Estimation of heart rate from foot worn photoplethysmography sensors
during fast bike exercise
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Abstract— This paper presents a new method for estimating light source requires a large amount of power (typically
the average heart rate from a foot/ankle worn photoplethys- approximately 1 mW) limiting the operational life of highly
mography (PPG) sensor during fast bike activity. Placing tke miniaturized wearables with small batteries.

PPG sensor on the lower half of the body allows more energy T th i tifact chall {
to be collected from energy harvesting in order to give a powe 0 overcome the motion artifact challenge recently sev-

autonomous sensor node, but comes at the cost of introducing €ral signal processing algorithms have be_en reported for
significant motion interference into the PPG trace. We preset  extracting the average heart rate from a motion contandnate

a normalised least mean square adaptive filter and short-tte  PPG signal collected under exercise. For example, pro-
Fourier transform based algorithm for estimating heart rate posed methods are based on Empirical Mode Decomposition

in the presence of this motion contamination. Results from 8 .
subjects show the new algorithm has an average error of 9 (EMD) [6], Independent Component Analysis (ICA) [7],

beats-per-minute when compared to an ECG gold standard.  Kalman filtering [8], adaptive filters [3], [9] and sparsersig
reconstruction [10]. These have shown to be to able to extrac

. INTRODUCTION the average heart rate from a motion contained PPG trace to

Recently highly portable non-obtrusive wearable heaet ratVithin (approximately}:5 beats-per-minute (bpm). _
monitors have become readily available, and are now used in!n this paper we use these advances in signal processing
a number of applications. These range from non-healthcai® tackle the second challenge, that of power consumption.
situations, such as the heart rate monitoring of athletdaglu ENergy harvesting, where the batteries present are supple-
training, to at-home rehabilitation, for example moningri Mented by collecting the intrinsic energy available in the
the heart rate of rehabilitation subjects as they perforfnvironment, is critical for use in future wearable devices
different exercises [1]. In many of these emerging wearabS it is the only method for creating sensors which are
heart monitoring applications the devices are used out-ofUly Power autonomous and can go beyond the limited
the-clinic, in uncontrolled environments, and the cokect lifetimes provided by_b_atterles. However extracting large
signals are heavily contaminated by motion artifacts. levels of power fromlmmlaturg harvesters, sufficient to pow

For measuring heart rate, electrocardiogram (ECG) si¢ Wearable sensor, is very difficult. . o
nals from the chest have the maximum signal strength and QUr Néw approach aims to overcome this by recognizing
robust signal processing algorithms can be applied for tH8at the largest amount of energy, by far, is available by
reliable estimation of heart rate parameters during plysicP!acing the harvester device on the lower half of the body
exercise. However, as a recording modality it has a numbEf1l- We thus propose to locate the wearable PPG sensor
of limitations: ECG electrodes are relatively difficult far ©On the foot/ankle periphery, rather than the wrist perigher
non-specialist to attach correctly and in the right plade; t where it can make use of this energy harvestlng potentlgl and
presence of chest hair decreases the quality and longevitj@Ple truly long-term and autonomous operation despite th
of the electrode connection; and the chest is a relative[y}ah power light source required. Doing this successfullst fi
intimate place in which to site a sensor. Many users prefégduires removing motion interference from the foot/ankle
non-invasive heart measurements to be performed from mdr& C race. This is a substantially more challenging case tha
peripheral sites such as the wrist. the wrist PPG examples cited above due to the Iar_ger and

Peripheral wearable heart monitoring is possible by using©re impactful movements by the legs during exercise.
photoplethysmography (PPG) to measure changes in bIoodTh'S paper pr(_asents a new artifact removal aIg_onth!”n based
flow by shining a light source into the body [2]. The method/PoN @ normalised least mean square adaptive filter and
can be used in many parts of the body, such as the forehd5@cking method for estimating average heart rate from a
[3] and ear [4], and is very popular in emerging Sm(,jlrtwatcFpot/ankIe.Iocated EPG sensor while under motion. Subjects
devices placed on the wrist. However, the PPG recordinfer® €guipped with wrist and ankle worn sensors and
modality has two significant limitations: PPG signals ar®€rformed physical exercises such as walking/running on
highly corrupted by motion artifacts [5] which historiall a treadmill and cycling using an exercise bike to evaluate

have restricted its use to no-motion situations; and th&'® PPG signals, motion corruption, and performance of the
removal algorithm under situations where motion can hgavil
This work was supported by the Engineering and Physicalnge®e influence the PPG signals collected. Section Il describes th
Research Council grant number EP/M00S262/1. , experimental setup used and the algorithm proposed for the
D. Jarchi and A. J. Casson are with School of Electrical and timati f heart rate. Secti m | d
Electronic Engineering, University of Manchester, Marstkg UK. estimation or average heart rate. section analyses an

{del aram j archi, al ex. casson}@rmanchest er. ac. uk discusses the performance of the algorithm.
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Fig. 1. Subject wearing the PPG sensor during: (a) walking, (b)iegcl

Fig. 2. Overview of artifact removal NLMS algorithm based on adapfilters.

