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Abstract

This thesis examines certain aspects of the theory and practice of

multiobjective evolutionary algorithms (MOEAs). Firstly a set of

theoretical results is developed concerning the operation of ranking

schemes under multiobjective tournament selection and the effect on

both the development of the rank or fitness distribution. Limiting

expressions are shown for the nonsampling probability according to

rank, for schemes with and without replacement, with an extension

including the effect of elitism. Further limiting expressions under it-

erated tournament selection for time to convergence and nonsampling

probability are also shown. The various effects of varying the tour-

nament size on nonsampling probability, evolution of the rank distri-

bution, and time to convergence are discussed.

Next, the practical problem of partitioning a multivariate self-

affine time series with unknown and time-varying joint distribution

is considered. The aim is to completely partition the time series,

possibly of high dimension, into disjoint, contiguous subseries at one

timescale that are similar to subseries at another timescale after ap-

plication of an affine transformation. The multiobjective combinat-

orial optimization problem is defined with limited assumptions as a

biobjective one, and a specialized MOEA is presented which finds

optimal self-affine time series partitionings with a minimum of choice

parameters. The MOEA is highly specialized and contains a number

8



of unusual features, including permuted multiobjective tournament

selection, in line with the theory developed earlier in the thesis. The

algorithm seeks to simultaneously minimize both the similarity in

terms of the covariance structures between successive partitions, and

also the difference between the partitions defined at one timescale and

at another, shorter timescale. The resulting set of Pareto-efficient

solution sets provides a rich representation of the self-affine proper-

ties of a multivariate time series at different locations and time scales.
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Chapter 1

Introduction

Multiobjective optimization problems often offer challenges that cannot be met

by standard optimization theory and deterministic algorithms. The hurdles are

set particularly high when the problem itself is hard, when specialized knowledge

is required to address it, and when the global optimum is particularly difficult to

find; there may be many local optima, and surrounding solutions may give little

indication of their locations. As a result, a variety of stochastic search methods

have become popular amongst both academics and practitioners; multiobjective

evolutionary algorithms (MOEAs) are often employed when other approaches

have failed, or when it is difficult to see how else to approach the problem.

Criticisms of MOEAs often fall into two main categories: the reputed slow

performance of the algorithms, and their “black box” nature, meaning that they

are not tractable to traditional mathematical or statistical analysis. The main

contributions of this thesis fall into two principal areas which touch upon these

criticisms. Firstly, advances are made in the theory of multiobjective tourna-

ment selection, which can shine a light into the admittedly often very black box

of MOEA design choices. Secondly, it is demonstrated that a well-formulated,

specialized MOEA not only can address a hard problem that has not been at-

tempted before in the literature, but can do so with acceptable computational

performance and indicative results, using models and techniques based on sound
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theory.

The “no free lunch” (NFL) theorems for optimization [162] show that for

general-purpose algorithms, better performance over one class of problems com-

pared to other algorithms implies worse performance over another class of prob-

lems. However, the theorems do not imply that specialized algorithms cannot

be designed that perform better over a specific class of problems; indeed, they

support the idea that specialization may be necessary to improve performance,

and this chimes with lessons we learn from evolution in nature. This does not

mean that general purpose algorithms are devalued; they often form the base of

design for specialized algorithms, and can be used when the problem itself is not

well enough understood to design a specialized algorithm, or when the time or

resources to do so are not available. However, there are some problems that it is

difficult or impossible for a general purpose algorithm even to process; the prob-

lem addressed in chapters 3 - 5 of this thesis appears to be one such problem. As

we shall see, there is evidence that many types of data in different domains are

self-affine in nature, and that in some domains such as finance there are sharp

differences between different time periods so that time series can be divided into

regimes based on covariance structure. However, the problem of how actually

to divide a multivariate self-affine time series, possibly of high dimension, into

such regimes has received little attention in the econometrics in the literature,

even though many econometric models depend on the ability to identify such

regimes as a prerequisite. As we shall also see, some useful contributions have

been made elsewhere in the literature to the problem of optimally partitioning

a multivariate time series, but not to the biobjective problem as considered in

this thesis.

There are three main difficulties in developing an MOEA -based solution for

such a biobjective multivariate partitioning problem: formulating the theoret-

ical approach; ensuring that an adequate search is performed over a complex

dataset, even where little if anything is known in particular about the self-affine

patterns it contains; and designing an algorithm that can cope with these issues,
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producing a reasonable result with finite computational resources, and ensuring

that infeasible individuals do not overwhelm the population, making effective

search impossible. When designing the representation and the genetic operat-

ors that govern the search by changing the representation from generation to

generation, whilst theory may guide us on how the distribution of schemata

and alleles within the population may change, the correlation between these

changes and the fitness distribution may be harder or impossible to explain;

instead, design is often guided by practicalities, especially when addressing a

problem which is hard to compute and one is attempting to make the algorithm

run faster and more reliably.

On the other hand, when designing or choosing a method of selection, at least

in the single objective case there is a bedrock of theory to guide us on the likely

effect on the development of the fitness distribution, with the considerable caveat

that the interaction with the effect of genetic operators may remain unclear. The

contribution of the work set out in Chapter 2 is to extend the understanding

of the choice of selection scheme and of parameter values on the development

of the fitness distribution in multiobjective problems, with several new results

regarding limits to nonselection probabilities, asymptotic equivalence of different

schemes, and time to convergence. These results inform the choice of selection

scheme for the specialized MOEA described in subsequent chapters. However,

as we shall see, specialization in design of the MOEA is by no means limited

to the design of the tournament selection algorithm, though many other design

choices for the specialized MOEA are driven as much by practical considerations,

to ensure the MOEA runs efficiently and produces an acceptable set of feasible

solutions.

The remainder of this introductory chapter is arranged as follows. Sections

1.1 and 1.2 provide background material on the history and development, ty-

pology and variations in structure of evolutionary algorithms (EAs). Section

1.3 considers some of the key trade-offs in MOEA design, and Section 1.4 com-

ments briefly on parameter design and control, and finally Section 1.5 gives an
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overview of the structure of the rest of this thesis.

1.1 What is an evolutionary algorithm?

In this section, we will provide a brief overview of how the modern landscape of

EAs of many different types emerged as well as an introduction to key concepts

in EA design, with particular reference to MOEAs. We will also discuss an

important assumption underlying the development, use and study of EAs.

1.1.1 Early history and fundamentals of evolutionary al-

gorithms

EAs form one branch of a broader family tree of algorithms that attempt to

find solutions, by iterative, stochastic means, to problems for which there is

no known efficient deterministic algorithm. EAs rely on selection and genetic

operators to determine the search space, which may change as generations pass,

and may be regarded as an evolving set of (possibly disconnected) subspaces

within the overall feasible search space.

