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Abstract

We consider two multi-parameter classes of cyclically presented
groups, introduced by Cavicchioli, Repovš, and Spaggiari, that con-
tain many previously considered families of cyclically presented groups
of interest both for their algebraic and for their topological properties.
Building on results of Bardakov and Vesnin, O’Brien and the previ-
ously named authors, we prove theorems that establish isomorphisms
of groups within these families.
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1 Introduction

The cyclically presented group Gn(w) is defined by the cyclic presentation

{x0, . . . , xn−1 | w, θ(w), . . . , θn−1(w)}

where w = w(x0, . . . , xn−1) is a word in the free group Fn with generators
x0, . . . , xn−1 and θ : Fn → Fn is the automorphism of Fn given by θ(xi) =
xi+1 for each 0 ≤ i < n (subscripts mod n).

The first family of cyclically presented groups that we will consider is the
following eight parameter family, introduced in [3], where it is shown that
this family contains many classes of cyclically presented groups, previously
considered in the literature, of interest both for their algebraic and for their
topological properties. Let n ≥ 2, r, s ≥ 0, 0 ≤ p, h < n, and l, k ∈ Z (note
that unlike in [3] we allow k, l < 0 and r, s ∈ {0, 1}) and define

Gn(h, k; p, q; r, s; l) = Gn


r−1∏
j=0

xjp

ls−1∏
j=0

xh+jq

−k
 (1)

1



(where an empty product corresponds to the empty word). The groups
Gn(k, 1;m, 0; 2, 1; 1) are the groups of Fibonacci type Gn(m, k) =
Gn(x0xmx

−1
k ) introduced in [11], and independently in [4]. In particular,

the groups H(n,m) = Gn(m, 1) = Gn(1, 1;m, 0; 2, 1; 1) are the Gilbert-
Howie groups of [10] and the groups F (2, n) = Gn(2, 1; 1, 0; 2, 1; 1) are the
Fibonacci groups of [7]. Different values of the parameters of these cycli-
cally presented groups may yield isomorphic groups. Our starting point is
the following theorem:

Theorem 1 ([5, Theorem 2],[1, Theorem 1.1]). Let n ≥ 2, 1 ≤ m, k,
m′, k′ < n, (n,m, k) = 1, and assume (n, k′) = 1. If m′(m−k) ≡ mk′ mod n
then Gn(m, k) ∼= Gn(m′, k′).

Setting k = k′ = 1 in Theorem 1 recovers [10, Lemma 2.1]. A less
concise version of Theorem 1, and without the hypothesis (n, k′) = 1, was
asserted in [1, Theorem 1.1]; however, it was pointed out in [5] that the
hypothesis (n, k′) = 1 is necessary (a counterexample of G6(1, 3) 6∼= G6(3, 4)
being provided), which led to the formulation of [5, Theorem 2] given above.

In this note we extend Theorem 1 to the class of groupsGn(h, k; p, q; r, s; l).
It is convenient to express our main result in terms of parametersA,B,A′, B′

where

A = h,B = A− p(r− 1) + q(s− 1), A′ = h′, B′ = A′ − p′(r− 1) + q′(s− 1).

Theorem A. If (n, h′, p′, q′) = 1, (n,B) = 1, pA′ + p′B ≡ 0 mod n, and
qA′ + q′B ≡ 0 mod n, then Gn(h, k; p, q; r, s; l) ∼= Gn(h′, k; p′, q′; r, s; l).

We prove Theorem A in Section 2. The hypothesis (n, h′, p′, q′) =
1, while necessary, is not strong: writing d′ = (n, h′, p′, q′) we see that
Gn(h′, k; p′, q′; r, s; l) is isomorphic to the free product of d′ copies of
Gn/d′(h

′/d′, k; p′/d′, q′/d′; r, s; l) (see, for example, [8] or [15, Theorem 1]).
As a corollary to Theorem A we obtain:

Corollary 2. Let n ≥ 2, 1 ≤ m, k, m′, k′ < n, (n,m′, k′) = 1, and assume
(n,m− k) = 1. If m′(m− k) ≡ mk′ mod n then Gn(m, k) ∼= Gn(m′, k′).

Noting that if the congruence m′(m − k) ≡ mk′ mod n holds then
(n,m′, k′) = 1 and (n,m−k) = 1 both hold if and only if (n,m, k) = 1 and
(n, k′) = 1 both hold, we obtain Theorem 1.

