

JΦ±k (x, λ), X(x)K
(ȧ±k )2

, (2.3.42a)
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φ̇±X,k =
1

(ȧ±k )2

s
Φ̇±k (x)− ä±k

ȧ±k
Φ±k (x), X(x)

{
. (2.3.42b)

For example, when X(x) = q(x) then, equations (2.3.41) and (2.3.42) become

q(x) =− 1

π

∫ ∞
−∞

dλ (φ+
q (λ)Ψ+(x, λ)− φ−q (λ)Ψ−(x, λ))

− 2i
N∑
k=1

(φ±q,kΨ̇
±
k + φ̇±q,kΨ

±
k ), (2.3.43)

where

φ±q (λ) =
JΦ±(x, λ), q(x)K

(a±(λ))2
, ψ±q,k(λ) =

JΦ±k (x, λ), q(x)K
(ȧ±k )2

, (2.3.44a)

φ̇±q,k =
1

(ȧ±k )2

s
Φ̇±k (x)− ä±k

ȧ±k
Φ±k (x), q(x)

{
. (2.3.44b)

Therefore, any element q(x) in the corresponding function space M can be written as a

combination of the eigenfunctions φ(x, λ) and ψ(x, λ).

2.4 Involution of the Zaharov-Shabat system

In this section, we will introduce the local and nonlocal involution of the ZS system.

2.4.1 Canonical/Local involution

The independent-complex-value functions (q+, q−) are potentials of the operator L. This

section outlines some possibilities for the potentials, called involutions. These reductions

lead to symmetries of the second order of the ZS system.

The first involution for (1.2.15) has the form:

q−(x, t) = ε0(q+(x, t))∗, ε0 = ±1, (2.4.1)

and the second form

q−(x, t) = η0q
+(x, t), η0 = ±1. (2.4.2)

This section will describe the first option only (2.4.1) (for the second option see [47]);

this provides the symmetry matrix for U(x, t, λ) in (1.2.6a)

U∗(x, t, λ∗) = −ε−1U(x, t, λ)ε, ε =

 0 1

−ε0 0

 . (2.4.3)
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Then, the scattering matrix and the FASs must satisfy

(χ+(x, t, λ∗))∗ =ε−1χ−(x, t, λ)ε, (2.4.4a)

(χ−(x, t, λ∗))∗ =ε−1χ+(x, t, λ)ε, (2.4.4b)

and

T ∗(λ∗, t) = ε−1T (λ, t)ε, (2.4.5a)

in components

a−(λ) =(a+(λ∗))∗, (2.4.5b)

b−(λ) =ε0(b+(λ∗))∗, (2.4.5c)

and therefore the reflection coefficients become

ρ−(t, λ) =ε0(ρ+(t, λ∗))∗, (2.4.6a)

τ−(t, λ) =ε0(τ+(t, λ∗))∗, (2.4.6b)

where λ is complex in (2.4.5b) and real in (2.4.5c) and (2.4.6). These formulas show the

effect of the involutions on the scattering data, related to the continuous spectrum of L.

Therefore when ε0 = −1, this can allow one to reformulate the ZS system into:

L̃ψ(x, t, λ) =

(
iσ3

dψ

dx
+ U0(x, t)ψ(x, t, λ)

)
= λψ(x, t, λ), (2.4.7)

where U0(x, t) = σ3q(x, t) = U †0(x, t) is a hermitian matrix. Then, the system (2.4.7) is

an eigenvalue problem for the self-adjoint operator L̃. So, for real λ, the unitary condition

for the scattering matrix is:

a+(λ)a−(λ) + b+(t, λ)b−(t, λ) = 1, λ ∈ R. (2.4.8a)

Furthermore, subtitling (2.4.5) and ε0 = −1 into (2.4.8a), we will have

a+(λ)(a+(λ∗))∗ + b+(t, λ)ε0(b+(t, λ∗)) =1, (2.4.8b)

and then,

|a(λ)|2 = 1 + |b(λ)|2, (2.4.8c)

which means that for all λ ∈ R, |a(λ)|2 ≥ 1, and the absence of the discrete eigenvalue

means, the operator L̃ does not have discrete eigenvalues on the real λ-axis. Therefore,
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the NLS equation do not have soliton solutions. Then, the minimal set of scattering data

consists of

T1 ≡{ρ±(t, λ), λ ∈ R}, (2.4.9a)

T2 ≡{τ±(t, λ), λ ∈ R}. (2.4.9b)

However, the involution (2.4.1) with ε0 = 1 allows the existence of a discrete spectrum of

L with some restrictions. Since a±(λ) have simple zeros and the Taylor series of a±(λ)

a+(λ) =(λ− λ+
k )(ȧ+

k +
1

2
(λ− λ+

k )ä+
k + . . . ), (2.4.10a)

a−(λ) =(λ− λ−k )(ȧ−k +
1

2
(λ− λ−k )ä−k + . . . ), (2.4.10b)

taking complex conjugate for equation (2.4.10a) and using (2.4.5b)

(a+(λ∗))∗ =(λ∗ − λ+
k )∗(ȧ+

k +
1

2
(λ∗ − λ+

k )ä+
k + . . . )∗, (2.4.11a)

(a+(λ∗))∗ = a−(λ) =(λ− (λ+
k )∗)((ȧ+

k )∗ +
1

2
(λ− (λ+

k )∗)(ä+
k )∗ + . . . ), (2.4.11b)

then, compare with (2.4.10b) we have

λ−k = (λ+
k )∗, ȧ−k = (ȧ+

k )∗, ä−k = (ä+
k )∗. (2.4.12)

Thus, the data on the discrete spectrum should satisfy

b−k = (b+
k )∗, C−k = (C+

k )∗, M−
k = (M+

k )∗. (2.4.13)

We deduce that the minimal sets of scattering data consist of

T1 ≡{ρ+(t, λ), λ ∈ R, λ+
k , C

+
k (t), k = 1, . . . , N}, (2.4.14a)

and

T2 ≡{τ+(t, λ), λ ∈ R, λ+
k ,M

+
k (t), k = 1, . . . , N}. (2.4.14b)

Furthermore, the involution also has an effect on the dispersion laws. Both (1.4.25) and

(2.4.5a) are consistent when f(λ) satisfies:∑
p

fpλ
p = f(λ) = (f(λ∗))∗ =

∑
p

f ∗pλ
p. (2.4.15)

This can happen when the coefficients fp are real.
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2.4.2 The nonlocal involution of the Zakharov-Shabat system

A nonlocal NLS equation was recently introduced [7] and shown to be an integrable infi-

nite dimensional evolution equation. The symmetry reduction was first noted by Ablowitz

and Ladik [7] in 2013. Later on, in 2015 they introduced the key symmetries of the eigen-

functions and the scattering data. Hence they obtained conserved quantities [9].

The following nonlocal NLS equation is

iqt(x, t) = qxx(x, t)± q(x, t)q∗(−x, t)q(x, t), (2.4.16)

where ∗ denotes complex conjugation and q(x, t) is a complex value function of the

real variables x and t. When one compares (2.4.16) with (1.1.3a), the nonlinear term

q∗(x, y)q(x, t) will change in to q∗(−x, y)q(x, t). In the local and nonlocal NLS equation

the potential q(x, t) tends to zero when |x| → ∞. The involution of the nonlocal ZS sys-

tem is simplified by assuming q−(x, t) = (q+(−x, t))∗. To establish symmetry properties

of the Jost functions of (1.2.6a), let us assume that ifψ1(x, λ)

ψ2(x, λ)

 , (2.4.17a)

is an eigenfunction of (1.2.6a). Then,

σ1

ψ∗1(−x,−λ∗)
ψ∗2(−x,−λ∗)

 =

 a1ψ
∗
2(−x,−λ∗)

a2ψ
∗
1(−x,−λ∗)

 with σ1 =

 0 a1

a2 0

 , (2.4.17b)

is also an eigenfunction of (1.2.6a), where σ2
1 = 1; in this case a1 = a2 = 1. Therefore,

U(x, t, λ) in (1.2.6a) must satisfy

σ1U
∗(−x, t,−λ∗)σ−1

1 = U(x, t, λ), (2.4.17c)

and the Jost solutions ψ(x, t, λ) and φ(x, t, λ) for the operator L must satisfy

ψ−(x, t, λ) = σ−1
1 (φ−)∗(−x, t,−λ∗),

ψ+(x, t, λ) = σ1(φ+)∗(−x, t,−λ∗).
(2.4.18)

The general form is

ψ(x, t, λ) =σ1φ
∗(−x, t,−λ∗)σ−1

1 , (2.4.19a)
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with their asymptotics:

σ1( lim
x→−∞

exp(−iλσ3x)ψ∗(−x, t,−λ∗))σ−1
1 = lim

x→−∞
exp(iλσ3x)φ(x, t, λ)

= 1, (2.4.19b)

σ1( lim
x→∞

exp(−iλσ3x)φ∗(−x, t,−λ∗))σ−1
1 = lim

x→∞
exp(iλσ3x)ψ(x, t, λ)

= 1. (2.4.19c)

The symmetry in the Jost solutions in turn imposes symmetry in the scattering data

(a+(λ), b+(λ), b−(λ), a−(λ)). The scattering matrix also needes to be constructed

ψ∗(−x, t,−λ∗) = φ∗(−x, t,−λ∗)T̂ ∗(−λ∗), (2.4.20a)

where

T (λ, t) = σ1T̂
∗(−λ∗, t)σ−1

1 , (2.4.20b)

and when equating both sides of (2.4.20b) one can see that

a±(λ) = (a±(−λ∗))∗, b±(λ) = (b∓(−λ∗))∗. (2.4.20c)

The determinant of T̂ (−λ∗, t) is

detT̂ (λ, t) ≡ (a+(−λ∗)∗(a−(−λ∗))∗+(b+(−λ∗))∗(b−(−λ∗))∗ = 1, λ ∈ C. (2.4.20d)

Similarly, for the FASs, we get:

χ±(x, t, λ) = σ1(χ±(−x, t,−λ∗))∗σ−1
1 . (2.4.20e)

The dispersion law of the NLEE satisfies the following relation

f(λ) = (f(−λ∗))∗. (2.4.20f)

2.5 Summary

The following table is a summary of the illustration that we have demonstrated in the

previous sections to show the difference between the two types of the NLS equation.
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Local NLS, ε =

(
0 1
−1 0

)
Nonlocal NLS, σ1 =

(
0 1
1 0

)

q−(x, t) = (q+(x, t))∗, U(x, t, λ) =

(
−λ q+(x, t)

(q+(x, t))∗ λ

)
q−(x, t) = (q+(−x, t))∗, U(x, t, λ) =

(
−λ q+(x, t)

(q+(−x, t))∗ λ

)

U∗(x, t, λ∗) =

(
−λ (q+(x, t))∗

q+(x, t) λ

)
U∗(−x, t,−λ∗) =

(
−λ (q+(−x, t))∗

q+(x, t) λ

)

U∗(x, t, λ∗) = −ε−1U(x, t, λ)ε U(x, t, λ) = σ1U∗(−x, t,−λ∗)σ−1
1

(ψ(x, t, λ∗))∗ = ε−1φ(x, t, λ)ε ψ(x, t, λ) = σ1φ∗(−x, t,−λ∗)σ−1
1

T ∗(λ∗, t) = ε−1T (λ, t) ε T (λ, t) = σ1T̂ ∗(−λ∗, t)σ−1
1

a∓(λ) = (a±(λ∗))∗ a±(λ) = (a±(−λ∗))∗
b∓(λ) = (b±(λ∗))∗ b±(λ) = (b∓(−λ∗))∗

(χ+(x, t, λ∗))∗ = ε−1χ−(x, t, λ)ε χ−(x, λ) = σ1(χ−(−x,−λ∗))∗σ−1
1

(χ−(x, t, λ∗))∗ = ε−1χ+(x, t, λ)ε χ+(x, λ) = σ1(χ+(−x,−λ∗))∗σ−1
1

V (x, t, λ) = V (x, t, λ) = −q+(x, t)(q+(x, t))∗ + 2λ2 −iq+
x (x, t)− 2λq+(x, t)

i(q+
x (x, t))∗ − 2λ(q+(x, t))∗ q+(x, t)(q+(x, t))∗ − 2λ2

  −q+(x, t)(q+(−x, t))∗ + 2λ2 −iq+
x (x, t)− 2λq+(x, t)

i(q+
x (−x, t))∗ − 2λ(q+(−x, t))∗ q+(x, t)(q+(−x, t))∗ − 2λ2



−iqt(x, t) + qxx(x, t) + 2q|q|2(x, t) = 0 −iqt(x, t) + qxx(x, t) + 2q(x, t)q∗(−x, t)q(x, t) = 0

Table 2.1: Local and nonlocal involutios of Zakharov-Shabat system (A summary).



Chapter 3

The Ablowitz-Ladik system with
PT-symmetry: the self-induced
potential

3.1 Introduction

Discrete nonlinear Schrödinger (DNLS) equation is an essential equation in many branches

of physics and applied mathematics, particularly in water waves. The first example of in-

tegrable discretisation of the NLS equation was introduced by M. Ablowitz and F. Ladik

[2, 3]

i
d

dt
Qn =

1

h2
(Qn+1 − 2Qn +Qn−1)± |Qn|2(Qn+1 +Qn−1). (3.1.1)

In general, there is no guarantee that any given discretisation of integrable PDE yields an

integrable equation. However, there are integrable discretisations of integrable PDEs. For

instance, equation (3.1.2) also describes a particular case for a lattice of coupled harmonic

oscillators in one spatial dimension1 [32, 69]

iQn,t + γ|Qn|2Qn + ε(Qn+1 +Qn−1) = 0, (3.1.2)

where γ is a harmonic parameter. In this chapter we will discuss the IST for DNLS of the

AL type. We will pay special attention to reductions in the potential of local and nonlocal

types. The latter will give rise to integrable systems with PT-symmetries [8, 21] recall

equation (1.6.3),

i
d

dt
Qn =

1

h2
(Qn+1 − 2Qn +Qn−1)±QnQ

∗
−n(Qn+1 +Qn−1). (3.1.3)

1Equation (3.1.2) is derived from equation (3.1.1) by assuming ε = 1
h2 with a simple transformation

Qn → Qne
−2itε.
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A PT-symmetry NLS equation was found in 2013 [7]. The following year, an inte-

grable discrete PT-symmetric (DNLS) equation was obtained from a new nonlocal PT-

symmetric reduction of the Ablowitz-Ladik scattering problem [8].

The core of this chapter aims to find the 2-soliton solutions of nonlocal DNLS equa-

tion, using the RHP developed for solving a vast variety of problems in pure and applied

mathematics. This development comes from the theory of integrable systems. The notion

of integrable systems was found in the original work of Lax, Faddev and Zakharov, that

is now known as the IST in soliton theory. The modern problems related to the theory

of soliton, play crucial role in the new formulation of the ISM. The main target of RHP

is to reduce a particular problem to the reconstruction of an analytic function from jump

conditions or to the analytic valued factorisation of a given matrix-scalar value function

defined on a curve [40, 73, 93]. The results of this chapter appear in [65].

3.2 Inverse scattering transform for the Ablowitz-Ladik
system

Here, we will introduce the scattering problem subject to boundary conditions. The scat-

tering data are reformulated in terms of eigenfunctions having constant boundary condi-

tions, the so-called Jost functions.

3.2.1 Scattering problem

Consider the spectral problem, following [12]:

Ψx(x, t, λ) =U(x, t, λ)Ψ(x, t, λ),

where U(x, t, λ) =

 −iλ q+(x, t)

q−(x, t) iλ

 .
(3.2.1)

Then, the natural discretisation of the scattering problem (3.2.1) is

(
Ψn+1 −Ψn

h

)
=

 −iλ q+
n (t)

q−n (t) iλ

Ψn + O(h2), (3.2.2a)

Ψn+1 =

 1− ihλ hq+
n (t)

hq−n (t) 1 + ihλ

Ψn + O(h2), (3.2.2b)
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where Ψn = Ψ(nh) = (Ψ
(1)
n ,Ψ

(2)
n )T , q+

n = q+(nh) and q−n = q−(nh). Then, rewrite the

finite difference1 (3.2.2a) as:

Ψn+1 =

 z Q+
n

Q−n z−1

Ψn, (3.2.3a)

where

Q+
n =hq+

n , Q−n = hq−n ,

z =e−iλh = 1− iλh+ O(h2), z−1 = eiλh = 1 + iλh+ O(h2). (3.2.3b)

Equation (3.2.3a) refers to the AL scattering problem. In our work we will denote the

matrix in (3.2.3a) as:

Ln(z, t) = Z + Q̃n, (3.2.4)

where

Z =

 z 0

0 z−1

 , Q̃n =

 0 Q+
n

Q−n 0

 . (3.2.5)

3.2.2 Jost function and the scattering matrix

The infinite number of conserved quantities in equation (3.1.1) can be derived by assum-

ing that |Q+
n |, |Q−n | → 0 as n → ±∞. Then, the eigenfunctions are asymptotic to the

solution of the AL scattering problem

Ψn+1 =

 z 0

0 z−1

Ψn. (3.2.6)

The scattering problem for DNLS equation is also determined by the asymptotics of the

eigenfunctions of Ln(z, t), and their ratio, known as the scattering matrix T (z, t), and its

elements are called scattering data. The transformation of the scattering data linearises the

PDE. The whole IST, in fact, can be considered as a nonlinear analogue of the standard

Fourier transform. Function u(x, t) in Fig. 1.1 is a real value function equivalent to qn(t)

and û(λ, t) is equivalent to T (z, t). In this case, φn = (φ+
n , φ

−
n ), and ψn = (ψ−n , ψ

+
n ) are

1The derivative of a function f at a point x is defined by the limit.
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eigenfunctions which satisfy the following boundary conditions

ψn(z) =

 zn 0

0 z−n

 , as n→ +∞,

φn(z) =

 zn 0

0 z−n

 , as n→ −∞.

(3.2.7)

The pairs φ+, φ− and ψ−, ψ+ are linearly dependent and one can write φ+, φ− as linear

combinations of ψ−, ψ+ where the coefficients of these linear combinations depend on z.

φn(z) = ψn(z)T (z), T (z) =

 a+(z) −b−(z)

b+(z) a−(z)

 , when |z| = 1. (3.2.8)

We can rewrite the scattering problem (3.2.3a) as:

Ψn+1 − ZΨn = Q̃nΨn, (3.2.9)

then, the following functions are defined as the Jost functions

ξn(z) = ψn(z)Z−n, ϕn(z) = φn(z)Z−n. (3.2.10)

The Jost functions are solutions of the respective difference equations

ξn+1 =(Z + Q̃n)ξnZ−1, (3.2.11a)

ϕn+1 =(Z + Q̃n)ϕnZ−1, (3.2.11b)

with the constant boundary conditions

ξn(z)→

 1 0

0 1

 , as n→∞, ϕn(z)→

 1 0

0 1

 , as n→ −∞. (3.2.12)

Green’s functions are used to construct a set of summation equations whose solutions

satisfy, is respectively needed, the difference equations (3.2.11) with the constant bound-

ary conditions (3.2.12). Green’s function corresponding to (3.2.11a) is a solution of the

summation equation

Gn+1 − ZGnZ−1 = 1δ0,nZ−1, (3.2.13a)



3.2 Inverse scattering transform for the Ablowitz-Ladik system 51

where

δ0,n =

 0 n 6= 0,

1 n = 0.
(3.2.13b)

Now, if vn(z) satisfies the summation equation

vn(z) =ω +
+∞∑

k=−∞

G̃kQ̃kvkZ−1, (3.2.13c)

where G̃k = Gn−kQ̃kGn−k
ˆ̃Qk is a solution of (3.2.13a) and ω satisfies the following

equation

ω−ZωZ−1 = 0, (3.2.13d)

then, vn is a solution of the difference equation (3.2.11a), and we can see in the following

paragraph, that the choice of the Green’s function and the choice of the inhomogeneous

term ω together determine the eigenfunctions and its analytical properties. To find the

Green’s function explicitly, multiply both sides of (3.2.13a), from the right, by the matrix

Z, then the summation equation becomes:

Gn+1Z− ZGn = 1δ0,n. (3.2.14)

Let us define the diagonal matrix

Gn =

 g1
n 0

0 g2
n

 , (3.2.15)

substitute it in equation (3.2.14) g1
n+1 0

0 g2
n+1

 z 0

0 z−1

−
 z 0

0 z−1

 g1
n 0

0 g2
n

 = 1δ0,n, (3.2.16)

equation (3.2.16) becomes the system

zg1
n+1 − zg1

n =1, z−1g2
n+1 − z−1g2

n = 1, (3.2.17)

bj(g
(j)
n+1 − g(j)

n ) = δ0,n, (3.2.18)
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where b1 = z, b2 = z−1. Next, let us represent g(j)
n and δ0,n as Fourier integrals

g(j)
n =

1

2πi

∮
|p|=1

pn−1ĝ(j)(p) dp, (3.2.19)

δ0,n =
1

2πi

∮
|p|=1

pn−1 dp. (3.2.20)

What we need now is to apply equations (3.2.19) and (3.2.20) in equation (3.2.18)

1

2πi

∮
|p|=1

p(n+1)−1ĝ(j)(p) dp− 1

2πi

∮
|p|=1

pn−1ĝ(j)(p) dp

=
1

bj

1

2πi

∮
|p|=1

pn−1 dp, (3.2.21a)

then,

ĝ(j)(p) =
1

bj (p− 1)
. (3.2.21b)

Next, apply equation (3.2.21b) in equation (3.2.19), and we will obtain:

g(j)
n =

1

bj

1

2πi

∮
|p|=1

p(n−1)

p− 1
dp. (3.2.22)

It is clear that the integral in equation (3.2.22) has a simple pole at p = 1 which is on the

contour |p| = 1. To avoid the singularity, let Cout be a contour enclosing p = 1 and C in

be a contour excluding p = 1

g(j),out
n =

1

bj

1

2πi

∮
Cout

p(n−1)

p− 1
dp =

1

bj

 1, n ≥ 1,

0, n ≤ 0,
(3.2.23)

and

g(j),in
n =

1

bj

1

2πi

∮
Cin

p(n−1)

p− 1
dp =

1

bj

 0, n ≥ 1,

−1, n ≤ 0.
(3.2.24)

Substituting equation (3.2.23) or equation (3.2.24) into equation (3.2.15) and we will

obtain two Green’s functions satisfying (3.2.14)

Gout
n = θ(n− 1)

 z−1 0

0 z

 , Gin
n = −θ(−n)

 z−1 0

0 z

 , (3.2.25a)

where

θ(n) =
n∑

k=−∞

δ0,n =

 1, n ≥ 0,

0, n < 0.
(3.2.25b)

Then, taking into account the boundary conditions (3.2.12) and relation (3.2.13d) for the

inhomogeneous term in (3.2.13c), if both Q+
n , Q

−
n → 0 as n → ±∞, we obtain the
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following summation equations for ξn(z) and ϕn(z):

ξn =

 1 0

0 1

+
+∞∑

k=−∞

G̃1
kQ̃kξkZ

−1, (3.2.26a)

ϕn =

 1 0

0 1

+
+∞∑

k=−∞

G̃2
kQ̃kϕkZ

−1, (3.2.26b)

where

G̃
1

k =G(in)
n−kQ̃n−kG(in)

n−k
ˆ̃Qk, (3.2.26c)

G̃
2

k =G(out)
n−k Q̃n−kG(out)

n−k
ˆ̃Qk. (3.2.26d)

3.2.3 Analytic properties of the eigenfunctions

Using a lemma [12] which states: if ‖Q+‖1 =
∑∞
−∞ |Q+

n | <∞ and ‖Q−‖1 =
∑∞
−∞ |Q−n | <

∞, then ξn(z) and ϕn(z) defined by (3.2.26) are analytic functions of z for |z| ≶ 1 and

continuous for |z| 6 1 and |z| > 1, respectively. In addition, the solution of the summa-

tion equations (3.2.26) is unique in the space of bounded functions. The Neumann series

of the eigenfunction ϕn(z) is represented as:

ϕn(z) =
∞∑
j=0

Cj
n(z), (3.2.27a)

Cj+1
n (z) =

+∞∑
k=−∞

G̃
(2)

n−k(z)Q̃kC
j
k(z)Z−1, j ≥ 0, (3.2.27b)

where

C0
n(z) =

 1 0

0 1

 . (3.2.27c)

Using G̃
(2)
n function in (3.2.26d), equation (3.2.27b) in component form will be

Cj+1
n =

n−1∑
k=−∞

θ(n− k − 1)

 z−1 0

0 z

 0 Q+
n−k

Q−n−k 0

 z−1 0

0 z


Cj
k

 z−1 0

0 z

 . (3.2.28a)
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Then, for k = 1, n > 2, the eigenfunction ϕn(z) is of the form:

ϕn(z) =

 1 0

0 1

+

 0 zQ+
n−1

z−1Q−n−1 0


+

 z−2Q−n−2Q
+
n−1 0

0 z2Q−n−1Q
+
n−2

+ . . . , (3.2.28b)

ϕn(z) =

 1 +O(z−2, even) zQ+
n−1 +O(z3, odd)

z−1Q−n−1 +O(z−3, odd) 1 +O(z2, even)

 ' 1+ ZQ̃n−1. (3.2.28c)

We can see from equation (3.2.28c) that the first column of ϕn(z) called ϕ+
n (z) is analytic

when |z| → ∞ and the second column called ϕ−n (z) is analytic when |z| → 0; "even"

indicates that the higher order terms are even powers of z−1 while "odd" that the higher

order terms are odd powers. Analogously, one can obtain the Neumann series expansion

of ξn(z) but first, we need to rewrite the difference equation (3.2.11a)

ξn+1 =(Z + Q̃n)ξnZ−1, (3.2.29a)

ξn+1Z =Zξn + Q̃nξn, (3.2.29b)

as:

(1−Q−nQ+
n )ξn − Z−1ξn+1Z = −Q̃nξn+1Z. (3.2.30)

To define the modified Jost function

ξ̂n(z) =cnξn(z),

where cn =
+∞∏
k=n

(1−Q−kQ
+
k ).

