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Spillover Effects of Investment in Big Data Analytics in B2B relationships: What 

is the Role of Human Capital? 

 

Abstract 

Economy-wide investment in Big Data Analytics (BDA) offers retailers a number of 

opportunities and while there is some evidence that new technologies have been widely 

adopted by retailers, it also transpires that many retailers have yet to fully exploit the 

benefits of BDA. Most research on Big Data and productivity (or performance) tends 

to focus on internal factors that prevent retailers from fully exploiting their investment 

in BDA. Research has paid scarce attention to the benefits that can accrue to the focal 

firm from the upstream investment in BDA and the features of the B2B marketing 

environment that may hamper (or enhance) these benefits. Unlike the previous 

literature, the paper tests the extent to which retailers, by having access to larger share 

of graduate workforce at regionally, can benefit more from inter-industry upstream 

investment in BDA than retailers located in areas where such workforce is scarce. Using 

data from ORBIS, KLEMS and QLFS, we show that retailers located in regions with a 

larger proportion of graduate workforce benefit more from inter-industry upstream 

investment in BDA as they tend to be more efficient on average. Equally, upstream 

investment in BDA is positively associated to frontier shifts over time (i.e. technical 

progress).  
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1. Introduction 

In today’s increasingly competitive and dynamic business environment, Big Data with 

its massive volume, variety and velocity provides an array of opportunities to firms 

(Manyika et al., 2011; Wang, Kung, & Byrd, 2018). However, Big Data per se is not a 

source of comparative advantage to businesses unless it is exploited to inform both 

strategic and operational decisions through an integrated set of aggregation, analytics 

and interpretation techniques (Wang et al., 2018).  This set of techniques goes under 

the label of Big Data Analytics (henceforth, BDA) and comprises all the hardware, 

software and methodologies that can be used to exploit Big Data.  

 

Several industries in the UK have been identified as key beneficiaries of the widespread 

adoption of Big Data technologies with retail being one of these. The inclusion of the 

retail sector in such a list is hardly surprising: first, even if the sector had experienced 

average annual employment growth rates of about 1% in the decade preceding the 

2009-2010 economic recession (Haskel & Sadun, 2008), in reality major retailers in the 

UK have been increasingly relying on automation and IT to manage key areas of their 

activities (like the supply chain and logistics) while gradually cutting jobs for nearly a 

decade now1. As a result, they are well positioned to benefit from the wider adoption 

of BDA across the economy. Second, the sector is extremely rich with data as large 

retailers collect data from millions of customers and marketing channel partners 

(Bradlow et al., 2017) although evidence suggests that many retailers have yet to fully 

exploit the benefits of BDA (Germann et al., 2014).  

 

There is an additional benefit that could accrue to retailers from the economy-wide 

adoption of BDA i.e. increasing productivity levels. The sector accounts for about a 

third of the UK total factor productivity (TFP) slowdown as documented by Riley 

(2015). Although several reasons have been put forward to explain such a poor 

performance of the sector in terms of TFP (as well as labour productivity) 2 , its 

                                                      
1 According to the British Retail Consortium, major retailers employed 3.0 per cent fewer staff in 

the third quarter of 2017 compared to the same period in 2016, and total hours worked fell by 

4.2 per cent year-on-year (Milliken, 2017). 
2
 Haskel and Sadun (2007, 2008) found that retail’s TFP has decreased by 0.4% a year after 1996 

when planning regulations were changed in such a way that opening large stores became more 

expensive. Equally Griffith and Hamgart (2005) suggested that these changes might have had a 

negative impact on retailers’ productivity by preventing them from operating at the minimum 

efficient scale and hindering the opening of new stores. Griffith, Redding, & Van Reenen (2004) 
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lackluster performance in terms of productivity growth can be rationalized as being the 

result of a mix of increasing technical inefficiency and of technological slowdown. 

Indeed, economic theory suggests that productivity growth can be decomposed into 

technical change (i.e. improvements in the technology available to the industry as a 

whole) and technical efficiency change (defined here as changes in the firm’s capability 

of producing the maximum level of output given the current inputs’ usage). While there 

is some evidence that new technologies have been widely adopted by retailers, evidence 

suggests that many retailers have yet to fully appropriate the benefits of BDA in terms 

of increasing technical efficiency (Germann et al., 2014; Roh, 2018) suggesting that the 

latter may drive the productivity slowdown.  

 

Authors have pointed out that the widespread adoption of BDA can help improve 

technical efficiency among retailers through two channels (see for instance Manyika et 

al., 2011). The adoption of BDA among retailers may have a direct positive impact on 

their efficiency as BDA allows them to improve inventory control, storage optimization 

and pricing. The adoption of BDA across the whole economy can also have an indirect 

positive impact on retailers’ efficiency (and eventually productivity) through their 

supply chain. According to this view, the upstream (i.e. suppliers’) investment in BDA 

may have a chain effect on retailers and can trigger improvements in technical 

efficiency through business-to-business (henceforth, B2B) relationships. For example, 

the investment and use of BDA among suppliers may prompt downstream firms to re-

organise their production processes and structures to take advantage of the analytics-

induced increased efficiency in running transactions (Criscuolo & Waldron, 2003). 

Such measures may potentially yield sustained improvements in efficiency due to an 

improved matching of inventory to customer demand as well as more efficient stock 

management. Therefore, identifying the factors that may stop retailers from benefitting 

from the adoption of BDA across the economy is quite an important research area with 

major managerial implications.  

 

                                                      

suggest that poor management, a lower-skilled labour force, an inadequately competitive retail 

market, land regulation/planning differences and the slow adoption of information and 

communications technology (analytics) are the main factors behind low productivity in the UK 

retail sector. Also Griffith and Harmgart (2008) suggest that, in addition to regulation, it is 

necessary to control for the differences in the environment where stores operate as these would 

affect their fixed costs and their profitability.   
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Most of the research on BDA and productivity (or performance more generally) tends 

to focus on internal factors that prevent retailers from fully exploiting their investment 

in BDA (Wamba et al., 2017). However, research has paid scarce attention to features 

of the marketing environment where retailers operate that still have the potential of 

hampering their efficiency levels. This is rather puzzling as it has been argued that the 

impact of local effects outside the control of the manager should be taken into account 

when measuring retailers’ efficiency (Kamakura, Lenartowicz, & Ratchford, 1996; 

Fritsch & Changoluisa, 2017) as different environmental conditions faced by retailers 

can lead to huge differences in technical efficiency, even for retailers with similar 

intrinsic characteristics (Banker & Morey, 1986). In this paper we focus on a specific 

aspect of the environment where retailers operate, namely the local availability of 

graduate workforce. This topic is very relevant for Britain where there is a substantial 

heterogeneity in the distribution of human capital across the country3 and where it is 

suggested that the availability of graduate workforce is one of the main constraints 

retailers face 4 . We suggest that conditions associated with environment (i.e. the 

availability of graduate workforce locally) are positively associated to positive 

efficiency (and eventually productivity) growth accrued from the upstream investment 

in BDA within the UK retail sector. Against this background, our purpose is to quantify 

the extent to which differences in the availability of graduate workforce across UK can 

help retailers to benefit from upstream investment in BDA and so help them improve 

their technical efficiency, experience technical progress and eventually improve 

productivity growth. Importantly, although the paper focuses on the two components 

of productivity growth rather than on financial performance, it is important to recall 

that a number of studies have shown that fast productivity growth is a pre-condition for 

fast financial performance (Blažková & Dvouletý, 2018) suggesting that both 

productivity and efficiency have a a major bearing on the financial performance of a 

firm.  

 

                                                      
3 The figures and the facts are well known: the average educational attainment in underperforming regions is below 
the average during the compulsory schooling years. These differentials are reinforced after graduation as graduates 
tend to relocate to regions with more productive jobs (Duranton and Monastiriotis, 2002; Office for National 
Statistics, 2019). For instance, in 2000, over 40% more graduates were employed in London than studied there (HM 
Treasury, 2001). 
4 Miliken (2017) suggests that shortages of qualified workers in both managerial and sales occupations across the 
whole British retail sector create a major constraint to the retailers’ operations. 
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The contribution of our paper to the literature is twofold. First, our study examines the 

influence of upstream investment in BDA on a focal retailer’s efficiency growth and 

technical change. This is a major departure from the extant literature on Big Data as 

research so far has mostly focused on how intra-firm characteristics (such as cultural, 

organizational and infrastructural attributes of a firm) influence the capability of a 

business to benefit from its investment in BDA (Alharthi, Krotov, & Bowman, 2017). 

