Predictive Modelling of Building Energy Consumption based on
a Hybrid Nature-Inspired Optimization Algorithm

Shidrokh Goudarzi®, Mohammad Hossein Anisi®*, Nazri Kama? Faiyaz Doctor®,
Seyed Ahmad Soleymani®, Arun Kumar Sangaiah?

“Advanced Informatics School, Universiti Teknologi Malaysia (UTM), Jalan Semarak, 54100 Kuala Lumpur, Malaysia
bSchool of Computer Science and Electronic Engineering, University of Essex, Colchester, CO4 3SQ, United Kingdom
‘Faculty of Computing, Universiti Teknologi Malaysia (UTM), Skudai, 81310, Johor, Malaysia
School of Computing Science and Engineering, Vellore Institute of Technology (VIT), Vellore-632014, Tamil Nadu, India

Abstract- Overall energy consumption has expanded over the previous decades because of rapid population, urbanization
and industrial growth rates. The high demand for energy leads to higher cost per unit of energy, which, can impact on the
running costs of commercial and residential dwellings. Hence, there is a need for more effective predictive techniques that
can be used to measure and optimize energy usage of large arrays of connected Internet of Things (IoT) devices and control
points that constitute modern built environments. In this paper, we propose a lightweight IoT framework for predicting
energy usage at a localized level for optimal configuration of building-wide energy dissemination policies. Autoregressive
Integrated Moving Average (ARIMA) as a statistical liner model could be used for this purpose; however, it is unable to
model the dynamic nonlinear relationships in nonstationary fluctuating power consumption data. Therefore, we have
developed an improved hybrid model based on the ARIMA, Support Vector Regression (SVRs) and Particle Swarm
Optimization (PSO) to predict precision energy usage from supplied data. The proposed model is evaluated using power
consumption data acquired from environmental actuator devices controlling a large functional space in a building. Results
show that the proposed hybrid model out-performs other alternative techniques in forecasting power consumption. The
approach is appropriate in building energy policy implementations due to its precise estimations of energy consumption and
lightweight monitoring infrastructure which can lead to reducing the cost on energy consumption. Moreover, it provides an
accurate tool to optimize the energy consumption strategies in wider built environments such as smart cities.
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1. Introduction

According to the International Energy Agency (IEA) [1], there will be a 30% increase in the global demand
for electricity by 2040. This is in part due to population growth, increased accessibility to electricity through
growing urbanization and an increasing population living in urban centres within developing and emerging
economies [2]. With urbanization comes the need to build more power-hungry infrastructures in the form of
new homes, community centres, workplaces, hospitals and schools. The UNEP express that buildings contribute
to 33 percent of the energy produce and account for around 20 percent of carbon dioxide and other greenhouse
gas emissions globally [3]. A recent UN Environment report has further warned that energy inefficient buildings
could prevent us from reaching the target set by the Paris Climate Agreement of keeping keep global warming
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below 2°C [4]. To meet these targets, the energy intensity of the global buildings sector needs to improve by 30
percent by 2030 according to The Global Alliance for Buildings and Constructions [4]. Although there have
been improvements in the effectiveness of new buildings these efforts are not keeping pace with the remarkable
extension of the world’s cities. As most new buildings will be built in developing countries, there is concern
over the lack of standards and agreements for mandatory regulations for energy efficiency that must be
complied. Additionally, there is a need to make energy efficiency provisions smarter, more accessible and
affordable for monitoring and meeting the usage requirements of new and existing buildings. This is especially
true for multifunctional community and religious buildings such as library building that tend to be functional
throughout the day and night to serve a variety of purposes and usage needs.

Efficient management of the energy in smart building can be used to reduce the operational costs by assessing
the amount of energy that end-users consume from lighting and electrical equipment and lowering the used
amount for an individual or a group of end-users. Effective energy consumption management of inhabited
spaces can be achieved by continuously monitoring the usage of electricity points and environmental control
actuators to use this information to optimize the way electricity is consumed without compromising the utility
and functionality of the space. However due to the huge number of possible actuators (fans, lights, HVAC,
blinds, window actuators etc.) and electricity outlets within large and multifunctional user spaces there is both
aneed to develop effective infrastructures to sense and connect these devices together to capture data on energy
usage as well as model and predict usage patterns for managing and optimizing the overall energy consumption
of the building [5]. There has been an expanding growth in automated control frameworks and computational
improvement methodologies applied to big data analytics [6] for modelling energy usage to provide accurate
consumption estimations. Zhou et al. [7] has introduced an extensive vision for big-data-driven intelligent
energy management through intelligent power generation, power transmission, power distribution and
transformation, and demand side management. These big data drive applications can enable better energy
estimation and management while considering the “4V” features of using large datasets that consider its volume,
velocity, variety, and value [7].