(3.2.31)

Then, equation (3.2.30) becomes:

ξ̂n − Z−1ξ̂n+1Z = −Q̃nξ̂n+1Z, (3.2.32)

and the modified Jost solution ξ̂n(z) must satisfy the following difference equation

ξ̂nZ−1 − Z−1ξ̂n+1 = −Q̃nξ̂n+1, (3.2.33a)

with the boundary condition

ξ̂n(z)→

 1 0

0 1

 . (3.2.33b)
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Next, we need to find the Green’s function. To do so, we modify the summation equation

(3.2.13c)

ĜnZ−1 − Z−1Ĝn+1 = −1δ0,n, (3.2.34)

vn(z) = ω +
+∞∑

k=−∞

Ĝn−kQ̃kvkZ, (3.2.35a)

where Ĝn is a solution of (3.2.34), ω satisfies

ω − Z−1ωZ = 0, (3.2.35b)

and

Ĝn = θ(−n)

 z 0

0 z−1

 . (3.2.36)

Then, the summation equation for the ξ̂n function becomes:

ξ̂n(z) = 1+
∞∑
−∞

G̃n−kQ̃kξ̂k(z)Z, (3.2.37)

where G̃k = ĜkQ̃kĜk
ˆ̃Qk. The Neumann series for the modified function ξ̂n (3.2.33) is

ξ̂n(z) =
∞∑
j=0

Cj
n(z), (3.2.38a)

Cj+1
n (z) =

+∞∑
k=−∞

G̃n−kQ̃kC
j
k(z)Z, j ≥ 0, (3.2.38b)

where

C0
n(z) =

 1 0

0 1

 , (3.2.38c)

and equation (3.2.38b) in component form is

Cj+1
n =

∞∑
k=n

θ(k − n)

 z 0

0 z−1

 0 Q+
k

Q−k 0

 z 0

0 z−1

Cj
k

 z 0

0 z−1

 , (3.2.39a)

ξ̂n(z) =

 1 0

0 1

+

 0 z−1Q+
n

zQ−n 0

+

 z2Q+
nQ
−
n 0

0 z−2Q−nQ
+
n

+ . . . , (3.2.39b)

ξ̂n(z) =

 1 +O(z2, even) z−1Q+
n +O(z−3, odd)

zQ−n +O(z3, odd) 1 +O(z−2, even)

 ' 1+ Z−1Q̃n. (3.2.39c)
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Taking into account that ξ̂n = cnξn. Then, ξ(z)n is of the form:

ξn(z) =

 c−1
n +O(z2, even) c−1

n z−1Q+
n +O(z−3, odd)

c−1
n zQ−n +O(z3, odd) c−1

n +O(z−2, even)


'c−1

n (1+ Z−1Q̃n). (3.2.40)

In equation (3.2.40), the first column of ξn(z) called ξ−n (z) which is analytic when |z| → 0

and the second column ξ+
n (z) is analytic when |z| → ∞.

3.2.4 Fundamental analytic solutions

The properties of the fundamental solutions φn and ψn are supposed to construct the

fundamental analytic solutions (FASs) (χ+
n (z) and χ−n (z)) of the finite difference system

(3.2.3a) which are obtained by combining the pairs of columns of the Jost functions with

the same analyticity properties

χ+
n (z) =(ϕ+

n , ξ
+
n ), (3.2.41a)

χ−n (z) =(ξ−n , ϕ
−
n ). (3.2.41b)

Then, the FASs χ±n (z) have the following form:

lim
|z|→∞

χ+
n (z) =

 1 +O(z−2, even) c−1
n z−1Q+

n +O(z−3, odd)

z−1Q−n−1 +O(z−3, odd) c−1
n +O(z−2, even)

 , (3.2.42a)

lim
|z|→0

χ−n (z) =

 c−1
n +O(z2, even) zQ+

n−1 +O(z3, odd)

c−1
n zQ−n +O(z3, odd) 1 +O(z2, even)

 . (3.2.42b)

Since φn(z) and ψn(z) are solutions for the scattering problem (3.2.3a), then for any

integer s ≥ 1, their Wronskian relation satisfies the recursive relation,

W (φ+
n (z), φ−n (z)) =

{
n−1∏
k=n−s

(1−Q−kQ
+
k )

}
W (φ+

n−s(z), φ−n−s(z)), (3.2.43a)

=

{
n−1∏
k=n−s

(1−Q−kQ
+
k )

}
W (ϕ+

n−s(z), ϕ−n−s(z)), (3.2.43b)

and when s→ +∞

W (φ+
n (z), φ−n (z)) =

n−1∏
k=−∞

(1−Q−kQ
+
k ). (3.2.43c)
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Similarly, for any integer s ≥ 1,

W (ψ−n (z), ψ+
n (z)) =

{
n+s−1∏
k=n

(1−Q−kQ
+
k )−1

}
W (ψ−n+s(z), ψ+

n+s(z)), (3.2.44a)

=

{
n+s−1∏
k=n

(1−Q−kQ
+
k )−1

}
W (ξ−n+s(z), ξ+

n+s(z)), (3.2.44b)

and as s→ +∞,

W (ψ−n (z), ψ+
n (z)) =

+∞∏
k=n

(1−Q−kQ
+
k )−1. (3.2.44c)

Then, χ±n (z) is analytic when |z| ≷ 1. The idea comes from the linear combination

(ϕ+
n , ϕ

−
n )(z) = (ξ−n , ξ

+
n )(z)

 a+(z) −z2nb−(z)

z−2nb+(z) a−(z)

 . (3.2.45)

Then, we can write χ+
n (z) as:

χ+
n (z) = (ϕ+

n , ξ
+
n ) = (ξ−n , ξ

+
n )

 a+(z) 0

z−2nb+(z) 1

 , (3.2.46)

and since det ξn = c−1
n . Then, from equation (3.2.46) det(χ+(z)) = c−1

n a+(z). Recalling

the analytic properties of the Jost functions and the expressions (3.2.28c) and (3.2.40), we

can find the analytic properties of χ+
n (z). Taking the determinant for both sides, we can

see that a+(z) has an analytic extension in the region |z| → ∞

det(ϕ+
n , ξ

+
n ) = det

 1 +O(z−2, even) c−1
n z−1Q+

n +O(z3, odd)

z−1Q−n−1 +O(z−3, odd) c−1
n +O(z−2, even)

 , (3.2.47a)

since det(χ+
n (z)) = c−1

n a+(z) and χ+
n (z) is analytic when |z| → ∞. Then,

a+(z) = 1−O(z−2, even) as |z| → ∞. (3.2.47b)

Using a similar algorithm for χ−n (z),

χ−n (z) = (ξ−n , ξ
+
n )

 1 −z2nb−(z)

0 a−(z)

 , (3.2.47c)



3.2 Inverse scattering transform for the Ablowitz-Ladik system 58

we obtain det(χ−n (z)) = c−1
n a−(z). Similar idea, we can find that a−(z) is analytic in

|z| → 0

det(χ−n (z)) =c−1
n a−(z), (3.2.48a)

det(ξ−n , ϕ
−
n ) = det

 c−1
n +O(z2, even) zQ+

n−1 +O(z3, odd)

c−1
n zQ−n +O(z3, odd) 1 +O(z2, even)

 . (3.2.48b)

Since χ−n (z) is an analytic function as |z| → 0. Then,

a−(z) = 1−O(z2, even) as |z| → 0, (3.2.48c)

we can conclude that a+(z) → 1 as |z| → ∞ and a−(z) → 1 as |z| → 0. Furthermore,

the Jost functions are continuous up to |z| = 1, and the functions a+(z) and a−(z) are

also continuous up to |z| = 1. The scattering coefficients can be written as explicit sums

of the Jost functions. They are derived as follows: from equation (3.2.26c) and equation

(3.2.26d), we can find the identity relation for n > 0 :

G̃2
k = G̃1

k + 1. (3.2.49a)

Substituting both equations (3.2.26) in the linear combination between ϕn and ξn, (3.2.45)

1+
+∞∑

k=−∞

G̃2
kQ̃kϕkZ

−1

=

[
1+

+∞∑
k=−∞

G̃1
kQ̃kξkZ

−1

] a+(z) −z2nb−(z)

z−2nb+(z) a−(z)

 , (3.2.49b)

and using equation (3.2.49a) then, we have 1− a+(z) z2nb−(z)

−z−2nb+(z) 1− a−(z)

 =−
+∞∑

k=−∞

Q̃kϕkZ
−1

=−
+∞∑

k=−∞

 z−1Q+
k ϕ

(2),+
k zQ+

k ϕ
(2),−
k

z−1Q−k ϕ
(1),+
k zQ−k ϕ

(1),−
k

 , (3.2.49c)
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and if we compare each column in equation (3.2.49c), the corresponding expressions for

the scattering coefficients are

a+(z) =1 +
+∞∑

k=−∞

z−1Q+
k ϕ

(2),+
k , b+(z) =

+∞∑
k=−∞

z2k−1Q−k ϕ
(1),+
k , (3.2.50)

a−(z) =1 +
+∞∑

k=−∞

zQ−k ϕ
(1),−
k , b−(z) = −

+∞∑
k=−∞

z−2k+1Q+
k ϕ

(2),−
k . (3.2.51)

3.3 Deriving evolution equations of DNLS

In this section, we will derive the operator of the time-dependence equation in an analo-

gous way as in [17]. We start with the scattering problem

Ψn+1(z, t) = LnΨn, n ∈ N, (3.3.1)

and time-evolution is given by the linear problem for a family of Lax operators related to

the sl(2,C) algebra

Ψn,t(z, t) = MnΨn. (3.3.2)

The compatibility condition for the integrable DNLS equation with two linear operators

(the two Lax operators) Ln,Mn, the so-called differential-difference zero curvature rep-

resentation, takes the form:

Mn+1Ln = Ln,t + LnMn, (3.3.3)

and

Mn(z, t) =
1

z2
M−2,n +

1

z
M−1,n +M0,n + zM1,n + z2M2,n, (3.3.4a)

where Mi,n, i = −2,−1, 0, 1, 2 have the forms:

M−2,n =

 0 0

0 Md
−2,n

 , M−1,n =

 0 M+
−1,n

M−
−1,n 0

 ,

M0,n =

Md1
0,n 0

0 Md2
0,n

 ,

M1,n =

 0 M+
1,n

M−
1,n 0

 , M2,n =

Md
2,n 0

0 0

 .

(3.3.4b)
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So, Mn(z, t) will be

Mn(z, t) =

 Md1
0,n + z2Md

2,n zM+
1,n + 1

z
M+
−1,n

zM−
1,n + 1

z
M−
−1,n Md2

0,n + z−2Md
−2,n

 . (3.3.4c)

Substituting each Ln,Mn in equation (3.3.3) and equating powers of z to zero, yields a

system of twelve equations. The following points show how we fixed the coefficients of

the powers of z.

• The coefficients of the highest (z3) and the lowest (z−3) powers of z are started and

estimated as constants in complex plane C

z3 :4Md
2,n = Md

2,n+1 −Md
2,n = C1, (3.3.5a)

z−3 :4Md
−2,n = Md

−2,n+1 −Md
−2,n = C2, (3.3.5b)

where C1 and C2 are constants.

• Moving on to the coefficients of z2, and z−2, we can find two relations for the

positive powers

z2 : M+
1,n = Q+

n C1, (3.3.6a)

z2 : M−
1,n+1 = Q−n C1. (3.3.6b)

Analogously, for the negative powers

z−2 : M+
−1,n+1 = Q+

n C2, (3.3.6c)

z−2 : M−
−1,n = Q−n C2. (3.3.6d)

• For the positive powers z, we find two relations; one of them is identically satisfied

and the other one is

z : 4Md1
0,n =4(−Q+

nQ
−
n−1C1), (3.3.7a)

Md1
0,n+1 −Md1

0,n =(−Q+
n+1Q

−
n +Q+

nQ
−
n−1)C1. (3.3.7b)

For simplification, this term Md1
0,n+1 +Q+

n+1Q
−
nC1 is assumed to be equal to a con-

stant C3 in the complex plane C,

Md1
0,n = C3 −Q+

nQ
−
n−1C1. (3.3.7c)
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• In a similar way, one can find the coefficients of z−1 as

Md2
2,n = C4 −Q−nQ+

n−1C2. (3.3.8)

• Finally, the two remaining equations which are the coefficients of z0, are the evolu-

tion equations

Q+
n,t =Q+

nM
d1
0,n+1 +M+

1,n+1 −Q+
nM

d2
0,n −M+

−1,n

=Q+
n (C3 − C4)− (1−Q+

nQ
−
n )(Q+

n−1C2 −Q+
n+1C1), (3.3.9a)

and

Q−n,t = Q−nM
d2
0,n+1 +M−

−1,n+1 −Q−nMd1
0,n −M−

1,n

=−Q−n (C3 − C4)− (1−Q+
nQ
−
n )(Q−n−1C1 −Q−n+1C2). (3.3.9b)

Next, substituting Mi,n, the time dependent matrix Mn becomes:

Mn =


C3 −Q+

nQ
−
n−1C1 + z2C1 zQ+

nC1 + 1
z
Q+
n−1C2

zQ−n−1C1 + 1
z
Q−nC2 C4 −Q−nQ+

n−1C2 + z−2C2

 . (3.3.10a)

After finding the NLEEs (3.3.9), the spatial type of constants (C3−C4) = 2i
h2 andC4 = −i

h2

(C3 = i
h2 ), are used to find the the NLEE. Furthermore, C2 = i

h2 and C1 = −i
h2 . Then, the

time dependence matrix becomes:

Mn =
1

h2


iQ+

nQ
−
n−1 + i(1− z2) −i(zQ+

n − z−1Q+
n−1)

i(z−1Q−n − zQ−n−1) −iQ−nQ
+
n−1 − i(1− z−2)

 , (3.3.10b)

with some transformations being built on the matrix Mn, (see the Appendix) , the time

dependence equation (3.3.2) becomes:

dΨn

dτ
=


iQ+

nQ
−
(n−1) −

i
2
(z − z−1)2 −i(zQ+

n − z−1Q+
n−1)

i(z−1Q−n − zQ−n−1) −iQ−nQ
+
n−1 + i

2
(z − z−1)2

Ψn. (3.3.11)



3.4 Time evolution of the scattering data 62

3.4 Time evolution of the scattering data

In this section, we will find the explicit form for the scattering data for any time [12].

Let’s start from equation (3.3.11). Since Q±n → 0 when n → ±∞, the time-dependence

(3.3.11) is asymptotically of the form:

∂τ Ψn =

−iω 0

0 iω

Ψn, as n→ ±∞, (3.4.1)

where ω = 1
2
(z− z−1)2. As the solutions of (3.4.1) are not compatible with the boundary

conditions of the Jost functions (3.2.12), we will define new time-dependence functions

Mn(z, τ) = ϕn(z, τ)

 e−iωτ 0

0 eiωτ

 , Nn(z, τ) = ξn(z, τ)

 e−iωτ 0

0 eiωτ

 . (3.4.2)

Then, from the linear combination

ϕn(z, τ) = ξn(z, τ)

 a+(z) −z2nb−(z)

z−2nb+(z) a−(z)

 , (3.4.3)

the new form of equation (3.4.2) becomes:

Mn(z, τ) = Nn(z, τ)

 a+(z, τ) −z2ne2iωτb−(z, τ)

z−2ne−2iωτb+(z, τ) a−(z, τ)

 . (3.4.4)

The aim is now to find the expression of the scattering coefficients a±(z, t) and b±(z, t).

The following steps will explain all the details:

• we first differentiate equations (3.4.4) with respect to τ

M{n,τ}(z, τ) = N{n,τ}(z, τ)

(
a+(z, τ) −z2ne2iωτ b−(z, τ)

z−2ne−2iωτ b+(z, τ) a−(z, τ)

)
(z, τ)

+Nn

(
a+τ (z, τ) −z2ne2iωτ [2iωb−(z, τ) + b−τ (z, τ)]

z−2ne−2iωτ [−2iωb+(z, τ) + b+
τ (z, τ)] a−τ (z, τ)

)
, (3.4.5a)

• since Mn(z, τ) and Nn(z, τ) satisfy equation (3.4.1), that means we can obtain
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another relation for Mn,τ (z, τ) and Nn,τ (z, τ)

M{n,τ}(z, τ) =

−iω 0

0 iω

Mn(z, τ),

N{n,τ}(z, τ) =

−iω 0

0 iω

Nn(z, τ),

(3.4.5b)

using both equations (3.4.5b) in equation (3.4.4)

M{n,τ}(z, τ) =

−iω 0

0 iω

Nn(z, τ)

 a+(z, τ) −z2ne2iωτb−(z, τ)

z−2ne−2iωτb+(z, τ) a−(z, τ)



=N{n,τ}(z, τ)

 a+(z, τ) −z2ne2iωτb−(z, τ)

z−2ne−2iωτb+(z, τ) a−(z, τ)

 , (3.4.5c)

• by comparing relations (3.4.5a) and (3.4.5c), one can obtain:

a±τ (z, τ) =0, a±(z, τ) = a±(z, 0), (3.4.6a)

∓2iωb±(z, τ) + b±τ (z, τ) =0 and b±(z, τ) = e±2iωτb±(z, 0). (3.4.6b)

3.5 Symmetries of the Ablowitz-Ladik system

1. Local involution

An important and harmonic tool to construct new integrable NLEE is using the

reduction condition: Q−n = ±(Q+
n )∗. Then, Ln must satisfy

CLn(z, t) = L∗n((1/z)∗, t), (3.5.1)

and the T (z, t) satisfies

CT (z, t) = T ∗((1/z)∗, t), (3.5.2)

and the eigenfunctions become

Cφ(z, t) = ψ∗n((1/z)∗, t), (3.5.3)

where the transformation is CX = σ X σ−1, σ =

 0 1

−1 0

. Thus, the local DNLS
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equation has the following form

i
d

dt
qn =

1

h2
(qn+1 − 2qn + qn−1)± |qn|2(qn+1 + qn−1). (3.5.4)

2. Nonlocal involution

The spectral problem (3.2.3a) satisfies the symmetry (the nonlocal involution) of

the form:

Q−n (t) = ε(Q+
−n(t))∗, ε = ±1. (3.5.5)

Thus, the potentials Q̃n (3.2.5) and matrix Mn in equation (3.3.2) reduce to

Q̃n =

 0 Q+
n

ε(Q+
−n)∗(t) 0

 , (3.5.6)

Mn(z, t) =

i


εQ+

n (Q+
1−n)∗ − 1

2
(z − z−1)2 z−1Q+

n−1 − zQ+
n

ε(z−1(Q+
−n)∗ − z(Q+

1−n)∗) −ε(Q+
−n)∗Q+

n−1 + 1
2
(z − z−1)2

 . (3.5.7)

The nonlocal involution imposes a symmetry condition on the eigenfunctions, FASs

and scattering matrix

C(ψ†−n((z)∗, t)) := Bψ†−n((z)∗, t)B−1 = φn(z, t), (3.5.8a)

C(χ
{−,†}
−n ((z)∗, t)) := Bχ

{−,†}
−n ((z)∗, t)B−1 = χ+

n (z, t), (3.5.8b)

and

C(T †((z)∗, t)) := BT †((z)∗, t)B−1. (3.5.8c)

As a result, we obtain:

a±(z, t) = (a±(z∗, t))∗, b±(z, t) = (b∓(z∗, t))∗, (3.5.8d)

where the particular choice of B is a zero diagonal matrix and the off-diagonal en-

tries are (1,−1), and C is an automorphism of the Lie group SL(2,C). Then, equa-

tion (3.5.9) is a nonlocal differential-difference equation that possesses the same

integrable structure as the local integrable DNLS equation

i Q+
n,τ = (Q+

n+1 − 2Q+
n +Q+

n−1)− ε Q+
n (Q+

−n)∗(Q+
n+1 +Q+

n−1). (3.5.9)
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3.6 Soliton solutions with PT-symmetry

In this section, we will use the RHP (3.2.45) to find the soliton solution to the nonlocal

DNLS equation (3.1.3).

