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Artisanal fish fences pose broad and unexpected
threats to the tropical coastal seascape
Dan A. Exton 1, Gabby N. Ahmadia2, Leanne C. Cullen-Unsworth 3,4, Jamaluddin Jompa5, Duncan May6,

Joel Rice7, Paul W. Simonin8, Richard K.F. Unsworth 4,9 & David J. Smith10

Gear restrictions are an important management tool in small-scale tropical fisheries,

improving sustainability and building resilience to climate change. Yet to identify the man-

agement challenges and complete footprint of individual gears, a broader systems approach

is required that integrates ecological, economic and social sciences. Here we apply this

approach to artisanal fish fences, intensively used across three oceans, to identify a pre-

viously underrecognized gear requiring urgent management attention. A longitudinal case

study shows increased effort matched with large declines in catch success and corresponding

reef fish abundance. We find fish fences to disrupt vital ecological connectivity, exploit >

500 species with high juvenile removal, and directly damage seagrass ecosystems with

cascading impacts on connected coral reefs and mangroves. As semi-permanent structures

in otherwise open-access fisheries, they create social conflict by assuming unofficial and

unregulated property rights, while their unique high-investment-low-effort nature removes

traditional economic and social barriers to overfishing.
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The long-term future of tropical coastal ecosystems and their
fisheries will largely be determined by our ability and
willingness to address global climate change1–6. Yet,

addressing localised threats (e.g., unsustainable or damaging
fishing practices) can build short-term ecosystem resilience7,
improve adaptive capacity of species and ecosystems to changes
in climate8, and increase the opportunity for adaptation and
acclimation9. However, there are potentially catastrophic impacts
in areas where dependence on marine ecosystem services is high.
For example, coral reefs provide the majority of protein to over
400 million people10, yet an estimated two-thirds of reef fish are
already believed to have been lost11. Developing solutions to slow
the degradation of these ecosystems, including identifying the
most-damaging practices and understanding what drives them, is
therefore among the biggest global challenges facing humanity12.

A range of tools are currently used for sustainable coastal
fisheries management. Marine Protected Areas often provide a
governance structure for tailored conservation action such as
fisheries management and can successfully buffer ecological
communities against disturbances13–15, especially when optimal
reserve size thresholds are met16, manpower and funding are
sufficient17, and ecological connectivity is considered18,19. Where
strict no-take rules are impractical, fish biomass can be main-
tained via more tailored fisheries management, including
restrictions on gear usage and access20,21, while strengthening
fisheries governance at the local-scale best protects ecological
processes22. Governance of fishing activities is made more chal-
lenging by the multi-gear nature of many tropical small-scale
fisheries; it is not uncommon for over 50 distinct gear types to be
in use at a single location (including multiple varieties of the same
gear class)23–26. Although on occasion, critical management tar-
gets are easily identified, for example, blast fishing with explosives
that has received considerable conservation attention27,28, it is
often less obvious where effort would be best spent to maximise
conservation benefits. Similar to management interventions29,
individual gear types express characteristics that span ecological,
economic, and social sciences, and to fully understand their true
impact they should be viewed beyond the narrow perspective of

whether they are visibly destructive. Instead, a multi-directional
approach is needed to realise the complete footprint on both the
human communities and ecological systems in which they
are used.

Artisanal fishing gears are often promoted by managers, based
on a widely held perception of smaller footprints compared with
more-industrialised or modernised techniques. This is often
despite the lack of an holistic understanding of the wide-ranging
and far-reaching impacts these gears might pose. Artisanal fish
fences (artisanal weirs, static fyke nets), for example, are used
frequently and intensively, and their impacts appear severe and
far-reaching, making them an ideal gear to test our approach. We
show fish fences being used intensively across three ocean basins
(Atlantic, Indian, Pacific), before presenting a unique 15-year case
study incorporating ecological, fisheries catch and socioeconomic
data to examine fish fence impacts across communities (natural
and human) and ecosystems (seagrass, coral reef and mangrove),
as well as exploring the social and economic drivers underpinning
their use. Through such a comprehensive assessment, we are able
to highlight otherwise unrecognised threats from this widely used
gear type to local stakeholders and across multiple ecosystems,
and demonstrate the value of a multi-disciplinary approach in
directing evidence-based gear restriction efforts in tropical small-
scale fisheries.