At the same time, this is an important research area on two counts: a) from a managerial 

standpoint it is important to quantify the benefits (in terms of efficiency and 

productivity growth) of upstream investment in BDA as it allows to modulate the 

recipient firms’ own complementary investments in BDA and b) the literature has not 

paid much attention as to how characteristics of B2B relationships  - such as supply 

chain partners’ investment in BDA (i.e. upstream investment in BDA) and its associated 

outward spillovers - may influence a retailer’s performance (Bradlow et al., 2017). This 

is an area where new research is needed as the existing research has not managed to 

find evidence of beneficial effects of the upstream investment in BDA onto downstream 

partners (Ren et al., 2016; Srinivasan and Swink, 2018).    

  

Second, the previous studies on Big Data have predominantly focused on firm-level 

effects on the performance of BDA (e.g. Akter et al., 2016; Bradlow et al., 2017) and 

the role of turbulence in market environments in this process (e.g. Gunasekaran et al., 

2018; Johnson, Friend, & Lee, 2017). Though prior research in Big Data has shown the 

importance of skills for the BDA successful deployment (Wang et al., 2019), no 

previous paper has focused on the impact that the local availability of skilled workforce 

has on the benefits that BDA may generate for downstream firms. Still, it is an 

important research area as the local availability of suitably skilled workforce may be 

an important factor in helping the successful deployment of BDA at firm level (Gaskell, 

2018; Lam et al., 2017). To the best of our knowledge, there is a dearth of research on 

this topic particularly in the context of the retail sector. While a few empirical studies 

have found that spillovers generated by investment in technologies similar to BDA can 

have a positive impact on the TFP of the other non-adopter firms (Van Leeuwen & van 

der Wiel, 2003; Rincon & Vecchi, 2004), these studies have not considered the 

environment associated with the local availability of skilled or graduate workforce that 

the firm operates. In this sense, unlike these studies, our paper also focuses on the 
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characteristics of the business environment where retailers operate which may support 

the absorption of spillovers generated by the upstream investment in BDA.  

 

For our empirical analysis we estimate a production frontier on a panel of retailers 

drawn from ORBIS and referring to the period 2009-2015. To estimate technical 

efficiency in our panel, we adopt the so-called “frontier” approach to the measurement 

of technical efficiency where (in)efficiency is computed as the distance from an 

estimated production frontier for the sector. To estimate the impact that the local 

availability of graduate workforce has on retailers’ efficiency, we use the one-stage 

approach to the estimation of the production frontier proposed by Battese and Coelli 

(1995) that allows to estimate simultaneously the parameters of the production frontier 

and the size of the impact of a set of observable variables on the efficiency scores’ 

mean. To capture the different channels of transmission of spillovers from BDA 

investment, we construct a proxy for these spillovers. The inter-industry effect is 

captured by means of a weighted BDA industry variable, where the weights capture the 

intensity of inter-firm transactions (using input-output coefficients of intermediate 

transactions) by using data from EU KLEMS. Therefore, we account for the lagged 

impact of the spillovers on efficiency by including various lags of the spillover 

variables in line with Brynjolfsson and Saunders (2009). This measure is interacted 

with the 2-digit industry-level share of the workforce with a university degree in a 

region (sourced from the Quarterly Labour Force Survey – QLFS) and then these are 

introduced among the determinants of technical efficiency to gauge the extent to which 

the local availability of graduate workforce can mediate the relationship between 

upstream investment in BDA and retailers’ efficiency growth.  

The rest of the paper is structured as follows. In Section 2, we develop the theoretical 

background of the study and the hypotheses based on the literature on vertical 

knowledge spillovers of BDA and human capital. Section 3 includes a short survey on 

the measurement of technical efficiency in the retail sector as well as our empirical 

strategy. The main results are presented and discussed in Section 4. Finally, while some 

discussions are provided in Section 5, some concluding remarks are offered in Section 

6. 
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2. Theoretical Background and Hypotheses  

Our analysis is grounded in the theory of knowledge spillovers and their impact on the 

productivity (or performance more generally) of recipient firms. The starting point of 

such a theory is that investment activities of firms (i.e. source firms) may generate 

externalities from which other firms (so called recipient firms) can benefit from in terms 

of enhanced performance. It is customary to label these externalities as spillovers that 

are then classified as horizonal and vertical knowledge spillovers (Griliches, 1992). 

While beneficiaries of the horizontal knowledge spillovers are firms within the same 

industry the spillovers are generated from, vertical spillovers tend to benefit firms 

operating in different industries and positions along the supply chain (Chyi, Lai, & Liu, 

2012; Ozdemir, Kandemir, & Eng, 2017; Rindfleisch & Moorman, 2003). Several 

authors have pointed out that vertical spillovers tend to provide novel insights that may 

trigger organizational innovations among recipient firms (Belberdos, Carree, & 

Lokshin, 2004; Rindfleisch & Moorman, 2003; Ozdemir et al., 2017). Vertical 

spillovers are particularly relevant in a supply chain setting: typically, firms involved 

in B2B relationships tend to belong to a variety of industries which do not share the 

same technology and therefore less reliant on horizontal spillovers. Indeed, previous 

research has shown that technological proximity between firms is not important for the 

absorption of spillovers along the supply chain (Isaksson, Simeth, & Seifert, 2016). In 

addition, firms that are connected through supply chains tend to be more willing to 

embed new knowledge acquired through their relationships with suppliers (from 

whatever industry) into their processes given the fact their performance is conditioned 

by their partners along the supply chain (Isaksson et al., 2016; Ozdemir et al., 2017).  

While benefitting from vertical spillovers does not require co-location with the source 

firms (Dolfsma & Van Der Eijk, 2016; Isaksson et al., 2016; Rindfleisch, & Moorman, 

2001; Ozdemir et al., 2017), the characteristics of the recipient firms’ environment may 

condition their capability to benefit from the vertical spillovers. In the context of the 

topic of our paper (i.e. the local availability of graduate workforce), it is well known 

that access to more educated workforce has a positive impact on firm-level performance 

(whether productivity or efficiency): for instance more qualified workforce allows 

firms to implement new management practices effectively (Filatotchev et al., 2011; Fu, 

2012); also it facilitates the introduction of process innovation that allow firms to 

benefit from vertical spillovers in a tangible way through improvements in productivity 
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(Destefanis and Sena, 2005; Higon and Sena, 2014). In summary, all this hints that the 

local availability of graduate workforce may play an important role in the context of 

the vertical spillovers from BDA although it is not clear yet whether this is the case 

(Akter et al., 2016; Bradlow et al., 2017). In the remainder of the section, we will flash 

out the theoretical arguments supporting our main proposition that the local availability 

of graduate workforce mediates the relationship between performance and vertical 

spillovers from upstream investment in BDA. 

2.1. Upstream Investment in BDA and the Role of Human Capital  

Big Data (or large expanses of data routinely collected by firms through their 

operations) are typically considered to be an important source of competitive advantage 

at firm level (Germann et al., 2014) and therefore investments in Information 

Technology (henceforth, IT) systems capable of exploiting Big Data have dominated 

the business investment in Information and Communication Technology (henceforth, 

ICT).   

While most of the literature has traditionally focused on knowledge spillovers 

generated by investment in R&D and ICT5, the evidence on spillovers from investment 

in BDA is still in its infancy. In general, BDA can be considered a “General Purpose 

Technology” (Zhang et al., 2016), i.e. a technology which can be widely used across 

different sectors and which can create the conditions for continuous improvement of 

production techniques (and therefore of productivity) among its adopters when 

combined with complementary investments such as new work systems, organizational 

redesign and so on. According to much theoretical and empirical evidence, investment 

in BDA offers direct benefits for a wide range of business processes; at the same time, 

upstream investment in BDA can help downstream firms to develop a set of capabilities 

allowing to process, analyze and interpret large volumes of data that are critical for their 

retail operations (Grewal, Roggeveen, & Nordfält, 2017; Wang et al., 2019). As a result, 

                                                      

5
  Stiroh (2002) regresses TFP growth on ICT capital and other controls for 20 US manufacturing 

industries over the period 1984-1999. Instead he finds that ICT had a negative impact on TFP growth. 
Haskel and Wallis (2010), using aggregate data for the UK, find no evidence of spillovers from software 
assets, nor from other intangible assets such as economic competencies and R&D. Similarly, Acharya 
and Basu (2010) fail to find positive ICT spillovers in a industry-level analysis for 16 OECD countries, 
but they do find significant spillover effects from domestic and foreign R&D investment. Van Leeuwen 
and van der Wiel (2003), using a sample of Dutch companies operating in market services, find a positive 
and significant ICT spillover on labour productivity. Similarly, Severgnini (2010) finds evidence of 
positive ICT spillovers in a sample of Italian manufacturing firms.  
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firms can manage their processes more efficiently and, as a consequence, they can 

increase their technical efficiency. 