II. METHODS recording noise. The NLMS filter models the motion artifact
as a linear function of the accelerometer data

Eight healthy subjects aged 24-32 participated in an m(n) =h'(n)a(n) @
experiment to collect ankle/foot PPG signals under motioyhereh is an unknown transfer function. Therefore an error
having a groundtruth ECG signal collected from the chessignal is defined as:

All procedures in this study were reviewed and approved by
the University of Manchester Research Ethics Committee. e(n) = p(n) —h" (n)a(n). 3)

PPG and simultaneous three-axis accelerometer signalsy 5 linear update equation can be used to iteratively

were collected using Shimmer 3 [12] devices. In Fig. 1, ONggtimateh from samples ofp(n) and a(n) by minimizing
subject wearing foot and wrist sensors during walking on thg(n)_ This update procedure is formulated as:

treadmill and cycling on the bike is shown. A simultaneous
ECG trace was also collected using a Gdech platform h(n+ 1) = h(n) + p(n) (n)e(n) @)
[13]. Participants were asked to use a treadmill and exercis lla(n)]?

bike at two self-selected speed of low and high. Each SeSSiWhereu(n) is an update step size parameter. Hafe) is

of slow/fast walking/biking lasted for a maximum of €N, yector of lengthl (filter order) of acceleration samples.
minutes. After each session the subjects remained seatied ¥howing h an estimate of the motion interference in the

relaxed for 10 minutes in order for the heart rate to COMBPG tracesn can be generated and is subtracted from
back to a normal rate for the rest state. The wrist/foot worg,q recordec?yF”ZF”G trace(n). This procedure is applied

PPG and accelerometer signals were recorded simultayeougl o ately for the three acceleration axes, producing thre
at 256 Hz and manually synchronized with the ECG signal§ctimates of a motion-reduced PPG trace, ..

Estimation of heart rate is then performéd in the frequency
domain using the Short Time Fourier Transform (STFT) to
The heart rate extraction method in this paper is simildirst extract the frequency components in each signal ..
to the recent proposed method in [9] for wrist PPG signal§o keep the dominant frequency components from each
modified to remove the motion artifacts obtained at thenotion-reduced PPG signal a single combined spectrallsigna
foot/ankle. Fig. 2 gives an overview of our method. is obtained by multiplying the three individual spectrums,
The raw PPG and co-located accelerometry signals are fiestd then taking a cube root:
band-pass filtered (3rd order Butterworth, 0.5-20 Hz) and ~
down-sampled by a factab (default D = 10), and passed S(n, f) = {12, Si(n, f). (5)
to three Normalised Le.ast Mean Squ_are (NLMS) adaptiv i(n, f) is the estimated spectrum of the motion-reduced
filters, one for each axis of acceleration data. The NLM ! . S .
L ) . . "PPG signal using a combination of each accelerometer axis
adaptive filters are implemented such that the desired lsigna . = ) .
. i . . and the measured PPG signal, af@n, f) is the final
is the PPG trace and the filter input is the accelerometéer : ) .
o . . . éstimated spectrum. Here the NLMS filter order is set to
trace. The objective is to adaptively estimate a motioe-fre .
. ; ; 9, the step-size of, has been set to 0.1 and the number of
PPG signal by suppressing the signal components measu

. . oints for the STFT algorithm has been chosen as 4096.
by the accelerometers. To do this the measured PPG S|gna1|_h2 end estimate of th% heart rate in beats-per-minute
p(n) is modeled by:

(bpm) is taken as the highest power frequencﬁ(m, ),
p(n) = p(n) + m(n) + v(n) (1) With this frequency converted from Hz to bpm. To avoid
spurious peaks and infeasible step changes in heart rate est
where p(n) is the motion interference free PPG signalmates between analysis windows an HR tracking algorithm
m(n) is the motion artifact and(n) is the residual sensor has been implemented which follows the frequency trace

A. Experimental setup

B. Estimation of average heart rate
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© red color. (b) Spectrum of the PPG signal at rest. It can be Seespectrum is noisy

for the beginning and end of the data. This is due to slightionoand transition of
the subject from an activity to rest and vice versa. (c) A segied ECG signal shows
clear motion free and regular heart beats. (d) The foot w&@ Bignals. (e) Estimated
BPM from ECG signals and PPG signals for 10 minutes data asession.

with maximum energy along the spectrum in each analysiSpi ang ECG signals in the middle of rest period. A poor
window. This limits the reported heart rate to a range ofgreement between the PPG and ECG estimated heart rates
60 bpm to 140 bpm with no jumps greater than 14 bpmy seen at the start and end of Fig. 4(e). This is due to the
between consecutive time windows. In our current set up aftesence of motion artifacts as subject goes from walking
overlapping window of 6 second duration, updating every ¢, the treadmill into the seating position at the beginnihg o

seconds in 2 second steps, has been used. rest period and preparing for a new session at the end of rest
period, and these artifacts have not been corrected for.