Results and discussion
Spatial and temporal patterns in usage and effort. Artisanal fish
fences are semi-permanent structures positioned on intertidal and
shallow subtidal flats (Fig. 1a) that use fences to funnel fish into a
holding structure at the seaward end as the water recedes towards
low tide23. They were a common gear type globally before the
advent of industrial fishing30, and they remain in use across a
wide geographical range as a component of small-scale tropical
coastal fisheries. We report the use of artisanal fish fences from
the published scientific literature in 19 tropical countries across
three oceans; from South America and West Africa through East
Africa and the Persian Gulf, to the Indo-Pacific and Pacific
Islands (see Methods). Further, image analysis using Google Earth

a

c d

b

Fig. 1 Indonesian fish fences on intertidal reef flats, showing a an 80m long fence at low tide, b a halo of benthic habitat loss caused by direct clearance
and/or the use of poison, c a fence acting as an artificial barrier preventing a healthy benthic community from persisting on the landward side and d cleared
seagrass within the fence structure. Photo credits: Benjamin Jones, Project Seagrass
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(based on the latest satellite imagery available in July 2018) and
the personal observations of the authors, identified their use in
three additional countries (Sri Lanka, Thailand and Malaysia), as
well as locations in Philippines and Indonesia (Fig. 2). At each
location, fence use was shown to not only be present but also in
high density.

Long-term data from Kaledupa Island (Wakatobi National
Park, Indonesia) show an increase in artisanal fish fence effort
over a 15-year period (Fig. 3a; Supplementary Table 1). From just
37 fences in 2002, numbers increased by 450% in only 7 years,
peaking at 210 in 2009. Fence length (based on the total length of
the central spine) showed a similar trend (analyis of variance;
ANOVA, F6= 9.00, p < 1.25−7), increasing by 69% in 11 years
from 106 ± 9 m (mean ± 1SE) in 2005 to 179 ± 9 m in 2016.
Finally, mesh size used in the holding structure almost halved
(Kruskal–Wallis, H5= 64.42, p < 1.48−12) from 2.54 ± 0.00 cm in
2005 to only 1.28 ± 0.43 cm in 2016. If all fences were placed end-
to-end, they would have stretched for a total of 10.57 km in 2005,
and 27.89 km in 2015. Fences are typically arrow-shaped,
consisting of a central spine and multiple wings, and those
studied here on average incorporated 2.5 times the length of
their central spine in total fence length. This means a combined
total of 69.73 km of physical barrier was in place around the
island in 2015; significantly exceeding the island’s ca. 60 km
coastline.

When discussing temporal patterns in total fence effort, it is
important to note that, owing to the large spatial footprint and
semi-permanent nature of this gear type, both the size and
number in use will ultimately be limited by space availability. This
could create a false impression to managers that total effort is
stabilising, whereas it could simply indicate that spatial saturation
is being reached, and that effort may continue to rise through
regular mesh size decreases as seen here.

Fishers on the island appear to have changed their main fishing
gear preferences, moving from widespread use of low-intensity
methods (lines and spears) to a greater reliance on net fishing and
fish fences. As part of stratified randomised household interviews
throughout Kaledupa, 209 fishers were interviewed in 2005, and
75 interviewed in 2012. The majority of fishers in 2005 used lines
as their main gear (54%), with 21% using nets and 7% using fish
fences. Ten per cent used small mobile fish traps (bubus) and 5%

used spears. By 2012 the majority of fishers used nets (62%) with
30% now using fish fences as their main gear. In 2012, no one
reported using spears or lines as their main gear and one fisher
reported using a fish attraction device.

Despite this widespread and growing use and large cumulative
spatial footprint, fish fences are still only of direct economic
benefit to a small proportion of the total fishing community. Each
fence is typically owned by a single fisher, and no additional
labour is required to maintain their catches unless the owner
chooses to employ an assistant to collect catches on their behalf.
The widespread negative impacts of fish fence use must be placed
in the context of their status as a minority gear type to fully
appreciate the mismatch between the economic benefits to a few
and the ecological costs suffered by all.

