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Summary 

 
Cell signalling is among the most studied topics in modern biology, it allows cells to               

communicate with each other and their environment and thus, orchestrates the entire functioning             

of organisms. Despite being studied for more than a century, the field of cell signalling has                

recently evolved as cell signalling started to be looked at in the context of sophisticated networks                

that incorporates several loops and regulatory mechanisms. One of the major regulators of cell              

signalling are microRNAs. MicroRNAs are small non-coding sequences that regulate gene           

expression post-transcriptionally. As all other non-coding sequences, the significance of          

microRNAs has only been established recently. Today, microRNAs are known as one of the              

major regulators of gene expression that are able to target more than 60% of all human                

protein-coding genes as well as being involved in many diseases. While the role of microRNAs               

in regulating several components of signalling networks is known, our current knowledge lacks a              

systematic overview of the patterns of microRNA-mediated regulation of signalling networks. In            

this work, I provide a comprehensive analysis of the evolution of microRNA-mediated            

regulation through the incorporation of several bioinformatic tools. The results of this work             

show that microRNA-mediated regulation in signalling networks is particularly important on           

receptors. In addition, the evolutionary analysis shows that rodents and humans           

microRNA-mediated regulation of receptors have diverged significantly, limiting the validity of           

these animals models to study human disease related to cell signalling. Finally, the analysis of               

the precision of microRNA target prediction shows that multiple target sites close to each other               

significantly increase the chances of microRNA regulation. In summary, the main addition to             

knowledge provided by this work is a novel representation of a comprehensive evolutionary             

overview of microRNA regulation among different cell signalling networks in addition to            

tackling some of the issues currently present in microRNA target prediction. 
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1. Introduction 

At the dawn of the new millennium, the first draft of the human genome project was published                 

and advances in genomic technologies made it possible to effectively sequence whole genomes             

of many species. The sequencing of the genomes of different eukaryotes has revealed two main               

surprises: a huge impact of transposable elements and the relatively-low number of protein             

coding sequences when compared to those that does not code proteins. For instance, 44% of               

human genome derives from transposable elements and 98.5% of the genome does not encode              

proteins (Mills et al., 2007; Beniaminov et al., 2008). Surprisingly, the number of protein coding               

genes is quietly steady among humans, Caenorhabditis elegans and sea sponges (Lindsay and             

Griffiths-Jones 2013). Later on, evolutionary studies have shown that even this 1.5% of coding              

genes is well conserved between species that are evolutionarily distant (Meader et al., 2010). As               

a result, it has became clear that the more rapidly evolving non-coding genome makes most of                

the difference. Only then, scientific interest has been attracted to the once-ignored non-coding             

genome resulting in a huge number of studies that led to our current vast knowledge. 

 

1.1. The non-coding genome; not junk anymore 

The major role played by non-coding sequences is regulating many processes by binding to              

protein, RNA or DNA through structure or sequence compatibility. Accordingly, it has become             

increasingly apparent that the non-protein-coding portion of the genome is of crucial functional             

importance for normal development and physiology and it is involved in many diseases (Esteller              

2011). Majorly, non-coding RNAs are classified into two classes according to their sizes: (i) long               
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non-coding RNAs, with lengths more than 200 nucleotides, there are not big differences in size               

between long non-coding RNAs and coding mRNAs, (ii) small non-coding RNAs: these are             

non-coding sequences that are less than 200 nucleotides in length and usually processed from              

longer transcripts by RNA cleavage enzymes (Mattick and Makunin 2006). By definition, long              

non-coding RNAs do not have functional open reading frames unlike mRNAs. In addition, long              

non-coding RNAs are not as highly conserved and expressed as mRNAs. On the functional side,               

long non-coding RNAs, as other non-coding RNAs, mainly regulate gene expression. However,            

unlike other non-coding RNAs, long non-coding RNAs regulate gene expression at both the pre              

and post-transcriptional levels. On the other hand, based on their functions and sizes, small              

non-coding RNAs are further sub-classified into different classes. Small interference RNAs           

(siRNAs), these small RNAs range in size between 20 and 25 nucleotides and interfere with the                

expression of genes through RNA interference pathway that usually results in mRNAs being             

cleaved at the post-transcriptional level (Agrawal et al., 2003). Interestingly, siRNAs can be             

synthetically produced and introduced into cells to inhibit the growth and metastasis of             

oncogenes which open the door for further studies on using them therapeutically (Li et al., 2008).                

Piwi-interacting RNAs (piRNAs) form another class of small non coding RNAs that are able to               

silence gene expression at the post-transcriptional level through interacting with piwi proteins            

and forming RNAs-Proteins complexes (Thomson and Lin, 2009). However, piRNAs are only            

found in animals and are expressed from larger single-stranded precursors. PiRNAs roles are             

significant in specific processes such as DNA methylation, gametogenesis and neuroplasticity           

(Aravin et al., 2008). However, the best known class of small non-coding RNAs are microRNAs. 
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1.2. MicroRNAs 

MicroRNAs are a class of small (∼22 nt), single stranded, evolutionary conserved,            

non-protein-coding RNAs that are able to regulate gene expression post-transcriptionally. After           

binding to their target mRNA, microRNAs either degrade or suppress the translation of the              

targeted mRNA to proteins and thus, regulate gene expression (Kim and Nam 2006). The              

microRNAs story started in the year 1993 when two groups (Lee et al., 1993; Wightman et al.,                 

1993) reported that a gene called lin-14, which regulates the development of the roundworm C.               

elegans, is targeted through complementarity by a small single-strand molecule that is encoded             

by the lin-4 gene. Thus, they both reported that lin-14 was regulated by a small sequence of                 

RNA. However, the role of microRNAs has been under-appreciated for nearly a decade as they               

were thought to be limited to C. elegans. However, this all changed when the microRNA let-7                

was discovered by Reinhart et al., (2000), again in C. elegans. Strikingly, this particular              

microRNA was found in multiple species, including humans (Pasquinelli et al., 2000). Since             

then, microRNAs started to capture the attention of biological community which resulted in a              

fair re-estimation of their roles in gene regulation. Such a time gap may have been just due to the                   

fact that microRNAs were not known to be expressed by any other species but C. elegans in                 

addition to the inefficiency of genomic and sequencing technologies at the time (Li and Kowdley               

2012). After all, microRNAs have come a long way from being neglected to currently being               

recognised as one of the major regulators of gene expression among eukaryotes. 
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1.2.1. Evolutionary conservation 

Evolutionary conservation was a milestone in microRNAs studies. It was their conservation            

among species that initially attracted the attention to them (Berezikov 2011). However,            

evolutionary conservation of microRNAs between different species appears to be much more            

complicated than it was initially thought. Interestingly, while some microRNAs are conserved            

among all species of the animal kingdom, each species has its own microRNAs that are               

exclusively expressed in it (Campo-Paysaa 2011). For instance, some microRNAs are conserved            

among species that are as far as humans and starlet sea anemone (Grimson et al., 2008) while                 

others have been lost between primates and humans (Berezikov et al., 2006) (Figure 1.1). 
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Figure 1.1 | MicroRNAs conservation across species: MicroRNAs seems to be heavily conserved across the               

whole animal kingdom with one microRNA (mir-100) present across the whole Bilateria and Cnidaria (adapted with                

permission from Berezikov 2011). 
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1.2.2. MicroRNA biogenesis 

On its way to maturity, a microRNA molecule passes through a sophisticated multi-step             

biogenesis pathway before being able to target gene transcripts and consequently regulate gene             

expression (Figure 1.2). First, in the cell nucleus and by the aid of the enzymes RNA polymerase                 

II or III, microRNAs are transcribed from the genome as a long transcript known as               

primary-microRNA (pri-miRNAs). Pri-miRNAs are then cleaved by a complex of the enzymes            

DGCR8 and Drosha to produce a shorter (∼70bp) stem-loop structure known as precursor             

microRNAs (pre-miRNA) which consists of a terminal loop and two arms (5p and 3p).              

Pre-miRNAs are then exported to the cytoplasm by exportin-5, GTP, and Ran complex in a               

process known as nuclear exportation (Murchison and Hannon 2004).  

 

Once in the cytoplasm, pre-miRNAs are further cleaved by the Dicer, TRBP and AGO enzymes               

complex that trims pre-miRNAs terminal loop producing only a ∼22 nt duplex of two arms               

known as the miRNA/miRNA* duplex. Usually, only one of the two arms (dominant arm) will               

then be associated with a RNA-induced silencing complex (RISC) that result in a mature              

microRNA while the other arm is considered a waste-product and is usually degraded in a               

process known as arm-sorting. However, recent studies have proved that mature products from             

both arms of a precursor can be functional, resulting in two microRNAs with different functions               

(Marco et al., 2012). In some cases, microRNAs can be transcribed from genes that are               

physically adjacent hence they are collectively referred to as “microRNA clusters” that are             

known for having a synergetic effect in gene regulation (Yu et al., 2006) although this view has                 

been recently challenged (Marco 2018).  
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Figure 1.2 | microRNAs biogenesis: A complex multistep process that takes place across cell’s nucleus and                
cytoplasm is mediated by many enzymes that convert the pri-miRNA to a mature microRNA (adapted with                
permission from Filipowicz et al., 2008). 
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1.2.3. MicroRNA-target interactions 

Mature microRNAs, depending on sequence complementarity, mainly bind to the 3’UTR of a             

target mRNA. However, binding to other regions like 5’UTRs, coding DNA sequences, and             

promoters is also possible (Xu et al., 2014). MicroRNAs pairing with their targets relies on a                

certain region of the microRNA that is known as “seed region”. Seed regions are nucleotides 2-7                

of the microRNAs that are believed to be the most conserved regions of the microRNAs of all                 

metazoan species. Since the average length of 3’UTR in human is nearly 1000 nucleotides (Sood               

et al., 2006), and given the relatively short length of the seed regions (only 6 nucleotides), it is                  

not surprising that each human microRNA has the potential of having multiple target sites at               

most of human genes. However, the efficiency of the pairing between microRNAs and their              

targets is not always guaranteed. In fact, pairing between seed regions of microRNAs and their               

targets might not, on its own, be sufficient for influencing the targets expression levels. Hence,               

other sequences (beyond the seed) must be taken into consideration in predicting microRNAs             

target sites. Accordingly, seed regions are further classified as canonical (7mer and 8mer),             

marginal (6mer) or atypical (supplementary and compensatory) (Lim et al., 2003; Bartel 2009)             

(Figure 1.3). 
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Figure 1.3 | Types of microRNA-target interactions: (A), 6mer: perfect complementarity between the seed region               
and the target 3’UTR. (B), 6mer-offset: complementarity between nucleotides 3-8 of the microRNA (instead of 2-7).                
(C), 7mer-m8: the 6mer pairing is complemented by a complementarity at the 8th position of the microRNA. (D),                  
7mer-A1: the 6mer pairing is complemented by an adenine adjacent to 1st nucleotide of the microRNA. (E), 8mer:                  
the 6mer pairing is complemented by a complementarity at the 8th position and an adenine adjacent to 1st                  
nucleotide of the microRNA. (F), Wobble pairing: A G:U base pairing between the seed region and the target. (G),                   
Supplementary pairing: the 6mer, 7mer or 8mer pairing is complemented by pairing between positions 12 and                
(18-21) of the microRNA. (H), Compensatory pairing: the mismatch in the seed region is compensated by the                 
pairing between 12 and (18-21) of the microRNA (adapted with permission from Moszyńska et al., 2017). 
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1.2.4. MicroRNA annotation 

Due to size, structure and function similarities, distinguishing microRNAs from other small            

non-coding sequences is a challenging process (Ambros et al., 2003). The criteria for detecting a               

microRNA usually starts by detecting an 18-24 nucleotide sequence through sequencing, cloning            

or Northern blot, and c-hybridization of a size fractionated RNA sequence. This must be coupled               

with the presence of a 60-80 nucleotide fold back precursor that have such sequence as one arm                 

of its hairpin. In addition, due to the fundamental role played by Dicer in microRNAs               

maturation, the high number of microRNAs precursor in organisms where Dicer functions are             

inhibited is a sign of a possible microRNA sequence. Finally, the phylogenetic conservation of              

the potential microRNA sequence is studied. As a result, a sequence should be an 18-24               

nucleotide long, processed by Dicer and, from a phylogenetically conserved stem-loop structure            

to be called a microRNA (Kozomara and Griffiths-Jones 2013). 

 

1.2.5. MicroRNAs nomenclature and online database 

After the ever-growing interest in microRNAs, the necessity of creating a comprehensible            

database was proponed. That lead to the development of miRBase (formerly the microRNA             

registry). miRBase is the online repository of published data about microRNA sequences and             

their annotations. In addition, miRBase is responsible for giving unique names to all discovered              

microRNAs. Also, miRBase provides its data in forms that are easily readable and analysable for               

both humans and computers  (Kozomara & Griffiths-Jones, 2013). 
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In addition, it was important to agree on a uniform naming scheme for all microRNAs, the                

agreed-upon naming system starts with a three letter genus-species code (e.g. hsa for Homo              

sapiens) followed by “mir” (or “miR” if referring to mature sequence). The previous suffix is               

followed by a unique number. This number can either be sequential (i.e. miR-7 can be the first                 

microRNA discovered after miR-6) or in reference to a homology between the newly discovered              

microRNA and its human family member. In cases of paralogues, this number is followed by a                

dash and another number (e.g. hsa-mir-7-2) while closely related sequences are distinguished by             

the addition of a letter (hsa-miR-125a). Finally, if the same hairpin structure of the microRNA               

gene gives rise to two different mature sequences from its opposite arms (3’ and 5’ arms), a                 

further “-3p” or “-5p” is added to the name referring to the 3’ arm or the 5’ arm origin of the                     

mature sequence respectively (e.g.hsa-miR-7-5p). If only one arm gives rise to a mature             

sequence, the other subordinate sequence is given an asterisk (e.g. hsa-miR-7-1*) (Ambros et al.,              

2003). However, this nomenclature has been replaced by “-3p” and “-5p” throughput in the latest               

version of miRBase. 

 

1.2.6. Mechanisms of regulation by microRNAs 

MicroRNAs exert their regulatory roles on gene expression at the translational           

(post-transcriptional) phase where they either destabilise or repress the translation of mRNAs. In             

contrast to the very fast widening of understanding of microRNAs importance and conservation,             

the understanding of the exact molecular mechanisms by which they function remained unclear             

for years. The agreement on a precise set of mechanisms of microRNA-mediated translation             

inhibition was always controversial due to the unanticipated diversity of such mechanisms (Wu             
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and Belasco 2008). The first instance of microRNAs ability to inhibit translation was reported in               

the year 1993, Wightman et al., highlighted the imbalance between the concentration of mRNAs              

and levels of the proteins they are translated to which led to the discovery of the ability of lin-14                   

(the only first known microRNA) to represses the translation of mRNAs to proteins. 

 

In eukaryotes, the process of RNA translation to proteins consists of three stages: initiation,              

elongation and termination. MicroRNAs usually bind to mRNAs at the initiation step of             

translation. The initiation step starts upon the recognition and binding of the eIF4F subunit of the                

translation initiation factor to the cap structure at the 5’ terminal of the mRNA. Alternatively,               

initiation can happen as a result of the interaction between the RISC complex and the internal                

ribosome entry site (IRES). The initiation step is followed by elongation where several amino              

acids are transported by tRNA and finally, a protein is terminated. It is believed that microRNAs                

inhibition of translation can take place at the post-initiation levels as well. However, the exact               

mechanisms by which post-initiation inhibition takes place remains unclear (Filipowicz et al.,            

2008) (figure 1.4 (A-C)). 

 

Based on sequence complementarity, degradation of target mRNAs by microRNAs is divided            

into two categories: (i) Site-specific cleavage (also known as RNA interference) which is             

restricted to the relatively rare cases where the complementarity is perfect and in animals is               

carried out only by Argonaute 2 (AGO2). This process ends up with two unprotected RNA               

fragments that are susceptible to endonuclease attack and thus mRNA decay (figure 1.4 (D)) (ii)               

Non-cleavage repression which usually results from the more-common imperfect         
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complementarity and is carried out by any of the four Argonautes. In this case, by the aid of the                   

Ccr4/Not complex, the poly-A tail of the 3’ end is removed and the mRNA is exposed to                 

exonucleolytic digestion  (Gu and Kay, 2010) (figure 1.4 (E)).  

 

Depending on the strength of binding, expression levels of both microRNAs and their target              

mRNAs, microRNAs effects can vary from just fine tuning the expression level of their targets to                

almost complete elimination of the expression (Bartel and Chen 2004). Until very recently, it               

was believed that translation inhibition is the major role that microRNAs plays in animals gene               

regulation and that degradation is more of a plant-related process (Millar & Waterhouse 2005).              

However, recent studies shows that translation inhibition posses rather a minor effect in gene              

regulation as it is responsible for ~25% of successful microRNA-induced regulation of gene             

expression. In contrast, mRNA destabilization is the dominant way of microRNA-induced gene            

regulation (Eichhorn et al., 2014). In addition, the translational repression by microRNAs can in              

some cases be reversible (Bhattacharyya et al., 2006). Interestingly, in some cases microRNAs             

can in fact upregulate the expression of their target mRNAs. However this remains rather an               

exception to the downregulation rule (reviewed in Vasudevan 2012). 
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Figure 1.4 | Mechanisms of microRNAs regulation: (A) The RISC complex competes with eIF4E for the binding                 
of the m7G cap resulting in translational repression at the initiation step. (B) Inhibition of elongation by inducing                  
premature termination. (C) Inhibition of elongation by degrading polypeptides . (D) In case of full complementarity                
between the microRNA and the target, endonucleolytic cleavage of the mRNA takes place by the aid of Ago2                  
resulting in mRNA decay. (E) Poly-A tail of the mRNA being removed by the Ccr4/Not complex resulting in                  
mRNA decay (adapted with permission from Wu and Belasco 2008). 
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1.2.7. MicroRNA functions and target prediction 

Determining a microRNA function is in fact finding its possible targets and the role of those                

targets. MicroRNAs and their target mRNAs are engaged in a many to many relationship in               

which each microRNA can target several gene transcripts and each gene transcript is usually              

targeted by several microRNAs. For this instance, much research has been done in order to               

predict different targets to microRNAs which resulted in many software that use different             

algorithms in order to predict possible targets of microRNAs bioinformatically. On the other             

hand, many experimental approaches are used to confirm the results of bioinformatic predictions             

(Ameres and Zamore 2013). 