At the same time, the benefits (in terms of productivity gains) of the investment in BDA 

can be propagated well beyond its adopters. Upstream adoption of BDA may increase 

efficiency of transactions among downstream firms. Electronic transfer of payments 

and invoices, automated inventory replenishment, on-line markets for placing and 

receiving orders may prompt downstream firms to re-organise their production 

processes and structures to take advantage of the analytics-induced increased efficiency 

in running transactions6 (Wang et al., 2016). As analytics-based systems for upstream 

supply chain management are becoming more common, retailers may benefit from their 

suppliers’ investment in BDA in terms of increased productivity. For instance, Rowlatt 

(2001) suggests that in the context of computer networks, their introduction has 

facilitated the exchange of information between retailers and suppliers which in turn 

has improved the supply chain management. In this context, the investment in BDA 

among suppliers may prompt downstream firms to gradually re-organise their 

production processes to take advantage of the upstream firms’ increased efficiency in 

running transactions which may lead to a reduction of the operational costs relating to 

information search, inventory management and order processing practices, and so on 

(Criscuolo & Waldron, 2003; Rincon, Vecchi, & Venturini, 2013). This implies that 

adoption of a BDA by an individual firm may have a knock-on effect on its B2B 

customers. In other words, investment in BDA may be beneficial to not only to the 

investing firms but also all other firms operating in the sector.  

Over time, upstream investment in BDA can also enable retailers to develop their own 

BDA capabilities that may eventually lead to an improvement in technical efficiency. 

However, internalizing and exploiting BDA related insights from upstream firms 

requires a firm to progressively absorb new knowledge as it unlearns or relearns the 

existing knowledge through experience (Fiol & Lyles, 1985). In other words, 

improvements in technical efficiency will emerge gradually as downstream retailers 

gradually absorb new knowledge through vertical knowledge spillovers. Therefore, we 

                                                      
6 For instance, upstream investment in real-time BDA can motivate retailers to set up flexible 
arrangements in their service offerings and operational processes to meet the changing market 
requirements, and match fluctuating supply and demand (Erevelles et al., 2016; Wang et al., 2016).  



 11

suggest that: 

H1: Upstream investment in BDA has a positive impact on retailers’ technical 

efficiency with a lag. 

 

In spite of all the evidence on the impact of BDA investment on the performance of 

firms (Wang et al., 2019; Wang et al., 2016), less clear are the factors that can facilitate 

the absorption of upstream investment in BDA among downstream retailers. The 

hypothesis that the impact of the upstream investment in ICT on the focal firm depends 

on a number of additional factors has already been investigated in relation to human 

capital (Griffith et al., 2004; Vandenbussche, Aghion, & Meghir, 2006). The literature 

on human capital has shown that access to highly educated workforce is an important 

condition for firms to benefit from the investment in new technologies (Haller & 

Siedschlag, 2011; Hsu & Wang, 2010). For instance, previous empirical evidence has 

suggested that investment in ICT can only generate a positive return to the adopter if it 

is accompanied by a complementary investment in skilled workforce (Bugamelli & 

Pagano, 2004; Díaz-Chao, Sainz-González, & Torrent-Sellens, 2015). More 

importantly, this is true not only for the firms that directly invest in the new technology 

but also for firms that are exposed to the knowledge spillovers from the upstream firms 

in the supply chain. For example, graduate workforce is also more likely to assimilate 

new knowledge from suppliers and use it for commercial ends thanks to their skills and 

expertise (Cohen and Levinthal, 1990; Subramaniam and Youndt, 2005). This 

argument translates very easily to the BDA context as workforce with high 

qualifications are in a good position to learn from the deployment of BDA upstream 

(Dahl and Pedersen, 2005). For example, the re-organisation of the production process 

within firms, fostered by computerization, can be considered as the result of learning-

by-doing. This learning does not necessarily happen in isolation as workers learn from 

the experience of other workers (Aghion, 2002). In a related context, Alexander et al. 

(2005) found that the B2B interactions of supermarkets’ employees with equipment 

suppliers were one of the major sources of knowledge transfer in supermarkets in the 

50s.  

If this is the case, then, it is possible to argue that features of the local environment 

which can favor informal exchanges of new information among workers across 
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different firms should have an impact on the retailers’ capabilities of absorbing and 

benefitting from also upstream investment in BDA and presumably can contribute to 

explain differences in performance among retailers in different areas even if they share 

similar characteristics. We focus here on the availability of graduate workforce. From 

a theoretical standpoint, access to more graduate workforce may have a positive impact 

on technical efficiency. For instance, more graduate workers can address the 

requirements of deploying BDA accruing from upstream investment in BDA in a more 

effective way, and this can enhance a retailer’s technical efficiency. 

Importantly, there are additional benefits that can accrue to a store by being located 

close to graduate workforce. Larger density of graduate human capital can foster 

informal B2B interactions among employees from different firms that in turn may help 

the sharing of new information, facilitation of informal knowledge transfer across 

firms, and therefore improvement of operations efficiency and productivity.  For 

instance, the local availability of graduate workforce may affect the productivity gains 

of local retailers through employee turnovers and B2B interactions among employees 

of surrounding firms who either have the skills to absorb the new knowledge or are 

equipped with complementary knowledge that can facilitate the translation of the 

knowledge spillovers into increasing efficiency once they are embedded into the 

recipient firms’ processes.  

This could be particularly relevant for the retail sector that is usually characterized by 

high labour turnover. It well may be that for retailers which are located in areas with a 

large density of graduate and skilled workforce employed by other firms and that 

therefore have access to a better pool of workers, high turnover would facilitate the 

diffusion of spillovers associated to the investment of BDA and so allow the spread 

across the sector of organizational changes which can be a pre-condition for increases 

in total factor productivity and technical efficiency (Agarwal, Ganco & Ziedonis, 2009) 

7. This argument can be extended to the retail sector. Although it has never been 

formally tested before, this can be of some relevance both for the investment in BDA 

(as a portion of the benefits from upstream investment in BDA may spread across 

thanks to direct contacts among employees) and for the retail sector. Retailers operating 

in local labour markets with greater availability of graduate workforce are likely to 

                                                      
7 See Correidora and Rosenkopf (2010) on a similar point. 
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access workforce with the requisite skills for the absorption of BDA-related knowledge 

spillovers and ultimately to benefit from the upstream investment in BDA 

(Gambardella & Giarratana, 2010; Motohashi & Yuan, 2010). Therefore, we suggest 

that the benefits of upstream investment in BDA on technical efficiency are conditional 

on the availability of graduate workforce in the local area. In other words: 

H2: Upstream investment in BDA has a positive impact on retailers’ technical 

efficiency conditional on the presence of graduate workforce working in retail in the 

region. 

Technical change in an industry is dependent on the diffusion of innovative 

technologies within the industry which in turn is linked to imitation and network effects 

(MacVaugh & Schiavone, 2010; Rogers, 2003). For example, Dos Santos and Peffers 

(1998) show that in the case of electronic commerce, imitation among industry 

competitors eventually enhanced the technical change. In the context of cross industry 

ICT spillovers, network effects have also been found to be highly influential on the 

adoption of a new technology across the industry (Chou, Chuang, & Shao, 2014). The 

network effect is thus expected to be important within the supply chain in the case of 

BDA technology adoption and its subsequent influence on technical progress. For 

instance, retailers with larger supply chains are more likely to adopt BDA themselves 

following the indirect exposure to benefits associated to the upstream investment in 

BDA. As an example, consider that the use of BDA can improve assortment planning, 

anticipation of demand and logistics planning (Aktas and Meng, 2017). In this context, 

retailers which may not take advantage of upstream investment in BDA may fall behind 

competitors. Thus, we expect that spillovers from suppliers induce downstream firms 

such as retailers to adopt more advanced technologies including BDA, and can generate 

technical change across the industry (Luo, 2007). As a result, we suggest that: 

H3: Upstream investment in BDA has a positive impact on retailers’ technical 

progress. 