3.6.1 Case of no poles

In this part, we can rewrite equation (3.2.45) as:

(
ϕ+
n

a+
,
ϕ−n
a−

)(z) =(ξ−n , ξ
+
n )(z)

 1 −z2nρ−

z−2nρ+ 1

 , (3.6.1a)

(ϕ̃+
n , ϕ̃

−
n )(z) =(ξ−n , ξ

+
n )(z)

 1 −z2nρ−

z−2nρ+ 1

 , (3.6.1b)

where ρ±(z) = b±(z)
a±(z)

, are the reflection coefficients. Furthermore, ϕ̃+
n (z) and ϕ̃−n (z), have

the same canonical normalisation as ϕ+
n (z) and ϕ−n (z) in equations (3.2.28c) and (3.2.40)

and are meromorphic1 in the region |z| → ∞, |z| → 0, respectively. Then, we can define

new functions χ̃±, of the following form

χ̃+
n (z) = (ϕ̃+

n , ξ
+
n )(z) = (ξ−n , ξ

+
n )(z)

 1 0

z−2nρ+ 1

 , (3.6.2a)

χ̃−n (z) = (ξ−n , ϕ̃
−
n )(z) = (ξ−n , ξ

+
n )(z)

 1 −z2nρ−

0 1

 . (3.6.2b)

Let us now first consider the case when there are no discrete eigenvalues, that is when

χ̃±n (z) have no poles, which means χ̃+
n (z) is analytic outside the unit circle |z| = 1 and

χ̃−n (z) is analytic inside the unit circle. We can write the jump conditions (3.6.1b) as:

χ̃+
n (z)− χ̃−n (z) = χ̃−n (z)Gn(z), |z| = 1, (3.6.3a)

where

Gn(z) =

 ρ+ρ− z2nρ−

z−2nρ+ 0

 , χ̃+
n → 1 as |z| → ∞. (3.6.3b)

Note that (3.6.3a)hold, in general, only for |z| = 1. Therefore, equation (3.6.3a) can be

regarded as a generalised RHP on |z| = 1 with the boundary conditions given by (3.6.3b).

1Meromorphic functions are complex functions that have only simple poles.
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We start with the projection integral operators [12][91]

P̄ (f)(z) = lim
ζ→z
|ζ|<1

1

2πi

∮
|ω|=1

d(ω)f(ω)

ω − ζ
, (3.6.4)

applying P̄ on the left hand side of equation (3.6.3a),

P̄ (χ̃+
n − χ̃−n )(z) = lim

ζ→z
|ζ|<1

1

2πi

∮
|ω|=1

(χ̃+
n − χ̃−n )(ω)

ω − ζ
d(ω), (3.6.5)

we obtain:

χ̃−n (z) = 1+ lim
ζ→z
|ζ|<1

1

2πi

∮
|ω|=1

χ̃−nGn(ω)

ω − ζ
d(ω), (3.6.6)

which is a linear integral equation on |z| = 1, for ξ−n (z) and ϕ̃−n (z). We can rewrite (3.6.6)

equivalently as:

χ̃−n (z) = 1+ lim
ζ→z
|ζ|<1

z

2πi

∮
|ω|=1

ω−2χ̃−nGn(ω)d(ω) +O(z2), (3.6.7)

where O(z2) is defined in Sec. 3.2.3. Functions χ̃+
n (z) and χ̃−n (z) are meromorphic for

|z| ≷ 1 and have the limits as in equations (3.2.42). We can see that both functions contain

the term cn =
∏∞

k=n(1 − Q+
kQ
−
k ). The boundary condition for χ̃±n depends on Q+

k and

Q−k for all k ≥ n. However, Q+
n and Q−n are unknowns in the inverse problem. To remove

this dependence, we need to multiply both sides of (3.2.42) by

 1 0

0 cn

 ,

χ̃−n (z) =

 c−1
n +O(z2, even) zQ+

n−1 +O(z3, odd)

zQ−n +O(z3, odd) cn +O(z2, even)

 , z → 0, (3.6.8a)

then,

χ̃−n (z)Gn(z) =

 ρ+ρ−ξ−,1n + z−2nρ+ϕ̃−,1n z2nρ−ξ−,1n

ρ+ρ−ξ−,2n + z−2nρ+ϕ̃−,2n z2nρ−ξ−,2n

 . (3.6.8b)

To recover Q+
n and Q−n by comparing the expansion in equation (3.6.8a) about z = 0 with
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the RHS of equation (3.6.7), we obtain:

Q+
n−1 =

1

2πi

∮
|ω|=1

ω2(n−1)ρ−(ω)ξ−,1n (ω) dω, (3.6.9a)

Q+
n =

1

2πi

∮
|ω|=1

ω2nρ−(ω)ξ−,1n+1(ω) dω, (3.6.9b)

Q−n =
1

2πi

∮
|ω|=1

ω−2ρ+(ω)ρ−(ω)ξ−,2n (ω) + ω−2(n+1)ρ+(ω)ϕ̃−,2n (ω) dω. (3.6.9c)

The formulation of the inverse problem is now complete. We recovered the potentials

from the eigenfunctions that are defined for |z| ≤ 1, namely χ̃−n (z).

3.6.2 Case of poles

The method of solution requires an extra step if ϕ̃±n (z) have poles. Here, we need to apply

the contour integration method. This method starts from the relations between the Jost

functions (3.6.1a),

ϕ̃+
n =

ϕ+
n

a+
(z) =ξ−n (z) + z−2nρ+(z)ξ+

n (z), (3.6.10a)

ϕ̃−n =
ϕ−n
a−

(z) =ξ+
n (z)− z2nρ−(z)ξ−n (z). (3.6.10b)

We will apply the contour integration method on equations (3.6.10) to find the following

integral representations

J1,n(z) =
1

2πi

(∮
γ+

dωϕ+
n (ω)

(ω − z)a+(ω)
−
∮
γ−

dωξ−n (ω)

(ω − z)

)
, (3.6.11a)

J2,n(z) =
1

2πi

(∮
γ+

dωξ+
n (ω)

(ω − z)
−
∮
γ−

dωϕ−n (ω)

(ω − z)a−(ω)

)
. (3.6.11b)

We will outline one of the cases (J2,n), and analogously, one can derive the other. As a

reminder (i) 1
a+(z)

has simple pole at z = z+
j ; (ii) 1

a−(z)
has simple pole at z = z−j and

(iii) ξ−n , ξ
+
n have no poles, and therefore the integrand of the first integral in J2,n(z) has

only a pole at z = ω and (iv) outside the contour is negatively oriented, while inside the

contour is positively oriented. Thus, when z ∈ Ω+, we find

J2,n(z) = ξ+
n (z)−

S∑
j=1

[
ϕ−n (z−j )

(z − z−j )ȧ−j
+

ϕ−n (−z−j )

(z + z−j )ȧ−j

]
, (3.6.12)

and we need to use the asymptotic behaviour of ξ+
n and ϕ−n to obtain:

1

2πi

(∮
γ+→Ω(|ω|=1)

dω

(ω − z)

(
0

1

)
−
∮
γ−→Ω

dω

(ω − z)

(
0

1

))
=

(
0

1

)
. (3.6.13)
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z

γ+,in

γ+,out

γ−,out

γ−,in

Ω−

Ω+

Figure 3.1: The thick line represents the continuous spectrum (Ω = |z| = 1) of Ln(z)
in the complex z plane. Ω+ represents the region |z| > 1 and Ω− represents the region
|z| < 1. γ± are contours for both regions |z| ≷, respectively and have the same orientation
around the continuous spectrum of Ln(z).

Finally, the integral along the unit circle (Ω) is evaluated from equation (3.6.10b) and is

equal to

1

2πi

(∮
γ+

dωξ+
n (ω)

(ω − z)
−
∮
γ−

dωϕ−n (ω)

(ω − z)a−(ω)

)
=

1

2πi

∮
Ω

dω

(ω − z)
ω2nρ−(ω)ξ−n (ω). (3.6.14)

This will lead to the following representation for ξ+
n (z): When a±(z) have zeros at z =

z±j , then (3.2.45) remains

ϕ±n,j = ±(z±j )∓2nb±j ξ
±
n,j, (3.6.15a)

where ϕ±n,j = ϕ±n (z±j ) and ξ±n,j = ξ±n (z±j ), thus

ξ+
n (z) =

(
0

1

)
+

1

2πi

∮
Ω

dω

(ω − z)
ω2nρ−(ω)ξ−n (ω)

−
S∑
j=1

C−j (z−j )2n

[
ξ−n (z−j )

(z − z−j )
+
ξ−n (−z−j )

(z + z−j )

]
. (3.6.15b)
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The same structures are used to find the integral J1,n when z ∈ Ω−, we can find ξ−n (z)

ξ−n (z) =

(
1

0

)
+

1

2πi

∮
Ω

dω

(ω − z)
ω−2nρ+(ω)ξ+

n (ω)

+
S∑
j=1

C+
j (z+

j )−2n

[
ξ+
n (z+

j )

(z − z+
j )

+
ξ+
n (−z+

j )

(z + z+
j )

]
, (3.6.15c)

where C+
j = C+(z+

j ) and C−j = C−(z−j ) are the norming constants defined as:

C+
j =

b+
j

ȧ+
j

, and C−j =
b−j
ȧ−j
. (3.6.16)

Then, the minimal set (T1 = {ρ+(z), ρ−(z), z ∈ |z| = 1}, is considered as the minimal

set of scattering data. Thus, the system of singular integral equations (3.6.15) admits a

unique solution, so T1 determines uniquely the Jost solutions ξ±n .

3.6.3 Reflectionless potentials

The case where the scattering data observe proper eigenvalues, ρ+(z) = ρ−(z) must be

equal 0 on Ω(|z| = 1), then the system (algebraic-integral) (3.6.15) reduces to the linear

algebraic system

ξ+
n (z) =

(
0

1

)
−

S∑
j=1

C−j (z−j )2n

[
ξ−n (z−j )

(z − z−j )
+
ξ−n (−z−j )

(z + z−j )

]
, (3.6.17a)

ξ−n (z) =

(
1

0

)
+

S∑
j=1

C+
j (z+

j )−2n

[
ξ+
n (z+

j )

(z − z+
j )

+
ξ+
n (−z+

j )

(z + z+
j )

]
, (3.6.17b)

where ξ±n (z) are defined on z±j and −z±j as:

ξ+
n (z+

j ) =

(
0

1

)
−

S∑
k=1

C−k (z−k )2n

[
ξ−n (z−k )

(z+
j − z−k )

+
ξ−n (−z−k )

(z+
j + z−k )

]
, (3.6.18a)

ξ+
n (−z+

j ) =

(
0

1

)
+

S∑
k=1

C−k (z−k )2n

[
ξ−n (z−k )

(z+
j + z−k )

+
ξ−n (−z−k )

(z+
j − z−k )

]
, (3.6.18b)

ξ−n (z−j ) =

(
1

0

)
+

S∑
k=1

C+
k (z+

k )−2n

[
ξ+
n (z+

k )

(z−j − z+
k )

+
ξ+
n (−z+

k )

(z−j + z+
k )

]
, (3.6.18c)

ξ−n (−z−j ) =

(
1

0

)
−

S∑
k=1

C+
k (z+

k )−2n

[
ξ+
n (z+

k )

(z−j + z+
k )

+
ξ+
n (−z+

k )

(z−j − z+
k )

]
. (3.6.18d)



3.6 The Riemann-Hilbert 70

The above relations show that

ξ+,1
n (−z+

j ) = −ξ+,1
n (z+

j ), if and only if ξ−,1n (−z−j ) = ξ−,1n (z−j ), (3.6.19a)

ξ+,2
n (−z+

j ) = ξ+,2
n (z+

j ), if and only if ξ−,2n (−z−j ) = −ξ−,2n (z−j ). (3.6.19b)

3.6.4 one – Soliton solution

The one – soliton solution for (3.1.3), there are 4 eigenvalues
(
{±z+

1 }, {±z−1 }
)
. Starting

from (3.6.8a)and (3.6.17b), we will obtain the formulas of Q−n (z)

zQ−n =
S∑
k=1

C+
k (z+

k )−2n

[
ξ+,2
n (z+

k )

(z − z+
k )

+
ξ+,2
n (−z+

k )

(z + z+
k )

]
,

Q−n =2
S∑
j=1

C+
k (z+

k )−2n

z2 − (z+
k )2

ξ+,2
n (z+

k ), (3.6.20)

and when S = 1,

Q−1n = 2C+
1 (z+

1 )−2n−2ξ+,2
n (z+

1 ). (3.6.21)

Solving the linear algebraic system (3.6.17a) and (3.6.17b) we find

ξ−,1n (z−1 ) =

[
1− 4C+

1 C
−
1

(z+
1 )−2(n−1)(z−1 )2n

((z+
1 )2 − (z−1 )2)2

]−1

, (3.6.22)

ξ+,2
n (z+

1 ) =

[
1 + 4C+

1 C
−
1

(z−1 )2(n+1)(z+
1 )−2n

((z+
1 )2 − (z−1 )2)2

]−1

. (3.6.23)

Substituting equation (3.6.23) in equation (3.6.21), with the involution conditionQ−1n(t) =

−(Q+)∗−1n we have

−(Q+)∗−1n =2C+
1 (z+

1 )−2n−2ξ+,2
n (z+

1 ), (3.6.24)

Q+
1n =− 2(C+

1 )∗((z+
1 )∗)2n−2((ξ)+,2

−n (z+
1 ))∗, (3.6.25)

Q+
1n(τ) =

−2(C+
1 )∗((z+

1 )∗)2(n−1)

1 + 4(C+
1 )∗(C−1 )∗((z+

1 )∗)2n(((z+
1 )∗)2 − ((z−1 )∗)2)−2((z−1 )∗)2(−n+1)

, (3.6.26)

where the norminig constants C±j (z, τ) (3.6.16) are defined as

C+
1 (z, τ) = C+

1 (0)e2iω+
1 τ , C−1 (z, τ) = C−1 (0)e−2iω−1 τ ,

C+
1 (0) =

z+
1 ((z+

1 )2 − (z−1 )2)eiα+
1

2z−1
, C−1 (0) =

((z+
1 )2 − (z−1 )2)eiα−1

2z−1 z
+
1

. (3.6.27)

where α±1 are positive numbers and ω±1 = i
2
(z±1 − (z±1 )−1)2. Equation (3.6.26) is the

solution of the nonlocal DNLS equation (3.1.3) where Q+
1n(τ) = hqn(t) and τ ∈ h−2t.
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3.6.5 Two – Soliton solutions

In the same way as before (case of one pole) we will apply RHP for two – soliton so-

lutions. We can formulate the corresponding two poles problem and find the following

linear integral equations ξ±n (z)

ξ+
n (z) =

(
0

1

)
+

1

2πi

∮
Ω

(
dω

(ω − z)
(ω)2nρ−(ω)ξ−n (ω)

)
−
[
C−1 (z−1 )2n

(
ξ−n (z−1 )

(z − z−1 )

+
ξ−n (−z−1 )

(z + z−1 )

)]
+

[
C−2 (z−2 )2n

(
ξ−n (z−2 )

(z − z−2 )
+
ξ−n (−z−2 )

(z + z−2 )

)]
. (3.6.28a)

In a similar fashion

ξ−n (z) =

(
1

0

)
− 1

2πi

∮
Ω

(
dω

(ω − z)
(ω)−2nρ+(ω)ξ+

n (ω)

)
+

[
C+

1 (z+
1 )−2n

(
ξ+
n (z+

1 )

(z − z+
1 )

+
ξ+
n (−z+

1 )

(z + z+
1 )

)]
+

[
C+

2 (z+
2 )−2n

(
ξ+
n (z+

2 )

(z − z+
2 )

+
ξ+
n (−z+

2 )

(z + z+
2 )

)]
. (3.6.28b)

The soliton solutions correspond to zero reflection coefficients b±j = 0; this can be found

when (ρ+(z) = ρ−(z) = 0 on Ω(|z| = 1)). Then, the system (algebraic-integral) (3.6.28)

is reduced to the linear system

ξ+
n (z) =

(
0

1

)
−
[
C−1 (z−1 )2n

(
ξ−n (z−1 )

(z − z−1 )
+
ξ−n (−z−1 )

(z + z−1 )

)]
−
[
C−2 (z−2 )2n

(
ξ−n (z−2 )

(z − z−2 )
+
ξ−n (−z−2 )

(z + z−2 )

)]
. (3.6.29a)

Similarly

ξ−n (z) =

(
1

0

)
+

[
C+

1 (z+
1 )−2n

(
ξ+
n (z+

1 )

(z − z+
1 )

+
ξ+
n (−z+

1 )

(z + z+
1 )

)]
+

[
C+

2 (z+
2 )−2n

(
ξ+
n (z+

2 )

(z − z+
2 )

+
ξ+
n (−z+

2 )

(z + z+
2 )

)]
, (3.6.29b)

where ξ+
n (±z+

j ) are evaluated at the eigenvalue ±z+
j , and similarly for ξ−n (±z−j ) are eval-

uated at the eigenvalue ±z−j . We can find the expressions for these vectors by evaluating

equation (3.6.29a) at the points ±z+
{1,2} and equation (3.6.29b) at the points ±z−{1,2}. This
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results in a linear algebraic system composed of equations (3.6.29a) and (3.6.29b)

ξ+
n (±z+

1 ) =

(
0

1

)
−
[
C−1 (z−1 )2n

(
ξ−n (z−1 )

(±z+
1 − z−1 )

+
ξ−n (−z−1 )

(±z+
1 + z−1 )

)]
−
[
C−2 (z−2 )2n

(
ξ−n (z−2 )

(±z+
1 − z−2 )

+
ξ−n (−z−2 )

(±z+
1 + z−2 )

)]
, (3.6.30a)

ξ+
n (±z+

2 ) =

(
0

1

)
−
[
C−1 (z−1 )2n

(
ξ−n (z−1 )

(±z+
2 − z−1 )

+
ξ−n (−z−1 )

(±z+
2 + z−1 )

)]
−
[
C−2 (z−2 )2n

(
ξ−n (z−2 )

(±z+
2 − z−2 )

+
ξ−n (−z−2 )

(±z+
2 + z−2 )

)]
, (3.6.30b)

ξ−n (±z−1 ) =

(
1

0

)
+

[
C+

1 (z+
1 )−2n

(
ξ+
n (z+

1 )

(±z−1 − z+
1 )

+
ξ+
n (−z+

1 )

(±z−1 + z+
1 )

)]
+

[
C+

2 (z+
2 )−2n

(
ξ+
n (z+

2 )

(±z−1 − z+
2 )

+
ξ+
n (−z+

2 )

(±z−1 + z+
2 )

)]
, (3.6.31a)

ξ−n (±z−2 ) =

(
1

0

)
+

[
C+

1 (z+
1 )−2n

(
ξ+
n (z+

1 )

(±z−2 − z+
1 )

+
ξ+
n (−z+

1 )

(±z−2 + z+
1 )

)]
+

[
C+

2 (z+
2 )−2n

(
ξ+
n (z+

2 )

(±z−2 − z+
2 )

+
ξ+
n (−z+

2 )

(±z−2 + z+
2 )

)]
. (3.6.31b)

From equations (3.6.30) and (3.6.31), the following relations hold and this helps us to find

the two – soliton solutions,

ξ+,1
n (−z+

j ) = −ξ+,1
n (z+

j ) if, and only if, ξ−,1n (−z−j ) = ξ−,1n (z−j ), (3.6.32a)

ξ+,2
n (−z+

j ) = ξ+,2
n (z+

j ) if, and only if, ξ−,2n (−z−j ) = −ξ−,2n (z−j ). (3.6.32b)

We can recover Q+
n from the power series expansion of the RHS of ϕ−n (z) in equation

(3.6.29a). However, it is difficult to find the potential. For that reason, we will multiply

both sides of χ−n (z) by

 1 0

0 cn



(ξ̃−n , ϕ̃
−
n ) ' χ̃−n (z) =

 1 0

0 cn

 c−1
n zQ+

n−1

c−1
n zQ−n 1


=

 c−1
n zQ+

n−1

zQ−n cn

 , (3.6.33)

where χ̃−n (z) has the same power series expansions as χ−n (z). Then, we can find the

potential Q+
n−1 from ϕ̃−,1n in equation (3.6.33).
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Since b±(z) = 0, then from equation (3.6.10b), we have ϕ̃−n (z) = ξ+
n (z). As a result

ϕ̃−n (z) =

(
0

1

)
−
[
C−1 (z−1 )2n

(
ξ−n (z−1 )

(z − z−1 )
+
ξ−n (−z−1 )

(z + z−1 )

)]
−
[
C−2 (z−2 )2n

(
ξ−n (z−2 )

(z − z−2 )
+
ξ−n (−z−2 )

(z + z−2 )

)]
. (3.6.34)

Now, by comparing the power series expansion of the RHS of equation (3.6.34) to the

expansion (3.6.33), we obtain:

z Q+
n−1 =−

[
C−1 (z−1 )2n

(
ξ−,1n (z−1 )

(z − z−1 )
+
ξ−,1n (−z−1 )

(z + z−1 )

)]
−
[
C−2 (z−2 )2n

(
ξ−,1n (z−2 )

(z − z−2 )
+
ξ−,1n (−z−2 )

(z + z−2 )

)]
,

=− 2 z

[
C−1 (z−1 )2n

(z2 − (z−1 )2)
ξ−,1n (z−1 ) +

C−2 (z−2 )2n

(z2 − (z−2 )2)
ξ−,1n (z−2 )

]
. (3.6.35)

We have±z+
j and±z−j eigenvalues with |z+

j | > 1 and |z−j | < 1, so we can solve the linear

system of equations (3.6.30a) and (3.6.31b) for ξ−n (z−1 ), ξ−n (z−2 ), ξ+
n (z+

1 ) and ξ+
n (z+

2 ). In

particular, we will find Q+
n ; to do so, we need ξ−n (z−1 ) and ξ−n (z−2 )

ξ+,1
n (z+

1 ) =− 2z+
1

[
C−1 (z−1 )2n

((z+
1 )2 − (z−1 )2)

ξ−,1n (z−1 ) +
C−2 (z−2 )2n

((z+
1 )2 − (z−2 )2)

ξ−,1n (z−2 )

]
, (3.6.36a)

ξ+,1
n (z+

2 ) =− 2z+
2

[
C−1 (z−1 )2n

((z+
2 )2 − (z−1 )2)

ξ−,1n (z−1 ) +
C−2 (z−2 )2n

((z+
2 )2 − (z−2 )2)

ξ−,1n (z−2 )

]
, (3.6.36b)

ξ−,1n (z−1 ) =1 +
2C+

1 (z+
1 )−2(n−1)

((z−1 )2 − (z+
1 )2)

ξ+,1
n (z+

1 ) +
2C+

2 (z+
2 )−2(n−1)

((z−1 )2 − (z+
2 )2)

ξ+,1
n (z+

2 ), (3.6.36c)

ξ−,1n (z−2 ) =1 +
2C+

1 (z+
1 )−2(n−1)

((z−2 )2 − (z+
1 )2)

ξ+,1
n (z+

1 ) +
2C+

2 (z+
2 )−2(n−1)

((z−2 )2 − (z+
2 )2)

ξ+,1
n (z+

2 ). (3.6.36d)

Then, we can obtain the potential Q+
n from (3.6.35) by taking the residue when z → z−1

or z → z−2 , respectively [65]:

Q+
n =

1

2
C−1 (z−1 )2nξ−,1n+1(z−1 )− 2 C−2 (z−2 )2(n+1)

((z−1 )2 − (z−2 )2)
ξ−,1n+1(z−2 ), (3.6.37a)

Q+
n =
−2 C−1 (z−1 )2(n+1)

((z−2 )2 − (z−1 )2)
ξ−,1n+1(z−1 ) +

1

2
C−2 (z−2 )2nξ−,1n+1(z−2 ), (3.6.37b)
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where C±1 (0) are defined in equation (3.6.27) and C±2 (0) are defined as:

C+
2 (z, τ) = C+

2 (0)e2iω+
2 τ , C−2 (z, τ) = C−2 (0)e−2iω−2 τ ,

C+
2 (0) =

z+
2 ((z+

2 )2 − (z−2 )2)eiα+
2

2z−2
, C−2 (0) =

((z+
2 )2 − (z−2 )2)eiα−2

2z−2 z
+
2

. (3.6.38)

Finally, (3.6.37a) (or (3.6.37b)) is the solution to the nonlocal DNLS equation (3.1.3).