We now record some further consequences of Theorem A concerning
other cyclically presented groups that have arisen in the literature. The
cyclically presented groups with length three positive relators are the groups
Γn(k, l) = Gn(x0xkxl) (0 ≤ k, l < n) considered in [6, Section 4],[9],[12],[2].
These are both the groups Gn(k,−1; 0, l − k; 1, 2; 1) and the groups
Gn(l,−1; k, 0; 2, 1; 1). Applying Theorem A to these expressions gives:
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Corollary 3. (a) If (n, k′, l′) = 1, (n, l) = 1 and k′k ≡ l′l mod n then
Γn(k, l) ∼= Γn(k′, l′).

(b) If (n, k′, l′) = 1, (n, l−k) = 1 and k′l ≡ k(k′−l′) mod n then Γn(k, l) ∼=
Γn(k′, l′).

The Prishchepov groups P (r, n, k, s, q) =

Gn((x0xq . . . x(r−1)q)(x(k−1)x(k−1)+q . . . x(k−1)+(s−1)q)
−1)

(n ≥ 2, r, s ≥ 1, 0 ≤ k, q < n), introduced in [13] and studied further in [15],
are the groups Gn(k − 1, 1; q, q; r, s; 1). Applying Theorem A to these we
obtain:

Corollary 4. If n ≥ 2, (n, k′ − 1, q′) = 1, (n, (k − 1) − q(r − s)) = 1, and
q′(k−1)+q(k′−1) ≡ qq′(r−s) mod n, then P (r, n, k, s, q) ∼= P (r, n, k′, s, q′).

The generalized Prischepov groups P̃ (r, n, k, s, p, q) =

Gn((x0xq . . . x(r−1)q)(xkxk+p . . . xk+(s−1)p)
−1)

(n ≥ 2, r, s ≥ 1, 0 ≤ k, p, q < n), studied in [14], are the groupsGn(k, 1; q, p; r, s; 1).
(An unfortunate conflict of notation arises: P (r, n, k, s, q) = P̃ (r, n, k −
1, s, q, q), rather than the more desirable P (r, n, k, s, q) = P̃ (r, n, k, s, q, q).)
Applying Theorem A we obtain:

Corollary 5. Suppose n ≥ 2, (n, k′, p′, q′) = 1, (n, k+p(s−1)−q(r−1)) =
1, qk′ + q′k ≡ q′(q(r − 1)− p(s− 1)) mod n and pk′ + p′k ≡ p′(q(r − 1)−
p(s− 1)) mod n. Then P̃ (r, n, k, s, p, q) ∼= P̃ (r, n, k′, s, p′, q′).

Another class of groups fitting within the family Gn(h, k; p, q; r, s; l) was
considered in [2]. Given f ∈ Z and r ≥ 0 let Λ(r, f) =

∏r−1
i=0 xif be the

positive word of length r whose first letter is x0 and whose step size is f .
We call any shift of Λ(r, f) or its inverse an f -block (of block length r) and
we say that a cyclically presented group G is of type F if there is some f
such that G ∼= Gn(w) where w is the product of two f -blocks. Thus a
group is of type F if it is isomorphic to

Gn

((
r1−1∏
i=0

xif

)(
r2−1∏
i=0

xa+if

)ε)
(2)

for some r1, r2 ≥ 0, 0 ≤ f, a < n, ε = ±1. (See the proof of [2, Lemma 1].)
Of course the case ε = −1 gives the Prishchepov groups (which contain
the groups of Fibonacci type) and the case {r, s} = {2, 1}, ε = 1 gives
the cyclically presented groups with length three positive relators. The
group of type F given at (2) is the group Gn(a,−ε; f, f ; r1, r2; 1). Applying
Theorem A to this we obtain:
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Corollary 6. Suppose (n, a′, f ′) = 1, (n, a − f(r1 − r2)) = 1, f ′a + fa′ ≡
ff ′(r1 − r2) mod n. Then

Gn

((
r1−1∏
i=0

xif

)(
r2−1∏
i=0

xa+if

)ε)
∼= Gn

((
r1−1∏
i=0

xif ′

)(
r2−1∏
i=0

xa′+if ′

)ε)
.