 

3. The Empirical Strategy and Measurement 

3.1. Measurement of Efficiency in Retail Sector 
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Measuring technical efficiency of the retail sector along with its determinants has 

become an important research area amid growing concerns about the sector’s slow-

growing productivity (Barros & Alves, 2004; Lusch, Serpkenci, & Orvis, 1995; 

Kamakura Lenartowicz, & Ratchford, 1996). Traditionally input-output ratios were 

used to measure the performance of stores (Vyt, 2008) – although the main limitation 

of the technique is that the presence of economies of scale cannot be tested. A cursory 

look at the recent literature in the area shows that frontier techniques have become a 

very common tool to measure technical efficiency in the sector. In this approach, 

technical efficiency is computed as the distance from an estimated optimal benchmark 

(the “production frontier”) which defines the optimal amount of output that can be 

produced in a sector given the available technology. The closer a firm is to the frontier, 

the more efficient it is (Farrell, 1957). By estimating an ‘efficient frontier’, a variety of 

issues such as measuring retailing outlet productivity (Grewal et al. 1999; Ratchford & 

Brown 1985; Ratchford & Stoops 1988), market efficiency and consumer welfare loss 

(Donthu & Yoo 1998; Ratchford et al. 1996), sales force efficiency (Boles, Donthu, & 

Lohtia, 1995; Horsky & Nelson 1996), channel productivity (Bultez & Parsons 1998), 

and resource allocation (Chebat et al. 1994; Donthu, Hershberger, & Osmonbekov 

2005; Luo & Donthu 2005) can be studied.  

 

Two main methodologies have been suggested to estimate the efficient frontier and to 

compute the distance of the firms from the frontier: a) parametric methods that use 

econometric analysis to estimate the production frontier and b) non-parametric methods 

that use linear programming methods to compute the efficient frontier. Both these 

methods produce a frontier consisting of the set of most efficient performers, thus 

allowing a comparison to the best performers rather than one to the average performer 

(as in regression based models).  

 

Previous research measuring the efficiency of the retail sector have employed non-

parametric methods to estimate efficiency. For instance, Athanassopoulos and 

Ballantine (1995) use DEA to compare the efficiency of supermarket chains operating 

in the United Kingdom. Equally Ket and Chu (2003) assess the performance of 13 

supermarkets for 10 years, using a 3 stages approach modelling the transformation of 

inputs into intermediate outputs and then final outputs. Korhonen and Syrjänen (2004) 

assess the performance of a supermarket chain in Finland to reallocate the resources 
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available to the chain among the stores. Sellers-Rubio and Mas-Ruiz (2006) use DEA 

to estimate the economic efficiency of the supermarket chains in Spain between 1995 

and 2001. Barros (2006) analyzes 22 Portuguese hypermarkets and supermarkets using 

a two-stage procedure where in the first stage DEA is used to compute technical 

efficiency scores and in the second stage a Tobit model is employed to estimate the 

determinants of efficiency. Among the other results, he finds that large retail groups are 

more efficient than small retailers and that market share, number of outlets and location 

are important determinants of efficiency. Some studies focus on technical efficiency 

change and its contribution to productivity growth. For instance, Barros and Alves 

(2004) and Sellers-Rubio and Mas-Ruiz (2007) have computed a Malmquist index and 

its components to measure technical efficiency change of Portuguese and Spanish 

supermarket chains, respectively. Barros and Alves (2004) have used the Malmquist 

index to decompose productivity growth of 47 stores of a Portuguese supermarket chain 

into pure technical efficiency change; scale efficiency change; and technology change. 

Wu, Yang and Liang (2006) used a CCR DEA model to examine the performance of 

the retailing industry in Taiwan between 1998 and 2002. They found that nearly three 

quarters of the companies analyzed were inefficient during the five-year time span. 

Moreover, there were only six consistently efficient companies throughout the period 

under analysis. Perrigot and Barros (2008) analyzed the technical efficiency of the retail 

industry in France using DEA.  

 

In terms of choice of inputs and outputs of the retail sector, most papers have used 

profits, revenues and value added as measures of output. Sales are probably the most 

common output variable (Kamakura et al., 1996; Donthu and Yoo, 1998; 

Athanassopoulos, 2003; Perrigot and Barros, 2008; Sellers-Rubio and Mas-Ruiz, 2009) 

while Sellers- Rubio and Mas-Ruiz (2007) select EBITA and Net income as measures 

of output. As for the input variables, labour is usually proxied by a number of variables 

associated to the number of employees ranging from the number of full-time equivalent 

employees (Reardon et al., 1996), the number of man-hours allocated (Kamakura et al., 

1996) to the number of full-time or part-time employees (Barros, 2006; Perrigot & 

Barros, 2008). Some authors have used payroll as a measure of inputs (see for instance 

Reardon et al. (1996), Thomas et al. (1998). As for capital, the selling space is often 

used as a proxy of capital (Kamakura et al. 1996); alternative proxies of capital include 

investments on assets (Sellers-Rubio and Mas-Ruiz, 2007); assets value (Perrigot and 
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Barros, 2008; Sellers-Rubio and Mas-Ruiz, 2006; Barros, 2006) and rent costs (Thomas 

et al., 1998).  

 

As for the determinants of technical efficiency, limited attention has been given by 

researchers to the impact of environmental variables on technical efficiency (Donthu & 

Yoo, 1998; Vyt, 2008). There are though a few remarkable exceptions. De Jorge-

Moreno (2008)analyses the impact on Spanish hypermarkets’ technical efficiency of 

the devolution of retail planning and regulation to regional governments. Assaf, Barros 

and Sellers-Rubio, (2011) analyzes the impact of vertical integration, age, geographic 

expansion, and low price strategy on the cost efficiency of retail stores. The data involve 

a sample of Spanish retail stores that operate in a highly competitive and dynamic 

environment. From the results, it is clear that cost efficiency is higher for stores that 

have: longer years in business, stronger geographical presence, and lower price 

offerings. Vertical integration, on the other hand, is negatively related to efficiency.  

Gauri (2013) measures and compares the inefficiencies of major grocery retailers across 

various formats and pricing strategies using stochastic frontier a dataset covering 2500 

stores across 50 US chains and finds that stores could potentially reduce the proportion 

of inputs such as selling area, number of checkout counters, number of employees and 

store features without threatening outcomes (i.e., by holding the output level constant). 

Xavier, Moutinho and Moreira (2015) measures the technical efficiency of 40 

Portuguese clothing stores and finds a positive impact of inventory stocks and the 

shopping location store on technical efficiency, highlighting the importance of having 

more merchandise for the customers to select from. Furthermore, the level of staff 

education also has a positive effect on technical efficiency. Finally, Yu and Ramanathan 

(2008) have estimated the impact that ownership, legal form and other retail 

characteristics have on the economic efficiency of 41 UK-based retail chains.  

However, it is safe to conclude that virtually no study has been carried out which tries 

to ascertain whether the characteristics of the retailers’ external environment, 

particularly accruing from availability of local graduate workforce, may facilitate the 

absorption of upstream investment in BDA.  

3.2. The Production Frontier Specification, the Datasets and the Variables 
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The format of our empirical analysis is straightforward enough. First, we apply 

parametric frontier techniques to compute the technical efficiency indexes for a panel 

of retailers in between 2009 and 2015. Second, we condition the mean of the technical 

efficiency scores’ distribution on the inter-industry upstream investment in BDA 

weighted by the coefficients of the input-output table, the regional share of graduate 

workforce in retail and their interaction so to quantify the impact that the upstream 

investment in BDA have on the mean of technical inefficiency through the local 

availability of graduate workforce.  

 

3.2.1. The Production Frontier Specification  

Unlike previous papers in this area we use parametric methods to estimate the 

production frontier for the retail sector. The main advantage of the parametric methods 

is that unlike deterministic methods (like DEA) they allow to specify a stochastic term 

so making the estimates less vulnerable to the influence of random events and 

measurement errors than non-parametric models (Kumbhakar & Lovell, 2000). 

Estimating the levels of inefficiency within the retail sector is only the first step of our 

analysis as we are really interested in quantifying the impact that the local availability 

of graduate workforce has on the distribution of the efficiency scores in the sector. To 

this purpose, a few production frontier models are available where environmental 

variables are incorporated directly into the inefficiency components model which is 

then estimated simultaneously with the parameters of the production frontier. In our 

study we use the approach suggested by Battese and Coelli (1995) where the mean of 

the inefficiency component is assumed to be a function of a set of observable variables. 

