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Abstract

In this thesis, we investigate the applicability of coupled mode theory in the cubic-

quintic nonlinear Schrödinger/Gross Pitaevskii (NLS/GP) equation with a linear

double-well potential and study justifications of the rotating wave approximations

in lattice systems.

First, we study the long-time dynamics near a symmetry breaking bifurcation

point of the cubic-quintic NLS/GP with symmetric double-well potentials. We

investigate the stability of the solutions of NLS/GP and analyze the error for the

finite dimensional ansatz.

Next, we consider a class of discrete nonlinear Klein-Gordon equations with

damping and parametric drive. Using small amplitude ansatzs, one usually ap-

proximates the equations using a damped, driven discrete nonlinear Schrödinger

type equation. Here, we show for the first time the justification of this approxima-

tion by finding the error bound using energy estimates. Additionally, we prove

the local and global existence of the solutions of Schrödinger equation. Numerical

comparisons of discrete breathers obtained from the original nonlinear equation

and the discrete nonlinear Schrödinger equation are presented describing the

analytical results.

Finally, we consider a damped, externally driven nonlinear Klein-Gordon equa-

tion and justify the small amplitude ansatz yields a discrete nonlinear Schrödinger

equation with damping and external drive. The same problems as the Klein-Gordon

equation with damping and parametric drive are addressed.
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Chapter 1

Introduction

1.1 What is the thesis about?

The main purpose of this thesis is to study the long-time dynamics near a symme-

try breaking bifurcation point in the cubic-quintic nonlinear Schrödinger/Gross-

Pitaevskii (NLS/GP) equation and to get approximate solutions of discrete Klein-

Gordon equations (dKG) by means of equations of discrete nonlinear Schrödinger

(dNLS) model through the justification of its solutions. For the cubic-quintic

NLS/GP equation, we focus on a class of symmetric double-well potentials, while

for the lattice system, we introduce an external or parametric driving with damping

for dKG and dNLS.

In Chapter 2, we present Sturm-Liouville theory and its properties which are

related to the calculation of an eigenvalue problem used in Chapter 3.

Our works are commenced in Chapter 3. We consider a cubic-quintic NLS/GP

equation with an external linear potential. We study the applicability of the coupled

mode theory in the cubic-quintic NLS/GP with a linear double-well potential. We

also analyze bifurcations of equilibria for the system and their stability as well as

symmetry breaking in NLS/GP.

1
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In Chapter 4, we introduce a lattice system by considering a dKG equation with

damping and parametric drive terms. We determine approximate solutions of the

dKG equation from dNLS using rotating wave method. In addition, a justification

is provided through an energy method approach. This method allows us to have

an error bound that is proven to be small. Moreover, a numerical comparison is

provided to illustrate analytical results and confirm the stability of our solutions.

Next, in Chapter 5 the model is still a lattice system by considering a dKG

equation with damping and external drive terms. Applying a similar method

into the model, we determine approximate solutions of the dKG, through a

dNLS equation. We observe the effect of external drive terms to the solutions.

Furthermore, we illustrate the error bound obtained using numerics. The main

difference between Chapter 4 and Chapter 5 is lied in space of the solutions. We

find that with external drive and damping, the solutions do not lie in ℓ2-space of

Z, while with parametric drive and damping, the initial value problem for the

discrete nonlinear Schrödinger equation with power nonlinearity is in weighted

ℓ2-space.

Finally, a summary of our work and interesting problems related to our methods,

which are suggested for future investigation, is delivered in Chapter 6.

In the following, we will provide basic introductions to some keywords used

in this thesis.

1.2 Coupled mode reduction

The term of coupled mode reduction is actually derived from the coupled mode

theory. Why? Because coupled mode theory allows partial differential equations

(PDEs) to be expressed as ordinary differential equations (ODEs).

In many cases, we are dealing with PDEs because most of the mathematical

models are described by such equations. For example, Maxwell’s equations, Navier-
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Stokes equations, Gross-Pitaevskii equations describe more complex physical

system and therefore, this condition usually makes the PDEs much harder to solve

than ODEs.

A PDEs can be reduced to a system of ODEs by the method of separation

variables. Another way to convert PDEs into ODEs is by using transform method

such as Fourier transform. Assuming a solution of nonlinear PDEs as a linear

combination of its linear solution, and then substituting the solution into PDEs to

get ODEs can be used as well to solve a problem.

In Chapter 3, we will deal with a complicated PDEs which is cubic-quintic

nonlinear Schrödinger equation. We use an assumption that a solution of cubic-

quintic nonlinear Schrödinger equation is a linear combination of its linear solution.

The procedure or process to get ODEs is called as coupled mode reduction.

1.3 What is a symmetry breaking?

In term of physics, symmetry properties may be attributed to physical laws (equa-

tions) or to physical objects/phenomena (solutions) [19]. In addition, a symmetry

of physical laws can be broken in two ways, i.e., explicitly or spontaneously.

The simple way to know what a symmetry breaking is, let us consider a

symmetrical upward dome with a trough circling the bottom. If we put a ball at

the peak of the dome, the system is symmetrical with respect to a rotation around

the centre axis. But the ball will break this symmetry spontaneously by rolling

down the dome into the trough, which is a point of lowest energy. Thereafter, the

ball has come to a rest at some fixed point on the perimeter. The dome and the ball

maintain their individual symmetry, but the system does not.

Symmetry breaking indicates a situation where the dynamical equations are

not manifestly invariant under the symmetry group treated. This means, in the

Lagrangian (Hamiltonian) formulation the Lagrangian of the system contains
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one or more terms explicitly break the symmetry. While according to [70, 97],

spontaneous symmetry breaking (SSB) happens in a system when its Hamiltonian

possesses a particular symmetry, whereas the ground-state wave functions do not

maintain it. This yields a bifurcation, which breaks the symmetry when some

control parameters cross its critical value.

In addition, it is generally known that the ground state in quantum mechanics

exactly follows the symmetry of the underlying potential, while excited states

may realize other representations of the same symmetry [1]. In particular, the

wave function of the ground state of a particle trapped in the one-dimensional

double-well potential is even, with respect to the double-well structure, while the

first excited state has the opposite parity, being odd. Similarly, the wave function

corresponding to the state at the bottom of the lowest Bloch band induced by the

periodic potential features the same periodicity. In a simple explanation, we can

see the symmetry breaking phenomena in the solution of our mathematical model.

In this thesis, we will study the long-time dynamics near a SSB, particularly we

focus on symmetric double-well potentials.

1.4 Rotating wave approximation

Rotating wave approximation is the main method used in Chapters 4 and 5. We use

this method to approximate solutions of discrete Klein-Gordon (dKG) equations

through discrete nonlinear Schrödinger equations. In quantum optics, in order to

achieve an analytic approximate solution of some Schrödinger equations, rotating

wave approximation plays a very essential role [40].

To understand how rotating wave approximation works, we can find it through

multiple scale analysis as follows.
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1.4.1 Multiple scale analysis

A concept of expanding the solution into a perturbation series and including

multiple temporal and spatial scale is called multiple scale analysis methods.

Effect of this method could be meaningless on short time scales but become

essential on long time-scales. In general, classical perturbation methods will fail

due to resonances that lead to what is called a secular term.

Resonance and secular term

The influence of resonance in oscillatory problems are very fundamental and

cannot be ignored. For example, when a driving force is presented in our system,

then the influence of resonance may appear. A familiar example about resonance

is when we are pushing a child on a swing. Its amplitude will become larger and

larger when we are pushing at the same frequency as the child swings. We have to

avoid this effect.

Now, let us discuss the following example of a harmonic oscillator of natural

frequency ω0, adopted from [10, 60].

The movement of a harmonic oscillator can be illustrated by the homogeneous

ordinary differential equation

ÿ(t)+ω2
0y(t) = 0, (1.1)

where the natural frequency of the system is ω0 and y(t) is the displacement of the

oscillator at time t.

Its general solution is given by

yh(t) = Acos(ω0t)+Bsin(ω0t), (1.2)
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A,B ∈R arbitrary constants. Since |cos(ω0t)| ≤ 1 and |sin(ω0t)| ≤ 1 for all t ∈R, we

obtain

|yh(t)| ≤ A+B. (1.3)

Now if we add a driving force, that periodically puts energy into the system at

frequency ω, Equation (1.1) becomes nonhomogeneous and the oscillation can be

described by

ÿ(t)+ω2
0y(t) = cos(ωt). (1.4)

Its general solution depends on the relation between the driving frequency ω and

natural frequency ω0. If |ω| , |ω0|we obtain the general solution of (1.4):

y(t) = Acos(ω0t)+Bsin(ω0t)+
cos(ωt)
ω2

0−ω
2
. (1.5)

How about if the driving frequency gets close to the natural frequency of the

system? From Equation (1.5) we can see that the denominator of the last term gets

close to 0 as |ω| , |ω0|. Since cos(ωt) is bounded, the amplitude of the oscillation

thus increases more and more. This can be explained in physical terms by the

system absorbing more and more energy from the external force when the driving

frequency ω gets close to the natural frequency ω0 of the system. Nevertheless,

we observe that for all fixed |ω| , |ω0| the solution remains bounded for all times t,

since the oscillation is out of phase with the driving force.

However, in case the |ω| = |ω0| the solution is given by

ys(t) = Acos(ω0t)+Bsin(ω0t)+
1
2

tsin(ωt), (1.6)

and therefore grows with t. Hence ys is unbounded as t→∞. In this case the

system can continually absorb energy from the periodic external force, so the
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amplitude of the oscillation of (1.4) increases without any bound. We say that the

system is in resonance with the external force.

The term 1
2 tsin(ωt), which appears in (1.6), is called a secular term or just

secularity, i.e., its amplitude grows algebraically with t. This secularity appear

because the right hand side of (1.4), i.e., cos(ωt) with |ω| = |ω0| itself is a solution of

the homogeneous Eq. (1.1).

Let us see another example on the appearance of the secular term, which will

make a problem as we are interested in bounded solutions of differential equations.

The following two examples are also taken from [10].

Example 1.4.1. The solution of differential equation

ÿ− y = e−t (1.7)

has a secular term, because e−t satisfies the associated homogeneous equation. The general

solution of (1.7) is

y(t) = Aet+Be−t
−

1
2

te−t. (1.8)

The particular solution −1
2 te−t is secular relative to the homogeneous solution Be−t. We

must regard the term −1
2 te−t as secular even though it is negligible compared with the

homogeneous solution Aet as t→∞.

Example 1.4.2. The solution of differential equation

ÿ−2ẏ+ y = et (1.9)

has a secular term, because et satisfies the associated homogeneous equation. The general

solution of (1.9) is

y(t) = Aet+Btet+
1
2

t2et. (1.10)
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In this case, the particular solution 1
2 t2et is secular with respect to all solutions of the

associated homogeneous equation.

How multiple scales can eliminate a secular term

Again, the following explanation is generally adopted from [10, 54, 60]. Consider

the weak nonlinear oscillator equation (Duffing’s equation)

ÿ+ y+ϵy3 = 0, y(0) = 1, ẏ(0) = 0, (1.11)

where the weak nonlinearity is given by ϵy3 with small |ϵ| ≪ 1. A perturbative

solution of this equation is obtained by expanding y(t) as a power series in ϵ

y(t) =
∞∑

n=0

ϵnyn(t), (1.12)

where y0(0) = 1, ẏ0(0) = 0 , yn(0) = ẏn(0) = 0 , n ≥ 1. Substituting (1.12) into the

differential equation (1.11) and equating coefficients of like powers of ϵ gives a

sequence of linear differential equations

0 =
∑
∞

n=0 ϵ
n ÿn+

∑
∞

n=0 ϵ
nyn+ϵ

(∑
∞

n=0 ϵ
nyn

)3

=
(
ÿ0+ y0

)
+ϵ

(
ÿ1+ y1+ y3

0

)
+O(ϵ2).

(1.13)

This yields the first two differential equations

ÿ0+ y0 = 0, (1.14)

ÿ1+ y1 = −y3
0, (1.15)
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where the second equation (and also all further equations in the sequence) is

inhomogeneous. The solution to (1.14), which satisfy y0(0) = 1, ẏ0(0) = 0 is

y0(t) = cos(t). (1.16)

To solve (1.15) we appeal the trigonometric identity and obtain

y3
0(t) = cos3(t) =

1
4

cos(3t)+
3
4

cos(t). (1.17)

Hence, (1.15) becomes

ÿ1+ y1 = −
(1
4

cos(3t)+
3
4

cos(t)
)
, (1.18)

and the general solution to (1.18) is

y1(t) = −
1
32

cos(t)+
1
32

cos(3t)−
3
8

tsin(t). (1.19)

We can see that y1 contains a secular term, i.e., tsin(t). Hence y1 features linear

growth in t. Then, we can write down an approximation of solution of (1.11)

y(t) = cos(t)+ϵ
(
−

1
32

cos(t)+
1
32

cos(3t)−
3
8

tsin(t)
)
+O(ϵ2). (1.20)

Equation (1.20) shows that the perturbation theory will break down when t ∼ ϵ−1

since y1(t) will be of the same order as y0. This t dependence in y1(t) is known

as secular growth and arises whenever there is a resonance between y0 and y1.

However, for all t, Bender dan Orszag [10] have proved that the exact solution y(t)

to (1.11) remains bounded. We can say that even though each term yn in the series

may contain secular terms, these secularities must disappear by summation.
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Now, the perturbation theory in powers of ϵ is invalid when t gets larger than

O(ϵ−1), as secular terms appear in all orders of ϵ and lead to unboundedness of

a truncated perturbation series. We can omit the secular terms of a perturbation

series by using the method of multiple scales, i.e., we use several further time

scales ϵt, ϵ2t, . . . , such that we can deal with times t of order O(ϵ−n). Then it will

provide a way to eliminate secular terms in the approximate solution as we will

see in the following example.

Example 1.4.3. We use the Duffing’s equation as before to analyze the influence of

nonlinear effects. The procedure of obtaining an ansatz can be made using a two-scale

expansion i.e., t and τ = ϵt. We introduce a new variable τ = ϵt and this variable is

called the slow time because it does not become significant until t ∼ ϵ−1 . We consider a

perturbation expansion of the solution y(t) in the form

y(t) = Y0(t,τ)+ϵY1(t,τ)+ . . . =
∞∑

n=0

ϵnYn(t,τ). (1.21)

From (1.21) and using the chain rule, this implies

d
dt

y(t) =
∂Y0

∂t
+ϵ

(
∂Y0

∂τ
+
∂Y1

∂t

)
+O(ϵ2), (1.22)

d2

dt2 y(t) =
∂2Y0

∂t2 +ϵ

(
2
∂2Y0

∂τ∂t
+
∂2Y1

∂t2

)
+O(ϵ2). (1.23)

By substituting (1.21) and Eq. (1.22) - (1.23) into (1.11) we obtain

∂2Y0

∂t2 +Y0+ϵ

(
∂2Y1

∂t2 +Y1+2
∂2Y0

∂τ∂t
+Y3

0

)
+O(ϵ2). (1.24)
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Equating terms of powers of ϵ gives

∂2Y0

∂t2 +Y0 = 0, Y0(0,0) = 1,
∂
∂t

Y0(0,0), (1.25)

∂2Y1

∂t2 +Y1 = −Y3
0−2

∂2Y0

∂τ∂t
, Y1(0,0) = 1,

∂
∂t

Y1(0,0) = −
∂
∂τ

Y0(0,0). (1.26)

The general solution (1.25) is

Y0(t,τ) = A(τ)eit+ Ā(τ)e−it, (1.27)

where A(τ) is an arbitrary complex function of τ and Ā(τ) denotes its complex conjugate.

Substituting (1.27) into (1.26) gives

∂2Y1

∂t2 +Y1 = −A3e3it
− Ā3e−3it+ eit

(
−3A2Ā−2i

dA
dτ

)
︸              ︷︷              ︸

:=p1(τ)

+e−it
(
−3AĀ2+2i

dĀ
dτ

)
︸              ︷︷              ︸

:=p2(τ)

(1.28)

We can check that e±it itself is a solution of the homogeneous equation

∂2

∂t2 Y1+Y1 = 0,

corresponding to Eq. (1.26).

If the terms p1(τ), p2(τ) in front of e±it in (1.28) are nonzero, then Y1(t,τ) will be

secular in t. But that is exactly what we want to avoid. To ensure that there are no secular

terms in Y1(t,τ), we set p1(τ) and p2(τ) equal to zero

−3A2Ā−2i
dA
dτ
= 0, (1.29)

−3AĀ2+2i
dĀ
dτ
= 0. (1.30)

Because (1.30) is just the complex conjugate of (1.29), we can omit it. If we have A

satisfying these conditions, Y1 will not contain secular terms and at least no secularities
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appear in the first two terms of the series representation of y in (1.21), but we have to be

careful that we do not have any information on further terms. It means we have to restrict

our time interval to t ∈ [0,T0ϵ−1] such that the error of the approximation

ŷ(t) := Y0(t,τ)+ϵY1(t,τ) (1.31)

is of order O(ϵ2), i.e. y(t)− ŷ(t) = O(ϵ2).

From the above procedure, the approximation of Eq. (1.11) through Eq. (1.29)

is what we call a rotating wave approximation.

1.5 Nonlinear lattices

Nonlinear lattices or discrete nonlinear equations are obtained when physical

properties of a system are represented through an infinite set of coupled nonlinear

evolution equations [47]. We know that in lattice equations, the strength of the

interaction between lattices is determined by a coupling constant. This constant

can be used as a perturbation parameter for the analysis of existence and stability

of solutions to the lattice equations [82]. In that case, we consider the lattice

equation in the limit of the small coupling constant, the so-called anti-continuum

limit. MacKay and Aubry in [64] proposed this method for the first time to show

the existence of discrete breathers. Furthermore, when the coupling constant

approaches infinity, i.e., in the limit of the continuous approximation, one can

investigate solutions to the lattice equation using perturbation analysis through

the corresponding partial differential equation.

The main subjects in Chapters 4 and 5 are nonlinear lattice systems, i.e.,

discrete Klein-Gordon (dKG) equations and discrete nonlinear Schrödinger (dNLS)

equations, which describe a lattice of coupled anharmonic oscillators [26, 59, 72].

We will see that the dNLS equations can be obtained from the dKG equations,
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via a multiscale expansion in the limits of small-amplitude oscillations and weak

inter-site coupling.

1.5.1 The discrete Klein-Gordon (dKG) equation

The one-dimensional discrete Klein-Gordon (dKG) equation with the hard quartic

potential can be written in the form of

ẍ j+x j+x3
j = ϵ(x j+1−2x j+x j−1), j ∈Z, (1.32)

where t ∈R is the evolution time, x j(t) ∈R is the horizontal displacement of the

j-th particle in the one-dimensional chain, and ϵ > 0 is the coupling constant of

the linear interaction between neighbouring particles. Explanation about either

hard or soft potential can be seen in [77]. The initial-value problem for the dKG

equation (1.32) is globally well-posed in the sequence space ℓ2(Z), see [82] for the

proof.

Equation (1.32) admits a Hamiltonian

H =
1
2

∑
j∈Z

ẋ2
j +x2

j +ϵ(x j+1−x j)2+
1
4

∑
j∈Z

x4
j . (1.33)

The dKG (1.32), in the case of models of weakly coupled ascillators, is a fundamental

model for discrete breathers in nonlinear lattices.

1.5.2 The discrete nonlinear Schrödinger (dNLS) equation

The discrete nonlinear Schrödinger equation (dNLS) has appeared in many applica-

tions, such as those related to coupled optical wave guides [24, 32] or Bose-Einstein

condensates trapped in a periodic potential [20, 91].
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In one spatial dimension, the dNLS in its simplest form is

iȦ j+ϵ
(
A j+1−2A j+A j−1

)
+γ|A j|

2A j = 0, j ∈Z, (1.34)

which describes a lattice of coupled anharmonic oscillators, where i =
√
−1. The

quantity A j = A j(t) is the complex mode amplitude of the oscillator at site j, and γ

is a anharmonic parameter [23].

Note that the dNLS equation arises as the small-amplitude limit of the dKG

lattice [72]. The anti-continuum limit is related to the small values of ϵ.

1.6 Bifurcation and stability analysis

In this section, we review bifurcation and stability analysis of ordinary differential

equations (ODEs). The application of this theory will be directly applied in Chapter

3, 4 and 5.

In application, mathematical models are very useful to give quantitative

descriptions and to derive numerical conclusions. Generally, we are dealing with

an unspecified constant in a differential equation called parameter. One of the

techniques that is applied to study solutions of differential equations is to allow

a parameter varies and to observe the resulting changes in the behaviour of the

solutions [52].

Formally, we can state the definition of bifurcation as in [35]

Definition 1.6.1. In dynamical systems, a bifurcation occurs when a small smooth change

made to the parameter values (the bifurcation parameters) of a system causes a sudden

qualitative or topological change in its behaviour.

Now, consider we have a set of ODEs, written in vector form

ẋ = f (x), (1.35)
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where x is variable.

Definition 1.6.2. An equilibrium point x∗ of the scalar differential equation (1.35) is a

point for which f (x∗) = 0.

Obviously, equilibrium points represent the simplest solutions to differential

equations. Furthermore, suppose that we take a multivariate Taylor expansion of

the right-hand side of our differential equation

ẋ = f (x∗)+ ∂ f
∂x

∣∣∣∣∣
x∗

(x−x∗)+ ∂2 f
∂x2

∣∣∣∣∣
x∗

(x−x∗)2+ · · ·

=
∂ f
∂x

∣∣∣∣∣
x∗

(x−x∗)+ ∂2 f
∂x2

∣∣∣∣∣
x∗

(x−x∗)2+ · · ·
(1.36)

The partial derivative in the above equation is to be interpreted as the Jacobian

matrix. If the components of the state vector x are (x1,x2, · · · ,xn) and the components

of the vector f are ( f1, f2, · · · , fn), then the Jacobian is

J =



∂ f1
∂x1

∂ f1
∂x2

· · ·
∂ f1
∂xn

∂ f2
∂x1

∂ f2
∂x2

· · ·
∂ f2
∂xn

...
...

. . .
...

∂ fn
∂x1

∂ fn
∂x2

· · ·
∂ fn
∂xn


Now, let us define δx = x− x∗. By taking a derivative of this definition, we

obtain δẋ = ẋ. If δx is small, then only the first term in Equation (1.36) is significant

since the higher terms involve powers of our small displacement from equilibrium.

If we want to know how trajectories behave near the equilibrium point, such as

whether they move closer or away from the equilibrium point, it should be good

enough to keep this term. Then we obtain

δẋ = J∗δx,
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where J∗ is the Jacobian evaluated at the equilibrium point. The matrix J∗ is a

constant, so this is a linear differential equation. According to the theory of linear

differential equations, the solution can be written as a superposition of terms of

the form eλ jt, where λ j is the set of eigenvalues of the Jacobian.

In general, the eigenvalues of the Jacobian are complex numbers, then we can

write λ j = u j+ iv j, where u j and v j are real and imaginary parts of the eigenvalue,

respectively. Each of the exponential terms in the expansion can be written

eλt = e(u j+iv j)t = eu jteiv jt.

The complex exponential can be written

eiv jt = cos(v jt)+ isin(v jt).

The complex part of the eigenvalue therefore only contributes an oscillatory

component to the solution. It’s the real part that matters: If u j > 0 for any j, then

eu jt grows with time, which means that trajectories will tend to move away from

the equilibrium point. Actually, what do eigenvalues tell us about stability? If the

eigenvalues have real parts less than zero, then x∗ is stable, and if at least one of the

eigenvalues has a real part greater than zero then x∗ is unstable, otherwise, there is

no conclusion, it means borderline case between stability and instability require an

investigation of the higher order terms. This leads us to a very important theorem

as follows

Theorem 1.6.3. (Linear stability analysis) An equilibrium point x∗ of the differential

equation (1.35) is stable if all the eigenvalues of J∗, the Jacobian evaluated at x∗, have

negative real parts. The equilibrium point is unstable if at least one of the eigenvalues has

a positive real part.
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Theorem (1.6.3) give us an information that eigenvalues allow to observe a

stability analysis of linear dynamical systems. Furthermore, eigenvalues can

contribute local stability analysis of nonlinear dynamical systems as well.

Example 1.6.4. Consider the equation

ẋ = cx−x3.

To look at the stability, we need the derivative of f (x,c). For c > 0, the equation has three

equilibrium points, x∗ = 0, and x∗ = ±
√

c. D f (x,c) = c−3x2, then D f (0,c) = c > 0, which

implies that the fixed point at x∗ = 0 is unstable. While for D f (±
√

c,c) = −2c < 0, so both

fixed point x∗ = ±
√

c are stable.

Now, if c < 0, the equilibrium point is x∗ = 0, and D f (0,c) = c < 0, the the equilibrium

point is stable. Again, if c= 0, the equilibrium point is x∗ = 0. Therefore, since D f (0,0)= 0,

the equilibrium is nonhyperbolic and the equilibrium in this case is still stable. In this

problem, the bifurcation of the system undergoes what is called a pitchfork bifurcation at

the parameter value c = 0.

Example 1.6.5. Given a couple of nonlinear systems

ẋ = −x2+3x−2xy,

ẏ = −y2+2y−xy.
(1.37)

From above equation, the equilibrium point are (0,0), (0,2), (3,0), and (1,1) and the

Jacobian matrix is

J =


∂ f1
∂x

∂ f1
∂y

∂ f2
∂x

∂ f2
∂y

 =
3−2x−2y −2x

−y 2−x−2y

 . (1.38)
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Evaluating the Jacobian at (0,0), we obtain

J∗ =

3 0

0 2

 . (1.39)

From (1.39) we obtain the eigenvalues are λ1 = 3 and λ2 = 2. Because both of eigenvalues

are positive, from Theorem (1.6.3), we can conclude the fixed point at (0,0) is unstable.

Using the similar calculation, we evaluate the Jacobian at (0,2), we get

J∗ =

−1 0

−2 −2

 . (1.40)

From (1.40), the eigenvalues are λ1 = −1 and λ2 = −2. So, the fixed point is stable. Again,

the Jacobian at (3,0) is

J∗ =

−3 −6

0 −1

 , (1.41)

and obtained the eigenvalues are λ1 = −3 and λ2 = −1. Therefore, we can say the

equilibrium point is also stable. Next, at (1,1), the Jacobian is

J∗ =

−1 −2

−1 −1

 . (1.42)

The eigenvalues of J∗ are λ1 = −1+
√

2 and −1−
√

2. So, the fixed point is unstable.

1.7 Floquet theory

Floquet theory is used in Chapter 3, 4, and Chapter 5 to find linear stability

numerically. To know about this material, let us see the following theory which

generally adopted from [52]. In the Floquet system, we involve fundamental
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matrix which is obtained from a fundamental system that is a set of n linearly

independent solution of the linear system.

The fundamental matrix can be calculated by using the eigenpairs of the

coefficient matrix. But for a homogeneous system of differential equations with

a periodic coefficient matrix, to get the fundamental matrix, we need another

approach, which is Floquet’s theorem in Floquet theory.

Floquet’s theorem offers a canonical form for each fundamental matrix of these

periodic systems. Furthermore, Floquet’s theorem affords a technique to transform

a system with periodic coefficients into a system with constant coefficients. The

fundamental matrix of a system of ODEs or monodromy matrix is very useful for

stability analyses of periodic differential systems which are used in Chapter 4, and

5.

Because of Floquet system is closely linked to a linear system with constant

coefficients, then we can apply the properties of those systems. Therefore, let us

start this section by providing a theory about it.

1.7.1 Linear system

Consider linear system of the form

ẋ1 = a11(t)x1+ a12(t)x2+ · · ·+ a1n(t)xn+ f1(t)

ẋ2 = a21(t)x1+ a22(t)x2+ · · ·+ a2n(t)xn+ f2(t)

...

ẋn = an1(t)x1+ an2(t)x2+ · · ·+ ann(t)xn+ fn(t),

(1.43)

where we assume that the functions ai j, and fi, for i, j = 1 · · ·n, are continuous

real-valued functions on an interval I. We say that the collection of n functions

x1,x2, · · · ,xn is a solution on I of this linear system provided each of these n functions
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is continuously differentiable on I and t ∈ I. This system can be written as an

equivalent vector differential equation

ẋ = A(t)x+ f (t), (1.44)

where x :=



x1

x2

...

xn


, ẋ :=



ẋ1(t)

ẋ2(t)
...

ẋn(t)


, A(t) :=



a11(t) a12(t) · · · a1n(t)

a21(t) a22(t) · · · a2n(t)
...

...
. . .

...

an1(t) an2(t) · · · ann(t)


, and f (t) :=



f1(t)

f2(t)
...

fn(t)


.

Note that the matrix functions A and f are continuous on I (a matrix function is

continuous on I if and only if all of its entries are continuous on I). We say that

an n×1 vector function x is a solution of (1.44) on I provided x is a continuously

differentiable vector function on I (if and only if each component of x is continuously

differentiable on I) and x′(t) = A(t)x(t)+ f (t), for all t ∈ I.

If we take f = 0 then Equation (1.44) becomes a homogeneous system of n

differential equations and can be written as

ẋ(t) = A(t)x. (1.45)

Further, first we will solve the corresponding homogeneous linear vector differ-

ential equation, x′(t) = A(t)x. Therefore, we need to discuss the homogeneous

vector differential equation (1.45). For this purpose, we provide some theorems,

definitions, and examples as studied in [52].

Theorem 1.7.1. The linear differential equation (1.45) has n linearly independent solutions

on I, and if φ1, φ2, ..., φn are n linearly independent solutions on I, then

x = c1φ1+ c2φ2+ · · ·+ cnφn, (1.46)
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for t ∈ I, where c1,c2, · · · ,cn are constants, is a general solution of (1.45).

Let us recall the definitions of eigenvalues and eigenvectors for an n×n matrix

A.

Definition 1.7.2. Let A be a given n×n constant matrix and let y be a column unknown

n-vector. For any number λ the vector equation

Ax = λx (1.47)

has the solution x = 0 called the trivial solution of the vector equation. If λ0 is a number

such that the vector equation (1.47) with λ replaced by λ0 has a nontrivial solution x0,

then λ0 is called an eigenvalue of A and x0 is called a corresponding eigenvector. We say

λ0, x0 is an eigenpair of A.

Assume λ is an eigenvalue of A, then Equation (1.47) has a nontrivial solution.

Therefore,

(A−λI)x = 0

has a nontrivial solution. From linear algebra we obtain that the characteristic

equation

det(A−λI) = 0

is satisfied. If λ0 is an eigenvalue, then its corresponding eigenvector is nonzero

vector x so that

(A−λ0I)x = 0.

Theorem 1.7.3. If λ0, x0 is an eigenpair for the constant n×n matrix A, then

x(t) = eλ0tx0, t ∈R, (1.48)
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defines a solution x of

ẋ = Ax, (1.49)

on R.

Example 1.7.4. Solve the differential equation

ẋ =

 0 1

−2 −3

x. (1.50)

Define

A =

 0 1

−2 −3

 .