Different machine learning and predictive modelling techniques have been included as part of energy
management sensing and control frameworks. Regression analysis has conventionally been the most common
approach in context of vehicle energy consumption prediction, solar energy prediction, and energy consumption
prediction in buildings [8-12]. Artificial neural networks (ANNs) have also been adopted for predicting energy
consumption where in [12] an ANN has been trained on data extracted from a simulation to draw a mapping
between the input and output for anticipating energy consumption. In addition, decision trees have also been
used in production systems as an efficient decision support technique to dynamically control changing industrial
production processes [13].

In [14], both Genetic Algorithms (GA) and ANNs were utilized to forecast the electrical energy consumption
and in [15] ANN, fuzzy systems and GA were used to find a buildings thermal response to variables including
internal occupancy and building plant responses and outside weather conditions. A hybridization of fuzzy logic
modelling and ANNs was introduced in [16] to perform long-term distribution prediction achieving a high
accuracy based on extensive testing on actual data acquired from a small power distribution organization. In
[17, 18] multiple regression analysis techniques have been adapted for the same purpose while in [19] an
approach based on the decomposition method is described to explore diverse univariate-modelling procedures
to provide estimation of monthly electric energy utilization in Lebanon. Univariate systems such as
autoregressive, techniques combined with moving average and a novel structure from coordinating the pass
filter with an autoregressive approach have also been presented in [20].

The Autoregressive Integrated Moving Average (ARIMA) [21] is a statistical liner model for time series
prediction which has been shown to be suitable for modelling short-term forecasting and has been utilized in an
assortment of applications such as predicting energy demand [21], wind speed forecasting [22], vehicular traffic



flow prediction [23] and sales forecasting [24]. The ARIMA model is a popular time series prediction model
[25] and is well suited for monthly consumption [26] forecasting of energy usage. In the study by Pappas et al.
[27], ARIMA is used for electricity consumption prediction and is shown to outperform other compared
analytical time-series methods. Li and Hu in [28] developed a hybrid model for time-series prediction based on
ARIMA and fuzzy systems. Here a fuzzy model is applied on data to determine fuzzy rules. The ARIMA model
is hybridized with fuzzy rules. A key drawback of ARIMA is low accuracy in prediction of fluctuating or non-
stationary time series data. Additionally, the symmetrical joint distribution of the static ARIMA method is
unsuitable for data with strong dis-symmetry and the technique has been shown to be ineffective in adjusting
the parameters of the method when the time series comprises new information. Also, the ARIMA model has
limitation to capture and detect data features in linear and nonlinear domains. The most critical issue is lack of
accurate data in forecasting field, therefore the hybrid model proposed in this study is composed of the ARIMA,
SVR and PSO components. This enables the hybrid approach to model the linear and nonlinear patterns with
improved overall predicting performance.

The main contribution of this study is in the development of a hybrid computational model for energy usage
prediction. Here the ARIMA method is optimized by using a hybrid Support Vector Regression (SVR), Particle
Swarm Optimization (PSO) for modelling linear and non-linear components in power consumption time series
data for accurately forecasting power usage. False Nearest Neighbours (FNN) is used to pre-process the time
series data to determine the minimum sufficient embedding dimension used to explicate the dynamics in the
data. The SVR model’s hyper parameters are optimized using the PSO to improve prediction accuracy of the
overall model.

The optimized hybrid ARIMA model is better able to handle non-stationary or fluctuating nature of power
consumption data from different connected power appliances in the building. The proposed hybrid approach is
computational efficient and simple to implement as part of an automated power monitoring system for
forecasting and managing large scale building wide energy consumption. The prediction model forms the
central element of a novel light weight IoT framework for localized energy consumption forecasting in large
multi-functional building using a cost-effective remote sensing and embedded computing infrastructure. The
approach is evaluated on real power consumption data of environmental actuator devices controlling a large
library building containing several energy consuming devices. The performance of the proposed prediction
method is evaluated using data obtained from a library study room equipped with environmental control
actuators consisting of several lights, fans and air conditioners. The whole study room is zoned into three areas
where the environmental actuators in each area are supplied through three separate power lines that are
connected to a central control box. A current sensor is attached to each of the three power lines. A micro
controller (Raspberry Pi) has been used to read the current and convert it to power (measured in kWs). This
data is then transmitted to an IBM bluemix virtual server using 4G and recorded to a My SQL database. Using
the above system, the power consumption of the study room was continuously monitored over a period of one
month at a frequency of 1-minute intervals. Results showed that the new hybrid technique performs well in
energy consumption prediction compared to non-optimized methods. The proposed prediction model can be
used in various type of applications such as industrial automation, building automation systems, building safety
application, cooling, heating, and power applications for intelligent building.