If we take EAs as the highest rank within one branch of the taxonomic order

of algorithm types, its history as a field proper might begin in the late 1950s

[8, 56, 61, 62, 22, 60]; in the 1960s, several sub-branches emerged in the develop-

ment of EAs [57, 79, 141], which we will discuss further in Subsection 1.1.2. From

the beginning, it was common for leading researchers to make contributions to

both theory and practice; for example, Holland worked on the basic theory of

EAs [78] and developed early genetic algorithms (GAs), amongst many contri-

butions, whilst Bremermann developed one of the earliest practical applications

- to the solution of nonlinear simultaneous equations [24] - and also proved one

of the earliest theorems, on the optimal mutation rate [25]. It is worth not-

ing that pioneering scholars often straddled the fields of computer science and

mathematical biology, yet had come originally from completely different fields,

as is still the case today.
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An important and recurring concept throughout this thesis will be the dis-

tinction in EAs between representation space and fitness space. A representation

is simply whatever form is given to an individual in a population for the pur-

poses of computation; in earliest work, this was generally a binary string, but

it could take any form that can be stored and which can be translated into a

rank, score or set of scores via a fitness function. If the representation has `

distinct elements, then the total representation space will be of size:

Λ (`) =
∏̀
i=1

λi, (1.1)

where the λi represent the number of possible states for each element. If any ele-

ment has infinite states then Λ (`) =∞ , and if all the elements are continuous,

real numbers, then the representation space is a subspace or union of subspaces

of R`. However, the elements of the representation space may be continuous

or discrete, bounded or unbounded, and do not necessarily have to be numbers

at all - they could be representations of executable code in the case of genetic

programming (GP), or conceivably many other things, as long as they can be

stored in computer memory, and processed by an EA.

A fitness space, on the other hand, depends on the ability of some fitness

function to map any feasible representation into a fitness score or rank. A rank

is always a single integer value ∈ [1, n], where n here represents the maximum

feasible number of ranks (which may be infinite), whilst a score may consist

of one or, in the multiobjective case, of more than one number, each of which

may be discrete or continuous and may have a different range. In the context of

MOEAs, we may refer to these values as objective values, and if all these ω values

are continuous, real numbers, then the representation space is a subspace or

union of subspaces of Rω. A fitness function is a mapping between representation

space and fitness space, in the sense that any feasible individual - that is to say,

an individual that obeys all restrictions and constraints - should always map

to a valid point in fitness space, but typically we cannot say much more about
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this mapping; it could be one-one or many-one, points that are close in a given

region of representation space may or may not be close in fitness space, and

there may be great variation between regions. If this is not so, and changes in

the representation produce very predictable changes in fitness, it is likely that

some simpler, possibly deterministic algorithm can be used to find optima, which

is always the point of an EA even if the particular algorithm is not explicitly

presented as solving an optimization problem. In still other cases, if the problem

is simple enough and enough computing resource is available, a purely stochastic

approach such as a Monte Carlo simulation (MC) may also suffice. For example,

when generating the simulated data used for testing in Chapter 5 in such a way

that different data series were sufficiently correlated, an MC approach was used;

had it been harder to find the correlated series, an EA might have been used

instead.

Hence it is important to introduce at this stage an assumption that under-

pins much of the rest of this thesis; namely that knowledge even of many points

in fitness space as they correspond to individuals in representation space will

not lead us easily to global optima, and that this is precisely why we are using

EAs in the first place. This assumption has many important implications, of

which we have already touched upon two, namely: the inability to predict the

fitness of an individual from that of others in its neighbourhood in representa-

tion space; and the inability to easily find global optima from a partial set of

representation-fitness correspondences . A third is that the use of genetic oper-

ators makes it hard if not impossible to predict with any precision the change,

from generation to generation, in the fitness distribution of the population, that

is, the number of individuals of a given fitness value or in a given fitness rank.

This has consequences inter alia for the predictability of convergence time (if

the algorithm is convergent) and the likely optimality of the final solution or

solution set upon termination of the EA. At best we can generally speak only

of correlations between fitness space and representation space, and such correl-

ations are likely to vary across these spaces. However, if we consider selection
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pressure alone, we can in fact make some predictions, as we shall see in Chapter

2.

1.1.2 Further development and typology of EAs

Throughout the 1960s and 1970s several distinct branches had emerged in the

development of EAs, and we will discuss three broad types; GAs, genetic pro-

gramming (GP), and evolutionary strategies (ES) .

1.1.2.1 Genetic algorithms

Holland and his research group developed both theory and practice of GAs

throughout the 1960s and 1970s, leading to publication of the influential 1975

book Adaptation in Natural and Artificial Systems [80]. GAs are discussed in

more depth in Chapter 4, as the specialized MOEA discussed can be categorized

as a multiobjective GA. However, it is worth mentioning Holland’s development

of the theory of schemata. GAs in general display their inspiration from genetics

more explicitly perhaps than other types of EA, and it is common to refer

to the data in the representation of an individual as a chromosome, a single

element within a representation as a gene and the value ascribed to a particular

individual as an allele. A schema, as originally envisaged, is a binary string

forming a section of a chromosome, for example 1*010**0, where the * symbol

indicates the bit in that position can be either a 1 or a 0.

The underlying idea here is that individuals carrying a particular schema, or

set of schemata, may tend to be fitter than others and hence by analysing such

schemata, one may analyse or predict the evolution of the population in terms

of the frequency of occurrence of the schemata in the population, as a function

of the average fitness of individuals having such schemata and the influence of

the probability of mutation and crossover. However, this type of analysis, and

Holland’s schema theorem in particular, have been shown to have a number of

limitations and [3] showed that the schema theorem can be restated in terms

of the covariance between fitness and the appearance of schemata, but that
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even a GA with a fitness function that is in fact a random function (i.e. not

related to the schemata at all) will obey the theorem, whilst also providing

counterexamples of types of fitness landscape in which GAs will not perform

in accordance with this type of analysis. An alternative approach is to look

directly at the evolution of the fitness distribution directly, as influenced by

selection; this is the approach taken in Chapter 2.

1.1.2.2 Genetic programming

Also referred to as evolutionary programming, the technique was devised by

Fogel [57] as early as 1960, though the original concept has been ascribed to

Turing[157]. The main difference with Holland’s GAs was that the representa-

tions were not fixed-length strings, but rather automata, originally referred to as

finite-state machines, which in essence were themselves computer programmes;

an early application was in prediction of nonstationary time series, and the fit-

ness function compared the prediction of the next symbol in a series with the

actual symbol.

Only mutation was used initially to introduce variation, but crossover was

also introduced later, and latterly the only real differences perhaps between GP

and GA are that in GP the representation does not have a fixed length, and

that an additional step (the running of the programmes) is generally required

to assess fitness. As a consequence, not only schemata and alleles but also genes

and chromosomes can evolve within the representation space of GP.

In the 1990s, John Koza [94, 95, 96] showed that GP could solve extremely

complex problems of a sort not usually tractable to classical optimization, such

as the design of circuits, and developed new techniques such as the use of auto-

matic functions, essentially reusable subprograms, within the evolved represent-

ations. Because the representation is not of fixed length, GP can be very flexible

in the way that solutions evolve, but the solutions can also be very complex,

meaning that they are hard to audit or interpret, and as the representation size

grows, operations such as calculation of the fitness function can become very
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slow, so that automatic pruning of the representation to remove redundant code

can become essential. It has been proposed that fitness based selection leads to

bloat [100].