From the characteristic equation of A, we obtain its eigenpairs are −2,

 1

−2

 and −1,

 1

−1

.
Thus by Theorem (1.7.3) the vector functions φ1, φ2 defined by

φ1(t) = e−2t

 1

−2

 , and φ2(t) = e−t

 1

−1

 , (1.51)

are solution on R. Since the vector functions φ1, φ2 are linearly independent on R, a

general solution x is given by

x(t) = c1e−2t

 1

−2

+ c2e−t

 1

−1

 ,
t ∈R.

Theorem 1.7.5. If y = u+ iv is a complex vector-valued solution of (1.45), where u, v are

real vector-valued functions, then u, v are real vector-valued solutions of (1.45).
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Example 1.7.6. Solve the differential equation

ẋ =

 3 1

−13 −3

x. (1.52)

From above we obtain the characteristic equation of the coefficient matrix

λ2+4 = 0,

so that, and the eigenvalues are

λ1 = 2i, λ2 = −2i.

To find an eigenvector corresponding to λ1 = 2i, we solve

3−2i 1

−13 −3−2iλ


x1

x2

 =
00

 . (1.53)

Therefore, the eigenpair of the coefficient matrix is

2i,

 1

−3+2i

 .
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Hence by Theorem (1.7.3) the solution φ is φ defined by

φ(t) = e2it

 i

−3+2i


= [cos(2t)+ isin(2t)]

 i

−3+2i


=

 cos(2t)

−3cos(2t)−2sin(2t)

+ i

 sin(2t)

2cos(2t)−3sin(2t)

 .
Using Theorem (1.7.5), we get that the vector functions φ1, φ2 defined by

φ1(t) =

 cos(2t)

−3cos(2t)−2sin(2t)

 , φ2(t) =

 sin(2t)

2cos(2t)−3sin(2t)

 (1.54)

are real vector-valued solutions of (1.52). Since φ1, φ2 are linearly independent on R, we

have by Theorem (1.7.1) that a general solution x of (1.52) is given by

x(t) = c1

 cos(2t)

−3cos(2t)−2sin(2t)

+ c2

 sin(2t)

2cos(2t)−3sin(2t)

 ,
for t ∈R.

Now, let us define the matrix differential equation

Ẋ = A(t)X, (1.55)

where

X :=



x11 x12 · · · x1n

x21 x22 · · · x2n

...
...

. . .
...

xn1 xn2 · · · xnn





1.7 Floquet theory 25

and

Ẋ :=



ẋ11 ẋ12 · · · ẋ1n

ẋ21 ẋ22 · · · ẋ2n

...
...

. . .
...

ẋn1 ẋn2 · · · ẋnn


are n×n matrix variables. A continuous matrix function n×n on an interval I is

given by A and to be the matrix differential equation corresponding to the vector

differential equation in (1.45). Matrix functionΦ is a solution of (1.55) on I afforded

Φ is a continuously differentiable n×n matrix function on I and

Φ̇(t) = A(t)Φ(t),

for t ∈ I. A relationship between the vector differential equation (1.45) and the

matrix differential equation (1.55) is given in the following theorem.

Theorem 1.7.7. Assume A is a continuous n×n matrix function on an interval I and

assume that Φ defined by

Φ(t) = [φ1(t),φ2(t), · · · ,φn(t)], t ∈ I,

is the n×n matrix function with columns φ1(t),φ2(t), · · · ,φn(t). Then Φ is a solution of

the matrix differential equation (1.55) on I if and only if each column φi is a solution of the

vector differential equation (1.45) on I for 1 ≤ i ≤ n. Furthermore, if Φ is a solution of the

matrix differential equation (1.55),then

x(t) = Φ(t)c

is a solution of the vector differential equation (1.45) for any constant n×1 vector c.
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Definition 1.7.8. An n×n matrix function Φ is said to be a fundamental matrix for

the vector differential equation (1.45) provided Φ is a solution of the matrix equation (1.55)

on I and det Φ(t) , 0 on I.

Example 1.7.9. Find a fundamental matrix Φ for

ẋ =

−2 3

2 3

x. (1.56)

The characteristic equation is

λ2
−λ−12 = 0

so, the eigenvalues are λ1 = −3, and λ2 = 4. The corresponding eigenvectors are

 3

−1

 and

12
 .

Therefore, the solutions of (1.56) are

φ1(t) = e−3t

 3

−1

 , and φ2(t) = e4t

12
 ,

for t ∈R. From Theorem (1.7.7), we obtain the matrix function Φ defined by

Φ(t) = [φ1,φ2] =

3e−3t e4t

−e−3t 2e4t

 ,
for t ∈R is a matrix solution of the matrix equation corresponding to (1.55). Since det

Φ(t) , 0, for all t ∈R, Φ is a fundamental matrix of (1.56) on R. It follows from Theorem
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(1.7.7) that a general solution x of (1.56) is given by

x(t) = Φ(t)c =

3e−3t e4t

−e−3t 2e4t

c,

for t ∈R, where c is an arbritrary 2×1 constant vector.

1.7.2 Floquet’s theorem

From above explanation, we know the fundamental matrix of a homogeneous

system of differential equations with a constant coefficient matrix can be calculated

by using the eigenpairs. However, for a homogeneous system of differential

equations with a periodic coefficient matrix, we need another approach to obtain

the fundamental matrix. In this case we will use Floquet’s theorem because this

theorem offers a canonical form for each fundamental matrix of these periodic

systems.

In this sub section, we provide some statements about the fundamental system

of a periodic homogeneous system. But, we will not prove it as available in [52].

Definition 1.7.10. A matrix A is a periodic with period T > 0 if A(t+T) =A(t) for every

t.

Now, let us rewrite Equation (1.45) and note that A(t) is always a periodic

matrix with period T and consider the Floquet system as follow

ẋ = A(t)x. (1.57)

Theorem 1.7.11. If Φ is a fundamental matrix for (1.57), then Y = ΦB where B is an

arbitrary n×n nonsingular constant matrix is a general fundamental matrix of (1.57).

Theorem 1.7.12. (Jordan Canonical Form) If A is an n×n constant matrix, then there

is a nonsingular n×n constant matrix P so that A = PJP−1, where J is a block diagonal
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matrix of the form

J =



J1 0 · · · 0

0 J2
. . .

...

...
. . . . . . 0

0 · · · 0 Jk


where either Ji is the 1×1 matrix Ji = [λi] or

Ji =



λi 1 0 · · · 0

0 λi 1 . . .
...

...
. . . . . . . . .

...

...
. . . . . . λi 1

0 · · · 0 0 λi


(1.58)

1 ≤ i ≤ k, and the λi’s are the eigenvalues of A.

Because of every nonsingular matrix can be written as the exponential of one

other matrix [84], then we have the following theorem.

Theorem 1.7.13. (Log of matrix) If C is an n×n nonsingular matrix, then there is a

matrix B such that eB = C.

Now, let us deliver Floquet’s Theorem as follows

Theorem 1.7.14. (Floquet’s Theorem) If Φ is a fundamental matrix for the Floquet

system (1.57), where the matrix function A is continuous on R and has minimum

positive period ω, then the matrix functionΨ defined byΨ(t) := Φ(t+ω), t ∈R is also

a fundamental matrix. Furthermore there is a nonsingular, continuously differentiable

n×n matrix function P which is periodic with period ω and an n×n constant matrix B

(possibly complex) so that

Φ(t) = P(t)eBt,

for all t ∈R.
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Definition 1.7.15. Let Φ be a fundamental matrix for the Floquet system (1.57). Then

the eigenvalues µ of

C := Φ−1(0)Φ(ω) (1.59)

are called the Floquet multipliers of the Floquet system (1.57).

The application above theory will be found in Chapter 3, 4 and 5.

1.8 Preliminary definitions

In here, we provide and adopt the following definitions, which will be used in this

thesis as well.

1. A Hilbert space is a complete inner product space (equipped with the natural

norm) and any Hilbert space is a Banach space.

Example 1.8.1. ℓ2(Z) is a Hilbert space with the inner product

⟨x, y⟩ =
∞∑

k=1

xk ȳk, ∥x∥ =

 ∞∑
k=1

|xk|
2


1/2

. (1.60)

2. From [3], a linear operator T is bounded in its domainD if

sup
f∈D,∥ f ∥=1

∥T f ∥ ≤ ∞. (1.61)

The left member of this inequality is called the norm of the operator T inD

and is denoted by the symbol ∥T∥ or, sometimes, by ∥T∥D, then we have the

norm of a bounded linear operator T can be defined equivalently by

∥T∥ = sup
f∈D,∥ f ∥=1

∥T f ∥ = sup
f∈D

∥T f ∥
∥ f ∥

. (1.62)
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3. A Banach algebra is an algebra A with a norm ∥·∥ such that (A,∥·∥) is a

Banach space and

∥xy∥ ≤ ∥x∥∥y∥, (x, y ∈A). (1.63)



Chapter 2

Sturm-Liouville equations and

eigenvalue problems

In this chapter, we provide basic theory, general information, and an introductory

calculations of eigenvalue problems which are relevant and useful for Chapter 3.

2.1 Sturm-Liouville theory

In mathematics and its applications, many problems emerge in the form of

boundary value problems that involve second-order differential equations. One

of them is the classical Sturm-Liouville equation, which is a second-order linear

differential equation of the form

−
d

dx

[
p(x)

dy
dx

]
+q(x)y = λw(x)y, x ∈ [a,b], (2.1)

where p(x), q(x), and w(x) are given continuous functions defined on the finite

closed interval [a,b] with p(x) and w(x) both positive-valued on (a,b), and λ is an

unknown constant called the eigenvalue parameter. The function w(x) is called

the weight function for the Sturm-Liouville equation.

31
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We can define the Sturm-Liouville operator as

L =
1

w(x)

[
−

d
dx

p(x)
d

dx
+ q(x)

]
, w(x) > 0, (2.2)

So, the Sturm-Liouville eigenvalue problem is given by the differential equation

Ly = λy, or the equation (2.1).

In addition, the Sturm-Liouville equation is defined together with the boundary

condition at a and b to find the solution y. The value of λ in the equation

(2.1) is not given and finding the value of λ for which there exists a nontrivial

(nonzero) solution y of (2.1) satisfying the boundary condition is part of the

problem called the Sturm-Liouville problem. A nonzero function y that solves the

Sturm-Liouville problem (2.1) with boundary conditions is called an eigenfunction,

and the corresponding value of λ is called its eigenvalue. Note that, the eigenvalues

of a Sturm-Liouville problem are the values of λ for which nonzero solution exists.

There are some types of Sturm-Liouville problem, and we provide it as the

following definition:

Definition 2.1.1. The Sturm-Liouville differential equation on a finite interval [a,b] with

homogeneous mixed boundary conditions, that is

−
d
dx

[
p(x)

dy
dx

]
+q(x)y = λw(x)y, x ∈ [a,b]

α1y(a)+β1y′(a) = 0

α2y(b)+β2y′(b) = 0

with p(x) > 0 and w(x) > 0 for x ∈ [a,b] is called as regular Sturm-Liouville system or

problem. The homogeneous mixed boundary conditions are also called symmetric boundary

conditions.
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The main aim is to find all values λ for which a nontrivial solution y exists. It

is implicitly assumed that y and its derivative are continuous on [a,b], which also

means that they are bounded. We are not interested in the trivial solution y = 0

since every Sturm-Liouville system has a trivial solution.

Boundary conditions for a solution y of a differential equation on interval [a,b]

are classified as

1. Boundary conditions of the form

α1y(a)+β1y′(a) = α,

α2y(b)+β2y′(b) = β,
(2.3)

where α j,β j,α and β are constants, are called mixed Diriclet Neumann boundary

conditions. When both α = β = 0, then the boundary conditions are said

to be homogeneous. Special cases are Dirichlet boundary conditions when

β1 = β2 = 0 and Neumann boundary conditions when α1 = α2 = 0.

2. Boundary conditions of the form

y(a) = y(b),

y′(a) = y′(b).
(2.4)

are called periodic boundary conditions.

Now, consider the second-order differential equations of the form

a2(x)y′′+ a1(x)y′+ a0(x)y = f (x) (2.5)
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We want to show that equation (2.5) can be turned into a differential equation of

Sturm-Liouville (2.1). Particularly, Equation (2.5) can be put into the form:

−
d

dx

(
p(x)

dy
dx

)
+ q(x)y = F(x), (2.6)

and we can provide that condition in the following theorem as mentioned in [61].

Theorem 2.1.2. Any second order linear operator can be put into the form of the Sturm-

Liouville operator (2.2).

Proof. To proof the theorem, first we can consider the Equation (2.5). If a1(x) = a′2(x)

then we can write the equation in the form

f (x) = a2(x)y′′+ a1(x)y′+ a0(x)y

=
(
a2(x)y′

)′+ a0(x)y.
(2.7)

The resulting equation above has been changed in the Sturm–Liouville form. We

just introduce p(x) = a2(x) and q(x) = a0(x). �

However, not all second-order differential equations are modest to transform.

Consider the differential equation

x2y′′+xy′+2y = 0.

In this case, a2(x) = x2 and a′2(x) = 2x , a1(x). The linear differential operator in this

equation is not of Sturm-Liouville type. But, we can change it to a Sturm-Liouville

operator.

In the Sturm-Liouville operator, the derivative terms are gathered together into

one exact derivative. We seek a multiplicative function µ(x) that we can multiply

through (2.5) so that it can be written in Sturm-Liouville form. We first divide out
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a2(x), giving

y′′+
a1(x)
a2(x)

y′+
a0(x)
a2(x)

y =
f (x)

a2(x)
.

Now, we multiply the differential equation by µ:

µ(x)y′′+µ(x)
a1(x)
a2(x)

y′+µ(x)
a0(x)
a2(x)

y = µ(x)
f (x)

a2(x)
.

The first two terms can now be combined into an exact derivative (µy′)′ if µ(x)

satisfies
dµ
dx
= µ(x)

a1(x)
a2(x)

.

This is formally solved to give

µ(x) = e
∫ a1(x)

a2(x) dx
.

Thus, the original equation can be multiplied by factor

µ(x)
a2(x)

=
1

a2(x)
e
∫ a1(x)

a2(x) dx

to turn it into Sturm-Liouville form. In other words, we say that the Equation (2.5)

can be put into Sturm-Liouville form (2.6), where p(x) = e
∫ a1(x)

a2(x) dx, q(x) = p(x) a0(x)
a2(x) ,

and F(x) = p(x) f (x)
a2(x) .

Example 2.1.3. For the example above,

x2y′′+xy′+ (x2
−v2) = 0,

can be written in Sturm-Liouville form as

(xy′)′+
(

x−v2

x

)
y = 0.
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2.2 Properties of the Sturm-Liouville problems

In this section we will discuss an interesting explanation about eigenvalues and

eigenfunction. These things will be delivered by giving some properties of them.

Some of the properties for the regular Sturm-Liouville problem are that the

eigenvalues are always real and bounded [42]. If the interval [a,b] is finite, then the

eigenvalues are discrete and the eigenfunctions corresponding to each eigenvalue

are oscillatory in nature.

Let us start by considering a regular Sturm-Liouville problem as definition

(2.1.1) as follow:

−
d

dx

[
p(x)

dy
dx

]
+q(x)y = λw(x)y, x ∈ [a,b],

α1y(a)+β1y′(a) = 0,

α2y(b)+β2y′(b) = 0.

Let L2[a,b] be the Hilbert space of square integrable functions with an inner product

⟨ f , g⟩ =
∫ b

a
f (x)g(x)w(x)dx

where w(x) is a nonnegative function on [a,b] and called weight function. When

w(x) ≡ 1, these definitions become to the "ordinary" ones. We will see that Sturm-

Liouville operator is self-adjoint, but first we define the domain of an operator and

introduce concept of adjoint operators.

Definition 2.2.1. The domain of a differential operator L is the set of all u ∈ L2[a,b]

satisfying a given set of homogeneous boundary conditions.
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Definition 2.2.2. The adjoint, L†, of operator L satisfies

⟨u,Lv⟩ = ⟨L†u,v⟩

for all v in the domain of L and u in the domain of L†.

We can see an example in [61], as follow.

Example 2.2.3. We will find the adjoint of second order linear differential operator of

L = a2(x) d2

dx2 + a1(x) d
dx + a0(x).

In order to find the adjoint, we place the operator under an integral. So, we

consider the inner product

⟨u,Lv⟩ =
∫ b

a
u (a2v′′+ a1v′+ a0v)dx.

We have to move the operator L from v and determine what operator is acting on u

in order to formally preserve the inner product. For a simple operator like L = d
dx ,

this is easily done using integration by parts. For the given operator, we will need

to apply several integrations by parts to the individual terms. We will consider

the individual terms.

First, we consider the a1v′ term. Integration by parts yields

∫ b

a
u(x)a1(x)v′(x)dx = a1(x)u(x)v(x)

∣∣∣∣b
a
−

∫ b

a
(u(x)a1(x))′ v(x)dx. (2.8)
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Now, we consider the a2v′′ term. In this case it will take two integrations by

parts:

∫ b

a
u(x)a2(x)v′′(x)dx =a2(x)u(x)v′(x)

∣∣∣∣b
a
−

∫ b

a
(u(x)a2(x))′ v(x)′dx

=
[
a2(x)u(x)v′(x)− (a2(x)u(x))′ v(x)

] ∣∣∣∣b
a

+

∫ b

a
(u(x)a2(x))′′ v(x)dx.

(2.9)

Combining these results, we obtain

⟨u,Lv⟩ =
∫ b

a
u (a2v′′+ a1v′+ a0v)dx

=
[
a1(x)u(x)v(x)+ a2(x)u(x)v′(x)− (a2(x)u(x))′ v(x)

] ∣∣∣∣b
a

+

∫ b

a

[
(a2u)′′− (a1u)′+ a0u

]
vdx.

(2.10)

By applying the homogeneous boundary conditions for v, we have to find

boundary condition for u such that

[
a1(x)u(x)v(x)+ a2(x)u(x)v′(x)− (a2(x)u(x))′ v(x)

] ∣∣∣∣b
a
= 0.

Now we just have

⟨u,Lv⟩ =
∫ b

a

[
(a2u)′′− (a1u)′+ a0u

]
vdx ≡ ⟨L†u,v⟩.

Hence, we obtain the adjoint operator of L

L† =
d2

dx2 a2(x)−
d

dx
a1(x)+ a0(x). (2.11)

If L† = L and the domain of both operators are the same, then the operator is

called self-adjoint.
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Example 2.2.4. Determine L† for the operator Lu = du
dx , where u satisfies the boundary

conditions.

We have to find the adjoint operator such that ⟨v,Lu⟩ = ⟨L†v,u⟩. Hence, we can

write it as

⟨v,Lu⟩ =
∫ 1

0
v

du
dx

dx = uv
∣∣∣∣1
0
−

∫ 1

0
u

dv
dx

dx = ⟨L†v,u⟩.

From above we obtain that L† = − d
dx .

Now, let us prove that Sturm-Liouville operator is self adjoint.

Theorem 2.2.5. LetH be the subspace of functions that satisfy the boundary conditions

of Sturm-Liouville problem. Sturm-Liouville operator (2.2) is self-adjoint operator onH .

Proof. Since we want to prove that Sturm-Liouville operator is self adjoint, so we

have to show that ⟨ f ,Lg⟩ = ⟨L f , g⟩. First, let us define

⟨ f ,Lg⟩ =
∫ b

a
f (x)(Lg)(x)w(x)dx

=

∫ b

a
f (x)

[
−

d
dx

[p(x)g′(x)]+ q(x)g(x)
]
dx

and

⟨L f , g⟩ =
∫ b

a
L f (x)g(x)w(x)dx

=

∫ b

a

[
−

d
dx

[p(x) f ′(x)+q(x) f (x)
]

g(x)dx.

By integrating the first and the second term by parts, we obtain

⟨ f ,Lg⟩ = −
[
p(x) f (x)g′(x)

]b

a
+

∫ b

a

[
f ′(x)p(x)g′(x)+ f (x)q(x)g(x)

]
dx,

⟨L f , g⟩ = −
[
p(x) f ′(x)g(x)

]b

a
+

∫ b

a

[
f ′(x)p(x)g′(x)+ f (x)q(x)g(x)

]
dx.
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Therefore,

⟨ f ,Lg⟩− ⟨L f , g⟩ = −
[
p(x) f (x)g′(x)

]b

a
+

[
p(x) f ′(x)g(x)

]b

a

= p(b)
(

f ′(b)g(b)− f (b)g′(b)
)
−p(a)

(
f ′(a)g(a)− f (a)g′(a)

)
.

Since both f and g conform the same boundary condition, then α1 f (a)+β1 f ′(a) = 0.

So, α1 f (a)+β1 f ′(a) = 0 and α1g(a)+β1g′(a) = 0.

Thus, if α1 , 0 or β1 , 0, it yields

(
f ′(a)g(a)− f (a)g′(a)

)
= 0.

Similarly, (
f ′(b)g(b)− f (b)g′(b)

)
= 0.

Hence

⟨ f ,Lg⟩ = ⟨L f , g⟩ �

Example 2.2.6. We consider the constant coefficient second order differential operator

Ly =
[
∂2

∂x2 −C
]

y, C real,

defined on the domain L2[a,b] with the boundary conditions

α1y(a)+β1y′(a) = 0;

α2y(b)+β2y′(b) = 0,

and α1,β1,α2,β2 are real and not zero.
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Let us claim that L† = L, or that operator is self-adjoint, so for y,z ∈ L2[a,b] we

have

⟨Ly,z⟩ =
∫ b

a

(
y′′(x)−Cy(x)

)
z(x)dx

= y′(x)z(x)
∣∣∣∣b
a
−

∫ b

a

[
y′(x)z′(x)+Cy(x)z(x)

]
dx

=
[
y′(x)z(x)− y(x)z′(x)

]b

a
+

∫ b

a
y(x)[z′′(x)−Cz(x)]dx

=
[
y′(x)z(x)− y(x)z′(x)

]b

a
+ ⟨y,Lz⟩.

Because both of y and z obey the same boundary conditions, then we have the

self-adjointness property.

Hereafter, let us prove the theorem that says that eigenvalues of Sturm-

Liouville problem are real and two eigenfunctions of a Sturm-Liouville system

with corresponding to two different eigenvalues are orthogonal. Before we deal

with that, we need to introduce two important identities for the Sturm-Liouville

operator,

L =
d

dx

(
p

d
dx

)
+ q, (2.12)

i.e.,

• Lagrange’s identity, that is uLv−vLu = [p(uv′−vu′)]′.

• Green’s identity, that is
∫ b

a (uLv−vLu)dx = [p(uv′−vu′)]b
a.

Now, we are able to prove the following theorem.

Theorem 2.2.7. The eigenvalues of Sturm-Liouville problem are real

Proof. Let φn(x) be a solution of the eigenvalue problem associated with λn:

Lφn = −λnwφn.
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The conjugate of that equation is

Lφn = −λnwφn.

Then, multiply both equation by φn and φn respectively and subtract to yield

φnLφn−φnLφn = (λn−λn)wφnφn

=⇒

∫ b

a

(
φnLφn−φnLφn

)
dx = (λn−λn)

∫ b

a
wφnφn.

By applying the Green’s identity to the left hand side, we obtain

[
p
(
φnφ

′
n−φnφ

′

n

)] ∣∣∣∣b
a
= (λn−λn)

∫ b

a
wφnφn

⇐⇒ 0 = (λn−λn)
∫ b

a
w∥φn∥

2dx.

Since the integral is nonzero, so we have λn = λn. Hence, the eigenvalues are

real. �

Theorem 2.2.8. The eigenfunctions corresponding to different eigenvalues of the Sturm-

Liouville problem are orthogonal.

Proof. Let φn(x) and φm(x) be solutions of an eigenvalue problem associated with

λn and λm with λn , λm. Therefore, we have

Lφn = −λnwφn,

and

Lφm = −λmwφm.
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Respectively, multiply the above equations by φm and φn and then subtract the

results to get

φmLφn−φnLφm = (λm−λn)wφnφm

Integrate both side and apply Green’s identity and the boundary condition for a

self-adjoint operator to have

0 = (λm−λn)
∫ b

a
wφnφmdx.

Because the eigenvalues are different, so we have

∫ b

a
wφnφmdx = 0.

Therefore, the eigenfunctions are orthogonal with respect to the weight function

w(x). �

2.3 The spectrum of a linear operator

The spectrum of a linear operator on a finite-dimensional case precisely consists

of its eigenvalues. However, a linear operator on infinite-dimensional space may

have an additional element in its spectrum, and may have no eigenvalues. Let us

see an example discussed in [41].

Example 2.3.1. Consider the right shift operator T on the Hilbert space ℓ2

T : ℓ2
→ ℓ2, where

T(x1,x2,x3, . . .) = (0,x1,x2, . . .)

If x ∈ ℓ2 so x = (x1,x2,x3, . . .) then Tx = (0,x1,x2, . . .). This operator does not

have an eigenvalues, because if Tx = λx then (0,x1,x2, . . .) = λ(x1,x2,x3, . . .) and by
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expanding this expression we obtain that x1 = 0,x2 = 0, and so on. On the other

hand, 0 is in the spectrum because the operator T−λI = T−0I = T and T−λI is

not invertible. The operator is also not surjective since any vector with nonzero

component is not in its range, or in other words, we can say that for every y ∈ ℓ2

(in range/codomain) we could not find x ∈ ℓ2 (in domain) such that y = Tx.

Definition 2.3.2. LetH be a Hilbert space. The resolvent set of an operator A, denoted

by ρ(A), is the set of complex numbers λ such that (A−λI) :H →H is one-to-one and

onto. The spectrum of A, denoted by σ(A), is the complement of the resolvent set in C,

meaning that σ(A) = C\ρ(A) [22].

As in the finite-dimensional case, a complex number λ is called an eigenvalue of

A, if there is a nonzero vector u ∈H such that Au = λu. In that case, ker(A−λI) , 0,

so A−λI is not injective, and λ ∈ σ(A). However, that complex number can belong

to the spectrum. We will subdivide the spectrum of linear operator as the following

definition.

Definition 2.3.3. Let A be a linear operator from Hilbert spaceH toH .

1. The point spectrum σp(A) of A consists of all λ ∈ σ(A) such that A−λI is not

injective. In this case λ is called an eigenvalue of A.

2. The continuous spectrum σc(A) of A consists of all λ ∈ σ(A) such that A−λI is

injective but not surjective, and range(A−λI) is dense inH

Since A−λI is a linear operator, the inverse is also linear if it exists. Hence, the

spectrum consists precisely of those scalars λ for which A−λI is not bijective.

2.3.1 Discrete or point spectrum

According to the definition, if an operator is not injective, so there is some nonzero

x with A(x) = 0, then it is clearly not invertible. If λ is an eigenvalue of A, one
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necessarily has λ ∈ σ(A). The set of eigenvalues of A is then called the discrete or

point spectrum of A, denoted by σp(A).

We will give an example of discrete spectrum that related to the Sturm-Liouville

problem. First, let us start from our Sturm-Liouville equation of the form:

Ωψ̂ = −ψ̂xx+V(x)ψ̂, (2.13)

where V(x) is a given function and in this case it will be known as a potential. In

here, we can define that our linear operator in this problem is T = −∂xx+V(x).

2.3.1.1 Discrete spectrum of a one-well potential

In this part, we will solve the eigenvalue problem (2.13) with V(x) representing a

one-well potential. We will also determine the discrete spectrum of that problem.

Consider the linear Schrodinger equation:

iψt = −ψxx+V(x)ψ , (2.14)

with

ψ(x, t) = ψ̂(x)e−iΩt . (2.15)

If equation (2.15) and its derivative is substituted into equation (2.14), we will

obtain the Sturm-Liouville equation (2.13).

Let us consider a piece-wise constant potential defined as:

V(x) =


−d, |x| < a

0, |x| > a .
(2.16)
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Therefore, if we substitute (2.16) into equation (2.13), then we have three different

regions for ψ, i.e.:

ψ̂xx+Ωψ̂ = 0, x < −a, (2.17)

ψ̂xx+Ωψ̂+dψ̂ = 0, −a < x < a, (2.18)

ψ̂xx+Ωψ̂ = 0, x > a. (2.19)

The general solution for (2.17) and (2.19) is ψ̂(x) = C1e−
√
−Ω x+C2e

√
−Ω x, while

for (2.18), the general solution is ψ̂(x) = C3e−
√
−Ω−d x+C4e−

√
−Ω−d x. Since we want

to obtain a bounded solution, then the general solution for each region is:

ψ̂I = A1e
√
−Ω x, x < −a, (2.20)

ψ̂II = A2 cos(
√

Ω+d x)+B2 sin(
√

Ω+d x), −a < x < a, (2.21)

ψ̂III = B3e−
√
−Ω x, x > a. (2.22)

Note that the potential has a symmetry under parity, i.e. V(x) = V(−x). It

implies that if ψ̂(x) a solution, then ψ̂(−x) is a solution as well. Therefore, we have

even (ψ̂0) and odd (ψ̂1) solutions in this case.

1. Even solution

Based on the above solution for each region on the first case, we can write an even

solution, i.e.:

ψ̂0(x) =


A1 e

√
−Ω0 x, x < −a,

A2 cos(
√
Ω0+d x), −a < x < a,

B3 e−
√
−Ω0 x, x > a.

(2.23)
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and its derivative

d
dx
ψ̂0(x) =


A1
√
−Ω0 e

√
−Ω0 x, x < −a,

A2
√
Ω0+d sin(

√
Ω0+d x), −a < x < a,

−B3
√
−Ω0 e−

√
−Ω0 x, x > a.

(2.24)

Since ψ̂0(x) and d
dxψ̂0(x) must be continuous, then we have the following conditions:

A1 e−
√
−Ω0 a = A2 cos(

√
Ω0+d a),

A1
√
−Ω0 e−

√
−Ω0 a = A2

√
Ω0+d sin(

√
Ω0+d a),

B3 e−
√
−Ω0 a = A2 cos(

√
Ω0+d a),

−B3
√
−Ω0 e−

√
−Ω0 a = −A2

√
Ω0+d sin(

√
Ω0+d a).

(2.25)

With a simple calculation, we can simplify equations (2.25) and obtain the coefficient

A1 = B3. By choosing A1 = 1 = B3, we will obtain the transcendental equation

tan(
√
Ω0+d a) =

√
−Ω0

√
Ω0+d

. (2.26)

The above equation cannot be solved analytically, we thus search for a solution

graphically. By taking d = 1 and a = 4, then we get the solutions for the transcen-

dental equation as the intersection in Figure 2.1. Furthermore, we can plot the

eigenfunctions for each Ω0 as shown in Figure 2.2.