Impacts within and between ecosystems. Local expert work-
shops and household interviews conducted between 2011 and
2014 revealed the presence of a range of direct physical impacts
caused by the construction and use of artisanal fish fences.
Considering the importance of habitat in supporting fish stocks31,
the loss of habitat from these direct impacts will expand the
footprint of fish fence use beyond the simple removal of fish by
reducing local carrying capacity and recruitment potential.
Fishers commonly remove all seagrass within the immediate
vicinity of the fence (Fig. 1d), either through cutting or the use of
poison as it is believed that this enhances catch. This creates a
patch of habitat loss within the structure of the fence, as well as a
halo surrounding it (Fig. 1b), resulting in habitat fragmentation
and edge effects, which are known to have negative ecological
impacts32,33. Fences also introduce an artificial physical barrier,
acting as an obstacle to natural ecosystem functioning, which will
interrupt the natural movement of mobile species, but will also
impact hydrology, connectivity, and even infochemical pro-
cesses34, which, in turn, can disrupt benthic community structure.
This can lead to a healthy habitat coming abruptly to an end at
the seaward side of a fence, to be replaced by a barren seascape on
the landward side (Fig. 1c).

Fences are typically constructed using wooden poles harvested
in local mangroves, further increasing the ecosystem scale impact
of these fisheries. In the Wakatobi, Bruguiera gymnorhiza wood is

0 5 10 km0 0 20 40 km 0 20 40 km 0

0 10 20 km

20 40 km10 20 m

Study location used here
Fish fence use in literature

Sri Lanka Thailand Malaysia Indonesia

Philippines

Fig. 2 Global distribution of artisanal fish fence use, showing the location of mentions in the literature (black diamonds), Google Earth visual surveys
showing intensive use of fish fences (inset maps corresponding by colour to squares on main map), study site location used for this study in Wakatobi
National Park, Indonesia (pink star), and an example fish fence viewed via Google Earth (inset photo). Where literature mentions describe regional studies
with ranges of hundreds of kilometres, symbols denote the approximate centre point of those studies. Map data are from Google
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used35, usually with a 2 m long pole every 0.5 m along the entire
length of fence. Based on each structure incorporating on average
2.5 times the length of its central spine in total fence length, this
results in ~ 500 poles being used for the construction of a 100 m
long fish fence. Using the total number and mean length of fences
in 2015, this equates to 139,464 poles being used. Assuming a
mean pole radius of 2 cm, and using the average of published
wood density values for B. gymnorhiza36, we estimate 268 tonnes
of mangrove wood was required to construct the fences present
around Kaledupa in 2015, representing a substantial driver of
local mangrove deforestation.

Long-term catch monitoring suggests severe and far-reaching
ecological impacts from intensive artisanal fish fence use. At the
broadest level, catch per unit effort (CPUE) declined by almost
70% between 2005 and 2007 (ANOVA, F8= 13.53, p < 2−16),
from 18.08 ± 6.36 kg fence−1 day−1 to 5.44 ± 0.86 kg fence−1

day−1 (Fig. 3b). This has subsequently stabilised, fluctuating
between lows of 3.65 ± 0.22 kg fence−1 day−1 (2012) and 6.29 ±
0.76 kg fence−1 day−1 (2016). The number of individual fish
caught showed a similar decline of over 75% (Negative Binomial
generalised linear models (GLM), F8= 478.18, p < 2.2−16), from
713.50 ± 256.67 individuals fence−1 day−1 in 2005 to 172.76 ±
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Fig. 3 a Total fish fence effort around Kaledupa Island between 2002 and 2016, showing total number of fish fences in use (pink), and length of fences
measured along the central spine (orange). b Catch statistics from fish fences between 2003 and 2016 during intensive 5-week study periods July–August,
showing catch per unit effort (CPUE; grey) and number of individual fish caught (purple). c Overall proportion of fish caught as juveniles for the total catch
(all species combined; yellow), for species that mature above 15 cm (green) and for species that mature above 20 cm (blue). Data shown in a and b are
mean ± 1 standard error (SE) where applicable. For n of fences and catches surveyed at each time point see Supplementary Table 1
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34.32 individuals fence−1 day−1 in 2007. However, unlike CPUE,
this downward trend continued, and by 2012 only 36.80 ± 3.10
individuals fence−1 day−1 were being caught. Considering the
increases in average fence size and decreases in mesh size during
this time, the true extent of decreasing returns from fish fences
will be significantly higher than reported here. Stabilised CPUE
should not be confused with stable returns. There was also a
> 30% decline in the species diversity of catches observed here
(ANOVA, F8= 17.29, p < 2−16), which decreased from 20.00 ±
1.72 species catch−1 in 2005 to 13.69 ± 0.59 in 2016, presumably
as species become locally rare or even extirpated.

