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ABSTRACT Mobile robots can effectively coordinate information among sensor nodes in a distributed
physical proximity. Accurately locating the mobile robots in such a distributed scenario is an essential
requirement, such that the mobile robots can be instructed to coordinate with the appropriate sensor
nodes. Packet loss is one of the prevailing issues on such wireless sensor network-based mobile robot
localization applications. The packet loss might result from node failure, data transmission delay, and
communication channel instability, which could significantly affect the transmission quality of the wireless
signals. Such issues affect the localization accuracy of the mobile robot applications to an overwhelming
margin, causing localization failures. To this end, this paper proposes an improved Unscented Kalman Filter-
based localization algorithm to reduce the impacts of packet loss in the localization process. Rather than
ignoring the missing measurements caused by packet loss, the proposed algorithm exploits the calculated
measurement errors to estimate and compensate for themissingmeasurements. Some simulation experiments
are conducted by subjecting the proposed algorithmwith various packet loss rates, to evaluate its localization
accuracy. The simulations demonstrate that the average localization error of the robot is 0.39 m when the
packet loss rate is less than 90%, and the average running time of each iteration is 0.295 ms. The achieved
results show that the proposed algorithm exhibits significant tolerance to packet loss while locating mobile
robots in real-time, to achieve reliable localization accuracy and outperforms the existing UKF algorithm.

INDEX TERMS Mobile robot localization, unscented Kalman filter, wireless sensor networks, packet loss,
measurements compensation.

I. INTRODUCTION
Research on mobile robots and their applications have gained
considerable attention in recent years [1]–[4]. Recent devel-
opments in wireless sensor networks have led to an increased
deployment of proximity sensors in mobile robots, which
finds a wide range of sensing applications. Mobile robots can
effectively coordinate for collecting, processing and trans-
mitting information among sensors distributed in physical
proximity. The mobile robot localization problem in physical
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proximity is one of the general issue demanding a con-
crete solution, as it plays an essential role in driving the
autonomous behaviors of the mobile robots [5]–[7]. The
localization plays an essential role in the autonomous behav-
ior of mobile robots because when a robot navigates along
a given route map, it must accurately identify its location,
to be successful in completing a set of given tasks [8].
According to the localization environment, the mobile robot
localization problem can be divided into two categories:
outdoor localization and indoor localization. The outdoor
localization usually utilizes the Global Positioning Sys-
tem (GPS) to track the mobile robot. However, GPS cannot
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be applied to indoor localization due to the influence of
obstacles. Therefore, the indoor localization usually utilizes a
wireless sensor network-based localization system [9]–[13],
where the system can exploit various wireless measurements
such as, TOA (time of arrival), TDOA (time difference of
arrival), AOA (Angle of Arrival) and RSS (received signal
strength) [14]–[17], for navigation. Such wireless measure-
ments include information regarding the distance between
the sensor and the mobile tag, which usually comprise
measurement noise. Finally, the localization system calcu-
lates the target location according to the distance informa-
tion obtained by various participating sensors. To improve
the localization accuracy and to reduce the effect of noise,
state estimators are commonly used in the localization sys-
tem. In the context of mobile robot localization problem,
the measurement model is commonly represented by a non-
linear equation. Therefore, nonlinear state estimators such
as extended Kalman filter (EKF), particle filter (PF) and
Unscented Kalman Filter (UKF) have been commonly used
in the existing state-of-the-art [18]–[20].

Among the estimators as mentioned above, UKF tends to
be more attractive as it characterizes relatively lower com-
putation overheads with higher estimation accuracy [21].
At present, UKF based algorithms have replaced the tradi-
tionally used EKF algorithms for nonlinear state estimation,
and the former is being widely deployed in the contexts
of navigation, signal processing, target tracking and so on.
UKF works by approximating the posterior probability den-
sity function of the nonlinear system state using the unscented
transform (UT) [22]. Therefore, UFK algorithm has the fol-
lowing two advantages to that of EKF [23]–[25]. Firstly,
the UKF algorithm avoids the need for calculating the
Jacobian matrix, thereby reducing the computational inten-
sity. Secondly, theUKF algorithm can achieve better accuracy
of estimation when dealing with a high degree of nonlinear
systems. Also, the UKF algorithm adopts a deterministic
sampling strategy to approximate the nonlinear distribution
instead of randomly sampling the particles. Thus, the number
of sampled particle points (commonly called Sigma points) is
usually very small. Although the estimation accuracy of the
UKF algorithm is usually lower than the particle filter, the
UKF algorithm avoids the particle impoverishment [26], [27].
For indoor localization problem, UKF algorithm not only
ensures accuracy and stability of the localization algorithm
but also meets the real-time requirements of mobile robot
localization. Hence theUKF algorithm is one of themost suit-
able state estimation methods for mobile robot localization
problem.