1.1.2.3 Evolutionary strategies

ES, originally Evolutionsstrategien in German, were first developed in the mid-

1960s [8, 15] as a form of stochastic iterative optimization procedure using either

only mutation for variation, or using crossover governed by a mixing number

ρ > 1 indicating the number of parents involved in producing one offspring, in

contrast to GAs where typically two parents produce two offspring [65]. The

first form [141], later known as a (1+1)ES, featured a constant population of just

1 individual, mutated randomly using discrete, binomially distributed variables

centred on current values for the representation; later research used Gaussian

mutation for real-valued numbers. The natural extensions which were sub-

sequently considered were:

• the (µ+ 1)ES, which used a steady-state model with µ ≥ 1 parents and a

single offspring;

• the (µ+ λ)ES, with µ ≥ 1 parents producing λ ≥ 1 offspring;

• the (µ, λ)ES, in which selection takes place only between the λ ≥ 1 off-

spring, and the µ parents are forgotten, regardless of fitness.

A distinguishing feature of ES from the early days is the mix of exogenous

parameters such as µ and λ which are kept fixed over a run and endogenous

parameters used for example to control the mutation operator which are subject

to self-adaptation, changing during the run. In the case of a (1+1)ES, it was

found that tuning mutation to achieve a 1/5 success rate, that is, the rate

at which offspring replace parents, is optimal but this is subject to certain

restrictions and is not generally true for other types of ES. Hence it was proposed

that endogenous parameters adapt, in particular by various methods of collective

learning across a population.
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1.1.2.4 Limitations of typology

From a historical point of view, the differences between types of EA sometimes

seem to have more to do with the approaches of the groups of researchers who

initially devised them than actual distinctions, theoretical or practical, between

algorithms, and lines between types of algorithm can easily become blurred.

This is even more so when one considers the associations with and influence

between the larger group of heuristic and metaheuristic search [16] techniques,

including not only EAs but neural networks, particle swarm optimization (PSO),

and other nature-inspired algorithms [145, 54] including ant colony optimization,

plant propagation algorithms, and many more. The design of algorithms is itself

arguably an evolutionary process, where new types constantly emerge and others

die out, or at least lose popularity and fall into disuse, so that clear distinctions

within the state-of-the-art at one time become less clear as new algorithms

that take and improve on elements of existing ones constantly appear. For this

reason, generic reference is made to EAs rather than specific types through out

this thesis, and in particular the algorithm described in Chapter 4 is referred to

as a specialized MOEA in line with accepted nomenclature, although it fulfils

the requirements to be identified more specifically as a multiobjective GA.

Another objection to the use of terms like ‘genetic’ is that the relation of the

operation of algorithms to genetic or other natural structures and processes is

not strict and certainly highly simplified, and can also imply that he design is

based on a reductive simulation of natural processes, rather than sound math-

ematical foundations. A further objection is that some elements of algorithms

are scarcely if at all based on nature. Consider for example tournament selec-

tion; whilst it is true that in the natural world, some species see competition for

mates in the form of actual physical contests, this is not generally the case and

even when it is, forms only part of the selection process. Tournament selection

is, rather, a convenient and robust method of selection which, as we shall see in

Chapter 2, is at least somewhat tractable to mathematical analysis.
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Algorithm 1.1 Structure of a generic EA

1. Initialization: create the initial population in terms of a representation,
by random or other means;

2. Iteration: at each generation:

(a) Fitness evaluation: assign fitness value(s) or rank to each indi-
vidual;

(b) Selection: assign current individuals to be kept as is (cloned), des-
troyed/forgotten, or passed to one or more genetic operators;

(c) Crossover: recombine two or more parents to create one or more
offspring;

(d) Mutation: change one or more values in the representation ran-
domly;

(e) Loop to 2 until stopping condition(s) satisfied;

3. Return the solution or set of solutions.

1.2 Generic structure of EAs and variations in

structure

We shall return to the structure of EAs several times in this thesis, but Al-

gorithm 1.1 presents a generic EA structure. Full commentary on each of these

phases is beyond the scope of this work, but brief comments on each follows.

1.2.1 Initialization

Initialization creates the individuals forming the initial population of size N ,

according to the specified representation, which is typically a string of binary,

integer or real values but could take any computable and storable form, including

text, symbols and many other forms. It is generally the case that initialization

is random, but it would also be possible to use some determined or pre-existing

data set. If there are constraints or other conditions on feasibility of individual

representations, it may be required that these are fully complied with by the

initial population, partially complied with inside certain bounds, or it may be

accepted in the algorithm design that there will be some proportion of infeasible

individuals that will be discarded through selection. Some distribution is inev-
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itably imposed on the randomly generated individuals, typically either uniform

in the case of discrete values and normal or lognormal in the case of continuous

values, but other distributions can also be used. The initial population size can

vary from a single individual, as in the case of a (1+1)ES, to a population of

millions, and can be held in a single, unitary block or in groups, typically based

on restrictions or different centroids for the randomly generated values, as in

island-type models such as the one used in the MOEA described in Chapter

4. Initial representations in GP are very varied compared to other types of EA

but generally equate in some sense to computer code, decision trees or similar

logical structures, or data structures [99] and may be small compared to the

size reached in subsequent iterations of the algorithm, as well as varying in size

from individual to individual.

1.2.2 Fitness evaluation

Fitness evaluation is often the most computationally intensive part of an EA,

and as such it is a great advantage that usually these values can be calculated in

parallel, and possibly by advanced means such as the use of graphics processor

unit (GPU) computing1. A disadvantage of using a rank-based approach is

that in addition to requiring an extra calculation step, as a form of sorting

the complexity is likely to be higher than linear, unlike that of simple fitness

evaluation which is linear in the population size N . Furthermore, the calculation

of a ranking is inherently sequential in form, meaning that even if an EA is

implemented in parallel, a number of processor cores may be idle whilst the

ranking is found or updated. The difficulty of the actual calculation of the values

depends usually on the complexity of the fitness function, and researchers may

choose a simpler function form to speed calculation, possibly at some cost to

the usefulness of the solution(s) found. In the case of GP, a further step may be

necessary to evaluate fitness; for example, if the representation is a mathematical

function, then that function must be evaluated over some set of data, and then
1Applications of GPU computing to EAs is discussed in the Appendix.
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the fitness function applied to the output values. A further complication is that

the tendency towards code bloat may also lead to an increase in time required

to calculate the fitness values over a run.