2. Odd solution

The following is an odd solution for ψ̂1(x) for the first case:

ψ̂1(x) =


A1 e

√
−Ω1 x, x < −a,

B2 sin(
√
Ω1+d x), −a < x < a,

B3 e−
√
−Ω1 x, x > a,

(2.27)
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Figure 2.1. Graphic solution of the eigenvalue Equation (2.26). The solutions are the
intersections between the red and blue curves, i.e., Ω01 = −0.9019757111 and Ω02 =
−0.1921114320.
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Figure 2.2. The graphs of eigenfunction corresponding to the eigenvalue Ω0 presented in
Figure 2.1.

and its derivative

ψ̂1(x) =


A1
√
−Ω1 e

√
−Ω1 x, x < −a,

−B2
√
Ω1+d cos(

√
Ω1+d x), −a < x < a,

−B3
√
−Ω1 e−

√
−Ω1 x, x > a,

(2.28)
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Since ψ̂1(x) and d
dxψ̂1(x) must be also continuous, then we have the following

conditions:

A1 e−
√
−Ω1 a = B2 sin(−

√
Ω1+d a),

A1
√
−Ω1 e−

√
−Ω1 a = B2

√
Ω1+d cos(

√
Ω1+d a),

B3 e−
√
−Ω1 a = B2 sin(

√
Ω1+d a),

−B3
√
−Ω1 e−

√
−Ω1 a = B2

√
Ω1+d cos(

√
Ω1+d a).

(2.29)

If we solve equations (2.29), we obtain the coefficient A1 = −B3. By doing the

similar ways with the even solutions, we can choose A1 = 1 which implies B3 = −1

and obtain a transcendental equation for Ω as:

cot(
√
Ω1+d a) =

−
√
−Ω1

√
Ω1+d

. (2.30)

By plotting cot(
√
Ω1+d a) and −

√
−Ω1√
Ω1+d

separately, and taking d = 1 and a = 4,

we get the graphs in Figure 2.3. Next, we can plot the eigenfunction for the odd

solution as shown in Figure 2.4.
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Figure 2.3. Graphic solution of the eigenvalue Equation (2.30). The solutions are the
intersections between the red and blue curves, i.e., Ω1 = −0.6172793577.

From the graphs in Figures 2.2 and 2.4, we can see that eigenfunction decays to

zero when x tend to ±∞ or we can write it down as
∫
∞

−∞

∣∣∣ψ̂1(x)
∣∣∣2 dx < ∞.
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Figure 2.4. Graphs of eigenfunctions corresponding to the eigenvalue Ω1 in Figure (2.3)

2.3.1.2 Discrete spectrum of a double-well potential

In this part, we will determine the discrete spectrum of a double-well potential

that will be used in our next chapter. Let us consider a double-well potential for

the same Sturm-Liouville Equation (2.13):

V(x) =


−d, a < |x| < a+ b

0, elsewhere
(2.31)

If the above potential is substituted into Equation (2.13), then we have five

different regions for ψ, and the solution for each region is:

ψ̂I = A1e
√
−Ω x, x < −a−b, (2.32)

ψ̂II = A2 cos(
√

d+Ω x)+B2 sin(
√

d+Ω x), −a− b < x < −a, (2.33)

ψ̂III = A3 cosh(
√

−Ω x) or B3 sinh(
√

−Ω x), −a < x < a, (2.34)

ψ̂IV = A4 cos(
√

d+Ω x)+B4 sin(
√

d+Ω x), a < x < a+ b, (2.35)

ψ̂V = A5e−
√
−Ω x, x > a+ b. (2.36)

Following the similar calculations with the one-well potential, we also have

even and odd solutions.
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1. Even solution

Based on the above solutions for each region, we can write an even solution for

double-well potential case as follow:

ψ̂0(x) =


A1 e

√
−Ω0 x, x < −a−b,

A2 sin(
√

d+Ω0 x)+B2 cos(
√

d+Ω0 x), −a− b < x < −a,

A3 cosh(
√
−Ω0 x)), x > −a.

(2.37)

Since ψ̂0(x) and d
dxψ̂0(x) must be continuous, again we have parity solutions for

Equation (2.37) written as:

A1 e
√
−Ω0 (−a−b) =A2 sin(

√
d+Ω0 (−a− b))

+B2 cos(
√

d+Ω0 (−a−b)),

A1
√
−Ω0 e

√
−Ω0 (−a−b) =A2

√
d+Ω0 cos(−

√
d+Ω0 (−a−b))

−B2
√

d+Ω0 sin(
√

d+Ω0 (−a−b)),

A3 cosh(
√
−Ω0 (−a)) =A2 sin(

√
d+Ω0 (−a))

+B2 cos(
√

d+Ω0 (−a)),

A3
√
−Ω0 sinh(

√
−Ω0 (−a)) =A2

√
d+Ω0 cos(−

√
d+Ω0 (−a))

−B2
√

d+Ω0 sin(
√

d+Ω0 (−a)).

(2.38)

Numerically, we get an even solution for Ω0 = −0.4550947238 with a = 4 ,b =

2, d = 1. The graph of the eigenfunction can be seen in Figure 2.5.

2. Odd solution

The following is an odd solution for ψ̂1(x) for the double-well potential case:

ψ̂1(x) =


A1 e

√
−Ω1 x, x < −a−b,

A2 sin(
√

d+Ω1 x)+B2 cos(
√

d+Ω1 x), −a− b < x < −a,

B3 sinh(
√
−Ω1 x)), x > −a.

(2.39)
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Figure 2.5. Graph of an eigenfunction corresponding to the eigenvalueΩ0 in a double-well
potential.

Again, since ψ̂1(x) and d
dxψ̂1(x) must be continuous, we have the following

condition:

A1 e
√
−Ω1 (−a−b) =A2 sin(

√
d+Ω1 (−a−b))

+B2 cos(
√

d+Ω1 (−a− b)),

A1
√
−Ω1 e

√
−Ω1 (−a−b) =A2

√
d+Ω1 cos(−

√
d+Ω1 (−a− b))

−B2
√

d+Ω1 sin(
√

d+Ω1 (−a− b)),

A3 sinh(
√
−Ω1 (−a)) =A2 sin(

√
d+Ω1 (−a))

+B2 cos(
√

d+Ω1 (−a)),

A3
√
−Ω1 cosh(

√
−Ω1 (−a)) =A2

√
d+Ω1 cos(−

√
d+Ω1 (−a))

−B2
√

d+Ω1 sin(
√

d+Ω1 (−a)).

(2.40)

Solving equations numerically, we obtain an odd solution forΩ1 =−0.4523889358

with the same parameter as in the even solution in Figure 2.5. Plot of the eigenfunc-

tion for the odd solution is given in Figure 2.6. Figure 2.5 and 2.6 show that the

eigenfunctions decay to zero when x goes to ±∞ in the same way as the one-well

potential problem.
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Figure 2.6. Graph of the eigenfunction corresponding to the eigenvalue Ω1 in a double-
well potential.

2.3.2 Continuous spectrum

In Section 2.3, we provide the definition of discrete or point spectrum as well

as continuous spectrum. However, in general we have several definitions of

continuous spectrum in [6, 11, 51] which are not equivalent. However, for self-

adjoint operators, all the definitions coincide. Here, we choose to deliver the

definitions in [6] as follow

Definition 2.3.4. For bounded operator T : H→H on a Hilbert space, we define

1. The resolvent consists of λ ∈ C for which T−λI is invertible.

2. The point spectrum consists of λ ∈ C for which T−λI is not injective .

3. The continuous spectrum consists of λ ∈ C for which T−λI is one to one, is not

onto but for which Im(T−λI) is dense.

4. The residual spectrum consists of λ ∈Cwith T−λI being one to one but Im(T−λI)

is not dense.

Definition 2.3.5. For an operator T : H→ H (not necessarily bounded) on a Hilbert

space, we define
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1. The resolvent consists of λ ∈ C for which T−λI is one to one and Im(T−λI) is

dense in H and (T−λI)−1 is bounded on the image of D(T).

2. The point spectrum consists of λ ∈ C for which T−λI is not one to one on D(T).

3. The continuous spectrum consists ofλ ∈C for which T−λI is one to one, Im(T−λI)

is dense but (T−λI)−1 is not bounded on Im(T−λI).

4. The residual spectrum consists of λ ∈ C with T−λI is one to one but Im(T−λI)

is not dense.

2.3.2.1 Continuous spectrum of the one-well potential

In here, we want to find the eigenfunction of continuous spectrum of the one-well

potential. Since we already dealt with the eigenfunction for discrete spectrum,

now with similar calculations, we obtain the following solution for each region:

ψ̂I = A1 sin
(√
Ωx

)
+B1 cos

(√
Ωx

)
, (2.41)

ψ̂II = A2 sin
(√
Ω+dx

)
or B2 cos

(√
Ω+dx

)
, (2.42)

ψ̂III = A3 sin
(√
Ωx

)
+B3 cos

(√
Ωx

)
. (2.43)

As we must also have the symmetry under parity as mentioned above, i.e., if

ψ̂(x) a solution, then ψ̂(−x) is a solution as well, we can separate the solution into

even and odd solution again.

First, let us find our continuous spectrum for our eigenvalue problem Ωψ̂ =

−ψ̂xx+V(x)ψ̂. This equation can be rewritten as

ψ̂x = q,

qx = (V(x)−Ω)ψ̂(x).
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A simple calculation shows that we will obtain our eigenvalue Ω= k2 for every

k ∈R. So, for every positiveΩwe always can find the corresponding eigenfunction.

1. Even solution

The conditions below are for even parity solutions:

A2 cos(
√

Ω+d(−a)) =A1 sin
(√
Ω(−a)

)
+B1 cos

(√
Ω(−a)

)
,

−A2
√

Ω+d sin(
√

Ω+d(−a)) =A1
√

Ω cos
(√
Ω(−a)

)
−B1

√

Ω sin
(√
Ω(−a)

)
,

A2 cos(
√

Ω+d(a)) =A3 sin
(√
Ω(a)

)
+B3 cos

(√
Ω(a)

)
,

−A2
√

Ω+d sin(
√

Ω+d(a)) =A3
√

Ω cos
(√
Ω(a)

)
−B3

√

Ω sin
(√
Ω(a)

)
.

(2.44)

By taking A2 = 1, we can solve Equation (2.44) and plot the graph with parameter

a = 4, d = 1, and Ω= 1 as shown in Figure 2.7.
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Figure 2.7. Graph of an even eigenfunction with Ω= 1 .

2. Odd solution

Furthermore, for the odd parity solutions, we have the conditions:

A2 sin(
√

Ω+d(−a)) = A1 sin
(√
Ω(−a)

)
+B1 cos

(√
Ω(−a)

)
,

A2
√

Ω+d cos(
√

Ω+d(−a) = A1
√

Ω cos
(√
Ω(−a)

)
−B1

√

Ω sin
(√
Ω(−a)

)
,

A2 sin(
√

Ω+d(a)) = A3 sin
(√
Ω(a)

)
+B3 cos

(√
Ω(a)

)
,

A2
√

Ω+d cos(
√

Ω+d(a)) = A3
√

Ω cos
(√
Ω(a)

)
−B3

√

Ω sin
(√
Ω(a)

)
.

(2.45)
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Again, by choosing A2 = 1, Equation (2.45) can be solved. Then, if we take

the same parameter as the even solution before, the graph of the eigenfunction is

drawn in Figure 2.8.
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Figure 2.8. Eigenfunction of odd solution with Ω= 1.

2.3.2.2 Continuous spectrum of the double-well potential

1. Even solution

Next, using the continuous spectrum on page 38, we will see the graph of

continuous spectrum for the even solutions. Recall the solution for our eigenvalues

problem as the following:

ψ̂I = A1 cos(
√

Ω x)+B1 sin(
√

Ω x), (2.46)

ψ̂II = A2 cos(
√

Ω+d x)+B2 sin(
√

Ω+d x), (2.47)

ψ̂III = A3 cos(
√

Ω x) or B3 sin(
√

Ω x). (2.48)

Therefore, with similar calculations as for the one-well potential, we take A2 = 1

and by taking the parameter values a = 4, b = 2, d = 1 and Ω = 2.5, we can plot our

eigenfunction as shown in Figure 2.9.



2.3 The spectrum of a linear operator 57

−20 −10 0 10 20
−3

−2

−1

0

1

2

3

x

Figure 2.9. Graph of the eigenfunction with Ω= 2.5 for even solution.

2. Odd solution

Similar calculations for the same parameter values will give the eigenfunction as

seen in Figure 2.10.
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Figure 2.10. Graph of the eigenfunction with Ω= 2.5 for odd solution.



Chapter 3

Coupled mode reductions in the

Cubic-Quintic NLS with a

double-well potential

3.1 Introduction

We consider the cubic-quintic nonlinear Schrödinger/Gross-Pitaevskii (NLS/GP)

equation with a linear potential

i
∂ψ(x, t)
∂t

= −
∂2ψ(x, t)
∂x2 +V(x)ψ(x, t)+ g

∣∣∣ψ(x, t)
∣∣∣2ψ(x, t)+h

∣∣∣ψ(x, t)
∣∣∣4ψ(x, t). (3.1)

Here, ψ denotes a wave function, V the external potential and g and h are the cubic

and quintic nonlinearity constants, respectively. We will consider a nonlinear

NLS/GP with a focusing (g = −1) nonlinear potential. Derivations of NLS/GP type

solutions with the standard Kerr (|u|2u) nonlinearity exist in the context of optics

[16, 71], and Bose-Einstein condensate (BECs) confined by a magnetically-induced

linear potential [34, 78]. Cubic-quintic nonlinearities arise in a variety of physical

settings, such as in glasses and organic optical media whose dielectric response

58
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features a self-defocusing quintic correction to the self-focusing cubic Kerr effect

[15, 43, 96].

In this section, we study the long-time dynamics near a symmetry breaking

bifurcation point for (3.1) using the shadowing theorem techniques of [69, 80]. In

particular, we focus on a class of symmetric double-well potentials. A model to keep

in mind is the two parameter family of symmetric double well potentials:

V(x) =


−d, a < |x| < a+b

0. elsewhere,
(3.2)

which converges as d→∞ and b→ 0+ to a double-delta well at ±a. For the sake

of illustration, in the following we will take d = 1, a = 4, and b = 2. Double-well

potentials in optics serve as models of coupled parallel wave guides or as a simple

version quantum tunneling in Bose-Einstein condensate models. As discussed

in [48], the combined effects of a confining double-well potential with focusing

cubic nonlinearity lead to the phenomenon of spontaneous symmetry breaking

of the ground state at sufficiently high optical power or particle number. The

notion of symmetry breaking has been studied in a variety of contexts, in terms of

constructing stationary solutions as in [55, 56], dynamical shadowing theorems

as in [69, 76, 80], more complicated well-structure [44, 50] as well as countless

numerical works as reviewed in [65]. The governing equation (3.1) with the

potential (3.2) was also studied by Birnbaum and Malomed [14], where a class

of symmetry breaking bifurcations appears (see also, e.g., [92] for a similar work

but using nonlocal cubic-quintic nonlinearity). One important difference with the

Kerr nonlinearity is the presence of various further bifurcations beyond just those

observed in the standard cubic case, such as saddle-centre bifurcations of both

symmetric and asymmetric solutions. The question we are interested in is: can the
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shadowing theorem techniques (i.e., coupled mode theory) of [69, 80] cover the

cubic-quintic nonlinearity problem as well?

The NLS/GP equation (3.1) is a Hamiltonian system and expressible in the form:

i∂tψ =
δH
δψ∗

, (3.3)

whereH denotes the Hamiltonian density:

H[ψ] =
∫ (
|∂xψ|

2+V|ψ|2+
g
4
|ψ|4+

h
6
|ψ|6

)
dx.

The conserved squared L2 norm (particle number / optical power) is:

N[ψ] =
∫
|ψ|2dx. (3.4)

We are interested in the dynamics near special classes of nonlinear bound states

of NLS/GP. Nonlinear bound states are solutions of the form

ψ(x, t) = ψ̂(x)e−iΩt,

where ψΩ is a spatially localized solution of

(−∂xx+V(x))ψ̂− |ψ̂|2ψ̂+h|ψ̂|4ψ̂ =Ωψ̂. (3.5)

Solutions to (3.5) can be computed at low mass using a Lyapunov-Schmidt

reduction off of the spectrum of the linear operator (−∂xx+V) in a similar fashion to

the works [55, 56] and continued to large mass. We will assume that the spectrum

of our double well potential, namely the values Ω < 0 such that

(−∂xx+V(x))ψ̂ =Ωψ̂, ψ̂ ∈H1(R), (3.6)
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has a simple, special structure. The spaces Hs(R) (as well as Lp(R) and Wk,p in

the following) are the standardly defined Sobolev integration spaces. In this

case, there is a least energy ground state eigenfunction, ψ0 with corresponding

simple eigenvalue Ω0 [81]. If the separation between wells is sufficiently large,

L≪ 1, then the ground state eigenfunction is a positive symmetric state with equal

concentration on each potential well. In addition, for L sufficiently large there

is an anti-symmetric (odd) state, ψ1 with energy Ω1, such that Ω0 <Ω1 < 0. For

references on the linear spectral properties of multi-modal potential wells, see

[45, 48, 85].

In the cubic-quintic case (3.1), the character of solutions and the solution set

varies with the solution norm. Indeed, if we consider the set of solutions of (3.5)

on the level set ∫
|ψΩ|

2 =N, (3.7)

we find that for large enough well-separation, there is a symmetry breaking threshold

Ncr [56].

1. If N <Ncr there is a unique positive, symmetric and bimodal state.

2. For N > Ncr, (modulo phase) there are three positive localized states: a

symmetric state (which exists for all N > 0) and two asymmetric states, biased

respectively to the right and left wells.

3. As N increases beyond Ncr this symmetry broken state becomes increasingly

concentrated in one of the wells [5, 56].

4. The symmetric (bimodal) state is dynamically stable for N <Ncr and unstable

for N >Ncr. For N >Ncr the asymmetric states are stable.
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We wish to show that on large but finite time scales, the dynamics are controlled

by a finite dimensional dynamical system, which is significantly more rich and

complex in the setting of the quintic-cubic than of that in [69, 80].

Toward a formulation of precise results, we first introduce a class of double-well

potentials in one dimension. Following [45], start with a single rapidly decaying

potential well centered at 0, V0(x), for which the Schrödiner operator H0 = −∂2
x+V0

has exactly one (simple) eigenvalue Ω. Then, construct a double well potential

VL(x) = V0(x−L)+V0(x+L), L > 0 (3.8)

and define the Schrödinger operator

HL = −∂
2
x+VL. (3.9)

There exists L0 > 0 such that for L > L0, HL has a pair of simple eigenvalues,

Ω0 =Ω0(L) and Ω1 =Ω1(L) and corresponding eigenfunctions ψ0 (even) and ψ1

(odd):

HLψ j =Ω jψ j, j = 0,1; ψ j ∈ L2,

Ω0 <Ω1 < 0.

The symmetry breaking threshold, Ncr(L) which is Ncr(L) =O(ω1(L)−ω0(L)) =

O(e−kL), k > 0, is exponentially small for large well-separation. Therefore, to

study the dynamics in a neighborhood of the symmetry breaking point, it is natural

to use coordinates associated with the linear operator H0. Throughout this result,

we will assume that V is such that ψ0 and ψ1 are the only discrete eigenfunctions

of H0 and in addition that V is sufficiently smooth and decaying. We note that the
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essential estimates are also satisfied for double piecewise-constant function wells,

that we explore in our numerical computations.

The outline of this chapter is as follows. We start our work by deriving the

coupled-mode approximation as the finite dimensional reduction in Sec. 3.2, using

two different coordinate representations. Standing wave solutions are considered

in Sec. 3.3, where the equilibria of the coupled-mode equations are derived and

their stabilities are analysed. We show that there are spontaneous symmetry-

breaking and turning point bifurcations. Moreover, dynamics near the symmetry

breaking bifurcation point are delivered in Sec. 3.4. In Sec. 3.5, we consider small

perturbation dynamics around a solution of the finite dimensional reduction. The

aim is to show that for any sufficiently small amplitude periodic solution about an

equilibrium state of the finite dimensional reduction (above or below the symmetry

breaking bifurcation threshold), there is a solution of the NLS/GP equation whose

projection into the finite dimensional phase space, shadows this finite dimension

orbit on very long time scales. Finally, Sec. 3.6 presents numerical comparisons of

the equilibria of the NLS/GP and those of the coupled-mode approximations.

3.2 Coupled mode equations for cubic-quintic nonlin-

earity

Based on a calculation of the linear eigenvalue problem (3.6) in Chapter 2, Sub-

section (2.3.1.2), we obtain a ground state eigenfunction ψ0 with corresponding

eigenvalue Ω0 and excited state eigenfunction ψ1 with the energy Ω1 such that

Ω0 <Ω1 < 0. For the specific parameter values mentioned above, Ω0 = −0.455 and

Ω1 = −0.452.
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First, define a projection onto the bound states and the continuous spectral part

of HL, respectively, as

P j f = ⟨ψ j, f ⟩ψ j = (π j f )ψ j, j = 0,1,

Pc f = (I−P0−P1) f ,

where we have the L2-inner product: ⟨ f , g⟩ =
∫
R

f ḡ.

Now, let us describe steady state solutions of the form

ψ(x, t) = c0(t)ψ0(x)+ c1(t)ψ1(x)+R(x, t), (3.10)

with ⟨ψ j,R(·, t)⟩ = 0, j = 0,1.

Using the above ansatz, substituting it into (3.1), and applying the projection

operators P0, P1, and Pc, we obtain

iċ0 =Ω0c0+ gA|c0|
2c0+ gC

(
2c0|c1|

2+ c̄0c2
1

)
+hU|c0|

4c0

+hW
(
6|c0|

2c0|c1|
2+ c̄2

1c3
0+3|c0|

2c̄0c2
1

)
+hY

(
3c0|c1|

4+2c̄0|c1|
2c2

1

)
+F0(c0,c1, c̄0, c̄1;R, R̄),

iċ1 =Ω1c1+ gE|c1|
2c1+ gC

(
2c1|c0|

2+ c̄1c2
0

)
+hM|c1|

4c1

+hY
(
6|c1|

2c1|c0|
2+ c̄2

0c3
1+3|c1|

2c̄1c2
0

)
+hW

(
3c1|c0|

4+2c̄1|c0|
2c2

0

)
+F1(c0,c1, c̄0, c̄1;R, R̄),

iṘ−HLR =PcFb(c0,c1, c̄0, c̄1)+PcFR(c0,c1, c̄0, c̄1;R, R̄),

(3.11)
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where A=
∫
ψ4

0dx, C=
∫
ψ2

0ψ
2
1dx, E=

∫
ψ4

1dx, U=
∫
ψ6

0dx, M=
∫
ψ6

1dx, W =
∫
ψ4

0ψ
2
1dx,

Y =
∫
ψ2

0ψ
4
1dx, and F j = π jFR, j = 0,1, with

FR =
[
2|c0|

2ψ2
0+2|c1|

2ψ2
1+2(c0c̄1+ c1c̄0)ψ0ψ1−3h|c0|

4ψ4
0−3h|c1|

4ψ4
1

−3h(c2
0c̄2

1+ c̄2
0c2

1)ψ2
0ψ

2
1−6h(|c0|

2c0c̄1+ |c0|
2c̄0c1)ψ3

0ψ1

−6h(c̄0|c1|
2c1+ c0|c1|

2c̄1)ψ0ψ3
1−12h|c0|

2
|c1|

2ψ2
0ψ

2
1

]
R

+
[
c2

0ψ
2
0+ c2

1ψ
2
1+2c0c1ψ0ψ1−2h|c0|

2c2
0ψ

4
0−2h|c1|

2c2
1ψ

4
1

−2hc3
0c̄1ψ3

0ψ1−2hc3
1c̄0ψ3

1ψ0−6h(c2
0|c1|

2+ |c0|
2c2

1)ψ2
0ψ

2
1

−6h|c0|
2c0c1ψ3

0ψ1−6hc0|c1|
2c1ψ0ψ3

1

]
R̄

+
[

c̄0ψ1+ c̄1ψ0−3hc0c̄2
1ψ0ψ2

1−3hc̄2
0c1ψ2

0ψ
1
−3h|c0|

2c̄0ψ3
0

−3h|c1|
2c̄1ψ3

1−6h|c0|
2c̄1ψ2

0ψ1−6h|c1|
2c̄0ψ0ψ2

1

]
R2

+
[
2c0ψ0+2c1ψ1−6hc2

0c̄1ψ2
0ψ1−6hc̄0c2

1ψ0ψ2
1−6h|c0|

2c0ψ3
0

−6h|c1|
2c1ψ3

1−12h|c0|
2c1ψ2

0ψ1−12hc0|c1|
2ψ0ψ2

1

]
|R|2

+
[
1−6h|c0|

2ψ2
0−6h|c1|

2ψ2
1−6h(c0c̄1+ c̄0c1)ψ0ψ1

]
|R|2R

−

[
hc3

0ψ
3
0+3hc2

0c1ψ2
0ψ1+3hc0c2

1ψ0ψ2
1+hc3

1ψ
3
1

]
R̄2

−

[
hc̄2

0ψ
2
0+hc̄2

1ψ
2
1+2hc̄0c̄1ψ0ψ1

]
R3

−

[
3hc2

0ψ
2
0+3hc2

1ψ
2
1+6hc0c1ψ0ψ1

]
|R|2R̄

−
[
3hc0ψ0+3hc1ψ1

]
|R|4−h|R|4R,

(3.12)

and

Fb = |c0|
2c0ψ3

0+ (c2
0c̄1+2|c0|

2c0)ψ2
0ψ1+ (c2

1c̄0+2c0|c1|
2)ψ0ψ2

1+ |c1|
2c1ψ3

1

−h|c0|
4c0ψ5

0−h|c1|
4c1ψ5

1−hc3
0c̄2

1ψ
3
0ψ

2
1−hc̄2

0c3
1ψ

2
0ψ

3
1−2h|c0|

2c2
0c̄1ψ4

0ψ1

−2hc̄0|c1|
2c2

1ψ0ψ4
1−3h|c0|

4c1ψ4
0ψ1−3hc0|c1|

4ψ0ψ4
1−3h|c0|

2c̄0c2
1ψ

3
0ψ

2
1

−3hc2
0|c1|

2c̄1ψ2
0ψ

3
1−6h|c0|

2
|c1|

2ψ2
0ψ

3
1−6h|c0|

2c0|c1|
2ψ3

0ψ
2
1.

(3.13)
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By taking g = −1 , c0 =
ĉ0
√

A
and c1 =

ĉ1√
E

, we have:

i ˙̂c0 =Ω0ĉ0− |ĉ0|
2ĉ0−

C
E

(
2ĉ0|ĉ1|

2+ ¯̂c0ĉ2
1

)
+h

U
A2 |ĉ0|

4ĉ0+h
W
AE

(
6|ĉ0|

2ĉ0|ĉ1|
2+ ¯̂c2

1ĉ3
0+3|ĉ0|

2 ¯̂c0ĉ2
1

)
+h

Y
E2

(
3ĉ0|ĉ1|

4+2¯̂c0|ĉ1|
2ĉ2

1

)
+F0(c0,c1, c̄0, c̄1;R, R̄),

i ˙̂c1 =Ω1ĉ1− |ĉ1|
2ĉ1−

C
A

(
2ĉ1|ĉ0|

2+ ¯̂c1ĉ2
0

)
+h

M
E2 |ĉ1|

4ĉ1+h
Y

AE

(
6|ĉ1|

2ĉ1|ĉ0|
2+ ¯̂c2

0ĉ3
1+3|ĉ1|

2 ¯̂c1ĉ2
0

)
+h

W
A2

(
3ĉ1|ĉ0|

4+2¯̂c1|ĉ0|
2ĉ2

0

)
+F1(c0,c1, c̄0, c̄1;R, R̄),

iṘ−HLR =PcFb(c0,c1, c̄0, c̄1)+PcFR(c0,c1, c̄0, c̄1;R, R̄).

(3.14)

For the specific parameter values above, C
E ≈

C
A ≈

U
A2 ≈

M
E2 ≈

W
AE ≈

Y
AE ≈

Y
E2 ≈

W
A2 ≈ 1.