 

Target prediction algorithms detect complementarity between the 3' UTR (sometimes, coding           

regions too) of a mRNA and the seed region of a microRNA (Zorc et al., 2012). However,                 

predicting microRNAs targets in animals is usually more challenging than in plants, this is due to                

the fact that in plants a perfect complementarity is usually required between the whole              

microRNA sequence and their targets which is not the case in animals where complementarity is               

usually just limited to the seed region of the microRNA (Bentwich 2005). The pipeline used by                

most algorithms starts with identifying possible binding sites with accordance to base pairing             

pattern. This is usually followed by assessing the thermodynamic properties of the binding             

between the microRNA and its target (Maziere and Enright 2007). However, many interactions             

will be predicted with high probability of false positives. To eliminate this, comparative             

sequence analysis is usually done to assess the conservation of such interactions between species              
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across evolution (Maziere and Enright 2007). Finally, the possibility of having multiple target             

sites in the mRNA is taken in consideration as it boosts the chance of translation suppression as                 

it allow coordination of multiple microRNAs in targeting a single mRNA (Stark et al., 2003).               

The previous pipeline is the basic methodology that is used in bioinformatic predictions of              

microRNA targets. However, each algorithm differs from the others by having extra features that              

allow more precise prediction of microRNA-mRNA interactions and thus different programs will            

predict different target sets. Therefore, a single approach to predict microRNA-targets interaction            

may not always be sufficient. In most cases a combination of different software can be used to                 

predict possible targets then one of the experimental procedures are usually done to confirm such               

prediction (Kuhn et. al., 2008). However, the combination of several methods produces a high              

level of false negatives (Alexiou et al., 2009). 

 

Any of the above algorithms will typically result in a large list of possible interactions between                

microRNAs and their target gene transcripts. However, this will always stay only an assumption              

as not all predictions are correct and not all predicted targets are functional. Thus, a way to                 

reduce the incidence of false positives is to use the fact that closely related species will conserve                 

functional microRNA target sites. Evolutionary conservation is a robust strategy that is used to              

reduce the number of false positives (Maragkakis et al., 2009). Specific target sites can be               

validated with specific assays (Kuhn et al., 2009). For this instant, different laboratory             

approaches like northern blot, miRNA microarray, transgenics and real-time PCR can be used to              

assess and validate the prediction as well as to determine the biological significance of the               

targeting (Watanabe et al., 2007). 
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Recently, a new class of software has been developed in order to enhance the reliability of                

prediction by adding extra features. Basically, most of these programs uses one or many of the                

already existing databases as their starting point. For instance, TarBase7.0 (Vlachos et al., 2015)              

is a database that allows a user to view only experimentally validated predictions by linking each                

predicted interaction to scientific studies documenting its validation. Likewise, miRecords (Xiao           

et al., 2009) uses the results of 11 different target prediction databases and links them to                

published experimental validations. MiRGator (Nam et al., 2009) provides more information           

about target predictions by linking gene expression, functional analysis and genome annotations            

to each prediction which allow more detailed assessing to each prediction. Finally, miRDB is the               

only interactive database for miRNA targets prediction; it allows its users to edit target              

prediction results according to their findings (Wong et al., 2014). 

 

1.2.8. MicroRNA and diseases 

The link between microRNAs and human disease was always obvious. Firstly, microRNAs are             

usually expressed in a tissue-specific pattern (Lagos-Quintana et al., 2002) Also, it is believed              

that defects in microRNA expression are often a hallmark of human diseases (Esteller 2011). The               

first evidence of the role of microRNAs in human disease was supplied by the result of Calin et                  

al., (2002) when they detected events of down regulation or loss of two microRNAs (mir-15 and                

mir-16) in 68% of chronic lymphocytic leukaemia patients. In addition, many developmental            

process are believed to be regulated by microRNAs as stem cell division (Hatfield et al., 2005),                

cell metabolism, proliferation and apoptosis (Croce and Calin 2005), neural cell fate (Smirnova             
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et al., 2005), stress resistance (Ambros 2003), muscle differentiation (Chen et al., 2006), and              

brain morphogenesis (Giraldez et al., 2005). As a result, many pathological states such as              

Alzheimer (Wang et al., 2008), Parkinson (Nelson et al., 2008), arrhythmogenesis (Yang et al.,              

2007), myopathy (Eisenberg et al., 2007), psoriasis (Bostjancic and Glavac 2008), rheumatoid            

arthritis (Nakasa et al., 2008), schizophrenia (Beveridge et al., 2010), Downs Syndrome (Kuhn et              

al., 2010), and cardiovascular diseases (Fichtlscherer et al., 2011) are among the disease that              

microRNAs play roles in. Furthermore, microRNAs are particularly significant in cancer. “A            

rule rather than an exception” was how Jansson and Lund (2012) described aberrant expression              

of microRNAs in cancer cells. In fact, since their discovery, there was always a link between                

microRNAs and cancer as the first discovered microRNA have showed a regulatory effect on the               

division of cells in C. elegans which pointed to a presumed role in cancer (Lu et al., 2005). To                   

help in identifying the role of microRNAs in different diseases, Li et al., (2013) manually               

collected and analysed literature data that describe the association between microRNAs and            

human disease and used them to build the human microRNA disease database (HMDD) which              

provides a web interface for researchers to browse, download and/or submit disease-related            

microRNA data. 
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1.3. Cell Signalling  

The formation of complex cellular communication mechanisms was an inevitable step towards            

the evolution of multicellular organisms from their unicellular ancestors (Weinberg 2014). In            

fact, the proper functioning of organisms depends on the ability of their cells to develop and                

maintain proper means of communication between each other as well as their environments.             

Cells communicate by signals that are sent to and received by other cells, the environment or                

even the same cell (Alberts et al., 2002). However, different cells may react to different signals                

in different ways. Understanding the mechanisms by which cells communicate is essential in our              

understanding of how different organisms function. 

 

The process of cell signalling starts by the synthesis of a signalling molecule (also known as                

ligand). In some cases, cell signalling may also be initiated by physical signals from the               

environment such as light or heat (Powar, 2010). In multicellular organisms, proteins,            

neurotransmitters, peptides, hormones, and steroids are among the various types of signalling            

molecules that can initiate cell signalling. A signalling cell usually secrets its signalling             

molecules by a process known as exocytosis into the extracellular space. In fact, signalling              

molecules can also be diffused through a cell's plasma membrane or interact with other members               

of the extracellular space while still bound to the surface of the signalling cell in a process                 

known as juxtacrine signalling. However, this remains a contact dependant process that occurs             

only between neighbouring cells (Anklesaria et al., 1990). Depending on the distance between             

the cell that synthesize the signalling molecule and the cell that receives it, cell signalling can be                 
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classified into two main types: (i) Endocrine signalling: the most common type of signalling in               

animals, were the signalling cell and the target cell are distant, the signaling molecule (usually a                

hormone) may have to travel through the circulatory system for relatively long distance before it               

reaches its distant targets. (ii) Paracrine signalling: where the signalling molecules act on nearby              

targets, the secreted molecule acts locally on targets. In addition, a cell can send signals to its                 

own self. In some cases, a cell secrets ligands that can be recognized by and bound to its own                   

receptors. Such process, known as autocrine signalling, usually happens in cells during            

development (Sporm and Roberts 1985). Despite the means of signal production and            

transmission, cells in multicellular organisms maintain a range of cell surface receptors that are              

responsive to extracellular stimuli. Such receptors, usually transmembrane ones, need to           

recognize and bind to the signalling molecule. However, in some rare cases, signalling molecules              

may need to make their ways through cell membranes to find an intracellular receptor. In               

addition, a signalling molecule can be transported by cellular extensions known as cytonemes             

(Ramírez-Weber & Kornberg 1999). Based on the type of signal and receptor (and the way they                

interact) their interaction usually activates a series of cascades that are known as signaling              

pathways that in turn activate (or inhibit the activation) of specific proteins which then decide               

cells actions or behaviour (Alberts et al., 2002). 

 

1.3.1. Cell signalling and disease 

While cell signalling is vital to maintain the normal physiological functions of an organism, it               

does not always happen in a perfect way. In fact, transduction of signals through the pathways                

occasionally fails resulting in various types of diseases. Depending on the type of error of               
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signalling, different types of diseases may occur. For instance, when insulin receptors fails to              

bind to insulin this usually results in type II diabetes (Pessin 2000). Also, excessive production               

of the signalling molecule glutamate after strokes may lead to a complete brain damage              

(Rothman 1986). Finally, cancer is significantly related to cell signalling malfunction. Cancer            

mainly results from the ability of cells to grow and divide independent on signals. Cancer cells                

will also need to be able to ignore the apoptotic (suicidal) signals that are produced when cells                 

starts to grow uncontrollably (Yamazaki et al., 2005). Also, it is very common that cancer cells                

secrete growth factor signals to themselves and to other cells to grow more rapidly (Powar 2010).                

Unsurprisingly, to prevent diseases, cell signalling is tightly regulated by a wide range of              

regulators and mong such regulators are microRNAs (Chen 2015). 

 

1.3.2. The evolution of the study of cell signalling  

The importance of cell signalling was acknowledged since the beginning of the 19th century              

(Freeman & Gurdon 2002). However, for long time, the study of cell signalling relied on the                

identification of simple, straight and hierarchically-organised downstream cascades of signalling          

from receptors to enzymes and transcription factors. Fortunately, the substantial progress of            

biochemistry and the availability of high throughput technologies has led to the identification of              

an increasingly large number of cell signalling components as well as the diverse mechanisms              

made it clear that signalling pathways do not necessarily fall into such a linear fashion. Instead,                

cell signalling falls into pathways of a highly complex nature that is usually regulated by the                

presence of many forward and backward loops. Furthermore, in most cases, such pathways             

together form larger networks of signalling and not as previously believed are stand-alone             
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entities (Eungdamrong & Iyengar 2004). Cell signalling networks emerges when different           

pathways interact in a way that makes a single signalling component able to receive, process and                

pass-on signals in different ways. Such signalling molecules, known as interconnections, can act             

either as nodes or junctions where junctions act as signalling integrators and nodes act as               

signalling splitters (Jordan et al., 2000). In some cases, the very same signalling molecule can act                

as a node and a junction (Schmelzle & Hall 2000) (Figure 1.5). Given this complex nature, the                 

use of mathematical and computational modelling was always necessary to explore the diverse             

mechanisms that underlie cell signalling. Thanks to mathematical and computational modeling,           

we are now able to model and simulate signalling networks with tens of components and               

regulatory loops that are impossible to predict and validate using the current experimental             

technologies (Eungdamrong & Iyengar 2004). 
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Figure 1.5 | The evolution of cell signalling understanding: (A) The initial thought of cell signalling as a linear                   
process where the binding of a ligand to a receptor activates a cellular adaptor that results in a cellular action. (B)                     
The complex, multi-step process of cell signalling where the activation of signaling is regulated by many forward                 
and backward loops as well as cross talking that together, activate or inhibit various steps of the signalling process                   
before a cellular action takes place (adapted with permission from Taniguchi et al., 2006). 
 
 

One good representation of how our understanding of the field of cell signalling has rapidly               

evolved is the textbook “Molecular Biology of the Cell”. In its first edition more than 30 years                 

ago, the famous book only mentioned cell signalling briefly within a chapter named “Chemical              

signalling between cells” . Throughout the years, the growth of our knowledge of cell signalling               

has been reflected in the book through its different editions. Since its 2nd edition in 1989,                

Alberts et al., has devoted a complete chapter to cell signalling that has evolved over the years                 
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being named “Cell signalling” in the second and third editions, “Cell communications” in the              

fourth edition, “Mechanisms of cell communications” in the fifth edition and finally back to              

“Cell signalling” in the current sixth edition of the book. However, since its establishment in the                

second edition, the cell signalling chapter almost doubled in size which reflects the importance              

as well as the complex nature of cell signalling (Alberts et al., 1983, 1989, 1994, 2002, 2008,                 

2014). 

 

1.4. ErbB signalling network 

ErbB stands out as the most studied receptor system in biomedical research (Samaga et al.,               

2009). Many factors contributes to ErbBs fame, first is it's very complex nature as the binding of                 

an ErbB ligand to an ErbB receptor can activate different signalling pathways each containing              

several regulatory loops that can in turn activate or deactivate different cellular actions.             

However, beside its complex nature, ErbB is able to regulate several cellular process including              

cells differentiation, migration, survival/apoptosis and proliferation in almost all multicellular          

organisms and thus, ErbBs plays a profound role in regulating many diseases including cancer.              

Unsurprisingly, these regulatory roles made the ErbB network a prime target to many of the               

recently developed drugs (Yarden and Sliwkowski 2001). 

 

The ErbB discovery dates back to the early 1950s when the epidermal growth factor (EGF) was                

firstly isolated in mouse by Stanley Cohen and his colleagues. While studying another growth              

factor, the nerve growth factor (NGF), Cohen treated a group of mice with salivary gland extract,                

these mice showed a significant acceleration in growth and development compared to their             
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controls. Only then, Cohen suggested that one substance is responsible for that, EGF (Cohen              

1962). Later on, this discovery won Cohen (joined by his colleague Levi-Montalcini ) a Nobel               

Prize for their joint discoveries of the epidermal and nerve growth factors, respectively. Cohen's              

discovery sparked the scientific interest to discover the biological and physiological roles that             

EGF plays. As a result, its was found that EGF is expressed in other human tissues and body                  

fluids. In addition, the role of EGF in regulating many cellular process was established. All these                

led to the discovery of first EGF receptor (EGFR) which was firstly described as a               

transmembrane glycoprotein with a tyrosine kinase activity (Cohen 1982). The key components            

of the ErbB signalling network are the four tyrosine kinase receptors and the eleven epidermal               

growth factors ligands (Barberan et al., 2016). The receptors family consists of four structurally              

related members: ErbB1 (EGFR/HER1), ErbB2 (HER2/neu), ErbB3 (HER3) and ErbB4 (HER4)           

that are able to engage in homodimers or heterodimers. However, only ErbB1 and ErbB4 can be                

considered fully functioning ErbB receptors (i.e. they are both able to bind to ligands and initiate                

an intrinsic tyrosine-kinase activity). On one hand, ErbB2 is known as the orphan receptor as its                

lacks the ability to bind to any ligand however it remains one of the favourite dimerization                

partners of its ErbB siblings. ErbB3, on the other hand, is able to bind ligands but it lacks the                   

ability of initiating a tyrosine-kinase activity. However, it also can form dimers with any of the                

other ErbB receptors (Yarden and Sliwkowski 2001).  

 

1.4.1. The conservation of ErbBs  

A single ErbB receptor is expressed by roundworms and flies. In more complex organisms,              

mammals for instance, the number of expressed genes increases to four for the aim of               
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modularity, redundancy and therefore, robustness (Citri and Yarden 2006). In roundworms, the            

ErbB-like gene (LET-23) is responsible for regulating ectoderm development, development of           

male tail and development of vulvae (Moghal and Sternberg 2003). Likewise, the ErbB-like gene              

(DER) is expressed in the fruit fly Drosophila melanogaster and is responsible for regulating              

many processes mainly during embryogenesis (Shilo 2003). After comparing different amino           

acid sequences of ErbBs between vertebrates and invertebrates, Stein and Staros (2000)            

suggested that a process of gene duplication may have resulted in two different ancestral genes;               

ErbB1/ErbB2 precursor and ErbB3/ErbB4 precursor in vertebrates from the single ErbB gene of             

invertebrates. Subsequently, each of these precursors furtherly duplicated generating the four           

ErbBs that are expressed in vertebrates. While evolving, ErbBs have witnessed two main             

accumulated mutation events. One that prevents the ErbB2 gene from binding to ligands             

(Burgess et al., 2003), the other inhibits the activation of the kinase domain of ErbB3 after it                 

binds to ligands (Guy et al., 1994). Those mutations in fact resulted in a complex signalling                

network and stopped the near-perfect linear configuration of the receptor-ligand pathways (Citri            

and Yarden 2006). Such a complex signalling network is believed to be responsible for the               

higher robustness of the system in vertebrates (Bray and Lay 1994). The characterization of an               

ErbB tyrosine kinase receptor relies on the identification of three components: two cysteine-rich             

clusters at a ligand-binding extracellular domain, a transmembrane domain, and cytoplasmic           

domain that exerts a tyrosine kinase activity. Likewise, all ErbB ligands contain an ErbB-like              

domain in their extracellular domain which is characterized by the presence of 6 cysteines motifs               

that enhance the binding to the receptors (Barberán et al., 2016).  
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1.4.2. The complexity of ErbB signalling  

One of the major reasons behind the complexity of the ErbB signalling network is the ability of                 

some G-protein-coupled-receptors (GPCRs) to activate some of the signalling cascades that are            

usually activated by ErbBs (Thomas et al., 2006). As a result, an ever wider range of signalling                 

pathways can be activated by these events of cross talking which add more diversity to the                

possible cellular actions. For instance, ErbBs activation activates the MAPK signalling pathway            

which in turn initiates the transcription of ErbBs ligand which upon binding to receptors can               

activate MAPK signalling in a positive feedback loop (Yarden and Sliwkowski 2001). Normally,             

ErbB receptors localises and functions at the cell membrane. However, in some cases, ErbBs can               

translocate to the nucleus and exerts different functions from there. For instance, it has been               

proposed that nucleic ErbB1 can act as a transcription factor (Wang and Hung 2009). In addition,                

ErbBs nuclear translocation has been linked with poor prognosis of human cancers (Wieduwilt             

and Moasser 2011). The exact mechanisms by which such relatively large proteins free             

themselves from the cell membrane endosomes and travel to the cell nucleus remain unclear.              