The rest of this paper is organized as follows. Technical background on the data preprocessing and prediction
techniques used in this study are described in Section 2. The preprocessing approaches and main modeling
process are presented in detail in Section 3. A performance comparison of the proposed approach with the state-
of-the-art techniques is presented in Section 4. Conclusions can be found in Section 5.



2. Technology Background

Suganthi and Samuel in [29] have investigated many different computational forecasting techniques for the
field of energy prediction where their study identifies traditional predicting methods such as econometrics
models, time series, regression and ARIMA compared to computational intelligence methods such as genetic
algorithm (GA), fuzzy logic, neural network, and support vector regression models. The study found that
ARIMA methods can be effectively combined with soft computing strategies to enhance the precision of energy
forecasting model. The work in [24] has also proposed the usage of an ARIMA technique for predicting Greek
electricity utilization where the planned technique in comparison with three systematic time-series methods
showed better results. time series model is further proposed in [30] for short term hourly prediction for peak
loads using an improved ARIMA model where the prediction results show better results over the original model.
Based on these and other studies it is therefore argued that new optimized ARIMA models can achieve good
performance for longer-term, more stable data sets while also handling noisier, more volatile data.

Binary classification problems are addressed by Support Vector Machines (SVMs). To do that, they are
formulated as convex optimization problems [31]. Such problem involves using the maximum margin to
separate the hyperplane, and properly classifying maximum possible number of training points. SVMs are able
to represent this optimal hyperplane with support vectors. A generalization of SVMs is Support Vector
Regression (SVR) [32-35] which introduces an g-insensitive area surrounding the function that is names as &-
tube to extends SVMs. The optimization problem is re-formulated by this tube to discover the tube that is able
to approximate the continuous-valued function appropriately. At the same time, the complexity of the model
and the error of prediction should be balanced [36]. Hence, a convex e-insensitive loss function is defined and
minimized and the flattest tube containing maximum training instances to formulate SVR as an optimization
problem. It constructs a multi-objective function from the tube’s loss function and geometrical properties.
Suitable numerical optimization methods are able to solve a large variety of convex optimization. Support
vectors represent the hyperplane as training samples outside the tube’s boundary [36]. The determination of
hyperparameters is considered as a limitation of SVR that needs practitioner experience. Inappropriately
selection of hyperparameter settings and kernel functions might result in considerably low performance [32-
35]. The use of optimization algorithms such as genetic algorithm (GA) and chaotic genetic algorithm (CGA)
have been employed to discover the optimal hyperparameters for SVMs [37, 38]. An approach for electricity
load prediction has been presented in [17] and [39] that uses hybridization support vector regression schemes
with simulated annealing (SA).

Compared with GA and simulated annealing (SA), Particle Swarm Optimization (PSO) is able to memorize
the optimality of solutions (represented as particles in a swarm) over each iteration step. As all particles are able
to remember the best position reached during the past iterations as well as share data over the swarm. As such
PSO can achieve better performance in selected domains compared to other evolutionary optimization
approaches.

In this study, we introduce a new optimized ARIMA method for monitoring and predicting energy
consumption from various electrical building actuators towards optimizing inefficient power usage and
reducing overall power consumption. The ARIMA model is used to generate residual vectors for estimating the
linear components in pre-processed power consumption timeseries data. The residuals are embedded within a
predefined dimension to construct out residual vectors constructed by the SVR that are then used to extract the
nonlinear patterns for forecasting energy usage from supplied data. PSO is further used to discover the optimal
hyperparameters for SVR to improve its prediction accuracy of the combined hybrid model.

The following subsection provide details of the ARIMA, SVR and PSO techniques used in the proposed
hybrid method along with False Nearest Neighbors (FNN) data pre-processing techniques used to generate the
datasets for the training and testing the proposed prediction method.