All EAs need some way, typically an explicit fitness function, of mapping

individuals in representation space to points in fitness space. In single-objective

optimization, the points are often identified and located by a single, typically

integer or real-valued number, and these fitness values may be unique to each

distinct possible representation by construction or by virtue of being continuous,

or it may be possible for more than one representation to have a particular fitness

value, and of course identical copies of an individual will always have the same

fitness value. It is generally not possible, or desirable, for a given representation

to have more than one different fitness value. In the case of MOEAs, several

distinct fitness values are calculated for each individual, so that Pareto fronts

(PFs) may be formed; these may be passed directly to selection, or used to

calculate a ranking consisting of some number of ranks assigned by testing

nondominance or by some other means, as discussed in more depth in Chapter

2.

Design of the (possibly vector-valued, i.e. multiobjective) fitness function is

critical to the success of an EA. If the fitness function does not accurately reflect

the actual utility of the solution set in solving the problem being addressed, then

even if the true global optimum is found in terms of the fitness function used, the

actual result will be of little or no use. One example of this might be a fitness

function that seems apposite conceptually, but in practice produces identical

outputs for many inputs from the dataset used to assess fitness, making it

difficult to distinguish fitness levels between different individuals. Hence fitness

functions, in addition to being designed specifically for a given problem, may

have to take into account the actual data used. However, it is often possible to

change fitness functions without changing any of the rest of an EA, such that

the fitness function can even be regarded as an input to, or parameter of, the

EA.
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1.2.3 Selection

The selection phase of an EA can decide any or all of: which individuals are

passed to genetic operators; which are kept unaltered in the population; which

are archived but not kept in the population; and which are forgotten/destroyed.

Methods of selection include [66, 20]:

• Proportional selection - the original method proposed by Holland [80],

under which the selection probability is simply proportional to normalized

fitness;

• Truncation selection - individuals are sorted by fitness and only a top

fraction can be randomly selected, with equal probability [130];

• Linear and exponential ranking- individuals are sorted by fitness and

assigned a linearly or exponentially calculated selection probability based

on rank[161];

• Tournament selection - fitness or rank of two or more individuals are

compared in a series of tournaments using some random scheme until the

required number of individuals is found and passed to genetic operators

[65].

Tournament selection is considered the most popular form of selection and is

considered in more depth in Chapter 2, as well as being implemented in an

unusual form (permuted multiobjective tournament selection) in Chapter 4.

Tournament selection can be implemented in many forms, including:

• with or without replacement, or using permutations;

• single objective, rank-based, or multiobjective;

• positive or negative (negative tournaments select less fit individuals for

deletion);

• binary or higher arity;
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• implemented in series or parallel;

• steady state or generational.

Choice of selection method will depend on the desired statistical properties,

including the effect of the resultant fitness distribution, and on consideration

of computation time and method, in particular whether and how parallel pro-

cessing is implemented. There have been many claims and counterclaims about

which method of selection is best, but as with most other decisions taken in the

design of an EA, there are multiple factors to be considered; the choice depends

on or has consequences for other choices made in design, and there are often

trade-offs, for example between achievement of desired statistical properties and

computation time. Some of these tradeoffs are considered further in Section 1.3

below.

Whilst the concept of selection is inspired by evolutionary processes in

nature, the real processes involved in selection amongst living organisms are

complex, and selection algorithms either greatly simplify, or in some cases, in-

cluding tournament selection, arguably largely depart from phenomena observed

in natural selection. Additional features not generally observed in nature include

elitism, in which individuals of high fitness or rank are automatically passed to

genetic operators, and archiving, where the fittest individuals from any genera-

tion are recorded such that they can form part of the final solution set if fitter

individuals are not found, but do not necessarily remain in the population.

1.2.4 Crossover

The classical form of crossover involves choosing two parents from those in the

population after selection and recombining them twice to produce two offspring,

specifically by selecting some locus in the representation string and swapping the

substrings after that point, producing two offspring. However, many variations

are possible; generic types for algorithms with fixed-length representations in-

clude [93]:
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• Single point crossover, as described above;

• two point crossover, where only the substring between two points is

swapped;

• k−point crossover, where alternating substrings between k > 1 points

are swapped;

• uniform crossover, where each point has a random chance of being

swapped.

There are variations even to these generic schemes; for example in k−point cros-

sover, k can be fixed or random, and in uniform crossover, the swap probability

can be set in many ways. Many other generic schemes exist, including ones that

create only one offspring such as average crossover and flat crossover; schemes

also exist that use more than two parents.

However, such generic schemes are by no means suitable for all problems,

depending on the constraints and requirements for feasibility of offspring; some

number of infeasible offspring may be acceptable if a generic scheme saves com-

putation time, but if the number is too large, a more specialized scheme may

be required. A standard example is the generic travelling salesman problem

(TSP), where a requirement for feasibility is that representations are a com-

plete permutation of all the cities to be visited. Now, any swap of substrings

between parents that replicates cities and/or misses cities out will render off-

spring infeasible. Many solutions have been proposed; one early example is

the partially-mapped crossover (PMX) [67], where a substring is determined by

two crossover points in each parent and passed to two offspring with position

preserved, but then the mapping between the two substrings is used to swap

out repeated elements. However, many problems may require some adaptation

of existing schemes, or even a completely new scheme; the specialized MOEA

described in Chapter 4 required development of a new crossover type.

In GP, crossover is similar in concept but takes different forms because the

representation size is not fixed. The most common generic type is subtree
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mutation, in which, assuming the representation can be viewed as a tree, a

mutation point is selected in each of two parents and the subtrees below that

point swapped to produce two offspring. Many other types of GP crossover have

been proposed, often, but not always, analogues of the types described above for

fixed size representations, and again, specialized schemes have been developed

to address specific problem types.

If we think in terms of alleles and schemata, crossover can never create new

alleles, and in many schemes where two parents create two offspring, alleles

cannot be destroyed either, though this is not true in all schemes; for example,

schemes which involve the production of a single offspring may not guarantee

preservation of alleles. Schemata can be created or destroyed in most if not all

crossover schemes. If we put these two observations together, then we see that

in most two-parent, two-offspring cases, the range of available schemata is not

changed by crossover, but the schemata actually present in the population is

changed. Another way to put this is that the total representation space does

not change by the action of two-parent, two-offspring crossover, but the union of

subspaces which contains all possible offspring after crossover does change. This

is the mechanism by which crossover controls the search, or more accurately, the

search space, though it is selection that leads directly to changes in the fitness

distribution.

1.2.5 Mutation

Picking up from the previous discussion on crossover, mutation can both create

and destroy alleles, and hence can also create and destroy schemata; however,

compared to crossover, which depending on form can create offspring which are

quite different to either parent, mutation is generally implemented in a way

that produces only small and local changes to an individual, though as ever in

the broad field of EAs, there are exceptions to this. As with crossover, there

are many forms, of both general and specialized application. Generic forms of

mutation for fixed-length representations include[138, 101]:
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• bit-flip mutation - the most basic form of mutation, where there is a

probability (for example 1/l, where l is the length of the binary represent-

ation string) that each 0 becomes a 1 or vice versa; a separate probability

may be applied that any mutation occurs for a particular individual;

• random mutation - for integer or real-valued representations, a random

variable is added to the existing value at one or more loci, according to

some distribution (for example, binomial or normal) and possibly con-

strained to be within a certain range, to ensure variation is not too large

and/or feasibility is guaranteed;

• swap mutation - values at two loci are interchanged. This means the

set of values within the representation are unchanged, potentially making

it suitable for permutation-based representations, as used for example in

TSP algorithms;

• inversion mutation - reverses the order of a substring, so also suitable

for permutations.