Although the UKF algorithm can effectively resolve the
issues of measurement noise and the nonlinear measurement
equation in mobile robot localization applications, problems
incurred during the wireless signal transmission due to obsta-
cles, equipment failure, signal interference and packet loss,
cannot be undermined [28]–[31]. Such transmission issues
can significantly impact the reliability of measurements
obtained during the localization process of mobile robots.

In particular, the impacts of packet loss on the localization
system is one of the most critical issues to be noted [32]–[36].
During the process of localization, packet loss can be caused
by several factors including the failure of the sensor node,
delay in the information transmission and the instability of
the communication channel. The worse impact can occur
when packets containing vital distance information are lost,
which may then significantly affect the localization accuracy
to fail the entire localization process. Therefore, developing a
localization algorithm that can resist and reduce the impacts
of packet loss becomes imperative.

A wide range of research works has addressed the issue of
packet loss in the context of wireless transmission applica-
tions to date. Justus and Sekar [32] developed latency-aware
packet scheduling schemes for wireless sensor networks to
avoid the energy costs incurred by unnecessary latency result-
ing from the retransmission of lost packets. Cirstea et al. [33]
developed a scheme to identify the best communication path
in order to avoid the energy cost incurred by packet loss in
wireless sensor networks. This research work only focuses
on reducing the energy consumption of wireless sensor net-
works comprising a large number of sensors. Moreover, this
work did not consider improving the localization accuracy
and avoiding localization failures. Hence, such optimization
strategies are not well suitable for mobile robot localization.

Li et al. [34] proposed a novel RHE based scheme for
addressing Bernoulli-type packet loss to achieve the consen-
sus of accurate state estimation. Phung et al. [35] developed
a state estimator based on an extended Kalman filter to
solve the problem of localization by reducing the impacts
of packet loss and random delay. Despite existing methods
address reducing the impacts of packet loss on the accuracy
of state estimation, their increased computational intensity
does not meet the real-time requirements of robot localization
applications. Ahmad and Namerikawa [36] proposed an EKF
based algorithm by exploiting the intermittent measurements,
which can effectively ignore the measurement updates dur-
ing packet loss. However, for an indoor localization system
with multiple sensors, ignoring the measurement updates
will increase the boundary of uncertainty in the estimation
accuracy, particularly when there is repeated packet loss.

To this end, this paper proposes a novel localization
algorithm to eliminate the effects of packet loss in mobile
robot localization applications, by developing an improved
state estimator called measurements compensation-based
Unscented Kalman Filter (MC-UKF). The core methodology
behind the proposed approach is to determine an ‘‘approx-
imate compensation error’’ that describes the correlation of
measurements from the previous moment, based on which
estimating the present measurement. This method means
that the compensation error is used to update the com-
pensation measurements in order to enable the UKF algo-
rithm to achieve a better localization accuracy during packet
loss. In order to evaluate the performance of the proposed
algorithm, some simulations are performed in MATLAB.
The achieved results show that the proposed algorithm
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conclusively exhibits highly stable performance and charac-
terizes good localization accuracies for various packet loss
rates in mobile robot localization applications.

The remainder of this paper is organized as follows.
Section II defines the system model and problem formula-
tion. Section III details the proposed MC-UKF algorithm.
Section IV discusses the experiments and the obtained results,
and Section V concludes this paper along with outlining our
future research plans.

FIGURE 1. Localization system based on the wireless sensor network.