Over the course of this study, the proportion of juvenile fish in
individual catch averages increased by > 400%, from 9.72 ± 3.33%
in 2005 to 40.27 ± 1.92% in 2016 (ANOVA, F8= 19.81, p < 2−16).
For species that mature > 15 cm, 81.37 ± 1.73% were caught as
juveniles in 2016 compared to 40.79 ± 9.02% in 2005 (Quasibi-
nomial GLM, F8= 148.47, p < 2.2−16), and those that mature at
> 20 cm were caught at 89.73 ± 1.58% in 2016 compared with
57.63 ± 9.82% in 2005 (Quasibinomial GLM, F8= 96.12,
p < 2.2−16). When all catches are combined, the proportion of
juveniles caught each year increased from 4.15% to 36.38% (all
species), 13.25% to 81.41% (species that mature > 15 cm) and
61.23% to 90.54% (species that mature > 15 cm) (Fig. 3c).
Minimising the removal of juvenile fish is a core principle of
the ecosystem approach to fisheries management37, whereas
larger species tend to be the most ecologically and commercially
valuable. Their loss can have significant detrimental impacts,
including cascade effects from predator declines38 and macroalgal
overgrowth from large herbivore loss39, and so the removal of
almost exclusively juveniles will likely have a devastating impact
on their survival prospects, and potentially on ecosystem
resilience as a whole40.

Analysis of the 10 most abundant species found in catches
across years showed an overall decrease in median lengths from
the start to the end of this study for seven species; two of these
decreases were significant (Moods Median Test; Supplementary
Table 2). Interestingly, 2 of the 10 species showed significant
increases in median length over the course of the study: Lethrinus
rubrioperculatus and Siganus canaliculatus. On one hand this
could indicate that, in such a complex multi-species fishery, no

individual species were caught in sufficient numbers to accurately
detect the true length distributions at a single time point.
Alternatively, if these changes are indeed accurate, it could
suggest that some species are benefiting from the intensive
removal of competitors/predators elsewhere in the system (e.g.,
from other gear types), or they represent potential winners of
environmental change. For example, S. canaliculatus feeds on
epiphytic algae, which tends to proliferate with habitat
degradation.

Fish surveys via underwater visual census (UVC) on adjacent
coral reefs show a corresponding decline in overall abundance.
When all sites and depths are combined, fish densities
(individuals 250 m−2) almost halved in 10 years, from 910 ± 88
in 2002 to 498 ± 31 in 2012 (Supplementary Figure 1). This was
largely driven by a loss in upper outliers, representing the most-
pristine reef areas, with maximum densities encountered falling
over the same time from 2437 to 1196 individuals 250 m−2, and
range declining from 2214 to 969. Whereas reef fish density
decreased negatively with the number of fish fences in use
(Supplementary Figure 1), this was found not to be statistically
significant (linear regression p= 0.08), although in a complex
multi-gear fishery this is unsurprising. However, there is evidence
to suggest that fish fences are an important, and under-
appreciated, driver of these ecosystem wide declines, namely (i)
their high exploitation of vulnerable life stages, (ii) their non-
selective nature and subsequent exploitation across a diverse fish
community, and (iii) their inherent purpose of disrupting the
natural movements of fish populations that limits vital
connectivity.