For GP, as with crossover, there exist analogues of many such techniques as

well as more specialized mutation schemes. Subtree mutation [95] substitutes a

randomly-generated subtree for a randomly determined subtree in the existing

representation. The GP form of point mutation replaces a particular node with

another primitive of the same arity [138].

Mutation rates are generally set quite low, though they may be adaptive,

especially in ES. The low fixed or starting probabilities are employed to limit

destruction of useful alleles/schemata, i.e. ones with a high correlation to better

fitness.

1.2.6 Cloning, archiving and elitism

If an EA allows some probability that an individual is subject to neither cros-

sover nor mutation, then that individual is considered to be cloned in the next
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generation; cloning is also sometimes referred to as reproduction. Depending on

the distribution and any restrictions on the probabilistic application of genetic

operators, any individual could be cloned, including one of low fitness or rank.

On the other hand, archiving refers to the recording of the optimal individual

or set of individuals; archived individuals are not kept in the population, but if

they are not superseded in fitness/rank at the end of the run, form all or part

of the final solution set.

Elitism is explored in more detail in Chapter 2, with particular reference

to its effect on selection pressure. The idea is that all individuals of a certain

fitness level or rank and above are automatically selected, and passed to genetic

operators; however it is possible that they could be passed unchanged, either

because they happen not to have crossover or mutation applied, i.e. cloning is

applied instead as described above, or because they are cloned automatically,

or with a different probability to other individuals. Elitism and archiving are

not mutually exclusive; an EA may employ both. Elitism may also have other,

possibly beneficial, effects such as reduction in code bloat in GPs [139].

In the case of the specialized MOEA described in Chapter 4, archiving is

deployed, but elitism is not, because the permuted form of selection renders it

unnecessary. Crossover is applied to all individuals in a permuted fashion, i.e.

every selected individual becomes a parent and there is no cloning; the actual

form of crossover is highly specialized, because of the difficulties in maintaining

feasibility of the offspring. Point mutation is applied to offspring in a more

conventional manner, with a relatively low starting probability, and choice of a

mutation probability always balances the benefits to diversity in representation

with the need to preserve alleles and schemata correlated with higher fitness.

1.3 Trade-offs in EA design

The design of EAs involves many significant trade-offs, which may be fixed in

some sense or may be controlled by one or more parameters used by the EA.
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We briefly discuss here three of the main ones: accuracy versus computational

resources required; fitness versus diversity; and accuracy versus robustness.

1.3.1 The computational complexity trade-off

When brute force methods which guarantee finding the global optimum are too

computationally expensive and we wish to avoid use of greedy algorithms which

may find only a local optimum, we often use iterative methods such as EAs which

although they may not find the true global optimum within a limited time frame

given finite computational resources, will find a useful approximation depending

on the computational resources available. Furthermore, EAs are often designed

so that the solution at each generation is at least as good as that provided

at the previous generation, and so the top level problem common to all such

procedures may be stated as:

Minimize

z =
TC
CT

(1.2)

subject to

f (Ω) ≤ θ. (1.3)

Here, TC is the computational cost for the algorithm; this could be meas-

ured in computation time if resources are fixed, proportion of resources used

if resources are shared, or even a monetary cost if for example resources are

paid for on a time-per-node basis. CT is the value of the solution according to

some measure, which might be a theoretical measure of progress, or else could

be measured in more concrete ways, for example as a cost saving in a logistics

problem or a trading profit in a financial application. The set of constraint

parameters Ω is a subset of the parameters used in Equation 1.2; f (Ω) is of-

ten nonlinear (and may be combinatorial). This naturally includes all of the

constraints used in the underlying optimization problem, but in addition could
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include parameters which have upper bounds set in the vector of constants θ

governing not only cost or time or share of resources but also available memory,

for example, including aspects such as the maximum size of individual arrays or

maximum total size of all stored arrays. These parameters, which depending on

algorithm design may also include population size or number of runs or num-

ber of generations, may be included in both the numerator and denominator of

Equation 1.2.

In practice, we may not be able to calculate z a priori from analysis of

the algorithm and computing resources, but may need to rely on empirical

estimation. We will return to these issues as we examine the structure of the

specialized MOEA described in Chapter 4.

1.3.2 Accuracy and available resources

In the context of evolutionary algorithms, accuracy is taken to mean the prox-

imity, by some measure, of the interim or final solution or solution set to the

optimal solution or solution set. Many ways to measure accuracy can be ima-

gined [64], and if there is a known global optimum, this is simply a matter of

choosing a suitable distance metric or similar measure. For instances where the

global optimum is not known, or possibly not knowable, for example in Chapter

5 , two specialized metrics are used to test the dissimilarity of the coarse-grained

regimes from each other, and the similarity of the fine-grained to the coarse-

grained partitions; hence in this case, the testing is effectively biobjective, like

the partitioning problem itself.

It is often stated that the computation cost of EAs compared to other types

of algorithms is high, and to justify this, it should also be that the value of the

solution is high; this can be particularly noticeable in multiobjective problems,

where there can be many local optima, making the global optimum potentially

very hard to find. EAs do not in general guarantee that the global optimum is

found, but may have a higher probability of doing so, or else at least of finding

a better local optimum (or set of local optima).
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1.3.3 Fitness and diversity

Unlike the trade-off between accuracy and available resources, which refers prin-

cipally to the final result produced by an EA, the trade-off between fitness and

diversity affects both the representation and fitness space from generation to

generation during the run. The most obvious aspect of the tradeoff is the num-

ber of copies of individuals in the population, or to put it another way, the

number of unique individuals in the population. For example, as we shall see

in Chapter 2, in a crowding-out type convergent EA, in which copies of elite

individuals propagate until eventually they crowd out all other individuals, un-

der many tournament selection schemes with large populations, the number of

copies of the highest fitness individual in a population will increase at each gen-

eration by a factor approaching the tournament size. This increases the speed

of convergence, lowering TC , but also lowers the probability of finding a better

solution during the run, in several ways, depending on the operation of the EA.

If elite individuals stay within the population, they will quickly crowd out all

other individuals, leading potentially to premature convergence, that is, conver-

gence to a local optimum before the representation space is adequately mapped

to the fitness space, so that the global optimum is never found. More generally,

proliferation of offspring of closely related individuals may lead to less diversity

of alleles and/or schemata, meaning less of the representation space is searched

through recombination; mutation may only partially offset this, depending on

the mutation rate and how mutation operates.