II. SYSTEM MODEL AND PROBLEM FORMULATION
In this paper, a time-of-arrival based indoor mobile robot
localization system is modeled, built with four sensors, a tag,
a wireless data transmission channel, and an upper monitor
(i.e., PC), as shown in Fig.1. The tag is a signal transmitter
that sends wireless signals composed of the signal trans-
mission time and the identification information. The tag is
attached to a mobile robot. The sensors are installed at fixed
locations to receive wireless signals sent from the tag. Each
sensor computes TOAmeasurements utilizing the local clock,
which reflects the signal transmission time between the tag
and the sensor.

After obtaining three TOA measurements, the localiza-
tion of the mobile robot is achieved by the triangulation
method [36]. As shown in Fig. 1, this paper considers the case
of amobile robot localization systemwith four sensors, where
the sensors are positioned at fixed points at the following
coordinates (x(1)a , y(1)a ), (x(2)a , y(2)a ), (x(3)a , y(3)a ) and (x(4)a , y(4)a ).
The TOA measurements z1,k , z2,k , z3,k and z4,k are transmit-
ted to the upper monitor using the wireless network. The
upper monitor handles the measurements and calculates the
localization of the mobile robot.

The motion model of the mobile robot can be described as
a constant velocity (CV) model, constant turn (CT) model,
constant acceleration (CA) model. In Fig.2, the CV model is
used to describe themotion of themobile robot [38], [39]. The
state-space model of the mobile robot localization system can
be written as:

xk = Fkxk−1 + Gkωk (1)

zk = hk (xk )+ υk (2)

FIGURE 2. The motion model of the mobile robot.

where xk is the state vector of the system.

xk =
[
xp,k yp,k xv,k yv,k

]T (3)

where xp,k and yp,k are the localization coordinates of the
target at time k , xv,k and yv,k are the velocities of the mobile
robot in the x-axis and y-axis, respectively,Fk is the state tran-
sition matrix of the system, Fk and Gk can then be written as

Fk =


1 0 tk 0
0 1 0 tk
0 0 1 0
0 0 0 1

, Gk =


t2k
2

0

tk 0

0
t2k
2

0 tk

 (4)

where tk is the sampling interval, ωk is the system process
noise, which is Gaussian white noise with mean equal to
0 and covariance matrix Qk . ωx and ωy represent the noise
acceleration of the target in the x-direction and the y-direction
at time k respectively.
zk = [ d1,k d2,k d3,k d4,k ]T is the distance between the

mobile robot and the sensors respectively, where dj,k = czj,k .
The c is the signal transmission speed that is approximately
equal to the speed of light. hk (xk) is the systematic measure-
ment matrix, which can be written as:

hk (xk ) = [ h1,k h2,k h3,k h4,k ]T (5)

hj,k =

√(
xp,k − x

(j)
a

)2
+

(
yp,k − y

(j)
a

)2
(6)

The υk is the measurement noise, which is written as.

υk =
[
υ1,k υ2,k υ3,k υ4,k

]T (7)

where υj,k is the respective measurement noise, which is
Gaussian noise with mean equal to 0 and variance Rk and it
is not related to the process noise ωk .

Failure of a sensor node may result in data transmission
delay or communication channel instability, and both lead the
indoor localization system to experience packet loss. Packet
loss causes one or more sensors to lose the measurements,
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which results in lower localization accuracy, and adversely
affects the real-time localization efficiency, and may even
cause a localization failure. Therefore, it is necessary to com-
pensate for the missing measurements to ensure that the real-
time operation of the localization algorithm is stable. When
considering the packet loss, the measurement equation of the
state-space model can be represented as follows.

zk = 4khk (xk )+ (I −4k )hk−1(xk−1)+ υk (8)

4k =


ξ1,k 0 0 0

0 ξ2,k 0 0

0 0 ξ3,k 0

0 0 0 ξ4,k

 (9)

where the 4k indicates whether a given sensor receives the
measurement data or not at time k . A value of ξj,k = 1 depicts
that the ith sensor did not lose the packets at time k . A value of
ξj,k = 0 depicts that the ith sensor is losing packets at time k .
The packet loss rate at the ith sensor can be represented as:

Pr
{
αj,k = 0

}
= pi (10)

Pr
{
αj,k = 1

}
= 1− pi (11)

III. MEASUREMENTS COMPENSATION-BASED
UNSCENTED KALMAN FILTER
A measurements compensation-based Unscented Kalman
Filter (MC-UKF) algorithm is proposed in this section,
which aims at eliminating the impacts of packet loss in a
mobile robot localization process. The working process of the
algorithm is detailed as follows.