Owing to the semi-permanent nature of artisanal fish fences,
combined with their large dimensions and small mesh size
(1.28 ± 0.43 cm in 2016), they are highly non-selective (i.e., they
remove a large proportion of the available community including
early life stages). When this is framed within the hyperdiverse
marine ecosystems of the Indo-Pacific12, the footprint of such
non-selective gears across the entire fish community can be huge.
Fish community composition around Kaledupa is well known,
thanks to over two decades of intensive research combining visual
surveys and fishery catch monitoring (see Methods). A total of
575 fish species have been recorded by visual surveys of local reef,

324 species
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251 species
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263 species
caught not
observed
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Fig. 4 Visual representation of the 838 fish species recorded locally, separated by their presence in visual surveys only (blue fish), fish fence catch
monitoring only (red fish) or both (green fish). All 575 species recorded in visual surveys (inside 'box) were then allocated habitat associations, based on
which visual surveys they were recorded in (coral reef, seagrass, mangrove). For each habitat association, the proportion (%) of species present in (blue
bars) and absent from (green bars) fish fence catches are shown, with the total number of species allocated to that habitat association (n). Symbol artwork
produced by Olivia Farman, Operation Wallacea
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seagrass, and mangrove habitats historically. Of these, 251 (44%)
have also been recorded in fish fence catches (Fig. 4). However, a
further 263 species have been recorded in fish fence catches that
have not also featured in local surveys, meaning these fences are
known to exploit at least 514 fish species to some extent at a
single location. This includes charismatic species such as sharks
and rays, which were observed as by-catch during this study in
addition to non-fish species including turtles and various
invertebrates. Although discarding of by-catch was minimal
during this study, it has recently been recorded in other parts of
the Indo-Pacific41, suggesting further sustainability concerns for
artisanal fisheries.

Fish fences are designed to take advantage of the natural
movements of fish, by forming a barrier from which they are
unable to escape as the water recedes towards low tide. This
causes disruption to the well-described, and ecologically impor-
tant, natural connectivity between coastal marine habitats42,43.
When the cumulative extent of this barrier is equivalent to ca.
50% of the coastline, as seen here around Kaledupa Island, this
disruption is likely to be extreme. When the species recorded in
local surveys are categorised into habitat associations based on
the specific visual surveys in which they have been recorded
locally, the proportion of which are known to be exploited by fish
fences increased in those communities occupying multiple
habitats (Fig. 4). For example, 90% of the species observed in
“reef+ seagrass+mangrove” and 85% of species observed in
“reef+mangrove” have been recorded in fence catches. This is
compared with only 38% of species observed only on reefs.
Natural connectivity enhances fish abundance and protects
ecological processes19, as well as preserving resilience18, and so
any activity that acts to disrupt this connectivity will be counter-
productive to conservation efforts. Considering reef fish have
been shown to migrate over 30 km44 even local fish fence use can
have far-reaching implications across a wide geographical area.

Bioeconomic controls and social conflict. Indonesian fishers will
typically invest ca. USD 400 (correct as of 2018) of capital to
construct a new fence, and typically no further financial outlay is
required for at least 1 year, after which there will be small costs
associated with maintenance and repair. This level of capital
investment is similar to other gear types used on coral reefs, e.g.,
gill nets45, but while these alternatives are also typically associated
with high regular effort (labour at sea and on land), fish fence use

requires little regular effort from the fisher for as long as the
structural integrity of the fence is maintained (at which point they
can choose whether to repair, replace or exit the fishery). Fish
fences are generally moved up to four times per year. Daily effort
is restricted to a single trip to empty the fence at low tide and
return the catch to land. This makes artisanal gears an example of
a highly efficient gear, which are known to impact fish stocks46,
but also means fence owners are forced (by the need to recover
capital investments) and incentivised (by long-term cost neu-
trality and low regular effort) to operate their fences for as long as
possible. Once a fence is constructed, there exists a lack of any
economic or energetic barriers to overfishing. This is coupled to a
lack of any technical barrier in the form of gear availability, access
to fishing grounds, and required expertise. Thus, fishing pressure
is maintained in the face of diminishing returns and habitat
damage, satisfying the criteria of Malthusian overfishing when
framed alongside continued high human population growth in
the tropics47,48.