However, different mechanisms including endoplasmic-reticulum-mediated translocation have       

been proposed (Hu et al., 2006).  

 

Another interesting feature of the ErbB network is its bow-tie like structure (Citri and Yarden               

2006). A bow-tie is a common structure of biological systems that enhances their robustness.              

Simply, a bow-tie structure consists of two wide ends and a narrow (conserved) core. In               

signalling pathways, bow-tie structures are common. Usually, cells receptors are exposed to a             

high number of signals. However, between the binding to extracellular signals and the expression              
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of reactions (proteins) lies a “knot”. In which, a number of biochemical interactions form a core                

process that decides the fate of the received stimuli (Kitano 2004). Adding more to ErbBs               

complexity, the activation of the ErbB network through ErbB1 and ErbB2 in fact activates a               

subset machinery of interactions that decrease the abundance of a set of tumour suppressor              

microRNAs. By this means, oncogenic ErbBs protect themselves from being targeted by tumor             

suppressing microRNAs (Avraham et al., 2010).  

 

1.4.3. ErbBs in human diseases  

A wide range of human diseases stem from aberrant ErbB signaling. For instance, drugs              

inhibiting ErbB2 activity have been proven to be cardiotoxic (Feldman et al., 2000). Also, the               

ability of Mycobacterium leprae to bind to and activate ErbB receptors causes leprosy (Tapinos              

et al., 2006) and continuous activation of ErbB1 is a known cause of psoriasis (King et al., 1990).                  

Finally, the dysregulation of the ErbB ligand NRG1 is one characteristic of several disorders              

including Alzheimer's disease (Chaudhury et al., 2003), schizophrenia (Hahn et al., 2006) and             

multiple sclerosis (Brinkmann et al., 2008). Among all different diseases, cancer is one of the               

most studied diseases that are regulated by ErbBs. The first link between ErbBs and cancer dates                

back to the 1980s when the over-expression of ErbB2 was reported in neoplastic rat cells               

(Schechter et al., 1984). Since then numerous studies have been carried out to uncover the roles                

played by ErbB signalling in cancer as it was always clear that a network that regulate cell                 

growth, apoptosis and proliferation is indeed a network that can be linked to cancer. The               

established knowledge of the profound impact of ErbBs on human disease made them targets of               

many recently-developed drugs (Weiduwilt and Moasser 2011). Unsurprisingly, most of these           
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are anticancer ones. The first clinically used ErbB-targeting drug was trastuzumab. As a             

monoclonal antibody, trastuzumab interferes with the extracellular domain of ErbBs disrupting           

their ligand binding. However, the non-neglectable side effects of trastuzumab coupled with            

advances molecular biology techniques that allowed the electron-microscopic visualization of          

ErbBs dimers has led to the development of more advanced monoclonal antibodies such as              

pertuzumab, cetuximab and panitumumab. In addition to monoclonal antibodies, tyrosine kinase           

inhibitors (TKIs) are another class of ErbB targeting cancer therapies. Through binding to the              

ATP kinase domain, TKIs like erlotinib, gefitinib and lapatinib inhibit the enzymatic functions of              

ErbBs activation and thus block the initiation of downstream ErbB signaling. In addition, very              

recently, another TKI (neratinib) has been introduced with its promising ability to co-regulate             

different ErbBs at once. Unfortunately, despite the promising initial response rates resistance to             

ErbB-directed therapies is the rule rather than the exception (Wang and Greene 2008). Among              

the possible reasons behind such resistance is the ability of signalling pathways to maintain ErbB               

independent activations through cross talking with other signalling networks. Also, mutations at            

the TKIs binding sites of ErbBs may inhibit the sufficient binding of TKIs. For instance, Sergina                

et al (2007) suggests that a negative regulatory loop in the ErbB network enables ErbBs to                

escape TKIs targeting. Despite the initial promising response, resistance has resulted in an             

re-estimation of anti-ErbBs powers. Today, the therapeutic use of anti-ErbB agents is limited to              

combining them with chemotherapy. 
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1.5. Toll-like signalling network 

The Toll-like signalling network is involved in one of the most critical process in all living                

organisms which is immunity. Throughout their lives, all living organisms will be exposed to a               

variety of pathogens within their environments that they will have to protect themselves from              

(Akira and Takeda 2004). The family of Toll-like receptors (10 receptors in humans) is able to                

recognize and bind to different pathogens-related molecules that then activates a cascade of             

intracellular interactions which in turn result in an immune response. In particular, Toll-like             

signaling is associated with one of the two classes of immune response that is innate immunity                

(the other being acquired immunity). As its name suggest, innate immunity is the first immune               

response taking place once a pathogen is detected (Akira 2006). Thus, Toll-like signalling acts as               

the front line defense mechanism of a host to a given pathogen (Medzhitov 2001).  

The name “Toll-like” stems from the referral to the previously discovered Toll gene in              

Drosophila which is involved in embryogenesis (Hashimoto et al., 1988). Later on, it was shown               

that Toll plays an important role in initiating an immune response in Drosophila against fungal               

infections (Lemaitre et al., 1996). Such observation have sparked an interest in exploring the              

gene and subsequently, similar homologous sequences of the Drosophila Toll gene have been             

found in several species including humans and where then given the name Toll-like (Akira and               

Takedo 2004). 

 

Toll-like receptors mainly respond to one of two signals, either a pathogen-related compound or              

to a molecule produced endogenously by the host as response to its infection by a pathogen.                

Pathogen-related compounds that are usually referred to as PAMPs (pathogen associated           
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molecular patterns) can be proteins, microbial lipids, carbohydrates or even, a nucleic acids of              

the pathogen. Out of the 12 Toll-like receptors that have been so far identified in mammals, some                 

of them (TLR1, TLR2, TLR4, TLR5, TLR6, and TLR11) are known to localize to the cell                

membrane while others (TLR3, TLR7, TLR8, and TLR9) act intracellularly by localizing into the              

endosomes and thus they are known as Toll-like endosomal receptors (Lin et al., 2012).              

However, in human, only TLR1 to TLR10 are expressed while two extra Toll-like receptors are               

expressed in mouse (TLR11 and TLR13). While the existence of TLR10 is recognized, it has for                

long been known as the only Toll-like receptor with no biological function. However, recently, a               

study has suggest an inhibitory role of TLR10 in immune response (Oosting et al., 2014). Beyond                

the recognition of (and binding to) a ligand by a toll-like receptor, it is up to one of two main                    

adaptors to integrate the activation of the Toll-like receptors. The first and most dominant route               

is through the myeloid differentiation factor (MyD88) pathway where several intracellular           

pathways are activated. The other less-dominant way of signal transduction is known as             

MyD88-independent pathway in which, other adaptors like TRAM, TRIF or TIRAP and activate             

different pathways. In fact, only activations of Toll-like signalling through TLR3 and TLR4 are              

associated with the MyD88-independent pathway (Lin et al., 2012). Finally, the activation of             

Toll-like receptors and the initiation of signalling cascades by the adaptors usually ends in an               

increase of the expression of several defense molecules such as proinflammatory cytokines (like,             

tumor necrosis factor and interleukins) and costimulatory molecules (like interferon) depending           

on the pathways activated by the adapters (MyD88-dependant pathway or MyD88-independent           

one) (Borad et al., 2007). Finally, the expression of such molecules result in the activation of                
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macrophages and neutrophils in the aim of killing the pathogens detected (Takeda and Akira              

2005) (Figure 1.6). 

 

1.5.1. Conservation of the Toll-like network  

The bioinformatic studies done on Toll-like receptors shows no presence of Toll-like orthologues             

in neither prokaryotes nor fungi. In plants, however, few receptors have been related to the               

animals Toll-like ones based on the fact that they serve similar functions and their sequences               

share some similarities . However, given the low level of sequences similarities and the fact that                

these receptors activate totally different signalling pathways when compared to those activated            

by animal Toll-like receptors indicates that the sequences detected in plants are not orthologues              

of the animals Toll-like receptors but are rather plants-specific receptors that preserved            

functions similar to Toll-like receptors through convergent evolution (Ausubel 2005). As a            

result, the origin of Toll-like receptors appears to belong to the animal kingdom. Within the               

animal kingdom, the conservation of Toll-like receptors varies greatly between several lineages.            

First, the lack of any Toll-like receptors in the genome of a sponges species (Amphimedon               

queenslandica) coupled with the presence of typical Toll-like receptors in the cnidarian species             

Nematostella vectensis and several bilateria species, suggests that the precise origin of Toll-like             

receptors goes back to the last common ancestor of all eumetazoans (all animals except sponges               

and Placozoa) (Voogdt and van Putten 2016). While Toll-like receptors are conserved among             

almost all animals, the number Toll-like genes varies largely between species. For instance,             

while humans conserve 10 different Toll-Like receptors, the number is expanded to 13 in              

rodents, 21 in most amphibians, and up to 222 in the purple sea urchin (Huang 2008). Such a                  
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massive expansion in the number of Toll-Like genes might stem from the lack of an adaptive                

immune system in some species so the reliance is massively on innate immunity which is               

majorly activated by Toll-like receptors (Ward and Rosenthal 2014). 

 

1.5.2. Toll-like signalling in human disease 

Based on their fundamental role in initiating immunity, mutations (or alterations) among            

Toll-like genes have been heavily linked to a number of infectious diseases. For instance,              

mutations among Toll-like receptors are associated with higher susceptibility of leprosy (Kang et             

al., 2002), asthma (Qian et al., 2010), malaria (Mockenhaupt et al., 2006), and tuberculosis              

(Ben-Ali et al., 2004). However, the pleiotropic nature of Toll-like signalling makes them             

involved in a wide range of diseases. For instance, recent studies have shown an important role                

of TLR3 in the regulation of several liver diseases including hepatitis (Yin and Gao 2010) and of                 

TLR9 in renal disease (Bossaller et al., 2016). In addition, a common polymorphism in TLR4               

(D299G) is related to a wide range of disorders including diabetes (Weyrich et al., 2010), asthma                

and atopy (Raby et al., 2002), and ulcerative colitis (Torok et al., 2004). However, the same                

polymorphism is linked with a reduced risk of atherosclerosis (Kiechl et al., 2002) and              

rheumatoid arthritis (Radstake et al., 2004). 
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Figure 1.6 | The Toll-like signalling network: The signaling is initiated upon the detection of pathogens (or                 
pathogen related molecules) by one of the 11 Toll-like receptors either on the cell surface (TLR1, TLR2, TLR4,                  
TLR5, TLR6, and TLR11) or in the endosome (TLR3, TLR7, TLR8, TLR9, and TLR13). Consequently, the signal is                  
transmitted via one of the two adapting pathways (MyD88 dependant and MyD88 independent). Finally, the signal                
reached the cell nucleus where it interacts with transcription factors that usually results in cellular actions. (adapted                 
with permission from O’Neill et al., 2013). 
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1.6. Notch signalling network 

At the dawn of genetics, in the year 1919 the observation of a mild wing deformation in                 

Drosophila has opened the door to a long history of research that have finally led to our current                  

understanding of one of the most widely studied signalling networks, the Notch signalling             

network (Mirandola et al., 2009). Notch signalling is one of the networks that relies on juxtacrine                

mode of signalling where the signal-sending and signal-receiving cells are in direct contact with              

one another. The signal sent is one of the two families of ligands in mammals, Jagged (JAG1 and                  

JAG2) and Delta-Like (DLL1, DLL3, and DLL4). While attached to the signal-sending cell, the              

ligand bind to its receptor on the membrane of the signal receiving one. Upon the binding of a                  

ligand to one of the four members of the family of mammalian Notch receptors (NOTCH1,               

NOTCH2, NOTCH3, and NOTCH4), a series of proteolytic reactions takes place cleaving the             

receptors and releasing the Notch intracellular domain. Once released, the Notch intracellular            

domain translocates and enters the cell nucleus where it acts as a transcriptional coactivator              

(Bray 2016). Interestingly, the rather simple design of the Notch signalling network is not              

reflected in the diversity of its outcomes as Notch signalling functions uniquely among a wide               

range of cell types and during different developmental and physiological stages. However, such             

diversity of outcomes might also be due to the cross-talking events between some components of               

the Notch network with other signalling networks including TGF-beta and Wnt signalling            

pathways (Blokzijl et al., 2003; Collu et al., 2014). 
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1.6.1. Conservation of Notch 

A recent comparative-genomics study of the Notch signalling network have revealed that some             

of the components of the Notch signalling network is conserved among all animals and some of                

the genes are even shared with placozoa and sponges which suggest that Notch signalling was               

present in the last common ancestor of all metazoans and predates bilateral symmetry, and was               

then strongly conserved during the course of animal evolution (Gazave et al., 2009).             

Furthermore, a few components of the Notch signalling network are also conserved among other              

non-metazoan eukaryotes which might even suggest an older origin of Notch signaling.            

However, the majority of the core signalling components of the Notch network appear to be an                

oddity of animals as no homologues of Notch receptors and their Delta-like ligands were found               

to be conserved beyond metazoans (Gazave et al., 2009).  

 

1.6.2. Notch functions in vertebrates 

Despite being related to Drosophila for years, the relatively recent discovery of the conservation              

of several homologues of Notch signalling among most animals suggested it might have roles in               

other species. Consequently, a substantial amount of research has been done to explore the roles               

played by Notch signalling in vertebrates development. As a result, it has been shown that Notch                

plays an important role in neurogenesis (Chitnis et al., 1995), lymphoid development (Robey et              

al., 1996), somitogenesis (De Angelis et al., 1997), and vasculogenesis (Roca and Adams 2007)              

during development as well as in the preservation of tissue homeostasis in adult life (Bigas and                

Espinosa 2012). Thus, it has become apparent that Notch signalling functions in several stages of               

life is a common feature in most animals and not restricted to Drosophila as it was once thought. 
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1.6.3. Notch in human disease 

Given the major roles played by Notch signalling in the regulation of neural development, it               

comes unsurprisingly that mutations in Notch are related to several neurologic disorders. For             

instance, mutations in NOTCH1 has been deemed responsible for the pathogenesis of human             

T-cell Acute Lymphoblastic Leukemia (Weng et al., 2004), and mutations in NOTCH3 has been              

linked with the hereditary stroke disorder CADASIL (Cerebral Autosomal Dominant          

Arteriopathy with Subcortical Infarcts and Leukoencephalopathy) (Joutel et al., 1996).          

Furthermore, Alagille syndrome is usually caused due to mutations in both NOTCH2 and JAG1              

(Li et al., 1997; McDaniell et al., 2006). Finally, mutations in NOTCH4 have been shown to                

increase the susceptibility of developing schizophrenia among some individuals (Wei and           

Hemmings 2000). However, despite the wide range of neurological disorders that are caused by              

Notch signalling mutations, Notch mutations has also been described in other non-neurological            

disorders. For instance, mutations in the NOTCH2 are heavily related to the severe bone loss               

disorder Hajdu-Cheney syndrome (Simpson et al., 2011). In addition, due to the roles played by               

Notch signalling in somitogenesis, mutations among several genes in the Notch signalling            

network have been linked with several abnormal vertebral segmentation disorders like           

spondylothoracic dysostosis (STD) and spondylocostal dysostosis (Dunwoodie 2009). Finally,         

mutations in JAG1 and NOTCH1 has been related to range of cardiovascular diseases (De la               

Pompa and Epstein 2012). 
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Figure 1.7 | The Notch signalling network: The core Notch signalling map where the signaling is initiated by the                   
binding of one of the ligands (while still bound to the surface of the signal-sending cell) to one of the receptors on                      
the surface of the signal receiving cell. Consequently, by the aid of ADAM, the intracellular domain of the activated                   
Notch receptor is cleaved and translocates to the nucleus where it interact with the transcription factors (adapted                 
with permission from Bray 2006). 
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1.7. Aims 

For more than a century, cell signalling has been recognised as a crucial process for the proper                 

functioning of all living organisms. Moreover, the diversity and complexity of cell signalling has              

been uncovered as well as its huge impact on human disease. On the other hand, relatively                

recently, microRNAs became well recognised as one of the major regulators of gene expression              

in mammals. All this led to a great interest in both topics. However, a comprehensive               

understanding of the regulatory roles played by microRNAs in different cell signalling networks             

is missing. In this work, I provide a broad overview of the regulatory relation between two of the                  

most exciting topics in today's biology, microRNAs and cell signalling. In addition, this work              

aims to provide an understanding of the evolutionary bases of these regulatory interactions. To              

achieve this, I highlight the general aspects of microRNAs regulation among some of the most               

widely studied signalling networks using different sets of microRNAs. In addition, I provide             

answers to some of the known issues in microRNA research as well as highlighting other               

potential issues that need to be considered. 
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2. Methods 

 

2.1. Reconstruction of signalling networks 

The complex nature of the ErbB signalling network made the process of reconstructing its              

signalling map challenging. Many genes were reported to be involved in ErbB signalling in some               

publications but were not mentioned in others, Therefore, the current map (chapter 3) was              

assembled after compiling data from several publications. Based on the findings of Citri and              

Yarden (2006), the genes that were reported to be involved in ErbB signalling were then directed                

into one of four signalling levels based on the roles they play in the signalling network. The four                  

levels were as follow: level zero of the network were the ligands; level one (the first level in the                   

signal-receiving cell) were the Erbb receptors; level two, the signalling pathways that are             

activated by the binding of the ligands and receptors; and finally level three (inside the cell                

nucleus) which enclosed the transcription factors. In contrast with ErbB, the assembly of the              

Notch, Toll-like and TRAIL networks was straight forward as most of the published papers              

present matching networks of signalling. However, I mainly used the reviews of Bray (2016) and               

O'neill et al., (2013) to construct the maps of Notch and Toll-like networks respectively. For all                

four networks, the Genecards database (Stelzer 2016) was used to check synonymous names of              

the genes reported in literature to match them to the gene names provided by Ensembl (For a full                  

list of the genes used in the analysis of this networks and their corresponding levels, see                

Appendix 1). 