A. UNSCENTED KALMAN FILTER INITIALIZATION
The initial state x0 of the mobile robot and the initial error
covariance matrix P0 are set.

B. TIME UPDATE
Calculate the sigma points.

The primary sampling strategies of the sigma point include
simple sampling, symmetrical sampling, and scaled symmet-
ric sampling. In order to ensure a positive semi-definiteness
of covariance and to solve the non-local effect problem of
sampling, this paper adopts a scaled symmetric sampling
strategy [40].

x̂(0)k−1 = x̂k−1|k−1

x̂(i)k−1 = x̂k−1|k−1 + x̃(i) i = 1,L, 2n

x̃(i) = (
√
(n+ λ)Pk−1|k−1 )i i = 1,L, n

x̃(m+i) = −(
√
(n+ λ)Pk−1|k−1 )i i = 1,L, n

(12)

Calculate the scale factor.

λ = α2(n+ κ)− n (13)

Calculate the weighting factor of the sigma point.
W (0)
x =

λ

n+ λ

W (0)
p =

λ

n+ λ
+ (1+ α2 − β)

W (i)
x = W (i)

p =
1

2(n+ κ)
i = 1, 2,L, 2n

(14)

where n is the system state dimension, (
√
(n+ λ)Pk−1|k−1 )i

is the ith row of (
√
(n+ λ)Pk−1|k−1 ), λ is the scale factor.

In equation (13), κ is the scaling factor, it is a constant set
to 0 or 3-n, which can be used to reduce the errors in the
mean and covariance approximations. α is the distance from
the sigma point to the prior state estimation x̂k|k−1 , which is
usually in the range of 10−4 ≤ α ≤ 1. Equation (14) is the
calculation of the sigma point weight. W (i)

x is the weighted
coefficient of the mean value of x̂(i)k−1, W

(i)
p is the weighted

coefficient of the variance of x̂(i)k−1. β is used to fuse the prior
information of random variables. For Gaussian distributions,
the value of β is usually set to 2.

Sigma points are spread through the process equations.

x̂(i)k = Fk x̂
(i)
k−1 + Gkωk (15)

Calculate the priori state estimates.

x̂k|k−1 =
2n∑
i=0

W (i)
x x̂(i)k (16)

Calculate the covariance of the priori estimation error.

Pk|k−1 =
2n∑
i=0

W (i)
p (x̂(i)k −x̂k|k−1 )(x̂

(i)
k −x̂k|k−1 )

T
+Qk−1 (17)

C. MEASUREMENT COMPENSATION
AND MEASUREMENT UPDATE
Sigma points are spread through the system of equations.

ẑ(i)k = h(x̂(i)k ) (18)

Calculate the predictive value of the measurement.

ẑk =
2n∑
i=0

W (i)
x ẑ(i)k (19)

Calculate the covariance of the predicted measurement.

Pz,k =
2n∑
i=0

W (i)
p (ẑ(i)k − ẑk )(ẑ

(i)
k − ẑk )

T
+ Rk (20)

Calculate the covariance between x̂k|k−1 and ẑk .

Pxz,k =
2n∑
i=0

W (i)
p (x̂(i)k − x̂k|k−1 )(ẑ

(i)
k − ẑk )

T
+ Rk (21)

Calculate the gain of the Kalman filter.

