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Abstract—Cloud datacentres are turning out to be massive energy consumers and environment polluters, which necessitate the need
for promoting sustainable computing approaches for achieving environment-friendly datacentre execution. Direct causes of excess
energy consumption of the datacentre include running servers at low level of workloads and over-provisioning of server resources to
the arriving workloads during execution. To this end, predicting the future workload demands and their respective behaviours at the
datacentres are being the focus of recent research in the context of sustainable datacentres. But prediction analytics of Cloud ds suffer
various limitations imposed by the dynamic and unclear characteristics of Cloud workloads. This paper proposes a novel forecasting
model named K-RVLBPNN (K-means based Rand Variable Learning Rate Backpropagation Neural Network) for predicting the future
workload arrival trend, by exploiting the latency sensitivity characteristics of Cloud workloads, based on a combination of improved
K-means clustering algorithm and BPNN (Backpropagation Neural Network) algorithm. Experiments conducted on real-world Cloud
datasets exhibit that the proposed model exhibits better prediction accuracy, outperforming traditional Hidden Markov Model, Naı̈ve
Bayes Classifier and our earlier RVLBPNN model respectively.
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1 INTRODUCTION

THE evolution of Cloud Computing technology in the
recent years has led to the development of various

effective means of service provisioning, such that services
proving to be previously costly and difficult to reach has
now made easily available to all clients. Due to the easy
access, low-cost, pay-as-you-go models of Cloud Comput-
ing services, the number of users using Cloud Computing
both individuals and from small-scale to large-scale indus-
tries has increased unprecedentedly in the past few years
[1]. The on-demand resource provisioning nature of Cloud
datacentres help customers to obtain the resources including
CPU, memory, and network at a reasonable cost, in order to
carry out their job executions without any interruptions [2].
On the contrary, the increasing number of Cloud datacentres
are addressed to be causing increased environmental impli-
cations [3] as datacentres release excessive amounts of car-
bon footprints. Furthermore, Cloud data-centres consume
enormous amounts of electricity to run their servers for
hosting workload execution, and for cooling management.
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Although the concept of sustainable computing is emerging,
which in essence utilises renewable energy sources as input
power, such a kind of environment-friendly datacentres are
still significant in existence [4].

Owing to such environment degrading characteristics of
datacentres, reducing the energy and environment impli-
cations of Cloud datacentres through various strategic ap-
proaches [5] [6] has been one of the primary focuses of recent
research in the context of Cloud Computing. It is worthy of
note that the cooling systems of a typical Cloud datacentre
can consume a significant proportion of the energy actually
those utilised during the actual datacentre execution. Such
additional costs of running a datacentre might also affect the
economic benefits of the service providers [7].

The current level of workloads executed at the servers,
and the level of CPU and memory consumption of the
workloads usually have a direct impact on the level of
energy consumed by the server resources. In fact, processors
[8] are the addressed to be the largest energy consumers in
a server. Workload can be of various types in terms of their
resource intensiveness such as CPU-intensive, memory-
intensive, both CPU and memory-intensive and network
intensive. Workloads requiring larger CPU resources are
usually energy-intensive in comparison to the memory-
intensive workloads. One of the reasons for the excess
energy consumption of the datacentres is over-provisioning
of resources to process workloads at the servers. In this way,
service providers usually provision resources to workloads
at a level that far exceed their actual requirements. Strategic
approaches widely adopted by the existing state-of-the-art
energy saving techniques include predicting the actual de-
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mands of the workloads with the motivation of provisioning
resources to workloads at an appropriate level that can char-
acterise low energy wastage profile. But this prediction is a
complex process, since the cloud workloads characterise an
increased level of dynamism [9] in their actual behaviours at
the datacentres in terms of their resource consumption level.
To this end, resource scheduling and resource provisioning
mechanisms in Cloud datacentres naturally involve various
complications.

The running duration of the Cloud workloads can also
have an impact on its energy demands. Thus predicting the
runtime duration of the arrived workloads might provide
additional insights to infer their energy consuming nature.
In most cases, Cloud workloads characterise a shorter du-
ration and arrive more frequently. In fact, the arrival of the
Cloud workloads can also be related to the operating busi-
ness hours. Duration of the workloads usually determine
their latency-sensitivity [10], which is usually a parameter
that defines the time-scale within which the workload must
be processed by the providers after its arrival. Workloads
with an increased level of latency sensitivity usually re-
quires a less processing time and vice versa. Despite the
existing works on Cloud research, further research and
analysis of Cloud entities is still crucial. This paper is aimed
at building a scientific model based on user behaviours in
terms of their current job submission pattern and their corre-
sponding workload behaviours, along with their historical
workload behaviours, in order to predict their future be-
haviours anticipated at the datacentres. A reliable predictive
model should accurately reflect the main characteristics of
datacentres, users and workloads to achieve accurate pre-
diction results [11]. Such characteristics can be summarised
as follows: Firstly, increasing number of arriving workloads
demand increased number of server resources. But, turning
on more number of server resources during less number
of arriving workloads might result in wastage of server
resources, by the way of feeding such servers with electricity
but without extracting any information services. Secondly,
Cloud resources can behave dynamically, in such a way that
similar workloads might consume varied level of resources
at the datacentre during their actual execution. This implies
that Cloud workload behaviours cannot be generalised,
and should be treated uniquely. Thirdly, Cloud workload
arrival trend can take dynamic shift in time. Although,
Cloud workload characterise a certain level of periodicity
in relation to the operating business hours, the arrival trend
can change drastically under a short time interval.