3.7 Dressing method for the discrete nonlocal nonlinear
Schrödinger equation

In this section, we will approach to solve the integrable equation (3.1.3) by using the

notion of the dressing method [37]. This method covers soliton solutions for local DNLS

[35], but it is not proved yet for nonlocal DNLS equation. Here, we derive the dressing

method from the spectral problem (3.2.3a) and study the class of solutions to equation

(3.1.3). The solutions of the scattering problem (3.2.3a) are uniquely determined by their

respective boundary conditions (3.2.7). The symmetry relation Q−n (t) = −(Q+
−n(t))∗

leads to

(ξ−n−1, ξ
+
n−1)(z) =(1/(ṽ)∗−n) B ((ϕ+

1−n)∗, (ϕ−1−n)∗)(z∗) B−1, (3.7.1)

ṽn =
∞∏

k=−∞

g̃k, g̃n = 1 +Q+
n (Q+

−n)∗. (3.7.2)

Now, we will show that the functions g̃n are nothing more than the determinants of ϕn(z)

and ξn(z). From equation (3.2.8), det(Z + Q̃n) is g̃n. Then,

det ξn+1(z) =g̃n det ξn(z),

det ξn(z) =(g̃n)−1 det ξn+1(z),

=(g̃n)−1(g̃n+1)−1 det ξn+2(z)

...

=
∞∏
k=n

g̃−1
k = ṽ+

n . (3.7.3)

In the same way, we can obtain that

detϕn(z) =
n−1∏
k=−∞

g̃k = ṽ−n . (3.7.4)
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Next, the determinants of the scattering matrix T (z) can be found from the linear combi-

nation of the eigenfunctions (3.2.11)

φn(z)Z−n =ψn(z)Z−nZnTZ−n, (3.7.5a)

ϕn(z) =ξn(z)ZnTZ−n. (3.7.5b)

As a result,
detϕn(z) = det ξn(z) det Zn detT det Z−n, (3.7.6a)

ṽ−n =ṽ+
n detT, (3.7.6b)

detT = (ṽ+
n )−1ṽ−n = ṽn. (3.7.6c)

The next step is to study the eigenfunctions ξn(z) and ϕn(z) and their asymptotic be-

haviour. Let us write the spectral equation (3.2.3a) in the explicit formϕ11 ϕ12

ϕ21 ϕ22


n+1

=

 ϕ11 + z−1Q+
nϕ21 z2ϕ12 + zQ+

nϕ22

z−2ϕ21 − z−1(Q+
−n)∗ϕ11 ϕ22 − z(Q+

−n)∗ϕ12


n

. (3.7.7)

Let us assume we have (at least asymptotically) the expansion over the negative power of

z

ϕn(z) = ϕ(0)
n (z) + z−1ϕ(1)

n (z) + z−2ϕ(2)
n (z) + . . . , (3.7.8)

by substituting equation (3.7.8) in equation (3.7.7), we obtain:
ϕ

(0)
11 (z) + z−1ϕ

(1)
11 (z) + z−2ϕ

(2)
11 (z) ϕ

(0)
12 (z) + z−1ϕ

(1)
12 (z) + z−2ϕ

(2)
12 (z)

ϕ
(0)
21 (z) + z−1ϕ

(1)
21 (z) + z−2ϕ

(2)
21 (z) ϕ

(0)
22 (z) + z−1ϕ

(1)
22 (z) + z−2ϕ

(2)
22 (z)


n+1

=

 (ϕ
(0)
11 + . . . ) + z−1Q+

n (ϕ
(0)
21 + . . . ) z2(ϕ

(0)
12 + . . . ) + zQ+

n (ϕ
(0)
22 + · · ·+)

z−2(ϕ
(0)
21 + . . . )− z−1(Q+

−n)∗(ϕ
(0)
11 + . . . ) (ϕ

(0)
22 + . . . )− z(Q+

−n)∗(ϕ
(0)
12 + . . . )


n

. (3.7.9)

After simplifying the last equation, and taking the lim z →∞, equation (3.7.9) becomes:
ϕ

(0)
11 (z) ϕ

(0)
12 (z)

ϕ
(0)
21 (z) ϕ

(0)
22 (z)


n+1

=


ϕ

(0)
11 z2ϕ

(0)
12 + zϕ

(1)
12 + ϕ

(2)
12 + zQ+

nϕ
(0)
22 +Q+

nϕ
(1)
22

0 ϕ
(0)
22 − z(Q+

−n)∗ϕ
(0)
12 − (Q+

−n)∗ϕ
(1)
12


n

. (3.7.10)



3.7 Dressing method 76

If we assume the potential

Q+
n = −ϕ

(1)
12

ϕ
(0)
22

, Q+
n = −ϕ

(2)
12

ϕ
(1)
22

, (3.7.11)

then, equation (3.7.10) becomes

ϕ
(0)
n+1(z) =


1 0

0 1 +Q+
n (Q+

−n)∗



ϕ

(0)
11 (z) ϕ

(0)
12 (z)

ϕ
(0)
21 (z) ϕ

(0)
22 (z)


n

=


1 0

0 g̃n

ϕ(0)
n (z). (3.7.12)

In the lim z → 0, for which ξn(z) = ξ
(0)
n (z) + zξ

(1)
n (z) + z2ξ

(2)
n (z) + . . . , using the same

structures, we have

ξ
(0)
n+1(z) =


g̃n 0

0 1

 ξ(0)
n (z). (3.7.13)

3.7.1 The dressing method and the fundamental analytic solutions

Important tools for reducing the ISP to a RHP are the FASs1 X+
n (z) and X−n (z). Their

construction is based on the Gauss decomposition of T (z)

X+
n (z) = (ϕ+

n , ξ
+
n ) =ψn(z)T−(z) = φn(z)S+(z), (3.7.14a)

(X−n )−1(z) =

 ϕ̃n

ξ̃n

 (z) =T+(z)(ψn)−1(z) = S−(z)(φn)−1(z), (3.7.14b)

where X̃ =
(
X2, −X1

)
is a column vector, and

T−(z) =

 a+(z) 0

b+(z) 1

 , T+(z) =

 a−/ṽn(z) b−(z)/ṽn

0 1

 , (3.7.14c)

S+(z) =

 1 b−(z)/ṽn

0 a+(z)/ṽn

 , S−(z) =

 1 0

b+(z) a−(z)

 , (3.7.14d)

1In this section the FASs are different than in Sec. 3.2.4.
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are the factors in the Gauss decomposition of the associated scattering matrix T (z)

T (z) =T−(z)Ŝ+(z) = T+(z)Ŝ−(z), (3.7.15)

and are expressed in terms of the matrix elements of the scattering matrix T (z). This

construction ensures that ξ±(z) are analytic functions of z for z ∈ Ω±, where Ω± represent

the regions of outside and inside the unit circle | z |= 1, respectively. From relations

(3.7.14), we can conclude that

detX+
n (z) =ṽ+

n a
+(z) = ṽ−a+/ṽn = ṽ+

n a
+(z), (3.7.16a)

det(X−n )−1(z) =(ṽ+
n )−1a−(z)/ṽn = a−(ṽ−n )−1 = (ṽ−n )−1a−(z). (3.7.16b)

3.7.2 The Riemann-Hilbert problem and the dressing method

Studying the RHP, we will outline the important symmetry between the eigenfunctions

ϕn(z) and ξn(z). Both ϕn(z) and ξn(z) are solutions to the spectral problem (3.2.3a)

which are determined from their boundary conditions (3.2.7). Suppose Q̃0 is one of the

seed solutions of the nonlinear equation (3.3.3). In special cases, trivial solutions, such as

zero can be called a seed solution. We, therefore, know explicitly the matrices L0 and M0

which correspond to this solution. As a result, we can solve the system of linear equations

Ψn,x(z) = L0Ψn(z), Ψn,t(z) = M0Ψn(z), (3.7.17)

for the matrix function Ψn(z). Next, we will demonstrate that there exists a possibility to

build a class of new solutions of the nonlinear equation (3.3.3), this class being parame-

terised by a closed oriented contour Ω± on the plane C and by a nondegenerate bounded

matrix function G(z) defined on the contour | z |= 1 (see Fig. 3.1 ). For this purpose, the

normalisation of the RHP for the matrix Gn,0(z) on the contour | z |= 1 has the following

form:

(X−n )−1(z)X+
n (z) = G(z), z ∈ | z |= 1, (3.7.18)

where

G(z) = T+T− = S−S+ =

 1 b−/ṽn

b+ 1

 . (3.7.19)

In other words, X+
n (z) ((X−n (z))−1)) is analytic outside (inside) the unit circle | z |= 1

and both of them satisfy equation (3.7.18). Asymptotic formulas for analytic solutions
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are derived directly from those for the Jost functions. In particular, for | z |→ ∞

X+
n (z) =

ϕ
(0),+
11 (z) ξ

(0),+
12 (z)

ϕ
(0),+
21 (z) ξ

(0),+
22 (z)

→ (
limz→∞ ϕ

(0),+
11 (z) 0

0 limz→∞ ξ
(0),+
22 (z)

)
. (3.7.20a)

From equation (3.7.12),

lim
z→∞

ϕ
(0),+
11 (n+ 1, z) = ϕ

(0),+
11 (n, z) = ϕ

(0),+
11 (n− 1, z) = · · · = 1, (3.7.20b)

and lim
z→∞

ξ
(0),+
22 (n, z) = g̃−1

n ξ
(0),+
22 (n+ 1, z) = g̃−1

n g̃−1
n+1ξ

(0),+
22 (n+ 2, z) = . . . (3.7.20c)

=

∞∏
k=n

g̃−1
k = v+

n . (3.7.20d)

Then, for z →∞

lim
z→∞

X+
n (z)→ (X+,0

n )(z) =


1 0

0 ṽ+
n

 , (3.7.21a)

and analogously, the asymptotic behaviour for (X−n )−1 for z → 0 is

lim
z→0

(X−n )−1(z)→ (X−,0n )−1(z) =


(ṽ−n )−1 0

0 1

 . (3.7.21b)

At this point we arrived at the RHP. In [37], the authors have noted that there exists a

possibility to reformulate the local AL spectral problem to arrive at the RHP with the

canonical normalisation but this is obtained at the cost of nonlinear dependence of the

spectral problem on the potential Q̃n(t).

The next step is to build the normalisation condition. This means we should define

one of the matrices X+
n (z) (or (X−n )−1(z)) at the infinite point z → ∞ of the z-plane. If

(X−n )−1(z) = 1, then this normalisation is called canonical.

3.7.3 Derivation of the dressing method

The dressing Method is the most effective method for deriving the soliton solutions

of the corresponding NLEE. The method starts with the regular solutions X+,0
n (z) and

(X−,0n )−1(z), i.e. when they have no singularity or zeros in their regions of analytic-

ity. As it is known, the DNLS equation has four eigenvalues {z±1 ,−z±1 } for the one –

soliton solution. We are going to construct the corresponding singular solutions X+
n (z)

and (X−n )−1(z) of the RHP using the dressing factors. Let us represent the FAS X+
n (z)
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((X−n )−1(z)) in a factorised form

X+
n (z) = un,j(z)X+,0

n , (3.7.22a)

(X−n )−1(z) =
1

cj(z)
un,j(z)(X−,0n )−1, (3.7.22b)

or

(X−n )−1(z) = 1+ (
1

cj
− 1)(1− Pj)(X−,0n )−1, (3.7.22c)

where un,j is the dressing factor

un,j(z) = 1+ (cj(z)− 1)Pj,n, cj(z) =
z − z+

j

z − z−j
, (3.7.22d)

and

Pj,n =
| sj,n 〉〈mj,n |
〈mj,n | sj,n 〉

, j = 1, . . . , S. (3.7.22e)

Here, Pj,n is the rank 1 projector, P 2
j,n = Pj,n and | sj,n(z) 〉 is a two column vector and

〈mj,n(z) | is a two row vector. Our aim is to find out how these eigenvectors depend on

z and how they are determined by the scattering data of Ln. Here, we will take j = 1,

for the following calculations. From equation (3.7.16), the determinant of both sides of

equations (3.7.22a) and (3.7.22b) is

v+
n a

+(z) =c1(z)v+
n a

+
0 (z), (3.7.23a)

(ṽ−k )−1a−(z) =
1

c1(z)
(v−n )−1a−0 (z), (3.7.23b)

where a±0 (z) has no zeros in z ∈ Ω± (regular). Thus we find that a±(z) have zeros at z±1
respectively.

a+(z) = c1(z)a+
0 (z) and a−(z) =

a−0 (z)

c1(z)
, (3.7.23c)

The next step is to find the general form of the two vectors | sj(x) 〉 and 〈mj(x) |. First,

we will find a relation between L0,n(z) and L1,n(z). Since X+,0
n (z) and X+,1

n (z) are both

satisfy (3.2.3a), then

X
{+,0}
n+1 (z) = L0,n(z) X{+,0}n (z), (3.7.24a)

X
{+,1}
n+1 (z) = L1,n(z) X{+,1}n (z), (3.7.24b)

and if X{+,1}n (z) satisfies the RHP equation (3.7.24a), then X
{+,1}
n+1 (z) is also

X
{+,1}
n+1 (z) = un,1(z) X

{+,0}
n+1 (z). (3.7.24c)
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We start with substituting (3.7.24c) to equation (3.7.24b):

un+1,1X
{+,0}
n+1 (z) = L1,n(z) X{+,1}n (z), (3.7.25a)

equation (3.7.24c) to equation (3.7.25a)

un+1,1X
{+,0}
n+1 (z) = L1,n(z) un,1(z) X{+,0}n (z), (3.7.25b)

and equation (3.7.24a) to equation (3.7.25b)

un+1,1L0,n(z) X{+,0}n (z) = L1,n(z) un,1(z) X{+,0}n (z). (3.7.25c)

Then,

L1,n(z)un,1(z) = un+1,1L0,n(z). (3.7.25d)

We will solve the RHP (3.7.18) with zeros by means of its regularisation. This procedure

consists of extracting rational factors from X+
n (z) which are responsible for the existence

of zeros. Indeed, if detX+
n (z+

j ) = 0, then at the point z+
j there exists an eigenvector | ι 〉

with zero eigenvalue, X+
n (z+

j ) | ι 〉 = 0. Taking the limit of z → z−1 , to equation (3.7.25d)

lim
z→z−1

(z − z−1 )

(
L1,n(z)

(
1+ (

z−1 − z+
1

z − z−1
)P1,n

))
= lim

z→z−1
(z − z−1 )

(
1+ (

z−1 − z+
1

z − z−1
)Pn+1,1

)
L0,n(z),

(3.7.26)

take limit for each part

0 + (z−1 − z+
1 )L1,n(z−1 )Pn,1 =(z−1 − z+

1 )Pn+1,1L0,n(z−1 ),

L1,n(z−1 )Pn,1 =Pn+1,1L0,n(z−1 ).
(3.7.27)

To find | sj〉 and 〈mj |, we need to substitute equation (3.7.22e) in equation (3.7.27)

L1,n(z−1 )
| s1,n 〉〈m1,n |
〈m1,n | s1,n 〉

=
| s1,n+1 〉〈m1,n+1 |
〈m1,n+1 | s1,n+1 〉

L0,n(z−1 ), (3.7.28a)

so,

〈m1,n |=〈mn+1 | L0,n(z−1 )

=〈mn+1 |

 z−1 0

0 (z−1 )−1

 . (3.7.28b)
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Then, the general form for the vector 〈m1,n | is

〈m1,n |= 〈µ | Z−n(z−1 ), (3.7.28c)

where 〈µ | is a t-dependent vector. On the other hand, we can write equation (3.7.25d)

as:

ûn+1,1 L1,n(z) = L0,n(z) ûn,1(z), (3.7.29a)

this time we will take the limit of z → z+
1 , and with similar calculations, we will have

Pn+1,1 L1,n(z+
1 ) = L0,n(z+

1 )Pn,1, (3.7.29b)

| s1,n+1 〉〈m1,n+1 |
〈m1,n+1 | s1,n+1 〉

L1,n(z+
1 ) =L0,n(z+

1 )
| s1,n 〉〈m1,n |
〈m1,n | s1,n 〉

,

| s1,n+1 〉 =L0,n(z+
1 ) | s1,n 〉

=

 z+
1 0

0 (z+
1 )−1

 | s1,n 〉. (3.7.29c)

Then, the general form for the vector | s1,n 〉 is

| s1,n 〉 = Zn(z+
1 ) | ϑ〉, (3.7.29d)

where | ϑ〉 is a t-dependent vector. The following paragraph is to determine | s1,n 〉 and

〈m1,n |.
Let us differentiate the equation X+

n (z) | s1,n〉 = 0 with respect to t. Since X+
n (z)

is a solution of the spectral equation (3.3.11), and at the boundary it satisfies (3.4.1), we

obtain:

(X+
n (z+

1 ) | sn〉)t =X+
t,n(z+

1 ) | sn〉+ X+
n (z+

1 ) | st,n〉,

0 =ω(z+
1 ) X+

n (z+
1 ) | sn〉+ X+

n (z+
1 ) | st,n〉,

ω(z+
1 ) X+

n (z+
1 ) | sn〉 =X+

n (z+
1 ) | st,n〉,

| st,n〉 =ω(z+
1 ) | sn〉,

| sn〉 =ω(z+
1 ) | s̃〉,

(3.7.30)

where ω(z) is defined in Sec. 3.4 and | s̃〉 is a t-dependent (but n-independent) vector. In

the same manner, we find the evolutionary equation for 〈 m1,n |. We explicitly find the



3.7 Dressing method 82

coordinate dependence of the vectors | s1,n〉 and 〈m1,n | by

| s1,n〉 =Zneω(z1) | s0〉, | s0〉 const, (3.7.31a)

〈m1,n |=〈µ0 | Z−neω(z1), 〈µ0 | const. (3.7.31b)

The linear combination between the Jost solutions at z = z±1 , is defined in (3.6.15a), then

from the definition of the FASs (3.7.14) and (3.6.15a), the two vectors have the following

form

X+
n (z+

1 ) =ψ+
1 (z)

(
b+

1 , 1
)
, (3.7.32a)

(X−)−1(z−1 ) =−

 b−1

1

 ψ̃−j (z−1 ). (3.7.32b)

Thus, we conclude that

X+
n (z+

1 ) | s0,1〉 =0, | s0,1〉 =

 1

−b+
1

 , (3.7.33a)

〈m0,1 | (X−n )−1(z−1 ) =0, 〈m0,1 |=
(

1, −b−1
)
. (3.7.33b)

3.7.4 A solution formula of Q+
n (z) for the nonlocal DNLS equation

As we know, solitons correspond to the discrete eigenvalues of the RHP with zeros of

the scattering coefficients a±(z). From equation (3.7.16), the determinants of X+
n (z) and

(X−n )−1(z) are a±(z), then possible zeros of a±(z) at some points lead to detX+
n (z+

j ) =

0, z+
j ∈ Ω+, Ω+ =| z |> 1, j = 1, . . . , S, where S is the number of solitons (the discrete

eigenvalues) and det(X−n )−1(z−` ) = 0, z−` ∈ Ω−, Ω− =| z |< 1, ` = 1, . . . , S. In

accordance with equations (3.7.11), (3.7.21) and X+
n (z) = X+,0

n un,1(z), a solution (at z±1 )

of the AL equation can be obtained from the solution of the RHP by

Q+
n (t) = − lim

z→∞

z X+
n,12(z)

X+
n,22(z)

= −
X+,1
n,12(z)

X+,0
n,22(z)

= −un,12

ṽ+
n

. (3.7.34)

To find the solution to equation (1.7.6), we need to find the dressing factor un(z). Our

restriction is to obtain the soliton solutions of equation (1.7.6), i.e., G(z) = 1. In another

sense

(X−n )−1X+
n (z) = 1, (3.7.35a)
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then, when z → 0

X+
n (z) = X−n (z) =

 ṽ−k 0

0 1

 , (3.7.35b)

X+
n (z) =

 ṽ−k 0

0 1

 , (3.7.35c)

from (3.7.22a), and (3.7.21)

un(z) =X+
n (z)(X+,0

n )−1(z), (3.7.35d)

lim
z→0

un(z) =

 ṽ−k 0

0 (ṽ+
k )−1

 , (3.7.35e)

then, un,22(z) = (ṽ+
k )−1; in this case the solution of the DNLS equation depends on the

components of the dressing factors. Therefore, equation (3.7.34) becomes

Q+
n (t) = − lim

z→0
un,12un,22(z). (3.7.36)

Remark 2 We need to compute the dressing factor un(z) (in exact form) to write the final

form of the one soliton solution of (3.1.3) which will be addressed in a future work.