In [2] groups of type F that satisfy a certain condition relating the step
size, block lengths, and sign, were called groups of type M. Specifically,
the cyclically presented group in the class M defined by the parameters
(r, n, s, f, A) where r ≥ 0, s ∈ Z, 0 ≤ f,A < n, and f(r − s) ≡ 0 mod n is
the group Gn(w) where

w =


(∏r−1

i=0 xif

)(∏s−1
i=0 xA+if

)−1
if s ≥ 0,(∏r−1

i=0 xif

)(∏|s|−1
i=0 xA+(r+i)f

)
if s ≤ 0

(see equation (6) of [2]). Thus the group in the class M, defined by the
parameters (r, n, s, f, A), where r ≥ 0, s ∈ Z and f(r− s) ≡ 0 mod n is the
group

G =

{
Gn(A, 1; f, f ; r, s; 1) if s ≥ 0,

Gn(A+ rf,−1; f, f ; r, |s|; 1) if s ≤ 0.

Applying Theorem A to these groups we have the following:

Corollary 7. (a) Suppose r, s ≥ 0, f(r − s) ≡ 0 mod n, f ′(r − s) ≡
0 mod n. If (n,A′, f ′) = 1, (n,A) = 1 and f ′A+ fA′ ≡ 0 mod n then
the groups in the class M, defined by the parameters (r, n, s, f, A),
and by the parameters (r, n, s, f ′, A′) are isomorphic.

(b) Suppose r ≥ 0, s ≤ 0, f(r − s) ≡ 0 mod n, f ′(r − s) ≡ 0 mod n. If
(n,A′, f ′) = 1, (n,A + |s|f) = 1 and f ′A + fA′ ≡ 0 mod n then the
groups in the class M, defined by the parameters (r, n, s, f, A), and by
the parameters (r, n, s, f ′, A′) are isomorphic.

We now turn to a second family of cyclically presented groups intro-
duced in [6]. For (a, b, r, s) ∈ Z4, n ≥ 2, 0 ≤ m, k, h < n let

G(a,b,r,s)
n (m, k, h) = Gn(xa0x

b
kx

a
h+m(xrhx

r
m)−s). (3)

It was shown in [6] that this family also contains many classes of cycli-
cally presented groups previously considered in the literature. In par-

ticular, G
(1,1,2,1)
n (m, k, 0) are the groups of Fibonacci type Gn(m, k) and

G
(1,1,0,0)
n (0, k, l) are the cyclically presented groups with length three posi-

tive relators Γn(k, l). We have the following theorem, a generalization of [1,
Theorem 1.1], which establishes isomorphisms of groups within this class:
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Theorem 8 ([6, Theorem 2.6]). Suppose 0 ≤ m, k, h < n, (n, k−h−m) =
1, (n,m′, k′, h′) = 1 and that ρ = (n, k − h−m) divides k′ and there exist
positive integers α, β, γ, δ such that

α+ β(k − h−m) ≡ 1−m mod n, (4)

γ + δ(k − h−m) ≡ 1− h mod n, (5)

α+ βk′ ≡ 1 +m′ mod n, (6)

γ + δk′ ≡ 1 + h′ mod n, (7)

where 1 ≤ α, γ ≤ ρ and 1 ≤ β, δ ≤ n/ρ. Then for all (a, b, r, s) ∈ Z4

G
(a,b,r,s)
n (m, k, h) ∼= G

(a,b,r,s)
n (m′, k′, h′).

Note that the hypothesis (n, k−h−m) = 1 was omitted from the orig-
inal statement [6, Theorem 2.6] and is necessary: just as the pair of groups
G6(1, 3), G6(3, 4) provided a counterexample to [1, Theorem 1.1], the same

pair of groups G
(1,1,2,1)
6 (1, 3, 0) = G6(1, 3), G

(1,1,2,1)
6 (3, 4, 0) = G6(3, 4) pro-

vide a counterexample to the original statement [6, Theorem 2.6]. In the
same way that the (necessary) imposition of the hypothesis (n, k′) = 1 leads
to the more concise formulation of [1, Theorem 1.1] given in Theorem 1, the
(necessary) imposition of the hypothesis (n, k − h−m) = 1 in Theorem 8
leads to the following formulation:

Corollary B. Suppose 0 ≤ m, k, h < n, (n, k−h−m) = 1, (n,m′, k′, h′) =
1, m′(h+m− k) ≡ mk′, h′(h+m− k) ≡ hk′. Then for all (a, b, r, s) ∈ Z4

G
(a,b,r,s)
n (m, k, h) ∼= G

(a,b,r,s)
n (m′, k′, h′).