Writing c j’s without ’hat’ to make it easier, equation (3.14) becomes:

iċ0 =Ω0c0− |c0|
2c0−2c0|c1|

2
− c̄0c2

1+h|c0|
4c0

+h
(
6|c0|

2c0|c1|
2+ c̄2

1c3
0+3|c0|

2c̄0c2
1

)
+h

(
3c0|c1|

4+2c̄0|c1|
2c2

1

)
+F0(c0,c1, c̄0, c̄1;R, R̄), (3.15a)

iċ1 =Ω1c1− |c1|
2c1−2c1|c0|

2
− c̄1c2

0+h|c1|
4c1

+h
(
6|c1|

2c1|c0|
2+ c̄2

0c3
1+3|c1|

2c̄1c2
0

)
+h

(
3c1|c0|

4+2c̄1|c0|
2c2

0

)
+F1(c0,c1, c̄0, c̄1;R, R̄), (3.15b)

iṘ−HLR =PcFb(c0,c1, c̄0, c̄1)+PcFR(c0,c1, c̄0, c̄1;R, R̄). (3.15c)

3.2.1 Alternative coordinate

In the following, we introduce the change of coordinates:

(c0(t),c1(t), c̄0(t), c̄1(t),R(., t)) 7−→ (Γ(t),α(t),β(t),θ(t),R(., t)),
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defined by

c0(t) = Γ(t)eiθ(t), (3.16)

c1(t) = (α(t)+ iβ(t))eiθ(t), (3.17)

such that

ψ(x, t) = (Γ(t)ψ0+ (α(t)+ iβ(t))ψ1)eiθ(t). (3.18)

Substituting ansatz (3.18) into (3.15) yields:

(iΓ̇− θ̇Γ−Ω0Γ)ψ0+ (iα̇− β̇− θ̇(α+ iβ)− (α+ iβ)Ω1)ψ1

+iṘ−HLR− θ̇R = Fb(Γ,α,β)+FR(Γ,α,β;R, R̄),

where Fb, FR is determined similarly to (3.12) and (3.13) (see Appendix A for

further details). This leads to the system

Γ̇ =
[
−2αβ+4hαβ3+4hα3β+4hαβΓ2

]
Γ+Error(R, R̄;Γ,α,β), (3.19a)

α̇ =
[
Ω1− (α2+β2)−Γ2+ θ̇+h(α4+β4)+2hβ2(α2+Γ2)+hΓ2(6α2+Γ2)

]
β

+Error(R, R̄;Γ,α,β), (3.19b)

β̇ =−
[
Ω1− (α2+β2+Γ2)−2Γ2+ θ̇+h(α4+β4)+2h(α2β2+3β2Γ2+5α2Γ2)

+5hΓ4
]
α+Error(R, R̄;Γ,α,β), (3.19c)

θ̇ =−Ω0+Γ
2+ (3α2+β2)−h(β4+Γ4+5α4)−2h(β2Γ2+3α2β2+5α2Γ2)

+Γ−1Error(R, R̄;Γ,α,β), (3.19d)

iRt =(HL−Ω0)R−Γ−1
ℜ(π0(F))R+PcFb(Γ,α,β)+PcFR(Γ,α,β;R, R̄). (3.19e)



3.2 Coupled mode equations for cubic-quintic nonlinearity 68

The terms containing θ̇ in (3.19b) and (3.19c) can be replaced using (3.19d) to yield

Γ̇ =
[
−2αβ+4hαβ3+4hα3β+4hαβΓ2

]
Γ+ErrorΓ(R, R̄;Γ,α,β), (3.20a)

α̇ =[Ω1−Ω0+2α2
−4hα2β2

−4hα4
−4hα2Γ2]β+Errorα(R, R̄;Γ,α,β), (3.20b)

β̇ =− [Ω1−Ω0−2Γ2+2α2
−4hα2β2

−4hα4+4hβ2Γ2+4hΓ4]α (3.20c)

+Errorβ(R, R̄;Γ,α,β),

θ̇ =−Ω0+Γ
2+ (3α2+β2)−h(β4+Γ4+5α4)−2h(β2Γ2+3α2β2+5α2Γ2) (3.20d)

+Errorθ(R, R̄;Γ,α,β),

iRt =(HL−Ω0)R+
[
Γ2+3α2+β2

−h(β4+Γ4+5α4) (3.20e)

−2h(β2Γ2+3α2β2+5α2Γ2)
]
R+PcFb(Γ,α,β)+PcFR(Γ,α,β;R, R̄),

with

PcFb = Pc
[
Γ3ψ3

0+ (α2+β2)(α+ iβ)ψ3
1+Γ(α+ iβ)ψ0ψ2

1+2Γ(α2+β2)ψ0ψ2
1

+Γ2(α− iβ)ψ2
0ψ1+2Γ2(α+ iβ)ψ2

0ψ1−hΓ5ψ5
0−h(α2+β2)2(α+ iβ)ψ5

1

−hΓ3(α− iβ)2ψ3
0ψ

2
1−hΓ2(α+ iβ)3ψ2

0ψ
3
1−2hΓ3(α− iβ)ψ4

0ψ1

−2hΓ(α2+β2)(α+ iβ)2ψ0ψ4
1−3hΓ4(α+ iβ)ψ4

0ψ1−3hΓ(α2+β2)2ψ0ψ4
1

−3hΓ3(α+ iβ)2ψ3
0ψ

2
1−3hΓ2(α2+β2)(α− iβ)ψ2

0ψ
3
1

−6hΓ2(α2+β2)(α+ iβ)ψ2
0ψ13

−6hΓ3(α2+β2)ψ3
0ψ

2
1

]
,

(3.21)
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and

PcFR = Pc
(
[2Γ2ψ2

0+4Γαψ0ψ1+2(α2+β2)ψ2
1−3hΓ4ψ4

0−3h(α2+β2)2ψ4
1

−6hΓ2(α2+β2)ψ2
0ψ

2
1−12hΓ3αψ3

0ψ1−12hΓ(α3+αβ2)ψ0ψ3
1

−12hΓ2(α2+β2)ψ2
0ψ

2
1]R+ [Γ2ψ2

0+ (α+ iβ)2ψ2
1+2Γ(α+ iβ)ψ0ψ1

−2hΓ4ψ4
0−2h(α2+β2)(α+ iβ)2ψ4

1−2hΓ3(α− iβ)ψ3
0ψ1

−2hΓ(α+ iβ)3ψ0ψ3
1−12hΓ2α(α+ iβ)ψ2

0ψ
2
1

−6hΓ3(α+ iβ)ψ3
0ψ1−6hΓ(α2+β2)(α+ iβ)ψ0ψ3

1]R̄

+[Γψ0+ (α− iβ)ψ1−3hΓ(α− iβ)2ψ0ψ2
1−3hΓ2(α+ iβ)ψ2

0ψ1−3hΓ3ψ3
0

−3h(α2+β2)(α− iβ)ψ3
1−6hΓ2(α− iβ)ψ0ψ1−6hΓ(α2+β2)ψ0ψ2

1]R2

+[2Γψ0+2(α+ iβ)ψ1−6hΓ2(α− iβ)ψ2
0ψ1−6hΓ(α+ iβ)2ψ0ψ2

1

−6hΓ3ψ3
0−6h(α2+β2)(α+ iβ)ψ3

1−12hΓ2(α+ iβ)ψ2
0ψ1

−12hΓ(α2+β2)ψ0ψ2
1]|R|2

+[1−6hΓ2ψ2
0−6h(α2+β2)ψ2

1−12hΓαψ0ψ1]|R|2R

−[hΓ3ψ3
0+3hΓ2(α+ iβ)ψ2

0ψ1+3hΓ(α+ iβ)2ψ0ψ2
1+h(α+ iβ)3ψ3

1]R̄2

−[hΓ2ψ2
0+h(α− iβ)2ψ2

1+2hΓ(α− iβ)ψ0ψ1]R3

−[3hΓ2ψ2
0+3h(α+ iβ)2ψ2

1+6hΓ(α+ iβ)ψ0ψ1]|R|2R̄

−[3hΓψ0+3h(α+ iβ)ψ1]|R|4−h|R|4R
)
.

(3.22)

3.3 Symmetry breaking bifurcations

Neglecting the R terms, the relevant equations from system (3.20) to study symme-

try breaking bifurcations are

α̇ =
(
Ω1−Ω0+2α2

−4hα2β2
−4hα4

−4hα2Γ2
)
β,

β̇ = −
(
Ω1−Ω0+2α2

−2Γ2
−4hα2(β2+α2)+4hΓ2(β2+Γ2)

)
α,

Γ̇ =
(
−2αβ+4hαβ3+4hα3β+4hαβΓ2

)
Γ.

(3.23)
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One can verify that

N = Γ2+α2+β2, (3.24)

and system (3.23) has a Hamiltonian

H =Ω0Γ
2+Ω1(α2+β2)− 1

2Γ
4
−

1
2 (α2+β2)2

−2Γ2(α2+β2)−Γ2(α2
−β2)

+1
3h

(
Γ6+α6+β6

)
+3hΓ2(α2+β2)2+hα2(β4+5Γ4)+hβ2(α4+Γ4)

+2hΓ2(α4
−β4).

(3.25)

We obtain a closed system for (α,β) using that N is conserved. Then, we may

reduce the system to:

α̇ =
(
∆Ω+2α2

−4hNα2
)
β,

β̇ = −
(
∆Ω− (2−4hN)(N−2α2

−β2)
)
α,

(3.26)

where ∆Ω =Ω1−Ω0, and the Hamiltonian becomes

H =
[
∆Ω

2 (α2+β2)+α2(1−2hN)(α2+β2
−N)

]
. (3.27)

In this case, we have α̇β̇
 = J∇H, (3.28)

where

J =

 0 1

−1 0

 .
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3.3.1 Bifurcation of equilibria for (3.23) and Symmetry Breaking

in NLS/GP

Next, we look for standing wave solutions. Consider again (3.19). Let us transform

the system to a rotating frame by setting

θ(t) = Θ(t)−Ωt, (3.29)

and obtain

α̇ =
[
Ω1−Ω+Θ̇(t)− (α2+β2)−Γ2+h(α4+β4+Γ4)+2hβ2(Γ2+α2) (3.30a)

+6hΓ2α2
]
β,

β̇ =−
[
Ω1−Ω+Θ̇(t)− (α2+β2)−3Γ2+h(α4+β4+5Γ4) α (3.30b)

+2h(α2β2+3Γ2β2+5Γ2α2)
]
α,

Γ̇ =−
[
2αβ−4hαβ(β2+α2+Γ2)

]
Γ, (3.30c)

Θ̇ =Ω−Ω0+Γ
2+3α2+β2

−h(β4+Γ4+5α4)−2h(β2Γ2+3α2β2+5α2Γ2). (3.30d)

The states we seek are equilibria in this rotating frame. Thus, we obtain

[
Ω1−Ω− (α2+β2)−Γ2+h(α4+β4+Γ4)+2hβ2(Γ2+α2)+6hΓ2α2

]
β = 0, (3.31a)[

Ω1−Ω− (α2+β2)−3Γ2+h(α4+β4+5Γ4)+2h(α2β2+3Γ2β2+5Γ2α2)
]
α = 0,

(3.31b)[
2αβ−4hαβ(β2+α2+Γ2)

]
Γ = 0, (3.31c)

Ω−Ω0+Γ
2+3α2+β2

−h(β4+Γ4+5α4)−2h(β2Γ2+3α2β2+5α2Γ2) = 0, (3.31d)
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whose solutions we consider on the level set

Γ2+α2+β2 =N. (3.32)

Set β = 0. Then, Eq. (3.31c) is satisfied and (3.31b)-(3.31d) become:

[
Ω1−Ω0+2(α2

−Γ2)+4h(Γ4
−α4)

]
α = 0, (3.33)

Ω−Ω0+Γ
2+3α2

−h(Γ4+5α4)−10hα2Γ2) = 0. (3.34)

3.3.1.1 Symmetric states

Taking α = 0, we obtain from (3.34)

Γ2 =
1

2h

(
1±

√
4Ωh−4Ω0h+1

)
. (3.35)

The symmetric solution existing for h = 0 corresponds to the minus sign, from

which we can say that for N ≥ 0:

Γ∗ =N
1
2 =

√
1−

√
1+4h(Ω−Ω0)/

√

2h, α∗ = β∗ = 0, Ω∗ =Ω0−N(1−hN). (3.36)

Solution (3.35) with the plus sign becomes singular in the limit h→ 0. We will

study the latter one here only numerically. Clearly the two types of solutions

merge at a turning point

Ω=Ω0−
1

4h
. (3.37)

3.3.1.2 Symmetry broken states

Symmetry breaking occurs in the system when some control parameter crosses its

critical value. A second bifurcating family can be found as follows.
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Consider α , 0. Then one will obtain a polynomial of order 4 for either α or Γ,

which leads to long expressions. Therefore, instead we will solve it asymptotically.

The asymptotic solution existing for h = 0 is

α =
1
4

√
2(3Ω0−Ω1−2Ω)+

2Ω2
−4ΩΩ0+Ω

2
0+2Ω0Ω1−Ω

2
1

4
√

2(3Ω0−Ω1−2Ω)
h+ . . . , (3.38a)

Γ =
1
4

√
2(3Ω1−Ω0−2Ω)+

2Ω2
−4ΩΩ1−Ω

2
0+2Ω0Ω1+Ω

2
1

4
√

2(3Ω1−Ω0−2Ω)
h+ . . . . (3.38b)

From α and Γ above we can obtain N as

N =
1
4

(Ω0+Ω1−2Ω)+
1
2

(Ω−Ω1)(Ω−Ω0)h+ . . . .

We also obtain a (singular when h→ 0) asymmetric state as

α =
1

2
√

h
+ (−2Γ2

−Ω0+Ω))
√

h+O(h), (3.39a)

Γ =
1
4

√
2(3Ω1−Ω0−2Ω)+

2Ω2
−4ΩΩ1−Ω

2
0+2Ω0Ω1+Ω

2
1

4
√

2(3Ω1−Ω0−2Ω)
h+O(h3/2). (3.39b)

As we will see from the computational results later that in total there are

generally three asymmetric solutions, including the regular and the singular

states (3.38) and (3.39), that are connected to each other through turning point

bifurcations.

3.3.2 Stability of equilibria; finite dimensional analysis

We consider the stability of the regular solution branches existing for h = 0 obtained

in the previous section. We rewrite the system (3.30), using the last equation to
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eliminate −Ω+Θ̇ from the equations for α and β. Thus we have



α̇ =
[
Ω1−Ω0+2α2

−4hα2(β2+α2+Γ2)
]
β,

β̇ = −
[
Ω1−Ω0+2α2

−2Γ2
−4hα2(β2+α2)+4hΓ2(β2+Γ2)

]
α,

Γ̇ = −
[

2αβ−4hαβ(α2+β2+Γ2)
]
Γ,

Θ̇ = Ω−Ω0+Γ
2+3α2+β2

−h(β4+Γ4+5α4)−2h(β2Γ2+3α2β2+5α2Γ2).

(3.40)

Note that in these coordinates the equations for α, β and Γ decouple from the

equation for Θ.

We now start on detailed linear stability analysis of these states.

Linearization about an arbitrary equilibrium solution

(α(t),β(t),Γ(t),θ(t))

gives the linearized perturbation equation

∂t



δα

δβ

δA

δθ


=



B11 B12 B13 0

B21 B22 B23 0

B31 B32 B33 0

B41 B42 B43 0





δα

δβ

δA

δθ



= B(t)



δα

δβ

δA

δθ


, (3.41)

where

B11 = 4αβ−8hαβ(β2+2α2+Γ2) ,

B12 =Ω1−Ω0+2α2
−4hα2(3β2+α2+Γ2), B13 = −8hα2βΓ,

B21 =Ω0−Ω1−6α2+2Γ2+12hα2(β2+ 5
3α

2)−4hΓ2(β2+Γ2), B22 = 8hαβ(α2
−Γ2),
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B23 = 4αΓ−8hαΓ(β2+2Γ2), B31 = −2βΓ+4hβΓ(3α2+β2+Γ2),

B32 = −2αΓ+4hαΓ(α2+3β2+Γ2), B33 = −2αβ+4hαβ(α2+β2+3Γ2),

B41 = 6α−12hα(β2+ 5
3α

2+ 5
3Γ

2),B42 = 2β−4hβ(β2+Γ2+3α2),

B43 = 2Γ−4hΓ(Γ2+β2+3α2).

Since the evolution of α, β and A decouple from that for Θ, we consider the

behavior of the reduced system

∂t


δα

δβ

δA

 = B̃(t)


δα

δβ

δA

 =


B11 B12 B13

B21 B22 B23

B31 B32 B33




δα

δβ

δA

 . (3.42)

3.3.2.1 Linearized dynamics about the symmetric equilibrium state

For the symmetric equilibrium, as displayed in (3.36), we have

(αeq
−
,β

eq
−
,Aeq
−
,θ

eq
−

(t)) = (0,0,N
1
2 , (N−Ω0−hN2)t). (3.43)

Note that N = Γ2 = 1
2h (1−

√
1+4h(Ω−Ω0)).

Hence,

B = B− =



0 Ω1−Ω0 0 0

Ω0−Ω1+2N−4hN2 0 0 0

0 0 0 0

0 0 2N
1
2 −4hN

1
3 0


.

For the reduced system, we have

B̃− =


0 Ω1−Ω0 0

3Ω0−Ω1−2Ω−2h(Ω−Ω0)2+32h2(Ω−Ω0)3 0 0

0 0 0

 , (3.44)
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whose eigenvalues are as follows:

λ0 = 0, λ+ =
√

(Ω1−3Ω0+2Ω)(Ω0−Ω1)+
(Ω−Ω0)2(Ω0−Ω1)√

(Ω1−3Ω0+2Ω)(Ω0−Ω1)
h,

λ− = −
√

(Ω1−3Ω0+2Ω)(Ω0−Ω1)−
(Ω−Ω0)2(Ω0−Ω1)√

(Ω1−3Ω0+2Ω)(Ω0−Ω1)
h.

As (Ω0−Ω1)< 0, then if (Ω1−3Ω0+2Ω)< 0, our point is unstable and conversely

if (Ω1−3Ω0+2Ω) > 0 then our system is stable elliptic point.

3.3.2.2 Linearized dynamics about asymmetric equilibrium states

For the (regular, existing when h = 0) asymmetric equilibrium, we have up to order

O(h3/2)

(αeq
+ ,β

eq
+ ,A

eq
+ ,θ

eq
+ (t)) =

(
1
4

√
2(3Ω0−Ω1−2Ω)+

2Ω2
−4ΩΩ1−Ω

2
0+2Ω0Ω1−Ω

2
1

4
√

2(3Ω0−Ω1−2Ω)
h,

0, 1
4

√
2(3Ω0−Ω1−2Ω)+

2Ω2
−4ΩΩ1−Ω

2
0+2Ω0Ω1−Ω

2
1

4
√

2(3Ω0−Ω1−2Ω)
h,

1
16h (hΩ0+hΩ1+

√
8h2(Ω0−Ω1)2+1+1)

)
.

Hence,

B+ =



0 B+(12) 0 0

B+(21) 0 B+(23) 0

0 B+(32) 0 0

B+(41) 0 B+(43) 0


.
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where

B+(12) = Ω1−Ω0+2α2
−4hα2(α2+Γ2)

B+(21) = Ω0−Ω1+2Γ2
−6α2+4h(5α4

−Γ4)

B+(23) = 4αΓ−16hαΓ3

B+(32) = −2αΓ+4hαΓ(α2+Γ2)

B+(41) = 6α−20hα(α2+Γ2)

B+(43) = 2Γ−4hΓ(Γ2+5α2)

In this case, we substitute (3.45) into the expression for B̃ in (3.42) and obtain:

B̃+ =


0 B̃12 0

B̃21 0 B̃23

0 B̃32 0

 . (3.45)

where

B̃12 =
3
4Ω1−

1
4Ω0−

1
2Ω− (Ω0−Ω1)2h,

B̃21 =
1
2Ω1−

3
2Ω0+Ω−

1
8 (Ω0−Ω1)2h,

B̃23 =
1
2

√
(Ω1+2Ω−3Ω0)(Ω0−3Ω1+2Ω)+O(h),

B̃32 = −
1
4

√
(Ω1+2Ω−3Ω0)(Ω0−3Ω1+2Ω)+O(h).

The eigenvalues of B̃ are:

λ0 = 0,

λ+ = 1
2

√
−(2Ω−3Ω0+Ω1)(2Ω−3Ω1+Ω0)

+
(Ω0−Ω1)(2Ω2

−3ΩΩ0−ΩΩ1−Ω
2
0+5Ω0Ω1−2Ω2

1)

4
√
−(2Ω−3Ω0+Ω1)(2Ω−3Ω1+Ω0)

h,

λ− = −
1
2

√
−(2Ω−3Ω0+Ω1)(2Ω−3Ω1+Ω0)

−
(Ω0−Ω1)(2Ω2

−3ΩΩ0−ΩΩ1−Ω
2
0+5Ω0Ω1−2Ω2

1)

4
√
−(2Ω−3Ω0+Ω1)(2Ω−3Ω1+Ω0)

h.

Therefore, the bifurcating asymmetric states are stable elliptic points.
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3.4 Dynamics near the symmetry breaking bifurca-

tion point

In this section, we are shifting to polar coordinate, to see dynamics near the

bifurcation point. Let us set c0 = r0eiθ0 and c1 = r1eiθ1 and substituted into (3.15)

this leads to the following system of ODE’s are (but we neglect R):

ṙ0 = r0r2
1 sin(2∆θ)+hr3

0r2
1 sin(2∆θ)−2hr0r4

1 sin(2∆θ)+3hr3
0r2

1 sin(2θ1)

ṙ1 = −r2
0r1 sin(2∆θ)−hr2

0r3
1 sin(2∆θ)+2hr4

0r1 sin(2∆θ)+3hr2
0r3

1 sin(2θ0)

and

(∆̇θ) = Ω1−Ω0+ (r2
0− r2

1)(1+ cos(2∆θ))− (4hr4
1−4hr4

0)(4+4cos(2∆θ))

+3hr2
0r2

1(cos(2θ0)− cos(2θ1)), (3.46)

where ∆θ = θ0−θ1. Given the system above, we can say that the bifurcation of

stability occurs at

Ncrit =
1

32h

(
1−

√
32h(Ω0−Ω1)+1

)
. (3.47)

Since we are interested in the behavior quite near the bifurcation point, let we

define

r0 =
√

Ncr+ϵ0,

r1 = ϵ1,

N = Ncrit+n,

where

n = ϵ2
0+ϵ

2
1+2

√
Ncrϵ0.
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Then, we have

ϵ̇0 = 2hϵ4
1

(√
Ncr+ϵ0

)
sin(2∆θ)+hϵ2

1

(√
Ncr+ϵ0

)3
(3sin(2θ1)− sin(2∆θ))

+ϵ2
1

(√
Ncr+ϵ0

)
sin(2∆θ),

ϵ̇1 = −2hϵ1

(√
Ncr+ϵ0

)4
sin(2∆θ)+hϵ3

1

(√
Ncr+ϵ0

)2
(3sin(2θ0)+ sin(2∆θ))

−ϵ1

(√
Ncr+ϵ0

)2
sin(2∆θ),

and

(∆̇θ) = Ω0−Ω1+
(
ϵ2

1−
(√

Ncr+ϵ0
)2
)
(1+ cos(2∆θ))

+2h
(
ϵ4

1−
(√

Ncr+ϵ0
)4
)

+2h
(
ϵ4

1−
(√

Ncr+ϵ0
)4
)
cos(2∆θ)

+3hϵ2
1

(√
Ncr+ϵ0

)2
(cos(2∆θ)) .

Looking at the phase equation, we have

(∆̇θ) = Ω0−Ω1−n+2ϵ2
1−Ncr+2hϵ4

1−2hN2
cr

−8h
√

N3
crϵ0−12hNcrϵ2

0−8h
√

Ncrϵ3
0−2hϵ4

0

+
(
3hϵ2

1Ncr+6hϵ2
1

√
Ncrϵ0+3hϵ2

1ϵ
2
0

)
(cos(2∆θ))

−

(
8h

√
N3

crϵ0+8h
√

Ncrϵ3
0+2hϵ4

0−2hϵ4
1+12hNcrϵ2

0+2hN2
cr

+n−2ϵ2
1−Ncr

)
cos(2∆θ).

However, we would also like to see analytically that such things exist for long

times. As a first approximation of this, let us take the ansatz

ψ(x, t) = eiθ0(t)
(√

Ncr+ϵ0(t)
)
ψ0+ eiθ1(t)ϵ0(t)ψ1+R(x, t), (3.48)
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and plug it into equation 3.1 and let −∆+V =H, so we have

(i∂t−H)R =
[
eiθ0(
√

Ncr+ϵ0)ψ0(θ̇0+ω0)− ieiθ0 ϵ̇0ψ0+ eiθ1ϵ1ψ1(θ̇1+ω1)

−ieiθ1 ϵ̇1ψ1− eiθ0(
√

Ncr+ϵ0)3ψ3
0− eiθ1ϵ3

1ψ
3
1

−eiθ0(
√

Ncr+ϵ0)ϵ2
1ψ0ψ2

1(2+ e2i(∆θ)

−eiθ1(
√

Ncr+ϵ0)2ϵ1ψ2
0ψ1(2+ e−2i(∆θ))+ heiθ0(

√
Ncr+ϵ0)5ψ5

0

+heiθ1ϵ5
1ψ

5
1+ heiθ0(

√
Ncr+ϵ0)3 ϵ2

1ψ
3
0ψ

2
1(6+ e−2i(∆θ))

+heiθ1(
√

Ncr+ϵ0)2ϵ3
1ψ

2
0ψ

3
1(6+ e2i(∆θ))

+3heiθ1(
√

Ncr+ϵ0)4ψ4
0ϵ1ψ1+2heiθ0(

√
Ncr+ϵ0)ϵ4

1ψ0ψ4
1(3

2 + e2i(∆θ))

+3heiθ1(
√

Ncr+ϵ0)2ϵ3
1ψ

2
0ψ

3
1e−2i(∆θ)

+3heiθ0(
√

Ncr+ϵ0)3ϵ2
1ψ

3
0ψ

2
1e−2i(∆θ)

+2heiθ1(
√

Ncr+ϵ0)4ϵ1ψ4
0ψ1e2i(∆θ)

]
−2

[
(
√

Ncr+ϵ0)2ψ2
0+2(

√
Ncr+ϵ0)ϵ1ψ0ψ1 cos(θ0−θ1)+ψ2

1ϵ
2
1

−
3
2h

(
(
√

Ncr+ϵ0)4ψ4
0+ϵ

4
1ψ

4
1

)
−6h(

√
Ncr+ϵ0)2ψ2

0ϵ
2
1ψ

2
1

−3hei(∆θ)(
√

Ncr+ϵ0)3ϵ1ψ3
0ψ1(1+ e−2i(∆θ))

−3hei(∆θ)(
√

Ncr+ϵ0)ϵ3
1ψ0ψ3

1(1+ e−2i(∆θ))

−
3
2he2i(∆θ)(

√
Ncr+ϵ0)2ϵ2

1ψ
2
0ψ

2
1(1+ e−4i(∆θ))

]
R

−ei(θ1+θ0)
[
(
√

Ncr+ϵ0)2ψ2
0e−i(∆θ)+ϵ2

1ψ
2
1ei∆θ+2(

√
Ncr+ϵ0)ϵ1ψ0ψ1

−6h(
√

Ncr+ϵ0)2ϵ2
1ψ

2
1ψ

2
0ei(∆θ)

−6h(
√

Ncr+ϵ0)3ϵ1ψ3
0ψ1

−6h(
√

Ncr+ϵ0)2ϵ2
1ψ

2
1ψ

2
0e−i(∆θ)

−2h
(
(
√

Ncr+ϵ0)4ψ4
0+ϵ

4
1ψ

4
1

)
e−i(∆θ)

−2h(
√

Ncr+ϵ0)ϵ3
1ψ0ψ3

1(3+ e−2i(∆θ))

−2h(
√

Ncr+ϵ0)3ϵ1ψ3
0ψ1e−2i(∆θ)

]
R̄

−

[
e−iθ0(

√
Ncr+ϵ0)ψ0+ e−iθ1ϵ1ψ1−3he−iθ0(

√
Ncr+ϵ0)3ψ3

0

−3he−iθ1ϵ3
1ψ

3
1−3he−iθ0(

√
Ncr+ϵ0)ϵ2

1ψ0ψ2
1(2+ e−2i(∆θ))

−3he−iθ1(
√

Ncr+ϵ0)2ϵ1ψ2
0ψ1(2+ e2i(∆θ))

]
R2

+
[
he3iθ0(

√
Ncr+ϵ0)3ψ3

0+he3iθ1ϵ3
1ψ

3
1

(3.49)
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+3he−iθ0(
√

Ncr+ϵ0)ϵ2
1ψ0ψ2

1e2i(θ1+θ0)

+3he−iθ1(
√

Ncr+ϵ0)2ϵ1ψ2
0ψ1e2i(θ1+θ0)

]
R̄2

+
[
he−2iθ0(

√
Ncr+ϵ0)2ψ2

0+2he−i(θ1+θ0)(
√

Ncr+ϵ0)ϵ1ψ1ψ0+ e−2iθ1hϵ2
1ψ

2
1

]
R3

−

[
2eiθ0(

√
Ncr+ϵ0)ψ0+2eiθ1ϵ1ψ1

−6heiθ1(
√

Ncr+ϵ0)2ϵ1ψ2
0ψ1(2+ e2i(θ0−θ1))

−6heiθ0(
√

Ncr+ϵ0)ϵ2
1ψ0ψ2

1(2+ e2i(∆θ))−6heiθ0(
√

Ncr+ϵ0)3ψ3
0−6heiθ1ϵ3

1ψ
3
1

]
|R|2

−

[
1−6h

(
(
√

Ncr+ϵ0)2ψ2
0+ϵ

2
1ψ

2
1

)
−6hei(θ0−θ1)(

√
Ncr+ϵ0)ψ1ϵ1ψ0(1+ e2i(∆θ))

]
|R|2R

+
[
3he2iθ0(

√
Ncr+ϵ0)2ψ2

0+3he2iθ1ϵ2
1ψ

2
1

+6hei(θ0+θ1)(
√

Ncr+ϵ0)ψ0ϵ1ψ1

]
|R|2R̄

+
[
3h

(
eiθ0(
√

Ncr+ϵ0)ψ0+ eiθ1ϵ1ψ1

)]
|R|4

+h |R|4R.

Then, using the ODE’s, we have

(i∂t−H)R = Pc
[
−ieiθ1 ϵ̇1ψ1− eiθ0(

√
Ncr+ϵ0)3ψ3

0− eiθ1ϵ3
1ψ

3
1

−eiθ0(
√

Ncr+ϵ0)ϵ2
1ψ0ψ2

1(2+ e2i(∆θ)

−eiθ1(
√

Ncr+ϵ0)2ϵ1ψ2
0ψ1(2+ e−2i(∆θ))+ heiθ0(

√
Ncr+ϵ0)5ψ5

0

+heiθ1ϵ5
1ψ

5
1+ heiθ0(

√
Ncr+ϵ0)3 ϵ2

1ψ
3
0ψ

2
1(6+ e−2i(∆θ))

+heiθ1(
√

Ncr+ϵ0)2ϵ3
1ψ

2
0ψ

3
1(6+ e2i(∆θ))

+3heiθ1(
√

Ncr+ϵ0)4ψ4
0ϵ1ψ1+2heiθ0(

√
Ncr+ϵ0)ϵ4

1ψ0ψ4
1(3

2 + e2i(∆θ))

+3heiθ1(
√

Ncr+ϵ0)2ϵ3
1ψ

2
0ψ

3
1e−2i(∆θ)+3heiθ0(

√
Ncr+ϵ0)3ϵ2

1ψ
3
0ψ

2
1e−2i(∆θ)

+2heiθ1(
√

Ncr+ϵ0)4ϵ1ψ4
0ψ1e2i(∆θ)

]
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−2
[
(
√

Ncr+ϵ0)2ψ2
0+2(

√
Ncr+ϵ0)ϵ1ψ0ψ1 cos(θ0−θ1)+ψ2

1ϵ
2
1

−
3
2h

(
(
√

Ncr+ϵ0)4ψ4
0+ϵ

4
1ψ

4
1

)
−6h(

√
Ncr+ϵ0)2ψ2

0ϵ
2
1ψ

2
1

−3hei(∆θ)(
√

Ncr+ϵ0)3ϵ1ψ3
0ψ1(1+ e−2i(∆θ))

−3hei(∆θ)(
√

Ncr+ϵ0)ϵ3
1ψ0ψ3

1(1+ e−2i(∆θ))

−
3
2he2i(∆θ)(

√
Ncr+ϵ0)2ϵ2

1ψ
2
0ψ

2
1(1+ e−4i(∆θ))

]
R

−ei(θ1+θ0)
[
(
√

Ncr+ϵ0)2ψ2
0e−i(∆θ)+ϵ2

1ψ
2
1ei∆θ+2(

√
Ncr+ϵ0)ϵ1ψ0ψ1

−6h(
√

Ncr+ϵ0)2ϵ2
1ψ

2
1ψ

2
0ei(∆θ)

−6h(
√

Ncr+ϵ0)3ϵ1ψ3
0ψ1

−6h(
√

Ncr+ϵ0)2ϵ2
1ψ

2
1ψ

2
0e−i(∆θ)

−2h
(
(
√

Ncr+ϵ0)4ψ4
0+ϵ

4
1ψ

4
1

)
e−i(∆θ)

−2h(
√

Ncr+ϵ0)ϵ3
1ψ0ψ3

1(3+ e−2i(∆θ))−2h(
√

Ncr+ϵ0)3ϵ1ψ3
0ψ1e−2i(∆θ)

]
R̄

−

[
e−iθ0(

√
Ncr+ϵ0)ψ0+ e−iθ1ϵ1ψ1−3he−iθ0(

√
Ncr+ϵ0)3ψ3

0

−3he−iθ1ϵ3
1ψ

3
1−3he−iθ0(

√
Ncr+ϵ0)ϵ2

1ψ0ψ2
1(2+ e−2i(∆θ))

−3he−iθ1(
√

Ncr+ϵ0)2ϵ1ψ2
0ψ1(2+ e2i(∆θ))

]
R2

+
[
he3iθ0(

√
Ncr+ϵ0)3ψ3

0+he3iθ1ϵ3
1ψ

3
1+3he−iθ0(

√
Ncr+ϵ0)ϵ2

1ψ0ψ2
1e2i(θ1+θ0)

+3he−iθ1(
√

Ncr+ϵ0)2ϵ1ψ2
0ψ1e2i(θ1+θ0)

]
R̄2

+
[
he−2iθ0(

√
Ncr+ϵ0)2ψ2

0+2he−i(θ1+θ0)(
√

Ncr+ϵ0)ϵ1ψ1ψ0+ e−2iθ1hϵ2
1ψ

2
1

]
R3

−

[
2eiθ0(

√
Ncr+ϵ0)ψ0+2eiθ1ϵ1ψ1

−6heiθ1(
√

Ncr+ϵ0)2ϵ1ψ2
0ψ1(2+ e2i(θ0−θ1))

−6heiθ0(
√

Ncr+ϵ0)ϵ2
1ψ0ψ2

1(2+ e2i(∆θ))−6heiθ0(
√

Ncr+ϵ0)3ψ3
0−6heiθ1ϵ3

1ψ
3
1

]
|R|2

−

[
1−6h

(
(
√

Ncr+ϵ0)2ψ2
0+ϵ

2
1ψ

2
1

)
−6hei(θ0−θ1)(

√
Ncr+ϵ0)ψ1ϵ1ψ0(1+ e2i(∆θ))

]
|R|2R

+
[
3he2iθ0(

√
Ncr+ϵ0)2ψ2

0+3he2iθ1ϵ2
1ψ

2
1

+6hei(θ0+θ1)(
√

Ncr+ϵ0)ψ0ϵ1ψ1

]
|R|2R̄

+
[
3h

(
eiθ0(
√

Ncr+ϵ0)ψ0+ eiθ1ϵ1ψ1

)]
|R|4

+h |R|4R

= (I)+ (II)R+ (III)R̄+ (IV)R2+ (V)R̄2+ (VI)R3+ (VII)|R|2+ (VIII)|R|2R

+(IX)|R|2R̄+ (X)|R|4−h|R|4R.
(3.50)
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Notice that Pc(I) = (I). Hence, in order to increase the existence time for the

observed orbits, it seems natural to attempt to include a term in the ansatz to

account for the linear behavior of such an operator. Specifically, we would like to

to slightly alther our ansatz to include a term R̃ such that

(i∂t−H)R̃ = (I).