Despite the existing works on characterising Cloud
workloads [9], [12], [13], the dynamism and nature of the
Cloud workloads are still not clear and explicit. Such,
speculations are important since the prediction models are
developed based on them. Inaccurate characterisation of the
Cloud workloads might lead to wrong prediction, which
might further mislead the level of resources provisioned to
process the workloads. There are two immediate implica-
tions. While an over-provisioned level of resources cause
energy wastage, under-provisioned resources might lead
to the termination of workloads due to resource scarcity.
Increased number of job terminations could violate the
Service Level Agreement (SLA), which is usually initially
agreed between the clients and the providers, and directly

affect the Quality of Service (QoS). To this end, with the mo-
tivation of reducing the prediction inaccuracies, this paper
proposes a novel forecasting model named K-RVLBPNN,
based on an improved K-means clustering algorithm and
BP Neural Network, in order to predict the anticipated level
of future-service requests with reliable level of accuracy.
The proposed model exploits the latency sensitivity levels
of the workloads to predict the service request frequency
anticipated in the future. Important contributions of this
paper are listed as follows:
• Firstly, we improve the traditional K-means algorithm

by optimising its clustering performance through capturing
the latency sensitivity of the Cloud workloads. This en-
hances the suitability of the traditional K-means algorithm
to handle large-scale dynamic Cloud workloads.
• Secondly, we develop a novel workload prediction

model called K-RVLBPNN. The core of K-RVLBPNN model
is the combination of our improved K-means algorithm
and random Back Propagation (BP) neural network. This
model can efficiently predict the future workload trend
by exploiting historical data clustered by the improved K-
means algorithm.
• Thirdly, we implement our proposed K-RVLBPNN

model on a real-world Cloud dataset and performed exten-
sive evaluations against the existing Hidden Markov Model,
Naı̈ve Bayes Classifier and RVLBPNN model respectively.
Experimental results demonstrate that our proposed fore-
casting model can achieve higher prediction accuracy whilst
estimating the future service requests in Cloud datacentre to
aid sustainable datacentres.

The rest of this paper is organised as follows: Section 2
presents the related works of Cloud workload forecasting
models. Section 3 presents a background study on Cloud
workload characteristics and their latency sensitivity. Sec-
tion 4 proposes our novel prediction model based on the
improved K-means clustering algorithm and BP Neural
Network. Our experimental evaluations are presented in
Section 5 and Section 6 concludes this paper along with
outlining our future research directions.

2 RELATED WORK
A wide range of research works have been proposed to
accelerate the rational use of cloud computing resources,
and can be predominantly categorised into hardware-based
approaches and techniques at the software using strate-
gic approaches. DVFS (Dynamic Voltage and Frequency
Scaling) and DPM (Dynamic Power Management) have
been the focus of the work proposed in [14] to reduce the
wastage of the server’s resources. DVFS based algorithms
rely on the server’s performance for adjusting the processor
supply voltage and frequency to reduce the overall power
consumption, in accordance with the arrival trend of the
workloads and the resource demands. DMP algorithm can
switch servers running on low workload levels for a rela-
tively longer time into energy saving modes to save energy,
whilst finishing all tasks within the deadlines. However,
DVFS method has only been suitable to reduce the dynamic
server power by altering the frequency and voltage, which
is usually proportional to the server utilisation level, and
ignores the leakage currents of the servers. On the other
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hand, DMP based techniques can effectively reduce the
static leakage currents, and ignores the dynamic power. It
is important for an energy saving approach to act upon
both the static and dynamic power simultaneously, insights
on the trend of workload arrival trend can aid to achieve
this objective. It is quite challenging for an approach to
coordinate both static and dynamic power for achieving
efficient energy conservation.

Workload prediction techniques have been aiding Cloud
datacentres for workload management, resources allocation,
optimising servers and so on. Predicting the future arrival
scale of workloads can help managing the server farm well
by the way of turning ON/OFF the required number of
servers. A hybrid workload forecasting method called NUP
[15] has been proposed to provide inferences on the type
of arriving workloads based on Auto-correlation Coefficient
and Hurst Exponents. Once the type of workloads has
been acknowledged, two different forecasting algorithms
have been applied to deal with the corresponding Cloud
workloads respectively. In the prediction strategy of NUP,
linear regression and ARMA (Auto Regressive Moving Av-
erage) model have been integrated to predict the arrival
trend of Cloud workloads, and further SVM (Support Vector
Machine) has been used for characterising the periodicity
among the arriving Cloud workloads. However, NUP can-
not be utilised to predict other types of Cloud workloads
characterising less or no level of periodicity such as parox-
ysmal workloads. The works of [16] proposed a method to
predict the future workflow based on a fragment database.
In this method, historical traces of workloads have been
chosen as background workloads to provide inferences on
the future trend. These workloads are stored in the database
in the form of fragments, and currently arriving trend of
workloads have been compared with the historical trend
utilising the fragment database in order to evaluate their
similarities. If the current trend exhibits higher level of
similarity with the historical trend, then the corresponding
historical trace has been used as a reference sample for
estimating the future workload trend.