3.8 Summary

The following table is a summary of the illustration that we have demonstrated in the

previous sections to show the difference between the two types of the DNLS equation.
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Local DNLS , σ =

(
0 1
−1 0

)
Nonlocal DNLS, σ =

(
0 1
−1 0

)

Q−n (t) = (Q+
n (t))∗, Q−n (t) = −(Q+(t))∗−n

Q̃∗n = σ Q̃n σ−1 Q̃†−n = σ Q̃n σ−1

Ln(z, t) =

(
z Q+

n (t)

−(Q+
n (t))∗ z−1

)
Ln(z, t) =

(
z Q+

n (t)

−(Q+
−n(t))∗ z−1

)

(ψn((1/z)∗, t))∗ = σ φn(z, t) σ−1 ψn(z, t) = σ ψ†−n(z∗, t) σ−1

T ∗((1/z)∗, t) = σ T (z, t) σ−1 T (z, t) = σ T ∗(z∗, t) σ−1

a∓(z) = (a±(1/z)∗)∗ a±(z) = (a±(z∗))∗

b∓(z) = ±(b±(1/z)∗)∗ b±(z) = (b∓(z∗))∗

d
τ

Ψn(z, τ) = d
τ

Ψn(z, τ) = −iQ+
n (Q+)∗n−1 −

i
2

(z − z−1)2 −i(zQ+
n − z−1Q+

n−1)

−i(z−1(Q+
n )∗ − z(Q+)∗n−1)) i(Q+)∗nQ

+
n−1 + i

2
(z − z−1)2

Ψn.

 −iQ+
n (Q+

(−{n−1}))
∗ − i

2
(z − z−1)2 −i(zQ+

n − z
−1Q+

n−1)

−i(z−1(Q+
−n)∗ − z(Q+

(−{n−1}))
∗) i(Q+

−n)∗Q+
n−1 + i

2
(z − z−1)2

Ψn.

iQn,τ = (Qn+1 − 2Qn +Qn−1) +QnQ∗n(Qn+1 +Qn−1) iQn,τ = (Qn+1 − 2Qn +Qn−1) +QnQ∗−n(Qn+1 +Qn−1)

Table 3.1: Involution/reduction conditions for Ablowitz-Ladik system (A summary).



Chapter 4

Complete integrability
of the discrete nonlinear Schrödinger
equation

4.1 Introduction

Gerdjikov et al. [50, 61], used an equivalent eigenvalue problem to build the complete-

ness relation for the discrete block ZS system. Here, we will present the spectrum of

the Ln(z) operator for DNLS equation in a different form. The spectrum of the L(λ)

operator for continuous NLS equation is introduced [49]. The spectral theory condition

is to find a family of self-adjoint commuting projectors acting on the Hilbert space H.

That means for any self-adjoint operator A, one can introduce a spectral measure and

then prove the spectral theory. However, our operator Ln is not self-adjoint, so we will

prove the completeness relation of the Jost solutions which is equivalent to the spectral

decomposition of the operator. The derivation of the completeness relation of the Jost

solutions starts by introducing the new functions R±n (z), which have singularities at z±,

respectively [49, 54]. The results of this chapter appear in [65].

4.2 The spectral theory of the discrete Lax operator

Sections 1.5.1 and 2.3 have introduced the advantage of the resolvent and its properties

in the continuous NLS. Here, we will show how the spectrum of the discrete operator Ln

will be derived. To do so, we need to describe the FASs χ±n (z) with respect to the Jost

solutions φn(z) and ψn(z).



4.2 The spectral theory of the discrete Lax operator 86

4.2.1 The resolvent of case Ln

The FASs χ±n (z) are used to find the spectrum of the operator Ln. In this section, we

will present the new functions R±{n,m}(z). R±{n,m}(z) are analytic in γ± see Fig. 4.1. The

kernel of R±{n,m}(z) is chosen in such a way that it is automatically compatible with the

class of admissible potentials for Ln(z) (3.2.4).

R+
{n,m}(z) =χ+

n+1(z)

 θ(m− n) 0

0 θ(n−m)

 χ̂+
m(z), (4.2.1a)

R−{n,m}(z) =χ−n+1(z)

 θ(n−m) 0

0 θ(m− n)

 χ̂−m(z). (4.2.1b)

Then, R+
{n+1,m+1}(z) satisfies the equation (4.2.2):

R+
{n+1,m+1}(z) =χ+

n+2(z)

 θ(m+ 1− n− 1) 0

0 θ(n+ 1−m− 1)

 χ̂+
m+1(z)

=Zχ+
n+1(z)

 θ(m− n) 0

0 θ(n−m)

 χ̂+
m(z)Ẑ

=ZR+
{n,m}(z)Ẑ. (4.2.2)

Theorem 4.2.1 The Resolvent function R+
{n,m}(z) should tend to zero when |z| → ∞

and R−{n,m}(z) should tend to zero when |z| → 0.

Proof: We will use the asymptotic behaviour of R+
{n,m}(z)

R+
{n,m}(z) −→

 z(n+1) 0

0 z−(n+1)

 θ(m− n) 0

0 θ(n−m)

 z−m 0

0 zm


=

 z(n−m+1)θ(m− n) 0

0 z−(n−m+1)θ(n−m)

 , (4.2.3a)
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and from the definition of the Heaviside function,

θ(n) =
n∑

k=−∞

δ0,n =

 1, n ≥ 0,

0, n < 0,
, θ(n−m) =

n∑
k=−∞

δ0,n =

 1, n ≥ m,

0, n < m,
,

θ(m− n) =
n∑

k=−∞

δ0,n =

 1, m ≥ n,

0, m < n,
. (4.2.3b)

Here, we must verify that R+
{n,m}(z) tends to zero when |z| → ∞. When n,m → +∞

and n−m > 1, n > m, the matrix elements of R+
{n,m}(z) tend to zero when |z| → ∞

R+
{n,m}(z) −→

 0 0

0 z−(n−m+1)

 . (4.2.4)

Then, R+
{n+1,m+1}(z) is analytic when |z| → ∞. Analogously, one can verify that

R−{n,m}(z) falls to zero and analytic when |z| → 0.

4.2.2 The Jost solutions, scattering matrix and FASs

As a basic tool to find the completeness relation in the next section, we need to use the

FASs of Ln(z), obtained by combining the pairs of columns of the Jost solutions with the

same analyticity properties. From equation (3.2.7), using the eigenfunctions

(
ϕ+
n , ϕ

−
n

)
=
(
φ+
n , φ

−
n

) z−n 0

0 zn

 ,
(
ξ−n , ξ

+
n

)
=
(
ψ−n , ψ

+
n

) z−n 0

0 zn

 ,

ϕ+
n (z) =φ+

n (z)z−n, ξ+
n (z) = ψ+

n (z)zn, (4.2.5)

then, we will combine the columns

χ+
n (z) =

(
ϕ+
n , ξ

+
n

) zn 0

0 z−n

 =
(
φ+
n , ψ

+
n

)
(z), (4.2.6)

and from the linear combination (φn(z) = ψn(z)T (z)), between the Jost solutions and the

scattering matrix we can obtain the following relations:

χ+
n (z) =ψn(z)

 a+ 0

b+ 1

 = φn(z)

 1 β−

0 α+

 , (4.2.7a)

χ−n (z) =ψn(z)

 1 −b−

0 a−

 = φn(z)

 α− 0

−β+ 1

 , (4.2.7b)
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where

T̂ (z) =

 α−(z) β−(z)

−β+(z) α+(z)

 . (4.2.7c)

The diagonal matrix of both T (z) and T̂ (z) allows for the analytic continuation of the unit

circle, namely a+(z), α+(z) are analytic functions of z for z → ∞, while a−(z), α−(z)

are analytic functions of z for z → 0.

lim
z→∞

a+(z) = lim
z→∞

α+(z) = 1, lim
z→0

a−(z) = lim
z→0

α−(z) = 1. (4.2.8)

Therefore, in order to find the inverse of χ+
n (z) and χ−n (z), we need to equate both sides

of equations (4.2.7a), (4.2.7b). Thus, we have

χ̂+
n (z) =

1

α+(z)

 Ψ̃+
n (z)

−Φ̃+
n (z)

 , (4.2.9a)

where Ψ̃+
n (z) = (Ψ{2,n}(z),−Ψ{1,n}(z)), and analogously we can find the inverse of

χ−n (z)

χ̂−n (z) =
1

α−(z)

 Φ̃−n (z)

−Ψ̃−n (z)

 . (4.2.9b)

We will use equations (4.2.7), (4.2.9) in the next section.

4.3 Completeness of the Jost solutions

We will derive the completeness relation for the Jost solutions of Ln. Our derivation uses

again the contour integration method (see Fig. 4.1). We also note that the contours Γ±

have the same orientation, contrary to the continuous case in Sec. 1.3 (see Fig. 1.5) where

the analogous contours γ± should have also the same orientations. So, we start with the

integral

JR,{n,m}(z) =
1

2πi

(∮
γ+

dz R+
n (z)−

∮
γ−

dz R−n (z)

)
=

S∑
j=1

(
Res
z=±z+

j

R+
n (z) + Res

z=±z−j

R−n (z)

)
, (4.3.1)

where R±n (z) provided by (4.2.1a), determines the kernel of the resolvent of Ln. At the

point of the discrete spectrum, the neighbourhood of ±z±j , and the orientations of the

contours γ{−,in} and γ{−,out} are opposite (as well as those of γ{+,in} and γ{+,out} ). We
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(a) The contours γ± before avoiding the
singularities.

(b) The contours γ± after avoiding the
singularities.

Figure 4.1: (a) The contours γ± for the integral (4.3.1). (b) The contours γ± for the
integral (4.3.1) that avoid singularities when |z| → 0 and |z| → ∞. In (a) and (b) the
solid (red) line |z| = 1 is the continuous spectrum (no eigenvalues). The contour γ+

contains all eigenvalues outside |z| = 1. The contour γ− contains all eigenvalues inside
|z| = 1. The outer contour γ−,out and the inner contour γ+,in have the same orientation
around |z| = 1.

derived the following relations from equation (4.2.7):

a±(z) =(z − (±z±j ))ȧ±j +
1

2
(z − (±z±j ))2ä±j + . . . , (4.3.2a)

α±(z) =(z − (±z±j ))α̇±j +
1

2
(z − (±z±j ))2α̈±j + . . . , (4.3.2b)

χ+
n (z+

j ) = ψ+
n,j(z)(b+

j , 1) = φ+
n,j(z)(1, 1/b+

j ), (4.3.2c)

χ̂+
n (z+

j ) =

(
1

−β+
j

)
Ψ̃+
n,j(z)

(z − ±z+
j )α̇+

j

=

(
1/β+

j

−1

)
Φ̃+
n,j(z)

(z − ±z+
j )α̇+

j

, (4.3.2d)

χ−n (z−j ) = ψ−n,j(z)(1,−b−j ) = φ−n,j(z)(−1/b−j , 1), (4.3.2e)

χ̂−n (z−j ) = −
(
β−j
1

)
Ψ̃−n,j(z)

(z − ±z−j )α̇−j
=

(
1

1/β−j

)
Φ̃−n,j(z)

(z − ±z−j )α̇−j
, (4.3.2f)

where Ψ̃n(z) and Φ̃n(z) are related to ψn(z) and φn(z), respectively. Then, the residues

of the resolvent kernel (when n > m, n−m > 1) are:
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Res
z=±z−j

R−n (z) = lim
z→±z−j

(z − (±z−j ))R−n (z)

= lim
z→±z−j

(z − (±z−j ))χ−n+1(z)

 θ(n−m) 0

0 θ(m− n)

 χ̂−m(z)

= lim
z→±z−j

(z − (±z−j ))φ−n+1,j(z)(−1/b−j , 1)

 1 0

0 0


(
−β−j
−1

)
Ψ̃−m,j(z)

(z − ±z−j )α̇−j
, (4.3.3a)

then,

Res
z=±z−j

R−n (z) =
β−j φ

−
n+1,j(z)Ψ̃−m,j(z)

b−j α̇
−
j (z)

, (4.3.3b)

and, if β−(z) = b−(z),

Res
z=±z−j

R−n (z) =
φ−n+1,j(z)Ψ̃−m,j(z)

α̇−j (z)
. (4.3.3c)

A similar calculation for Res
z=±z+

j

R+
n (z), if β+(z) = b+(z) shows that

Res
z=±z+

j

R+
n (z) = −

φ+
n+1,j(z)Ψ̃+

m,j(z)

α̇+
j (z)

. (4.3.3d)

Next, we can calculate the gap between the outer contour γ−,out and the inner contour γ+,in

which is called the jump of Rn(z) on the unit circle (|z| = 1). From equation (4.2.1a) and

(4.2.4), we have

R±{n,m} =
ε(n−m)

2
χ±n+1(z)χ̂±m(z)∓ 1

2
χ±n+1(z)σ3χ̂

±
m(z),

R+

{n,m} −R
−
{n,m} =

ε(n−m)

2
(χ+

n+1(z)χ̂+
m(z)− χ−n+1(z)χ̂−m(z))

− 1

2
(χ+

n+1(z)σ3χ̂
+
m(z) + χ−n+1(z)σ3χ̂

−
m(z)), (4.3.4a)

since χ+
n+1(z)χ̂+

m(z) = χ−n+1(z)χ̂−m(z). Thus,

R+

{n,m} −R
−
{n,m} =− 1

2

(
χ+
n+1(z)σ3χ̂

+
m(z) + χ−n+1(z)σ3χ̂

−
m(z)

)
=− 1

2

(
χ+
n+1(z)(1+ σ3)χ̂+

m(z)− χ−n+1(z)(1− σ3)χ̂−m(z)
)

=−

(
φ+
n+1(z)Ψ̃+

m(z)

α+(z)
+
φ−n+1(z)Ψ̃−m(z)

α−(z)

)
. (4.3.4b)
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4.3.1 Asymptotic behaviour for z →∞ and z → 0

We will show in this section, the relation between R±n (z) and their behaviour for z →∞
and z → 0.

Theorem 4.3.1 To study and calculate the analytic properties of the solutions R±n (z) and

also their behaviour for z → ∞ and z → 0, the contour integration method is used to

calculate the regular and singular points of R±n (z).

Proof: The idea is shown in Fig. 4.1, where R+
n (z) is an analytic function in γ+ and has

simple poles at z+
j when z → ∞ and R−n (z) is an analytic function in γ− and has simple

poles at z−j when z → 0 (we need to make sure that we have the same numbers of discrete

eigenvalue in each region (γ− and γ+)). It follows directly from Cauchy’s theorem for

analytic functions that the integrals along the cuts cancel (see Fig. 4.1). Now, we need to

find the second term of equation (4.3.1). This needs to use the asymptotic1 behaviour of

χ±n (z) when z →∞ and z → 0, respectively:

χ+
{asy,n}(z) =

 zn 0

0 z−n

+ O(1/z) z →∞, (4.3.5a)

χ−{asy,n}(z) =

 zn 0

0 z−n

+ O(z), z → 0, (4.3.5b)

where O(1/z) are the terms of 1/z order and higher do not contribute to the integrals and

O(z) are the terms of z order and higher do not contribute to the integrals. That means

R+

{asy,n,m} =

 z(n+1) 0

0 z−(n+1)

 θ(m− n) 0

0 θ(n−m)

 z−m 0

0 zm

 , (4.3.6a)

R−{asy,n,m} =

 z(n+1) 0

0 z−(n+1)

 θ(n−m) 0

0 θ(m− n)

 z−m 0

0 zm

 . (4.3.6b)

1asy: asymptotic
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Then, by the Cauchy integral formula, one obtains:∮
γ+

dz R+

{asy,n,m} =

(∮
{γ+,out}

dzR+

{asy,n,m} −
∮
{γ+,in}

dzR+

{asy,n,m}

)
=2πi

S∑
j=1

Res R+

{asy,n,m}, (4.3.7a)∮
γ−

dz R−{asy,n,m} =

(∮
{γ−,out}

dzR−{asy,n,m} −
∮
{γ−,in}

dzR−{asy,n,m}

)
=2πi

S∑
j=1

Res R−{asy,n,m}. (4.3.7b)

We need to subtract equation (4.3.7b) from equation (4.3.7a) as follows:∮
γ+

dz R+

{asy,n,m}−
∮
γ−

dz R−{asy,n,m} =

(∮
{γ+,out}

dzR+

{asy,n,m} +

∮
{γ−,in}

dzR−{asy,n,m}

)
−
(∮
{γ+,in}

dzR+

{asy,n,m} +

∮
{γ−,out}

dzR−{asy,n,m}

)
=2πi

S∑
j=1

(
Res R+

{asy,n,m} + Res R−{asy,n,m}

)
. (4.3.7c)

Finally, we have three terms

1

2πi

(∮
{γ+,out}

dzR+

{asy,n,m} +

∮
{γ−,in}

dzR−{asy,n,m}

)
+

1

2πi

∮
|z|=1

dz(R+ +R−){asy,n,m}

=
S∑
j=1

Res
(
R+

{asy,n,m} +R−{asy,n,m}

)
. (4.3.7d)

Next, the first term needs more calculations (we have simplified the second and the third

terms). From Fig. 4.1 z+
j is outside the contour γ{+,in} and z−j is inside the contour γ{−,in},

so the first term of equation (4.3.7d) for n > m, becomes:

1

2πi

(∮
{γ+,out}

dzR+

{asy,n,m} +

∮
{γ−,in}

dzR−{asy,n,m}

)

=
1

2πi

∮
{γ+,out}

dz

 z(n+1) 0

0 z−(n+1)

 θ(m− n) 0

0 θ(n−m)

 z−m 0

0 zm


+

1

2πi

∮
{γ−,in}

dz

 z(n+1) 0

0 z−(n+1)

 θ(n−m) 0

0 θ(m− n)

 z−m 0

0 zm


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=
1

2πi

 0 0

0
∮
{γ+,out} dz z−(n−m+1)

+

∮{γ−,in} dz z(n−m+1) 0

0 0


=

1

2πi

∮{γ−,in} dz z(n−m+1) 0

0
∮
{γ+,out} dz z−(n−m+1)

 . (4.3.8)

Here, we are trying to show that (4.3.8) is equivalent to the Dirac delta function

δ(x) =

 0 x 6= 0,

∞ x = 0.
(4.3.9a)

If we set z = r eiθ, where r is the radius of contour γ−, then∮
{γ−,in}

dθ (reiθ)(n−m+1)ireiθ =ir(n−m+2)

∫ ∞
−∞

dθ eiθ(n−m+2)

=0, when r → 0. (4.3.9b)

However, if we set z = G eiθ where G is a radius of contour γ+, then∮
{γ+,out}

dθ (Geiθ)−(n−m+1)iGeiθ =iG(n−m)

∫ ∞
−∞

dθ e−iθ(n−m),

≈2πiG(n−m)δ(n−m). (4.3.9c)

In this case, we can estimate that

1

2πi

(∮
{γ+,out}

dzR+

{asy,n,m} +

∮
{γ−,in}

dzR−{asy,n,m}

)
≈ δ(n−m). (4.3.9d)

Thus, equation (4.3.7d) becomes:

δ(n−m) +
1

2πi

∮
|z|=1

dz(R+ +R−){asy,n,m}

=
S∑
j=1

Res
(
R+

{asy,n,m} +R−{asy,n,m}

)
. (4.3.10)

In the next section will use equations (4.3.3c), (4.3.3d), (4.3.4b) and (4.3.10) to present

the expansion over the Jost solutions.



4.3 Completeness of the Jost solutions 94

4.3.2 Expansion over the Jost solutions

Combining the relations (4.3.3c), (4.3.3d), (4.3.4b) and (4.3.10) leads to the following

expressions for JR,{n,m}(z) in (4.3.1)

JR,{n,m}(z) =

δ(n−m)− 1

2πi

∫
|z|=1

dz

(
φ+
n+1(z)Ψ̃+

m(z)

α+(z)
+
φ−n+1(z)Ψ̃−m(z)

α−(z)

)

=
S∑
j=1

(
φ−n+1,j(z)Ψ̃−m,j(z)

α̇−j (z)
−
φ+
n+1,j(z)Ψ̃+

m,j(z)

α̇+
j (z)

)
. (4.3.11)

Then, we obtain the completeness relation

δ(n−m)1 =
1

2πi

∫
|z|=1

dz

(
φ+
n+1(z)Ψ̃+

m(z)

α+(z)
+
φ−n+1(z)Ψ̃−m(z)

α−(z)

)

+
S∑
j=1

(
φ+
{n+1,j}(z)Ψ̃+

m,j(z)

α̇+
j (z)

−
φ−{n+1,j}(z)Ψ̃−m,j(z)

α̇−j (z)
−

)
. (4.3.12)

Therefore, the Jost solutions φ±n (z) form a complete set of functions over the space of

fundamental solutions of Ln(z). Based on the completeness relation (4.3.12), one can

expand every function Y (z) =

Y1

Y2

 from the space of solutions of Ln(z) over the

complete set Jost solutions by the following expansion formulas:

Yn(z) =
1

2πi

∫
|z|=1

dz
(
φ+
n+1(z)y+

m(z) + φ−n+1(z)y−m(z)
)

+
S∑
j=1

(
φ+
{n+1,j}(z)y+

{m,j}(z)− φ−{n+1,j}(z)y−{m,j}(z)
)
, (4.3.13)

where

y±m(z) =
1

α±(z)

∫
|z|=1

dz Ψ̃±m(z)Ym(z), (4.3.14a)

y±{m,j} =
1

α̇±j

∫
|z|=1

dz Ψ̃±{m,j}(z)Ym(z). (4.3.14b)

Thus, the spectral decomposition of the operator Ln is

LnYn(z) =
1

2πi

∫
|z|=1

dz z
(
φ+
n+1(z)y+

m(z) + φ−n+1(z)y−m(z)
)

+
S∑
j=1

(
z+
j φ

+
{n+1,j}(z)y+

{m,j}(z)− z−j φ−{n+1,j}(z)y−{m,j}(z)
)
. (4.3.15)
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Chapter 5

Square barrier potential for continuous
and discrete nonlocal NLS equations

In this chapter, two equations (5.0.1) are used to study the NLS equation

i
d

dt
q =qxx + 2q2(x, t)q∗(−x, t), (5.0.1a)

i
d

dτ
Qn =(Qn+1 − 2Qn +Qn−1) +QnQ

∗
−n(Qn+1 +Qn−1). (5.0.1b)

The main purpose of this chapter is to present a direct and systematic way of finding so-

lutions to the nonlocal continuous and discrete NLS equations (5.0.1). We analysed the

problem of the existence of a dynamical barrier that needs to be excited on a lattice site

to lead to the formulation of the nonlocal continuous and discrete NLS equation. We de-

termined the boundary conditions for creating solitons with such initial conditions for the

continuous and discrete nonlocal NLS equations. In [39, 76], the authors introduced the

square barrier initial potentials for discrete local NLS equation. They also introduced the

Manakov model with a 2-components vector. They also present the boundary conditions

for the non-integrable discrete NLS model. The presentation of this work is based on the

use of the linear combination of the boundary conditions to evaluate functions (the scat-

tering data a±(λ) and a±(z)) which can lead to the eigenvalues of the Ablowitz-Ladik

system. Our calculations are in agreement with chapters 2 and 3. For the continuous

NLS equation, the eigenvalues of the spectral problem must lie in the upper (lower) half

plane and for the DNLS equation , the eigenvalues must lie outside (inside) the unit circle

(|z| = 1).