Proof. Suppose d = (n, k′) > 1. Since d divides k′, it must also divide
mk′ and hk′ and hence m′(h + m − k) and h′(h + m − k). But since
(n, k− h−m) = 1, d divides m′ and h′, and so d divides (n,m′, k′, h′) = 1,
a contradiction. Thus (n, k′) = 1. Writing (k′)−1 for the multiplicative
inverse of k′ mod n, let β = m′(k′)−1 mod n, δ = h′(k′)−1 mod n. In the
notation of Theorem 8, ρ = 1 and hence α = γ = 1. The hypotheses imply
that the congruences (4)–(7) hold, so the result follows.

Putting (a, b, r, s) = (1, 1, 2, 1) and h = h′ = 0 in Corollary B yields
Corollary 2, and hence Theorem 1. Since there was a missing hypothesis in
the original statement of Theorem 8 we include a direct proof of Corollary B
(based on the proof of [6, Theorem 2.6]) in Section 3.

2 Proof of Theorem A

Suppose d = (n,A′) > 1. Since d divides A′, it must also divide pA′ and
qA′, and hence p′B and q′B. But, since (n,B) = 1, d divides p′ and q′ so d
divides (n,A′, p′, q′) = (n, h′, p′, q′) = 1, a contradiction. Thus (n,A′) = 1.
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Writing (A′)−1 for the multiplicative inverse of A′ mod n, let σ =
p′(A′)−1, τ = q′(A′)−1, so

σA′ ≡ p′ mod n, (8)

τA′ ≡ q′ mod n. (9)

Further σB ≡ p′(A′)−1B ≡ (A′)−1(p′B) ≡ (A′)−1(−pA′) ≡ −p mod n;
similarly τB ≡ −q mod n, i.e.

σB ≡ −p mod n, (10)

τB ≡ −q mod n. (11)

Let G = Gn(h, k; p, q; r, s; l) as defined at (1). Inverting the relators gives

G = Gn


r−1∏
j=0

x−1(r−1)p−jp

ls−1∏
j=0

x−1(s−1)q+h−jq

−k
 .

Replacing each generator by its inverse and then subtracting (r− 1)p from
all subscripts gives

G = Gn


r−1∏
j=0

x−jp

ls−1∏
j=0

x−(r−1)p+(s−1)q+h−jq

−k


= Gn


r−1∏
j=0

x−jp

ls−1∏
j=0

xB−jq

−k


=
〈
x0, . . . , xn−1 |

(∏r−1
j=0 xi−jp

)l (∏s−1
j=0 xi+B−jq

)−k
(0 ≤ i < n)

〉
.

Now (n,B) = 1 implies that {i | 0 ≤ i < n} = {αB | 0 ≤ α < n} so

G =
〈
x0, . . . , xn−1 |

(∏r−1
j=0 xαB−jp

)l (∏s−1
j=0 xαB+B−jq

)−k
(0 ≤ α < n)

〉
=
〈
x0, . . . , xn−1 |

(∏r−1
j=0 xαB+jσB

)l (∏s−1
j=0 xαB+B+jτB

)−k
(0 ≤ α < n)

〉
by (10),(11), so

G =
〈
x0, . . . , xn−1 |

(∏r−1
j=0 x(α+jσ)B

)l (∏s−1
j=0 x(α+1+jτ)B

)−k
(0 ≤ α < n)

〉
.
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Noting that (n,A′) = 1 and (n,B) = 1 we may adjoin generators {y0, . . . , yn−1}
as follows:

G =

〈
x0, . . . , xn−1,
y0, . . . , yn−1

∣∣∣∣∣
(∏r−1

j=0 x(α+jσ)B

)l (∏s−1
j=0 x(α+1+jτ)B

)−k
yαA′ = xαB (0 ≤ α < n)

〉
.