The works of [17] developed a prototype model using
machine learning techniques to predict the incoming work-
load trend. The predicted trend has then been compared
and moderated with the historical trend to improve the
prediction accuracy. This approach helps to visualize the
future resource requirements on VMs of users and to allo-
cate resources based on the predicted user’s demands. This
model identifies suitable scenario from the past to evaluate
the appropriateness of the allocated level of resources at a
given time. Idle VMs or VMs with lower level of workloads
have then been recommended to shut down to save energy
and resources according to the predicted state of VMs. Major
attributes in this method have been chosen by Pearson
Relation method. A lot of traditional machine learning
methods have been proposed to predict the future states of
VMs. However, most of them incorporate time-consuming
algorithms which adds outrageous time overheads. Besides,
prediction accuracy has been the only focus of such meth-
ods. For instance, prediction technique with good accuracy
but incurring significant time-cost might not present an
optimum solution for ontime server management.

An Exponential Smoothing (ES) [18] based method ex-

ploiting historical insights has been proposed to forecast the
future arrival trend of workloads. The proposed mechanism
incorporates concurrent iterations to provide a reliable level
of prediction accuracy, but this method requires larger his-
torical traces, thus costing more storage space. The works
of [19] proposed an AR (Auto Regression) based workload
prediction model using a cyclic computation of the arrival
trend. Though AR [20] technique has been adopted widely,
this methodology has an insurmountable shortcoming. In
the process of recursion, prediction errors will also be ac-
cumulated. This is to say that the error margin will increase
with an extended prediction time. Another significant draw-
back of the AR prediction model is that it might become less
efficient for workloads with less level of inherent periodicity.

The works of [21] proposed a workload forecasting mod-
el called CloudInsight, exploiting the combined ability of
multiple workload predictors. This prediction frame uses
a multi-class regression, where the weights of every pre-
dictor determine the prediction accuracy of current work-
load trends.Though this method enhances the forecasting
accuracy of real-time workloads, it incurs significant time
overheads whilst choosing a suitable predictor.

The works of [22] developed a prediction framework
based on GA (Genetic Algorithm) to forecast the resource
requirements of workloads arriving in the next time slot,
according to the historical traces of the previous time slot.
In their simulation-based analysis, their proposed GA model
proves to be a better solution for workload resource predic-
tion under both stable and unstable utilisation tendency. If
the previous workload sample do not characterise a similar
trend to the workloads in the current time slot, this model
can suffer significant prediction inaccuracies.

Recently, a workload prediction model named
RVLBPNN [23] has been proposed in our earlier work. This
model can forecast the future workload trend by exploiting
historical data based on Neural Networks. This model
can effectively capture the similarity between successive
workflow without the need for marking the characteristics
of workloads. In addition, the use of random learning
rate allows the model to avoid local minima as much as
possible, thus reducing the error of prediction. This model
has improved the prediction accuracy of Cloud workloads
to some extent in large-scale datacentres. However, this
model relies on a manual classification of workloads based
on their latency sensitivity, which restrains its deployment
in a real-life Cloud environment. In summary, Cloud
Computing still demands a smart prediction model that can
effectively analyse the characteristics of the Cloud entities
to deliver a reliable prediction of the workload arrival trend.
With this in mind, this paper proposes a new prediction
model named K-RVLBPNN based on an improved K-means
algorithm and Neural Networks. Exploiting the workload
characteristics and with an automated classification of
workloads, our proposed model can potentially deliver a
more accurate prediction.

3 BACKGROUND
Workloads are usually the user requests arriving at the
datacentre for processing in the form of jobs. A single Cloud
job can encompass one to several number of tasks [20], such
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workloads are processed in the VMs hosted in the servers
of the datacentres. During execution workloads consume
CPU and memory resources of the server resources based on
their resource intensiveness. Tasks within a single workload
can behave differently at the datacentre in terms of their
resource consumption level and duration. Cloud workloads
are extremely dynamic in terms of their actual behaviour at
the datacentre, such that similar workloads and tasks may
behave differently. Based on the behaviours of the tasks,
server profile exhibits more fluctuation [24], [25] in terms
of their CPU and memory utilisation. Tasks are also bound
to have varied service requirements such as throughput,
latency, and jitter etc.

Mostly Cloud workloads are usually driven by the op-
erating business hours and thus could characterise notable
level of periodicity exhibiting repeating patterns [26] in their
arrival frequency. It is worthy of note that the arrival trend
could characterise unexpected increase and decline [27]
within a shorter time-scale. The relationships [28] between
the workloads and users can provide important insights for
prediction analytics. Such relationship could remain static
[29] for a longer time-scale and can have a significantly
positive impact on the prediction accuracy.

Based on the arrival frequency, Cloud workloads have
been categorized into five major types [13] as static, pe-
riodic, unpredictable, continuously changing, and once-in-
a-lifetime workloads. Further, cloud workloads have been
characterised as bound to various types of latency sensi-
tivity depending on their requirements of execution time.
Such latency sensitivity depends on the Round Trip Time
(RTT) [30], [31], which is usually the wait time for the users
to receive the execution response. Latency of the workload
execution can be dominated by the server characteristics [32]
such as CPU and memory capacity, operating system, server
workload level and the nature of the workloads etc.