From a bioeconomic perspective, increasing the cost of fishing
(for example, via high capital investment) should theoretically
improve sustainability by reducing the total effort at which open-
access equilibrium is reached49. However, conversely, a reduction
in regular unit cost/effort should have an opposite effect,
exacerbating overfishing beyond the original open-access equili-
brium. The passive nature of fish fences could therefore negate
the potential benefit of capital investment as a control mechanism
against overfishing, and could even accelerate fishery collapse
(Fig. 5). This impact is worsened by the privatisation of fish
fences in recent decades, having evolved from cooperative to
single ownership. This concentrates the benefits of fence use
within a narrow group of people, and displaces others into other
gear types to maintain livelihoods, thus intensifying overall
fishing pressure. It is also likely an important contributing factor
toward the increase in fence numbers documented during this
study as former cooperative members switch to individual
ownership.

Many tropical marine habitats, including those studied here
around Kaledupa Island, are open-access50. Fisheries governance
can be strengthened by the addition of property rights such as
territorial user rights fisheries22, or via catch shares in the form of
quotas51, in order to avoid a tragedy of the commons scenario52.
However, fish fence owners assume perceived property rights
while excluding other stakeholders from accessing traditionally
open-access fishing grounds. Fish fence owners then assume an

Y
ie

ld
/C

os
t

Open-access
equilibrium

Profit

b. High investment +
high regular effort

c. High investment +
low regular effort

a. Low investment +
high regular effort

MEY

MSY

Effort

Fig. 5 The Gordon-Schaefer fixed price bioeconomic model75 indicating the open-access equilibrium where cost equals the effort–yield curve. Also shown
are theoretical variations of this relationship based on differing levels of initial investment and regular effort. The high-investment–low-effort nature of fish
fences could exacerbate overfishing by removing some traditional bioeconomic barriers
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unofficial (and unregulated) exclusive spatial harvest right, while
undermining the catches of the wider stakeholder community
through previously discussed disruption of ecological connectivity
and high juvenile removal. The fences surveyed as part of this
study averaged a 5:1 length to width ratio, meaning that in 2015
(the most recent year in which all effort metrics are available), a
mere 160 fishers (one fisher per fence) assumed dedicated access
privileges over an estimated 0.97 km2 of fishing grounds in
addition to the ca. 70 km of physical barrier limiting the natural
movement of fish stocks.

Fish fences also create social conflict in Indonesia owing to
perceived social hierarchy between Pulo (islander) and Bajo (sea
nomad) communities. Informal restrictions mean only Pulo
fishers are socially permitted to own fences, therefore excluding
not only based on economic status but also on ethnicity. To our
knowledge, this is locally unique to fish fence ownership, with no
other gear types restricting Bajo involvement based on social
hierarchy alone, although they are often marginalised by a lack of
financial capacity to utilise more technology-driven fishing
techniques. When combined with the issues surrounding
assumed property rights and privatisation, fish fences undermine
co-management efforts, which rely on buy-in across the
stakeholder group53. Our interviews with local fishers also reveal
evidence of increasing levels of conflict between fishers over
space, as catches decline and fishers look to move into new areas.

A new management priority?. Considering the widespread
shortfalls in resources impacting the performance of marine
conservation interventions17, it is crucial that management effort
is directed to maximise positive change via evidence-based
recommendations54. In the case of complex tropical multi-gear
fisheries, a better understanding of the impact and extent of
individual gear types will help identify those having a dis-
proportionate impact and make more informed decisions. For
example, it can help ensure that no-take areas (NTA) are matched
by evidence-based management of gear types used outside of
them15,16,20,55. Fish fences are used where fish protein forms a
major part of people’s diets;10 thus maintaining sustainable
fisheries is a high priority to protect human health, livelihoods
and culture. Yet, they disrupt vital ecological connectivity, remove
high quantities of juveniles, exploit hundreds of species, lack
traditional economic and social barriers to overfishing and create
social conflict among wider stakeholder groups, whilst only
benefiting a minority of the overall stakeholder community. This
suggests a worrying, and disproportionately high, impact on both
fisheries sustainability and the multiple ecosystems on which they
depend.