 

 

 40



2. Methods 
 
 

2.2. Genomic data  

2.2.1. 3’UTRs 

As microRNA regulation relies mainly on complementarity between the microRNA seed regions            

and the 3’UTRs of their target mRNAs, microRNAs target prediction in this work was conducted               

by finding such complementarity. For this, the BioMart webtool from the Ensembl genome             

browser (release 82) (Cunningham et al. 2015) was used to retrieve 3’UTRs sequences of the               

studied genes. For genes where more than one transcript were available the transcripts that have               

the longest 3’UTRs were chosen to avoid possible loss of microRNA target sites in transcripts               

with shorter 3’UTRs. However, in some cases, the longest 3’UTRs belonged to non-functional             

protein coding transcripts known as nonsense mediated decay (see Chapter 5). In such cases, all               

nonsense mediated decay transcripts were excluded and the longest protein-coding transcript was            

used instead. 

 

All human cell receptors were identified using the PANTHER classification system (version            

13.1) (Mi et al., 2013). The gene names reported by PANTHER were then used as a filter in                  

Ensembl BioMart query and the 3’UTRs start and end were selected as attributes. As a result, the                 

length of the 3’UTR of each of the receptors were calculated. However, unavailable or              

incomplete 3’UTRs were discarded. 
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2.2.2. MicroRNAs 

Mature microRNAs sequences for human and mouse were obtained from miRBase (release 21)             

(Kozomara and Griffiths-Jones 2013). MicroRNA sequences were then clustered using an           

in-house PERL script into families according to their extended seed regions (nucleotides 2-7)             

based on the definitions from Bartel (2009). As such, different microRNAs that share the same               

seed region, now belong to the same family since they will have the same canonical targets. 

 

2.3. MicroRNA expression and conservation levels 

In order to identify microRNAs that are highly expressed, I used the RNA sequencing data of                

Meunier et al (2013) collected from five different human organs and available on NCBI gene               

expression omnibus (https://www.ncbi.nlm.nih.gov/geo/) with the following accession numbers:        

frontal cortex (GSM995300), cerebellum (GSM995301), heart (GSM995302), kidney        

(GSM995303), and testis (GSM995304). Furthermore, to count the expression levels for each            

microRNA, miRcounts software (Hatlen 2016) was used to map these sequencing reads to             

mature human microRNA sequences that were obtained from miRBase. By default, miRcounts            

tolerates zero mismatches between the reads and the reference query. Based on miRcounts             

results, microRNAs that had an expression level of (>1/1000) in at least one of the five tissues                 

were identified as highly expressed ones and a list of these 474 microRNAs belonging to 380                

seed region families were used in the analysis. Furthermore, to restrict the analysis to only               

microRNAs that are broadly conserved between species, the list of broadly conserved            

microRNAs of Friedman et al., (2009) was used and microRNAs were identified and were then               

used in the analysis. Finally, the lists of highly-expressed and highly-conserved microRNAs            
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2. Methods 
 
 

were joined and 158 microRNAs belonging to 86 families were identified as both highly              

expressed and highly conserved. 

 

2.4. MicroRNA target prediction 

All microRNA target predictions were done using seedVicious (v1.1) (Marco 2018) with default             

parameters unless specified. SeedVicious requires an input of a transcript file (3’UTRs            

sequences retrieved from BioMart) and a microRNA file (microRNA sequences retrieved from            

miRBase). In cases where more than one transcript existed for the same gene, the longest               

transcript function of seedVicious (-l) was used. In addition, to avoid the length bias of the                

3’UTRs, the numbers of nucleotide per each 3’UTR were kept and microRNA interactions were              

represented as a number of interaction per 100 nucleotides of 3’UTR. The prediction of              

microRNA targets that have more than one target site was done using the pairs function of                

seedVicious (-x 4) with all other parameters as default. Also, a BASH script was written to                

identify only microRNAs with multiple target sites where a minimum distance of between             

targets is set. Finally, the energy function of seedVicious (-e) was used to calculate the               

thermodynamic stability of the microRNA-target duplexes. 

 

2.5. Evolutionary analysis of microRNAs regulation 

I used seedVicious’ ancestral state function (-x 3) which implements a maximum parsimony             

model to predict events of gains and/or losses of microRNA target sites between different species               

based on the given tree. Seven species were selected for such comparison; human, chimpanzee,              

rhesus macaque, mouse, rat, rabbit, and chicken. The choice of these species were determined by               
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2. Methods 
 
 

few factors. First, the availability of their genomic data as for some other species there were not                 

enough data (especially microRNA data). In addition, the rodents group is one of the most               

widely used group of animal models. 

 

To run seedVicious’ ancestral state function, an alignment of the 3’UTR should be provided in               

addition to the microRNAs and a newick tree file. The exact genomic locations of each 3’UTR                

was parsed from Ensembls BioMart as a chromosome number, 3’UTR start, and 3’UTR end              

positions. Based on this information, the pre-aligned sequences of the 3’UTRs where obtained             

from the table browser feature of the UCSC genome browser were the group was set to                

“comparative genomics” and the table was set to “Multiz align”. However, as UCSC genome              

browser outputs the alignments in a multiple alignment format (MAF), the MAF to FASTA              

webtool (Blankenberg et al., 2011) available on the public galaxy server ( https://usegalaxy.org/)            

was used to obtain the alignment in fasta format so that it can be used as seedVicious input. The                   

MAF to FASTA tool was provided by the maf outputs and the type of output was set to “one                   

sequence per species” and the studied species were selected from the table pre-detected by the               

maf to fasta tool. However, for some genes, not all species were available in the alignments                

which has been noted and the Newick trees were adjusted accordingly. In addition, Newick trees               

files were manually constructed based on the species present in the alignments. Finally, ClustalX              

(version 2.0) (Larkin et al., 2007) was used to eliminate gap-only columns from the alignments               

and to visualize the alignments. Finally, the TimeTree database (http://www.timetree.org/)          

(Kumar et al., 2017) was used to calculate the divergence times between species in order to                

calculate evolutionary turn over of gains and losses. 
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2. Methods 
 
 

 

2.5. Evolutionary analysis of ErbB ligands  

The dN/dS ratio was used to study the rates of evolution of ligands proteins, amino acid                

sequences of the conserved protein domains of ErbB ligands were obtained from Stein and              

Staros (2006) and their coding sequences (CDS) were retrieved from Ensembl genome browser             

(release 82) (Cunningham et al. 2015). Blast2 (Tatusova and Madden 1999) was used to retrieve               

the exact region of the CDS that codes for the conserved amino acid sequence. PAL2NAL               

(version 14) (Suyama et al., 2006) was used to calculate the dN/dS ratios between the amino acid                 

and the coding sequences between two species at a time per each ligand with the “remove gaps                 

in frame stop codons” parameter set to “yes” and all other default parameters. 

 

2.6. SNPs analysis of ErbB microRNA targets 

PolymiRTS database (version 3.0) (Bhattacharya et al., 2013) was used to parse information             

about the reported SNPs and INDELs in either the target sites or the seed regions of microRNAs                 

targeting ErbBs. Using the search tool of the database, I downloaded all microRNAs that are               

involved in regulating ErbBs (while having SNPs and/or INDELs) and filtered out for only those               

that were highly expressed as identified earlier. 

 

2.7. Nonsense mediated decay transcripts 

In order to count for the numbers of nonsense mediated decay transcripts used in pre-computed               

microRNA target prediction software. All interactions data were downloaded from the following            

software: TargetScan (7.2) (Agarwal et al., 2015), DIANA-microT-CDS (v5) (Paraskevopoulou          
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et al., 2013), RNA22 (v.2) (Miranda et al., 2006), miRanda (Enright et al., 2003), miRDB (v5.0)                

(Wong and Wang 2014). Depending on the format of the interactions data given by each               

software, the Ensembls transcripts IDs were parsed. Finally, the transcript IDs were matched to a               

list of transcript ID and transcript type fetched from Ensembls BioMart. 

 

2.8. Precision of microRNA target predictions 

Lists of experimentally validated microRNA interactions were downloaded from miRTarBase          

(release 7.0) (Chou 2017) for both human and mouse. Such lists were used as the gold-standard                

lists of interactions that seedVicious predictions were then compared to. As miRTarbase presents             

its data in a tabular form where a single microRNA (i.e. not microRNA families) is reported to                 

target a gene name, seedVicious was run again using single mature microRNAs and 3’UTRs              

were obtained again from Ensembls BioMart but with gene names instead of gene IDs. In order                

to calculate precision of microRNAs target interactions, a bash script was written to first identify               

(and keep counts of) interactions that either appears in the seedVicious list but not the               

miRTarBase one (false positives), in the miRTarBase but not seedVicious one (false negatives),             

or in both lists (true positives). Finally precision was calculated using the following formula 

 

recision P =  True positives
T rue positives + False positives  

 

2.9. High complex microRNA identification 

In order to identify high complex microRNAs, a PERL script was used to exclude microRNAs               

whose seed regions consists entirely of mono-, di- or tri-nucleotide repeats. This has resulted in               
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the elimination of 29 human microRNAs and 15 mouse ones. Once these microRNAs were              

identified, the analysis was carried out again using a new list of microRNAs which includes all                

microRNAs except the ones identified as low-complex. Finally, in order to test the effect of the                

eliminated microRNAs, regular expression bash scripting was used to eliminate miRTArBase           

interactions that were only reported by high-throughput experiments. 

 

2.10. Data visualization 

All the plots in this work were done using R (version 3.3.1) (R core team, 2014). The p-values on                   

the box plots are results of Wilcoxon non-parametric test that was used to test the significance of                 

the difference between each box (representing each level of signalling) and the adjacent one.              

While the non-parametric Kolmogorov–Smirnov test was used in other plots as specified in text. 

  

2.11. Scripts 

All the scripts used in this work can be accessed online (see Appendix 2) 
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3. The evolution of microRNA-mediated 
regulation of the ErbB signalling network 

 

 

Aim: On their own, microRNAs and ErbBs are very well studied. Also, the             

targeting of some ErbBs by single microRNAs and the effect of this on the              

regulation of different diseases is well established. However, the global regulatory           

role microRNAs play on the ErbB network is yet to be fully understood as the               

current knowledge misses a comprehensive view of microRNA-mediated        

regulation of the whole ErbB signalling network. In this chapter, I provide an             

extensive, systematic, and global view of the regulatory relationships between          

microRNAs and ErbBs. In addition, I highlight the evolutionary events that, I            

believe, should be taken into consideration when studying microRNA-mediated         

regulation of the ErbB network. 

 

MicroRNAs, on one hand, are among the major regulators of gene expression in eukaryotes, that               

are able to regulate around 30% of all genes (Stark et al., 2005). The ErbB network, on the other                   

hand, is one of the most studied signalling networks due to its important roles in normal                

physiology and disease (Samaga et al., 2009). Unsurprisingly, microRNAs regulate ErbBs           

signalling through targeting several genes among multiple levels of the signalling network            

(Barker et al., 2010). Starting from the top of the network, microRNAs have an established role                

in targeting and regulating several ligands that are essential for the initiation of signalling              
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3. The evolution of microRNA-mediated regulation of the ErbB signalling network 
 
 

through binding to one of the four tyrosine-kinase receptors (ErbB1 , ErbB2, ErbB3, and ErbB4)              

(Kedmi et al., 2015). Also, the regulatory interactions between microRNAs and ErbBs receptors             

is even more perceived due to their clinical and therapeutic importance as they are heavily linked                

to different diseases (Wieduwilt and Moasser 2017). Each of the four receptors are targets of               

many microRNAs and a few of this regulatory interactions have been validated experimentally             

and are thought as important factors in regulating regular functioning of the network as well as                

its role in diseases including cancer (Giles et al., 2011) (Table 1). Besides ligands and receptors,                

the regulation of different genes among several levels down the network by microRNAs is also               

known, for instance, MAPK (Chakraborty et al., 2016), PI3K/AKT (Josse et al., 2014), RAS              

(Johnson et al., 2005), and STAT (Kohanbash and Okada 2012) are all regulated by different               

microRNAs. 

 

Table 1 | Experimetally-validated interactions between microRNAs and ErbBs 

 Gene Experimentally-validated microRNA Interactions Reference 

EGF miR-223-3p Fabris et al., 2016 

HBEGF miR-132-3p Molnar et al., 2013 

TGFA miR-374a Wu et al., 2013 

AREG miR-34c-5p Tung et al. 2017 

NRG1 miR-125a-3p Yin et al., 2015 

EREG miR-192-5p Morimoto et al., 2017 

ErbB1 miR128b; miR-7 Chan et al., 2012; Webster et al., 2009 

ErbB2 miR-331-3p; miR-1296-5p Epis et al., 2009; Shan et al., 2017 

ErbB3 miR-22 Ling et al., 2012 

ErbB4 miR-146b Zhu et al., 2016 
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3. The evolution of microRNA-mediated regulation of the ErbB signalling network 
 
 

The binding of an ErbB ligand to one of its receptors initiates a simultaneous series of signalling                 

cascades that are collectively known as the ErbB signalling network. The ErbB network is              

majorly divided into three layers of signalling: (i) the input layer, comprising the eleven ligands               

and the four tyrosine kinase receptors, (ii) the signal processing layer, consisting of the signalling               

pathways and their nuclear transcription factors, (iii) the output layer, cellular actions ( Yarden             

and Sliwkowski 2001). In fact, ErbB ligands and receptors are considered the two key levels of                

the ErbB network (Barberan et al., 2016). However, beyond the ligands and receptors, there exist               

two more levels of intracellular signalling that culminates in one of the cellular actions. The               

activation of the ErbB receptors by the ligands is followed by an activation of one of different                 

intracellular signalling pathways including RAS/MAPK and PI3K/AKT. Consequently, the         

activation of such pathways is translated in the nucleus to transcription factors that finally decide               

the fate of the signalling by inducing a cellular action (Yarden and Sliwkowski 2001). As a                

result, the ErbB signalling network can be classified into four vertical levels of signalling:              

ligands, receptors, adapters (signalling pathways), and transcription factors. However, the exact           

extent of which genes take place in such cascades remains controversial as despite the agreement               

on the four receptors and eleven ligands, the fact that some signalling cascades can be activated                

via cross-talking and some are only activated in diseases makes it challenging to determine              

which genes are exactly involved ErbB signalling processing ( Yarden and Sliwkowski 2001). I             

here present the main ErbB signalling map which includes only the genes that have been majorly                

agreed upon to be taking part in ErbB signalling (figure 3.1) (see Methods chapter). 
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Interestingly, the regulatory relationship between microRNAs and ErbBs is not restricted to a             

one-way regulation in which microRNAs target and regulate ErbBs. In fact, the activation of the               

ErbB signalling through binding of growth factors to ErbB1 and ErbB2 in turn activates a subset                

machinery of cellular interactions that decrease the abundance of a set of tumour suppressor              

microRNAs that normally regulate the expression of oncogenic ErbB transcription factors like            

FOS. These microRNAs, known as immediate-down regulated (ID-miRs), are usually repressed           

in brain and breast cancers which implicates their role in regulating tumor progression. By this               

means, oncogenic ErbBs protect themselves from being targeted by tumor suppressing           

microRNAs by repressing the expression of such microRNAs which in turn promote the rapid              

induction of their oncogenic effects ( Avraham et al., 2010). 

 

 

 

Figure 3.1 | ErbB signalling network: Different levels of ErbB signalling starting with the ligands level (level                 
zero), the receptors level (level one), the adaptors level (level two), and finally the transcription factors level (level                  
three). 
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Given the clear fundamental role that receptors play in the functioning of the whole ErbB               

network, I here explore whether this importance is reflected in microRNA regulation of the              

network. To begin with, I test whether the receptors have longer 3’UTRs (thus more              

complementarity with microRNAs and more regulatory interactions) to be under a strict            

regulation by microRNAs. In addition, regardless of the length, I test whether ErbB receptors are               

favouribally regulated by microRNAs by counting for the presence of target sites per specific              

number of nucleotides on the 3’UTRs. Also, I test whether they are both longer and are                

favourably regulated by microRNAs.  

 

3.1. Lengths of the 3’UTRs of ErbBs 

Throughout evolution, it is thought that selective pressure has shortened the 3’UTRs of some              

genes to avoid microRNA regulation (such genes are known as anti-targets and usually have              

housekeeping functions) (Stark et al., 2005). Oppositely, the 3’UTR of other genes have always              

been maintained long for the exact opposite reason; to accommodate more microRNA target             

sites. Interestingly, genes that are involved in signal transduction are specifically known to have              

relatively longer 3’UTRs, possibly to conserve more microRNAs target sites. Slowly evolving            

genes, like ErbBs, usually preserve longer 3’UTRs and thus are tightly regulated by microRNAs              

(Cheng et al., 2009). 