The taxonomy of the latency levels of the Cloud work-
loads has been extensively studied in the works of [33], [34],
such taxonomy have been attributed from level 0 represent-
ing the least latency sensitive tasks to level 3 representing
the most latency sensitive tasks. Least latency sensitive tasks
(level 0) are non-production tasks [33] usually characterise
an increased RTT through to most latency sensitivity tasks
(level 3) implies a very short RTT. Level 1 tasks characterise
an RTT in the order of milliseconds, while level 2 and 3
tasks characterise an RTT of ten-of-milliseconds and sub-
milliseconds respectively. Our earlier study [34] on Cloud
workload latency sensitivity has shown that most of the
Cloud workloads are of least sensitivity, and the most la-
tency sensitivity workloads are insignificant in number in
comparison with the workloads of other levels of latency.

4 MODEL DESCRIPTION
This section describes our proposed prediction model fo-
cussed on predicting the workload arrival trend at the
datacentres.

4.1 K-means Algorithm

James. McQueen puts forward the K-means clustering al-
gorithm [35] based on dynamic partitioning. The basic idea

of this algorithm is described as follows: Firstly, the algo-
rithm selects a certain number of datacentres for each data
catalogue in the process of dealing with data; Secondly,
the data points will be divided into the respective classes
based on a distance comparison between a given point and
the centre of every class; Thirdly, the algorithm executes a
loop iteration until the clustering criterion function is met
to achieve an optimal state. This process makes data points
clustered within a given catalogue relatively independent to
other catalogues.

The proposed model uses K-means algorithm to cluster
the workloads in respective datasetDn. Firstly, k data points
will be selected randomly as initial cluster centres. Each
data is divided into corresponding clusters based on the
similarity measure, such that the data within same clusters
have higher similarity and the similarity between different
clusters is low. Finally, k different classes are obtained.
The average of each class is then calculated respectively
as a new clustering centre of each class, and the above
steps are repeated until the clustering centres of each class
become static. The mathematical representation of the K-
means algorithm is presented as follows.

For a given dataset X = {xm}, where m = 1, 2, ..., n.
The samples contained in the dataset X are described by
m attributes, namely {A1, A2, ... Am}. Suppose that there
are two data samples xi and xj , where xi = (xi1, xi2...xim)
and xj = (xj1, xj2, ...xjm), then xi and xj respectively cor-
responds to m description attributes, and these m attributes
correspond to values xi1, xi2...xim and xj1, xj2...xjm. As-
suming that the sample data X contains a total of k sub-
categories, the k categories are X1, X2...Xk respectively. In
addition, the cluster centres corresponding to each category
are Z1, Z2, ...Zk respectively and the corresponding samples
in each class are m1,m2...mk respectively.

Definition 1: The Euclidean distance between each data
object is expressed as in Equation 1.

d(xi, xj) =
√∑m

k=1(xik − xjk)2 (1)

In the process of clustering, data similarity can be computed
based on the Euclidean distance.

Definition 2: The average of all data objects in the same
class can be expressed as in Equation 2.

Zj =
1

m

∑
x∈Xj

x (2)

Definition 3: The error square sum criterion can be
expressed as in Equation 3.

E =

k∑
k=1

∑
p∈Xi

‖p−mj‖2 (3)

where p is the data object in its corresponding class Xi.
The concrete steps of the K-means clustering algorithm

are expressed as follows: Suppose, Dn = X1, X2, ..., Xn is
the original data set.

1) Enter the value of k, which is the initial number of
clusters.

2) Randomly select k data objects from the data space
Dn as the initial cluster centre of each original class.
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3) The Euclidean distance formula is used to calculate
the distance between the object left in the dataset and each
clustering centre, and the data objects are clustered into the
nearest class.

4) Calculate the squared error sum of k clusters re-
spectively according to Definition 3 and use the criterion
function to evaluate the effect of clustering.

5) After k clusters are obtained, the average of all the
data in each cluster is taken as the new cluster centre of the
corresponding class.

6) Repeat the above steps (3), (4) and (5) until the cluster
centre is fixed or the criterion function converges.

7) Finally, k clusters are obtained and the algorithm is
finished.

The obvious advantage of the K-means algorithm is
that it is simple and easy to implement. Another notable
feature of the K-means algorithm is its quicker processing.
Although the K-means algorithm may not be able to obtain
the global optimal solution, this effect is not known to be
affecting the prediction efficiency of the proposed model.
This is because of the fact that the proposed method uses
K-means algorithm only for the initial processing of Cloud
workload datasets, and as long as a crude initial processing
dataset can be obtained within a quick time, the aforemen-
tioned effect of K-means algorithm can be nullified. Despite
its advantages, K-means algorithm still characterise a few
shortcomings those needs addressing. The disadvantages
of K-means algorithm are summarised as follows: Firstly,
it is a requirement of K-means algorithm to determine the
value of k at the beginning, which implies that the dataset
should be pre-estimated for classification. The value of k
is difficult to determine, especially for datasets containing
workloads of more complexities and dynamism. In most
cases, the number of required catalogues cannot be easily
determined whilst classifying the dataset. The usual ap-
proach is to continue to test different values of k until
the most effective value is found. This will seriously af-
fect the effectiveness of the K-means algorithm. Secondly,
the classification result depends on the initialisation of the
classification centre. Different initial values may result in
different classification results. The speed of determination
of the clustering centroid will determine the speed of the K-
means algorithm. Thirdly, K-means algorithm is sensitive to
noise. For example, given a sample with two types of data
A and B, each type of data may have several points, within
a very short distance. Now, adding a new dataset where the
Cloud workloads characterise significant variation to those
of the existing workloads a can have significant impact on
the selection of the data centre. This new point is usually
regarded as the noise point. Lastly, K-means is also not
particularly good at classification of categories those are
very close in distance.