Restricting fish fence use would represent a low-effort—high-
reward conservation strategy as they are semi-permanent and
thus easily detectable, making them far easier to police than many
other gears. This effort would result in direct and immediate
benefits to the health and extent of three distinct ecosystems
(coral reefs, seagrass beds, and mangrove forests), would remove
a significant sink for large numbers of juvenile fish across many
hundreds of species, and would benefit the wider fishing
community by removing an important source of social conflict
whilst re-opening large areas of currently inaccessible fishing
ground and restoring natural fish movement/migrations. There
would likely be displacement into alternative gear types, but
owing to the wide-ranging threats from fish fence use outlined
here, we would anticipate this to have an overall net benefit to the
fishery as a whole. Without restriction, the low regular effort
required to maintain operation combined with the economic
need to recover initial investment will likely mean their
widespread and intensive use persists regardless of further

declines in fish stocks. We therefore call on managers to target
gear restrictions toward fish fences as an urgent priority in
achieving sustainability in these vital fisheries, while improving
our understanding of the hidden threats of artisanal fisheries by
applying our approach to a broader suite of gear types.

Methods
Satellite imagery visual analysis to determine extent of artisanal fish fence
use. Owing to the large and semi-permanent nature of artisanal fish fences, their
structures are easily visible from satellite imagery30. Artisanal fish fences have
previously been mentioned within the scientific literature as being used in 19
countries within the tropics: Indonesia;23,25,56 French Polynesia;57 Micronesia;58

Samoa;59,60 Tonga;61 Mozambique;62 Tanzania;25,63 Kuwait/Saudi Arabia/Qatar/
United Arab Emirates/Iran/Bahrain;30 Brazil/Mauritania/India/Singapore/Phi-
lippines/Australia25. Here, we use Google Earth to identify their widespread use at
locations in three additional countries (Malaysia, Thailand and Sri Lanka), plus
new locations in Indonesia and Philippines, to better highlight the geographical
scale of their use. These locations were selected based on personal field observa-
tions of the authors, and for each location visual scans were performed, with the
GPS co-ordinates of each visible fence recorded (Fig. 2). Visual scans were repeated
twice by the same researcher to ensure accurate counts.

Longitudinal case study location. The Wakatobi Marine National Park, Southeast
Sulawesi, was designated in 1996 and covers 1.39 million hectares. Kaledupa is the
second largest island in the park, with a human population of around 17,000
distributed among 27 villages with a high reliance on artisanal fisheries23. There are
two distinct ethnic groups present on and around Kaledupa: the land-based
Butonese descendents (Pulo) and a nomadic sea people (Bajo) who settled in
permanent villages built on artificial platforms over the reef flats during the 20th
Century64. Owing to assumed ownership rights over fishing grounds locally, they
are only constructed and owned by Pulo fishers.

Local effort assessment. To estimate the effort allocated to artisanal fence use by
the local fishing community during the course of this study, three values were
quantified. First, island-wide visual censuses of fences were conducted by cir-
cumnavigating Kaledupa and its outlying islands by boat. A similar pre-study
census from 2002 was also included as a historical time point (unpublished).
Second, the total length of each fence monitored in this study was measured along
the central spine (Panaju) to provide an approximate mean total fence length for
Kaledupa. The mesh size in use in each fence was also measured in the collection
end (typically, the finest mesh size in use within the structure). Census and fence
length data are unavailable for all years owing to logistical constraints, specifically
adverse weather conditions prohibiting island-wide access.

Household surveys and workshops. To understand marine and coastal resource
use patterns around Kaledupa Island, a series of stratified randomised and semi-
quantitative household interviews were conducted around the Island (spread across
17 villages) in both 2005 and 2012 (see ref. 65). Within these interviews 209 fishers
were interviewed in 2005 and 75 interviewed in 2012, and the data specific to
fishers were examined in both years with respect to fisheries gear use.