 

Here, I explore trends in the length of the 3’UTRs across the ErbB network in regards to                 

microRNAs and their target sites that might help in figuring out whether ErbBs are intentionally               

attracting (or avoiding) regulatory microRNA targeting interactions by having longer or shorter            
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3’UTRs. In figure 3.2, I show the length of ErbB receptors compared to the length of all other                  

genes in the network (figure 3.2 A and 3.2 C), the different levels of signalling (figure 3.2 B),                  

and the length of 3’UTRs between different species (figure 3.2 D). Figure 3.2 C, shows               

significantly longer 3’UTR for ErbB1 and ErbB4 when compared to all other genes of the ErbB                

network. Interestingly, ErbB1 and ErbB4 are the only autonomous receptors that are able to bind               

to ligands and initiate a tyrosine kinase activity (Yarden and Sliwkowski 2001). In addition,              

while comparing the lengths of ErbBs 3’UTRs between human and mouse, there is no clear               

difference in length (figure 3.2 D). In fact, such analysis would have been much more               

informative if more species were included in the analysis. Unfortunately, the lack of reliable              

3’UTR sequences data in other species did not facilitate such analysis. Furthermore, in figure 3.3               

B, there is no apparent direction by which different ErbBs have longer or shorter 3’UTRs in                

regards to the level of signalling. In conclusion, we see that the receptors level and specifically                

the autonomous receptors ( ErbB1 and ErbB4) have longer 3’UTR that potentially host more             

microRNA target sites, and this pattern is also observed in mouse. 
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Figure 3.2 | The evolution of the lengths of the 3’UTRs of ErbBs: (A) The lengths of the 3’UTRs of all ErbB                      
genes, red line showing the mean length. (B) Box plots showing the lengths of ErbBs in regards to the levels of                     
signal transduction. (C) The frequency of different lengths of 3’UTRs across the ErbB network with the four                 
receptors highlighted. (D) A comparison of the lengths of the 3’UTRs of ErbB ligands and receptors between human                  
and mouse.  
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3.2. MicroRNA-mediated regulation of the ErbB network 

Since microRNAs bind to the 3’UTRs of their targets through complementarity, the longer the              

3’UTR, would logically mean the more the microRNA target sites and thus more regulatory              

interactions. In fact the length of 3’UTRs might also vary for evolutionary reasons that are not                

related to microRNAs. However, I here try to avoid this length bias by presenting              

microRNA-mediated regulation as density rather than absolute numbers (i.e. how many           

microRNA target sites are there per 100 nucleotides of 3’UTR). In addition, microRNAs with              

pairs of targets (i.e. a microRNA that have more than one target site on the same 3’UTR) are                  

believed to be more solid predictions as a gene with a single microRNA target site on its 3’UTR                  

is unlikely to be repressed by a microRNA (Stark et al., 2005). For this reason, I present a further                   

layer of analysis that is restricted to those interactions where there are at least two target sites per                  

a microRNA on the 3’UTR. Furthermore, experimental analysis of the regulation efficacy of             

microRNAs with multiple target sites, shows an optimum efficacy when pairs of target sites are               

located in close proximity to each other (Sætrom et al., 2007; Marco 2018). So I here present a                  

final, most strict, level of regulation restricted to interactions with pairs of targets that are no                

more than 50 nucleotides apart. Finally, in addition to complementarity, number of target sites,              

and distances between them, a microRNA needs to exist in high levels at the same tissue as its                  

target for the inhibitory interaction to take place. For this reason, I use a set of 380 microRNA                  

families that are highly expressed in at least one human tissue in order to have a more clear                  

picture of microRNA-mediated regulation of the ErbB network.  
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In regards to the four levels of ErbB signalling, ligands and receptors are known to be the key                  

levels of the network. Here, I explore whether there are any patterns by which microRNAs               

regulate the four layers of the network. Firstly, the distribution of microRNAs target sites among               

the 3’UTRs among different levels is uniform. For instance, in figure 3.3 A, the median density                

of the presence of microRNA target sites on the 3’UTR (the second quartile of the boxplot) does                 

not show any difference. Likewise, in figure 3.3 B, the lack of difference is even more clear                 

when restricting the analysis to highly expressed microRNAs only. In figures 3.3 C and 3.3 D,                

while counting for all microRNAs and highly expressed ones with more than one target site, the                

receptors level clearly stands out as the most tightly regulated level. However, the p-values              

(Wilcoxon test ) does not indicate that this difference is significant. One explanation for that              

might be the relatively low number of sample size of the receptor level (only four genes).                

Finally, restricting the analysis to microRNAs with pairs that are no more than 50 nucleotides               

apart shows an even distribution of the density of microRNAs targeting among the levels which               

again might be affected by the small sample size due to the strict filtering (figures 3.3 E and 3.3                   

F). 
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Figure 3.3 | The patterns of microRNA-mediated regulation of ErbB signalling: Boxplots showing the patterns               
by which microRNAs regulate different levels of ErbB signalling. (A) Target sites for all human mature                
microRNAs. (B) Target sites for highly expressed microRNAs. (C) All microRNAs with more than one target site.                 
(D) Highly expressed microRNAs with more than one target site. (E) All microRNAs with a maximum distance of                  
50 nucleotides between pairs of target sites. (F) Highly expressed microRNAs with a maximum distance of 50                 
nucleotides between pairs of target sites. 
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Interestingly, according to figures 3.2 B, 3.3 C, and 3.3 D there seems to be a correlation                 

between the lengths of the 3’UTRs and the density of microRNAs with more than one target site.                 

In figure 3.4, I show a clear and significant correlation between the length of the 3’UTRs of all                  

the ErbB genes and the number of microRNAs with multiple target sites per 100 nucleotide of                

3’UTR where the longer the 3’UTR the higher the density of microRNAs target sites. According               

to this result, while restricting to the more fierce regulatory relationships (those having multiple              

target sites per microRNA) members of the ErbB network with longer 3’UTRs (like receptors)              

have higher density of microRNA target sites. 

 

In order to explore the densities of microRNA regulation in ErbB receptors, I use the sliding                

windows smoothing method with a window size of 200 nucleotide and 1 nucleotide offset              

between windows, I compare the density of the targeting (i.e. how many target sites are there per                 

200 nucleotides) of highly expressed microRNAs to the observed sequences and a thousand             

replicates that were generated by shuffling the 3’UTRs while preserving the dinucleotide            

frequency in each of the 3’UTRs of the ErbBs receptors. In figure 3.5, there seems to be a                  

difference in distribution of densities between the observed and the average of the expected              

sequences among most receptors. This indicates that the observed sequences of ErbBs 3’UTRs             

might be under strong selective pressure that, intentionally, preserve their microRNAs target            

sites not just their lengths.  
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Figure 3.4 | The length of ErbBs 3’UTRs and microRNAs with multiple target sites: The correlation between                 
microRNAs with multiple target sites and the length of their target 3’UTRs among the ErbB signalling network. 
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Figure 3.5 | The density of microRNA-mediated regulation of ErbB receptors: The densities of              
highly-expressed microRNAs target sites among windows (200 nucleotides wide) of 3’UTRs of ErbBs receptors.              
(Grey lines shows 1000 replicates, black lines shows the average distribution and red lines shows observed                
sequences). 
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3.3. The evolutionary conservation of ErbB ligands 

Despite the extensive study of ErbBs, their evolutionary conservation, and their cellular            

functions, it has recently been shown that ErbBs functions are not as conserved among different               

species (Liu et al., 2013). Ligands, together with receptors, form the key components of the               

ErbB signalling network (Barberan et al., 2016). While the high conservation of ErbB receptors              

has long been established, the degree of conservation of ErbB ligands remain unclear (Stein and               

Staros 2000). Here, I use the protein domain structures of the eleven ErbB ligands to explore                

their evolutionary conservation as described by Suyama et al., (2006). 

 

One of the most widely used methods of studying proteins is to study the rate by which they                  

evolve. For this, the dN/dS ratio is used to show the rates by which these proteins evolve through                  

showing the rates of nonsynonymous and synonymous mutations where a gene is expected to be               

neutrally evolving (dN/dS = 1) while a low dN/dS ratio (<1) indicates that the gene is                

experiencing purifying (negative) selection and a high dN/dS ratio (>1) indicates that the gene is               

undergoing Darwinian (positive) selection (Kimura 1977). The analysis of the rates by which             

ErbBs ligands are evolving indicates a low dN/dS ratio between different pairs of species              

belonging to two groups, primates and rodents. First, the rates between human and chimpanzee              

within the primates groups were lowest, indicating that they are under strict purifying selection              

that insures their conservation. Second, the same low rates of evolution is observed between              

mouse and rat in the rodents group. Finally, the cross-group analysis (human and mouse) also               

shows relatively low rates of protein evolution (figure 3.6). Such observations, indicate the             

evolutionary conservation of the ErbBs ligands as key members of the ErbB network. While the               
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protein domain structures show the conservation of ErbBs ligands, the conservation of the target              

sites on the 3’UTRs of such ligands is what determines the conservation of microRNA-mediated              

regulation. As a result, in the next part I explore the conservation of microRNA-mediated              

regulation among the conserved ErbB ligands and receptors. 
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Figure 3.6 | The conservation of ErbB ligands: The rates of protein evolution of the eleven ErbB ligands                  
represented by the dN/dS ratio between primates and rodents (human-mouse) and members of each group               
(human-chimpanzee and mouse-rat). 
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3.4. The conservation of microRNA regulation of ErbB signalling 

As discussed earlier, both microRNAs and ErbBs are highly conserved across almost all animals.              

However, this analysis shows that this high conservation is not necessarily the case when it               

comes to their interactions. In fact, in the majority of microRNAs target prediction software, a               

big emphasis is given to the conservation of target sites that in many cases, non-conserved target                

sites are disregarded as false positives (Pinzon et al., 2017). Here, among other conserved              

interactions, I highlight the existence of many nonconserved ones. I use seedVicious’ ancestral             

state function to predict the conservation of the interactions between microRNAs and ErbBs             

ligands and receptors by exploring the events of gains and losses of such interactions between               

seven different species: primates (human, chimpanzee and rhesus macaque), rodents (mouse, rat            

and rabbit), and a bird (chicken) as an evolutionary outgroup. In figures 3.7 and 3.10 there are                 

relatively high numbers of target sites gains and losses per each node of the phylogenetic tree.                

However, there seems to be a distinct sum of target sites gains on the primate lineage compared                 

to that of the rodents. In addition, through the course of time, microRNAs have been gaining                

target sites in ErbB receptors among the tested species which is shown on the timeline of target                 

sites turnover among microRNAs which highlights the necessity of microRNAs interaction in            

regulating the functioning of the network. Furthermore, I carry out the analysis using a set of                

highly expressed microRNAs that are conserved among most animals according to the findings             

of Friedman et al., (2008). In figures 3.8 and 3.11, despite the conservation of microRNAs there                

still appears to be a high degree of target sites gains and losses between the tested species. 
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The high numbers of gains and losses of microRNA target sites implied the possibility of target                

sites emerging (or vanishing) at one stage of mammalian evolution. In addition, the strikingly              

high number of gains of target-sites on the primate lineage, complemented by the high number               

of target sites loss on the mouse/rat lineage suggests the possibility of primate-specific             

interactions between microRNAs and ErbBs. For instance, the highly-expressed microRNA,          

miR-574-3p is a known tumor-suppressor microRNA through its ability to regulate the            

expression of ErbB1 (Chiyomaru et al., 2013). However, this analysis shows that the             

tumor-suppression powers of miR-574-3p are limited to primates as it does not conserve any              

target sites in rodents nor chicken. Likewise, the conservation of target sites of both              

hsa-miR-127-5p and hsa-miR-124-3p in ErbB1 and ErbB3, respectively are limited to the            

primate lineage where, in the case of the later, a single nucleotide change was the reason behind                 

a target site being conserved only among primates but not any other species (figure 3.9). In fact,                 

these are just few examples of many lineage-specific microRNA regulations among ErbB            

receptors. 

 

 

 

 

 

 

 

 

 65



 
 

3. The evolution of microRNA-mediated regulation of the ErbB signalling network 
 
 

 

 

    
 

Figure 3.7 | Ancestral state of the regulation of ErbB receptors by highly-expressed microRNAs: (A)               
seedVicious’ predictions of the events of gains (+) and losses (-) of target sites of highly-expressed microRNAs in                  
ErbB receptors. (B) Timeline of turnover by showing the net gains of microRNA target sites in million years (Myr). 

(A)

(B)
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Figure 3.8 | Ancestral state of the regulation of ErbB receptors by conserved and highly-expressed               
microRNAs: (A) seedVicious’ predictions of the events of gains (+) and losses (-) of target sites of                 
highly-expressed microRNAs in ErbB receptors. (B) Timeline of turnover by showing the net gains of microRNA                
target sites in million years (Myr). 

(A)

(B)
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Figure 3.9 | Lineage-specific microRNA regulation in ErbB receptors: Examples of events were target sites of                
highly expressed microRNA are only conserved among primates in ErbB1 and ErbB3.  
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Figure 3.10 | Ancestral state of the regulation of ErbB ligands by highly-expressed microRNAs: (A)               
seedVicious’ predictions of the events of gains (+) and losses (-) of target sites of highly-expressed microRNAs in                  
ErbB receptors. (B) timeline of turnover by showing the net gains of microRNA target sites in million years (Myr). 

(A)

(B)
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Figure 3.11 | Ancestral state of the regulation of ErbB ligands by conserved and highly-expressed               
microRNAs: (A) seedVicious’ predictions of the events of gains (+) and losses (-) of target sites of                 
highly-expressed microRNAs in ErbB receptors. (B) timeline of turnover by showing the net gains of microRNA                
target sites in million years (Myr). 

(A)

(B)
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3.5. SNPs and microRNA-mediated regulation of ErbBs 

Single nucleotide polymorphism (SNP) is the most abundant type of genetic variation in the              

human genome (Kim and Misra 2007). By definition, a SNP is a single-nucleotide variation that               

is present in at least 1% of the population (Brookes 1999). The presence and profound impact of                 

SNPs in ErbB genes is well established (Toomey et al., 2016), SNPs in coding regions of ErbBs                 

receptors can alter their structures and/or functions. In addition, such SNPs are strongly linked to               

ErbBs roles in cancer and their drug resistance (Choura and Rebaï 2009). However, cancer drugs               

are not the only targeters of ErbBs, microRNAs are there too. In fact, SNPs can possibly alter the                  

whole regulatory functions of microRNAs on ErbBs by either creating a new interaction or              

destroying an established one. Here, I report the numbers of target sites created or destrdue to                

SNPs in target sites and/or seed regions of microRNAs as reported by PolymiRTS Database              

(release 3.0) (Bhattacharya et al., 2013). According to these results, there appears to be a               

relatively large number of SNPs in both the seed regions of microRNAs targeting ErbBs and the                

target sites of such microRNAs on the 3’UTRs of ErbBs ligands and receptors. Such SNPs,               

together with coding regions SNPs, may result in a paradigm shift in our understanding of the                

whole regulatory role microRNAs play in ErbB signalling (Table 3.2). In addition, the longer the               

3’UTRs of the gene the more SNPs there seems to be and the more complementarity with                

microRNAs having seed regions SNPs. However, despite the relatively-long 3’UTR of ErbB4,            

the abundance of SNPs seems minimal.  
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Table 3.2 | SNPs in either the target sites or the seed regions of microRNAs targeting ErbBs                
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3.6. Discussion and conclusion 

In this chapter, I presented a comprehensive overview of the regulation of the ErbB signalling               

network by microRNAs. While many other studies have focused on the regulation of a single               

ErbB gene (or level, like receptors) by a single microRNA in a single species (usually human). I                 

here provide a more diverse and comprehensive view as I believe it is important to look upon the                  

ErbBs signalling network as an intact body where a change (like a regulation by microRNAs) in                

one level of signalling will often have its influence on the whole functioning of the network.  

 

MicroRNAs play a fundamental role in the regulation of the ErbB signalling. According to the               

results of this chapter, the autonomous receptors ErbB1 and ErbB4 tends to be under a relatively                

more strict regulation by microRNAs which might reflect the importance of these receptors in              

initiating the intercellular cascades of ErbB signalling. In addition, most of the therapeutic             

developments and clinical trials of anti-ErbB agents focuses on ErbB1 and ErbB2 as they are the                

two receptors with the most established roles in cancer so far (Tebbutt et al., 2013). However,                

several studies have recently shown the important role played by ErbB4 in various types of               

cancer (Prickett et al., 2009; Williams et al., 2015; Soung et al., 2006). As I show here, ErbB4                  

and ErbB1 are the two most tightly regulated by microRNA in the whole network ErbB4, and the                 

two autonomous receptors. As a result, I believe that more focus should be given to ErbB4 as a                  

potential target in cancer therapy.  

 

Using the recent microRNA target prediction tool, seedVicious (Marco 2018), I was able to              

explore the evolutionary history of microRNA-mediated regulation of the ErbB network. This            
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analysis uncovered some of the evolutionary events that resulted in the way we observe              

microRNA-mediated regulation of the network today. Unfortunately, the lack of reliable           

genomic data of other species than human and mouse did not allow me to provide a wider view                  

of the evolution of microRNA-mediated regulation of the ErbB network. In addition, I have              

highlighted the high number of SNPs in microRNA seeds and their complementary target sites              

among ErbBs. Such SNPs may posses major effects in the regulation of ErbBs by microRNAs in                

both diseases and normal physiology and should not be ignored. 

 

In fact, the therapeutic potential of ErbBs is too promising to ignore ( Arteaga and Engelman               

2014). However, their unsuccessful therapeutic use so far is a known issue that have been               

holding their progress back for long time. While several explanations to such deficiency have              

been proposed, I believe that, in line of my results, there are more factors that need to be                  

considered. First, while both microRNAs and ErbBs ligands and receptors are heavily conserved             

my results show that the way microRNAs regulate ErbBs is not as conserved due to the high                 

numbers of gains and losses of microRNAs target sites. In addition, the interspecies variability              

by the presence of a high number of SNPs affecting microRNA-mediated regulation of the              

network should be taken into consideration. 
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4. MicroRNA-mediated regulation of 

Notch and Toll-Like signalling networks 

 

Aim: Further to the previous chapter, I here study the regulation of microRNA to 

different cell signalling networks namely, Notch, Toll-like, and Trail. ErbB is one 

of the most complex cell signalling networks. However, this chapter explores the 

patterns of microRNA-mediated regulation among other networks that also play 

fundamental roles in many biological process and their mis-regulation have been 

linked with several diseases.