A detailed analysis of diversity is beyond the scope of this work, but diversity

is analysed extensively in the literature, both as part of schema theory and

other attempts to analyse changes in representation space, and in mathematical

analysis of selection on the fitness space [78, 80]. In developing the specialized

MOEA, the decision was made to emphasize and control diversity in two main

ways. Firstly, the population was divided into separately processed subgroups,

following one of numerous forms of parallel genetic algorithm (PGA) [132] , and

the deliberate segregation of the population ensures a degree of diversity for the
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overall population throughout a run, even if the local population in a particular

subgroup is potentially less diverse, through lack of other alleles and schemata

present in other island subgroups. In particular, the island structure ensures a

wider range of alleles and schemata overall survives the whole run. Secondly,

the algorithm is deliberately nonconvergent; because the crossover rate is set at

1, and explicit elitism is not employed, no individuals stay in the population

from generation to generation, and all individuals at each generation are new.

1.3.4 Accuracy and robustness

It is generally the aim of any optimization process, whether by EA or other-

wise, to discover the true, global optimum, though in some cases, such as the

specialized EA described in Chapter 4, it is implicitly accepted that discovery

of the true optimum is unlikely, and the aim of the EA is rather to discover a

set of good approximations. The more specialized the EA is, the better it may

be able to provide good solutions for a particular type of problem, but may be

less suited, or entirely unable to find solutions for a different type of problem.

It is also important that an EA be robust to changes in the type of problem,

within the range of problems for which the EA is designed, or to changes in

any data inputs. In other words, even if an EA is to a greater or lesser extent

specialized in nature, within the domain for which it is designed, although the

NFL theorems suggest here will be some variation in performance depending

on the problem, the EA should not have variations in performance that are

unacceptably large depending on problem specification; if it does, this could

be an argument either for redesign to make the algorithm more robust, or for

further specialization.

1.4 Parameter design and control

The choice of parameter type, parameter form and method of control have been

recognized as critical to the performance of EAs [47, 89, 90]. It is not necessarily
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easy to separate good or poor performance of an EA, or compare performance

of EAs, as applied to different problems, data sets or time periods, between

good design on the one hand and judicious or fortuitous choice of parameter

values on the other. This problem becomes harder as the number of choice

parameters increases, and EAs with more than a few parameters may be difficult

to adequately test, as well as being intractable to theoretical analysis.

One approach is therefore to make the EA parameterless, or as close as

possible to having no parameters [77, 75]. In fact, ‘parameterless’ is often a

misnomer, as there are several ways to reduce or eliminate choice parameters,

including inter alia:

• fix the parameter in question at a particular value for any run;

• decide the parameter in terms of a formula involving other parameters;

• vary the parameter over different runs, or across population subgroups

run in parallel;

• adapt the parameter value over different runs.

The specialized MOEA described in Chapter 4 uses a combination of these ap-

proaches to reduce the number of choice parameters, and other approaches may

also prove useful. All can however be criticized for potential drawbacks. Fixing

the parameter can only be done using strong assumptions. Using a formula

for a parameter passes off responsibility for performance to other parameters,

and may make performance analysis trickier. Varying the parameter of mul-

tiple runs in effect nests an EA inside a Monte Carlo simulation, and is quite

computationally inefficient, though it can be effective in providing information

about parameter sensitivity at the same time as searching for solutions. Adapt-

ing parameters can be more efficient, but runs the risk of overfitting and can

make it even more difficult to separate the effect of parameters from general EA

design when analysing performance.

Finally, insofar that choice parameters may be unavoidable to some extent,

parameter tuning [47, 48, 46] can be extremely important in getting good results
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from an EA, and this process can to some extent be optimized and automated.

However, if very different results are produced from small changes to parameters,

this may be an indication that the EA tends to produce a similar effect to

overfitting in a standard statistical model. This may suggest that the solution

found is unlikely to be robust to other changes, or across different runs, making

results hard to interpret or rely on, and raises the question of whether the EA

is doing a good job or if there is merely a fortuitous matching of parameters to

the particular testing method chosen.

1.5 Structure of this thesis

The thesis hereafter is structured as follows. Chapter 2 is the longest chapter and

lays important theoretical groundwork for the choice of selection scheme used

in EAs, with particular reference to different schemes used for multiobjective

tournament selection, in part using the device of Pareto rankings. The analysis

includes schemes with and without replacement and permuted schemes, and the

particular advantages of permuted schemes are highlighted. The important role

of the tournament size parameter τ is discussed, and conclusions drawn regard-

ing its importance in determining nonsampling probability, post-tournament

rank or fitness distribution, speed of increase of elites in the population, and

speed of convergence. The effect of elitism on the development of the rank or

fitness distribution is also discussed. Several new theorems are developed.

Chapter 3 continues the theoretical discussion for the subsequent develop-

ment of the specialized partitioning MOEA by looking at the background to

partitioning time series of possibly high dimension, and at the concept of self-

affinity; some important statistical models are discussed. An optimization model

is then developed for the purpose of partitioning multivariate self-affine time

series. Chapter 4 describes the specialized MOEA, with particular reference to

the trade-offs inherent in design and the specialized nature of the MOEA. It

explains the design choices made for each phase of the specialized MOEA, in-
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cluding a section on the mathematical implications of the choice of tournament

selection scheme, which links to the discussions in Chapter 2; several other

important areas of specialization are also discussed. Chapter 5 describes the

methodology for testing the specialized MOEA using simulated and real data,

and reports results. This is followed by concluding remarks, including discussion

of possible directions for future research.

Additional information on computation, in particular use of parallel pro-

cessing, is contained in Appendix A.
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Chapter 2

The Mathematics of Pareto

Rankings

2.1 Introduction

Ranking schemes are a useful and widely used tool to reduce multiobjective

Pareto fronts to a single statistic that can then be used efficiently in selection

within an MOEA. Selection has long been recognized as the central process

in EAs, whether single-objective or multiobjective, by which the fitness dis-

tribution of the population at each generation is improved [66], and binary

tournament selection with replacement is described earlier in [26]. Tournament

selection has been widely used because of desirable properties, including sim-

plicity of programming, relative tractability to theoretical examination, and the

ability to the ability to tune selection pressure through choice of tournament

size; many comparisons have been made between tournament selection and other

methods of selection [65, 20, 18, 34, 103, 81, 76]. Some types of tournament se-

lection also have the benefit that it can be implemented in parallel, potentially

reducing the computation cost, though this will depend on the overall architec-

ture of the EA. Although binary tournaments, which emphasize maintenance
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of diversity, are often the default choice in algorithm design, selection pressure

can be effectively tuned by varying the number of participants in each tourna-

ment, though as we explain at various points in this chapter, the choice of this

parameter value affects the outcome in several different ways.

Notable work has been done sporadically on the mathematics of single-

objective tournament selection since the technique was first adopted, though

relatively little has appeared in the literature in recent years. Explicit analysis

of multiobjective tournament selection has been limited, and in both the single

objective case, there has been little written regarding the effects of the use of

selection without replacement and elitism on the distribution of the resultant

population once the tournament selection phase of an algorithm is complete.