In order to gain detailed insights into the methods and broader environmental
context of fish fence use, we ran two local expert focus discussion workshops (see
ref. 66) during 2012. One of these was with the local government, NGO, and village-
level officials who had involvement in fishery activity. The second workshop was
with fishers from the local indigenous Bajo communities. Discussions focussed on
perceived impacts on the local marine environment and long-term ecological
change. Ethical approval for working with human participants was obtained from
Swansea University (SU-Ethics-Staff-250319/134), and informed consent was
obtained.

Catch monitoring. Catches from artisanal fish fences were monitored around the
northeast coast of Kaledupa, in 5-week-long intensive sampling periods between
July and August in 2003, 2005, 2007, 2009, and annually between 2011 and 2016.
During each sampling period a locally run fish fence cooperative (known locally as
a Kelompok), comprising between 7 and 20 individual fences and their owners, was
selected at random and their owners approached informally to discuss participation
in the study. Each fence was emptied daily, as usual at low tide, and the catch
returned by the owner to a centralised location (typically an owner’s home) in the
village of Laulua (5°29’56.08”S 123°44’52.97”E) for analysis.

On arrival, the total catch was weighed to provide CPUE, reported as kg fence−1

day−1. All fish were subsequently identified to species level, and length
measurements taken of all individuals. Where > 20 individuals of a species
appeared in a single catch, a random sub-sample of 20 individuals were chosen for
length measurements and mean values applied to the total number caught. Length
data were used to quantify the proportion of each species and total catch caught as
juveniles using published species-specific size of maturation values67. Where these
values were not available, a value one-third of the species-specific maximum size
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was used to estimate minimum size of maturation68,69. To explore trends in the
length of caught species, 10 species were chosen that were caught in the highest
numbers throughout the study (excluding the smallest shoaling species, e.g.
sardines). The median length of each of these species was then calculated from the
catch monitoring data.

Over the nine sampling seasons, 995 catches were surveyed comprising 70,967
individual fish. As no animals were harmed for the purposes of this study (normal
daily catches of a working fishery were observed), ethical approval was not sought.

Fish surveys of adjacent reefs. Densities of fish on adjacent coral reefs were
determined via a reef monitoring programme between 2002 and 2012. During this
time, six reef sites were visited between June-August in 2002–03, 2005, 2007–09,
and 2011–2012. UVC70 was performed along 50 × 5 × 5m belt transects, with all
fish identified to species level. At each site and year, triplicate transects were
completed on three reef zones: reef flat (0–3 m), reef crest (3–8 m), and reef slope
(8–15 m).

Habitat associations. Species lists from fish fence catch and reef fish surveys were
combined with similar lists from published surveys of Kaledupan seagrass and
mangrove habitats43,71–73. Each species was then assigned a particular habitat
association (e.g., reef+ seagrass+mangrove), based on the surveys in which it was
recorded. These data provided a casual estimate of the inter-habitat connectivity
present for each species locally, and the proportion of each community known to
be exploited by fish fences.

Statistical analysis. CPUE and reef fish survey data were log-transformed and
data on species diversity and the total proportion of juveniles square-root-
transformed to allow parametric statistical testing. Significant variations in the
means of the above variables over time, along with untransformed data on fence
length, were tested for using one-way ANOVA, with the specific source of sig-
nificance explored using post hoc Tukey–Kramer testing. Variations in mesh size
were tested for using non-parametric Kruskal–Wallis with pairwise
Mann–Whitney U with Bonferroni correction. Data on the number of individuals
per catch, as well as the proportion of juveniles amongst species that mature over
either 15 cm or 20 cm body size failed to conform to the assumptions of linear
regression, and so negative binomial (individuals) and quasibinomial (proportion
of juveniles among larger species) GLM were performed alongside post hoc
Tukey–Kramer testing. Differences in fish length for individual species between the
start and end of the study were performed using Moods Median Test. All statistical
analyses were performed using R74.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
The data sets presented in this study are available from the corresponding author on
reasonable request. The source data underlying Figs. 3 and 4, Supplementary Fig. 1 and
Supplementary Tables 1 and 2 are provided as a Source Data file.
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