Therefore, the production frontier is specified as:  

 

   ��� = �����, 	
 + ���         (1) 

 

where y is the output of the retailer k at time t, x is a set of inputs that affects the shape 

of the production technology at time t and t is a time trend that measures disembodied 

technical progress.  The error term has two components: ukt  and vkt  . vkt  is the 

independent and identically distributed random error, assumed to be distributed as a 

N(0,v2) and to be independent of the uk. In turn, this is a non-negative random variable 

assumed to account for technical inefficiency in the production and to be independently 

distributed as a truncation at zero of the N(zktδ,u2) distribution where zkt (or technical 
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efficiency effects) is a vector of observable variables which may influence the mean of 

the efficiency scores. Both the parameters of the production frontier and of the technical 

inefficiency specification are estimated simultaneously by using Maximum Likelihood. 

The technical efficiency score of a retailer is defined as the ratio between the actual 

level of output and the maximum level of output that it could be produced given the 

technology specified by the production frontier. The efficiency score varies between 

one and zero, where the lower the score, the more inefficient the corresponding retailer 

is. Various null hypotheses on the parameters of the production frontier and of the 

inefficiency model can be tested using the Likelihood-Ratio (LR) test, defined as: 

 

LR= -2[L(H0)- L(H1)]          (2) 

 

where L(H0)  is the log-likelihood value of the frontier model, as specified by a null 

hypothesis, H0, and L(H1) is the log-likelihood value of the general frontier model under 

the alternative hypothesis, H1. This test statistic has a chi square distribution where the 

degrees of freedom are equal to the difference between the number of parameters under 

the null and the alternative hypotheses. 

 

A central tenet of the frontier approach is that the units under analysis should be 

homogeneous in terms of the technology they use so to get meaningful frontier 

estimates. This is particularly relevant for our analysis as the Retail sector includes 

seven sub-sectors that can be assumed to use technologies with different capital-labour 

ratios. To control for this source of heterogeneity we add to our basic production 

frontier specification a set of interactions between the input variables and the dummy 

variables for each sub-sector. So our frontier specification (assuming a translog 

functional form) is the following: 

 

ln���,�� = �� + � ��ln ���,�
 + 0.5 � � ���ln ���,�,�

�

�

ln ���,�,�


�

�
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k=1,…,K      t=1,…,T    i=1,…,I j=1,…,J    (3) 
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where ln(ykt ) is the log of production of the k-th retailer at time t, ln(xkt ) is the vector 

of the log of inputs (capital and labour, respectively) of the k-th retailers at time t and 

β is a vector of unknown parameters. We allow for the possibility of technical change 

by introducing in the empirical specification a continuous time trend and its square in 

the specification. The model for the mean of the technical efficiency effects in the 

stochastic frontier model is: 

 

�� = �� + �� ℎ"#$%,�&� + �' ()**+,�&� + �, ℎ"#$%,�&� ()**+,�&�            (4) 

 

where α0 is a constant term. From (4), we can examine the impact of an increase in the 

upstream investment in BDA on the retailers’ mean technical efficiency conditional on 

the availability of graduate workforce in a region. Afterwards we introduce our 

variables of interest: the inter-industry measures of upstream investment in BDA (spill, 

measured at the 2-digit industry level – denoted by s), the share of graduate workforce 

in retail (share, measured at regional level – denoted by c) and their interaction. Our 

expectation is that retailers located in regions with a large availability of graduate 

workforce will benefit more from upstream investment in BDA and therefore will 

experience higher technical efficiency. Importantly, the two variables are lagged one 

period: this has been done to avoid potential endogeneity problems in the regression 

model and to allow for the possibility that the impact of spillovers is delayed as focal 

retailers may need to change structures and processes before they can fully benefit from 

the upstream investment (Brynjolfsson and Hitt, 2003). However, when estimating the 

efficiency model we also test alternative lag structure for our two variables of interest. 
 

We also control for the retailers’ location by introducing a set of regional dummies. 

These variables are traditionally introduced to capture the impact that additional 

environmental conditions have on the firms’ level of production. Betancourt (2004) 

suggests that local factors such as infrastructure endowment, level of income, external 

economies linked to the accessibility of location and so on have an impact on the 

retailers’ level of output. (3) and (4) can then be estimated simultaneously by Maximum 

Likelihood using the procedure suggested by Battese and Coelli (1995). 

 

3.2.2. The Data-Sets and Some Descriptive Statistics 
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Our empirical analysis is carried out on a data-set of 48 retailers (NACE REV 2: 47) 

sourced from ORBIS and covering the period 2009-2015. Spillovers from upstream 

investment in BDA have been calculated using data from EU KLEMS. The EU KLEMS 

database collects data on capital services and investment for a number of assets 

including computer hardware, telecoms equipment, computer software and databases. 

As mentioned by OECD (2013), ICT investment and the use of analytics for the 

exploitation of Big Data go hand in hand: indeed, most data-intensive sectors that have 

invested in the development of infrastructure and systems to improve their analytics 

capabilities tend to be ICT-intensive as well since they have invested in smart ICT 

applications so to be able to collect and exploit their data holdings. For our analysis, we 

focus on investment in computer software and databases that are typically associated to 

the development of capabilities in analytics. The share of graduate workforce employed 

by the retail sector in a region has been computed by using information drawn from the 

Quarterly Labour Force Survey (QLFS), 2009-2015. In constructing our final data set, 

retailers that did not disclose any data for net sales, employment or net physical capital 

were excluded from the estimation, as were those companies displaying negative 

values. We restrict the sample to firms for which there are at least two consecutive years 

of data available.  We have taken care of removing missing observations as well as 1% 

of the observations on both the upper and lower tails of the data distribution. Finally, 

all the data have been weighted to make them representative of the whole population. 

We use value added as a measure of firm output that is equal to turnover net of material 

costs; as for inputs, we use the number of full-time equivalent employees while capital 

input is measured as total tangible assets by book value, recorded annually following 

Sellers-Rubio and Mas-Ruiz (2007). A full description of the datasets and of how the 

variables have been constructed is in the Data Appendix. Table 1 shows the mean and 

the standard deviation of the inputs and the output in our sample. Table 2 reports the 

investment in BDA by industry and year as sourced from EU KLEMS.  

 

 

4. The Empirical Results 

The Maximum Likelihood estimates of our production frontier are reported in Table 3. 

The result of the Likelihood Ratio test (reported at the bottom of the table) indicates 

that the frontier model is a significant improvement over the standard average 
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production function. In the specification of the production frontier, we control for the 

sub-sectors that belong to the retail industry8 through a set of dummy variables; in 

addition we also allow for the possibility that each sub-sector uses capital and labour in 

different proportions by interacting the dummy variables for each sub-sector with 

capital and labour. We have tested whether these two sets of dummy are significant and 

the LR tests suggest they are not implying that the all retailers (independently of the 

sub-sector they belong to) tend to use similar proportions of capital and labour. 

    

The estimates are generally statistically different from zero at the 5% level. We have 

mean-corrected our sample data before the estimation so that we can interpret the 1st 

order coefficients listed in Table 3 as the partial output elasticities evaluated at the 

sample mean. The figures show that the output elasticity associated to labour is smaller 

than the equivalent elasticity for capital suggesting that across the sector output may be 

less responsive to increases of labour than to increases of capital. In this case a 10% 

increase of the stock of capital implies a 34% increase in value added. This is consistent 

with the fact that retailers in Britain are under-capitalized due to regulatory restrictions 

and therefore the increase in added value following an increase in the stock of capital 

can be rather substantial (Haskel and Sadun, 2008). Returns to scale are not constant 

across the sector. The estimates of the production frontier show there is no significant 

neutral technical change across the sector.  