The main contribution of this chapter is to extend theoretical analysis of mul-

tiobjective tournament selection, using a nondominated sorting scheme as a

framework, though much of the analysis is valid even when an MOEA does not

explicitly calculate a Pareto ranking, as considered in Chapter 4.

We start by considering the mathematical implications of the use of Pareto

rankings in tournament selection for multiobjective problems, in particular those

produced by nondominated sorting, and show that a similar methodology to

that used for single objective problems can be applied to derive the expected

population by rank. We state a set of axioms governing such rankings, and

a set of propositions about the nature of ranking systems using the axioms.

Then, building on the methodology put forward in [19] to predict the expected

fitness distribution in the single objective case at each generation for a given

population after tournament selection, we extend the analysis to the multiob-

jective case using Pareto rankings. Most of the theoretical literature, including

inter alia [65, 66, 9, 19, 126, 8, 148, 129, 137, 164], assumes use of selection

without replacement, with few references to alternatives, even though use of

selection with replacement has been considered since the early development of

the technique. The effect of elitism and archiving are also largely overlooked;,

these subjects will also be examined in the context of rank-based multiobjective
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tournament selection. The prevalence of selection with replacement is perhaps

explained by ease of implementation, or because of assumptions made that in

large populations, there will be little difference in outcome between selection

with and without replacement, or that use of elitism will obviate any potential

problems. We will examine the validity of such assumptions later in his chapter.

A general form for a limit under multiobjective selection with replacement

in rank-based tournaments is derived, which implies that no matter how large

the population, elite individuals are at risk of not being selected because they

are never sampled, unless algorithms are specifically designed to counter this.

The limit also applies to at least one form of selection without replacement,

but not to a completely permuted scheme, which guarantees all individuals are

sampled for at least one tournament, and hence that elite individuals are always

selected. This limit can apply to any number of ranks starting from the first

rank, and is approached from below, so that the nonsampling risk grows with

population size, up to the limit. Asymptotic equivalence of the expected rank

sizes between different types of tournament is also demonstrated in some cases,

and the effect of elitism on selection is examined. An expression is derived that

links tournament size to the growth rate of the elite cohort, and shows that in

large populations, the elite cohort will increase in size at each generation by a

factor approaching the tournament size. A limiting expression is also derived

for the expected number of generations to convergence. Whilst this formulation

ignores the effect of genetic operators or other features of algorithms, it may

serve as a useful check for algorithm development.

The remainder of this chapter is arranged as follows. In Section 2.2 the math-

ematics of multiobjective tournament using Pareto rankings are examined, in

order to illuminate the workings of ranking-based tournament selection, includ-

ing in relation to speed of convergence. In Section 2.3, the mathematics of

tournament selection without replacement are reviewed, the inherent problem

of nonselection of elite individuals is examined, and a general limiting expres-

sion for the nonselection probability is derived. In Section 2.4 the distributional
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properties of selection with and without replacement are compared, and several

conclusions follow.

2.2 Pareto ranking systems

2.2.1 Ranking algorithms

Ranking systems have long been used to simplify multiobjective problems in

operational research, decision science and other areas, as a way to deal with

multiple valid solutions a posteriori. MOEAs form just one part of the meth-

ods of multi-criteria decision analysis (MCDA), and in other areas of MCDA,

ranking methods are generally used to choose between valid solutions once the

Pareto front (PF), or some other representation of multiple optimal solutions,

is obtained, and many methods exist to do so [32, 155, 88, 111, 59, 86]. Within

MOEAs, ranking methods are rather used to help determine fitness at each

generation whilst the MOEA is running. For the purpose of fitness compar-

ison, ranking methods effectively reduce a multiobjective problem to a single

fitness statistic, though as with single-objective methods, there must be a way

to determine the outcome when there is a tie in a tournament.

To set the scene, for a population sizeN let there be Ñ ≤ N unique vectors of

fitness values vj = [v1j , v2j , . . . vωj ]
T
, j = 1 . . . Ñ , with one value vkj , k = 1 . . . ω

for each of the ω objectives. Each individual in the population is represented by,

and maps to, just one point in fitness space represented by such a vector. This is

a many-one mapping from individuals in representation space to points in fitness

space, as in general there may be more than one individual with identical fitness

values in the population; these may be copies of the same individual, but we

also account for the possibility that individuals with different representations

have identical fitness values. Hence there may be fewer unique vectors than

individuals in the population, and so Ñ ≤ N .

First, we define in the usual way vector vi as Pareto dominant with respect
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to individual vj iff:

(vki ≥ vkj ∀k ∈ [1, ω]) ∧ (∃vki > vkj) . (2.1)

It follows that an individual is non-dominated iff:

(∃vkj > vki) ∨ (vkj ≥ vki ∀k) , (2.2)

and we can narrow the second condition to equality because of the existence of

the first, so that the property of being non-dominated can also be defined as:

(∃vkj > vki) ∨ (vkj = vki ∀k) . (2.3)

That is to say, an individual is non-dominated with respect to another if and only

if it either has any objective value strictly greater than the corresponding value

for the other individual, or all the fitness values are equal. In some algorithms,

we may be able to dispense with the second condition if we know or can safely

assume that all individuals are unique and at least one objective value will be

different for each individual.

True multiobjective tournament selection can be complex both in theory

and in practice when designing algorithms; we examine one such scheme in

Chapter 4. As a result, the most common approach is to reduce the problem

to a discrete, single objective one by using a nondominated sorting technique

in which successive Pareto fronts are found, the nondominated individuals are

assigned a rank number, stored and then removed from the population for the

rest of the sort, and the next Pareto front found until all individuals have been

assigned a rank ri, i = 1 . . . n, n ≤ Ñ , with r1 the top rank. Note that the

convention for the ordering of ranks is thus the reverse of that often used in

the literature for the single objective case, and used above in Equations 2.1 -

2.3 when considering the ordering of individuals by fitness level; this ordering is

more natural in relation to the operation of Algorithm 2.2, which finds the top
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rank first, as well as in the context of our examination of the problem of elite

nonsampling in Section 2.3.

Since the ranks are discrete and there can be more than one individual of

the same rank in a given tournament, some further step is necessary in con-

stant population algorithms to deal with ties. In the case of NSGA-II [44], for

example, a tiebreaker score function is used, based on niching distance of the

individual on the Pareto front, which may also increase diversity, at least in

objective space. Tiebreaker functions are typically continuous, meaning they

generally give a definitive winner for each tournament. Such ranking schemes

are certainly convenient in that they guarantee a constant population, and the

tiebreaker may add some useful properties to the selection process. However,

rank sorting algorithms are inherently sequential and have high complexity with

large populations; for this reason, some algorithms calculate only some fixed

number of ranks, and consign all other individuals to a single bottom rank.

In subsequent discussions, it is assumed that in the case of ties, the victor is

selected at random using a uniform distribution.