This chapter is organised as follows: Sec. 5.1 illustrates the general mathematical

steps of the continuous spectral problem and presents two examples of this model. Section

5.2 considers the general mathematical steps of the problem of the discrete Ablowitz-

Ladik problem and provides different examples. We present our analytical and numerical
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results for each example.

5.1 Blow up or not to blow up solutions to the continuous
NLS equation

In this section, we will introduce the spectral problem with its Jost solutions. Following

[9], the model (5.1.1) is slightly different from the ZS system (1.2.6a)

Ψx(x, λ) =L(x, λ)Ψ(x, λ), (5.1.1a)

Ψt(x, λ) =M(x, λ)Ψ(x, λ). (5.1.1b)

Recall the Jost solutions (2.2.2)

lim
x→∞

exp(iλσ3x)ψ(x, t, λ) =1, (5.1.2)

lim
x→−∞

exp(iλσ3x)φ(x, t, λ) =1, (5.1.3)

and the scattering matrix (2.2.1b)

T (λ, t) = ψ−1(x, λ)φ(x, λ) =

 a+(λ) −b−(λ)

b+(λ) a−(λ)

 , (5.1.4)

where detT (λ) ≡ a+(λ)a−(λ) + b+(λ)b−(λ) = 1, for λ ∈ R. The nonlocal involution

for the ZS system (5.1.1a)

Ψx(x, λ) =

 −iλ q+(x, t)

−(q+)∗(−x, t) iλ

Ψ(x, λ), (5.1.5)

and for the scattering data is

a±(λ) = (a±(−λ∗))∗ and b±(λ) = (b∓(−λ∗))∗. (5.1.6)

The time evolution of the solution to the NLS equation is done by calculating the evolution

of the scattering data which is explained in [9, 12]. The authors calculated the scattering

data as:

a±(λ) = a±(λ, 0), b± = e∓4i(λ±)2tb±(λ±, 0), (5.1.7)

where the phases b+(λ+, 0) = eiα and b−(λ−, 0) = eiᾱ, are arbitrary with α, ᾱ both being

real and positive. The derivation of the one soliton solution for the nonlocal NLS is given
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in [7, 9] which is the most general one soliton solution of breathing type

q+(x) = − 2(λ+
1 + λ−1 )e−2λ−1 xeiᾱe−4i(λ−1 )2t

1 + e−2(λ+
1 +λ−1 )xei(α+ᾱ)e4i((λ+

1 )2−(λ−1 )2)t
. (5.1.8)

In the next section, we use two examples to show the case where we have a blow up or

not solution to equation (5.1.8) for the square barrier potential type.

5.1.1 Eigenvalues of square barrier potentials with numerical results

Here, we will use numerical method to find the eigenvalues of the spectral problem cor-

respond to the zeros of the scattering data a±(λ). We will use iteration method on the

spectral problem (5.1.5) for two types of potentials; to do so, we will use the Jost so-

lution φ(x, λ) in different positions (for example see Fig. 5.1). Since we defined that

φ(x, λ) = (φ+, φ−)(x, λ) is a solution to the spectral problem when x → −∞, we need

to find the solution in each region; this will implies finding the a±(λ) functions.

Example 5 The first type of the regions is defined as:

q+(x) =

 k `1 < x < `2,

0 otherwise,
(5.1.9a)

(q+)∗(−x) =

 k −`2 < x < −`1,

0 otherwise,
(5.1.9b)

where k is a positive constant, and `1 and `2 are positive numbers on the x-axis. Figure 5.1

indicates five regions (I − V ) of potentials q+(x) and (q+)∗(−x). In region I , q(x)→ 0

x
`1 `2−`1−`2

I II III IV V

(q+)∗(−x) q+(x)
k

Figure 5.1: Example 5: The square barrier potentials for (5.1.9).

when x→ −∞, then the spectral problem becomes:

φ(+,I)
x (x, λ) =

−iλ 0

0 iλ

φ(+,I)(x, λ), (5.1.10)

where φ(x, λ) =

φ1

φ2

 (x, λ) is a column vector. We find the solutions of the system
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(5.1.10) are

φ
(+,I)
1 (x, λ) =f1e

−iλx,

φ
(+,I)
2 (x, λ) =f2e

iλx.
(5.1.11)

Using the boundary conditions (5.1.2) of the Jost solution φ(x, λ) as x → −∞, we can

find the constants f1 = 1, f2 = 0. Therefore, in this case the solutions in region I will be

φ
(+,I)
1 (x, λ) =e−iλx,

φ
(+,I)
2 (x, λ) =0.

(5.1.12)

In region II , the spectral problem becomes:

φ(+,II)
x (x, λ) =

−iλ 0

−k iλ

φ(+,II)(x, λ). (5.1.13)

We can rewrite the system (5.1.13) as:

φ̇
(+,II)
1 (x) =− iλφ

(+,II)
1 (x), (5.1.14a)

φ̇
(+,II)
2 (x) =− kφ(+,II)

1 (x) + iλφ
(+,II)
2 (x), (5.1.14b)

The solutions of (5.1.14) are:

φ
(+,II)
1 (x, λ) =f3e

−iλx, (5.1.15a)

φ
(+,II)
2 (x, λ) =eiλx

[
k

2iλ
e−2iλx + f4

]
. (5.1.15b)

Since the solutions φ(+,I)
1 (x, λ) and φ(+,II)

1 (x, λ) are equals at x = −`2, (φ1 is continuous

at x = −`2), then f3 = 1. Therefore, the first solution (5.1.15a) will be

φ
(+,II)
1 (x, λ) = e−iλx. (5.1.16)

Next, we can find f4 at x = −`2, using the relation between the two regions (I) and

(II), (φ2 is continuous at x = −`2), then f4 = −k
2iλ
e2iλ`2 . Therefore, the second solution

(5.1.15b) will be

φ
(+,II)
2 (x, λ) = eiλx

[
k

2iλ
e−2iλx − k

2iλ
e2iλ`2

]
. (5.1.17)
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In region III , the spectral problem read as in (I)

φ(+,III)
x (x, λ) =

−iλ 0

0 iλ

φ(+,III)(x, λ). (5.1.18)

The solutions of (5.1.18) are:

φ
(+,III)
1 (x, λ) =e−iλx, (5.1.19a)

φ
(+,III)
2 (x, λ) =

k

2iλ

(
e2iλ`1 − e2iλ`2

)
eiλx. (5.1.19b)

In region IV , the spectral problem becomes:

φ(+,IV )
x (x, λ) =

−iλ k

0 iλ

φ(+,IV )(x, λ), (5.1.20)

and its solutions are

φ
(+,IV )
1 (x, λ) =e−iλx

[
1− k2

4λ2

(
e2iλ`1 − e2iλ`2

)
e2iλx

+
k2

4λ2

(
e2iλ`1 − e2iλ`2

)
e2iλ`1

]
, (5.1.21a)

and

φ
(+,IV )
2 (x, λ) =

k

2iλ

(
e2iλ`1 − e2iλ`2

)
eiλx. (5.1.21b)

The spectral problem in region V is

φ(+,V )
x (x, λ) =

−iλ 0

0 iλ

φ(+,V )(x, λ). (5.1.22)

The solution of the first eigenfunction of (5.1.22) is

φ
(+,V )
1 (x, λ) = ((1/2 i(

−1/2 ik
(
−eiλ (l1+2 l2 ) + e3 iλ l1

)
λ

)k
(
eiλ (l1−l2 ) − e−iλ (l1−l2 )

)
+ λ e−iλ l2 )λ−1)

(
eiλ (l2−x)

)
(5.1.23a)

and the second eigenfunction

φ
(−,V )
2 (x, λ) = eiλx. (5.1.23b)

From the solution in region V , we can find a±(λ). We remind that the linear combination

of the Jost solutions φ(x, λ) and ψ(x, λ) are connected with the scattering matrix T (λ, t),
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we obtain:

a+(λ) =((1/2 i(
−1/2 ik

(
−eiλ (l1+2 l2 ) + e3 iλ l1

)
λ

)k
(
eiλ (l1−l2 ) − e−iλ (l1−l2 )

)
+λ e−iλ l2 )λ−1)

(
eiλ l2

)
, (5.1.24a)

a−(λ) =1. (5.1.24b)

Then, the zeros of a+(λ) (a+(λ) = 0) will be the discrete eigenvalues λ+
j . Since a+(λ) is

analytic in the upper half complex λ-plain (λ ∈ C+), we have discrete eigenvalues when

k > 0.5 (see Fig. 5.2). However, a−(λ) = 1 6= 0, means, this function can not be zero for

all λ ∈ C−. Then, we have no discrete eigenvalues in the lower half complex λ-plain. In

this case we have blow up solution.

-3 -2 -1 0 1 2 3

Re( )

-1

-0.5

0

0.5

1

Im
(

)

Re(a
+
)=0

Im(a
+
)=0)

- <x<

(a) The solutions of a+(λ) = 0 at k = 0.4.
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(b) The solutions of a+(λ) = 0 at k = 0.8.

Figure 5.2: (a) and (b) are contour plots of the real and imaginary parts of the solution
of a+(λ) = 0 when `1 = 1, `2 = 3 at k = 0.4 and k = 0.8, respectively. The blue
dashed lines represent the imaginary part of equations Im(a+(λ)), while the red solid
lines are for the real part of the equation Re(a+(λ)). The dotted line is the real line
(−∞ < x <∞). Intersections between the blue and red lines represent uniform solutions
of a+(λ) = 0, λ = λj, a

+(λj).
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Example 6 The second type of the potentials is defined as:

q+(x) =

 k −`1 < x < `2,

0 otherwise,
(5.1.25a)

(q+)∗(−x) =

 k −`2 < x < −`1,

0 otherwise,
(5.1.25b)

where k is a positive constant, `1 and `2 are positive numbers on the x-axis. Figure 5.3

indicates five regions (I − V ) of potentials q+(x) and (q+)∗(−x). In region I , q(x)→ 0

x
`1 `2−`1−`2

I II III IV V

(q+(−x))∗ q+(x)k

Figure 5.3: Example 6: The square barrier potentials (5.1.25)

when x→ −∞. Then, the spectral problem becomes an eigenvalue problem

φ(+,I)
x (x, λ) =

−iλ 0

0 iλ

φ(+,I)(x, λ). (5.1.26)

According to the Jost solution φ(x, λ), when x → −∞, the solutions of the system

(5.1.26) will be

φ
(+,I)
1 (x, λ) =e−iλx,

φ
(+,I)
2 (x, λ) =0.

(5.1.27)

In region II , the spectral problem is

φ(+,II)
x (x, λ) =

−iλ 0

−k iλ

φ(+,II)(x, λ), (5.1.28)

in this case we have the system of equations

φ̇
(+,II)
1 (x) =− iλφ

(+,II)
1 (x), (5.1.29a)

φ̇
(+,II)
2 (x) =− kφ(+,II)

1 (x) + iλφ
(+,II)
2 (x), (5.1.29b)
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the solution of (5.1.29) are

φ
(+,II)
1 (x, λ) =e−iλx, (5.1.30a)

φ
(+,II)
2 (x, λ) =eiλx

[
k

2iλ
e−2iλx − k

2iλ
e2iλ`2

]
. (5.1.30b)

In region III , the spectral problem is

φ(+,III)
x (x, λ) =

−iλ k

−k iλ

φ(+,III)(x, λ). (5.1.31)

We have the system of equations,

φ̇
(+,III)
1 =− iλφ

(+,III)
1 + kφ

(+,III)
2 , (5.1.32a)

φ̇
(+,III)
2 =− kφ(+,III)

1 + iλφ
(+,III)
2 . (5.1.32b)

Simplifying this system, we obtain:

φ
(+,III)
1 =

iλ

k
φ

(+,III)
2 − 1

k
φ̇

(+,III)
2 , (5.1.33a)

φ̈
(+,III)
2 + (λ2 + k2)φ

(+,III)
2 = 0. (5.1.33b)

The solution to (5.1.33) is

φ
(+,III)
1 (x) =e−iλx, (5.1.34)

φ
(+,III)
2 (x) =

1

2

−ike−iλx + ieiλxke2 iλ l2

λ
. (5.1.35)

In region IV ,

φ(+,IV )
x (x, λ) =

−iλ k

0 iλ

φ(+,IV )(x, λ), (5.1.36)

and the solutions are
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φ
(+,IV )
1 (x, λ) =− 1

2λ
(

1

e−iλ`1
(i(

1

2

1√
Mλ

(k(−2ie2iλ`1
√
M P

+ 2ie2iλ`2
√
M P + 2λe2iλ`1N− 2λe2iλ`2N− 4λeiλ`1N

+ ie2iλ`1
√
M − ie2iλ`2)))keiλ`1) +

1

eiλ`1
(ie−iλx(2i(

1√
Mλ

(−ik2e2iλ`1N

+ ik2e2iλ`2N− 2iλ2eiλ`1N + 2λ
√
Meiλ`1P−

√
Meiλ`1λ))λ

− (
1

2
√
Mλ

(k(−2ie2iλ`1
√
M P + 2ie2iλ`2

√
M P

+ 2λe2iλ`1N− 2λe2iλ`2N− 4λeiλ`1N + ie2iλ`1
√
M

− ie2iλ`2
√
M)))k))), (5.1.37a)

and

φ
(+,IV )
2 (x, λ) =

1

e−iλ`1
((

1

2
√
Mλ

(k(−2ie2iλ`1
√
M P + 2ie2iλ`2

√
M P + 2λe2iλ`1N

− 2λe2iλ`2N− 4eiλ`1λN + ie2iλ`1
√
M − ie2iλ`2

√
M)))eiλx, (5.1.37b)

where M = k2 + λ2, N = sin(
√
M`1) cos(

√
M`1) and P = cos2(

√
M`1).

The spectral problem in region V is

φ(+,V )
x (x, λ) =

−iλ 0

0 iλ

φ(+,V )(x, λ). (5.1.38)

Then, the solution of φ(+,V )
1 (x, λ) in (5.1.38) is

φ
(+,V )
1 (x, λ) =

1

e−iλ`2
((

1

λ
(

i

2
(−2ie−iλ`(

−1√
M

(ik2e2iλ`1N− ik2e2iλ`2N + 2iλ2eiλ`1N

− 2λ
√
Meiλ`1P + λ

√
Meiλ`1)) + (

k2

2
√
Mλ

(2ie2iλ`1
√
M P

− 2ie2iλ`2
√
M P− 2λe2iλ`1N + 2λe2iλ`2N + 4λeiλ`1N− ie2iλ`1

√
M

+ ie2iλ`2
√
M))eiλ` + e−iλ`(− k2

2
√
Mλ

(2i
√
Me2iλ`1P− 2i

√
Me2iλ`2P

− 2λe2iλ`1N + 2λe2iλ`2N + 4λeiλ`1N− ie2iλ`1
√
M

+ ie2iλ`2
√
M)))))e−iλx), (5.1.39a)

where ` = `1 + `2. Analogously, we calculate a−(λ) from φ−(x, λ). Then, the eigenfunc-
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tion in region V , has the form:

φ
(−,V )
2 (x, λ) =

e−3iλ`1eiλ`2

√
M

(2iλN + 2
√
MP−

√
M)eiλx. (5.1.39b)

Then, a±(λ) are given by

a+(λ) =
1

e−iλ`2
(
1

λ
(

i

2
(−2ie−iλ`(

−1√
M

(ik2e2iλ`1N− ik2e2iλ`2N + 2iλ2eiλ`1N

− 2λ
√
Meiλ`1P + λ

√
Meiλ`1)) + (

k2

2
√
Mλ

(2ie2iλ`1
√
M P− 2ie2iλ`2

√
M P

− 2λe2iλ`1N + 2λe2iλ`2N + 4λeiλ`1N− ie2iλ`1
√
M + ie2iλ`2

√
M))eiλ`

+ e−iλ`(− k2

2
√
Mλ

(2i
√
Me2iλ`1P− 2i

√
Me2iλ`2P

− 2λe2iλ`1N + 2λe2iλ`2N + 4λeiλ`1N− ie2iλ`1
√
M

+ ie2iλ`2
√
M))))), (5.1.40a)

and

a−(λ) =
e−3iλ`1eiλ`2

√
M

(2iλN + 2
√
MP−

√
M), (5.1.40b)

respectively. Computing the eigenvalues in this case, we expect our solution to blow up
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(a) The solution of a+(λ) = 0 at k = 0.6.
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(b) The solution of a−(λ) = 0 at k = 0.6.

Figure 5.4: (a) and (b) are contour plots of the real and imaginary parts of the solution of
a±(λ) = 0 when k = 0.6, `1 = 1, `2 = 3, respectively. The blue dashed lines represent
the imaginary part of equations Im(a±(λ)), while the red solid lines are for the real part
of the equation Re(a±(λ)). The dotted line is the real line (−∞ < x <∞). Intersections
between the blue and red lines represent uniform solutions of a±(λ) = 0, λ = λj .

when x = 0 and

t =
(2n+ 1)π − (α + ᾱ)

4((λ+
1 )2 + (λ−1 )2)

, n ∈ N. (5.1.41)
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5.2 Blow up or not to blow up solutions to the nonlocal
DNLS equation

The discrete system of equations

iQ+
n,τ =(Q+

n+1 − 2Q+
n +Q+

n−1)−Q+
nQ
−
n (Q+

n+1 +Q+
n−1),

−iQ−n,τ =(Q−n+1 − 2Q−n +Q−n−1)−Q−nQ−n (Q−n+1 +Q−n−1),
(5.2.1)

are the compatibility condition (or differential-difference zero curvature) of two operators

Ln and Mn for a 2× 2 function Ψn(z, τ) [2, 3]:

Ψn+1(z, τ) = Ln(z, τ)Ψn(z, τ), n ∈ N, (5.2.2a)

Ψ̇n(z, τ) = Mn(z, τ)Ψn(z, τ), (5.2.2b)

where Ψn+1(z, τ) is a 2× 2 matrix eigenfunction and Ln(z, τ) in (5.2.2a) is

Ln(z, τ) = (Z + Q̃n), (5.2.3a)

where

Z =

 z 0

0 z−1

 and Q̃n(τ) =

 0 Q+
n (τ)

−(Q+)∗−n(τ) 0

 . (5.2.3b)

To make the system simpler, we denoted Q+
n (τ) = Qn(τ) then,

Q̃n(τ) =

 0 Qn(τ)

−Q∗−n(τ) 0

 . (5.2.4)

The matrix Mn(z, τ) in (5.2.2a) is

Mn(z, τ) =


−iQnQ

∗
−n+1 − i

2
(z − z−1)2 −i(zQn − z−1Qn−1)

i(−z−1Q∗−n + zQ∗−n+1) iQ∗−nQn−1 + i
2
(z − z−1)2

 , (5.2.5)

and the zero curvature of (5.2.2) is

Mn+1Ln = L̇n + LnMn, (5.2.6)

where dot ˙ in (5.2.2b) and (5.2.6) correspond to the derivative with respect to t. We

shortly introduce the key concepts from chapter 3 that we need in this section. From
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(5.2.2a), we have the two solutions when the potential |Qn| → 0 as n→ ±∞

ψn(z)→

 zn 0

0 z−n

 , as n→ +∞, (5.2.7a)

φn(z)→

 zn 0

0 z−n

 , as n→ −∞. (5.2.7b)

These solutions are the Jost functions (or solutions) to (5.2.2a). The pairs φn = (φ+
n , φ

−
n )

and ψn = (ψ−n , ψ
+
n ) are related to the scattering matrix T (z), i.e,

φn(z) = ψn(z)T (z), when |z| = 1, (5.2.8a)

where

T (z) =

 a+(z) −b−(z)

b+(z) a−(z)

 . (5.2.8b)

The operator (5.2.2b) determines the evolution of the Jost solutions, which leads us to the

time evolution of the component of the scattering matrix (6.1.14). For more information

see [12]. Since Q̃n(τ)→ 0 as n→ ±∞, one gets

a±(z, τ) =a±(z, 0), (5.2.9a)

b±(z, τ) =e±2iωτb±(z, 0), (5.2.9b)

where ω± = 1
2
(z±− (z±)−1)2. Ablowitz et al. [9, 12] used a generalised Riemann-Hilbert

boundary value problem to find the soliton solution to the nonlocal NLS equation (5.0.1b).

The eigenvalues in the nonlocal NLS equation appear in pairs {z+
j , z

+,∗
j } and {z−j , z

−,∗
j },

where j ∈ N; N being the number of eigenvalues. For a one – soliton solution, they

present real eigenvalues z+
1 > 1 and 0 < z−1 < 1, and the solution has the following form,

Qn,1(τ) =
−2 C−1 (z−1 )2n

1 + 4 C+
1 C−1 (z+

1 )−2n (z−1 )2(n+1) ((z+
1 )2 − (z−1 )2)−2

, (5.2.10)

where C±1 (z, τ) are called norming constant, C+
1 =

b+1 (z,τ)

ȧ+
1 (z,0)

=
z+
1 ((z+

1 )2−(z−1 )2)e2iω+
1 τ eiβ

2z−1
and

C−1 =
b−1 (z,τ)

ȧ−1 (z,0)
=

((z+
1 )2−(z−1 )2)e−2iω−1 τ eiβ̄

2z+
1 z
−
1

, ω±1 = 1
2
(z±1 − (z±1 )−1)2, with β, β̄ both being real

and positive.

Upon inspection, the one soliton will not blow up when the eigenvalues satisfy the

relation z+
j = 1/z−j . Here, we conjecture that such a condition will be met by initial

conditions that are mirror symmetric with respect to the vertical axis or those that are

PT-symmetric at t = 0. In the following section, we will illustrate the conjecture through
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analysing specific cases.