Even though K-means algorithm has many shortcom-
ings, its greatest strength is its minimal complexity, which
means that it can process huge amounts of data within a
shorter period of time. This is of great importance in the
present era of data explosion. Given this, the proposed
methodology adopts an improved K-means algorithm de-
scribed as follows.

4.2 An improved K-means algorithm

In this paper, the traditional K-means algorithm is improved
based on a study of Cloud workload characteristics, so
that the improved K-means algorithm can process Cloud
workload datasets more efficiently. With the motivation of
eliminating the complexities whilst determining the k value
and the selection of initial cluster centre in the traditional
K-means algorithm, the relationship between Cloud user
behaviour and their corresponding workloads [9] are deeply
analysed. Cloud workloads are categorized into respec-
tive categories based on their behavioural characteristics
in terms of their latency sensitivity. The determination of
the Cloud workload type makes it easier to determine the
value of k in the K-means algorithm, thereby overcoming
the problem of the traditional K-means clustering algo-
rithm. Furthermore, a novel method is adopted to deter-
mine the initial cluster centre as described below. Given a
dataset X = x1, x2, ..., xn where each xi has the attributes
{xi1, xi2, ..., xik}.

The Euclidean distance between each object is calcu-
lated as in Equation 4.

d(xi, xj) =
√∑m

k=1(xik − xjk)2 (4)

The local density of any object i is calculated as in Equation
5.

ρi =
∑n

j=1 λ(dij − dc) (5)

where, dc is the truncation distance among the data points.
Truncation distance is a hyper-parameter which is selected
by the user according to specific circumstances. λ is a
piecewise function, whose function expression is shown in
equation 6.

λ(x) =

{
0, x ≥ 0

1, x < 0
(6)

Based on the above definition, the analysis can conclude
that ρi represents the number of points of the neighbour
data, and the data point i is in the range of dc. After
calculating the value of ρ for all the data points, all the data
density values are sorted in a descending order according
to the value of ρ. In order to enhance the computation
speed, a fast sorting algorithm is incorporated. During this
sorting process, we introduce a new initial clustering centre
of gravity selection rule. The initial cluster centre selection
rule is to select the data point with the largest rank value
of ρmax as the first cluster centre point xc1; choose the
point whose distance from xc1 to this point equals 2dc as
the second cluster centre point xc2; select the point whose
distance from xc1 and xc2 is equal to 2dc as the third cluster
centre. Similarly, the kth cluster centre xck can be obtained.
Through the above analysis, this paper solves two key
problems of the traditional K-means clustering algorithm.
The specific steps of the improved K-means algorithm are
described as follows:

1) Firstly, input the initial number of clusters K and the
value of the truncation distance dc.

2) Determine the k initial cluster centres according to the
Euclidean distance d(xi, xj) and the local density ρi using
the above-mentioned new initial cluster centre selection
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rule. These initial cluster centres can be represented as:
xc1, xc2, . . . , xck.

3) The Euclidean distance formula is still used to calcu-
late the distance between the object left in the dataset and
each cluster centre, and the data objects are clustered into
the corresponding nearest classes.

4) Calculate the squared error sum of k clusters re-
spectively according to Definition 3, and use the criterion
function to evaluate the clustering effect.

5) After k clusters are obtained, the average of all the
data in each cluster is taken as the new cluster centre of the
corresponding cluster.

6) Repeat the above steps (3), (4) and (5) until the cluster
centre becomes static or the criterion function converges.

7) k clusters will be obtained, and the algorithm is
finished.

4.3 Artificial Neural Network
Artificial neural network is a biomimetic network that
mimics the working mode of human nerve cells. A certain
number of neuron-like structures are interconnected to form
a working network structure. BP neural network is a typical
neural network which usually consists of an input layer,
one or more hidden layers, and an output layer. The role of
the input layer is to receive the signals transmitted by the
external transmission and to transmit these signals to the
corresponding intermediate layer neuron structure. During
the transmission process, the signal undergoes a certain
degree of change based on a weight function.

Each intermediate layer neuron will combine all the
received signals and forwards them as the input signal to
the next layer of neuron structure. A non-linear processing
is also included in this process to enhance the expression
ability of the neural network, since the linear model is
usually not capable of handling linear indivisible cases. The
role of the output layer is to receive the signal processed
by the hidden layers and to generate the final output after
processing. BP neural network uses a negative feedback to
reduce the error between the output and the target value.
The system successively adjusts the weights between the
output and hidden layers, and between the hidden and
input layers in the opposite direction to the system input,
thereby achieving the purpose of reducing the network
error. BP neural network usually has a strong ability to
deal with non-linear relationships between data due to the
addition of non-linear transformation functions.

4.4 BP Neural Network Architecture
Neurons are the basic building blocks of neural networks
which can be seen in Fig. 1. The main features of neurons
can be summarised from the literature [36], [37], [38]. In Fig.
1, x1, x2, . . . , xn are defined as the input data of the neuron;
ai1, ai2, . . . , ain represent the weight factor of every input
data respectively. The activation function of the neuron is
represented by g(); Oi and represent the output data and
the threshold of the neurons respectively.