Eliminating generators x0, . . . , xn−1 then gives

G =
〈
y0, . . . , yn−1 |

(∏r−1
j=0 y(α+jσ)A′

)l (∏s−1
j=0 y(α+1+jτ)A′

)−k
(0 ≤ α < n)

〉
=
〈
y0, . . . , yn−1 |

(∏r−1
j=0 yαA′+j(σA′)

)l (∏s−1
j=0 yαA′+A′+j(τA′)

)−k
(0 ≤ α < n)

〉
=
〈
y0, . . . , yn−1 |

(∏r−1
j=0 yαA′+jp′

)l (∏s−1
j=0 yαA′+A′+jq′

)−k
(0 ≤ α < n)

〉
using (8),(9). Now (n,A′) = 1 implies that {αA′ | 0 ≤ α < n} = {i | 0 ≤
i < n} so

G =
〈
y0, . . . , yn−1 |

(∏r−1
j=0 yi+jp′

)l (∏s−1
j=0 yi+A′+jq′

)−k
(0 ≤ i < n)

〉
=
〈
y0, . . . , yn−1 |

(∏r−1
j=0 yi+jp′

)l (∏s−1
j=0 yi+h′+jq′

)−k
(0 ≤ i < n)

〉
= Gn(h′, k; p′, q′; r, s; l)

as required.

3 Proof of Corollary B

As in our earlier proof of Corollary B, (n, k′) = 1. Again, let β = m′(k′)−1,
δ = h′(k′)−1 mod n. Then β(k − h − m) ≡ m′(k′)−1(k − h − m) ≡
(k′)−1m′(k−h−m) ≡ −(k′)−1mk′ ≡ −m mod n; similarly δ(k−h−m) ≡
−h, i.e.

β(k − h−m) ≡ −m mod n, (12)

δ(k − h−m) ≡ −h mod n. (13)

Let G = G
(a,b,r,s)
n (m, k, h) as defined at (3). Replacing each generator by its

inverse, inverting the relators and subtracting (h+m) from the subscripts
gives

G =
〈
xi | xai x

b
i+k−h−mx

a
i−h−m = (xri−hx

r
i−m)s (0 ≤ i < n)

〉
.
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Since (k−h−m,n) = 1 the set {i | 0 ≤ i < n} = {t(k−h−m) | 0 ≤ t < n}
so

G =

〈
xt(k−h−m)

∣∣∣∣∣ xat(k−h−m)x
b
t(k−h−m)+k−h−mx

a
t(k−h−m)−h−m =

(xrt(k−h−m)−hx
r
t(k−h−m)−m)s (0 ≤ t < n)

〉

and using (12),(13) we get

G =

〈
xt(k−h−m)

∣∣∣∣∣ xat(k−h−m)x
b
(t+1)(k−h−m)x

a
(t+β+δ)(k−h−m) =

(xr(t+δ)(k−h−m)x
r
(t+β)(k−h−m))

s (0 ≤ t < n)

〉
.

Noting that (n, k′) = 1 and (n, k − h −m) = 1 we may adjoin generators
{y0, . . . , yn−1} = {ytk′ | (0 ≤ t < n)} as follows:

G =

〈
xt(k−h−m),

ytk′

∣∣∣∣∣
xat(k−h−m)x

b
(t+1)(k−h−m)x

a
(t+β+δ)(k−h−m) =

(xr(t+δ)(k−h−m)x
r
(t+β)(k−h−m))

s,

ytk′ = xt(k−h−m) (0 ≤ t < n)

〉
.

Eliminating generators xt(k−h−m) (0 ≤ t < n) gives

G =
〈
ytk′ | yatk′y

b
(t+1)k′y

a
(t+β+δ)k′ = (yr(t+δ)k′y

r
(t+β)k′)

s (0 ≤ t < n)
〉

=
〈
ytk′ | yatk′y

b
tk′+k′y

a
tk′+βk′+δk′ = (yrtk′+δk′y

r
tk′+βk′)

s (0 ≤ t < n)
〉

=
〈
ytk′ | yatk′y

b
tk′+k′y

a
tk′+m′+h′ = (yrtk′+h′y

r
tk′+m′)s (0 ≤ t < n)

〉
=
〈
yi | yai y

b
i+k′y

a
i+m′+h′ = (yri+h′y

r
i+m′)s (0 ≤ i < n)

〉
= G(a,b,r,s)

n (m′, k′, h′)

as required.
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manifold spines and cyclic presentations of groups. In Knot theory,
volume 42, pages 49–56. Warszawa: Polish Academy of Sciences, In-
stitute of Mathematics, Banach Cent. Publ., 1998.

[5] Alberto Cavicchioli, E.A. O’Brien, and Fulvia Spaggiari. On some
questions about a family of cyclically presented groups. J. Algebra,
320(11):4063–4072, 2008.
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