 

MicroRNAs target and regulate many cell signalling networks (Ichimura et al., 2011). In the              

previous chapter, the study of microRNA-mediated regulation to one of the most notable cell              

signalling networks (ErbB) revealed a few interesting aspects about the regulatory relationship            

between microRNAs and ErbBs. As a result, it is decisive to explore whether such aspects are                

common across different cell signalling networks or just specific of ErbB. For instance, while              

both Notch and Toll-like networks rely on conserved receptors that are important regulators of              

many processes and are targets to many drugs like ErbBs. Notch, on one hand does not rely on                  

intracellular cascades for the transmission of signals as once a receptor is activated, the              

intracellular domain of the receptors localizes at the nucleus where it interact with transcription              

factors and result in cellular actions. Toll-like, on the other hand, is one of the major regulators                 
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of immune responses. Thus, its receptors are not activated by the means of signals sent by other                 

cells but rather they are activated by pathogens. In addition, Notch signalling -unlike ErbB,              

Toll-like and Trail- relies on juxtacrine signalling in which the cell sending the signal is in direct                 

contact with the cell receiving it and thus, signalling is restricted to neighboring cells. However,               

each of these networks have their common and in contrast features when compared with ErbB.               

The three networks studied in this chapter, are less complex in nature as there seems to be a                  

general agreement on which genes take place in the networks. 

 

The Notch signalling network is considered one of the most studied cell signalling networks, as               

for more than a century, Notch has been providing insights on the development, physiology, and               

diseases of many species including humans. While it shares some features with ErbB as both               

networks play important roles in development and are highly related to several diseases             

including cancer as well as relying on a family of four transmembrane receptors for the initiation                

of the signalling, Notch is also different in several features. In addition to its juxtacrine signalling                

nature, the Notch signalling network lacks any intermediate adaptor pathways between the cell             

membrane (where the signalling starts upon the binding of a Notch receptor to on of its ligands)                 

and the cell nucleus (where transcription takes place) as the intracellular domain of the Notch               

receptors itself gets translocated to the nucleus and interact with the transcription factors. For              

such reasons, the Notch signalling network may offer new insights on the structures of cell               

signalling networks and how it might affect microRNA regulation.  
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Likewise, the Toll-like signalling network is also considered among the most studied signalling             

networks due to its paramount role in immune response. Signalling through the Toll-like network              

is initiated by the binding of a pathogen (or a pathogen related molecule) to one of the nine                  

human toll-like receptors (4 of which are endocytic receptors, and the others are cell surface               

ones). However, the fact that Toll-like signalling is not initiated by the means of traditional               

ligands but rather by pathogens makes it a of special importance in exploring the effects of the                 

lack of ligands on the regulation of a signalling network. In addition, despite the obvious               

direction of regulation between microRNA and the Toll-like signalling network (where           

microRNAs regulate the expression of genes involved in Toll-like signalling), there seems to be              

a striking opposite face to this regulation as in fact Toll-like signalling can as well regulate                

microRNA expression levels (Aalaei-andabili 2013). The changes in microRNA expression          

levels in response to Toll-Like signaling was first reported by Taganov et al., (2006) when the                

expression of miR-146a/b was elevated upon the activation of the Toll-like signalling. Shortly             

after, several studies have reported similar patterns where specific microRNAs are either highly             

or lowly expressed in response to Toll-Like signalling (Moschos et al., 2007; Bazzoni et al.,               

2009; O'neill et al., 2011). Furthermore, in a pattern similar to that observed in ErbB, some                

(early-response) microRNAs have shown elevated expression levels in the tissues upon the            

stimulation of toll-Like receptors (He et al., 2014), furthermore, another microRNA (miR-21) is             

expressed at higher level but after longer times post the stimulation of Toll-like receptors thus it                

is referred to as (late-response) microRNA (Sheedy et al., 2010). As a result, exploring the               

mechanisms of microRNA regulation of Toll-like signalling might provide new insights into            

such a relationship. 
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The results of the ErbB analysis as well as several publications showed a special importance of                

receptors as being heavily targeted by microRNAs (Adem et al., 2016). Accordingly, it was              

important to explore whether such pattern applies to other major cell signalling networks or not.               

The choice of Notch, Toll-like and TRAIL networks stemmed from some similarities they share              

with ErbB in some cases, and some contrasts they have in others. While integrating the lessons                

learned from studying ErbB regulation by microRNAs, this chapter will show if the patterns that               

were observed in ErbB signalling apply to other major cell signalling networks or not. In               

addition, in order to keep the predictions of microRNA regulation to these networks as precise as                

possible, I only present seedVicious’ predictions of highly expressed microRNAs that have            

multiple target sites on the 3’UTRs of their targets. 
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4.1. MicroRNA regulation Toll-like signalling 

Unlike ErbB, Notch, and TRAIL, the Toll-like signalling network does not rely on ligands for               

the activation of the network. In fact, the signalling is initiated through the binding of a pathogen                 

(or a pathogen related molecule) to one of the Toll-like receptors. As a result, the Toll-like                

signalling network can be classified into three levels: receptors, adaptors (including signalling            

pathways) and, transcription factors. 

 

Following the analysis of ErbB signalling network, I here explore the patterns of microRNA              

regulation to the Toll-like signalling network and to explore whether the lack of a ligands level                

would be reflected in the patterns of microRNA regulation. In figure 4.1, in regards to the above                 

levels, the adaptor level seems to be slightly higher-regulated by highly-expressed microRNAs.            

However, the differences of the regulation between levels of the Toll-like signalling network are              

not significant.  

 

In the previous chapter, a strikingly high number of turn over of microRNA target sites among                

the highly-conserved ErbB receptors level has been reported. In addition, there was a clear bias               

in the gains of microRNA target sites in the primate lineage. The analysis of the gains and losses                  

of microRNAs target sites on Toll-Like receptors, despite still showing a high number of gains               

on the primate lineage, does not show a clear direction of gains and losses between primates and                 

mouse/rat as that shown in ErbB. In addition, there appears to be an accumulation of a high                 

number of net gains of target sites at the divergence time between primates and rodents which                

might stem from the high number of gains among the rodents lineage (figure 4.2). 
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Figure 4.1 | MicroRNA-mediated regulation of Toll-like signalling network: Boxplot showing the regulation of              
highly-expressed microRNAs that have multiple target sites per each of the different levels of toll-like signalling                
network. 
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Figure 4.2 | Ancestral state of the regulation of Toll-like receptors by microRNAs: (A) seedVicious’ predictions                
of the events of gains (+) and losses (-) of target sites of highly expressed and conserved microRNAs in Toll-like                    
receptors. (B) Timeline of turnover by showing the net gains of microRNAs target sites in million years (Myr). 
 

(A)

(B)
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4.2.  MicroRNA regulation of NOTCH signalling 

The core Notch signalling network can be classified into three levels of signalling as ligands,               

receptors, and transcription factors. Once a ligand (attached to the signal-sending cell) binds to              

the extracellular domain of one of the transmembrane Notch receptors (on the signal-receiving             

cell), a series of biochemical interactions take place releasing the intracellular domain of the              

receptor (NICD) which then travels to the nucleus where it interacts with the transcription              

factors inside the cell nucleus regulating the expression of several genes (Bray 2016). In the next                

part, I study microRNA regulation of these different levels of the Notch signalling network to               

explore whether any of the levels is more strictly regulated which might be reflected in the                

importance of such levels. 

 

In terms of microRNA-mediated regulation and in regards to the levels of Notch signalling, the               

transcription factors levels seems to be the highest-regulated level by highly-expressed           

microRNAs, followed by the receptors level and the ligands level respectively. However, while             

testing the significance of such pattern of regulation, no significance was detected. In addition, it               

worth noting that the small sample size per level (for instance, only two transcription factors)               

makes it deceptive to rely on such visualization (Figure 4.3). 

 

Interestingly, the analysis of the gains and losses of the targets sites of microRNAs that are both                 

highly expressed and highly conserved shows a relatively high number of losses on the mouse/rat               

lineage complemented by a relatively high number of gains on the primate one in a pattern                

similar to that observed in ErbB receptors (Figure 4.4). Such pattern might reflect the important               
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roles played by microRNAs in the regulation of such networks in primates in normal physiology               

and in disease. 

 

These results, in addition to the result of microRNA regulation of the Toll-like network and in                

contrast to the results of chapter 3, shows that microRNA-mediated regulation might be             

consistent among different levels (i.e. the signalling level does not have an effect on the degree                

of microRNA-mediated regulation).  
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Figure 4.3 | MicroRNA-mediated regulation of Notch signalling network: Boxplot showing the regulation of              

highly-expressed microRNAs that have multiple target sites per each of the different levels of Notch signalling                

network. 
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Figure 4.4 | Ancestral state of the regulation of Notch receptors by microRNAs: (A) seedVicious’ predictions of                 

the events of gains (+) and losses (-) of target sites of highly expressed and conserved microRNAs in Notch                   

receptors. (B) Timeline of turnover by showing the net gains of microRNAs target sites in million years (Myr). 

(A)

(B)
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4.3. MicroRNA regulation of TRAIL signalling 

TRAIL signalling (Tumor necrosis factor-related apoptosis-inducing ligand) is one of the most            

studied signalling pathways due to its immense importance in regulating apoptosis and thus             

cancer (Falschlehner et al., 2007). However, in regards with the signalling cascades, TRAIL does              

not maintain a signalling cascade like other networks studied in this work (ErbB, NOTCH, or               

Toll-like) as it first relies on one ligand only (TRAIL) and four receptors (TRAILR1, TRAILR2,               

TRAILR3, and TRAILR4). Interestingly, the conservation of some of the TRAIL receptors is             

restricted to primates (when compared to rodents and chicken). As a result, it was not possible to                 

estimate gains and losses of microRNA target sites on such network. 
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4.4. The lengths of receptors 3’UTRs 

Based on the results of the previous chapter, one of the questions that had to be answered in this                   

chapter was whether receptors have special importance when it comes to microRNA-mediated            

regulation or not. In fact, unlike ErbBs, both Notch and Toll-like receptors are not favourably               

regulated by microRNAs. However, as microRNA-mediated regulation depends mainly on          

having microRNA target sites on the 3’UTR and the results of the analysis of ErbBs have shown                 

a direct correlation between the length of 3’UTR and the density of target sites (i.e. the number                 

of target sites per 100 nucleotides of length). Logically, a longer 3’UTR would mean more               

susceptibility of microRNA target sites on this 3’UTR and thus more microRNA regulation. In              

this part, I test whether receptors generally conserve longer 3’UTRs compared to non-receptors             

genes or not. 

 

While comparing the lengths of the 3’UTRs of the receptors of the ErbB, Notch, and Toll-like                

networks to all other genes, only ErbB receptors have higher medians of 3’UTR lengths when               

compared to other genes in the network (figure 4.5). In fact, such bias in the median of the length                   

of the 3’UTRs of ErbB receptors in mainly caused by two receptors (ErbB1 and ErbB4 ). In                

addition, TLR4 and NOTCH2 stand out for conserving the longest 3’UTR among all other genes               

of the Toll-like and Notch networks, respectively. Interestingly, all of these receptors that             

conserve longer 3’UTRs are of significant biological importance. As mentioned previously,           

ErbB1 and ErbB4 are the only autonomous ErbB receptors (they can initiate the signalling              

independently, unlike ErbB2 and ErbB3). In addition, TLR4 is known for its pleiotropic nature as               

it is involved in the regulation of a broad range of processes and its mutations have been heavily                  
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linked to a large number of diseases. These results might imply that some of the receptors might                 

fall under strict pressure to conserve longer 3’UTRs accomodating more microRNA target sites             

allowing more strict regulation by microRNAs. 

 

Based on these results and the established importance of receptors in cell signalling generally. I               

compare in the next analysis the lengths of 3’UTR of all human receptors to all other genes on                  

the genome in order to test whether receptors are favourlibally regulated in general or not. In                

figure 4.6 while comparing the 3’UTRs of all the human receptors as reported by PANTHER               

(see Methods) to all other genes, there seems to be no significant difference between both groups                

which indicates that, unlike ErbBs, microRNAs do not necessarily favour the targeting of             

receptors. However, given the established importance of ErbB receptors the relatively-longer           

lengths of their 3’UTRs might indicate a special regulatory importance that resulted in longer              

3’UTRs which will consequently accommodate more microRNAs target sites. 
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Figure 4.5 | The lengths of the 3’UTRs among the ErbB, Notch, adn Toll-like signalling networks: Boxplots                 

showing the difference of the lengths between receptors and all other genes involved in the signalling of each                  

network. 
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Figure 4.6 | Densities of 3’UTRs lengths: The differences in the densities of the lengths of the 3’UTRs of all                    

human receptors (red) and all other human genes (black). 
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4.5. Discussion and conclusion 

After exploring how microRNAs regulate the ErbB signalling network it was relevant to explore              

if the same patterns apply in other signalling networks or not. Hence, I chose three different                

networks that share some features with ErbB but are also unique in other ways. 

 

One of the lessons learnt from assembling the ErbB network was the idea of levels of signalling,                 

as based on Yarden and Sliwkowski (2001) results, signalling networks should actually be             

approached by the means of levels. For instance, if in a network like ErbB only two genes (out of                   

50 different genes) are under strict regulation by microRNAs, this might be considered             

neglectable. However, as it was the case in the previous analysis, these two receptors are the only                 

autonomous ones. As a result, microRNAs do in fact -by regulating only these two genes- fine                

tune the whole network. One of the reasons of the choice of the Notch and Toll-Like networks                 

was that each of them lack one of the signalling levels compared to ErbB (this being adaptors                 

and ligands in Notch and Toll-Like respectively). It was interesting to explore whether the lack               

of one of these levels would put the layers up- or downstream under a higher regulatory pressure. 

 

In the ErbB chapter, it was obvious that the very low precision caused by the use of all human                   

microRNAs (stemming from the random complementarity) is suppressing the appearance of any            

regulatory patterns. However, upon limiting results to those who are highly expressed and have              

multiple target sites, some patterns appear (the favourable regulation of ErbB receptors for             

instance). However, applying a further filter (say, distances between targets and/or maximum            

energy levels) might as well be too strict.  
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4. MicroRNA-mediated regulation of Notch and Toll-like signalling networks 
 
 

To conclude, the analysis of the work of this chapter shows that microRNA-mediated regulation              

is not necessarily correlated with the level of signalling in a network. In addition, the relatively                

high levels of microRNAs target site turnover that was reflected in the gains and losses of                

microRNA target sites goes in-line with the results of the previous chapter. As a result, among                

different cell signalling networks, the regulatory interactions between microRNAs and their           

targets might not be as conserved as the microRNAs and the targets themselves. Finally, the               

analysis of the lengths of the 3’UTRs shows that only ErbB receptors conserve longer 3’UTRs               

when compared to other genes in their networks. 
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5. Tackling issues in microRNA target 
prediction 
 

 

Aim: Since their discovery, a substantial amount of research has been done on             

microRNA which has led to their recognized importance presently. Accordingly,          

many microRNA target prediction software has been established, reviewed,         

enhanced, and optimised. However, there still seems to be much room for            

improvement. In this chapter, I provide a brief review of microRNA target            

prediction and I will, in line of my results, be providing new insights about the               

understanding of microRNA target prediction as well as highlighting some of the            

factors that need to be taken into consideration in microRNA target prediction. 

 

MicroRNAs have come along way from being overlooked as one of the “junk” non-coding              

sequences to being regarded as one of the major regulators of gene expression that are believed                

to be able to regulate up to 60% of human protein-coding genes ( Friedman et al., 2009). The                 

relatively-recent interest in microRNAs, conservation, their roles, and their targets sparked a            

massive interest in microRNA research. The more microRNAs are researched, the more            

interesting they seem to be and the more the questions that need to be answered about them.  
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Target prediction lies in the heart of microRNA research ( Peterson et al., 2014). While              

microRNAs themselves provide lots of insights on genomics and evolution, their ability to target              

(and possibly regulate) different genes, thus different biological functions, is always the            

fundamental aspect of microRNA research. Thus, efforts of establishing and continuously           

improving microRNA target prediction tools has been as old as microRNA discovery. 

 

In animal microRNA research, targeting and regulating are not necessarily the same thing. In              

fact, having a seed-match is not enough neither necessary for a microRNA to be able to regulate                 

its targets (Sætrom et al., 2007). On the one hand, a perfect seed-match on its own can not be                   

considered a reliable indicator of regulation (Didiano and Hobert 2006). On the other hand, some               

interactions with G:U wobbles were reported to be able to regulate gene expression. Also,              

near-targets (target sites with a single nucleotide mismatch) may also be functional in regulating              

gene expression (Marco 2018).  

 

Ultimately, a microRNA target interaction remains an indication of the regulation until it is              

experimentally validated. In fact, the relationship between microRNA target prediction and           

experimental validation is an ouroboros one, where computational prediction usually precedent           

experimental validation but also experimentally validated interactions are often used as a guide             

to train and optimize prediction software (Bradley and Moxon 2017). 

 

Despite the huge advancement of the methods designed to predict microRNA targets, the false              

positive rate of most microRNA target prediction software remains greater than 0.3 (Zheng et al.,               
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2013). In fact, none of these software implies incorrect models, however, the nature of animal               

microRNA targeting implies that a sequence complementarity of as little as 6 nucleotides is, in               

principle, a possible regulatory interaction. This inevitably results in a large pool of predictions.              

Thus, in most microRNA target prediction software, the main improvement efforts are spent             

filtering for true positives. For this reason, microRNA target prediction usually needs to be              

supported by other features beyond the seed region complementarity. This factors include            

evolutionary conservation, hybridization energy, AU content of seed region, and structural           

accessibility of binding sites (Ding et al., 2016). While all these features are believed to be                

informative in predicting microRNA targets with limited number of false positives, there still             

seems to be a high number of false positives. In addition, strictly limiting predictions to those                

who possess such features, ultimately leads to a higher number of false negatives (see discussion               

chapter). 

 

In addition to the aforementioned, two other features are known to be good predictors of a                

microRNA target prediction. However, other than seedVicious, these features are not widely            

used in microRNA target prediction software. Among such features is the number of target sites               

the microRNA has on the 3’UTR of its target mRNA. If a microRNA has more than one target                  

site on the same 3’UTR, such target sites work cooperatively in order to either cleave or repress                 

the translation of the target gene. Thus, microRNA with multiple target sites are believed to be                

robust regulators of gene expression ( Agarwal et al., 2015). However, the effect of multiple              

target sites might be diminished in cases where the target sites are separated by large distances                
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on the 3’UTR (Sætrom et al., 2007). As a result, microRNA with multiple target sites that are in                  

close proximity to each other are considered optimal for gene regulation. 