In Fig. 1, the output result of the neuron can be repre-
sented by the activation function, where, Oi = g(Pi) and
Pi =

∑n
j=1 aijXj − dc. In this formula, X, ai and Pi are

defined as the input values, the connection weight value for

neuron iand the input vector of the activation function g()
respectively. It is worth noting that is usually defined as the
0th input value of the neuron. Therefore, the above formula
can be simplified as in Equation 7, where parameter x = −1,
andai0 = λi.

Pi =
∑n

j=0 aijXj (7)

∑ 

x1

x2

...

xn

g(x) Oi

λi

Fig. 1. Neuron Model

4.5 An Improved BP Neural Network Algorithm for Pre-
diction
Forecasting models based on statistical analysis often suffer
from obvious deficiencies. On the one hand, the use of
such models is often accompanied by certain assumptions;
on the other hand, the ability of these models to deal
with complex non-linear problems is relatively weak. Faced
with the complex and diverse Cloud workloads in real life,
traditional prediction methods are not effective in solving
such problems. The BP neural network is a representative
of the artificial intelligence methodology. Each neuron in
the network structure has a nuclear unit that is simple
and can reflect the non-linear relationship of the data. BP
neural network has the ability to reconstruct any non-linear
functional relationship through the interaction of these non-
linear elements.

The neural network learning process incorporates a
learning law and characterise strong promotion ability,
which makes the BP neural network to have a good abil-
ity to predict the future results. However, traditional BP
neural networks cannot obtain prediction results quickly
and efficiently because of their fixed learning rate. If the
learning rate is set too large, the network cannot obtain
higher precision; if the learning rate is set too low, the net-
work cannot complete convergence within a short time. This
disadvantage is especially true when the neural network
needs to process large-scale data.

In order to overcome this shortcoming of the traditional
neural networks, a modified BP algorithm named VLBP
(variable learning rate backpropagation) has been proposed
[38], as described in Algorithm 1. In comparison with the
BP algorithm, the VLBP algorithm dynamically changes the
learning rate of the system during the execution process,
which continues to increase the learning rate in the case of
reduced error to speed up the convergence of the network;
conversely, it also reduces the learning rate in the case of
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an increased error, so that the system can maintain high
learning accuracy.

However, the VLBP algorithm is susceptible to many lo-
cal minima resulting from the irregular shake surface error.
This phenomenon might cause the target value to fluctuate
repeatedly at local minimum points. This slows down the
convergence speed of the network and restrains its ability
to obtain a global minimum in a limited time. Therefore,
the VLBP algorithm needs to be further improved in order
to achieve faster speed and accuracy whilst the processing
largescale datasets. Our previous work [23] addressed this
issue and proposed RVLBPNN (Rand Variable Learning
rate Back Propagation Neural Network), which is inspired
from the concept of genetic variation and further improves
the VLBP algorithm. The prediction algorithm we propose
adjusts the learning rate to a certain probability according
to the trend of the MSE instead of blindly increasing or
decreasing the learning rate in the prediction process. The
learning rate may not be changed or multiplied by the factor
ρwhich is greater than 1 when MSE increases beyond the set
thresholdζ . Our proposed prediction algorithm is described
in Algorithm 2.

With this strategy, the learning rate avoids the phe-
nomenon of MSE continuing to decrease with slow updates
near the local minima points. Simultaneously, there is also
a certain probability of increasing the learning rate of the
neurons. The RVLBPNN algorithm can obtain global mini-
mum points as quickly as possible by effectively avoiding
the local minimum points.

Thus, the adopted algorithm reduces the presence of
local minimum points during the learning process, thereby
improving the learning efficiencies of the network neurons.
Although our previous work has improved the accuracy
of Cloud workloads forecasting to some extent, we still
noted a shortcoming that the model characterises reduced
level of accuracy for workloads with limited historical traces
and less periodicity. Therefore, this paper proposes a new
forecasting model by incorporating the proposed improved
K-means algorithm integrated with our earlier work of
RVLBPNN.

Algorithm 1 Variable Learning Backpropagation
1: start: Initialize weight a, b; thresholdζ ; learning rate η;
2: input data x, y;
3: computing the output a of every hidden layer and

output layer;
4: computing the error MSE between True and predicted

values;
5: if MSE increases Then Increase η else reduce η
6: end if
7: adjust the relevant connection weights: a, b;
8: repeat step 3,4,6 and 7;
9: Until the error accuracy is satisfied OR Achieve maxi-

mum execution steps
10: end

4.6 K-RVLBPNN Cloud Workloads Forecasting Model

Cloud workloads have the characteristics of large-scale frag-
mentation, which poses a great challenge to the existing

Algorithm 2 Radom Variable Learning Backpropagation
1: start: Initialize weight a, b; thresholdζ ; learning rate η;
2: input data x, y;
3: computing the output a of every hidden layer and

output layer;
4: computing the error MSE between True and predicted

values;
5: Generate a random number rand(u)(0<rand(u)<1);
6: if rand (u) is less than a defined value Z , then execute