In this case, it is particularly challenging as (I) is a function of x and t, meaning we

must do a perturbative argument in order to pull out the leading order behavior

of this term. Another possibility is to couple the ODE’s to a term in the continuous

spectrum, say R, which would add a term very similar to the above η equation.

However, we would only see the observed Hamiltonian dynamics if R was small

in relation to the leading order parameters. The leading order equation for R is

precisely

(i∂t−H)R = (I).

Hence, in order to do a perturbative argument about the finite dimensial dynamics

on the system of ODE’s couple to the continuous spectrum, we would need to do

it on a time scale for which R is small relative to the dynamical parameters.

Now, assuming we have an asymptotic parameter, say δ such that

ϵ0, ϵ1,Ncr,n ≤ δ,

we see

(I) ≈ O(δ5),

(II) ≈ O(δ4),

(III) ≈ O(δ4),

(IV) ≈ O(δ3),
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(V) ≈ O(δ3),

(VI) ≈ O(δ2),

(VII) ≈ O(δ3),

(VIII) ≈ O(δ2),

(IX) ≈ O(δ2),

(X) ≈ O(δ).

3.5 Perturbative analysis for cubic-quintic nonlinear-

ity

In this section, we will linearize the solution about the finite dimensional ODE

solutions above. To begin, we look at solutions of the form n> 0, ϵ0, ϵ1, ∆θ small. In

this case, linearising about the localised solution shows that the essential frequency

of oscillation is the form
π

2
(
N2

cr−Ncrn−n2
) 1

2

Hence, it is on the time scale of multiple oscillations and we hope to control the

difference between the observed finite dimensional periodic solutions and the full

solution to the PDE. Consider again (3.15), where here we denote F⊥ and G are

PcFb(c0,c1, c̄0, c̄1) and PcFR(c0,c1, c̄0, c̄1;R, R̄) respectively.

Let c0, c1 be the periodic solutions to the finite dimensional system above,

which is obtained by taking F0 = F1 = 0. Now, we wish to linearize about an infinite

dimensional solution, namely ρ0, ρ1, and R̃. In other words, we further refine our
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ansatz again such that

c0(t) = ρ0(t)+η0(t), (3.51a)

c1(t) = ρ1(t)+η1(t), (3.51b)

R(x, t) = R̃(x, t)+W(x, t), (3.51c)

where

iR̃t−HLR̃+F⊥(ρ0,ρ1, ρ̄0, ρ̄1) = 0,

or

R̃ = −i
∫ t

0
eiHL(t−s)PcF⊥(ρ0,ρ1, ρ̄0, ρ̄1)ds

= −i
∫ t

0
eiHL(t−s)F⊥(ρ0,ρ1, ρ̄0, ρ̄1)ds.

If we plug equations (3.51) into equation (3.15), we obtain

iη̇0 − Ω0η0+Ωη0+2|ρ0|
2η0+ρ2

0η̄0+ρ2
1η̄0+2ρ̄0ρ1η1+2|ρ1|

2η0+2ρ0ρ1η̄1+2ρ0ρ̄1η1

− 2h
(
|ρ0|

2ρ2
0η̄0+ρ3

0ρ̄1η̄1+ ρ̄0ρ3
1η̄1+ |ρ1|

2ρ2
1η̄0

)
−3h

(
|ρ0|

4η0+ρ2
0ρ̄

2
1η0+ ρ̄2

0ρ
2
1η0+ |ρ1|

4η0
)

− 6h
(
|ρ0|

2ρ̄0ρ1η1+ |ρ0|
2ρ2

1η̄0+ |ρ1|
2ρ̄1ρ0η1+ |ρ1|

2ρ1ρ0η̄1+ |ρ1|
2ρ1ρ̄0η1

+ |ρ0|
2ρ0ρ̄1η1+ |ρ0|

2ρ0ρ1η̄1+ |ρ1|
2ρ2

0η̄0
)
−12h|ρ0|

2
|ρ1|

2η0

= F0
(
ρ0+η0,ρ1+η1, ρ̄0+ η̄0, ρ̄1+ η̄1; R̃+W, ¯̃R+W̄

)
+h.o.t.,

iη̇1 − Ω1η1+Ωη1+2|ρ1|
2η1+ρ2

1η̄1+ρ2
0η̄1+2ρ̄1ρ0η0+2|ρ0|

2η1+2ρ1ρ0η̄0+2ρ1ρ̄0η0

− 2h
(
ρ3

0ρ̄1η̄0+ |ρ0|
2ρ2

0η̄1+ ρ̄0ρ3
1η̄0+ |ρ1|

2ρ2
1η̄1

)
−3h

(
|ρ0|

4η1+ ρ̄2
0ρ

2
1η1+ρ2

0ρ̄
2
1η1+ |ρ1|

4η1

)
− 6h

(
|ρ0|

2ρ2
1η̄1+ |ρ1|

2ρ̄1ρ0η0+ |ρ1|
2ρ2

0η̄1+ |ρ0|
2ρ̄0ρ1η0+ |ρ0|

2ρ0ρ1η̄0

+ |ρ0|
2ρ0ρ̄1η0+ |ρ1|

2ρ1ρ̄0η0+ |ρ1|
2ρ1ρ0η̄0

)
−12h|ρ0|

2
|ρ1|

2η1

= F1

(
ρ0+η0,ρ1+η1, ρ̄0+ η̄0, ρ̄1+ η̄1; R̃+W, ¯̃R+W̄

)
+h.o.t.,
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iWt − HLW+F⊥
(
ρ0+η0,ρ1+η1, ρ̄0+ η̄0, ρ̄1+ η̄1

)
−F⊥

(
ρ0,ρ1, ρ̄0, ρ̄1

)
= G

(
ρ0+η0,ρ1+η1, ρ̄0+ η̄0, ρ̄1+ η̄1; R̃+W, ¯̃R+W̄

)
,

where F0, F1, G have higher order dependence on R̃+W.

Now, let us define again

η⃗ =



η0

η̄0

η1

η̄1


.

Then, we obtain

i ˙⃗η = A(t)η⃗+F
(
η⃗; R̃+W, ¯̃R+W̄

)
,

iWt − HLW+F⊥
(
ρ0+η0,ρ1+η1, ρ̄0+ η̄0, ρ̄1+ η̄1

)
−F⊥

(
ρ0,ρ1, ρ̄0, ρ̄1

)
= G

(
ρ0+η0,ρ1+η1, ρ̄0+ η̄0, ρ̄1+ η̄1; R̃+W, ¯̃R+W̄

)
,

where

∣∣∣F⊥ (
ρ0+η0,ρ1+η1, ρ̄0+ η̄0, ρ̄1+ η̄1

)
−F⊥

(
ρ0,ρ1, ρ̄0, ρ̄1

)∣∣∣ ≈ O(η⃗).

This system must then be analyzed. There are dispersive estimates for the

infinite dimensional part of the system, but we need to understand the estimates on

the linear part of the finite dimensional piece. In particular, we must understand

the system

i ˙⃗η = A(t)η⃗+ f (t)

using Floquet theory, where A(t) is given by a matrix as follow:
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

A11 A12 A13 A14

A21 A22 A23 A24

A31 A32 A33 A34

A41 A42 A43 A44


,

where

A11 = 2|ρ0|
2+2|ρ1|

2
−Ω0−3h

(
|ρ0|

4+ρ2
0ρ̄

2
1+ ρ̄

2
0ρ

2
1+ |ρ1|

4
)
−12h|ρ0|

2
|ρ1|

2,

A12 = ρ2
0+ρ

2
1−16h

(
|ρ0|

2ρ2
0+ |ρ1|

2ρ2
1

)
−6h

(
|ρ0|

2ρ2
1+ |ρ1|

2ρ2
0

)
,

A13 = 2
(
ρ̄0ρ1+ρ0ρ̄1

)
−6h

(
|ρ0|

2ρ̄0ρ1+ |ρ1|
2ρ̄1ρ0+ |ρ1|

2ρ1ρ̄0+ |ρ0|
2ρ0ρ̄1

)
,

A14 = 2ρ0ρ1−2h
(
ρ3

0ρ̄1+ ρ̄0ρ3
1

)
−6h

(
|ρ1|

2ρ1ρ0+ |ρ0|
2ρ0ρ1

)
,

A21 = −ρ̄2
0− ρ̄

2
1+2h

(
|ρ0|

2ρ̄2
0+ |ρ1|

2ρ̄2
1

)
+6h

(
|ρ0|

2ρ̄2
1+ |ρ1|

2ρ̄2
0

)
,

A22 = −2|ρ0|
2
−2|ρ1|

2+Ω0+3h
(
|ρ0|

4+ ρ̄2
0ρ

2
1+ρ

2
0ρ̄

2
1+ |ρ1|

4
)
+12h|ρ0|

2
|ρ1|

2,

A23 = −2ρ̄0ρ̄1+2h
(
ρ̄3

0ρ1+ρ0ρ̄3
1

)
+6h

(
|ρ1|

2ρ̄1ρ̄0+ |ρ0|
2ρ̄0ρ̄1

)
,

A24 = −2(ρ0ρ̄1+ ρ̄0ρ1)+6h
(
|ρ0|

2ρ0ρ̄1+ |ρ1|
2ρ1ρ̄0+ |ρ1|

2ρ̄1ρ0+ |ρ0|
2ρ̄0ρ1

)
,

A31 = 2(ρ̄1ρ0+ρ1ρ̄0)−6h
(
|ρ1|

2ρ̄1ρ0+ |ρ0|
2ρ̄0ρ1+ |ρ0|

2ρ0ρ̄1+ |ρ1|
2ρ1ρ̄0

)
,

A32 = 2ρ0ρ1−2h
(
ρ3

0ρ̄1+ ρ̄0ρ3
1

)
−6h

(
|ρ0|

2ρ0ρ1+ |ρ1|
2ρ1ρ0

)
,

A33 = 2|ρ0|
2+2|ρ1|

2
−Ω1−3h

(
|ρ0|

4+ ρ̄2
0ρ

2
1+ρ

2
0ρ̄

2
1+ |ρ1|

4
)
−12h|ρ0|

2
|ρ1|

2,

A34 = ρ2
1+ρ

2
0−2h

(
|ρ0|

2ρ2
0+ |ρ1|

2ρ2
1

)
−6h

(
|ρ0|

2ρ2
1+ |ρ1|

2ρ2
0

)
,

A41 = −2ρ̄0ρ̄1+2h
(
ρ̄3

0ρ1+ρ0ρ̄3
1

)
+6h

(
|ρ0|

2ρ̄0ρ̄1+ |ρ1|
2ρ̄1ρ̄0

)
,

A42 = −2
(
ρ1ρ̄0+ ρ̄1ρ0

)
+6h

(
|ρ1|

2ρ1ρ̄0+ |ρ0|
2ρ0ρ̄1+ |ρ0|

2ρ̄0ρ1+ |ρ1|
2ρ̄1ρ0

)
,

A43 = −ρ̄2
1− ρ̄

2
0+2h

(
|ρ0|

2ρ̄2
0+ |ρ1|

2ρ̄2
1

)
+6h

(
|ρ0|

2ρ̄2
1+ |ρ1|

2ρ̄2
0

)
, and

A44 = −2|ρ0|
2
−2|ρ1|

2+Ω1+3h
(
|ρ0|

4+ρ2
0ρ̄

2
1+ ρ̄

2
0ρ

2
1+ |ρ1|

4
)
+12h|ρ0|

2
|ρ1|

2.

Analysis of the phase diagram shows that the finite dimensional ODE system

is nonlinearly stable. By linearizing about the radially symmetric ODE’s, it is clear

that the system is also linearly stable, hence A is a purely oscillatory matrix.
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Now, we proceed to make the necessary asymptotic assumptions. From Sec.

5.4 above, we have

|ρ0|
2+ |ρ1|

2 =Ncr+n,

and for our analysis, we assume

0 < n≪Ncr = nα≪ 1,

for some α < 1 to be chosen later. Now, as n > 0, we are assuming ρ0 and ρ1 to be

such that they are close to the equilibrium point as shown in the ODE analysis

above. As a result, we have

|ρ0| ≈ n
α
2 , |ρ1| ≈ n

1
2 .

As a result, we would like the error terms to be of size nβ for β > 1
2 . Also, we have

the period T approximated by

π

2
(
n2α−nα+1−n2) 1

2

≈
π

n
α+1

2

.

Hence, we wish to prove the remainder terms are small on a time period n−γ where

γ > α.

To this end, let us first analyze the term R̃. Our analysis will both show the

necessary bounds on R̃ and give us a natural time interval I on which to run our

contraction argument for existence. Based on the expansion in the ansatz, we have:

F⊥(ρ⃗) = Pc
[
|ρ0|

2ρ0ψ3
0+ (ρ2

0ρ̄1+2|ρ0|
2ρ1)ψ2

0ψ1+ (ρ2
1ρ̄0+2ρ0|ρ1|

2)ψ0ψ2
1+ |ρ1|

2ρ1ψ3
1

−h|ρ0|
4ρ0ψ5

0−h|ρ1|
4ρ1ψ5

1−h
(
6|ρ0|

2ρ0|ρ1|
2+ρ3

0ρ̄
2
1

)
ψ3

0ψ
2
1−h

(
6|ρ0||ρ1|

2ρ1

+hρ̄2
0ρ

3
1

)
ψ2

0ψ
3
1−2h|ρ1|

2ρ2
1ρ̄0ψ0ψ4

1−2h|ρ0|
2ρ2

0ρ̄1ψ4
0ψ1−3h

(
|ρ0|

4ρ1ψ4
0ψ1

−ρ0|ρ1|
4ψ0ψ4

1−ρ
2
0|ρ1|

2ρ̄1ψ2
0ψ

3
1− |ρ0|

2ρ̄0ρ2
1ψ

3
0ψ

2
1

)]
.
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The term of largest order in this expansion is |ρ0|
4ρ0ψ5

0. The bounds on the

remaining terms will follow similarly, so we look at

∫ t

0
eiHL(t−s)Pch(

√
Ncr+ϵ0)5eiθ0(s)ψ5

0ds,

where we have expanded in radial coordinates. Hence, we must bound a term of

the form

(
√

Ncr)5
∫ t

0
eiHL(t−s)eiθ0(s)Pcψ

5
0ds = n

5α
2

∫ t

0
eiHL(t−s)eiθ0(s)Pcψ

5
0ds.

In particular, we would like

∥∥∥∥∥∥n
5α
2

∫ t

0
eiHL(t−s)eiθ0(s)Pcψ

5
0ds

∥∥∥∥∥∥
L∞t,x

. n,

for t ∈ I to be determined later. From above, we know

θ̇0 = Ω0− (
√

Ncr+ϵ0)2
−2ϵ2

1−ϵ
2
1cos(2∆θ)+h(

√
Ncr+ϵ0)4

+h(
√

Ncr+ϵ0)2ϵ2
1(4cos(2∆θ)+6)+hϵ4

1(3+2cos(2∆θ))

From θ̇0, we need the leading order constant term from the derivative. We have

the leading order constant terms from the derivative is Ω0−Ncr+hN2
cr.

We write

n
5α
2

∫ t

0
eiHL(t−s)eiθ0(s)Pcψ

5
0 ds =

n
5α
2 eiHLt

∫ t

0
e−iHLs+iΩ0s−iNcrs+ihN2

crseiθ0(s)−iΩ0s+iNcrs−ihN2
crsPcψ

5
0ds =

n
5α
2 eiHLt

∫ t

0
eiθ0(s)−iΩ0s+iNcrs−ihN2

crs d
ds

e−i(HL−Ω0+Ncr−hN2
cr)s

−i(HL−Ω0+Ncr−hN2
cr)

Pcψ
5
0ds,

where the resolvent (H−Ω0+Ncr−hN2
cr)−1 is well-defined operator in H1 on Pcψ5

0.

We can see this explanation in Appendix C in [48], also see reference [95] for the
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details. Using the estimates from that appendix and integrations by part, we have

n
5α
2

∣∣∣∣∣∣eiHLt
∫ t

0
e−iHLs+iΩ0s−iNcrseiθ0(s)−iΩ0s+iNcrsPcψ

5
0ds

∣∣∣∣∣∣
. n

5α
2
∣∣∣(H−Ω0+Ncr−8hN2

cr)
−1Pcψ

5
0

∣∣∣+n
5α
2
∣∣∣eiHLt(H−Ω0+Ncr−hN2

cr)
−1Pcψ

5
0

∣∣∣
+n

5α
2 O(n)

∫ t

0

∥∥∥eiHLs(HL−Ω0+Ncr−hN2
cr)
−1Pcψ

5
0

∥∥∥
L∞ ds

. n
5α
2
∥∥∥(H−Ω0+Ncr)−1Pcψ

5
0

∥∥∥
H1 +hn

5α
2
∥∥∥eiHLt(H−Ω0+Ncr−hN2

cr)
−1Pcψ

5
0

∥∥∥
H1

+n
5α
2 O(n)

∫ t

0

∥∥∥eiHLs(H−Ω0+Ncr−hN2
cr)
−1Pcψ

5
0

∥∥∥
H1 ds

. n
5α
2 +n

5α
2 +n

5α
2 O(n)t.

By selecting α > 2
5 , we ensure that all terms resulting from integration by parts are

bounded by n for all t and t
1
2 n

5α
2 . 1, which implies that t . n−5α. Hence, we may

allow t ∈ I, where I ⊂ [0,n−2]. For reasons that will be become clear in below, let us

set I = [0,n−
1+α

2 −ϵ], where ϵ > 0 will be chosen small enough in the sequel and for

simplicity, we set γ = α+1
2 . In other words, a time period allowing one to observe

n−ϵ oscillations of the finite dimensional system. Note, on this time scale, we have

|R̃| . n
5α+3

4 . n1+δ

for any 0 < δ < δ0, where δ0 is determined by α.

Now that we have bounds of R̃, we can proceed with the contraction argument

on η and W. To begin, let us assume

∥η⃗∥L∞t . nα+δ1 , ∥W∥L∞t H1
x
. n1+δ2 ,

for all t ∈ I where δ2 > δ1 > ϵ > 0 will be chosen later. Note, by Sobolev embeddings,

we have

∥W∥L∞t,x . n1+δ2 .
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Then, we must control terms of the form

η⃗(t) =
∫ t

0 A(t− s)[ f0(η)+ g1(⃗c)⟨R,χ1⟩+ g2(⃗c)⟨R2,χ2⟩+ g3(⃗c)⟨R3,χ3⟩+ ⟨|R|4R,ψ0⟩]ds

= I+ II+ III+ IV+V,

where

f0 = O(η4),

g1 = O(|⃗c|4),

g2 = O(|⃗c|3),

g3 = O(|⃗c|2),

g4 = O(|⃗c|),

and χ1, χ2, χ3 ∈ S.

Using the bounds on η, R̃ and W, plus the fact that ∥A∥ . 1, we have

|I| . n4α+4δ1t≪ nα+δ1 ,

|II| . n1+δ2t≪ nα+δ1 ,

|III| . n2+2δ2t≪ nα+δ1 ,

|IV| . n3+3δ2t≪ nα+δ1 ,

|V| . n5+5δ2t≪ nα+δ1 ,

for all t ∈ I where a≪ b implies a. nβb where β > 0 and we have implicitly assumed

δ2−ϵ > δ1. Hence, the contraction argument works on the η equations.

For the W equation, we must bound terms of the form

∫ t
0 eiHL(t−s)Pc[(F⊥(⃗c)−F⊥(ρ⃗))χ1+G1(⃗c)χ2R+G2(⃗c)χ3R2+G3(⃗c)χ4R3+ |R|4R]ds

= I+ II+ III+ IV+V,
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where

F⊥(⃗c)−F⊥(ρ⃗) = O(η),

G1 = O(|⃗c|4),

G2 = O(|⃗c|3),

G3 = O(|⃗c|2),

G4 = O(|⃗c|),

and χ1, χ2, χ3, χ4 ∈ S, which is the Schwartz space.

Before we continue, using the theory of Strichartz estimates on linear dispersive

operators, we have the following useful relation

∥∥∥∥∥∥
∫ t

0
eiHL(t−s)Pc f

∥∥∥∥∥∥
L∞H1

.
∥∥∥ f (x, t)

∥∥∥
Lp̃

t W1,q̃
x
,

where (p̃, q̃) is a dual Strichartz pair. In one dimension, it is useful to note we may

take p̃ = 4
3 and q̃ = 1. Then, we proceed similarly to above to see

∥I∥L∞H1 . n2α+δ1t
3
4 ≪ n1+δ2 ,

|II| . nαt
3
4 ∥W∥L∞H1 ≪ n1+δ2 ,

|III| . n2α+2+2δ2t≪ n1+δ2 ,

|IV| . n3+3δ2t
3
4 ∥W∥L∞H1 ≪ n1+δ2 ,

|V| . n5α+5+5δ2 ≪ n1+δ2 .

assuming α close enough to 1. Hence, the contraction argument holds on W and

we have existence of a unique solution (η,W) for all t ∈ I.

This concludes our main result that for any sufficiently small amplitude periodic

solution about an equilibrium state of the finite dimensional reduction, there is a

solution of the PDE (NLS/GP), whose projection into the finite dimensional phase

space, shadows this finite dimension orbit on very long time scales.
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3.6 Numerical computations: stationary solutions

-0.65 -0.6 -0.55 -0.5 -0.45 -0.4
0

2

4

6

8
N

Figure 3.1. The stationary solution branches for h = 1. The analytical predictions are
denoted with the blue (thin) line while the numerically determined solutions are denoted
with the black (thick) line that is solid when it is stable and dashed otherwise.

We turn to the examination of our analysis against numerical computations of

the NLS/GP equation. We focus here on stationary solutions as the dynamics of

the case considered herein has been simulated elsewhere [69, 80] (see also, e.g.,

[86, 86] and references therein).

In our calculations, the stationary solutions are obtained by using a fixed-point

Newton-Raphson iteration for a finite difference discretization of the relevant

boundary value problem (3.5), with a choice of the grid spacing of ∆x = 0.1 and

employing a pseudo-arclength continuation of the solutions with respect to the

bifurcation parameter Ω.
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Figure 3.2. Corresponding solutions of the bifurcation diagram in Fig. 3.1 for the same
power at N = 3 and their spectrum in the complex plane.
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The linear stability is analyzed by considering the standard linearization around

the stationary solutions ψ̂ in the form

ψ(x, t) =
(
ψ̂+ϵ(a(x)eλt+ b∗(x)eλ

∗t)
)
e−iΩt.

This yields the eigenvalue problem

 L1 L2

−L∗2 −L∗1


 a

b

 = iλ

 a

b

 , (3.52)

where the operators are defined as

L1φ = −∂xx+V−Ω+2gψ̂2+3hψ̂4, L2φ = gψ̂2+2hψ̂4.

Because for our Hamiltonian system when λ is an eigenvalue, so are −λ, λ⋆ and

−λ⋆, instability of ψ̂ is guaranteed by the existence of any eigenvalues λ of the

linearized operator withℜ(λ) , 0.

We present in Fig. 3.1 the bifurcation diagram of our ground state that is

symmetric as a function of Ω. It bifurcates from Ω0 as a marginally stable solution.

AsΩ decreases and the power increases, there is a critical value where the state

becomes unstable. When Ω decreases further, there is a turning point where our

symmetric state regains its stability. We plot the corresponding solution for N = 3

(i.e., past the turning point) in Fig. 3.2(a) and its spectrum in the complex plane

in Fig. 3.2(b), obtained from solving the eigenvalue problem (3.52), showing its

stability.

The point of stability change near Ω0 is the symmetry breaking bifurcation. A

stable asymmetric state emanates from the point. The corresponding branch is

also depicted in Fig. 3.1. As we follow the branch, there are two turning points.

In Fig. 3.2(c-f) we plot two asymmetric states for the same power N = 3 and their
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corresponding spectrum. The figure shows that for high enough power, the system

prefers states where almost all of it is concetrated in one of the wells only.

In Fig. 3.1, we also plot the equilibria of the finite dimensional reduction. It is

clear that in accordance with the theory, the coupled mode approximation captures

the full system very well near the bifurcation point Ω0. For relatively large N, the

approximation deviates rather rapidly. For this reason, our shadowing result is

only applicable for solutions along the lower symmetric and asymmetric branches.

To obtain a better comparison between numerical results and the approximations,

especially for the asymetric states, one needs to ’force’ the system to admit them at

low powers, which can be achieved by considering a higher value of h.

-0.48 -0.46 -0.44 -0.42 -0.4
0

0.5

1

1.5

N

Figure 3.3. The same as Fig. 3.1, but for for h = 5.

We compute the bifurcation diagram of the symmetric and asymmetric states

for h = 5 and plot the results in Fig. 3.3. As we expected, in this case our finite

dimensional reduction provides a better approximation. In addition to the lower

branches, in this case we can also show that the shadowing result applies to the

asymmetric states in their entire existence region. The challange in here is that the

solutions may not be representable conveniently in closed expressions.



Chapter 4

Justification of the discrete nonlinear

Schrödinger equation from a

parametrically driven damped

nonlinear Klein-Gordon equation

and numerical comparisons

4.1 Introduction

We consider the following parametrically driven discrete Klein-Gordon (dKG)

equation with damping

ü j = −u j−ξu3
j +ε

2∆u j−αu̇ j+H cos(2Ωt)u j, (4.1)

where u j ≡ u j(t) is a real-valued wave function at site j, the overdot denotes the

time derivative and ε2 represents the coupling constant between two adjacent

sites, with ∆u j = u j+1− 2u j+u j−1 being the one dimensional discrete Laplacian.

97
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The positive parameters α and H denote the damping coefficient and the strength

of the parametric drive, respectively. The real constant ξ is the nonlinearity

coefficient andΩ is the driving frequency. The governing equation (4.1) is relevant

to the experimental study of localised structures in coupled pendula [25, 27] and

micromechanical arrays [18].

To analyse the equation, one usually uses a multiple scale expansion and the

rotating wave approximation under the assumption of small wave amplitudes, that

lead to a damped, parametrically driven discrete nonlinear Schrödinger (dNLS)

equation [28, 63, 72, 79]. Using the scaling α = ε2α̂, H = 2ε2h, Ω= 1+ε2Λ/2, and a

slow time variable τ = ε2t/2, we consider a (2 : 1) parametric resonance and define

a slowly varying approximation to the solutions of the dKG lattice equation (4.1)

u j(t) ≈ φ j(t) = ε A j(τ)eiΩt+
ε3

8

[
ξA j(τ)3

−hA j(τ)
]
e3iΩt+ c.c., (4.2)

that will yield the dNLS equation

iȦ j = ∆A j− iα̂A j+ΛA j−3ξ|A j|
2A j+hĀ j . (4.3)

Here, the dot denotes derivative with respect to the slow time τ, which implies

that the approximation (4.2)-(4.3) is expected to be valid until t ∼ O(2/ε2). The

abbreviation c.c.means the complex conjugate of the preceding terms. It should be

clear by now that the coupling constant (i.e., the prefactor of the discrete Laplacian

term) is scaled to ε2 only for the sake of convenience, so that u j =O(ε). Replacing

ε→
√
ε will yield the standard scaling used, e.g., in [75]. Our scaling may also

be interpreted that instead of using the coupling constant as a measure of the

smallness, we use the solution amplitude.

The presence of parametric drive and damping in the dNLS equation was

possibly first studied in [46], where the existence of localised solutions was
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discussed using a nonlinear map approach. It was shown that numerous types

of localised states emerge from the system depending on the strength of the

parametric driving. The parametrically driven dNLS equation (4.3) was studied in

[87, 88], where it was shown that the parametric drive can change the stability of

fundamental discrete solitons, i.e., it can destroy onsite solitons as well as restore

the stability of intersite discrete solitons, both for bright and dark cases. In [89],

breathers of (4.3), i.e., spatially localised solutions with periodically time varying

|A j(τ)| emanating from Hopf bifurcations, were studied systematically.

Despite the wide interests in both equations (4.1) and (4.3), the reduction from

the former to the latter has not been rigorously justified. Without damping and

parametric drive, the analysis was provided rather recently by Pelinovsky, Penati

and Paleari [75]. However, as the presence of damping and drive will certainly

require modifications in the justification of the reduction, here we address the

problem, which will be the primary aim of the chapter. Following [75], we use an

energy estimate method. The method has been used as well in various systems of

differential equations, see, e.g., [8, 13, 31, 39, 83].