Fig. 3. Example PPG signals from the ankle/foot: (a) at rest, (b)evhiking, (c)
while walking/running.

C. Comparison method

The foot/ankle PPG heart rate values are compared toBa Signals during biking

gold standardmeasurement from the chest ECG trace. By rig. 3(b) shows PPG signals affected by motion artifact
estimating and locating the R-peaks in the ECG signals it {§ing fast bike riding exercise. Significant time domain
possible to estimate the number of beats per minute. To haygrption of the signals is readily apparent, and it is not
a pairwise comparison we used the same method as in Figagiple to extract the heart rate from the foot/ankle PPG
2, without the adaptive filter part, to extract the heart ratg .o in the time domain, necessitating the new artifact
from the ECG trace. The raw ECG data is down-samplemoval approach introduced in Section II.
(D = 5) and the STFT and heart rate tracking algorithms 1o herformance of this with one subject is illustrated
then operate as described above. in Fig. 5 for the fast bike riding case. Fig. 5(a) shows
lIl. RESULTS AND DISCUSSION the frequency spe_ctrum of the raw PPG, Which_contains a
large number of high frequency components which are not
of physiological origin. These are suppressed, although no
In Fig. 3, examples of foot/ankle PPG data are shown temoved entirely, in Fig. 5(b) once the adaptive filtering
illustrate the typical signal morphologies in the no-matio algorithm has been applied, and the heart rate can then be
case and the typical motion artifacts that are encounteregiacked as shown in Fig. 5(d).
Fig. 3(a) shows a case of PPG signals collected when noFig. 5(g) shows the end comparison of heart rates esti-
motion is present. A very clear signal is seen, with cleamated from chest ECG and foot/ankle PPG for this example.
peaks due to each heart beat. This makes it possible to &xtragter approximately two minutes a good agreement between
the heart rate without further sophisticated signal prsiogs the two measures is obtained. (This agreement will be
Such a case is shown in Fig. 4 which illustrates data for onguantified in Section IlI-D.) The two minutes corresponds
subject while in the rest period after walking on the tredtdmi to the convergence/run-in time of the adaptive filter, which
The spectrum of the ECG signal is provided in Fig. 4(a), withequires a number of PPG and accelerometer samples in
a segment of the raw time domain signal in Fig. 4(c). Theserder to build an accurate model of the curréntransfer
can be compared with Fig. 4(b) and (d) which show thunction. This latency in producing an accurate heart rate
equivalent traces for the foot/ankle PPG recording. No#é thestimate is an inherent limitation of our current approach.
these figures are for the raw collected signal. During the res ) ) )
period there is little/no motion artifact affecting the sigs C: Signals during walking/running
and the algorithm from Section Il has not been applied. In Fig. 3(c) shows the signals from one subject during walk-
Fig. 4(e), the average heart rate in terms of bpm has beam and running on a treadmill, with time domain corruption
shown, and demonstrates a good estimation of heart rate franbroduced due to the presence of motion. Nevertheless$Fig.

A. Signals during rest
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Fig. 5. (a) Spectrum of PPG signal corrupted by the motion artefdnt.Re-
estimation of the PPG spectrum after applying adaptiver fdted motion artefact
reduction where estimated heart rate is shown in red colqd)n(c) Spectrum of
ECG signal and the estimated heart rate in red color. A sepddfCG signal (e) and
foot PPG signal (f) during walking on the treadmill. (g) Th&timated BPM from ECG
signals and PPG signals for about 5 minutes data during mglén the treadmill.
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Fig. 6. (a) Spectrum of PPG signal corrupted by the motion artefdnt.Re-
estimation of the PPG spectrum after applying adaptiverdilend motion artefact
reduction estimated heart rate in red color in (d). (c) Spectof ECG signal and
the estimated heart rate is in red color. A segmented ECGakig) and foot PPG
signal (f) during fast bike activity. (g) The estimated BPMrh ECG signals and PPG
signals for 10 minutes data during fast bike exercise.

presents results for the algorithmic cleaning of the PPGetra
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Fig. 7. Root-mean-squared-error of average heart rate in termsgiof letween
estimations from the ECG and foot PPG sensors during fast ddkivity.

IV. CONCLUSIONS

This paper has proposed a NLMS adaptive filter and
STFT based algorithm for estimating the average heart rate
from a PPG sensor placed on the foot/ankle during physical
exercise. Placing the sensor in this location could helpgvow
the device by using energy harvesting, but it results in
significantly more motion artifacts in the collected PPGéra
Our algorithm, assessed using data from 8 participants in a
fast biking situation, shows an average heart rate estimati
error of 9 bpm. At present this performance is limited by
particularly heavy motion artifacts which are seen in th&PP
signals of a few subjects, and by the convergence/run-ia tim
of the adaptive filter which increases the error when the-algo
rithm is first turned on. We expect to improve the algorithm
proposed in this study by modeling the motion artifact from
the acceleration signals using nonlinear techniques asal al
to use an adaptive method to update the parameters of the
system for each subject separately.
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