VLBP algorithm
7: else if MSE increases, then the learning rate η is multi-

plied by a factor greater than 1 no matter MSE exceeding
ζ or not

8: else the learning rate η is multiplied by a factor between
0 and 1

9: end if
10: adjust the relevant connection weights: a, b
11: end if
12: repeat step 3,4,6 and 7;
13: Until the error accuracy is satisfied OR Achieve maxi-

mum execution steps
14: end

state-of-the-art conventional workload forecasting models.
Conventional workload forecasting schemes often fail to
achieve satisfactory results in terms of both the computation
speed and prediction accuracy. Therefore, this paper pro-
poses a new Cloud workload forecasting scheme, namely
K-RVLBPNN (K-means rand variable learning rate back-
propagation neural network). By studying the behaviours of
the Cloud service users and the characteristics of their cor-
responding workloads, this paper identifies that the Cloud
workload arrival trend is significantly influenced by the user
behaviours. Most of the existing forecasting models ignore
the classification of Cloud workloads based on their latency
sensitivity during the prediction process, and treats all the
type of Cloud workloads in the same way. This significantly
affects their prediction accuracy. This paper considers the
workload classification and overcomes the drawbacks of the
existing schemes, described as follows. Firstly, the improved
K-means algorithm is used to cluster the sample workload
dataset, and then the proposed RVLBPNN prediction al-
gorithm is used to predict the future workload trends for
each classified classes resulted by the improved K-means
algorithm under different periods. Finally, the prediction
obtained under different periods are averaged to deliver
the prediction output. The proposed model characterise a
satisfactory predictive effect, such that the improved K-
means algorithm provides accurate classification and the K-
RVLBPNN exploits the classified data to provide accurate
prediction at a faster time-scale.

5 PERFORMANCE EVALUATION
5.1 Experiment Sample
This section demonstrates the efficiency of our proposed
prediction model based on K-RVBLPNN. The dataset used
in the experiments is the publically available Google work-
load traces [39], comprising more than 46,093,201 tasks
including all the types of workloads such as CPU- intensive,
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memory-intensive and both CPU-intensive and memory-
intensive workloads. The dataset parameters include time,
job id, parent id, number of cores (CPU workloads), and
memory (memory workloads). The prediction efficiencies of
the proposed K-RVBLPNN prediction model are compared
with Hidden Markov Model (HMM), Naı̈ve Bayes Classi-
fier (NBC), and our previously proposed prediction model
RVLBPNN [23], all of them have also been evaluated in our
earlier works [23]. Bayes model can offer better classification
under less-fluctuating data samples, however Bayes model
loses efficiency in a dynamic Cloud environment whilst
predicting workloads showing greater fluctuations. HMM
is a typical probabilistic approach that predicts the future
state transition given a current state. In general, proba-
bilistic approach may not scale well for Cloud workloads
where certainty has a serious impact in decision making.
RVLBPNN model has improved the prediction accuracy
of Cloud workloads to some extent for sustainable data-
centres. Our new proposed model is built based on the
RVLBPNN model. Our proposed model has been evaluated
for efficiency against the aforementioned three models, as
they have been predominantly used in the context of Cloud
workload trend prediction. All the four models are evalu-
ated for their efficiencies in predicting memory and CPU
intensive workloads accordingly. Prior to the training the
samples as input to the K-RVBLPNN model, the Cloud
workloads contained in the dataset are classified by the
improved K-means algorithm, with the k value is set to 4.
The prediction model is trained with a set of 10 samples
and to predict the next set of 10 samples, then the predicted
output is compared with the actual set of successive 10
samples to evaluate the prediction accuracy.

MATLAB simulation environment provides a built-in
model for RVLBPNN technique, modelling RVLBPNN as
a supervised learning. The neural network is comprised of
three layers. The 3-layer neural network can approximate
any type of non-linear continuous function in theory. Ulti-
mately, using 10 input nodes, 12 hidden nodes and 10 output
nodes through a number of iterations for enhancing the
prediction accuracy. The data samples are normalised and
imploded in the interval (0, 1). ”Logsig” function is selected
as the activation function of the input layer, the hidden
layer and the output layer, so that the algorithm exhibits a
good convergence rate. Further, variable learning rates and
random variable learning rates are adopted, respectively.
100,000 workload data samples are used as the training
data and another 100,000 data samples are used as the test
data. The prediction accuracy is computed as the measure of
correlations between the predicted and actual set of sample
values.

5.2 Memory Workloads Estimation

Fig. 2. depicts the estimation results of K-RVLBPNN, HMM,
NBC and RVLBPNN models respectively in terms of their
prediction accuracy whilst predicting the memory intensive
workloads. The number of experiment (X-axis) is plotted
against the prediction accuracy in terms of the accuracy
percentage (Y-axis) for the four models. For presenting
the testing results with a better interpretation, the sample
results are sorted ascendingly from 1 to 10 based on the

prediction results. The average accuracy percentage in es-
timating the memory intensive workloads without consid-
ering the latency levels of individual workloads for NBC,
HMM, RVLBPNN and K-RVLBPNN are 47.59%, 57.0%,
61.41% and 70.21%, respectively, as shown in Fig. 2 and
Fig. 3. It is evident from Fig. 2 and Fig. 3 that the K-
RVLBPNN exhibits a better prediction accuracy than HMM,
NBC and RVLBPNN techniques. It can be depicted from the
estimation results that our proposed K-RVLBPNN model
is demonstrating higher prediction accuracy than HMM
and NBC respectively. More importantly, K-RVLBPNN also
shows a better performance (8.8% higher) than the original
RVLBPNN model.