2.1. ARIMA Method for Prediction Operations

The ARIMA approach was presented as a prediction method by Box and Jenkins [40]. This method is based
on a linear combination of past values (AR) and errors (MA), namely autoregressive integrated moving-average
(ARIMA). ARIMA method is a linear technique that predicts the linear component. Non-linear techniques are
also used to forecast the other elements in time series. In this study we used optimization techniques to design
the best possible ARIMA-based method for predicting timeseries data. ARIMA methods involve one variate as
they use only the history of the time series to show how the variables respond with previous random variant.
ARIMA can be executed through the three steps after collecting historical data of the relevant parameters. These
three stages are identification, estimation and diagnostic checking [40]. An exhaustive explanation of the
ARIMA method is presented in [40, 41].

Formally, ARIMA (p, d, and q) comprise of the parameters p, d and q where, p is equal to the number of
autoregressive (AR) terms, q shows the number of lagged moving averages (MA) and d is equal to the number
of non-seasonal variances. The method uses to describe the time series expressed as follows:

¢(B)det = 0(B)e; (1

where x; and e; denote energy consumption and error at random time t, consistently. B represents a regressive
shift operator well-defined by Bx;= x;_, , and associated toV; the order time of differencing is defined by d;
V=1-B, V%= (1 — B)%. §(B) and ¢(B) and are moving averages (MA) and auto regressive (AR) and
operatives of orders p and q as follows:

¢(B)=1—¢.B — ¢232_'“_¢po (2
6(B) =1-6,B—0,B*> —---—0,B% 3)
where ¢y, ¢z, ¢3, ..., P, are the autoregressive coefficients and 0y, 05, 03, ..., 0, are defined as the moving
average coefficients. Also, the time series x; is denoted as linear transfer function of the noise series:
xe = p+ ¢(B)e C))
¢(B) =1+ 1B+ $.B* + - (5)

where ¢ (B) can be computed as ¢(B) = 6(B)/¢(B).

To utilize ARIMA method, we need to fix the partial autocorrelation (PACF) and autocorrelation (ACF)
functions. In addition, the means of the partial autocorrelation graph and the autocorrelation graph of data are
used to compute the order of the AR and MA parameters.

As mentioned previously, to implement the ARIMA method three steps are taken. In the first step of model
identification, data should be often stationary since it is extremely important in ARIMA forecasting. To stabilize
variance in data, differencing is normally applied [41], and the parameter d is determined. For time series and
probabilistic methods’ stationarity can also be identified referring to PACF and ACF. Parameter estimation is
the second step where Akaike’s Information Criterion (AICC) [42,43] and Schwarz’s Bayesian Information
Criterion (BIC) [41] are minimized through parameter estimation in which both AIC and BIC compute the
maximum log likelihood of the model. BIC is structurally similar to AIC but includes a penalty term dependent
on sample size. We achieved the results of ARIMA model by Eviews software. The non-stationary of data is
shown as ascending data. We assigned 1 to d parameter, to make a difference on data. According to data
correlation with 1 lag, we considered 1 and 2 as predicted values for AR, it means that 1 and 2 refer to AR value
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and, we computed 1, 2, and 3 as measured values for MA parameter. After comparison, we should recognise
the best ARIMA model. In this purpose, two models [1, 1,2] and [2, 1, 1] have been selected as appropriate
models. AIC and BIC criterions comparison for [1,1,2] and [2,1,1] ARIMA methods are shown in Table I. The
best ARIMA model with low values is chosen. The [1,1,2] model with AR = 1 and MA = 2 is selected as
superior ARIMA model.

TABLE |
AIC AND BIC CRITERIONS FOR ARIMA’S MODELS
ARIMA’S Model [2,11] [1,1,2]
AIC 8.663 8.326
BIC 8.797 8.529

In the last step of ARIMA method, the precision and the error stationarity of the model are evaluated. Some
predictive error performance measures such as root mean square error (RMSE) and mean absolute error (MAE)
are applied to select the best model [43].

The ARIMA method [ARMA (p, q)] can be defined for x time series which contains n instances through
forecasting equations (6), (7) as follows:

14 q
X¢ = Z AiXt—l + Z B] wt_]' + W (6)
i=1 j=1
P
X=X+ apXe_p + 0 = Z aixe_; + wy (7
i=1

where x(t) shows the original data and X (t) shows the predicting data; the m-dimensional vector w; is
uncorrected random data with zero-mean and covariance matrix R, 8 = (p, q) refers to the order of the predictor
where p presents the number of autoregressive terms, q refers to the number of lagged forecast errors in the
forecasting equation and 4y, ..., Ay and By, ..., B, are the m X m coefficient matrices of the multivariate (MV)
ARMA method. The random errors (w;) are supposed to be self-determining and possess identical distribution
with a constant variance. In this study the linear components of the energy consumption timeseries data acquired
from the environmental sensors can be predicted using these equations.