This chapter is organized as follows. Mathematical formulations to obtain the

uniqueness and global existence of solutions to the dNLS equation (4.3) are given

in Section 4.2. In Section 4.3, we discuss an error bound estimation of the rotating

wave approximation, which leads to the main result of the paper, i.e., Theorem 4.3.1.

Finally, in Section 4.4 we illustrate the main results by considering the evolution of

errors made by the rotating wave approximation for two different initial conditions,

with one of them corresponding to discrete solitons of the nonlinear Schrödinger

equation (4.3).
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4.2 Analytical formulation and preliminary results

Substituting the slowly varying approximation ansatz (4.2) into the original dKG

equation (4.1) and taking into account the dNLS equation (4.3), we obtain the

residual terms in the form of

R j(t) := ε5
[
eiΩt

8

(
−3hξA jĀ2

j +3ξ2A3
j Ā

2
j +h2A j−hξA3

j +4iαΛA j+4αȦ j

−2Λ2A j+4iΛȦ j+2Ä j
)

+
e3iΩt

8

(
−6hξA2

j Ā j+6ξ2A4
j Ā j−3iαhA j+9hΛA j−3ihȦ j

−2hA j+hA j−1+
1
8

hA j+1+3iαξA3
j −9ξΛA3

j +9iξA2
j Ȧ j

+2ξA3
j −ξA3

j−1−ξA3
j+1

)
+

e5iΩt

8

(
h2A j−4hξA3

j +3ξ2A5
j

)]
+ε7

[
3eiΩt

32

(
h2ξA2

j Ā j−hξ2A4
j Ā j−hξ2A2

j Ā
3
j +ξ

3A4
j Ā

3
j

)
+

e3iΩt

32

(
−6iαhΛA j−2αhȦ j−hÄ j+9hΛ2A j−6ihΛȦ j+6iαξΛA3

j

+6αξA2
j Ȧ j−9ξΛ2A3

j +18iξΛA2
j Ȧ j+6ξA jȦ2

j +3ξA2
j Ä j

)
+

e5iΩt

64

(
3h2ξA2

j Ā j−6hξ2A4
j Ā j+3ξ3A6

j Ā j
)

+
e7iΩt

64

(
3h2ξA3

j −6hξ2A5
j +3ξ3A7

j

)]
+ε9

[
e3iΩt

512

(
−3h3ξA2

j Ā j+6h2ξ2A4
j Ā j+6h2ξ2A2

j Ā
3
j −3hξ3A6

j Ā j

−6hξ3A4
j Ā

3
j +3ξ4A6

j Ā
3
j

)
+

e9iΩt

512

(
−h3ξA3

j +3h2ξ2A5
j

−3hξ3A7
j +ξ

4A9
j

)]
+ c.c.

(4.4)

Note that the dNLS equation (4.3) is obtained from removing the resonant

terms at O(ε3). The usual rotating frame ansatz, where one uses only the first term

of (4.2) and its complex conjugate, i.e., u j(t) ≈ ε A j(τ)eiΩt+ c.c., will also yield (4.3),
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but it leaves a larger residue:

R j(t) := ε3(ξA3
j −hA j)e3iΩt+ε5

(
1
2 iα̂ΛA j−

1
4Λ

2A j+
1
2 α̂Ȧ j+

1
2 iΛȦ j+

1
2Ä j

)
eiΩt+ c.c.

Over a long time, this can yield an error that is of the same order as the approx-

imation itself, which will be problematic for the expansion. Thus, R j needs to

be smaller. It might be made small only if ξ and h were both to be very small.

However, this cannot be the case since they have been derived from scaling the

original "physical" parameters properly with respect to ε, i.e., their smallness

have already been exploited. The only way to reduce the residue is therefore by

modifying the rotating ansatz, which following [30] (see Chapter 5) yields (4.2).

In the followings, we denote by A the sequence (A j) j∈Z in ℓ2(Z), which is a

Banach space equipped with norm,

∥A∥ℓ2(Z) =

∑
j∈Z

|A j|
2


1/2

. (4.5)

First, we prove the preliminary estimates on the global solutions of the dNLS

equation (4.3) in ℓ2(Z)-space, the leading order approximation (4.2), and the

residual term (4.4).

Lemma 4.2.1. For every A(0) = ϕ ∈ ℓ2(Z), the dNLS equation (4.3) admits a unique

global solution A(τ) on [0,∞) which belongs to Ck
(
[0,+∞), ℓ2(Z)

)
. Furthermore, the

unique solution A(τ) satisfies the estimate

∥A(τ)∥ℓ2(Z) ≤ ∥ϕ∥ℓ2(Z) e−(α̂−2|h|)τ . (4.6)

Proof. We split the proof into four parts.
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1. Local existence. Let us rewrite Eq. (4.3) in its equivalent integral form

A j(τ) = ϕ j− i
∫ τ

0

(
∆A j− iαA j+ΛA j−3ξ|A j|

2A j+hĀ j
)
ds. (4.7)

Define a Banach space,

B = {A ∈ C
(
[0, τ̃], ℓ2(Z)

)
|∥A∥ℓ2(Z) ≤ δ} , (4.8)

equipped with norm,

∥A∥B = sup
τ∈[0,τ̃]

∥A(τ)∥ℓ2(Z). (4.9)

For A ∈ ℓ2(Z), we define a nonlinear operator

K j [A(τ)] = ϕ j− i
∫ τ

0

(
∆A j− iαA j+ΛA j−3ξ|A j|

2A j+hĀ j
)
ds. (4.10)

We want to prove that the operator K is a contraction mapping on B. Because the

discrete Laplacian ∆ is a bounded operator on ℓ2(Z), we have

∥∆A∥ℓ2(Z) ≤ C∆∥A∥ℓ2(Z). (4.11)

To be precise, C∆ = 4 because the operator is a self-adjoint and its continuous

spectrum lies within the interval [−4,0].

Since ℓ2(Z) is an algebra, there is a constant C> 0 such that for every A,B ∈ ℓ2(Z),

we have

∥AB∥ℓ2(Z) ≤ C∥A∥ℓ2(Z)∥B∥ℓ2(Z). (4.12)

From Eq. (4.10) and using the estimate (4.12), we obtain the following bound

∥K(A)∥B ≤ δ0+ τ̃(Cδ+ α̂δ+Λδ+3|ξ|δ3+ |h|δ). (4.13)
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We can pick δ0 <
δ
2 and τ̃ ≤ δ

2(Cδ+α̂δ+Λδ+3|ξ|δ3+|h|δ) to conclude that K :B→B.

Let A,B ∈ B. Then we have

K j[A(τ)]−K j[B(τ)] = −i
∫ τ

0

[
∆(A j−B j)− iα̂(A j−B j)+Λ(A j−B j)

−3ξ(|A j|
2A j− |B j|

2B j)+h(Ā j− B̄ j)
]

ds . (4.14)

Noting that

|A j|
2A j− |B j|

2B j = |A j|
2A j− |A j|

2B j+ |A j|
2B j− |B j|

2B j

= |A j|
2(A j−B j)+B j(|A j|

2
− |B j|

2)

= |A j|
2(A j−B j)+B j(A jĀ j−A jB̄ j+A jB̄ j−B jB̄ j)

= |A j|
2(A j−B j)+B j[A j(Ā j− B̄ j)+ (A j−B j)B̄ j],

(4.15)

we obtain that

∥K(A)−K(B)∥B ≤ τ̃
(
C∆+ α̂+Λ+3|ξ|Cδ2+ |h|

)
∥A−B∥B. (4.16)

By taking

τ̃ <min
(

1
C∆+ α̂+Λ+3|ξ|Cδ2+ |h|

,
δ

2(Cδ+ α̂δ+Λδ+3|ξ|δ3+ |h|δ)

)
, (4.17)

then K is a contraction mapping on B. Therefore, by Banach fixed point theorem,

there exists a unique fixed point of operator K, which is a unique solution of (4.7).

2. Smoothness. From Eq. (4.3), we obtain that

sup
τ∈[0,τ̃]

∥Ȧ∥ℓ2(Z) ≤
(
C∆+ α̂+Λ+ |h|+3|ξ|δ2

)
δ , (4.18)

which shows that the solution belongs to C1
(
[0, τ̃), ℓ2(Z)

)
.
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Furthermore, by writing η = (A, Ā), we have

i
dη
dτ
= Lη+N(η)+F(η) , (4.19)

where

Lη =

 ∆− iα̂+Λ

−∆− iα̂−Λ

η , N(η) =
3ξ
2
|η|2η , F(η) =

0,hh,0

η . (4.20)

Differentiating (4.19), we obtain

i
d2η

dτ2 = L
dη
dτ
+DN(η) ·

dη
dτ
+DF(η) ·

dη
dτ
. (4.21)

Since N(η) and F(η) are smooth on ℓ2(Z) and dη
dτ ∈ C

(
[0, τ̃), ℓ2(Z)

)
, then we have

d2η

dτ2 ∈ C
(
[0, τ̃), ℓ2(Z)

)
, (4.22)

which implies that A ∈ C2
(
[0, τ̃), ℓ2(Z)

)
. Using a similar procedure for higher

derivatives, we conclude that

A ∈ Ck
(
[0, τ̃), ℓ2(Z)

)
. (4.23)

3. Maximal solutions. We can construct a maximal solution by repeating the

steps above with the initial condition A(τ̃−τ0) for some 0 < τ0 < τ̃ and by using

the uniqueness result to glue the solutions.
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4. Global existence. To prove the global existence, first we multiply the dNLS

equation (4.3) with Ā j and use its complex conjugate to obtain

i
d

dτ

(
A jĀ j

)
−

(
Ā j∆A j−A j∆Ā

)
= −2iα̂|A j|

2+h(Ā2
j −A2

j ) . (4.24)

Note that ∑
j∈Z

(
A j∆Ā j− Ā j∆A j

)
= 0. (4.25)

Summing up (4.24) over j, we then get

d
dτ
∥A∥2

ℓ2(Z) = −2α̂∥A∥2
ℓ2(Z)+4 h

∑
j∈Z

Im(Ā j)Re(Ā j). (4.26)

For the last term in the above equation, we have the estimate

h
∑
j∈Z

Im(Ā j)Re(Ā j) ≤ |h|
∑
j∈Z

∣∣∣Im(Ā j)
∣∣∣ ∣∣∣Re(Ā j)

∣∣∣ ≤ |h|∥A∥2
ℓ2

k (Z)
, (4.27)

which leads to
d

dτ
∥A∥2

ℓ2(Z)+2(α̂−2h)∥A∥2
ℓ2(Z) ≤ 0 . (4.28)

Integrating the inequality, we get

∥A(τ)∥ℓ2(Z) ≤ ∥ϕ∥ℓ2(Z) e−(α̂−2|h|)τ, (4.29)

which shows that A(τ) cannot blow up in finite time. Thus, the dNLS equation

(4.3) admits global solutions. �

It is worth mentioning that due to the damping term, the dNLS equation (4.3)

does not possess a constant of motion. However, we can define a Hamiltonian
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(i.e., an energy function) associated with equation (4.3) as

HdNLS[A](τ) =
∑
j∈Z

(
|∇A j|

2
−Λ|A j|

2+
3ξ
2
|A j|

4
−hRe(A2

j )
)
, (4.30)

with ∇A j = A j+1−A j. The Hamiltonian function satisfies the differential equation,

d
dτ

HdNLS[A](τ)+2αHdNLS[A](τ) = −3αξ
∑
j∈Z

|A j(τ)|4 . (4.31)

When α = 0 (i.e., there is no damping present), HdNLS is conserved.

Now we provide estimates for the leading order approximation (4.2) and the

residual terms (4.4) in the following lemmas.

Lemma 4.2.2. For every A(0) = ϕ ∈ ℓ2(Z), there exists a ε-independent positive constant

Cφ that depends on ∥ϕ∥ℓ2(Z),h, α̂ and τ0, such that the leading-order approximation (4.2)

satisfies

∥φ(t)∥ℓ2(Z)+ ∥φ̇(t)∥ℓ2(Z) ≤ ε Cφ, (4.32)

for all t ∈ [0,2τ0/ε2] and ε ∈ (0,1).

Proof. From the global existence in Lemma 4.2.1 and using the Banach algebra

property of ℓ2(Z), we obtain

∥∥∥φ(t)
∥∥∥
ℓ2(Z) =

∥∥∥∥∥ε(A jeiΩt+ Ā je−iΩt
)
+ ε3

8

[(
ξA3

j −hA j

)
e3iΩt

+
(
ξĀ3

j −hĀ j

)
e−3iΩt

]∥∥∥∥∥
ℓ2(Z)

≤

∥∥∥∥ε(A jeiΩt+ Ā je−iΩt
)∥∥∥∥
ℓ2(Z)
+

∥∥∥∥∥ε3

8

(
ξA3

j e
3iΩt
−hA je3iΩt

)∥∥∥∥∥
ℓ2(Z)

+

∥∥∥∥∥ε3

8

(
ξĀ3

j e
−3iΩt

−hĀ je−3iΩt
)∥∥∥∥∥
ℓ2(Z)

≤ ε
(
2∥A∥ℓ2(Z)+

1
4 |ξ|ε

2
∥∥∥A3

∥∥∥
ℓ2(Z)+

1
4 |h|ε

2
∥A∥ℓ2(Z)

)
≤ ε Cφ1

(4.33)
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and

∥∥∥φ̇(t)
∥∥∥
ℓ2(Z) =

∥∥∥∥∥ 3
16

ihΛε5e−3iΩtĀ j−
1
16

hε5e−3iΩt ˙̄A j+
3
8

ihε3e−3iΩtĀ j

−
3
16

iξΛε5e−3iΩtĀ3
j +

3
16
ξε5e−3iΩtĀ2

j
˙̄A j−

3
8

iξε3e−3iΩtĀ3
j

−
1
2

iΛε3e−iΩtĀ j+
1
2
ε3e−iΩt ˙̄A j− iεe−iΩtĀ j

−
3
16

ihΛε5e3iΩtA j−
1

16
hε5e3iΩtȦ j−

3
8

ihε3e3iΩtA j

+
3
16

iξΛε5e3iΩtA3
j +

3
16
ξε5e3iΩtA2

j Ȧ j+
3
8

iξε3e3iΩtA3
j

+
1
2

iΛε3eiΩtA j+
1
2
ε3eiΩtȦ j+ iεeiΩtA j

∥∥∥∥∥
ℓ2(Z)

.

(4.34)

Since A ∈ C1
(
[0,+∞), ℓ2(Z)

)
, then we have

∥∥∥φ̇(t)
∥∥∥
ℓ2(Z) ≤ ε Cφ2 . (4.35)

From Eqs. (4.33) and (4.35), we obtain the inequality (4.32), which concludes the

proof. �

Lemma 4.2.3. For every A(0) =ϕ ∈ ℓ2(Z), there exists a positive ε−independent constant

C̃R that depends on ∥A0∥ℓ2 ,h, α̂ and τ0, such that for every ε ∈ (0,1) and every t ∈ [0,2τ0/ε2],

the residual terms in (4.4) is estimated by

∥R(t)∥ℓ2(Z) ≤ C̃Rε
5. (4.36)

Proof. To prove this lemma, we can use the result from Lemma (4.2.1) as well as

the property of Banach algebra in ℓ2(Z), such that from the global existence and

smoothness of the solution A(τ) of the discrete nonlinear Schrödinger equation

(4.3) in Lemma (4.2.1), we obtain the result (4.36). �



4.3 Main Results 108

4.3 Main Results

We are now ready to formulate the main result of the chapter that is stated in the

following theorem:

Theorem 4.3.1. Let u= (u j) j∈Z be a solution of the dNLS equation (4.1) and letφ= (φ j) j∈Z

be the leading approximation terms given by (4.2). For every τ0 > 0, there are a small

ε0 > 0 and positive constants C0 and C such that for every ε ∈ (0,ε0) with

∥u(0)−φ(0)∥ℓ2(Z)+ ∥u̇(0)− φ̇(0)∥ℓ2(Z) ≤ C0ε
3 , (4.37)

the inequality

∥u(t)−φ(t)∥ℓ2(Z)+ ∥u̇(t)− φ̇(t)∥ℓ2(Z) ≤ Cε3 , (4.38)

holds for t ∈ [0,2τ0ε−2].

Proof. Write

u j(t) = φ j(t)+ y j(t), (4.39)

where φ j(t) is the leading-order approximation (4.2) and y j(t) is the error term.

The error will give us a description of how good φ j(t) is as an approximation to

solutions of the dKG equation.

Plugging the decomposition (4.39) into equation (4.1), we obtain the evolution

problem for the error term as

ÿ j+ y j+ξ
(
y3

j +3φ2
j y j+3φ jy2

j

)
−ε2∆y j+ϵ

2α̂ẏ j−2ε2hcos(2Ωt) y j+R j(t) = 0 . (4.40)

Associated with equation (4.40), we can define the energy of the error term as

E(t) :=
1
2

∑
j∈Z

[
ẏ2

j + y2
j −2ε

(
y jy j+1− y2

j

)]
. (4.41)
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Note that from the Cauchy-Schwartz inequality, we have

∑
j∈Z

y jy j+1 ≤

∑
j∈Z

y2
j


1/2 ∑

j∈Z

y2
j+1


1/2

= ∥y∥2
ℓ2(Z), (4.42)

and

−2ε
∑
j∈Z

y jy j+1+2ε
∑
j∈Z

y2
j ≥ −2ε∥y∥2

ℓ2(Z)+2ε∥y∥2
ℓ2(Z) = 0 . (4.43)

Thus the energy is always positive for all t on which the solution y(t) is defined.

We also have the inequality

∥ẏ(t)∥2
ℓ2(Z)+ ∥y(t)∥2

ℓ2(Z) ≤ 2E(t). (4.44)

From the energy (4.41) and the error term (4.40), we obtain that

dE
dt
=

1
2

∑
j∈Z

[
2ÿ j ẏ j+2ẏ jy j−2ε2

(
ẏ jy j+1+ y j ẏ j+1−2y j ẏ j

)]
=

∑
j∈Z

[
ÿ j+ y j−ε

2(y j+1+ y j−2y j)
]

ẏ j

= −

∑
j∈Z

[
R j(t)+ξ

(
y3

j +3φ2
j y j+3φ jy2

j

)
+ϵ2α̂ẏ j−2ε2hcos(2Ωt) y j

]
ẏ j .(4.45)

Setting E =Q2 and using the Cauchy-Schwarz inequality, we have∣∣∣∣∣dQ
dt

∣∣∣∣∣ ≤ 1
√

2
∥R(t)∥ℓ2(Z)+

[
|ξ|

(
2Q3+3∥φ∥2

ℓ2(Z)Q+3
√

2∥φ∥ℓ2(Z)Q
2
)
+
ε2α̂

2
Q

+2ε2
|h|Q2

]
. (4.46)

Take τ0 > 0 arbitrarily. Assume that the initial norm of the perturbation term

satisfies the bound

Q(0) ≤ C0ε
3, (4.47)

where C0 is a positive constant. Define

T0 = sup

t0 ∈ [0,2τ0ε
−2] : sup

t∈[0,t0]
Q(t) ≤ CQε

3

 , CR = sup
τ∈[0,τ0]

C̃R, (4.48)
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on the time scale [0,2τ0ε−2]. Then, we can rewrite the energy estimate (4.46) by

applying Lemma 4.2.2–4.2.3 and the definition (4.48) as

∣∣∣∣∣dQ
dt

∣∣∣∣∣ ≤ 1
√

2
CRε

5+
(
4|ξ|C2

Qε
4+6|ξ|C2

φ+6|ξ|
√

2CφCQε
2+ α̂+4|h|

) ε2Q
2
. (4.49)

Thus, for every t ∈ [0,T0] and suffeciently small ε > 0, we can find a positive

constant K0, which is independent of ε, such that

4|ξ|C2
Qε

4+6|ξ|C2
φ+6|ξ|

√

2CφCQε
2+ α̂+4|h| ≤ K0. (4.50)

By simplifying and integrating (4.49), we get

Q(t)e−
ε2K0t

2 −Q(0) ≤
∫ t

0

CRε5
√

2
e−

ε2K0s
2 ds ≤

√
2CRε3

K0
. (4.51)

By using (4.47), then we obtain

Q(t) ≤ ε3
(
C0+

√
2CR

K0

)
eK0τ0 . (4.52)

Therefore, we can define CQ :=
(
C0+21/2K−1

0 CR
)
eK0τ0 and this concludes the proof.

�

4.4 Numerical comparisons: Breather solutions

In Section 4.2, we have discussed that small-amplitude solutions of the parametri-

cally driven dKG equation (4.1) can be approximated by ansatz (4.2), that satisfies

the dNLS equation (4.3) with a residue of order O(ε5). We then showed in Section

4.3 that the difference between solutions of Eqs. (4.1) and (4.3), that are initially of

at most order O(ε3), will be of the same order for some finite time. In this section,

we will illustrate the results numerically.
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Figure 4.1. Panels (a,b) show numerical solutions of the dKG equation (blue circles) and
the corresponding rotating wave approximations from the dNLS equation (red stars) at
two time instances t = 100 and t = 1000. Here, ε = 0.1. Panel (c) is the time dynamics of
the error. Panel (d) is the maximum error of the dNLS approximation within the interval
t ∈ [0,2/ε2] for varying ε→ 0. In the picture, we also plot the best power fit of the error,
showing the same order as in Theorem 4.3.1.
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We consider Eq. (4.1) as an initial value problem in the domain D = {(n, t)|(n, t) ∈

[1,N]× [0, T̃]}, N ∈N, T̃ ∈R. The differential equation is then integrated using the

fourth order Runge-Kutta method. Simultaneously we also need to integrate Eq.

(4.3). As the initial data of the dKG equation, we take

u j(0) = φ j(0), u̇ j(0) = φ̇ j(t)
∣∣∣
t=0 . (4.53)

In this way, the initial error y(0) between u j(0) and φ j(0) (see (4.39)) will satisfy

∥y(0)∥ℓ2 = 0 < C0ε3, for any C0 > 0.

In the following, we take the parameter valuesΛ=−3, h=−0.5, and α̂= 0.1. The

nonlinearity is considered to be ’softening’, which without loss of generality is taken

to be ξ = −1. This choice of nonlinearity coefficient will yield the dNLS equation

(4.3) with a ’focusing’ or ’attractive’ nonlinearity. The case ξ = +1, i.e., ’stiffening’

nonlinearity, corresponds to the ’defocusing’ or ’repulsive’ dNLS equation (4.3).

In the dNLS description, the attractive and repulsive cases are mathematically

equivalent through a "staggering” transformation (−1) j, that reverses the phases

in every second lattice.

In our first simulation, we consider the fundamental site-centred discrete soliton

of the dNLS equation, that has been considered before in, e.g., [46, 87–89]. Such

solutions will satisfy (4.3) with Ȧ j = 0 and can be obtained rather straightforwardly

using Newton’s method.

In Fig. 5.1(a) and 5.1(b) we plot the solutions u j(t) and φ j(t) for ε = 0.1 at two

different subsequent times. In panel (c) of the same figure, we plot the error ∥y(t)∥

between the two solutions, which shows that it increases. However, the increment

is bounded within the proven estimate ∼ Cϵ3 for quite a long while.

We have performed similar computations for several different values of ε→ 0.

Taking τ0 = 1, we record supt∈[0,2τ0/ε2]∥y(t)∥ for each ε. We plot in Fig. 5.1(d) the
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Figure 4.2. The same as Fig. 3.1, but for the initial data (4.54).

maximum error as a function of ε. We also plot in the same panel the best power

fit in the nonlinear least squares sense, which agrees with Theorem 4.3.1.

Discrete solitons of the dNLS equation expectedly approximate discrete

breathers of the dKG equation. Our simulations above indicate this as well.

Yet, how close are they with each other? In Appendix B, we show numerically

that they are O(ε3)-apart, which interestingly seem to follow the result in Theorem

4.3.1.

In our second simulations, we consider a perhaps more interesting initial

condition in the form of a clustered state:

A j = e0.05i j, j = 21, . . . ,30, (4.54)
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and A j vanishes elsewhere. The dynamics at some instances are shown in Fig. 3.2.

We also computed the maximum error made by the rotating wave approximation

within the time interval [0,2τ0/ε2], with τ0 taken to be 1, and plotted it in Fig.

4.2(d) for several values of ε. The best power fit to the error also shows the same

behaviour, i.e., the error is O(ε3).



Chapter 5

Reduction of damped, driven

Klein-Gordon equations into a

discrete nonlinear Schrödinger

equation: justification and numerical

comparisons

5.1 Introduction

Nonlinear lattices are a set of nonlinear evolution equations that are coupled

spatially. Prominent classes of nonlinear lattices are discrete Klein-Gordon [94]

and Frenkel-Kontorova equations [17] that serve as possibly the simplest models

for many complex physical and biological systems. While Frenkel-Kontorova type

systems correspond to coupled equations with harmonic on-site potential, the

discrete Klein-Gordon equations do with the anharmonic one.

115
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Small-amplitude wave packets of nonlinear lattices are usually explored via

reduction to an amplitude or modulation equation in the form of either continuous

or discrete nonlinear Schrödinger equations. The method is usually referred to as

the rotating wave approximation. If one is interested in solution profiles with a

much larger length scale than the typical distance between the lattices, they can

aim for a continuous approximation and obtain nonlinear Schrödinger equations

(see, e.g., [7, 53, 57]). When one is instead interested in waves with the same scale

of the typical lattice distance, one will obtain an approximation in the form of a

discrete nonlinear Schrödinger equation (see, e.g., [26, 38, 49, 58, 59, 72, 88]) with

the corresponding wave properties quite distinct from those in the continuous

limit.

Despite their widespread use, rigorous justifications of the rotating wave

procedures are more sparse, with an early example being [57], wherein Hamiltonian

Klein-Gordon lattices are approximated by nonlinear Schrödinger equations (see

also [30, 60]). A justification for the discrete nonlinear Schrödinger approximation

was provided rather recently in [75].

In this chapter, we consider a Klein-Gordon equation with external damping

and drive. Our present work will be relevant to models appearing in the study of,

e.g., superconducting Josephson junctions [4], mechanical oscillators [62], electrical

lattices [33], etc. Using the rotating-wave approximation, we will show that

the corresponding modulation equation is a damped, driven discrete nonlinear

Schrödinger equation. The similar approximation has been used to reduce

an externally driven sine-Gordon equation into a damped, driven continuous

nonlinear Schrödinger equation [9, 90]. In here, we are going to provide a rigorous

justification of the discrete Schrödinger equation. Note that our work here is

significantly different from the aforementioned published works in the sense that

our original governing equation as well as the modulation one are not Hamiltonian.
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Moreover, the external drive yields a constant term that can be challenging to

control in providing boundedness of the error, i.e., the solution does not lie in

ℓ2-space of Z. Without external damping and drive, the initial value problem for

the discrete nonlinear Schrödinger equation with power nonlinearity in weighted

ℓ2-space has been shown to be globally well-posed in [74]. N’Guérékata and

Pankov [73] provides a stronger result of global well-posedness in spaces of

exponentially decaying data. Here, by considering the problem with damping

and drive in a periodic domain, we are able to provide the global existence of the

discrete nolinear Schrd̈inger equation as well as the error bound of the rotating

wave approximation.

This chapter is organized as follows. We define the governing equation and

formulate preliminary results on the unique global solution and error estimate

in Section 5.2. The main result on the error bound of the rotating-wave approxi-

mation as time evolves is presented in Section 5.3. In Section 5.4 we describe the

computation of the error made by the Schrödinger approximation numerically.

The comparison is provided for localised waves, i.e., breather solutions.

5.2 Mathematical formulation and preliminary results

Consider the following model of coupled oscillators with damping and drive on a

finite lattice

ü j = −u j−ξu3
j +ϵ(∆2u j)−αu̇ j+

h
2

(eiΩt+ e−iΩt), j ∈ZN = {1, . . . ,N}, (5.1)

where u j ≡ u j(t) is a real-valued wave function at site j, the overdot is the time

derivative and ϵ represents the coupling constant between two adjacent sites,

with ∆2u j = u j+1−2u j+u j−1 being the discrete Laplacian in one dimension. The

parameters α and h denote the damping coefficient and the strength of the external
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drive, respectively. The driving frequency is taken to be Ω= 1− ϵω
2 , i.e., it is close

to the natural frequency of the uncoupled linear oscillator. We also consider a

periodic boundary condition,

u j+N(t) = u j(t), for all j ∈ZN. (5.2)

Considering small-amplitude oscillations, one commonly uses the rotating

wave approximation

u j(t) ≈ X j(t) =
√
ϵA j (τ)eiΩt+

1
8
ξϵ3/2A3

j (τ)e3iΩt+ c.c., (5.3)

i.e., X j(t) is the leading order approximation of u j(t) and τ = ϵt
2 is the slow time

variable. Substituting the ansatz (5.3) into Eq. (5.1) and removing the resonant

terms e±iΩt at the leading order of O(ϵ3/2), we obtain the damped, driven discrete

nonlinear Schrödinger equation

iȦ j+3ξ|A j|
2A j−∆2A j+ iα̂A j− ĥ+ωA j = 0, (5.4)

where α = ϵα̂, h = 2ϵ3/2ĥ, and A j+N(t) = A j(t), i.e., the periodic boundary condition.

Using Eqs. (5.3) and (5.4) to approximate the solutions of (5.1) will yield the

residual terms

Res j(t) := ϵ5/2

eiΩt

2

3
4
ξ2A3

j Ā
2
j − iα̂ωA j+ α̂Ȧ j−

ω2A j

2
− iωȦ j+

Ä j

2


+

e3iΩt

8

(
6ξ2A4

j Ā j+3iα̂ξA3
j +9ξωA3

j +9iξA2
j Ȧ j+2ξA3

j

−ξA3
j−1−ξA3

j+1

)
+

e5iΩt

8

(
3ξ2A5

j

)]
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+ϵ7/2
[
eiΩt

32

(
3ξ3A3

j Ā
4
j

)
+

e3iΩt

32

(
−6iα̂ξωA3

j +6α̂ξA2
j Ȧ j−9ξω2A3

j x

+3iα̂ξA3
j +9ξωA3

j +9iξA2
j Ȧ j+2ξA3

j +6ξA j
(
Ȧ j

)2
+3ξA2

j Ä j

)
+

e5iΩt

64

(
3ξ3A6

j Ā j
)
+

e7iΩt

64

(
3ξ3A7

j

)]
+ϵ9/2

[
e3iΩt

512

(
3ξ4A6

j Ā
3
j

)
+

e9iΩt

512

(
ξ4A9

j

)]
+ c.c. (5.5)

The terms with derivatives of A j can be changed into those without derivative

using Eq. (5.4), provided that
(
A j

)
j∈ZN

is a twice differentiable sequence with

respect to time. Because of the periodic boundary condition, we consider the

sequence space ℓ2(ZN) and we will simply denote
(
A j

)
j∈ZN

∈ ℓ2(ZN) by A. The

space ℓ2(ZN) is a Hilbert space equipped with norm,

∥A∥ℓ2(ZN) =

N∑
j=1

|A j|
2 . (5.6)

The following lemma gives us a preliminary result on the global solutions of

the discrete nonlinear Schrödinger equation (5.4).