This improved prediction accuracy of the K-RVLBPNN
model is attributed to the incorporation of the improved
K-means algorithm for accurately classifying the workloads
based on their latency sensitivity prior to the prediction pro-
cess. The efficiency of our proposed model is further evalu-
ated in forecasting memory-intensive workloads of different
latency sensitivity levels. Fig. 4 depicts the estimation re-
sults of our proposed K-RVLBPNN model in terms of their
prediction accuracy whilst predicting memory intensive
workloads of different latency sensitivity levels as described
earlier in Section IV. In addition, the prediction results are
compared with our previously proposed RVLBPNN model.
It can be observed from Fig. 4 that less latency sensitive
memory workloads are more predictable, with the predic-
tion accuracy being 73.30% for level 3 work-loads and 85.28
% for level 0 workloads, respectively using K-RVLBPNN.
However, the prediction accuracy of RVLBPNN are 66.27%
for level 3 and 77.08% for level 0. Meanwhile, the results also
show that all the prediction results by K-RVLBPNN model
characterise higher accuracy than those of the RVLBPNN
model.
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Fig. 2. Prediction of Memory-intensive Workloads

5.3 CPU Workloads Prediction

Similar to the memory intensive workloads, the experiments
are repeated for the CPU intensive workloads from the
dataset. Fig. 5 depicts the estimation results of the proposed
K-RVLBPNN, RVLBPNN, HMM and NBC whist predicting
the CPU intensive workloads. The average prediction accu-
racy of NBC, HMM, RVLBPNN and K-RVLBPNN models
are 50.87%, 47.36%, 52.90% and 61.60%, respectively whilst
predicting CPU intensive workloads, as shown in Fig. 6. It
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Fig. 4. Latency-wise Prediction Accuracy for Memory Workloads

can be observed that K-RVLBPNN exhibits better prediction
accuracy than the HMM, NBC and RVLBPNN models by a
margin of around 10.7%, 14.2% and 8.7%, respectively.

The efficiency of our proposed prediction model is fur-
ther evaluated in predicting the CPU intensive workloads of
different latency levels. Fig. 7 depicts the estimation results
of our proposed K-RVLBPNN model and RVLBPNN model
whilst predicting the CPU intensive workloads of differ-
ent latency sensitivity levels. A similar trend of prediction
accuracy is observed between both the memory and CPU
workloads of different latency sensitivity levels. Again, CPU
intensive workloads of less latency levels are exhibiting
better predictability, with the accuracy of RVLBPNN being
66.17 % for level 3 workloads, 73.56% for level 2 workloads,
76.37% for level 1 workloads, and 76.88 % for level 0
workloads. Our proposed prediction model K-RVLBPNN
presents higher prediction accuracy percentage. The average
accuracy rates are 84.96%, 80.28%, 76.44% and 69.83% for
level 0, level 1, level 2, and level 3, respectively. This leads
us to infer that least-latency sensitivity workloads exhibit a
better rate of prediction accuracy for both CPU and memory
intensive workloads.

5.4 Discussion

From the experiment results, it is clearly evident that our
proposed K-RVLBPNN model demonstrates better predic-
tion accuracy than HMM, NBC and RVLBPNN models by a
considerable margin. Our proposed model outperforms the
other two models whilst predicting both the CPU intensive
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and memory intensive workloads. Meanwhile, we also ob-
served that increasing levels of latency sensitivity of both
CPU and memory intensive workloads impose increasing
error margin in the prediction results. Lower level of latency
sensitivity exhibits better predictability. Since the majority
of the Cloud workloads are of lower latency sensitivity
levels, our proposed prediction model can accurately pre-
dict the trend of most of the arriving workloads in Cloud
datacentres. An increased level of intrinsic similarity among
the arriving workloads facilitates a better learning rate of
the neurons in the K-RVLBPNN model, which results in
an increased prediction accuracy. From the experiments,
we postulate that workloads should be classified based on
their latency sensitivity prior to prediction to deliver better
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accuracy.

6 CONCLUSION
Prediction analytics is gaining importance in various do-
mains, particularly Cloud datacentres can significantly ben-
efit from the prediction analytics of workloads. Prediction of
Cloud workload behaviours and requirements can benefit
resource management, server management, resource allo-
cation and provision etc. The reliability of such prediction
analytics is crucial for various reasons in a Cloud datacentre
including uninterrupted services, SLA and QoS mainte-
nance etc. This paper proposed a new workload prediction
model named K-RVLBPNN, based on an improved K-means
clustering algorithm and BP Neural Network algorithm.
The experimental results indicate that the proposed K-
RVLBPNN model achieves better prediction accuracy than
the HMM-based and NBC-based prediction techniques and
our earlier RVLBNN technique. Classifying the workloads
based on their latency sensitivity has a significantly positive
effect in the prediction process, which has been incorporated
in our proposed model. Our proposed model exhibits better
prediction accuracy for less latency sensitive workloads. As
a future work, the possibilities of improving the prediction
accuracy for higher level of latency sensitivity workloads of
our proposed approach will be explored. Workloads with
higher level of latency sensitivity usually have more strin-
gent resource requirements. Resource requirements must be
met within a very short time, otherwise the related tasks will
fail. At the same time, such type of workloads exhibit more
variable characteristics, which increases their prediction
complexity. This is the reason why our model characterise a
lower forecasting accuracy in comparison with the accuracy
of the workloads of less latency levels. Thus, optimising our
model for improving the prediction accuracy of workloads
characterising higher levels of latency sensitivity is our
immediate future work.
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