 

The estimated coefficients of the z’s variables are listed at the end of Table 3. As 

mentioned above the z’s variables are all lagged one period. This is in line with the 

empirical literature on ICT suggesting the adoption of ICT is followed by a period of 

learning where firms learn how to profitably exploit the investment in ICT 

(Brynjolfsson and Hitt, 2003). As a result, we would expect the effect of the spillover 

variable on technical efficiency to be delayed and in our case we use a one-year lag to 

capture this delayed effect. Recall that a positive coefficient associated to one of these 

variables implies that the variable has a negative impact on the mean of the retailers’ 

technical efficiency. From these results, we can see that our variables of interest are all 

significant. In terms of the interpretation of the coefficients, the parameters measuring 

the direct effect of the upstream investment in BDA and the share of graduate workforce 

                                                      
8 These include sub-sector 471, 472, 473, 474, 475, 476, 477, 478, 479.  
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do not have a meaningful interpretation in our context as the two variables never take 

the value of zero. Indeed, the partial derivative of technical inefficiency with respect to 

the upstream investment in BDA depends on the values of the share of graduate 

workforce in the county. To understand how its changes affect the partial derivative of 

efficiency with respect to the spillovers variable, consider the following two cases. For 

retailers located in regions where on average 80% of sector’s workforce is made of 

graduates, an increase of 1% of the upstream investment in BDA generated in the area 

will imply a 0.38% increase of technical efficiency. On the contrary, for retailers 

located in regions where on average only 1% of the sector’s workforce is made of 

graduates, an increase of 1% of the local upstream investment in BDA will improve the 

mean technical efficiency by 0.35%. Although the size of the impact on the average 

technical efficiency of an increase in upstream investment in BDA is not very large, the 

difference of the values of the two partial derivatives is though significant. In other 

words that upstream investment in BDA increase downstream retailers’ technical 

efficiency on average if these are located in a region where a larger share of graduate 

workforce is employed in the retail sector.  

 

Several hypothesis tests have been carried out on the estimated production frontiers. 

Table 4 summarizes the main results. We have tested whether the sector experiences 

technical progress; in this case the null hypothesis is that the time trend and its squared 

value are simultaneously equal to zero. The results from the test suggest that the null 

hypothesis has to be rejected.  We have also tested whether each sector has a translog 

production function against the alternative Cobb-Douglas. In this case the null 

hypothesis is 0=ijβ .  In this case the null hypothesis is rejected. Also we have tested 

whether the explanatory variables in our technical efficiency effects model are 

significant. For this test, the null hypothesis is formulated as Ho : δz = 0, where z = 0, . 

. . 3; also in this case the null hypothesis is strongly rejected by the data. Finally, we 

have tested whether the regional dummies are significant in the inefficiency model and 

the results suggest that they are (i.e. the null hypothesis that they are equal to zero can 

be rejected). 

 

In the model presented above, we have assumed that the spillovers from the upstream 

investment in BDA are only associated to the mean technical efficiency but do not have 
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any bearings on the movements of the frontier over time. Of course, whether this is 

really the case should be tested statistically. Therefore, we decide to estimate a new 

specification of the production frontier where the spillover variable is interacted with 

the time trend. The new estimates of the production frontier are presented in Table 5 

(for the spillover variable). The estimates of the efficiency models are consistent with 

the main specification presented above although the output elasticities of labour and 

capital differ from those obtained from the main specification.  

 

Whether each variable has any bearing on the movements of the frontier over time has 

been tested separately and in both cases the null hypotheses have been rejected. In the 

first case, the formal significance test is a LR test whose value is presented at the bottom 

of table 5. The model presented in Table 5 has been compared to a specification of the 

production frontier where there is no neutral technical change (both in level and 

squared) and the spillover variable (both in level and interacted with the trend) is not 

included in the model. The result of the test show that the null hypothesis has to be 

rejected suggesting that the variable of interest affects the position of the frontier over 

time. In other words, spillovers from upstream BDA investment can shift the position 

of the frontier over time.  

 

4.1. Technical Efficiency Scores  

Based on the estimates of the production frontier reported in Table 3, we can then 

compute the technical efficiency scores. Table 6 shows the average yearly technical 

efficiency scores computed using the formula suggested by Battese and Coelli (1995). 

There are two important issues to notice. First, the average efficiency scores tend to be 

rather mid-range across the sector. On average, these vary between 0.59 and 0.99. In 

other words, the worst performers could have produced the same amount of output 

using 41% less inputs while the best performers could have produced the same amount 

of output using 1% less inputs. Figure 1 shows the smoothed estimate of the probability 

density function of the efficiency scores across all the years in the sample and confirms 

that the bulk of the distribution is between 0.4 and 0.9 suggesting that there is a number 

of retailers who are not particularly good at combining capital and labour in an efficient 

way. This is an important result as it shows that some of the poor performance of the 

sector in terms of productivity can be attributed to the slow growth of technical 

efficiency.  Second, the distribution of the scores shows there is a large difference 
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between the best performer and the worst performer every year. For instance in 2013, 

the efficiency score of the best performer was 0.93 while the score of the worst 

performer was 0.010. In other words, there is a number of poor performers in the sector. 

In addition the composition of the lower tail is rather persistent over time. Indeed 

further tests have shown that retailers that are therefore tend to stay in the tail 

throughout our sample suggesting they find difficult to readjust the mix of capital and 

labour their use in their production process.  

 

4.2. Additional Tests 

In this section, we also test whether the mechanism we have identified for the 

transmission of spillovers from upstream investments in BDA applies to workforce 

with alternative qualifications i.e. A-level or vocational specifications. In the main 

analysis, we have focused on a specific transmission mechanism that relies on the local 

availability of workforce with a graduate qualification in the retail industry. In this part 

of the paper, we test the possibility that alternative - such as A-levels and vocational 

qualifications (like BTEC or NVQ qualifications) – may be relevant as well. Therefore, 

we test whether there is a relationship between technical efficiency, spillovers from 

upstream investment in BDA and local share of workforce with A-levels (or vocational 

qualification). The results of the new efficiency models are shown in Table 7 and 

suggest that the presence of local workforce with A-levels or with vocational 

qualifications does facilitate the transmission of BDA spillovers to technical efficiency.  

The variables of interest are significant in both models. As for the direction of the 

impact of the two sets of variables on technical efficiency, we conduct the same 

experiment with the coefficients as we did with the main specification. Therefore, we 

start by assuming there are regions where on average 80% of the retail workforce is 

made of workers with vocational (A-level) qualifications. In this case, an increase of 

1% of the upstream investment in BDA generated in the area will imply a 0.37% (1.9% 

in the case of A-level qualifications) increase of technical efficiency. On the contrary, 

for retailers located in regions where on average only 1% of the sector’s workforce has 

a vocational (A-level) qualification, an increase of 1% of the local upstream investment 

in BDA will decrease the mean technical efficiency by 0.13% (0.20% in the case of the 

A-level qualification). In other words, there exists a non-linearity in the relationship 

between spillovers from upstream investment in BDA and technical efficiency which 

is linked to the qualifications of the local workforce available to the sector. Once the 
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share of the retail workforce with qualifications (of either type) increases, then the 

negative impact of the spillovers on average technical efficiency will be reversed 

suggesting that potential agglomeration effect may “kick in” once the threshold share 

is reached9. In another set of robustness tests, we test whether the main results are robust 

to the introduction of time-varying regional variables like the log of the regional GVA 

and the log of the regional consumption expenditure. The new results (not reported 

here) show that the two new control variables are not significant suggesting that the 

main findings still hold. Finally, we test whether alternative lag structure of the two 

variables of interest are significant. More specifically, we introduce we test whether the 

regional share of the graduate retail workforce in level and its interaction with the 

spillover variables is significant in the efficiency model. Our results (not shown here) 

indicate this is not the case. We also test whether the main result is robust to the 

introduction of the spillover variable in level: the main result still holds in this case.    

 

 

5. Discussions 

5.1. Theoretical Implications 

What conclusions can we draw from these results? First, our findings confirm that 

upstream investment in BDA has a positive impact on retailers’ technical efficiency 

with a lag. This finding is consistent with the previous empirical evidence showing how 

spillovers from other organizations can improve the technical efficiency of a focal firm 

(Fritsch & Slavtchev, 2011). Our findings are in line with the B2B marketing research 

observing that upstream adoption of innovations induces downstream firms to search 

for new skills (Siamagka et al., 2015) so that they can progressively absorb new 

knowledge generated upstream (Fiol & Lyles, 1985) and invest in complementary 

technologies that can improve their performance (Rindfleisch & Moorman, 2003; 

Belberdos et al., 2004). Importantly, it is not only the technical efficiency component 

of productivity growth that improves; indeed, our results show that spillovers from 

upstream investment in BDA are associated to positive technical change as it possibly 

induces focal firms to adopt more advanced technologies to run their operations. In the 

context of cross industry ICT spillovers, previous research has shown that the adoption 

                                                      
9 The threshold share is 9% for A-level qualifications and 35% for vocational qualifications. 
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of a new technology across industries is facilitated by the network effects (Chou et al., 

2014) and this effect can explain our own finding in the context of technical change.  