 

To conclude, despite all the layers of checks used by microRNA target prediction algorithms, the               

high number of false positives remain a known issue that is holding back the progression of                

microRNA research in general (Zheng et al., 2013). Among the different measurements used to              

limit false positives, I here focus on two that have not been used in other software (than                 

seedVicious) which are the number of target sites and the minimum distance between them. In               

this chapter, I use mirTaRBase (7.0) (Chou et al., 2017), the database of experimentally validated               

microRNA target interaction and seedVicious to explore the effect of the number of target sites               

and the distances between such targets on the precision of microRNA target prediction. 

 

5.1. The use of non-functional transcripts among microRNAs target prediction software 

The transcription of a DNA to an mRNA depends on a splicing machinery that transforms               

pre-mRNA to mature mRNA. Due to the presence of different combination of splicing variants,              

different mRNAs can be transcribed from the same gene in a process known as alternative               

splicing (Cooper 2004). In microRNA target prediction, complementarity is predicted between a            

given microRNA and the 3’UTR (or less-frequently, CDS or 5’UTR) of a transcript of the               

targeted gene. However, if more than one transcript exists per gene, microRNA target prediction              

software either use the most representative transcript which is decided by the presence of the               

highest number of 3P-seq tags, or the transcript with the longest 3’UTR to avoid missing               

possible target sites based on the logical assumption that the longer the 3’UTR the more the                
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target sites, or different transcripts per gene. The problem is, not all these transcripts are               

functional. In fact, a significant number of microRNA-target interactions presented by major            

pre-computed microRNA target prediction tools are based on the use of a non-functional type of               

transcripts known as nonsense-mediated decay (NMD). Nonsense-mediated decay is a          

surveillance quality-control mechanism that protects cells by selectively eliminating mRNA          

bearing premature termination codons (Lindeboom et al., 2016). In the following analysis, I             

highlight the presence of such transcripts among major microRNA target prediction software and             

the number of erroneous predictions caused by their use. 

 

When counting for the presence of nonsense-mediated decay transcripts among TargetScan (7.2)            

(Agarwal et al., 2015), DIANA-microT-CDS (v5) (Paraskevopoulou et al., 2013), RNA22 (v.2)            

(Miranda et al., 2006), miRanda (Enright et al., 2003), miRDB (v5.0) (Wong and Wang 2014),               

and seedVicious (v1.1) (Marco 2018), there seems to be a large number of NMD transcripts               

especially among DIANA-microT-CDS and RNA22 software. In addition, since each of these            

transcripts, can (and usually will) be targeted by many microRNA, this results in a large number                

of interactions that are based on non-functional transcripts even among software that include less              

numbers of NMD transcripts like TargetScan and miRDB. In fact, depending on the software,              

some of these predictions might even be given a high prediction score (in case of low                

hybridization energy or high degree of conservation for instance) (Table 1).  

 

In line with these results, I believe that the choice of a transcript in microRNA target prediction                 

should always be given enough attention in order to avoid the use of non-functional ones as well                 
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as to use the most relative transcript according to the tested cell-line, disease status, phenotype,               

and any other factor that may favour the use of one transcript over another. Finally, based on                 

these results, only protein coding transcripts have been used in seedVicious predictions            

throughout this work. 

 

Table 1 | NMD transcripts in microRNA target prediction software  

Software NMD Transcripts Affected interactions 

DIANA-microT-CDS 2807 1142030  

RNA22 2484 9844520  

TargetScan 23 8960  

miRDB 14 385  

miRanda 3 24  

seedVicious 0 0  
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5.2. The effect of numbers of target sites and distances on the precision of microRNA target                

prediction 

I here explore the effect of the number of target sites and the distances between them on the                  

precision of microRNA target predictions compared to experimentally-validated interactions         

obtained from miRTarBase. For this, I calculate the precision as a ratio of true positives               

(experimentally validated interactions) and false positives (predictions that are not validated           

experimentally) (see Methods). 

 

In figure 5.1, the precision of human microRNA target prediction increases as the number of               

target sites increases till it reach a peak point at 11 target sites per interaction. Precision starts to                  

decline at higher numbers of target sites due to the low number of interactions. In addition, when                 

counting for the distances between such pairs, the precision seems to be inversely proportional to               

the distances between pairs (i.e. the shorter the distance between target sites, the higher the               

precision). In fact, precision is clearly highest in cases of adjacent target sites (those who are 6                 

nucleotides apart, where the 1st and 2nd nucleotide of the second target sites overlaps with               

positions 7 and 8 of the first one). Finally, when combining both number of target sites and                 

distances between pairs, the precision of targeting prediction seems to be optimal for interactions              

that have between 6 and 20 target sites and are located adjacently. 

 

Likewise, while exploring the precision of the predictions of mouse microRNA targets. The             

precision again seems to be correlated with the number of target sites till it reach an optimal                 

point at 7 target sites and it remains considerably high till 20 target sites. While for the distance,                  
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the precision again seems to be highest at closer distances. However, unlike human, the optimal               

distance for precision is 8 nucleotides between target sites. However, combining number of             

target and distances, shows an optimal area of precision for microRNAs that have between 4 and                

13 target sites with a less influence of distances (figure 5.2).  
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Figure 5.1 | Precision of human microRNA targets predictions: Heatmap showing the precision of the               
predictions of microRNA in regards with the number of target sites and the minimum distances between such                 
targets. Top bar plot shows the precision based on the number of target sites only while side bar plot shows the                     
precision based on minimum distance between targets. 
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Figure 5.2 | Precision of mouse microRNA targets predictions: Heatmap showing the precision of the predictions                
of microRNA in regards with the number of target sites and the minimum distances between such targets. Top bar                   
plot shows the precision based on the number of target sites only while side bar plot shows the precision based on                     
minimum distance between targets. 
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5.3. The effect of seed region complexity on the precision of microRNA target prediction 

It has previously been noted that the presence of low-complex sequences (those with repetitive              

dinucleotide motifs) among microRNA seeds regions affects the precision of microRNA target            

prediction as they are more likely to be detected by high throughput experiments like HITS-CLIP               

and PAR-CLIP (Chandradoss et al., 2015). 

 

To test the effect of such low-complex microRNA on the precision of microRNA prediction, I               

first identify microRNAs whose seed-regions consists of only repetitive dinucleotides (for           

instance, the seed region of hsa-miR-190a-3p is UAUAUAU). In total, there was 29             

low-complex human microRNAs and 15 mouse ones. 

 

In order to explore the effect of these microRNAs, I calculate the precision of the three groups;                 

low-complex, all microRNA and high-complex ones (all microRNA after excluding the low            

complex ones) in human and mouse. In figure 5.3A and 5.3B, the precision of low-complex               

microRNA is clearly higher in both human and mouse and even while counting for only               

microRNA with multiple target sites. Such result implies the huge effect played by such small               

number of low-complex microRNA on the precision of experimental validation of microRNA in             

general. Next, as low-complex microRNA are believed to be detected significantly in high             

throughput experiments, I repeat the analysis after excluding validated predictions that are based             

on HIT-CLIP and PAR-CLIP experiments. Interestingly, as shown in figure 5.3C and 5.3D, the              

precision of low-complex microRNA is much lower than high-complex ones.  
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5.4. The precision of high-complex microRNA target prediction 

In order to avoid the experimental bias of low-complex microRNAs, I here explore the effects of                

target sites and distances using only microRNA that are highly complex. In figure 5.4, the effect                

of the number of target sites remains similar to that of all microRNA (increases till it reaches a                  

peak precision at 11 target sites). In contrast, there is not any clear correlation between the                

precision and the distances between targets.  

 

In figure 5.5, the patterns of precision of highly complex microRNA in mouse seems to be                

similar to those of all microRNA of optimum precision between 3 and 17 target sites and                

distances between 6 and 10 nucleotides. However, in both human and mouse, the general              

precision of high complex microRNA is less than that of all microRNA (as shown in figure 5.3).                 

However, the patterns of target sites remains similar, while the distance seems to have minimal               

effect on the precision in human. 

 

 

 

 

 

 

 

 

 

 104



 
 

5. Tackling issues in microRNA target prediction 
 
 

 

 

 

 
Figure 5.3 | The precision of high and low complex microRNA: (A) The difference in precision between                 
high-complex microRNA, low-complex ones, and both (all microRNA). (B) The difference in precision after              
restricting to only microRNA with multiple target sites. (C) The precision of all, high, and low complex microRNA                  
after excluding interactions that were validated using PAR-CLIP and HIT-CLIP. (D) The precision after limiting to                
only microRNAs that have multiple target sites and are not validated by PAR-CLIP and HIT-CLIP methods. 
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Figure 5.4 | Precision of human complex-microRNA targets predictions: Heatmap showing the precision of the               
predictions of microRNA in regards with the number of target sites and the minimum distances between such                 
targets. Top bar plot shows the precision based on the number of target sites only while side bar plot shows the                     
precision based on minimum distance between targets. 
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Figure 5.5 | Precision of mouse complex microRNA predictions: Heat map showing the precision of the                
predictions of microRNA in regards with the number of target sites and the minimum distances between such                 
targets. Top bar plot shows the precision depending on target sites, side bar plot shows the precision based on                   
minimum distance between targets. 
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5.5. The precision of highly-expressed microRNA target prediction 

Many of the experimental methods used for the validation of microRNA target interaction insure              

that the microRNA in a physical contact with its candidate target. If the microRNA was able to                 

repress the expression of the target gene, the targeting is considered valid. However,             

biologically, the story is different. In a living system, for the microRNA to be able to interact                 

with and effectively regulate the expression of a gene, it must be expressed (and in high levels) at                  

the same tissue. For this reason, in the following analysis I test the effect of numbers of target                  

sites and distances between them on the precision of the prediction of microRNA that are highly                

highly expressed (484 microRNA in human and 485 in mouse).  

 

The precision of the prediction of such highly-expressed microRNA increases as the number of              

target sites increases reaching a peak of 11 target sites. In addition, the precision is highest for                 

microRNAs that have target sites that are 6-10 nucleotides apart (figure 5.6). However, in figure               

5.7, the precision of highly-expressed mouse microRNA seems optimal for microRNA that have             

between 4 and 7 target sites. However, while compiling both target sites and distances, the               

precision seems to be highest for microRNA that have 13 or 17 target sites that are 6-10                 

nucleotides apart. Generally, the analysis of highly expressed microRNA might be affected by             

the rather small number of microRNA tested (in contrast to all microRNA or even high complex                

ones). 
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Figure 5.6 | Precision of human highly-expressed microRNA predictions: Heat map showing the precision of the                
predictions of microRNA in regards with the number of target sites and the minimum distances between such                 
targets. Top bar plot shows the precision depending on target sites, side bar plot shows the precision based on                   
minimum distance between targets. 
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Figure 5.7 | Precision of mouse highly-expressed microRNA predictions: Heat map showing the precision of the                
predictions of microRNA in regards with the number of target sites and the minimum distances between such                 
targets. Top bar plot shows the precision depending on target sites, side bar plot shows the precision based on                   
minimum distance between targets. 
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5.6. The effect of free energy on the precision of microRNA target prediction 

Thermodynamic stability is a fundamental aspect of all biological interactions. As a result, the              

minimum amount of free energy produced by the binding of the microRNA to its target is used                 

to assess the strength of the microRNA:target duplex where the less the energy the more potent                

the regulation (Riffo-Campos et al., 2016 ).  

 

In the next analysis, I use seedVicious to compute the free energies of such duplexes where a                 

microRNA has only one target site (to avoid the bias caused by the number of target sites and/or                  

distances between them on the precision). seedVicious’ predictions were grouped into bins of 5              

minimum free energy (Kcal/mol) in width ranging from -55 to 15. The precision of each bin was                 

then calculated using the findings of miRTarBase. The precision of the prediction is inversely              

proportional with the amount of free energy produced by the interaction where the lower the               

energy the higher the precision. However, according to these results, the precision of such              

predictions seems to be optimal when the value of the minimum free energy produced is between                

-50 and -30 (Kcal/mol) (figure 5.8A). In fact, the common belief in microRNA target prediction               

is that the maximum value of free energy for a thermodynamically-stable interaction should not              

exceed -15 Kcal/mol ( Ghoshal et al., 2015). As a result, I use the threshold of -15 (Kcal/mol) to                  

split seedVicious’ predictions to two groups, (i) less than or equal -15 (Kcal/mol), (ii) more than                

-15 (Kcal/mol). The precision for each bin was then calculated. In figure 5.8B, the precision is                

unsurprisingly higher for interactions with no more than -15 Kcal/mole of minimum free             

energies. However, the lack of significance between the two groups suggests that it might be               

useful to set a more strict threshold value for more precise microRNA target prediction. 
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Figure 5.8 | The effect of free energy on the precision of microRNA target prediction: (A) The precision of                   
microRNA target predictions per bin of 5 Kcal/mol of minimum free energy, the red line resembles the -15 Kcal/mol                   
threshold of stable interactions. (B) The difference in precision between interactions that has less than (or equal to)                  
-15 Kcal/mol and those that has higher than -15 Kcal/mol of minimum free energy. 
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5.7. Discussion and conclusion 

Throughout this work, I have been extensively using different tools and features for microRNA              

target prediction. However, the high percentage of false positives is a known issue in microRNA               

research in general. In order to minimize the impact of such issue, I have compiled some further                 

layers of checks in predicting microRNAs targets. Thus, in this chapter I highlight some of the                

issues in microRNA target prediction as well as providing possible answers to the precision              

problem that might help in minimising the occurrence of false positives using current             

technologies. 

 

First, I highlight the use of non-functional NMD transcripts in major microRNA target prediction              

software which results in many erroneous predictions affecting many studies. Secondly, I            

highlight the impact of the number of target sites and the minimum distances between such               

targets. In addition, I show that the reliance on high-throughput methods of experimental             

validation of microRNA target interactions, despite being efficient, might be producing another            

layer of false positive results. However, in such cases the false positives are experimentally              

validated ones. Finally, comparing the precision in regards to the amount of free energy              

produced by the microRNA-mRNA duplex confirms the negative correlation proposed between           

the strength of the regulatory duplex and the minimum amount of free energy produced. 

 

Producing the results in this work would have not been possible without the use of seedVicious                

as many of the factors studied here are only reported by seedVicious. On the other hand, the                 

results of the work provided in this chapter has been taken into consideration in updating               
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seedVicious. For instance, in addition to including common features of microRNA target            

predictions software, seedVicious doesn’t include any NMD transcripts. Furthemore,         

seedVicious restricts the occurrence of false positive predictions by providing counts of target             

sites per microRNA as well as the minimum distance between pairs of target sites. Also,               

seedVicious can provide a history of the gains and losses of microRNAs target sites. A feature                

that, in addition to providing the evolutionary insights, can be used to minimize the false               

negative predictions. 

 

In conclusion, the importance of microRNAs as novel regulators of gene expression is beyond              

any doubt. For this reason, there exist many microRNA target prediction software that vary in               

nature, publicity, and quality. Unfortunately, none of these software is considered a trustable             

predictor of microRNA target sites. In fact, it is currently believed that for a microRNA target                

prediction to be considered robust, the same prediction must be reported by more than one               

software (Oliveira et al., 2017). I believe that, the advances in microRNA identification are yet to                

be met by a strong, reliable, gold-standard microRNA target prediction software. Alternatively,            

and more feasibly, it might be practical to shift into a more specialised microRNA target               

prediction paradigm in which some specific software might be optimized to predict microRNA             

targets in regards to a specific species, tissue, biological function, or disease. 
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6. Discussion 
 
Some 600 million years ago, multicellular organisms evolved from their unicellular ancestors            

and the preservation of complex cell signalling mechanisms was at the heart of this rise in                

organismal complexity (Brunet and King 2017). After all, how can an organism function if its               

cells each act alone. However, cell signalling was not the only factor involved in the rise of                 

multicellularity, but microRNAs were too. In fact, both a unicellular organism and a single cell               

of a multicellular one excel in what they do. A unicellular organism has, through years of                

evolution and accumulated mutations, been able to master the ability to conserve and consume              

energy to reproduce and thus to survive. However, one of the major differences between multiple               

unicellular organisms and multiple single cells in a multicellular organism is the ability of the               

later to differentiate. Here comes the obvious role of microRNAs. As cells differentiate they need               

to stay under control and microRNAs have profound roles in differentiation and cell-fate             

decisions (Ivey and Srivastava 2010) as well as in the regulation of gene expression. However,               

microRNAs also offer the advantage of being tiny in size which makes them more likely to                

mutate and evolve. As a result, the rise of microRNAs might have offered a rather vital role in                  

the transition to multicellularity. In fact, despite one case (Zhao et al., 2007), microRNAs have               

only been detected in multicellular organisms thus far. Interestingly, microRNAs despite being             

conserved among the majority of multicellular organisms, have evolved independently in both            

animals and plants (Axtel et al., 2011). The work contained in this thesis aimed to discover how                 

regulatory interactions between two of the fundamental aspects of life takes place. 
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“Cell signalling is the music of life”, the title of a recently published article might illustrate both                 

the importance and complexity of one of the principal topics of modern biology, cell signalling               

(Hancock 2008). Unlike microRNAs, cell signalling has been discovered, reviewed, and valued            

for so many years. However, the more cell signalling is studied, the more complex it appears to                 

be and the more the known unknowns there seem to be (Hancock 2010).  