Lemma 5.2.1. For every φ ∈ ℓ2(ZN), there exists a unique global solution A(τ) of the

discrete nonlinear Schrödinger equation (5.4) in ℓ2(ZN) such that A(0) = φ. Moreover,

the solution A(τ) is smooth in τ and there is a real constant CA, that depends on the initial

value, ĥ, α̂ and N such that ∥A(τ)∥ℓ2(ZN) ≤ CA.

Proof. Let us rewrite Eq. (5.4) in the following equivalent integral form

A j(τ) = A j(0)− i
∫ τ

0

(
∆2A j− iα̂A j−3ξ|A j|

2A j−ωA j+ ĥ
)
ds . (5.7)

Define a Banach space,

B = {A ∈ C
(
[0,τm], ℓ2(ZN)

)
| ∥A(τ)∥ℓ2(ZN) ≤ δ} , (5.8)



5.2 Mathematical formulation and preliminary results 120

equipped with the norm

∥A∥B = sup
τ∈[0,T]

∥A(τ)∥ℓ2(ZN).

For A ∈ ℓ2(ZN), we define a nonlinear operator,

K j [A(τ)] = φ− i
∫ τ

0

(
∆2A j− iα̂A j−3ξ|A j|

2A j−ωA j+ ĥ
)
ds. (5.9)

We want to prove that K is contraction mapping on B.

Due to the periodic boundary condition, A j = AN+ j, we get

∥∆2A∥ℓ2(ZN) ≤ C∆2∥A∥ℓ2(ZN). (5.10)

Therefore, the discrete Laplacian ∆2 is a bounded operator in ℓ2(ZN). From the

Banach algebra property of the ℓ2(ZN)-space, there is a constant C > 0 such that

for every A,B ∈ ℓ2(ZN) we have

∥AB∥ℓ2(ZN) ≤ C∥A∥ℓ2(ZN)∥B∥ℓ2(ZN). (5.11)

From (5.9) and using the estimate (5.11) we obtain the following bound

∥K(A)∥B ≤ δ0+T(Cδ+αδ+3Cδ3+ωδ).

We can pick δ0 <
δ
2 and T ≤ δ

2(Cδ+αδ+3Cδ3+ωδ) . Thus, K is a mapping from Bδ to itself.
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For A,B ∈ Bδ, we have

K j[A(τ)]−K j[B(τ)] = −i
∫ τ

0

[
∆2(A j−B j)− iα̂(A j−B j)−3ξ(|A j|

2A j− |B j|
2B j)

−ω(A j−B j)
]
ds.

Therefore, we obtain

∥K(A)−K(B)∥B ≤ T{C∆+ α̂+3Cα̂2+ω}∥A−B∥B.

By taking T <min
(

1
C∆+α̂+3Cα̂2+ω

, δ
2(Cδ+αδ+3Cδ3+ωδ)

)
, then K is a contraction mapping.

Therefore, there exists a constant T such that the discrete nonlinear Schrödinger

equation has a local unique solution A∈C
(
[0,T], ℓ2(ZN)

)
with supτ∈[0,T]∥A(τ)∥ℓ2(ZN) ≤

δ.

Now, we will prove the global well-posedness of the discrete nonlinear

Schrödinger equation (5.4). Multiplying the jth-component of the equation

by Ā j, taking the imaginary part and summing over j, we obtain

d
dτ
∥A∥2

ℓ2(ZN)+2α̂∥A∥2
ℓ2(ZN) = 2|ĥ|

N∑
j=1

Im(Ā j) ≤ 2|ĥ|∥A∥ℓ2(ZN) . (5.12)

Integrating the inequality, we get

∥A∥2
ℓ2(ZN) ≤

|ĥ|
α̂
+

(
∥A0∥ℓ2(ZN)−

|ĥ|
α̂

)
e−α̂τ

≤ CA
(
∥A0∥ℓ2(ZN), ĥ, α̂,N

)
, (5.13)

which provides a global bound to the solutions and hence, conclude the proof of

the lemma. �

The following lemma will give us an estimate for the leading order approxima-

tion (5.3).
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Lemma 5.2.2. For every A0 ∈ ℓ2(ZN), there exits a positive constant CX(∥A0∥ℓ2(ZN), ĥ, α̂,N)

such that the leading-order approximation (5.3) is estimated by

∥X(t)∥ℓ2(ZN)+ ∥Ẋ(t)∥ℓ2(ZN) ≤
√
ϵ CX(∥A0∥ℓ2(ZN), ĥ, α̂,N) , (5.14)

for all t ∈ [0,∞) and ϵ ∈ (0,1).

Proof. From the global existence in Lemma 5.2.1 and using the Banach algebra

property of ℓ2(ZN), we obtain

∥X(t)∥ℓ2(ZN) =

∥∥∥∥∥√ϵ(AeiΩt+ Āe−iΩt
)
+

1
8
ξϵ3/2

(
A3e3iΩt+ Ā3e−3iΩt

)∥∥∥∥∥
ℓ2(ZN)

≤

∥∥∥∥√ϵ(AeiΩt+ Āe−iΩt
)∥∥∥∥
ℓ2(ZN)

+

∥∥∥∥∥1
8
ξϵ3/2

(
A3e3iΩt+ Ā3e−3iΩt

)∥∥∥∥∥
ℓ2(ZN)

≤ 2
√
ϵ∥A∥ℓ2(ZN)+

1
4
ξϵ3/2

∥∥∥A3
∥∥∥
ℓ2(ZN)

≤
√
ϵ CX1(∥A0∥ℓ2(ZN), ĥ, α̂,N)

(5.15)

and

∥∥∥Ẋ(t)
∥∥∥
ℓ2(ZN) =

∥∥∥∥∥1
8
ξϵ3/2

(3
2
ϵĀ2e−3iΩt ˙̄A−3iΩĀ3e−3iΩt+

3
2
ϵA2Ȧe3iΩt+3iΩA3e3iΩt

)
+
√
ϵ
(1
2
ϵe−iΩt ˙̄A− iΩĀe−iΩt+

1
2
ϵȦeiΩt+ iΩAeiΩt

)∥∥∥∥∥
ℓ2(ZN)

.

(5.16)
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From (5.4), we have that

∥∥∥Ȧ(τ)
∥∥∥
ℓ2(ZN) =

∥∥∥3iξA2Ā− α̂A+ iωA− i(∆2A)− iĥ
∥∥∥
ℓ2(ZN)

≤ 3ξC3
A

(
∥A0∥ℓ2(ZN), ĥ, α̂

)
+αCA

(
∥A0∥ℓ2(ZN), ĥ, α̂

)
+ωCA

(
∥A0∥ℓ2(ZN), ĥ, α̂

)
+C∆2CA

(
∥A0∥ℓ2(ZN), ĥ, α̂

)
+Cĥ

≤ C̃A
(
∥A0∥ℓ2(ZN), ĥ, α̂,N

)
.

(5.17)

Therefore, Eq. (5.16) becomes

∥∥∥Ẋ(t)
∥∥∥
ℓ2(ZN) ≤

√
ϵ CX2(∥A0∥ℓ2(ZN),, ĥ, α̂,N) (5.18)

and

∥X(t)∥ℓ2(ZN)+ ∥Ẋ(t)∥ℓ2(ZN) ≤
√
ϵ CX(∥A0∥ℓ2(ZN), ĥ, α̂,N)

�

Next, we have the following result on the bound of the residual terms Eq. (5.5).

Lemma 5.2.3. For every A0 ∈ ℓ2(ZN), there exists a positive ϵ−independent constant

CR(∥A0∥ℓ2(ZN), ĥ, α̂,N), such that for every ϵ ∈ (0,1) and every t ∈R, the residual term in

(5.5) is estimated by

∥Res(t)∥ℓ2(ZN) ≤ CR
(
∥A0∥ℓ2(ZN), ĥ, α̂,N

)
ϵ5/2. (5.19)

Proof. To prove this lemma, we can use the result from Lemma 5.2.1 as well as

the property of Banach algebra in ℓ2(ZN), such that from the global existence and

smoothness of the solution A(τ) of the discrete nonlinear Schrödinger equation

(5.4) in Lemma 5.2.1, we obtain (5.19). �
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5.3 Main Results

In this section we will develop the main result on the time evolution of the

rotating-wave approximation error by writing u j(t) = X j(t)+ y j(t), where X j(t) is

the leading-order approximation (5.3) and y j(t) is the error term. Plugging the

decomposition into Eq. (5.1), we obtain the evolution problem for the error term:

ÿ j+ y j+ξ
(
y3

j +3X2
j y j+3X jy2

j

)
−ϵ∆2y j+ϵα̂ẏ j+Res j(t) = 0, j ∈ZN, (5.20)

where the residual term Res j(t) is given by (5.5) if A(τ) satisfies Eq. (5.4). Since

u and X satisfy periodic boundary conditions, the error term y also satisfies the

same condition y j+N(t) = y j(t).

Associated with Eq. (5.20), we can define the energy of the error term as

E(t) :=
1
2

N∑
j=1

[
ẏ2

j + y2
j −2ϵ

(
y jy j+1− y2

j

)]
. (5.21)

For every t for which the solution y(t) is defined, we have E(t)≥ 0 and the following

inequality,

∥ẏ(t)∥2
ℓ2(ZN)+ ∥y(t)∥2

ℓ2(ZN) ≤ 2E(t). (5.22)

The rate of change for the energy (5.21) is found from the evolution problem (5.20)

as follows

dE
dt
= −

N∑
j=1

[
Res j(t)+ϵα̂ẏ j+ξ(y3

j +3X2
j y j+3X jy2

j )
]

ẏ j. (5.23)
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Using the Cauchy-Schwarz inequality and setting E =Q2, we get

∣∣∣∣∣dQ
dt

∣∣∣∣∣ ≤ 1
√

2
∥Res(t)∥ℓ2(ZN)+

[
ϵα̂+2|ξ|Q2+3|ξ|

√

2∥X(t)∥ℓ2(ZN)Q

+3|ξ|
√

2∥X(t)∥2
ℓ2(ZN)

]
Q. (5.24)

Take τ0 > 0 arbitrarily. Assume that the initial norm of the perturbation term

satisfies the following bound

Q(0) ≤ C0ϵ
3/2, (5.25)

where C0 is a positive constant, and define

T0 = sup

t0 ∈ [0,2τ0ϵ
−1] : sup

t∈[0,t0]
Q(t) ≤ CQϵ

3/2

 , (5.26)

on the time scale [0,2τ0ϵ−1].

Applying Lemmas 5.2.2-5.2.3 and the definition (5.26), we have

∣∣∣∣∣dQ
dt

∣∣∣∣∣ ≤ ϵ5/2CR
√

2
+

(
2α̂+4|ξ|C2

Qϵ
2+6|ξ|

√

2CQCXϵ+6|ξ|C2
X

) ϵQ
2
. (5.27)

Thus, for every t ∈ [0,T0] and ϵ > 0 which is sufficiently small, we can find a positive

constant K0, which is independent of ϵ, such that

2α̂+4|ξ|C2
Qϵ

2+6|ξ|
√

2CQCXϵ+6|ξ|C2
X ≤ K0. (5.28)

Integrating (5.27), we get

Q(t)e−
ϵK0t

2 −Q(0) ≤
∫ t

0

CRϵ5/2
√

2
e−

ϵK0s
2 ds ≤

√
2CRϵ3/2

K0
. (5.29)
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Since we assume (5.25) holds, then we obtain

Q(t) ≤ ϵ3/2
(
C0+

√
2CR

K0

)
eK0τ0 . (5.30)

Therefore, we can define CQ :=
(
C0+21/2K−1

0 CR
)
eK0τ0 .

Based on the above analysis, we can state the main result of this paper in the

following theorem.

Theorem 5.3.1. For every τ0 > 0, there are a small ϵ0 > 0 and positive constants C0 and

C such that for every ϵ ∈ (0, ϵ0), for which the initial data satisfies

∥y(0)∥ℓ2(ZN)+ ∥ẏ(0)∥ℓ2(ZN) ≤ C0ϵ
3/2, (5.31)

the solution of the discrete Klein-Gordon equation (5.1) satisfies for every t ∈ [0,2τ0ϵ−1],

∥y(t)∥ℓ2(ZN)+ ∥ẏ(t)∥ℓ2(ZN) ≤ Cϵ3/2. (5.32)

Remark 5.3.2. The error bound that is of order O(ϵ3/2) in Theorem 5.3.1 is linked to

the choice of our rotating wave ansatz (5.3) that creates a residue of order O(ϵ5/2). If we

include a higher-order correction term in the ansatz (5.3), see Chapter 5.3 of [30] for the

procedure to do it, we will obtain a smaller residue and in return a smaller error bound.

5.4 Numerical Discussions

We have discussed in Section 5.2, that as an approximate solution of the Klein-

Gordon equation (5.1), the rotating wave approximation (5.3) and (5.4) yields

a residue of order O
(
ϵ5/2

)
. Following on the result, we proved in Section 5.3

that the difference between solutions of Eqs. (5.1) and (5.4) that are initially of at

most order O
(
ϵ3/2

)
will be of the same order for some finite time 2τ0/ϵ, for τ0 > 0.
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Figure 5.1. (a,b) Numerical solutions of the Klein-Gordon equation (blue circles) and the
corresponding rotating wave approximations from the Schrödinger equation (red stars)
at two time instances t = 75 and t = 200. Here, ϵ = 0.05. (c) Time dynamics of the error.
(d) Maximum error of the Schrödinger approximation within the interval t ∈ [0,2/ϵ] for
varying ϵ→ 0. In the picture, we also plot the best power fit of the error, showing that the
error approximately has the same order as in Theorem 5.3.1.
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Figure 5.2. Breather solution of (5.1) for ϵ = 0.05. Panel (a) shows the dynamics of the
solution in one period, while panel (b) presents the comparison of the breather and its
approximation (5.3), with A j obtained from solving the Schrödinger equation (5.4).

In this section, we will illustrate the analytical result on the error bound above

numerically.

5.4.1 Error growth

We consider Eq. (5.1) as an initial value problem, that is then integrated using

the fourth-order Runge-Kutta method. To compare solutions of Eq. (5.1) and the

rotating wave approximation (5.3), simultaneously we also need to integrate Eq.

(5.4). As the initial data of the Klein-Gordon equation, we take

u j(0) = ϵ1/2A j+
1
8
ξϵ3/2A3

j

∣∣∣∣∣
t=0
+ c.c.,

u̇ j(0) = ϵ1/2
[
A jτ+ iΩA j

]
+

1
8
ξϵ3/2A2

j

[
3A jτ+3iΩA j

]∣∣∣∣∣
t=0
+ c.c.,

where A jτ(0) can be obtained from the Schrödinger equation (5.4). In this way,

the error y(t) = u j(t)−X j(t) will satisfy the initial condition ∥y(0)∥ℓ2 = 0. In the

following, we take the parameter valuesω= 3, ĥ=−0.5, α̂= 0.1, and the nonlinearity

coefficient ξ = −1. We also take the number of sites N = 50.
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For our illustration, we consider a discrete soliton, i.e., a special standing wave

solution of the Schrödinger equation (5.4) that is localised in space. Such a solution

can be obtained rather immediately from solving the time-independent equation

of (5.4) using, e.g., Newton’s method.

In Fig. 5.1(a) and 5.1(b) we plot the solutions u j(t) and X j(t) for ϵ = 0.05 at two

different subsequent times. In panel (c) of the same figure, we plot the error ∥y(t)∥

between the two solutions, which shows that it increases. However, the increment

is bounded within the prediction ∼ Cϵ3/2 for quite a long while.

We have performed similar computations for several different values of ϵ→ 0.

Taking τ0 = 1, we record supt∈[0,2τ0/ϵ]∥y(t)∥ for each ϵ. We plot in Fig. 5.1(d) the

maximum error within the time interval as a function of ϵ. We also plot in the

same panel the best power fit in the nonlinear least squares sense, showing that

the error is approximately of order O(ϵ3/2) in agreement with Theorem 5.3.1.

5.4.2 Discrete solitons vs. discrete breathers

Our simulations in Fig. 3.1 indicate that discrete solitons of the Schrödinger

equation shall approximate breathers, i.e., solutions that are periodic in time but

localised in space, of the discrete Klein-Gordon equation. Yet, how close are the

actual discrete breathers from the solitons? If they are quite close, do they share

the same stability characteristics?

To answer the questions, we need to look for breathers of (5.1). Due to the

temporal periodicity of the solutions, we can write u j(t) in trigonometric series:

u j(t) =
K∑

k=1

a j,k cos((k−1)Ωt)+ b j,k sin(kΩt) , j = 1,2, . . . ,N, (5.33)

where a j,k and b j,k are the Fourier coefficients and K is the number of Fourier modes

we will use in our numerics. Herein, we use K = 3 and N = 50, even though larger
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Figure 5.3. Plot of the estimated error of the discrete Schrödinger approximation (5.4) for
various ϵ→ 0. The dashed line is the best power fit, indicated in the legend.

numbers have been used as well to make sure that the results are independent of

the lattice size and the number of modes.

Substituting the series (5.33) into Eq. (5.1) and integrating the resulting equation

over the time-period 2π/Ω, one will obtain coupled nonlinear equations for the

coefficients a j,k and b j,k. We then use Newton’s method to solve the resulting

equations. Breathers will be obtained by properly choosing the initial guess for

the coefficients.

Once a solution, e.g., û j(t), is obtained, we determine its linear stability using

Floquet theory. Defining u j(t) = û j(t)+ δY j(t), substituting it into Eq. (5.1), and

linearising about δ = 0, we obtain the linear second-order differential-difference

equation

Ẏ j = Z j,

Ż j = −Y j−3ξû2
j Y j+ϵ∆2Y j−αZ j.

(5.34)

By integrating the system of linear equations until t = 2π/Ω, and using a standard

basis inR2N, i.e.,
{
e0

1,e
0
2, ...,e

0
2N

}
as the initial condition at t = 0, we obtain a collection
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of solutions at t = 2π/Ω:

M = {E1,E2, ...,E2N} ∈R
2N×2N, (5.35)

as a monodromy matrix. The solution û j(t) is said to be linearly stable when all

the eigenvalues λ of the monodromy matrix lies inside or on the unit circle and

unstable when there exists at least one λ that is outside the unit circle.

As for discrete solitons of the Schrödinger equation (5.4), after a standing wave

solution Ã j = (x̃ j+ iỹ j) is obtained, its linear stability can also be determined from

solving the linear eigenvalue problem

λ

 x̂ j

ŷ j

 =


−6ξx jy j−α ∆−ω−3ξ
(
x2

j +3y2
j

)
ω−∆+3ξ

(
3x2

j + y2
j

)
6ξx jy j−α


 x̂ j

ŷ j

 , (5.36)

that is derived straightforwardly as above from substituting A j = Ã j+δ(x̂ j+ iŷ j)eλτ

into Eq. (5.4) and linearising the equation about δ = 0. Solution Ã j is said to be

linearly stable when all of the eigenvalues have Re(λ) ≤ 0 and unstable when there

is an eigenvalue with Re(λ) > 0.

We present in Fig. 5.2(a) a breather solution and its time-dynamics in one

period for ϵ = 0.05. We also compare in Fig. 5.2(b) the breather in panel (a) and the

approximation (5.3) where A j is the discrete soliton solution obtained from solving

Eq. (5.4). One can see the good agreement between them.

By defining the error between breathers of (5.1) and the approximation (5.3)

using discrete solitons of (5.4) as

E = sup
0≤t<2π/Ω

∥y(t)∥ℓ2(ZN),
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Figure 5.4. (a) Characteristic multipliers, i.e., eigenvalues of the monodromy matrix, of
the breather in Fig. 5.2(a), showing the linear stability of the solution. (b) Eigenvalues of
the corresponding discrete soliton. Because all of the eigenvalues are on the left half-plane,
the solution is linearly stable. (c) The same as panel (a), but for ϵ = 0.1, i.e., the breather is
linearly unstable. (d) Time dynamics of the unstable breather with multipliers shown in
panel (c).
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we plot the error in Fig. 5.3 for varying ϵ. We also depict in the same picture,

the best power fit, which interestingly shows an algebraic power that follows the

estimated error in Theorem 5.3.1, i.e., ∼ ϵ3/2.

For the sake of completeness, we show in Fig. 5.4(a) the Floquet multipliers

of the solution in Fig. 5.2(a) for ϵ = 0.05, that are obtained from solving the linear

equations (5.34). Because all the eigenvalues are inside the unit circle, the breather

is stable. We plot the eigenvalues of the corresponding discrete soliton in Fig.

5.4(b), also showing stability. Because both solutions are stable, the error between

them, that is initially of order O(ϵ3/2), will stay the same as time evolves until at

least t = 2τ0/ϵ, for some τ0 > 0.

When ϵ is taken to be larger, we observe that breathers of Eq. (5.1) can become

unstable. Shown in Fig. 5.4(c) are the Floquet multipliers of the breather when

ϵ = 0.1. Because there is an eigenvalue outside the unit circle, the localised solution

is unstable. The unstable eigenvalue bifurcates from the collision of an eigenvalue

with the continuous spectrum. Note that the corresponding localised solution of

the approximating Schrödinger equation (5.4) is still the same as that shown in Fig.

5.2(a), i.e., it is a stable solution.

We show in Fig. 5.4(d) the dynamics of the unstable solution. One can observe

that it maintains its shape in the form of periodic oscillations for a while, i.e.,

t ∼ 2τ0/ϵ. After that, the breather starts to deform and break up. Eventually the

solution will collapse, i.e. unbounded blow-up, which is typical for the Klein-

Gordon equation (5.1), even when it is undriven [2] (see also a related work

[29]).



Chapter 6

Conclusion and future work

In this thesis, we studied the long-time dynamics near a symmetry breaking

bifurcation for the cubic-quintic nonlinear Schrödinger/Gross-Pitaevskii equation,

and the rotating wave approximations in lattice models. Moreover, we showed

the justification of that approximation by finding the error bound. Now, let us

conclude the work that we have gained and delivered in the previous chapters as

well as bring up a certain problem that might be interesting to be considered in

the future.

6.1 Conclusion

We presented background information of coupled mode reduction, symmetry

breaking bifurcation and the rotating wave approximation in Chapter 1. In this

chapter, some analytical methods used throughout this thesis were also reviewed

briefly. We closed this chapter by delivering the outline of the thesis. Next,

proceed with Chapter 2 which discussed definitions, examples and calculation of

eigenvalue problems to support Chapter 3.

In Chapter 3 we investigated the long-time dynamics near a symmetry breaking

bifurcation for the cubic-quintic nonlinear Schrödinger/Gross-Pitaevskii equation.

134
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Moreover, we studied the applicability of the coupled mode theory in the cubic-

quintic NLS/GP with a linear double-well potential.

In Chapter 4 we discussed a parametrically driven discrete nonlinear Schrödinger

equation derived from a discrete nonlinear Klein-Gordon equation with damping

and parametric drive terms. Here, using a small amplitude ansatz, we justified the

approximation by getting the error bound. We proved the global existence and

error bound of the rotating wave approximation in ℓ2-space of Z.

Next, in Chapter 5 we used a similar method, we studied an externally driven

nonlinear Klein-Gordon equation with a discrete nonlinear Schrödinger equation

with damping and external drive. In addition, as well as Chapter 4, we provided

a justification of the approximation by finding the error bound using an energy

estimate. Moreover, we found that with external damping and drive, the solutions

do not lie in ℓ2-space of Z, while without external damping and drive, the

initial value problem for the discrete nonlinear Schrödinger equation with power

nonlinearity is in weighted ℓ2-space.

6.2 Future work

One of interesting problems that we can investigate in the future is from [21],

where the Swift-Hohenberg equation is studied using multiple scale analysis.

Consider the equation [12, 66]

∂E
∂t
=Y+CE−E3

−

(
1+

∂2

∂x2

)2

E, (6.1)

where in the context of nonlinear optics, E is the amplitude of the optical electric

field, Y is the injection field, and C is the cooperativity parameter. Here, the

homogeneous steady state Ehg is given by Y = E3
hg−CEhg+Ehg. Looking for steady
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perturbations to Ehg, we set

C = 3E2
hg−ϵ

2, E(x, t) = Ehg+ϵ f (x),

where 0 < ϵ≪ 1, to give the classical Swift-Hohenberg equation

(
1+

d2

dx2

)2

f +ϵ2 f +3ϵEhg f 2+ϵ2 f 3 = 0. (6.2)

We can also set

C = 3E2
hg−ϵ

4, E(x, t) = Ehg+ϵ f (x),

to obtain (
1+

d2

dx2

)2

f +ϵ4 f +3ϵEhg f 2+ϵ2 f 3 = 0. (6.3)

Equations (6.2) and (6.3) correspond to the so-called conditions far and near from

the Maxwell point, respectively. Rotating wave approximations have been used to

analyse the equations [21].

Consider Eq. (6.2). Let X = ϵx and treat x and X as independent variables to

give

∂4 f
∂x4
+4ϵ

∂4 f
∂x3∂X

+6ϵ2 ∂4 f
∂x2∂X2 +4ϵ3 ∂4 f

∂x∂X3 +ϵ
4 ∂

4 f
∂X4
+2

∂2 f
∂x2 +4ϵ

∂2 f
∂x∂X

+2ϵ2 ∂
2 f
∂X2 + f = −ϵ2 f −3ϵEhg f 2

−ϵ2 f 3.

(6.4)

We expand f in powers of ϵ as

f = f0(x,X)+ϵ f1(x,X)+ϵ2 f2(x,X)+ · · · . (6.5)

Substituting the expansion (6.5) into (6.4), at O(ϵ0) we obtain

∂4 f0
∂x4
+2

∂2 f0
∂x2 + f0 = 0, (6.6)
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so that

f0 = A0(X)eix̃+ Ã0(X)e−ix̃, (6.7)

where x̃ = x−ϕ, with 0 ≤ϕ< 2π. Here, ϕ is an arbitrary constant which determines

the relative phase between the fast oscillation and the slow amplitude modulation.

At O (ϵ), Eq. (6.4) gives

L f1 = −3Ehg f 2
0 . (6.8)

Using (6.7), we have

f1 = −
EhgA2

0e2ix̃

3
−

EhgÃ2
0e−2ix̃

3
−6Ehg|A0|

2. (6.9)

At O
(
ϵ2

)
, Eq. (6.4) gives

L f2 = 4
∂2 f0
∂X2 − f 3

0 − f0−6Ehg f0 f1. (6.10)

To avoid secular terms, the coefficients of e±ix̃ on the right hand side must be zero,

which gives the solvability condition

4Ä0+ (38E2
hg−3)|A0|

2A0−A0 = 0. (6.11)

So far, the error made in approximating Eq. (6.2) using Eq. (6.11) is still lacking,

which we address for future work. The energy method we presented in Chapters

3 and 4 should be readily applicable.

Now, consider Eq. (6.3), i.e., near the Maxwell point. This time we consider the

slow scale as X = ϵ2x. We develop a multiple scale solution

f ∼
N−1∑
n=0

ϵn fn(x,X)+RN(x−ϕ,X). (6.12)
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We also expand

Ehg ∼ E0+ϵE1+ϵ
2E2+ · · ·+δE. (6.13)

Now, substituting (6.12) into (6.3) and performing the same calculations as before,

we will obtain the solvability condition at O(ϵ4) to be given by

4Ä0+
16iȦ0|A0|

2

19
−

8820|A0|
4A0

361
+2
√

114E2|A0|
2A0−A0 = 0. (6.14)

Again, here we ask whether the energy method we used in the previous chapters

can be applied in this case. Can we find an error bound and decrease the error?