 

In the context of the BDA literature, these findings are quite important: previous 

research in the area has mostly focused on the impact of intra-firm characteristics on 

the BDA deployment using the resource-based view or dynamic capability approach 

(Wamba et al., 2017; Erevelles et al., 2016); however our paper suggests that BDA 

capabilities embedded within other firms may have an impact on downstream 

performance through B2B connections. In addition, we have shown that the quality of 

the pool of workers a retailer has access to matters for its performance in terms of 

productivity growth. This finding is consistent with the existing literature on BDA 

investment suggesting that access to qualified workforce is key to the successful 

exploitation of Big Data technologies (Bughin et al., 2018). In particular, the finding of 

our study suggests that access to local graduate workforce is a pre-condition for the 

development of the human capital capability which allows to benefit from upstream 

investment in BDA (Kang & Snell, 2009). In this sense, our study is consistent with the 

theory of localized spillovers, which emphasize the role of geographical density of 

human capital in the absorption of spillovers by firms (Jaffe, 1989; Audretsch & 

Feldman, 1996). Such environmental influences associated with access to qualified 

workforce have not received sufficient attention in the previous empirical work on B2B 

relationships as studies have rather focused on the effect of supply chain partners and 

relationships in exploiting the benefits of BDA (Wang et al., 2016). The results of this 

study have increased our understanding of how upstream investment in BDA can 

improve firms’ performance (Akter et al., 2016; Bradlow et al., 2017). Our results show 

that the exploitation of the upstream investment in technology, and in particular BDA 

infrastructure and methodologies, is predominantly contingent on the skills available in 

the local area. 

 

5.2.  Implications for Practice 

We have identified an additional channel through which the distribution of graduate 

workforce across a country matters. In other words, the downstream appropriation of 

benefits from the upstream investment in BDA is conditioned by the existence of local 

graduate workforce (and not necessarily equipped with analytics skills). The 

implication is that retailers need to consider the availability of graduate local workforce 
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in a local area when deciding where to locate centers that manage their supply chain. 

In this context, if firms operate in areas in which graduate workforce is scarce, it would 

be important to develop strategies to employ workforce outside the local area. 

Furthermore, it would be essential for firms to develop strategies to promote sharing of 

good practice from other firms. Particularly, organizing collaborative workshops and 

conferences with suppliers can support information exchange between employees with 

complementary knowledge and skills. Similarly, upstream and downstream firms can 

develop collaborative product and service strategies through sharing of Big Data with 

the goal of improving their performance. 

  

Last but not the least, retailers need to be aware of the fact that upstream investment in 

BDA can improve their own productivity growth. This opens up many opportunities to 

retail managers who may be interested in supporting the development of the BDA 

infrastructure and capabilities through supplier relationships. For example, managers 

can encourage suppliers to invest in BDA by developing innovative strategies for 

sharing Big Data with them. This would, in turn, help retailers to improve their service 

provision, inventory management and logistics.  

 

5.3. Limitations and Future Research Directions 

Our research has focused only on upstream investment in BDA. In other words, we 

have not analyzed how both horizontal and downstream investment in BDA affect the 

performance of retailers. As such, future research can investigate how investment in 

BDA by different types of firms in the supply chain, which may have direct or indirect 

B2B relationships with a retailer, may influence its performance. For instance, previous 

studies in B2B marketing suggests that while horizontally positioned firms may provide 

more supplementary knowledge and insights, vertically connected firms such as the 

ones operating at diverse positions of the value chain can provide more complementary 

knowledge and skills to one another (Rindflesich & Moorman, 2003). This may have 

implications on the type of BDA-related insights and skills that can be gained from 

these firms, and their eventual influence on the performance of firms.  

 

In addition, it can be argued that internal factors mediate the relationship between 

upstream investment in BDA, the availability of the graduate local workforce and the 

performance of focal firms. One example is the learning process in the workplace:  for 
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instance, it can be argued that formal learning and informal learning may mediate the 

relationship among our variables of interest differently (Enos, Kehrhahn, & Bell, 2003). 

Similarly, future research can examine potential moderating effect of local institutions, 

such as local governments’ support to universities and research institutions in the 

promotion of BDA skills and knowledge in their geographical area. Likewise, future 

studies could examine whether retailers’ types of market-oriented behaviors - including 

proactive or responsive market orientations - may influence the relationship between 

technical efficiency and local availability of graduate workforce. Finally, future 

research can also consider the impact of the strength of relational ties among local 

retailers on their performance and how relational ties mediate the relationship between 

upstream investment in BDA, local access to human capital and performance. For 

example, Granovetter’s (1973) strength of weak ties theory can be tested to see whether 

retailers perform better when their employees have weaker or stronger relational ties 

with the upstream investors in BDA.  

 

6. Conclusions 

This paper has analyzed the impact of upstream investment in BDA on the technical 

efficiency and technical progress of British retailers. It has also examined the extent to 

which retailers located in regions with greater graduate workforce can benefit more 

from upstream investment in BDA than retail firms located in regions with fewer 

graduate workforce. Our empirical analysis shows the positive effect of upstream 

investment in BDA in the technical efficiency of retailers over time as well as in their 

technical progress. We also find that retailers located in regions with a larger proportion 

of graduate workforce tend to benefit more (in terms of technical efficiency growth) 

from inter-industry upstream investment in BDA. Additional tests show these results 

are robust to different specifications of the production technology; in addition, we find 

there exists a non-linearity in the relationship between spillovers from upstream 

investment in BDA and technical efficiency which is linked to the qualifications of the 

local workforce available to the sector: a small increase in the proportion of the local 

workforce with either A-levels or vocational qualifications in the sector may lead to a 

negative impact of upstream investment in BDA on technical efficiency. However, if 

the increase in the proportion of the workforce is sufficiently large, then the relationship 

between average technical efficiency and upstream investment in BDA becomes 

positive. 
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A1. DATA APPENDIX 

The data used for the analysis come from the ORBIS database which is a commercial 

data based provided by Bureau van Dijk and have been used extensively in empirical 

work involving productivity analysis  They cover the entire population of registered 

UK firms sourced from Companies House. Information such as name, registered 

address, firm type, and industry code are available for all firms. Availability of financial 

information varies substantially across firms. We limit the analysis to firms classified 

as belonging to the industry NACE-REV 2 47.  

All monetary variables obtained from ORBIS are expressed in thousands of British 

Pound Sterling and are deflated using the ONS deflators. We use value added as a 

measure of firm output that is equal to turnover net of material costs. ORBIS provides 

the number of full-time equivalent employees. Capital input is measured as total 

tangible assets by book value, recorded annually. Tangible assets include land and 

buildings, fixtures and fittings, plants and vehicles, and other tangible assets (including 

ICT assets). 

To trace inter-industry flows of spillovers we use the procedure first suggested by 

Terleckyj (1974). The main idea of this method is to use information from the input-

output table to identify the upstream and the downstream sectors. The procedure uses 

the 2-digit industry series on BDA investment, weighted by input-output intermediate 

transactions’ coefficients, defined as ratio between the flow of intermediate inputs sold 

by industry f to industry j and the gross output of the selling sector. Data on industry-

level investment in BDA have been drawn from EU KLEMS 2009-2015. More 

specifically, we use the EU KLEMS series on investment in software and databases. 

Input-output intermediate transactions’ coefficients are taken from the OECD I-O 

output table at benchmark years.  

The regional share of the graduate workforce over the total workforce in each sub-retail 

sector has been calculated using the data from the Quarterly Labour Force Survey 

(QLFS). The QLFS is a sample survey of households living at private addresses in 
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Great Britain. The population covered is all people resident in private households, all 

persons resident in National Health Service accommodation and young people living 

away from the parental home in a student hall of residence or similar institution during 

term time. The sample design currently consists of about 55,000 responding households 

in Great Britain every quarter, representing about 0.2% of the population. Its main 

purpose is to provide information on the UK labour market which can then be used to 

develop, manage and evaluate labour market policies. The survey asks each respondent 

the highest qualification attained, which industry he/she works for and the region of the 

main job. Importantly the list of regions respondents can choose from is more granular 

than the list of Government Office Regions (GOR) allowing to focus on regions that 

are smaller than the Government Office Regions. The three questions combined 

together allows us to compute the share of graduates in the retail sector by region as 

well as the share of retail workers with a vocational qualification/A-level in the retail 

sector by region. 
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Figure 1. Kernel density plot – Technical efficiency scores 
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Table 1. Sample means of inputs and outputs (by year) - Retail   

 

 Turnover Labour Capital 

2009 585610 49656 3115987 

2010 6096075 49898 3204197 

2011 6492015 52067 3452975 

2012 5486439 42566 2944582 

2013 478075 37322 2476627 

2014 4579616 35158 2301271 

2015 4044888 32198 1990724 
 

Note: Source: ORBIS. Definitions of variables can be found in the Data Appendix. 