 

In fact, cell signalling should not be a simple process. It is cell signalling that orchestrates the                 

entire functioning of living organisms, one of the most complex machines that ever been created               

(Dawkins 1976). It was cell signalling that allowed multicellular organisms to evolve from their              

unicellular ancestors (Alberts et al., 2002). It is also up to cell signalling to ensure the                

development of functioning living organisms and, when things go wrong for these organisms, it              

is cell signalling that has to respond to pressure and/or suppress disease. However, cells are               

always bombarded by a wide range of signals, which ones do they respond to and which ones do                  

they ignore is what decides the fate of such cells and the whole organism they are governed                 

within. As the field of cell signalling developed, cell signalling started to be looked upon in                

terms of complex pathways and networks rather than the ancient simple approach (Hancock             

2010). In fact, the terms cell signalling pathways and cell signalling network are sometimes used               

interchangeably. However, throughout this work the focus has been on studying how cell             

signalling take place in networks. Cell signalling networks are often a result of crosstalk              

between different pathways that result in diverse cellular actions to the same signal. Thus, in this                

work the focus has been on how microRNAs might regulate a network as a whole, rather than a                  
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single pathway within a network that might turn redundant by the presence of another              

unregulated pathway. 

 

The results of the study of ErbB, one of the most studied cell signalling networks, have revealed                 

a few interesting features of microRNA regulation. First, the previously mentioned importance of             

ErbBs receptors have been reflected in having significantly longer 3’UTRs as well as being the               

level most-strictly regulated by microRNAs. In addition, despite the strong conservation of both             

microRNAs and ErbBs receptors and ligands, the interactions between them are not as             

conserved, a variation which is sometimes caused by a single nucleotide change. Furthermore,             

the analysis of the gains and losses of these interactions showed a clear bias towards the primates                 

lineage. After studying ErbBs signalling, it was important to test whether the regulatory patterns              

of microRNAs apply to other cell signalling networks or are limited to ErbB. For such reasons,                

while incorporating the lessons learnt from ErbB analysis, microRNA regulation of the Notch             

and Toll-like signalling networks were studied. While the regulation of the networks by             

microRNAs in regards to the signalling levels did not show any significant patterns (unlike the               

receptors bias in ErbB), it was interesting to notice the conservation of the primates-bias in the                

Notch signalling network. However, the results of the analysis of both Notch and Toll-like              

signalling networks have rather emphasised the unique features of the ErbB network which             

indeed adds to its established importance and complexity. 

 

All the conclusions of how microRNAs regulate cell signalling and how this is conserved, are               

actually based on microRNA target prediction and validation. In order to explore the regulatory              
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roles played by microRNAs, it was essential to predict the interactions between microRNAs and              

the genes involved in these networks. Thus, the robustness of these predictions is vital to our                

understanding of the results of this work and any other work that involves microRNA regulation.               

For this reason, throughout this work, several layers of filters have been applied in order to keep                 

microRNA target prediction as precise and realistic as possible. First, microRNAs expression            

levels have been taken into consideration where microRNAs that have low (or non) expression              

levels being omitted in some analysis. Furthermore, the numbers of microRNA target sites and              

the distances between them has been considered and only functional mRNA transcripts have             

been used.  

 

As cells proliferate, they become at risk of acquiring mutations that might turn             

uncontrollably-proliferating cells to malignancies (Cooper 2000). Thus, theoretically, more         

morphologically-complex animals (i.e. those with higher number of cells and more distinct cell             

types) should be at higher risk of developing cancers. In addition, assuming that mutations              

accumulate over time, animals with longer life spans should develop more cancers as an              

inevitable result of the accumulation of such mutations. Surprisingly, the exact opposite is             

observed. In fact, there appears to be absolutely no correlation between the size and longevity of                

an animal and its susceptibility to developing cancers as smaller animals (with shorter lifespans)              

develop much more cancers than larger, long-living ones (Caulin and Maley 2011). Such a              

striking observation is referred to as Peto’s Paradox as it was first noted by epidemiologist               

Richard Peto in 1975 (Peto et al., 1975). Since then, much research has been done trying to                 

resolve Peto’s paradox. Among the possible explanations, one theory relates this observation to             
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only one gene, TP53 . TP53 is a tumor suppressor gene that induces apoptosis (Hollstein et al.,                

1991). While comparing human and elephant genomes, it has been reported that elephants             

conserve 20 copies of TP53 compared to only one copy in humans which might provide an                

explanation to why humans are at higher risk of developing cancer compared to elephants              

(Abegglen et al., 2015). However, the fact that whales -which are larger and develop fewer               

cancers than elephants- also conserve one copy of TP53 makes it appears more like an               

elephant-specific way of suppressing cancers (Tollis et al., 2017). Another interesting           

explanation to the paradox is the recently-suggested idea of hyper-tumours. Hyper-tumors are            

described as benign tumors that grow on top of a malignant ones and destroy it. It is thought that                   

such hyper-tumors will be favoured by natural selection among the cancer cells population and              

as tumor in larger organisms usually take more time to develop, this gives the chance to                

hyper-tumor to be formed only in larger animals (Nagy et al., 2007). However, this hypothesis               

still has to be investigated more comprehensively including more morphologically-complex          

organisms. While many studies provide interesting possible explanations to Peto’s paradox, they            

remain insufficient as the paradox persists. Most of the studies mentioned above have focused on               

trying to explain how can larger animals protect themselves. However, another question that has              

to be asked is why do they do so. 

 

Interestingly, a very recent study has suggested a new solution to the paradox. It was suggested                

that only larger organisms would be able to afford such tumor suppressor mechanisms. In most               

populations, higher fitness is usually linked to large body sizes allowing the organism better              

chances of mating, accessing resources, and avoiding predators. However, there will usually be             
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trade-offs between this and that. On the other hand, it might not make much sense for smaller,                 

short-lived animals to invest in cancer defending mechanisms where they will probably die             

because of other extrinsic reasons (predators for instance). 

 

In fact, this links up very interestingly with some of the findings of this work. As mentioned                 

previously, one of the findings of this work was the lack of conservation of the regulatory                

interactions between microRNAs and signalling networks (despite them both being          

highly-conserved individually). Out of the signalling networks studied in this work, ErbB, Notch,             

and Toll-like are all among the major cancer-regulating signalling networks which resulted in             

some of the individual genes of these networks (mainly receptors) being targets to many of the                

recently-developed cancer therapies. Nonetheless, such therapies have never met their          

therapeutic expectations. In the case of ErbBs especially, there was a clear direction of              

microRNAs target sites turnover in favour of the primates linage (the more            

morphologically-complex group in this analysis) when compared to the mouse and rat group. As              

a result, it might be the case that -under selective pressure- some regulatory features had to be                 

conserved or lost according to the life history of species. However, in case of tumor-suppressor               

interactions, the lack of conservation might mean that morphologically-complex species might           

exclusively conserve tumor suppressor regulatory interactions and not just genes as in the case of               

elephants’ TP53 .  

 

In addition to the possible impact of the gains and losses of microRNA target sites in                

understanding Peto's paradox, these results also imply that regulatory factors including, but not             
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limited to, microRNAs should be taken into consideration when choosing an animal model. In              

fact, the use of animals to substitute humans in laboratories stems back to almost 2500 years ago                 

(Ericsson et al., 2013). Since then, the use of animal models has been a fundamental part of                 

shaping our understanding in many fields like basic biology, genetics, and cancer. 

 

While the choice of animal models classically relied on factors such as the costs, endemicity and                

morphological characteristics. The rise of the genomics era made it necessarily to include more              

genetic factors in the process of choosing an animal model. For instance, the analysis of               

microRNA regulation of some of the genes in this work unveiled some species or lineage               

specific interactions, making it clear that regulatory interactions needs to be taken into             

consideration in the process of an animal model choice. In a previous study, Webster et al (2009)                 

combined a series of computational and biological techniques to examine the regulation of             

ErbB1 by one of the most studied tumor-suppressor microRNAs, hsa-miR-7. Their results show             

that hsa-miR-7 effectively down regulate ErbB1 expression and thus, induce cell death in cancer              

cells. Interestingly, in a previous study (Helmy and Marco, unpublished), we found that the              

interaction between the same microRNA (hsa-miR-7) and ErbB1 is not conserved among any of              

the different animal models studied. Furthermore, as mentioned previously, several genes and            

pathways are known to crosstalk with ErbB signalling. Among such genes is IGF1R which is               

known to activate the same signalling pathways activated by ErbB1 (Riedemann et al., 2007).              

Such crosstalk has later been related to the known issue of resistance to ErbB targeted therapies                

as, through IGF1R, ErbB1 inhibition might be by-passed (Oliveira et al., 2009). Interestingly, in              

the study mentioned above, we found no regulation of IGF1R by the mentioned             
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tumor-suppressor microRNA (hsa-miR-7-5p). Such results imply that a downregulation of a           

given gene by a microRNA might be restricted to one species and might as well be surpassed by                  

crosstalking. As a result, this (and other factors) has to always be taken into consideration while                

studying microRNA regulation. 

 

In the year 2015, one study referred to the discovery of microRNAs as “the usher of a new era of                    

molecular biology” (Hammond 2015). Just two years later, the roles of microRNAs has been              

referred to as “an overestimation” (Pinzón et al., 2017). Such disagreement is more than just               

different opinions. In fact, the role of microRNAs as important regulators of gene expression is               

beyond any doubt. However, especially in the case of animal microRNAs, it is vital to               

differentiate between targeting and regulating. Usually, an animal microRNA will have many            

targets among any genome (i.e. complementarity between its seed region and 3’UTRs) and from              

there stems the huge expectations of microRNAs and the assumption that they regulate the              

majority of human genes. However, as mentioned earlier, such complementarity does not mean             

that regulation will necessarily take place. In addition, as shown in the results of this work, many                 

of the pre-computed microRNA target interactions are based on the use of NMD transcripts              

which have resulted in millions of inaccurate predictions. Furthermore, experimentally-validated          

microRNA target interactions have long been considered the gold-standard of microRNA           

targeting predictions. Unfortunately, many such interactions might not be as trustworthy as once             

believed. 

 

 122



6. Discussion 
 
 

The validation of a microRNA-target interaction is either carried out using traditional laboratory             

techniques (like luciferase reporter assay and western blotting) or by the means of the more               

efficient high-throughput methods (like CLIP) (Thomson et al., 2011). According to the results             

of this work, the results of the experimental validation of some specific microRNAs may have               

been significantly inflated by the low-complex nature of their seed regions which questions the              

reliability of such results. In the case of traditional experimental validation methods, despite             

being time and cost consuming, they do assume that the microRNA and its targets are in physical                 

contact. An assumption that will probably not take take place unless the microRNA is expressed,               

and in high quantities, in the same tissue as its target. As a result, I believe that the expression                   

levels of microRNAs and their target sites must be taken into consideration before suggesting              

that regulation would take place. Based on this, throughout this work highly-expressed            

microRNAs have been identified and used as more robust regulators of gene expression.  

 

In addition to all of the above, the fact that microRNA target predictions are carried out using                 

reference genomes is an oversight of the different genomic variants and mutations. According to              

the results of this work, a relatively-large number of genetic variations exists in either the target                

sites of the ErbB genes or the seed regions of the microRNAs targeting them. As mentioned                

earlier, the very delicate nature of animal microRNA target interactions makes a single indel or               

SNP in the seed region of a microRNA (or its target site) a turning point which may result in the                    

destruction of an established microRNA-target interaction or the arising of a new one. 
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While the incorporation of machine learning models has been useful in the identification of              

microRNA sequences (Saçar and Allmer 2014), the use of machine learning techniques in             

microRNA target prediction was not as successful (Amirkhah et al., 2017). Only very recently,              

the not very successful use of machine learning in microRNA target prediction has resulted in a                

paradigm shift to the use of deep learning methodologies that, unlike machine learning, does not               

rely on already-known features of microRNA target prediction but rather rely purely on data (Pla               

et al., 2018; Wen et al., 2018). However, while the preliminary results of these deep learning                

based techniques show promise, it is still too early to estimate the extent of their effects on the                  

field of microRNA target prediction. 

 

To conclude, trying to win the endless battle against false positive microRNA target prediction              

by adding several layers of precision filters will inevitably result in false negative predictions. As               

a result, I believe that microRNA target prediction should take place in a more case-oriented               

manner (i.e. specific disease, tissues, species, or population depending) rather than the current             

global way of predicting microRNA targets regardless of the context that result in this huge gap                

in the appreciation of microRNAs powers as regulators of gene expression. 

. 
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7. Conclusions 

The work of this thesis explores the evolution of the regulatory relationships between two of the                

most studied topics in today's biology; cell signalling and microRNA. Looking at cell signalling              

in the context of networks has uniquely provided few insights. First, in ErbB signalling,              

receptors fall under a strict microRNA-mediated regulation when compared to other signalling            

levels. In fact, this observation stems from two results, first, the 3’UTRs of ErbB receptors are                

significantly longer when compared to the 3’UTRs of all other levels which increases the chance               

of accommodating more microRNA target sites. Furthermore, and regardless of the length,            

microRNAs that have multiple target sites on the same 3’UTR which are believed to be more                

robust regulators, show higher density of targeting in the receptors level. It was also evident that                

the density of target sites for microRNAs that have multiple target sites increases as the length of                 

the 3’UTR increases among the ErbB network. In addition, given the established conservation of              

both ErbBs receptors and ligands on one hand and microRNAs on the other hand it might be                 

assumed that their interactions are as conserved. Surprisingly, there appears to be a relatively              

high rate of turnover in microRNA target sites between the species studied. In addition, a               

surprisingly high number of mutations (SNPs and indels) has been found in either the microRNA               

target sites on ErbBs or in the seed regions of such microRNAs. Together, these results provide a                 

novel perception of the way microRNA regulated cell signalling. Such perception might be             

considered in developing our understanding of the functioning of the ErbB network and its              

effects on diseases, therapies, and animal models. 
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MicroRNA-mediated regulation does not follow the same pattern in neither Toll-like nor Notch             

networks. In fact, the density of microRNA targets seems constant among different levels of              

signalling. However, the relatively high number of microRNA target sites turnover among both             

Notch and Toll-like networks confirms that the interactions between microRNAs and their            

targets might under selective pressures. While the lengths of the 3’UTRs of all human receptors               

are not significantly longer when compared to non-receptors, it was rather surprising that out of               

all the genes studied in this work, the 3’UTRs of specific receptors (namely ErbB1 , ErbB4,               

NOTCH2 , and TLR4) that are known for their fundamental roles in regulating diseases were              

clearly longer which can lead to more strict levels of microRNA regulation. 

 

Target prediction is one of the major aspects in microRNA research. In addition, MicroRNA              

target prediction was fundamental for the completion of the work in this thesis. For this reason,                

chapter five was devoted to trying to improve our understanding of microRNA target prediction              

and for tackling the known issue of low precision among different microRNA target prediction              

methods. In fact, a large number of pre-computed microRNA target interactions are based on the               

use of non-functional mRNA transcripts (NMD ones). Accordingly, it is advised that attention             

should be given to the transcript used in microRNA target prediction. Likewise, the presence of               

microRNAs with low-complex seed regions might be inflating the validations of microRNA            

target interaction done using high-throughput methods. Finally, a consideration of the number of             

microRNA target sites together with a consideration of the distances between such targets might              

increase the precision of microRNA target interactions. 
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7. Conclusions 
 
 

To conclude, the results of this work provide a novel insight into the evolution of               

microRNA-mediated regulation among different cell signalling networks as well as tackling           

some of the issues that is affecting the progression of the field of microRNA research. 
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8. Future work 

Throughout this work, the focus was on canonical microRNA target sites. However, I do              

acknowledge the existence and importance of other types (non-canonical and near target sites).             

Likewise, only 3’UTRs were scanned for microRNA target sites despite the few reported             

regulatory interactions that can take place through binding at the 5’UTR or coding regions of               

their target mRNAs. The evolutionary analysis of microRNA target interactions in this work has              

been limited by the availability of reliable genomic data for some species. As the genomes of                

more and more species gets fully sequenced, more genomic data should be available that would               

make it possible to provide a wider view on the conservation of microRNA regulatory              

interactions generally and between the primates and rodents groups specifically. In addition,            

more data should be available on the expression levels of both microRNAs and their targets.               

Consequently, the advances in the field of microRNA identification promises the identification            

of microRNAs from more species which might also be added to this analysis. 

 

As mentioned earlier, networks represents the most complex part of cell signalling. In this work,               

three of the major cell signalling networks have been studied. An interesting addition to this               

work would be to explore microRNA regulation to other networks as well as less-complex              

pathways. Also, due to the life-history of this work, the analysis of Notch and Toll-like networks                

were influenced by the findings of the ErbB network. It would also be interesting to blindly                

study these and other networks.  
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8. Future work 
 
 

Finally, the nature of the work in this thesis has been pure computational. However, it would also                 

be interesting to validate some of the results of this work (especially of chapter 5) using                

experimental procedures. 
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The ErbB signalling network 
 

Level of signalling Gene 
 
 
 
 
 

Ligands 

EGF 
TGFA 
BTC 

AREG 
EREG 

HBEGF 
NRG1 
NRG2 
NRG3 
NRG4 
EPGN 

 
Receptors 

ErbB1 
ErbB2 
ErbB3 
ErbB4 

 
 
 
 
 
 
 
 
 
 
 
 
 

Adapters 
 

  

GAB1 
GRB2 

PLCG1 
HRAS 
KRAS 
NRAS 
GAB1 
GRB2 

PLCG1 
HRAS 
KRAS 
NRAS 

PIK3CA 
PIK3CB 
PIK3CD 
PIK3R2 

MAP2K1 
MAP2K2 
MAP2K3 
MAP2K4 
MAP2K6 
MAP2K7 

SOS1 
SOS2 
AKT1 
CBL 

PRKCA 
RAF1 
SHC1 
SRC 

MAPK1 
MAPK8 
PTPN6 

PTPN11 

 154



 
 
 

Transcription factors 
 

JUN 
FOS 

EGR1 
MYC 
ELK1 
SP1 

STAT1 
STAT3 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 

 155



Toll-like signalling network 
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Notch signalling network 
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10.2. Appendix 2 
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The scripts used for the generation and visualization of the results of this work can be accessed 
online via the following link: 
 
https://tinyurl.com/y9gdnhk9 
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