Kk = Pxz,kP
−1
z,k (22)
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In general, the sampling period of a real-time localiza-
tion system is usually set between 0.1 s and 1 s. Usually,
a marginal difference may exist between the measurements of
adjacent moments. Therefore, in consideration of the trade-
off between computation intensity and estimation accuracy,
what a data packet is lost at time k, the measurement data at
time k − 1 is used to compensate the missing measurement
data at time k . Let 1k denotes the error in the measurement
equation after the measurement compensation during a data
packet loss, which can be calculated as follows:

1k = (I −4k )(hk (xk )− hk−1(xk−1)) (23)

Since the measurement equation proposed in this paper
is time-varying, it can be observed from the expression of
error 1k that the size of the error 1k is related only to
the system state at time k and k − 1. For localization of
mobile robot in real-time, both the variation of system state
and the error 1k are usually insignificant under normal cir-
cumstances. However, during a consistent packet loss, the
error 1k of the measurement equation will increase contin-
uously, which will then affect the accuracy of the compen-
sation measurement data. On the other hand, the packet loss
compensationwill adversely affect the localization algorithm.
Therefore, it is necessary to calculate the error 1k of the
measurement equation after the measurement compensation
process. Let xk−1 is equal to the posteriori state estimate
x̂k−1|k−1 at time k − 1, and the xk is equal to the estimated
value x̂k|k at time k . The value of x̂k−1|k−1 is usually known,
but not the x̂k|k value, which cannot also be computed. There-
fore, it is only possible to compute an approximated value
of x̂k|k . This paper considers using the one-step prediction
of x̂k−1|k−1 to approximate the value of x̂k|k , then the approx-
imate compensation error is calculated as follows.

1k = (I −4k )(hk (Fk x̂k−1|k−1 + Gkωk )− hk−1(x̂k−1|k −1))

(24)

The system state and the corresponding estimated error
covariance are calculated based on the corrected packet loss
measurement data.

zc,k = 4kzk + (I −4k )zk−1 +1k (25)

x̂k|k = x̂k|k−1 − Kk (zc,k − ẑk ) (26)

Pk|k = Pk|k−1 − KkPz,kKT
k (27)

The flowchart illustrating the entire process of the
localization algorithm is shown in Fig.3.

IV. SIMULATION RESULTS AND ANALYSIS
In this section, some simulation experiments have been
conducted to demonstrate the efficiencies of the proposed
measurements compensation-based Unscented Kalman Fil-
ter (MC-UKF) while localizing the positions of a mobile
robot. The experiments use various packet loss rates to eval-
uate the performance of the proposed localization system.

FIGURE 3. Flowchart of the proposed localization algorithm.

The first step of the simulation is to set the parameters
of the localization system as well as the mobile robot. The
coordinates of the four localization sensors (xa,j, ya,j) are
fixed at (0, 0), (20, 0), (20, 20) and (0, 20), and the motion
trajectory of the mobile robot is then set. The mobile robot
first moves along a circle centered at (5.00, 10.00) of the
5-meter radius. Then the mobile robot moves along a circle
with a circle centered at (15.00, 10.00) of the 5-meter radius.
When the mobile robot moves along the first circle, its angu-
lar velocity is −π /25 rad/s. When the mobile robot moves
along the second circle, its angular velocity is π /25 rad/s. The
mobile robot starts from the point (10, 10) with a velocity
of v = 0.62 m/s. The process noise covariance matrix is
set to Qk = diag (0.1, 0.1, 0.1, 0.1). The measurement noise
covariance matrix is set to Rk = diag (0.1, 0.1, 0.1, 0.1). The
sampling interval is set to tk = 0.5s. The number of time steps
is set to 200. The initial state of the localization algorithm
and the initial state error covariance matrix are set as x0 =
(10.00, 10.00, 0,−0.31) and P0 = diag (0.1, 0.1, 0.1, 0.1)
respectively.

The localization results based on the proposed measure-
ments compensation-based Unscented Kalman Filter are
depicted in Fig. 4, Fig.5 and Fig. 6 respectively for the
probability of packet loss (pi) of 30%, 50% and 70% for
each sensor. The black line represents the actual position of
the mobile robot, and the red line represents the estimated
position of the mobile robot. Fig.7, Fig. 8 and Fig.9 show
the moment at which packet loss occurred, where a value
of 1 indicates the occurrence of packet loss and a value of 0
indicates no packet loss.

The simulation results show that the proposed localization
algorithm can effectively resolve the problem of packet loss
in mobile robot localization systems and can achieve reliable
accuracy of localization regardless of the packet loss rates,
which means that the proposed algorithm is suitable for
real-time practical applications.
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FIGURE 4. Localization result of the mobile robot with 30% packet loss
rate.

FIGURE 5. Localization result of the mobile robot with 50% packet loss
rate.