2.2. Support vector regression

The SVR [44] used in this study is developed according to the structural risk minimization (SRM) principle
that can minimize the upper bound of the generalization error. For the case of regression approximation, suppose
there are a training set of data {X; ,y;}}_; where X € R is ith input data, y; is the ith predicted output of X;, the
number of training samples is shown by [ and embedding dimension is presented with d. The main target of
SVR is to detect the optimal function among other possible functions as follows:

y=f)=wl o) +b ®)

where @(x) is the high dimensional feature space, which is nonlinearly mapped from the input space x and b
is a bias constant or threshold. W and b are estimated by minimizing the following optimization problem:

l
1
£5Iwif? + CZL(yi.f(xo) ©)
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Minimize the regularized error is required to find the optimal function f(x), where C > 0 is a regulatization
factor, the 2-norm on function is ||w||? and L(yi, f (xl-)) is a loss function. Eq (8) is used to present the sparsity
in SVR in the e-insensitive loss function. This formula creates an ability for more forecasting to decrease within
the boundaries of the € —tube.

0, lf(x) —yl <e

|f(x) — y| — €, otherwise (10)

(£ @) = {

The SVR uses the nonlinear kernels to map samples into a complex dimensional space. The following form
is the regression function:

!
FG) =) (= @) k(X, X) + b an
i=1
where a and a* are Lag range multipliers and k(X;, X) is a kernel function. We applied the Gaussian kernel
2
function of the form, (k(X L-,X]-) = exp (%)), where y is a parameter of the Gaussian kernel.

2.3. Particle swarm optimization method

Particle swarm optimization (PSO) is an optimization nature-inspired algorithm [45] that works based on
social behavior of bird flocking or swarming of insects or fish schooling [46]. In nature, the movement of a bird
is adjusted to discover a better position in the flock based on the experience obtained by the bird and the
neighboring birds. Nowadays, PSO has gained much attention in wide applications for solving continuous
nonlinear optimization problems because of its simple concept, easy implementation and fast convergence [45].

For the optimization problem pertaining to this study, each particle represents as a suitable solution. Particles
move in a k dimensional search space. Movement is performed by each particle constructed on prior knowledge
and interactions with other particles in each iteration. All particles adjust their positions in the solution space
towards being associated to the best solution (fitness criterion), which has been recognized thus far by these
particles. This value is titled the personal best, pbest. PSO tackles another value that is the best value distance
acquired subsequently by the particles. This is called, gbest. Basically, PSO focuses on the fast-tracking
particles according to their pbest and gbest locations over each iteration. Each particle calculates its velocity to
perform movements and then each particle can update its position for each iteration. The variation of the velocity
of the particle is mathematically formed as follows:

vi(t+1) = w Xv(t) +c¢; XxXrand() X
(pbest; — g;(t)) + ¢, X rand () x (12)
(gbeSti - gi(t))
where v; € [—vax, vax ], rand() is a random function which uniformly distributed random number
between 0 and 1, the ¢; and c, are, respectively, related to weighting factors and denote the personal learning
factor and social learning factor and w is inertia factor. The following equation is designed to display the new
solution:

git+1) = g;(t) +v;(t + 1) (13)



2.4. False nearest neighbors (FNN)

A significant step in time series analysis is the identification of the minimum (necessary) embedding
dimension for reconstructing the dynamics in the data, where such information is either hidden or not known a
priori [47]. If the embedding dimension is less than the actual dimension of the system, the computed models
can be inaccurate as the dynamics in the data have not been completely unfolded. If, the embedding dimension
is too large, the number of data points in the time series would be correspondingly large leading to excessive
computation. This also increases computational error due to the presence of additional unwanted dimension
where no dynamics are operating [47].

Selecting the embedding dimension m is therefore very significant to predict x;,, in the historical data. An
effective technique of finding the minimal sufficient embedding dimension is the False Nearest Neighbors
(FNN) procedure, which was proposed by Kennel et al. [48]. FNN is a nature-inspired algorithm based on
geometric. When the regression vectors have sufficient data to predict upcoming output, the future output of
the two regression vectors which are also close together in the regression space, will be near it. Whenever, not
adequate terms to reform the dynamics of the system are available in the regression vector, some neighborhoods
in the regression space will have an extensive range of related forthcoming results. Trajectories that are near
with very diverse outputs can be assumed could be considered as false neighbors, because their proximity is
due to the projection onto a space with a dimension too small to denote the dynamics of the system.