Monetary figures in the table have been deflated (using the deflators detailed in the 

text) and are measured in thousands pounds. Labour is measured as number of 

employees.       
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Table 2. Investment in software and BDA by sector and year 

 
2009 2010 2011 2012 2013 2014 2015 

 Food products, beverages and 

tobacco 406.00 421.00 409.00 376.00 447.00 425.00 405.00 

 Textiles, wearing apparel, leather 

and related products 49.00 50.00 54.00 52.00 52.00 50.00 40.00 

 Wood and paper products; 

printing and reproduction of 

recorded media 313.00 276.00 297.00 313.00 324.00 333.00 324.00 

 Coke and refined petroleum 

products 56.00 66.00 83.00 75.00 82.00 83.00 74.00 

 Chemicals and chemical products 345.00 287.00 312.00 303.00 304.00 315.00 345.00 

 Rubber and plastics products, and 

other non-metallic mineral 

products 250.00 243.00 252.00 269.00 264.00 290.00 290.00 

 Basic metals and fabricated metal 

products, except machinery and 

equipment 297.00 303.00 344.00 331.00 346.00 345.00 361.00 

 Electrical and optical equipment 207.00 250.00 233.00 275.00 268.00 274.00 285.00 

 Machinery and equipment n.e.c. 439.00 422.00 451.00 434.00 452.00 456.00 445.00 

 Transport equipment 504.00 576.00 586.00 648.00 600.00 707.00 689.00 

 Other manufacturing; repair and 

installation of machinery and 

equipment 422.00 421.00 405.00 435.00 463.00 464.00 453.00 

 ELECTRICITY, GAS AND 

WATER SUPPLY 886.00 933.00 984.00 1048.00 1164.00 1191.00 1376.00 

 CONSTRUCTION 386.00 407.00 371.00 405.00 404.00 419.00 433.00 

 WHOLESALE AND RETAIL 

TRADE; REPAIR OF MOTOR 

VEHICLES AND 

MOTORCYCLES 3476.00 3523.00 4016.00 4323.00 4628.00 5363.00 5130.00 

 ACCOMMODATION AND 

FOOD SERVICE ACTIVITIES 202.00 206.00 199.00 207.00 237.00 253.00 249.00 

 INFORMATION AND 

COMMUNICATION 4307.00 4310.00 4680.00 4926.00 5141.00 5118.00 4781.00 

 FINANCIAL AND 

INSURANCE ACTIVITIES 2995.00 3224.00 3400.00 3834.00 3526.00 3721.00 3847.00 

 REAL ESTATE ACTIVITIES 260.00 265.00 276.00 322.00 345.00 329.00 376.00 
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 PROFESSIONAL, SCIENTIFIC, 

TECHNICAL, 

ADMINISTRATIVE AND 

SUPPORT SERVICE 

ACTIVITIES 3711.00 3987.00 4108.00 4325.00 4565.00 4703.00 4926.00 

Source: EU KLEMS, 2009-2015. 
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Table 3. Production Frontier estimates – Maximum Likelihood estimator   

Variable Coefficient t-ratio 

Labour (log) 0.24 6.56 

Capital (log) 0.34 7.26 

Time trend -0.015 -0.25 

Squared time trend 0.0037 0.81 

Squared Labour (log) 0.16 1.21 

Squared Capital (log) -0.0099 -0.09 

Labour (log) * Capital (log) -0.068 -0.27 

Constant 0.42 1.71 

   

Inefficiency Model   

   

Spillovers from upstream investment in BDA 

(lagged one period)            0.0035               2.15 

Proportion of graduate workforce in retail  

over the total employment in retail by region  

(lagged one period)              -1.04              -3.59 

Interaction between the two variables above           0.00046               3.51 

                                           

Variance parameters   

Variance inefficiency              1.17  

Variance stochastic term             0.060  

   

LR test              381.01**  

 

Note:   Maximum Likelihood estimates of the parameters from the simultaneous 

estimation of the production frontier and of the inefficiency model as in Battese and 

Coelli (1995). The dependent variable is the log of the value added. The excluded year 

in the inefficiency model is 2009. The inefficiency model includes regional dummies. 

The test statistic has a mixed chi-square distribution and so critical values at 5% 

significance level are sourced from Kodde and Palm (1986). 
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Table 4. Hypothesis tests. 

 

Null Hypothesis Likelihood  

Ratio Test 

Decision 

Test 1:  

Null Hypothesis:  

There is no technical  

progress.  

85.72** Reject Null 

Test 1:  

Null Hypothesis:  

Cobb-Douglas  

Functional form. 

178.74** Reject Null 

Test 3: 

Null Hypothesis:  

No efficiency effects 

(=0)  

293.32** Reject Null 

Test 4: 

Null Hypothesis:  

The regional  

dummies are not  

significant in the  

efficiency model. 

115.7** Reject Null 

Note: Hypotheses tests on the parameters of the production frontier (Test 1 and Test 3) 

and of the inefficiency model (Test 3 and Test 4). Likelihood Ratio test is computed by 

using (2) in the text.  The test statistic has a chi-square distribution. 
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Table 5. Production Frontier estimates - Maximum Likelihood estimator   

Variable Coefficient t-ratio 

Labour (log) 0.95 13.94 

Capital (log) -0.011 -0.17 

Time trend 0.51 2.30 

Squared time trend 0.025 2.34 

Spillovers from upstream investment in BDA 0.0032 4.54 

Spillovers from upstream investment in BDA 

* time trend -0.00056 -2.42 

Squared Labour (log) -0.143 -2.03 

Squared Capital (log) -0.065 -1.17 

Labour (log) * Capital (log) 0.22 1.76 

Constant -0.39 -0.21 

   

Inefficiency Model   

   

Spillovers from upstream investment in BDA  

(lagged one period)  0.0042 2.20 

Proportion of graduate workforce in retail  

over the total employment in retail by region  

(lagged one period)  -1.44 -3.37 

Interaction between the two variables above 0.0007 1.67 

                                           

Variance parameters   

Variance inefficiency 0.60  

Variance stochastic term 0.022  

   

LR test             133.10**  

 

Note:   Maximum Likelihood estimates of the parameters from the simultaneous 

estimation of the production frontier and of the inefficiency model as in Battese and 
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Coelli (1995). The dependent variable is the log of the value added. The excluded year 

in the inefficiency model is 2009. The inefficiency model includes regional dummies. 

The LR test has a chi-square distribution and it has been calculated under the null 

hypothesis that there is no technical change (including neutral technical change and 

technical change interacted with the upstream spillovers from BDA) in the frontier 

model. 
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Table 6. Technical Efficiency score (mean values by year). 

 

Year Mean Min Max 

2009 0.69 0.30 0.99 

2010 0.72 0.44 0.99 

2011 0.79 0.48 0.99 

2012 0.66 0.20 0.99 

2013 0.63 0.010 0.99 

2014 0.59 0.055 0.97 

2015 0.73 0.34 0.99 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 49

 

Table 7. Efficiency Models – Alternative qualifications. 

 

Model 1 

Spillovers from  

upstream investment in  

BDA 

(lagged one period)  

          -0.0032            -3.02 

Proportion of retail  

workforce with vocational 

qualifications 

over the total employment 

 in retail by region  

(lagged one period)  

            -9.97            -5.81 

Interaction between the  

two variables above 

            0.0087             5.74 

LR test             689.59  

   

Model 2 

Spillovers from  

upstream investment in  

BDA 

(lagged one period)  

          -0.0023           -2.38 

Proportion of retail  

workforce with A-levels 

over the total employment 

 in retail by region  

(lagged one period)  

           -33.75           -7.31 

Interaction between the  

two variables above 

             0.027             7.25 

LR test               551.76  

Note: The LR test has a chi-square distribution and it has been calculated under the null 

hypothesis that the three variables listed above are equal to zero.  