This question is particularly challenging because Eq. (6.14) admits a front solution

that is not square integrable.
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Appendix A

The error for the finite dimensional ansatz

We assume we are near the symmetry breaking equilibrium point, meaning we

may take α(t),β(t)≪ Γ(t) and Γ(t) > 0. Then, we have

(iΓ̇− θ̇Γ−Ω0Γ)ψ0+ (iα̇− β̇− θ̇(α+ iβ)− (α+ iβ)Ω1)ψ1+ iṘ−HR− θ̇R =
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As a result, we have
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⟩−3hΓ(α− iβ)2

⟨ψ0ψ
3
1,R

2
⟩−3hΓ2(α+ iβ)⟨ψ2

0ψ
2
1,R

2
⟩−

3hΓ3
⟨ψ3

0ψ1,R2
⟩−3h(α2+β2)(α− iβ)⟨ψ4

1,R
2
⟩−

6hΓ2(α− iβ)⟨ψ0ψ
2
1,R

2
⟩−6hΓ(α2+β2)⟨ψ0ψ

3
1,R

2
⟩

]
−

[
2Γ⟨ψ0ψ1, |R|2⟩+2(α+ iβ)⟨ψ2

1, |R|
2
⟩−6hΓ2(α− iβ)⟨ψ2

0ψ
2
1, |R|

2
⟩−

6hΓ(α+ iβ)2
⟨ψ0ψ

3
1, |R|

2
⟩−6hΓ3

⟨ψ3
0ψ1, |R|2⟩−6h(α2+β2)(α+ iβ)⟨ψ4

1, |R|
2
⟩−

12hΓ2(α+ iβ)⟨ψ2
0ψ

2
1, |R|

2
⟩−12hΓ(α2+β2)⟨ψ0ψ

3
1, |R|

2
⟩

]
−

[
⟨ψ1, |R|2R⟩−6hΓ2

⟨ψ2
0ψ1, |R|2R⟩−6h(α2+β2)⟨ψ3

1, |R|
2R⟩−12hΓα⟨ψ0ψ

2
1, |R|

2R⟩
]

+
[
hΓ3
⟨ψ3

0ψ1, R̄2
⟩+3hΓ2(α+ iβ)⟨ψ2

0ψ
2
1, R̄

2
⟩+3hΓ(α+ iβ)2

⟨ψ0ψ
3
1, R̄

2
⟩+h(α+ iβ)3

⟨ψ4
1, R̄

2
⟩

]
+
[
hΓ2
⟨ψ2

0ψ1,R3
⟩+h(α− iβ)2

⟨ψ3
1,R

3
⟩+2hΓ(α− iβ)⟨ψ0ψ

2
1,R

3
⟩

]
+
[
3hΓ2
⟨ψ2

0ψ1, |R|2R̄⟩+3h(α+ iβ)2
⟨ψ3

1, |R|
2R̄⟩+6hΓ(α+ iβ)⟨ψ0ψ

2
1, |R|

2R̄⟩
]

+
[
3hΓ⟨ψ0ψ1, |R|4⟩+3h(α+ iβ)⟨ψ2

1, |R|
4
⟩

]
+

[
h⟨ψ1, |R|4R⟩

]
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and

iRt−HR− θ̇R =

−Pc
[
Γ3ψ3

0+ (α2+β2)(α+ iβ)ψ3
1+Γ(α+ iβ)2ψ2

1ψ0+2Γ(α2+β2)ψ2
1ψ0+

Γ2(α− iβ)ψ2
0ψ1+2Γ2(α+ iβ)ψ2

0ψ1−hΓ5ψ5
0−h(α2+β2)2(α+ iβ)ψ5

1−

hΓ3(α− iβ)2ψ3
0ψ

2
1−hΓ2(α+ iβ)3ψ2

0ψ
3
1−2hΓ3(α− iβ)ψ4

0ψ1−

2hΓ(α2+β2)(α+ iβ)2ψ0ψ
4
1−3hΓ4(α+ iβ)ψ4

0ψ1−3hΓ(α2+β2)2ψ0ψ
4
1−

3hΓ3(α+ iβ)2ψ3
0ψ

2
1−3hΓ2(α2+β2)(α− iβ)ψ2

0ψ
3
1−

6hΓ2(α2+β2)(α+ iβ)ψ2
0ψ

3
1−6hΓ3(α2+β2)ψ3

0ψ
2
1

]
−Pc

[
2Γ2ψ2

0+4Γαψ0ψ1+2(α2+β2)ψ2
1−3hΓ4ψ4

0−3h(α2+β2)2ψ4
1−

6hΓ2(α2+β2)ψ2
0ψ

2
1−12hΓ3αψ3

0ψ1−12hΓ(α3+αβ2)ψ0ψ
3
1−12hΓ2(α2+β2)ψ2

0ψ
2
1

]
R

−Pc
[
Γ2ψ2

0+ (α+ iβ)2ψ2
1+2Γ(α+ iβ)ψ0ψ1−2hΓ4ψ4

0−2h(α2+β2)(α+ iβ)2ψ4
1−

2hΓ3(α− iβ)ψ3
0ψ1−2hΓ(α+ iβ)3ψ0ψ

3
1−12hΓ2α(α+ iβ)ψ2

0ψ
2
1−

6hΓ3(α+ iβ)ψ3
0ψ1−6hΓ(α2+β2)(α+ iβ)ψ0ψ

3
1

]
R̄

−Pc
[
Γψ0+ (α− iβ)ψ1−3hΓ(α− iβ)2ψ0ψ

2
1−3hΓ2(α+ iβ)ψ2

0ψ1−3hΓ3ψ3
0−

3h(α2+β2)(α− iβ)ψ3
1−6hΓ2(α− iβ)ψ0ψ1−6hΓ(α2+β2)ψ0ψ

2
1

]
R2

−Pc
[
2Γψ0+2(α+ iβ)ψ1−6hΓ2(α− iβ)ψ2

0ψ1−6hΓ(α+ iβ)2ψ0ψ
2
1−

6hΓ3ψ3
0−6h(α2+β2)(α+ iβ)ψ3

1−12hΓ2(α+ iβ)ψ2
0ψ1−12hΓ(α2+β2)ψ0ψ

2
1

]
|R|2

−Pc
[
1−6hΓ2ψ2

0−6h(α2+β2)ψ2
1−12hΓαψ0ψ1

]
|R|2R

+Pc
[
hΓ3ψ3

0+3hΓ2(α+ iβ)ψ2
0ψ1+3hΓ(α+ iβ)2ψ0ψ

2
1+h(α+ iβ)3ψ3

1

]
R̄2

+Pc
[
hc̄2

0ψ
2
0+hc̄2

1ψ
2
1+2hc̄0c̄1ψ0ψ1

]
R3

+Pc
[
3hΓ2ψ2

0+3h(α+ iβ)2ψ2
1+6hΓ(α+ iβ)ψ0ψ1

]
|R|2R̄

+Pc
[
3hΓψ0+3h(α+ iβ)ψ1

]
|R|4+Pc

[
h|R|4R

]
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or

iRt−HR− θ̇R =
[
Fb(A,α,β,θ)+FR(A,α,β,θ;R, R̄)

]
,

where we have assumed

PcFb = Fb, PcFR = FR.

Let us take Γ > 0. Then, we see

Γ̇ =
[
−2αβ+32hαβ3+32hα3β+32hαβΓ2

]
Γ+Error′Γ

α̇ =
[
Ω1− (α2+β2)−Γ2+ θ̇+8h(α4+β4)+16hβ2(α2+Γ2)+8hΓ2(6α2+Γ2)

]
β

+Error′α,

β̇ =−
[
Ω1− (α2+β2+Γ2)−2Γ2+ θ̇+8h(α4+β4)+16h(α2β2+3β2Γ2+5α2Γ2)

+40hΓ4
]
α+Error′β,

Γθ̇ =−Ω0Γ+Γ
3+ (3α2+β2)Γ−8h(β4+Γ4+5α4)Γ−16h(β2Γ2+3α2β2+5α2Γ2)Γ

+Error′θ,

iṘ−HR− θ̇R =Fb(Γ,α,β)+FR(Γ,α,β;R, R̄).

Specifically, we have (3.20) - (3.20e) with

ErrorΓ(R, R̄, α⃗) =ℑ
(
−

〈[
2Γ2ψ3

0+4Γαψ2
0ψ1+2(α2+β2)ψ2

1ψ0−3hΓ4ψ5
0−3h(α2+β2)2ψ0ψ

4
1

− 6hΓ2(α2+β2)ψ3
0ψ

2
1−12hΓ3αψ4

0ψ1−12hΓ(α3+αβ2)ψ2
0ψ

3
1

− 12hΓ2(α2+β2)ψ3
0ψ

2
1

]
,R

〉
−

〈[
Γ2ψ3

0+ (α+ iβ)2ψ2
1ψ0+2Γ(α+ iβ)ψ2

0ψ1

− 2hΓ4ψ5
0−2h(α2+β2)(α+ iβ)2ψ0ψ

4
1−2hΓ3(α− iβ)ψ4

0ψ1

− 2hΓ(α+ iβ)3ψ2
0ψ

3
1−12hΓ2α(α+ iβ)ψ3

0ψ
2
1−6hΓ3(α+ iβ)ψ4

0ψ1

− 6hΓ(α2+β2)(α+ iβ)ψ2
0ψ

3
1

]
, R̄

〉
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−

〈[
Γψ2

0+ (α− iβ)ψ0ψ1−3hΓ(α− iβ)2ψ2
0ψ

2
1−3hΓ2(α+ iβ)ψ3

0ψ1−3hΓ3ψ4
0

− 3h(α2+β2)(α− iβ)ψ0ψ
3
1−6hΓ2(α− iβ)ψ2

0ψ1−6hΓ(α2+β2)ψ2
0ψ

2
1

]
,R2

〉
−

〈[
2Γψ2

0+2(α+ iβ)ψ0ψ1−6hΓ2(α− iβ)ψ3
0ψ1−6hΓ(α+ iβ)2ψ2

0ψ
2
1−6hΓ3ψ4

0

− 6h(α2+β2)(α+ iβ)ψ0ψ
3
1−12hΓ2(α+ iβ)ψ3

0ψ1−12hΓ(α2+β2)ψ0ψ
3
1

]
, |R|2

〉
−

〈[
ψ0−6hΓ2ψ3

0−6h(α2+β2)ψ0ψ
2
1−12hΓαψ2

0ψ1

]
, |R|2R

〉
+

〈[
hΓ3ψ4

0+3hΓ2(α+ iβ)ψ3
0ψ1+3hΓ(α+ iβ)2ψ2

0ψ
2
1+h(α+ iβ)3ψ0ψ

3
1

]
, R̄2

〉
+

〈[
hΓ2ψ3

0+h(α− iβ)2ψ0ψ
2
1+2hΓ(α− iβ)ψ2

0ψ1

]
,R3

〉
+

〈[
3hΓ2ψ3

0+3h(α+ iβ)2ψ0ψ
2
1+6hΓ(α+ iβ)ψ2

0ψ1

]
, |R|2R̄

〉
+

〈[
3hΓψ2

0+3h(α+ iβ)ψ0ψ1

]
, |R|4

〉
+

〈
hψ0, |R|4R

〉)
,

Errorα(R, R̄, α⃗) =Im
(
−

〈[
2Γ2ψ2

0ψ1+4Γαψ0ψ
2
1+2(α2+β2)ψ3

1−3hΓ4ψ4
0ψ1−3h(α2+β2)2ψ5

1

− 6hΓ2(α2+β2)ψ2
0ψ

3
1−12hΓ3αψ3

0ψ
2
1−12hΓ(α3+αβ2)ψ0ψ

4
1

− 12hΓ(α3+αβ2)ψ0ψ
4
1−12hΓ2(α2+β2)ψ2

0ψ
3
1

]
,R

〉
−

〈[
Γ2ψ2

0ψ1+ (α+ iβ)2ψ3
1+2Γ(α+ iβ)ψ0ψ

2
1−2hΓ4ψ4

0ψ1−2h(α2+β2)(α+ iβ)2ψ5
1

− 2hΓ3(α− iβ)ψ3
0ψ

2
1−2hΓ(α+ iβ)3ψ0ψ

4
1−12hΓ2α(α+ iβ)ψ2

0ψ
3
1

− 6hΓ3(α+ iβ)ψ3
0ψ

2
1−6hΓ(α2+β2)(α+ iβ)ψ0ψ

4
1

]
, R̄

〉
−

〈[
Γψ0ψ1+ (α− iβ)ψ2

1−3hΓ(α− iβ)2ψ0ψ
3
1−3hΓ2(α+ iβ)ψ2

0ψ
2
1−3hΓ3ψ3

0ψ1

− 3h(α2+β2)(α− iβ)ψ4
1−6hΓ2(α− iβ)ψ0ψ

2
1−6hΓ(α2+β2)ψ0ψ

3
1

]
,R2

〉
−

〈[
2Γψ0ψ1+2(α+ iβ)ψ2

1−6hΓ2(α− iβ)ψ2
0ψ

2
1−6hΓ(α+ iβ)2ψ0ψ

3
1−6hΓ3ψ3

0ψ1

− 6h(α2+β2)(α+ iβ)ψ4
1−12hΓ2(α+ iβ)ψ2

0ψ
2
1−12hΓ(α2+β2)ψ4

1

]
, |R|2

〉
−

〈[
ψ1−6hΓ2ψ2

0ψ1−6h(α2+β2)ψ3
1−12hΓαψ0ψ

2
1

]
, |R|2R

〉
+

〈[
hΓ3ψ3

0ψ1+3hΓ2(α+ iβ)ψ2
0ψ

2
1+3hΓ(α+ iβ)2ψ0ψ

3
1+h(α+ iβ)3ψ4

1

]
, R̄2

〉
+

〈[
hΓ2ψ2

0ψ1+h(α− iβ)2ψ3
1+2hΓ(α− iβ)ψ0ψ

2
1

]
,R3

〉
+

〈[
3hΓ2ψ2

0ψ1+3h(α+ iβ)2ψ3
1+6hΓ(α+ iβ)ψ0ψ

2
1

]
, |R|2R̄

〉
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+
〈[

3hΓψ0ψ1+3h(α+ iβ)ψ2
1

]
, |R|4

〉
+

〈
hψ1, |R|4R

〉)
−βΓ−1Re

(
−

〈[
2Γ2ψ3

0+4Γαψ2
0ψ1+2(α2+β2)ψ2

1ψ0−3hΓ4ψ5
0

− 3h(α2+β2)2ψ0ψ
4
1−6hΓ2(α2+β2)ψ3

0ψ
2
1−12hΓ3αψ4

0ψ1

− 12hΓ(α3+αβ2)ψ2
0ψ

3
1−12hΓ2(α2+β2)ψ3

0ψ
2
1

]
,R

〉
−

〈[
Γ2ψ3

0+ (α+ iβ)2ψ2
1ψ0+2Γ(α+ iβ)ψ2

0ψ1−2hΓ4ψ5
0

− 2h(α2+β2)(α+ iβ)2ψ0ψ
4
1−2hΓ3(α− iβ)ψ4

0ψ1−2hΓ(α+ iβ)3ψ2
0ψ

3
1

− 12hΓ2α(α+ iβ)ψ3
0ψ

2
1−6hΓ3(α+ iβ)ψ4

0ψ1−6hΓ(α2+β2)(α+ iβ)ψ2
0ψ

3
1

]
, R̄

〉
−

〈[
Γψ2

0+ (α− iβ)ψ0ψ1−3hΓ(α− iβ)2ψ2
0ψ

2
1−3hΓ2(α+ iβ)ψ3

0ψ1−3hΓ3ψ4
0

− 3h(α2+β2)(α− iβ)ψ0ψ
3
1−6hΓ2(α− iβ)ψ2

0ψ1−6hΓ(α2+β2)ψ2
0ψ

2
1

]
,R2

〉
−

〈[
2Γψ2

0+2(α+ iβ)ψ0ψ1−6hΓ2(α− iβ)ψ3
0ψ1−6hΓ(α+ iβ)2ψ2

0ψ
2
1−6hΓ3ψ4

0

− 6h(α2+β2)(α+ iβ)ψ0ψ
3
1−12hΓ2(α+ iβ)ψ3

0ψ1−12hΓ(α2+β2)ψ0ψ
3
1

]
, |R|2

〉
−

〈[
ψ0−6hΓ2ψ3

0−6h(α2+β2)ψ0ψ
2
1−12hΓαψ2

0ψ1

]
, |R|2R

〉
+

〈[
hΓ3ψ4

0+3hΓ2(α+ iβ)ψ3
0ψ1+3hΓ(α+ iβ)2ψ2

0ψ
2
1+h(α+ iβ)3ψ0ψ

3
1

]
, R̄2

〉
+

〈[
hΓ2ψ3

0+h(α− iβ)2ψ0ψ
2
1+2hΓ(α− iβ)ψ2

0ψ1

]
,R3

〉
+

〈[
3hΓ2ψ3

0+3h(α+ iβ)2ψ0ψ
2
1+6hΓ(α+ iβ)ψ2

0ψ1

]
, |R|2R̄

〉
+

〈[
3hΓψ2

0+3h(α+ iβ)ψ0ψ1

]
, |R|4

〉
+ ⟨hψ0, |R|4R⟩

)
,

Errorβ(R, R̄, α⃗) =−Re
(
−

〈[
2Γ2ψ2

0ψ1+4Γαψ0ψ
2
1+2(α2+β2)ψ3

1−3hΓ4ψ4
0ψ1

− 3h(α2+β2)2ψ5
1−6hΓ2(α2+β2)ψ2

0ψ
3
1−12hΓ3αψ3

0ψ
2
1

− 12hΓ(α3+αβ2)ψ0ψ
4
1−12hΓ2(α2+β2)ψ2

0ψ
3
1

]
,R

〉
−

〈[
Γ2ψ2

0ψ1+ (α+ iβ)2ψ3
1+2Γ(α+ iβ)ψ0ψ

2
1−2hΓ4ψ4

0ψ1

− 2h(α2+β2)(α+ iβ)2ψ5
1−2hΓ3(α− iβ)ψ3

0ψ
2
1−2hΓ(α+ iβ)3ψ0ψ

4
1

− 12hΓ2α(α+ iβ)ψ2
0ψ

3
1−6hΓ3(α+ iβ)ψ3

0ψ
2
1−6hΓ(α2+β2)(α+ iβ)ψ0ψ

4
1

]
, R̄

〉
−

〈[
Γψ0ψ1+ (α− iβ)ψ2

1−3hΓ(α− iβ)2ψ0ψ
3
1−3hΓ2(α+ iβ)ψ2

0ψ
2
1−3hΓ3ψ3

0ψ1
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− 3h(α2+β2)(α− iβ)ψ4
1−6hΓ2(α− iβ)ψ0ψ

2
1−6hΓ(α2+β2)ψ0ψ

3
1

]
,R2

〉
−

〈[
2Γψ0ψ1+2(α+ iβ)ψ2

1−6hΓ2(α− iβ)ψ2
0ψ

2
1−6hΓ(α+ iβ)2ψ0ψ

3
1−6hΓ3ψ3

0ψ1

− 6h(α2+β2)(α+ iβ)ψ4
1−12hΓ2(α+ iβ)ψ2

0ψ
2
1−12hΓ(α2+β2)ψ4

1

]
, |R|2

〉
−

〈[
ψ1−6hΓ2ψ2

0ψ1−6h(α2+β2)ψ3
1−12hΓαψ0ψ

2
1

]
, |R|2R

〉
+

〈[
hΓ3ψ3

0ψ1+3hΓ2(α+ iβ)ψ2
0ψ

2
1+3hΓ(α+ iβ)2ψ0ψ

3
1+h(α+ iβ)3ψ4

1

]
, R̄2

〉
+

〈[
hΓ2ψ2

0ψ1+h(α− iβ)2ψ3
1+2hΓ(α− iβ)ψ0ψ

2
1

]
,R3

〉
+

〈[
3hΓ2ψ2

0ψ1+3h(α+ iβ)2ψ3
1+6hΓ(α+ iβ)ψ0ψ

2
1

]
, |R|2R̄

〉
+

〈[
3hΓψ0ψ1+3h(α+ iβ)ψ2

1

]
, |R|4

〉
+ ⟨hψ1, |R|4R⟩

)
−αΓ−1Re

(
−

〈[
2Γ2ψ3

0+4Γαψ2
0ψ1+2(α2+β2)ψ2

1ψ0−3hΓ4ψ5
0

− 3h(α2+β2)2ψ0ψ
4
1−6hΓ2(α2+β2)ψ3

0ψ
2
1−12hΓ3αψ4

0ψ1

− 12hΓ(α3+αβ2)ψ2
0ψ

3
1−12hΓ2(α2+β2)ψ3

0ψ
2
1

]
,R

〉
−

〈[
Γ2ψ3

0+ (α+ iβ)2ψ2
1ψ0+2Γ(α+ iβ)ψ2

0ψ1−2hΓ4ψ5
0

− 2h(α2+β2)(α+ iβ)2ψ0ψ
4
1−2hΓ3(α− iβ)ψ4

0ψ1−2hΓ(α+ iβ)3ψ2
0ψ

3
1

− 12hΓ2α(α+ iβ)ψ3
0ψ

2
1−6hΓ3(α+ iβ)ψ4

0ψ1−6hΓ(α2+β2)(α+ iβ)ψ2
0ψ

3
1

]
, R̄

〉
−

〈[
Γψ2

0+ (α− iβ)ψ0ψ1−3hΓ(α− iβ)2ψ2
0ψ

2
1−3hΓ2(α+ iβ)ψ3

0ψ1−3hΓ3ψ4
0

− 3h(α2+β2)(α− iβ)ψ0ψ
3
1−6hΓ2(α− iβ)ψ2

0ψ1−6hΓ(α2+β2)ψ2
0ψ

2
1

]
,R2

〉
−

〈[
2Γψ2

0+2(α+ iβ)ψ0ψ1−6hΓ2(α− iβ)ψ3
0ψ1−6hΓ(α+ iβ)2ψ2

0ψ
2
1−6hΓ3ψ4

0

− 6h(α2+β2)(α+ iβ)ψ0ψ
3
1−12hΓ2(α+ iβ)ψ3

0ψ1−12hΓ(α2+β2)ψ0ψ
3
1

]
, |R|2

〉
−

〈[
ψ0−6hΓ2ψ3

0−6h(α2+β2)ψ0ψ
2
1−12hΓαψ2

0ψ1

]
, |R|2R

〉
+

〈[
hΓ3ψ4

0+3hΓ2(α+ iβ)ψ3
0ψ1+3hΓ(α+ iβ)2ψ2

0ψ
2
1+h(α+ iβ)3ψ0ψ

3
1

]
, R̄2

〉
+

〈[
hΓ2ψ3

0+h(α− iβ)2ψ0ψ
2
1+2hΓ(α− iβ)ψ2

0ψ1

]
,R3

〉
+

〈[
3hΓ2ψ3

0+3h(α+ iβ)2ψ0ψ
2
1+6hΓ(α+ iβ)ψ2

0ψ1

]
, |R|2R̄

〉
+

〈[
3hΓψ2

0+3h(α+ iβ)ψ0ψ1

]
, |R|4

〉
+ ⟨hψ0, |R|4R⟩

)
,
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and

Errorθ(R, R̄, α⃗) =−Γ−1Re
(
−

〈[
2Γ2ψ3

0+4Γαψ2
0ψ1+2(α2+β2)ψ2

1ψ0−3hΓ4ψ5
0

− 3h(α2+β2)2ψ0ψ
4
1−6hΓ2(α2+β2)ψ3

0ψ
2
1−12hΓ3αψ4

0ψ1

− 12hΓ(α3+αβ2)ψ2
0ψ

3
1−12hΓ2(α2+β2)ψ3

0ψ
2
1

]
,R

〉
−

〈[
Γ2ψ3

0+ (α+ iβ)2ψ2
1ψ0+2Γ(α+ iβ)ψ2

0ψ1−2hΓ4ψ5
0

− 2h(α2+β2)(α+ iβ)2ψ0ψ
4
1−2hΓ3(α− iβ)ψ4

0ψ1−2hΓ(α+ iβ)3ψ2
0ψ

3
1

− 12hΓ2α(α+ iβ)ψ3
0ψ

2
1−6hΓ3(α+ iβ)ψ4

0ψ1−6hΓ(α2+β2)(α+ iβ)ψ2
0ψ

3
1

]
, R̄

〉
−

〈[
Γψ2

0+ (α− iβ)ψ0ψ1−3hΓ(α− iβ)2ψ2
0ψ

2
1−3hΓ2(α+ iβ)ψ3

0ψ1−3hΓ3ψ4
0

− 3h(α2+β2)(α− iβ)ψ0ψ
3
1−6hΓ2(α− iβ)ψ2

0ψ1−6hΓ(α2+β2)ψ2
0ψ

2
1

]
,R2

〉
−

〈[
2Γψ2

0+2(α+ iβ)ψ0ψ1−6hΓ2(α− iβ)ψ3
0ψ1−6hΓ(α+ iβ)2ψ2

0ψ
2
1−6hΓ3ψ4

0

− 6h(α2+β2)(α+ iβ)ψ0ψ
3
1−12hΓ2(α+ iβ)ψ3

0ψ1−12hΓ(α2+β2)ψ0ψ
3
1

]
, |R|2

〉
−

〈[
ψ0−6hΓ2ψ3

0−6h(α2+β2)ψ0ψ
2
1−12hΓαψ2

0ψ1

]
, |R|2R

〉
+

〈[
hΓ3ψ4

0+3hΓ2(α+ iβ)ψ3
0ψ1+3hΓ(α+ iβ)2ψ2

0ψ
2
1+h(α+ iβ)3ψ0ψ

3
1

]
, R̄2

〉
+

〈[
hΓ2ψ3

0+h(α− iβ)2ψ0ψ
2
1+2hΓ(α− iβ)ψ2

0ψ1

]
,R3

〉
+

〈[
3hΓ2ψ3

0+3h(α+ iβ)2ψ0ψ
2
1+6hΓ(α+ iβ)ψ2

0ψ1

]
, |R|2R̄

〉
+

〈[
3hΓψ2

0+3h(α+ iβ)ψ0ψ1

]
, |R|4

〉
+ ⟨hψ0, |R|4R⟩

)
.
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Discrete breathers vs. discrete solitons
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Figure 1. A breather of (4.1) for ε2 = 0.05. Panel (a) shows the dynamics of the solution in
one period, while panel (b) presents the comparison of the breather and its approximation
(4.2) at t = 0, with A j being a discrete soliton of Eq. (4.3).

While discrete solitons of the dNLS (4.3) correspond to spatially localised,

but time-independent solutions of the equation and can be computed rather

immediately, discrete breathers are spatially localised, but temporally periodic

solutions of the dKG equation (4.1).

There are several numerical methods that have been developed to seek for dis-

crete breathers, see the review [36, 37]. Here, we use a Fourier series representation

by writing u j(t) as

u j(t) =
K∑

k=1

a j,k cos((k−1)Ωt)+b j,k sin(kΩt) , (15)
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where a j,k and b j,k are the Fourier coefficients and K≫ 1 is the number of Fourier

modes used in our numerics. By substituting the expansion (15) into the dKG

equation (4.1), multiplying with each mode, and integrating it over the time-period

2π/Ω, one will obtain coupled nonlinear algebraic equations for the coefficients

a j,k and b j,k. Then, we use a Newton’s method to solve the equations. Breather

solutions will be obtained by choosing a proper initial guess for the coefficients a j,k

and b j,k.

ǫ

0 0.05 0.1 0.15 0.2

E
rr

or

0

0.02

0.04

0.06

0.08

0.1
Numerics

7.2186ǫ
2.8569

Figure 2. Plot of the maximum difference (20) of the discrete Schrödinger approximation
(4.3) for varying ε. The dashed line is the best power fit, indicated in the legend. The inset
shows the curves in a log scale.

Once a discrete soliton or a discrete breather is found, it is naturally relevant to

study their stability.

Let Ã j = x̂ j+ iŷ j be a discrete soliton of the dNLS equation. We determine its

linear stability by writing

A j = Ã j+δ(x̂ j+ iŷ j)eλτ. (16)

Substituting (16) into (4.3) and linearising around δ= 0 will yield the eigenvalue

problem

λ

 x̂ j

ŷ j

 =


−6ξx jy j−α ∆+Λ−h−3ξ
(
x2

j +3y2
j

)
−∆−Λ−h+3ξ

(
3x2

j + y2
j

)
6ξx jy j−α


 x̂ j

ŷ j

 . (17)
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In here, the solution Ã j is said to be linearly stable when all of the eigenvalues λ

have Re(λ) ≤ 0 and unstable when there is an eigenvalue with Re(λ) > 0.

As for discrete breathers of the dKG equation, their linear stability is determined

using Floquet theory that can be computed numerically as follows. Let ũ j(t) be

a breather solution. By defining u j(t) = û j(t)+ δY j(t), substituting it into Eq.

(4.1), and linearising the equation around δ = 0, we obtain the system of linear

differential-difference equations

Ẏ j = Z j

Ż j = −Y j−3ξû2
j Y j+ε2∆2Y j−αZ j+H cos(2Ωt)Y j.

(18)

Integrating Eqs. (18) in the numerical domain D, where now T̃ = 2π/Ω, and using

the standard basis in R2N, i.e.,
{
e0

1,e
0
2, ...,e

0
2N

}
as the initial condition at t = 0, we will

obtain a set of solutions at t = T̃, which is our monodromy matrix

M =
{
ET̃

1 ,E
T̃
2 , ...,E

T̃
2N

}
∈R2N×2N. (19)

The breather ũ j(t) is said to be linearly stable when all the eigenvalues λdKG of the

monodromy matrix M, which are known as Floquet multipliers, lie inside or on

the unit circle and unstable when there exists at least one λdKG lying outside the

unit circle. Note that in the presence of damping, the set of continuous multipliers

will lie on a circle of radius e
−απ
Ω , see [67, 68].

In the following, we focus on breathers and discrete solitons for the same

parameter values as in Section 4.4, i.e., Λ = −3, h = −0.5, α̂ = 0.1, and ξ = −1.

For ξ = +1, due to the staggering transformation explained briefly in Section 4.4,

discrete breathers of (4.1) with small amplitudes and discrete solitons of (4.3) will

have exponentially decaying staggered tails.
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Figure 3. Panel (a) shows Floquet multipliers of the breather in Fig. 1(a), showing the
linear instability of the solution. Panel (b) presents the eigenvalues of the corresponding
discrete soliton of DNLS equation (4.3). Red stars in the panel are the critical multipliers
in panel (a), that have been transformed following the relation (21). Panels (c) and (d)
compare the real and imaginary part of the critical eigenvalue of the discrete soliton (blue
solid line) and the critical multiplier of the corresponding breather of the dKG equation
(red dashed line) for varying ε.
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Figure 4. Time dynamics of the unstable breather (a) and discrete soliton (b) shown in
Fig. 5.2. Note that the time variable in the second panel has been scaled to the original one.

For our computations, we solve the dKG equation (4.1) for periodic in time

solutions using the number of Fourier modes K = 3 and the lattice sites N = 50.

Larger numbers, i.e., K = 9 and N = 400, have been used as well to make sure that

the results are independent of the lattice size and the number of modes.

We present a breather solution and its time dynamics within one period in

Fig. 5.2 for ε2 = 0.05. In Fig. 1(b), we compare the breather in panel (a) with its

corresponding approximation (4.2), where A j is the discrete soliton of Eq. (4.3).

One can note that they are in good agreement.

By defining a maximum difference between breathers of (4.1) and their approx-

imations (4.2) using discrete solitons of (4.3) as

E = sup
0≤t≤2π/Ω

∥y(t)∥ℓ2 , (20)

we depict the error for varying ε in Fig. 2. We also present in the same panel, the

best power fit to the numerical results, which interestingly follows the theoretical

prediction of the error in Theorem 4.3.1, i.e., ∼ ε3.

We have computed the corresponding monodromy matrix for the stability of

the solution in Fig. 1(a). The Floquet multipliers are plotted in Fig. 3(a). We have
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also solved Eq. (17) for the corresponding discrete soliton of the dNLS equation

(4.3) and plot the eigenvalues λ in Fig. 3(b), where interestingly we obtain that

both solutions experience the same type of instability (i.e., oscillatory instability as

the critical multipliers and eigenvalues are both complex valued). For the dNLS

solitons, this is in agreement with the results of Refs. [87]. For the dKG breather,

the instability is similar to that reported in [25]. Moreover, from the time scales

that lead to Eqs. (4.2)–(4.3), we can obtain the relation between Floquet multipliers

λdKG of the dKG monodromy matrix (19) and eigenvalues λ of the dNLS stability

matrix (17), i.e.,

λdKG ∼ eπε
2λ/Ω. (21)

Using the transformation, we depict in Fig. 3(b) the critical multipliers as red stars,

where we learn that the localised solutions do not only have the same type of

instability, but their critical eigenvalues have relatively comparable magnitudes.

While in Fig. 2 we plot the error made by the dNLS solitons in approximating

the dKG breathers, in Figs. 3(c) and 3(d) we compare their critical eigenvalues

and multipliers for varying ε. We obtain that the breathers and solitons do not

necessarily share the same type of stability. In fact, there are intervals of coupling

constant ε on which the breathers are stable, even though the corresponding dNLS

solitons are unstable. This observation nonetheless does not violate the analytical

results in Sections 4.2–4.3.

Figures 4(a) and 4(b) show the typical dynamics of the oscillatory instability of

the breather and its corresponding discrete soliton approximation. We can observe

that in both cases the instability destroys localised solutions, i.e., we also obtain

qualitative agreement in the instability dynamics.

Finally, for the sake of completeness, we studied the typical dynamics of dKG

breathers when they experience an exponential instability, i.e., the critical Floquet

multipliers are real. In Figs. 3(c) and 3(d), they are in a finite interval close to
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the uncoupled limit ε = 0 and their absolute magnitudes are near unity. Due to

these facts, we could not clearly see any instability in our simulations, even after

integrating the dKG equation for quite a long while.
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