5.3 Eigenvalues of square barrier potentials with numer-
ical results

The eigenvalues of the spectral problem correspond to the zeros of a±(z) with |z| 6= 1. We

will use the iteration method on equation (5.2.2a), to calculate the zeros of the scattering

data a±(z). Since we defined that φn(z) is a solution of (5.2.2a), then

φn+1(z, t) =(Z + Q̃n)φn(z), (5.3.1)

First, consider a one-site excitation

Qn(0) =

 k, n = n0, k ∈ C,
0, otherwise.

(5.3.2)

Example 7 When n0 = 0, we have

Q̃0(0) =

 0 Q0

−Q∗0 0

 =

 0 k

−k 0

 , Qn6=0(0) = 0. (5.3.3)

Since, as n → −∞, φn =

 zn 0

0 z−n

 , we will start with n = 0 in equation (5.3.1).

Then,

φ1(z) =(Z + Q̃0)φ0(z) =

 z k

−k z−1

 , (5.3.4a)

φ2(z) =(Z + Q̃1)φ1(z) =

 z2 zk

−z−1k z−2

 , (5.3.4b)

...

φn(z) =

 zn zn−1k

z−(n−1)k z−n

 = Zn(1+ Z−1Q̃0), (5.3.5)

where 1 is an identity 2 × 2 matrix. Comparing (5.3.5) with (6.1.14), we can say that

T (z) = (1+ Z−1Q̃0). Since we are looking for the zeros of the function a±(z), which is

on the diagonal part of the matrix T (z) = 1, we obtain that a±(z) = 1. Hence, the initial
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condition (6.2.1) with n0 = 0 cannot generate solitons. This is in agrement with the local

case [39], as considering solutions of (5.0.1b) with the symmetry Qn(t) = Q−n(t) will

make the nonlocal system local.

Example 8 When n0 = 1, we have

Q−1(0) =

 0 0

−k 0

 , (5.3.6a)

Q1(0) =

 0 k

0 0

 , Qn6={−1,1}(0) = 0. (5.3.6b)

Using the same argument, we obtain:

T (z) = (1+ Z−2Q̃1ZQ̃−1Z−1), (5.3.7)

and hence

a+(z) = z4 − k2, a−(z) =
1

z4
. (5.3.8)

Under the condition |z| > 1, we obtain the zeros of a+(z) when z+ = ±
√
±k at |k| > 1.

On the other hand, a−(z) has no solution under the condition |z| < 1. In this case, we

expect our solution to blow up because at n = 0, the denominator of (5.2.10) will be zero

at a finite time (see Fig. 5.5a and 5.5b).

Example 9 We consider here, two-site excitations n0 = 0, 1 that is

Qn =

 k, n = 0, 1,

0, otherwise,
(5.3.9)

The same calculations as before yield

a+(z) = z4 − 2k2z2 − k2, a−(z) =
1

z6
, (5.3.10)

which give us z+ = ±
√
±k
√
k2 + 1 + k2 and no z−. Hence, we should obtain a blow up

solution to equation (5.2.10).

Example 10 Considering another two excitations of the form:

Qn = k ×


1, n = −1,

eiθ, n = 1,

0, otherwise,

(5.3.11)
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we obtain a+(z) = z4 − k2 and a−(z) = −z4k2 + 1, from which we obtain:

z+ = ±
√
±k, z− = ± 1√

±k
, (5.3.12)

i.e., the eigenvalues are independent of the phase θ. Note that for each z+, there is a

reciprocal eigenvalue z−, i.e., z+ = 1/z−. Using numerical simulation, we will see

below that depending on the phase, the corresponding solution can be bounded or blow

up.

Example 11 Finally, we consider three excitations (n0 = −1, 0, 1) of the form:

Qn =

 k + iαn, n = −1, 0, 1,

0, otherwise,
(5.3.13)

where without loss of generality α0 = 0. We obtain a+(z) = z4 − 2k2z2 − k2 and

a−(z) = −k2z4 − 2 k2z2 + 1, such that

z+ = ±
√
k
√
k2 + 1 + k2, , z− = ±

√
k
(
−k +

√
k2 + 1

)
k

. (5.3.14)

This implies that no blow up will be obtained if and only if α−1 = ±α1.

5.4 Numerical simulations

To compare our analytical results with the numerics, first we solve (5.2.2a) for the spec-

trum of the Lax operator for a given initial condition. To do so, we rewrite the equation

into the generalised eigenvalue problem

z

 1 0

Q∗−n 1+

Ψ =

1+ −Qn

0 1

Ψ, (5.4.1)

where 1 = δi,j is the identity matrix and 1+ = δi,j−1 is an off-diagonal "identity" one. A

standard eigenvalue solver in MATLAB is then used to determine the spectrum z. Time

integrations of (5.0.1b) for the initial condition are then obtained numerically using the

fourth order Runge-Kutta method.

First, we consider the initial condition (5.3.6) with n0 = 1. Note that n0 = 0 yields

trivial dispersion. In Fig. 5.5a, we plot the spectrum, which in agreement with the analyti-

cal calculations shows the presence of eigenvalues outside the unit circle and none inside.

The location of the eigenvalues coincides with the analytical results. We show in Fig. 5.5b

the dynamics of the initial condition, where, as conjectured, the soliton collapses.



5.4 Numerical simulations 111

-1.5 -1 -0.5 0 0.5 1 1.5

Re(z)

-1.5

-1

-0.5

0

0.5

1

1.5
Im

(z
)

(a) The solutions of a+(z) = 0 in the analytic region |z| > 1.
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Figure 5.5: (a) The spectrum in the complex plane for the initial condition (6.2.1) with
n0 = 1 and k = 1.4. The dots outside the unit circle are the solutions of a+(z) = 0. (b)
Time evolution for the initial condition where the blow up solution of (5.2.10) can be seen
at a later time.
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(a) The solutions of a+(z) = 0 in the analytic region |z| > 1 and the
solutions of a−(z) = 0 in the analytic region |z| < 1.
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(b) Time evolution of the initial condition (5.3.11) .

Figure 5.6: (a) The spectrum in the complex plane for the initial condition (5.3.11) with
k = 1.4 and θ = 1. The dots outside and inside the unit circle are the solutions of
a±(z) = 0, respectively. (b) Time dynamics of the initial condition where a stable soliton
breather solution can be clearly seen to (5.2.10).
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Figure 5.7: Time evolution of the initial condition (5.3.11) with k = 1.4 and θ = 3.1.

Next, we study the initial conditions (5.3.9) and (5.3.11). We do not present the former

because it yields a rapid blow up at finite time. The latter initial condition with θ = 0 will

yield the same dynamics as the local NLS equation. In Fig. 5.6 we present the spectrum

and time dynamics of the latter initial condition for θ = 1. It is clear that the solution is

still bounded, despite the fact that it is no longer mirror symmetric.

An interesting result is presented in Fig. 5.7, for θ = 3.1, (note that the spectrum of

the Lax operator is still the same as in Fig. 5.6a) for which the oscillation has a higher

amplitude than with θ = 1. When θ = π, we obtain a blow up solution. This is an example

where the reciprocality of eigenvalues outside and inside the unit circle is necessary, but

not sufficient.

5.5 Conclusion

Our study has examined the possibility for the creation of solitons in the discrete inte-

grable lattices of the nonlocal NLS equation type with or without a blow up. Our con-

jecture has based on the box type initial conditions, which were successfully tested in

numerical simulations. To sum up, we conjectured that: 1) if the Lax operator has no

spectrum outside nor inside the unit circle, there is no blow up; 2) when it does have

a spectrum outside or inside the unit circle, mirror symmetric initial conditions are suf-

ficient, but not necessary, for bounded solutions; 3) to obtain bounded solutions, each

spectrum outside the unit circle needs (but is not sufficient) to have a reciprocal counter-

part on the inside. When the initial condition for the potential is asymmetric, then initial



5.5 Conclusion 114

excitations with power above some threshold will lead to blow up solutions. Numerical

simulations supporting the conjecture have been presented.

The next question will be to provide a rigorous proof of the conjecture, which will be

addressed in future work.



Chapter 6

Discrete Manakov nonlocal nonlinear
Schrödinger equations

6.1 Introduction

The most commonly used mathematical model and completely integrable nonlinear PDE

is the NLS equation (1.1.3a) [40, 54, 93, 120]. Here, q(x, t) is a complex valued function

tending fast enough to zero as |x| → ∞ [12, 54]. Furthermore, the NLS arises in more

than one area in Physics, such as in the evolution of small amplitude slowly varying wave

packets in deep water, nonlinear optics and Plasma Physics [2, 10, 11]. The Ablowitz-

Ladik equation [3], which is an integrable form of the discretised NLS equation (recall

equation (1.6.3)), has solutions on a zero background level(soliton)

iQn,τ = Qn+1 − 2Qn +Qn−1 + |Qn|2(Qn+1 +Qn−1). (6.1.1)

Here, τ is the continuous evolution variable and n = 0,±1,±2, . . . are integers. The

inverse scattering technique with zero boundary condition for equations (1.1.3a) and

(6.1.1), have been developed in [3, 9, 10, 70, 92, 93]. At the same time, the inverse

scattering technique for non-vanishing boundary conditions has been developed as well

in [31, 98]. In recent years there has been wide interest in the study of soliton solutions

of certain discrete systems associated with the vector extensions of the NLS. Manakov in

[83] showed that the vector NLS, is

iqt = qxx + 2 ‖ q ‖2 q(x, t), (6.1.2)

where q is a P -component vector and ‖ . ‖ denotes the vector norm. Equation (6.1.2)

also possessed solitons and could be integrated via the IST. When P = 2, q corresponds

to components of the electric field and this is relevant in the study of electromagnetic

waves in optical media. In this case, when P = 2 equation (6.1.2) is called the Manakov
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equation and is presented as the first integrable multi-component generalisation of the

scalar NLS equation (1.1.3a)

iq1,t + q1,xx + 2(|q1|2 + |q2|2)q1(x, t) =0, (6.1.3a)

iq2,t + q1,xx + 2(|q1|2 + |q2|2)q2(x, t) =0. (6.1.3b)

Equation (6.1.3) are associated with a scattering problem of the ZS type in [83, 93]. It

was proposed by S. V. Manakov as an asymptotic model for the propagation of the electric

field in a waveguide. In this chapter, we are dealing with the discrete vector NLS. The

choice of discretisation for vector NLS (6.1.2) is either symmetric or asymmetric. These

discretisations are as follows:

Symmetric discretisation

iQn,τ = Qn−1 − 2Qn + Qn+1 + QnQ
∗
−n(Qn+1 + Qn−1), (6.1.4)

where Qn, is a P-component vector. The general form of Qn(τ) is Qn =

 0 Q+
n

Q−n 0

.

Asymmetric discretisation

iQ+
n,τ = Q+

n−1 − 2Q+
n + Q+

n+1 −Q+
nQ−n (Q+

n+1 + Q+
n−1), (6.1.5a)

iQ−n,τ = Q−n−1 − 2Q−n + Q−n+1 −Q+
nQ−n (Q−n+1 + Q−n−1), (6.1.5b)

where Q+
n and Q−n are N ×M and M × N matrices, respectively. Using the symmetry

condition (6.1.6), equations (6.1.5) become local multi-component NLS (MNLS) equa-

tion discrete type (6.1.7)

Q−n (τ) = −B−(Q+
n )†(B+)−1, B =

B+ 0

0 B−

 , (6.1.6)

iQn,τ = Qn−1 − 2Qn + Qn+1 + ||Qn||2(Qn+1 + Qn−1). (6.1.7)

Here, we assumed that blocks B+ and B− are nonsingular matrices and the superscript †
denotes the transpose complex conjugate. We also concern with the nonlocal integrable

discrete MNLS equation for such initial conditions. For this we need the nonlocal condi-

tion on the potentials Q±n (τ),

Q−n (τ) = −B−(Q+
−n)†(B+)−1, (6.1.8)
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where N = 1,M = 2, and a matrix B will be

B =


1 0 0

0 1 0

0 0 1

 , B+ = 1, B− =

 1 0

0 1

 . (6.1.9)

The particular choice in equation (6.1.4) is when P = 2, so Q+
n = (Un, Vn). By apply-

ing the condition (6.1.8), the nonlocal discrete MNLS model and focusing type has the

following form

iUn,τ =(Un+1 − 2Un + Un−1) + (UnU
∗
−n + VnV

∗
−n)(Un+1 + Un−1),

−iVn,τ =(Vn+1 − 2Vn + Vn−1) + (UnU
∗
−n + VnV

∗
−n)(Vn+1 + Vn−1).

(6.1.10)

The symmetric system (6.1.10) is associated with a linear operator pair and can be written

as

Ψn+1 = (Z + Qn)Ψn, (6.1.11)

with

dΨn

dτ
=


−i(UnU

∗
−(n−1) + VnV

∗
−(n−1))−

2
3 i(z − z−1)2 −i(zUn − z−1Un−1) −i(zVn − z−1Vn−1)

i(−z−1U∗−n + zU∗−(n−1)) iUn−1U
∗
−n + 1

3 i(z − z−1)2 iU∗−nVn−1

i(−z−1V ∗−n + zV ∗−(n−1)) iUn−1V
∗
−n iVn−1V

∗
−n + 1

3 i(z − z−1)2

 ,

(6.1.12a)

where

Z =


z 0 0

0 z−1 0

0 0 z−1

 , Qn =


0 Un Vn

−U∗−n 0 0

−V ∗−n 0 0

 . (6.1.12b)

We refer to solutions of the discrete scattering problem (6.1.11) as Jost functions with

respect to the parameter z. When the potentials |Un|, |Vn| → 0 as n → ∓∞, the Jost

functions are asymptotic to the solutions of

Ψn+1 =


zn 0 0

0 z−n 0

0 0 z−n

Ψn. (6.1.13a)
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Therefore, the Jost functions defined by the following boundary conditions

ψn(z) =


zn 0 0

0 z−n 0

0 0 z−n

 , as n→ +∞,

φn(z) =


zn 0 0

0 z−n 0

0 0 z−n

 , as n→ −∞,

(6.1.13b)

the pairs φn(z) = (φ+
n , φ

−
n ) and ψn(z) = (ψ−n , ψ

+
n ) are linearly dependent and one can

write them as linear combinations. The coefficients of these linear combinations depend

on z. Then, the following relation holds on |z| = 1 and defines the scattering coefficients

a+(z), a−(z),b+(z), and b−(z)

φn(z) = ψn(z)T (z), T (z) =

 a+(z) −b−(z)

b+(z) a−(z)

 , when |z| = 1, (6.1.14)

and when z = zj then, a+(zj) = 0 = a−(zj) and

φ±n (zj) = ±b±(zj)ψ
±
n (zj), (6.1.15)

zj is an eigenvalue of (6.1.11). Here, a+(z) is a single element but a−(z) is a block 2× 2

matrix , b−(z) is a block 1 × 2 matrix and b+(z) is a block 2 × 1 matrix. The time

evolution of the Jost solution for the nonlocal discrete MNLS equation can be determined

as in [12]

a+
τ (z, τ) =0, a−τ (z, τ) = 0,

a+(z, τ) =a+(z, 0), a−(z, τ) = a−(z, 0), (6.1.16a)

∓2i7b±(z, τ) + b±τ (z, τ) =0, b±(z, τ) = e±2iωτb±(z, 0). (6.1.16b)

6.2 Square barrier potentials with nonlocal reduction

In this section, we use specific initial conditions for the potential for which the theory

of PT-symmetry is applicable. In [9, 101], the authors used the spectral problem, for

the continuous nonlocal NLS equation, with the boundary conditions for the case of the

so-called single box initial data to calculate the coefficients of the Jost solutions a±(λ).

In [39, 76], the authors introduced the square barrier initial potentials for the local DNLS
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system in single component as well as in the discrete MNLS equation .

In this section we will find the the critical point of three examples of square barrier

potentials to determine the discrete eigenvalues z±k of the discrete Manakov vector NLS

equation which corresponds to the system (6.1.11). The strategy is to use the iteration

method, which uses the asymptotic behaviour for the Jost solutions. This will lead to the

coefficients of the Jost solutions of a+(z) and a−(z). We related the potentials in each

example to the type of the solution that we are expecting. We have defined two sufficient

conditions that have no blow up solutions to equation (6.1.10). The first condition is

when the potentials satisfy the parity condition (P for parity), which means Vn = U−n.

The second condition is a relation between the solutions of the scattering data a+(z) and

a−(z). The solutions of the determinant of a−(z) must be the inverse of the solutions of

a+(z). In order to explain these conditions the following examples will show the type

of solution between a+(z) and a−(z). Here, we will start using the spectral problem to

calculate the zeros of the scattering data a+(z) and a−(z). Note that a−(z) is a 2 × 2

matrix and that we will find the zeros of det(a−(z)).

6.2.1 Eigenvalues of square barrier potentials with numerical results

We will use numerical method to find the eigenvalues of the spectral problem correspond

to the zeros of a+(z) and a−(z) with |z| 6= 1. We will use the iteration method on equation

(6.1.11), to calculate the zeros of the scattering data a+(z) and det(a−(z)).

Example 12 We consider n0 = −1, v0 = 1. We have

Un(0) =

 k, n = n0, k ∈ C,
0, otherwise,

Vn(0) =

 k, n = v0, k ∈ C,
0, otherwise.

(6.2.1)

In this case, according to the position n, the potentials have the following forms

Q−1 =


0 U−1 0

0 0 0

−V ∗1 0 0

 , Q1 =


0 0 V1

−U∗−1 0 0

0 0 0

 . (6.2.2)

We will start with n = −1 in equation (6.1.11) and as n→ −∞, the eigenfunction φn(z)

read

φn(z) =


zn 0 0

0 zn 0

0 0 zn

 , (6.2.3a)
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then, the algorithm to find the eigenvalues will start as follows:

n = −1 : φ0(z) = (Z + Q−1)φ−1(z) (6.2.3b)

φ0(z) =


1 zk 0

0 1 0

−z−1k 0 1

 , (6.2.3c)

...
...

φ2(z) =


z2 − k2

z2 kz3 k
z

−kz −k2z2 + z−2 0

− k
z3 0 z−2

 , (6.2.3d)

φ2(z) can be written also as a matrix form

φ2(z) = (Z + Q1)φ1(z), (6.2.3e)

where φ1(z) = Z + ZQ1Z−1 and Q1 is defined in (6.2.2), so

φ2(z) =Z2(1+ Q−1Z−1 + Z−2Q1Z + Z−2Q1ZQ−1Z−1), (6.2.4a)

where 1 is a 3×3 matrix. Now, if we compare equation (6.2.4) with equation (6.1.14), the

T (z) matrix is the terms between the brackets. Since the a+(z) and a−(z) are allocated

in the diagonal parts of T (z), so, we need the matrices which have diagonal terms only.

Then, the diagonal of T (z):

diag.T (z) = (1+ Z−2Q1ZQ−1Z−1), (6.2.4b)

it is easy to find out the a+(z) is

a+(z) =z4 − k2, (6.2.5a)

taking into mind the a−(z) function is a 2 × 2 matrix. To find the solution of a−(z), we

need to take the determinant of det(a−(z)). Then, the det(a−(z)) function is

det(a−(z)) = 1− z4k2. (6.2.5b)

Next, we will find the solutions for both a+(z) and det(a−(z)) functions. The scattering

data a+(z) function has four solutions. Since a+(z) is analytic when |z| > 1, so the

solutions of a+(z) = 0 when z = ±
√
±k. Then, the eigenvalues of the system (6.1.11)
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will be when |k| > 1 and n0 = −1, v0 = 1 (see Fig. 6.1). Since a−(z) is analytic when

|z| < 1, we find that when |k| < 1, the solutions of det(a−(z)) are z = ± 1√
±k . As we can

see from the solutions of both functions a+(z) and a−(z), the number of the eigenvalues

outside the unit circle is the same as inside the unit circle and the solutions of det(a−(z))

are the inverse of the solutions of a+(z).

Example 13 Next, we consider the example where n0 = 2, v0 = −2:

Un(0) =

 k, n = 2,

0, otherwise,
Vn(0) =

 k, n = −2,

0, otherwise,
(6.2.6a)

Q−2 =


0 0 V−2

−U∗2 0 0

0 0 0

 , Q2 =


0 U2 0

0 0 0

−V ∗2 0 0

 . (6.2.6b)

In this case we will start with n = −2 in equation (6.1.11). Then, the a+(z) and

det(a−(z)) functions read

a+(z) =z8 − k2, (6.2.7a)

det(a−(z)) =1− z8k2. (6.2.7b)

The a+(z) function has eight solutions. Here, the a+(z) function is zeros when z =

±k1/4, z = ±(−k)1/4, z = ±i(k)1/4 and z = ±i(−k)1/4. Under the condition |z| > 1, the

soliton solution will be when |k| > 1 (see Fig. 6.2). Furthermore, the zeros of det(a−(z))

are z = ± 1
k1/4 , z = ± 1

(−k)1/4 , z = ±i 1
k1/4 , and z = ±i 1

(−k)1/4 , then when |k| < 1,

the eigenvalues are inside the unit circle. Then, from the above solutions, det(a−(z)) =

(1/(the solutions of a+(z))).

Example 14 We consider n0 = 1, v0 = 2. We have:

Q−2 =


0 0 0

0 0 0

−V ∗2 0 0

 , Q−1 =


0 0 0

−U∗1 0 0

0 0 0

 , (6.2.8a)

Q−1 =


0 U1 0

0 0 0

0 0 0

 , Q2 =


0 0 V2

0 0 0

0 0 0

 , (6.2.8b)
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Then, the a+(z) and a−(z) has the following form:

a+(z) =z8 − k2z4 − k2, (6.2.9a)

det(a−(z)) =
1

z3
. (6.2.9b)

The scattering data a+(z) function has eight solutions. Since a+(z) is analytic when

|z| > 1, so the solutions of a+(z) = 0 must be outside the unit circle |z| = 1. In this case,

we have only four eigenvalues from eight (see Fig. 6.4). Here, the a+(z) function is zeros

when z = ±1
2
G1, z = ±i1

2
G1,z = ±1

2
G2 and z = ±i1

2
G2, where G1 =

√
8k
√
k2 + 4 + 8k2

and G1 =
√
−8k
√
k2 + 4 + 8k2. However, det(a−(z)) has no solution.

Example 15 Here, we consider n0 = 1,−1, v0 = 1,−1:

Un(0) =k ×


1, n0 = 1,

eiθ, n0 = −1,

0, otherwise,

Vn(0) = k ×


eiθ, v0 = 1,

1, v0 = −1,

0, otherwise,

(6.2.10)

in this example the a+(z) and a−(z) read as

a+(z) =z4 − 2k2, (6.2.11a)

det(a−(z)) =1− 2z4k2. (6.2.11b)

The a+(z) function which has four solutions is zeros when z = ±(2)1/4
√
k and z =

i ± (2)1/4
√
k. Under the condition |z| > 1, the eigenvalues of the system (6.1.11) are

existed when k > 1
2

√
2 shown in Fig. 6.3. In addition, the zeros of the det(a−(z)) are

z = ± 1
(2)1/4

√
k
, and z = ±i 1

(2)1/4
√
k
. In this example, we can also see that for each z+,

there is a reciprocal eigenvalue z−, i.e., z+ = 1/z−.