FIGURE 6. Localization result of the mobile robot with 70% packet loss
rate.

Fig. 10, Fig. 11 and Fig. 12 presents a comparison of the
average localization error between the proposed MC-UKF
and UKF algorithms respectively for a packet loss rate of
30%, 50% and 70%. It is clear that the UKF algorithm suf-
fers significant performance constraints during packet loss.
A similar improved EKF algorithm considering packet loss
is presented in [29]. This paper presents an improved local-
ization based on extending the original UKF algorithm. Dur-
ing packet loss, the posteriori estimate of UKF ignores the

FIGURE 7. The moment of packet loss occurs with 30% packet loss rate.

FIGURE 8. The moment of packet loss occurs with 50% packet loss rate.

FIGURE 9. The moment of packet loss occurs with 70% packet loss rate.

measurement innovation, and it is calculated as follows:

x̂k|k = Pk|k−1 − (
4∏
j=1

ξj,k )Kk (zk − ẑk ) (28)

The calculation method of localization error can then be
calculated as follows:

ek =
1
N

N∑
n=1

√(
x(n)p,k − xk

)2
+

(
y(n)p,k − yk

)2
(29)

where N is the number of simulations. x(n)p,k and y(n)p,k
are the estimated coordinates of the mobile robot in the
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FIGURE 10. The average localization error of MC-UKF and UKF with 30%
packet loss rate.

FIGURE 11. The average localization error of MC-UKF and UKF with 50%
packet loss rate.

FIGURE 12. The average localization error of MC-UKF and UKF with 70%
packet loss rate.

nth simulation. According to the simulation results shown
in Fig.10, Fig.11, and Fig.12, the proposed algorithm can
effectively resolve the problem of mobile robot localization
during various packet loss rates, and it characterizes a better
localization accuracy than the UKF approach especially dur-
ing higher packet loss rates.

The absolute localization errors of MC-UKF are shown in
Fig.13, the packet loss rates pi and the absolute localization
errors E are shown in the x-axis and y-axis respectively. E is
defined as:

E =
1
n

200∑
k=1

√(
xp,k − xk

)2
+
(
yp,k − yk

)2 (30)

FIGURE 13. The absolute localization error of MC-UKF under different
packet loss rate.

FIGURE 14. The average localization time of MC-UKF with different
packet loss rate.

The simulation results are summarized as follows: when
the packet loss rate is less than 90%, the MC-UKF has
a relatively stable localization accuracy. However, with an
increase in the packet loss rate, the localization accuracy of
MC-UKF is generally decreased. This downward trend is
most pronounced when the packet loss rate is over 90%.

Therefore, the performance of the MC-UKF is not stable
during a remarkably higher packet loss rate. Fig. 14 shows
the average location time of MC-UKF under different packet
loss rates. The simulation results demonstrate that MC-UKF
can satisfy the real-time requirements of mobile robot
localization systems.

V. CONCLUSION
In this paper, a new localization algorithm named mea-
surements compensation-based Unscented Kalman Fil-
ter (MC-UKF) for the localization of mobile robot is
proposed. Unlike other algorithms, the proposed algorithm
compensates the measurements by calculating the compen-
sation error, with which the indoor localization systems can
estimate the positions of the robots with reliable accuracy
under high packet loss rates, despite missing some mea-
surements. The achieved simulation results show that the
proposed algorithm exhibits good performance regarding
localization accuracy, stability, and speed. Based on the sim-
ulation results, it can be observed that the proposed algo-
rithm characterizes good localization accuracy even when the
packet loss rate is 80%. Regarding computational complexity,

28832 VOLUME 7, 2019



X. Bai et al.: Enhancing Localization of Mobile Robots in Distributed Sensor Environments

the proposed compensation algorithm fully satisfies the real-
time requirements of robot localization systems. However,
when the packet loss rate is higher than 90%, the accuracy
of the algorithm is significantly reduced. Thus, improving
the localization accuracy when the packet loss rate is better
than 90% is one of our future research plans. Moreover, there
many interfering factors leading to the uncertainty of system
performance[41]–[43], such as transmission delay, channel
degradation, signal quantization[44] and etc., which will be
the main focuses in our future research.
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