To clarify the mechanism of false nearest neighbors, firstly, the FNN assumes the embedded dimension is
m = 1; so, it evaluates how far single points are to their neighbors by calculating the distances between a; ;
and a;; Vi # j. Therefore, the FNN for embedded dimension equal to two (m = 2) must compute distances
between (a;,,a;,) and (a;q,a;,) where Vi # j. Accordingly, the FNN will compute distances between
(@i1, ., a;47) and (@ g, ..., a; ;) where V i # j. The false nearest neighbors is calculated as follows:

e For a point a(i) in the embedding space, we have to find a neighbor a(j) for which ||al- - a]-” < g, where ||... ||
is the square norm and ¢ is a small constant usually not larger than the standard deviation over all the data.
e The equation 14 shows the normalized distance as R; that is between the points a(i) and a(j):

|X i+T Xj +‘L'|

R = ot~ el (14)

lla@ — a()l
e IfR; exceeds a given threshold R,, then in dimension m, the point a(i) is defined as a false nearest neighbor.
According to [47], R, = 15 has proven to be a good choice for most data sets.

Another issue is the correct estimation of the time delay T . We can determine 7, by using the first minimum
of mutual information (MI) function [48]. The MI functions quantitatively measure the mutual dependence of
the two variables based on the probability theory and information theory as follows:

P(an' an+‘r) ) (15)

P(an)P(an+r)

where P(a,,) presents the probability density of a,, while P(a,,, a,..) donates the joint probability density of a,, and

N-t
MI@ = ) P (@ ano) logs
n=1

Aptr -
3. Our Proposed Framework

This section presents the proposed model including data pre-processing, the PSO algorithm for determining
the SVM’s parameters and the proposed ARIMA and PSO-SVM model. The whole process is depicted in Fig.
L.



3.1. Data preprocessing

Initially, the MI function is computed using Eq, (15) to select the most relevant inputs for the power
consumption dataset. In the second step, the first delay time is considered as the optimal time delay. This value
is calculated using the MI function. In the third step the minimum sufficient embedding dimension are
determined using the FNN approach. According to the optimal time delay and embedding dimension, the time
series phase space is recreated to clear its hidden dynamics in the fourth step. Eq. (16) is used to normalize and
fit the data in the interval (0, 1) in step five:

Xold — Xmin
Tnew Xmax — Xmin (16)

Finally, in step six, two datasets, training and testing dataset are acquired by splitting the time series dataset.
Here, we trained with 70% training data and tested on the remaining 30%. The data preprocessing procedure is
illustrated in Fig.1.

PSO for Parameter

Data Preprocessing T —

i o Run PS5O i
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¥
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Yyv

¥

21,2375 Znaa

Fig. 1. Flowchart of proposed model.
3.2. PSO for determine the SVR’s parameters

Good setting of hyper parameters C, € and the kernel parameters (o) determine the prediction accuracy of
the SVR. Parameter C is specifies the tradeoff between the degree of the training errors larger than e that are
tolerated in Eq. (17) (i.e., the empirical risk) and the model flatness and. When C has large boundary balue
(infinity), the empirical should be decreased. Parameter € is used to control the € -insensitive zone’s width, for
instance, the number of SVs used for the regression [42]. When & —value is large, fewer SVs employed is
implied; hence, the regression function is flatter (simpler). As mentioned previously there is no specific
technique for effectively setting of SVR parameters.

In PSO, tracing and memorizing can be used to store each particle’s experience in searching process. As all
particles can remember the best position they reached during the past iteration, the PSO process can hybrid self-
experience search with neighboring experience search. In the traditional SVR technique the parameters were
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selected using a grid search over a fixed interval of possible values for the parameters. In the hybrid PSO-SVR
model, the PSO constructs a stochastic search for finding the best set of parameters of SVR. The position,
velocity, and local best position of the ith particle pair can be defined as follows where these terms are defined
based on the three hyper parameters in an SVR model for the n-dimensional space and are denoted in Egs. (17)—
(19), respectively,

Xaoi = [Xoi0 Xao)i2 XK)i,30 -+ X(K)inl (17)
Vaoi = Vi1 Vaoiz Vi s -+ Vaind (18)
Py = [p(k)i,lJp(k)i,Z:p(k)i,3: ---,P(k)i,n], k=Ce¢0,i=12,..,N (19)

We initialize a populatio