6.3 Conclusion

In this chapter, we have considered the impact of square barrier initial conditions on the

type of the solution of the integrable discretisation of the Manakov lattice. We found that

one-site excitations can give a blow up solution (see Fig. 6.4) because one of the a+(z)

and a−(z) functions has no solution. However, when we have symmetric potentials, the

spectral operator has balanced eigenvalues (see Fig. 6.1-6.3), i.e., if one of the eigenvalues

is inside the unit circle then, there is one outside. In this case, we have a bounded solution

(but not sufficient). We are interested in the case where the initial condition is similar

to the initial condition for the potential in (6.2.10), where there is a relation between the
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solutions of a+(z), and a−(z) despite the fact that it is no longer mirror symmetric. The

idea used in this chapter may also be extended to find other new rigorous proofs of the

conjecture about the solution whether it can be a blow up or not solution.
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(a) The solution of a+(z) = 0 at k = 0.8.
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(b) The solution of det(a−(z)) = 0 at k = 0.8.
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(c) The solution of a+(z) at k = 1.2.
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(d) The solution of det(a−(z)) at k = 1.2.

Figure 6.1: (a) and (b) are contour plots of the real and imaginary parts of equations
a+(z) = 0 and det(a−(z)) = 0 when n0 = −1 and v0 = 1 at k = 0.8, respec-
tively. The blue dashed lines represent the imaginary part of equations Im(a+(z)) and
Im(det(a−(z))), while the red solid lines are for the real part of the equation Re(a+(z))
and Re(det(a−(z))). The dotted curve is the unit circle |z| = 1. Intersections between
the blue and red lines represent uniform solutions of a+(z) and a−(z), z = zj . As we can
see that there is no discrete eigenvalues for both a+(z) = 0 and a−(z) = 0. Panels (c)
and (d) show contour plots of the real and imaginary parts of the equation of a+(z) = 0
and a−(z) = 0 when n0 = −1 and v0 = 1 at k = 1.2, respectively. The red, blue and
black (solid, dashed and dots) curves are defined as in (a) and (b). In panels (c) and (d),
we have 4-discrete eigenvalues.
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(a) The solutions of a+(z) = 0.

-3 -2 -1 0 1 2 3

Re(z)

-3

-2

-1

0

1

2

3

Im
(z

)

Re(det(a
-
))=0

Im(det(a
-
))=0

| z |=1

(b) The solutions of det(a−(z)) = 0.

Figure 6.2: The same as Fig. 6.1 but for n0 = −2 and v0 = 2 at k = 1.6. There are
8-discrete eigenvalues.
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(a) The solutions of a+(z) = 0.
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(b) The solutions of det(a−(z)) = 0.

Figure 6.3: The same as Fig. 6.1, but for n0 = v0 = −1, 1 at k = 0.9. There are 4-discrete
eigenvalues.
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Figure 6.4: The same as Fig. 6.1. Here, the solution of a+(z) = 0 for n0 = 1 and v0 = 2
at k = 1.5. We have only four eigenvalues from eight because a+(z) is analytic in |z| > 1.



Chapter 7

Conclusions and future work

In this chapter, we are going to summarize the work and the main results obtained in

chapters 3-6 and also point out several problems that would be interesting as future works.

7.1 Summery of results

In this thesis, we have studied a nonlocal version [8] of the semi-discrete NLS equation

in the Ablowitz-Ladik form. This equation appears to be PT-symmetric. We formulated

the direct scattering problem for the nonlocal Ablowitz-Ladik equation. This incudes the

construction of the Jost solutions, the minimal set of scattering data and the construction

of the FASs. Based on the formulation of the IST for (3.5.5) in the form of the addi-

tive Riemann-Hilbert boundary value problem, the one- and two-soliton solutions were

derived.

It was shown in [8] that the one-soliton solution develops a singularity in finite time.

This was due to the imbalance of the associated the RHP: the number of zeros of the FASs

on the boundary of the contour is not equal to the number of zeros inside the contour. The

nonlocal involution requires that if zj is a discrete eigenvalue, then z∗j must also be an

eigenvalue, i.e., both zj and z∗j must be either inside or outside the unit circle. Depending

on the positions of the discrete eigenvalues z±j in the spectral plane, there are two regimes

for the two-soliton solution: if one of the discrete eigenvalues is inside the unit circle and

the other outside, then the nonlocal involution preserves their number balanced inside and

outside the contour, and the corresponding two-soliton solutions are consequently regular

for all t. Otherwise we found that the two-soliton solution will develop a singularity in

finite time.

We briefly outlined the spectral properties of the Lax operator Ln(z). We have de-

rived the completeness relations for the Jost solutions and obtained expansions over the

complete set of Jost solutions for a generic function from the space of solutions of Ln(z).
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Our study has examined the possibility for the creation of solitons in the discrete in-

tegrable lattices of the nonlocal NLS equation type with or without blow up solutions.

Our conjecture was based on the box type initial conditions, and was successfully tested

in numerical simulations. To sum up, we conjectured that: 1) if the Lax operator has no

spectrum outside or inside the unit circle, there is no blow up solutions; 2) when it does

have a spectrum outside or inside the unit circle, mirror symmetric initial conditions are

sufficient, but not necessary, for bounded solutions; 3) to obtain bounded solutions, each

spectrum outside the unit circle needs (but is not sufficient) to have a reciprocal coun-

terpart inside the unite circle. When the initial condition for the potential is asymmetric,

then initial excitations with power above some threshold will lead to blow up solutions.

Numerical simulations that support the conjecture have been presented in chapter 5.

Finally, the two-component vector, discrete, nonlocal NLS equation (Manakov model)

was also studied for box type initial conditions. We found that when one of the functions

a+(z), a−(z) has no solutions, we have a blow up solution for the model. Meanwhile,

when both functions a+(z), a−(z) have solutions with a particular relation, the model

has bounded solutions. Numerical simulations that support the conjecture have been pre-

sented in chapter 6.

7.2 Future work

The results of this thesis can be extended in several directions:

• To construct gauge covariant formulations of the ISM for the nonlocal Ablowitz-

Ladik equation (3.6.26), including the generating (recursion) operator [48] and

its spectral decomposition [56], the description of the class of the differential-

difference equations solvable by the spectral problem (5.2.2a) (i.e. the correspond-

ing integrable hierarchy) and the description of the infinite set of integrals of motion

and the hierarchy of Hamiltonian structures.

• To study the gauge-equivalent systems [55, 57, 58].

• To study the associated Darboux transformations and their generalisations for both

local and nonlocal Ablowitz-Ladik equations. This will provide an algebraic method

for constructing and classifying possible soliton solutions, including also rational

solutions [37].

• To extend the results of this project for the case of non-vanishing boundary condi-

tions (a non-trivial background) [14, 81, 82, 97]. In the local case, such solutions are
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of interest in nonlinear optics; they arise in the theory of ultrashort femto-second

nonlinear pulses in optical fibers. The nonlocal reduction of the Ablowitz-Ladik

equation can be of particular interest in the theory of electromagnetic waves in ar-

tificial heterogenic media [122]. The considerations required in this case are more

complicated and will be discussed elsewhere.

• To study multi-component generalisations [43, 52, 53, 60, 63, 64, 67] for both local

and nonlocal semi-discrete NLS equations. This includes the block Ablowitz-Ladik

system [47, 61] and generalisations to homogeneous and symmetric spaces. Such

multi-component generalisations are much more complicated than in the continuous

case and, to the best of our knowledge, they have not yet been studied.

• To find an elegant form for the two soliton solutions of the nonlocal DNLS equation

and plot the time evolution of the solution.

• To complete the final form of the solution of the nonlocal DNLS equation by using

the dressing method. Additionally, to compare the solution obtained by the dressing

method with the solution obtained in [8].

• To provide a rigorous proof of the conjecture that is used to find the type of solution

to the nonlocal DNLS and discrete MNLS equations. In addition, to find analyt-

ically the solution of the discrete Manakov system using the Cauchy integral and

the dressing methods. Numerical simulations will be used to justify and support the

solutions obtained for both methods.



Appendix

Lie groups and Lie algebras

Basic definitions:

The elements A, B, C, . . . form a group G if they satisfy [62, 103] the following:

Identity There exists a unique element 1 ∈ G such that for every other element A ∈ G, it

satisfies

1 · A = A · 1 = A;

Closure There exists a group multiplication (a binary operation defined on G) which is

closed in G, i.e. to each pair A,B ∈ G it puts into a correspondence their product

A ·B ∈ G which is again an element in G;

Inverse To each element A ∈ G there corresponds a unique element A−1 ∈ G such that:

A · A−1 = A−1 · A = 1;

Associativity The group multiplication is associative, i.e.:

A · (B · C) = (A ·B) · C = A ·B · C.

Definition 1 A vector space over a number field F with an operation g× g→ g , denoted

[X, Y ] and called the commutator of X and Y , is called a Lie algebra over F if the

following points are satisfied:

1. X, Y ∈ g implies [X, Y ] ∈ g.

2. [X,αY + βZ]=α[X, Y ]+β[X,Z] for α, β ∈ F and X, Y, Z ∈ g.

3. Skew symmetry [X, Y ] = −[Y,X].

4. Jacobi identity [X, [Y, Z]] + [Y, [Z,X]] + [Z, [X, Y ]] = 0.
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Definition 2 When the field F is of real numbers R, we say g is a real Lie algebra, and

we say g is complex if F = C.

Definition 3 A matrix or linear Lie algebra is an algebra of matrices with commutator

XY − Y X,

taken as the Lie bracket [X, Y ]. In addition, the commutator satisfies properties 2 through

4 of definition 1 .

Definition 4 The set of all n × n matrices with entries in F is a Lie algebra, known as

gl(n, F ).

Definition 5 The set of all matrices of trace zero with entries in F forms a Lie algebra,

known as sl(n, F ). The Pauli Matrices σj , j = 1, 2, 3 belong to the Lie algebra,

σ1 =

 0 1

1 0

 , σ2 =

 0 −i

i 0

 , σ3 =

 1 0

0 −1

 .

Definition 6 The set of skew-Hermitian matrices(A∗ = −A) forms a Lie algebra over R
known as su(n). Then, σj , j = 1, 2, 3 are the basis in su(2,C).

Definition 7 The set of 2 × 2 complex matrices with trace zero form the complex Lie

algebra sl(2,C).

σ+ =

 0 1

0 0

 , σ− =

 0 0

1 0

 ,

where σ+, σ−, are the basis for sl(2,C) and the commutative relations of these matrices

are

[σ3, σ±] = ±2σ±, [σ+, σ−] = σ3 and σ1 ± iσ2 = σ±.

Example 16 Let’s assume the matrix has the form:

X =

 x3 x+

x− −x3

 ,
where trace of X is tr(X) = 0. Recalling the matrices σ1, σ2, σ3

σ3 =

 1 0

0 −1

 , σ2 =

 0 −i

i 0

 , σ1 =

 0 1

1 0

 ,
σ− =

 0 0

1 0

 , σ+ =

 0 1

0 0

 ,
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we can rewrite X as

X = x+ σ+ + x− σ− + x3 σ3.

The following relations are founded using the above matrices

x± = tr(Xσ∓), and x3 =
1

2
tr(Xσ3).

Example 17 If A is a 2× 2 matrix, then the commutator relation between σ3 and A is

[σ3, A] =

 1 0

0 −1

 a11 a12

a21 a22

−
 a11 a12

a21 a22

 1 0

0 −1

 =

 0 2a12

−2a21 0

 = 2σ3A
f ,

where Af is the off-diagonal matrix of A. Taking once again a commutator with σ3 from

both sides, one obtains:

[σ3, [σ3, A]] = 4Af .

Therefore, one can write the projector π, extracting the off-diagonal part of the matrix, as

a double commutator:

Af = π(A) =
1

4
[σ3, [σ3, A]].

Example 18 This is another interesting example which makes our work easier. If we

rewrite the Jost solutions in [54], ψ(x, λ) ∼ e−iσ3λx , φ(x, λ) ∼ e−iσ3λx as a matrix, then

the relation between σ3, φ(x, λ) and its inverse is

(φ(x, λ) σ3 φ
−1(x, λ)) =

(e−iσ3λx σ3 e
iσ3λx) =

 e−ikx 0

0 eikx

−1 0

0 1

 eikx 0

0 e−ikx

 =

 1 0

0 −1

 = σ3.

Similarly for ψ(x, λ)

(ψ(x, λ) σ3 ψ
−1(x, λ)) = (e−iσ3λx σ3 e

iσ3λx) = σ3.

Gauss decomposition for Lie groups

We start by listing the special types of matrices. We will also list the corresponding

properties of their eigenvalues. By A we denote a generic n×n matrix and by α1, . . . , αn

we denote its eigenvalues. An excellent exposition of this matter is given in [79].

Symmetric A = At; no restrictions on αj’s;
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Skew–symmetric A = −At; if αj is an eigenvalue, then −αj is also an eigenvalue;

Orthogonal AtA = 1;

Real A = A∗; if αj is an eigenvalue, then α∗j is also an eigenvalue;

Imaginary A = −A∗; if αj is an eigenvalue, then −α∗j is also an eigenvalue;

Hermitian A = A†; if αj is an eigenvalue, then α∗j is also an eigenvalue;

Skew–Hermitian A = −A†; if αj is an eigenvalue, then −α∗j is also an eigenvalue;

Unitary AA† = 1. if αj is an eigenvalue, then |αj| = 1, αj = exp(iφj).

Each of the following statements is equivalent to saying that a non-singular matrix A

possesses an LU factorization [84].

• For each non-singular matrix A, there exists a permutation matrix P such that PA

possesses an LU factorisation PA=LU.

• We can factor the diagonal entries out of the upper factor as shown below:
u11 u12 . . . u1n

0 u11 . . . u2n

...
... . . . ...

0 0 . . . unn

 =


u11 0 . . . 0

0 u11 . . . 0
...

... . . . ...

0 0 . . . unn




1 u12/u11 . . . u1n/u11

0 1 . . . u2n/u22

...
... . . . ...

0 0 . . . 1

 .

• The LDU factorisation. There is some symmetry in an LU factorisation because

the lower factor has 1’s on its diagonal while the upper factor has a nonunit diago-

nal. Setting D= diag(u11, u22, . . . , unn) and redefining U to be the upper-triangular

matrix allows any LU factorisation to be written as A=LDU, where L and U are

lower-and upper-triangular matrices with 1s on both of their diagonals.

Example 19 Determine the LDU factorisation of T (λ), where T (λ) is a 2× 2 matrix. a+(λ) −b−(λ)

b+(λ) a−(λ)

 =M+M
dM−,

=

 1 m+

0 1

 d1 0

0 d2

 1 0

m− 1

 ,

=

 d1 +m+m− − d2 m+d2

m−d2 d2

 .
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Using backward substitution, we can easily find each of M+,M
d,M−. Then,

M+ =

 1 −b−/a−

0 1

 , Md =

 1/a− 0

0 a−

 and M− =

 1 0

b+/a− 1

 .

Example 20 The following example is for a 3× 3 matrix

M0 =


d1,1 0 0

0 d2,1 0

0 0 d3,1

 , M+ =


1 m1,2 m1,3

0 1 m2,3

0 0 1

 ,

M− =


1 0 0

m2,1 1 0

m3,1 m3,2 1

 and T =


T1,1 T1,2 T1,3

T2,1 T2,2 T2,3

T3,1 T3,2 T3,3

 .

Then, we can find the inference of T matrix as

T = M+ M0 M− =


m1,2d2,1m2,1 +m1,3d3,1m3,1 + d1,1 m1,3d3,1m3,2 +m1,2d2,1 m1,3d3,1

m2,3d3,1m3,1 + d2,1m2,1 m2,3d3,1m3,2 + d2,1 m2,3d3,1

d3,1m3,1 d3,1m3,2 d3,1

 .

Using the same method in order to find the unknown elements of the M .

T3,3 = d3,1 m3,2 =
T3,2

T3,3

m3,1 =
T3,1

T3,3

m2,3 =
T2,3

T3,3

m1,3 =
T1,3

T3,3

;

T =


T1,3T3,1

T3,3
+m1,2d2,1m2,1 + d1,1

T1,3T3,2

T3,3
+m1,2d2,1 T1,3

T2,3T3,1

T3,3
+ d2,1m2,1

T2,3T3,2

T3,3
+ d2,1 T2,3

T3,1 T3,2 T3,3

 ,

d2,1 =
T2,2T3,3 − T2,3T3,2

T3,3

m2,1 =
T2,1T3,3 − T2,3T3,1

T2,2T3,3 − T2,3T3,2

,

T =


T1,3T3,1

T3,3
+ m1,2(T2,1T3,3−T2,3T3,1)

T3,3
+ d1,1

T1,3T3,2

T3,3
+ (T2,2T3,3−T2,3T3,2)m1,2

T3,3
T1,3

T2,3T3,1

T3,3
+ T2,1T3,3−T2,3T3,1

T3,3

T2,3T3,2

T3,3
+ T2,2T3,3−T2,3T3,2

T3,3
T2,3

T3,1 T3,2 T3,3

 ,
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m1,2 =
T1,2T3,3 − T1,3T3,2

T2,2T3,3 − T2,3T3,2

,

d1,1 =
T1,1T2,2T3,3 − T1,1T2,3T3,2 − T1,2T2,1T3,3 + T1,2T2,3T3,1 + T1,3T2,1T3,2 − T1,3T2,2T3,1

T2,2T3,3 − T2,3T3,2

,

M0 =

det(T )︷ ︸︸ ︷
T1,1T2,2T3,3 − T1,1T2,3T3,2 − T1,2T2,1T3,3 + T1,2T2,3T3,1 + T1,3T2,1T3,2 − T1,3T2,2T3,1

T2,2T3,3 − T2,3T3,2︸ ︷︷ ︸
COFT1,1

0 0

0
T2,2T3,3−T2,3T3,2

T3,3
0

0 0 T3,3

 ,

M+ =


1

COFT2,1︷ ︸︸ ︷
T1,2T3,3 − T1,3T3,2
T2,2T3,3−T2,3T3,2

T1,3

T3,3

0 1 T2,3

T3,3

0 0 1


,

M− =



1 0 0

COFT1,2︷ ︸︸ ︷
T2,1T3,3 − T2,3T3,1
T2,2T3,3−T2,3T3,2

1 0

T3,1

T3,3

T3,2

T3,3
1


,

where COF means cofactor of entry Ti,j .

Time dependent condition

We are looking for special solutions of linearised problems in the form Qn = z2ne−iω(z2)t.

As an example is the differential-difference NLS for which ω(z2) = 2− z2 − z−2. Since

the difference of the diagonal of the matrix Mn in (3.3.11) at n→ ±∞ is

lim
n→±∞

1

2h2
(−(z − z−1)2 − (z − z−1)2) =

1

h2
(2− z2 − z−2),
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then, we satisfied the condition for the special solutions. This idea originally comes from

writing the general liner differential-difference equation,

dΨn

dt
= −iω(z)Ψn, (1)

where z is the shift operator zΨn = Ψn+1. Then, if we take ω(z) = (z+ z−1− 2) and use

the shift operator equation, Equation (1) will be equivalent to

dΨn

dt
=− i(z + z−1 − 2)Ψn,

=i(2− z − z−1)Ψn,

=i(2Ψn −Ψn+1 −Ψn−1).

The story behind the Riemann-Hilbert Problem

Riemann’s idea that any function is completely determined by allocating its singulari-

ties and behaviours around the singularities [73]. It got the RHP because the contour

C in here, is an arc, a closed contour or collection of arcs which is more general than

in Hilbert’s problem (close curve or circle C). The following points show the different

between Riemann and Hilbart problems [94].

• The Riemann problem (RP) is a problem of determining an analytic functionW+(z)

inside a closed contour C (the contour is a unit circle) such that the bound values

of its real and imaginary parts on the contour C satisfy the linear relation (2)

W+(z) = u(x, y) + iv(x, y), (2)

α(t)u(t) + β(t)v(t) =γ(t)

where t on C and α(t), β(t) and γ(t) are real functions. This problem introduced

another function W−(z) which is analytic outside C by

W−(z) = W+(
1

z̄
).

For z on C and zz̄ = |z|2 = 1, then z = 1
z̄
. This lead to the relations z → t and

1
z̄
→ t. Furthermore, we can obtain both u(t) and v(t). Then, the RP relation (2)

becomes:
α(t)− iβ(t)

2
W+(t) +

α(t) + iβ(t)

2
W−(t) = γ(t),

which is reduced to finding the functions W−(z) and W+(z) analytic inside and

outside the unit circle C, respectively. Simultaneously, their boundary values on
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the circle satisfy Eq. (2), and for z →∞,W−(z)→ W+(0).

• The Hilbert problem: Hilbert generalised the RP. This problem determined a func-

tion W (z) analytic for all values of z except on the curve C, such that for t → C,

W+(t) = g(t)W−(t) + f(t), (3)

where W+(z),W−(z) are limits of W (z) as z → t from inside and outside the C,

respectively, and g(t), f(t) are complex-valued functions

• Carleman’s approach to solving the RHP. Carleman presented the RHP on singular

integral equations. The main idea is to find a nonzero holomorphic function L(z)

that is analytic everywhere on the z plane except possibly on the curve C, satisfying

L+(t) = g(t)L−(t), (4)

since L−(t), L+(t) are known and nonzero. Then, Eq. (3) becomes:

W+

L+

(t)− W−
L−

(t) =
f

L+

(t).

Since L(z) 6= 0, the function W (z)
L(z)

is analytic for z not on C, such that Eq. (4) is

satisfied. Since L(z) is known, W (z) is known. If we take

M(z) =
1

2πi

∮
C

f(t)/L+(t)

t− z
dt,

then, using the discontinuity theorem we have

f(t)

L+(t)
=M+(t)−M−(t),

W+

L+

(t)−M+(t) =
W−
L−

(t)−M−(t),

then, from the above calculation the function W (z)
L(z)
−M(z) is continuous on C. To

find the function L(z) from Eq. (4) we have

log

(
L+

L−

)
(t) = log g(t). (5)

The solution to Eq. (5) when C is an arc, since g(z) is continuous at end points z1

and z2 of the arc having the values q(z1) and g(z2) at their end points. Then,

log(L(z)) =
1

2πi

∮
C

g(t)

t− z
dt = Q(z),
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and

L(z) = e(Q(z)) 6= 0.
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