The concept of a Pareto ranking is a natural extension of the idea of a Pareto

front, and various ways of constructing them for MOEAs have been proposed

since the early days of research in the area [65, 14, 58, 2]. The best known and

most widely used type is the nondominated sorting technique used in NSGA-

II and many other algorithms; non-dominated sorting techniques have been

extensively studied and refined, calling on various areas of mathematics [98, 87,

97, 53, 27]. In an exhaustive algorithm such as Algorithm 2.2, the ranking is

constructed by finding the PF for the population, removing the individuals on

the PF and repeating until all individuals are assigned a rank. Note that if the

algorithm only finds the first few ranks and the remainder of the population

are assigned to a bottom rank, then should all individuals participating in a

tournament happen to be of this bottom rank, the tiebreaker effectively becomes

the sole measure by which selection is decided. Approximate methods for finding

the ranking have also been proposed [158, 105], given the complexity of finding
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Algorithm 2.1 fast Pareto front algorithm
Step 0: initialize O with the set of unique fitness function value vectors{

vj = [v1j , v2j , . . . vωj ] , j = 1 . . . Ñ
}
and set the objective counter o = 1, noting

the map of all N individuals to the Ñ ≤ N unique fitness vectors;
Step 1: whilst O is not empty:
Step 2: find and record the subset Oo of individuals that have the minimum
value for the current objective o and remove the members of Oo from O;
Step 3: from these individuals, find the nondominated set Ôo by applying the
“two-way >” condition 2.4 and add these to the PF;
Step 4 find and eliminate all points in O that are set-dominated by Ôo by
applying the “one-way >” condition 2.5;
Step 5 : set o = mod (o, ω) + 1 and loop to Step 1;
Step 6: return the PF.

all the ranks for large populations and/or numbers of objectives. It is non-

dominated sorting as a method of Pareto ranking that we will investigate and

use in the rest of this chapter.

The problem remains however that if finding a single PF can be compu-

tationally expensive, finding many - possibly thousands - at each generation

is far more expensive still, and truncated or approximate methods may not be

acceptable. A fast method to obtain a complete ranking from a population is in-

troduced in Algorithm 2.1. The algorithm uses two different types of condition;

a “two-way >” condition, namely:

(∃vki > vkj) ∨ (∃vlj > vli)∀vi,vj ∈ Ôo, i 6= j, k 6= l, (2.4)

that is, for each pair of vectors in the nondominated set, each has at least one

objective value strictly greater than the other; and a “one-way >” condition:

(∃vki > vkj) ∨ ¬ (∃vlj > vli, l 6= k)∀vi ∈ Ôo,vj /∈ Ôo, l 6= k, (2.5)

that is, for each pair of vectors, one in the nondominated set and the other

not, the first has at least one objective value strictly greater than the second,

but the reverse is not true. Equations 2.4 and 2.5 follow from the definitions of

dominance and nondominance in Equations 2.1 and 2.3.
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Algorithm 2.2 Exhaustive Pareto ranking algorithm
Step 0: initialize O with Ñ vectors of fitness values vj and set the rank counter
i to 1;
Step 1: find the PF for the current population by calling Algorithm 2.1, or an
equivalent algorithm, add these individuals to rank ri and eliminate them from
O;
Step 2: increment i and loop to Step 1 whilst any points in the population
remain;
Step 3: return the set of ranks

{
r1, r2, . . . rn, n ≤ Ñ

}
.

Algorithm 2.2 summarizes the generic, exhaustive method to find each of

n ranks one by one, and subsequent analysis is based on the assumption that

rankings are found using this algorithm or one exactly equivalent in that it is

guaranteed to always produce the same output for the same inputs. Note that

the algorithm operates only on the Ñ ≤ N unique vectors of fitness values, with

these vectors mapped to the N actual individuals in the population, eliminating

unnecessary computation. Faster methods such as updating [104] may be used

to generate rankings, but for what follows to apply to any other method, it must

be shown that the method is exactly equivalent to Algorithm 2.2, that is to say,

that the methods will always produce exactly the same result as Algorithm 2.2.

2.2.2 Theory of ranks and rankings

This subsection develops theoretical arguments based on rankings produced by

Algorithm 2.2. Application to results produced by other methods can be guar-

anteed if and only if those methods are exactly equivalent to this algorithm.

Any algorithm that finds the nondominated points and conforms to the stand-

ard definition of Pareto dominance in Equation 2.1 may be called to find the PFs

themselves; in addition to Algorithm 2.1, a fast algorithm for biobjective prob-

lems is presented later as Algorithm 4.3. Although what follows may be of more

general application, it would be necessary to check the validity of definitions

and propositions for algorithms using different methods.

43



2.2.2.1 Definitions and ranking lemmas

Let A be a finite set of unique points in fitness space, each represented by a

vector of fitness values vj , j = 1 . . . Ñ , with each individual in the population

mapped to exactly one point, and all individuals with identical fitness values

mapped to the same point. A ranking < =
{

r1, r2, . . . rn, n ≤ Ñ
}
, where r1

is the highest rank as generated by Algorithm 2.2 or an exactly equivalent

algorithm, is a complete, non-overlapping partition of A, consisting of n ranks

ri, each of which is a unique subset of A. Such a ranking < has the following

properties:

1. Completeness - ∪ni=1ri = A, and all individuals in the population map

to some point in some rank in <;

2. Non-overlapping ranks - ri ∩ rj = Ø ∀i 6= j and all individuals with

identical fitness values map to the same point in the same rank;

3. Inter-rank nondominance - each point ∈ ri is nondominated with

respect to all other points in the same rank, and hence all individuals

mapped to points in the same rank are nondominated with respect to

each other.

These properties follow directly from the method of construction set out in

Algorithm 2.2; as such, we take them to be axiomatic in what follows.

Lemma 2.1. Each point in rank ri is nondominated with respect all points in

∪nl=irl.

Proof: If any point in rl, l > i were to dominate some point in ri, then

either Algorithm 2.2 would allocate that point to a higher rank than rl, or the

dominated point would be allocated to a lower rank. For points of the same

rank, the axiom of inter-rank nondominance applies.

Lemma 2.2. vj ∈ ri does not imply that vj dominates any point in ∪nl=i+1rl.

Proof: The points allocated to rank ri+1 must all be dominated by some

point in ri, but this does not imply that a particular point vj ∈ ri dominates any
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point in ri+1, and because nondominance is not transitive, then by induction,

vj does not necessarily dominate any point in a lower rank.

Lemma 2.3. The set of points in rank ri, i = 1 . . . n− 1 rank-dominates every

set of points in any rank rl>i; that is every point in rl, l > i is dominated by at

least one point in ri, and no point in ri is dominated by any point in a lower

rank rl>i.

Proof : The second part of the requirements for rank-dominance follows

from Proposition 2.1. As to the first part, if any point in rl were not dominated

by some point in rl−1, the collection of points of one rank higher, that point

would be allocated to a higher rank by Algorithm 2.2, not to rl, and because

dominance is transitive, it must be that each point in rl is dominated by some

point in any rank ri, i < l.

Lemma 2.4. vj may dominate some point in rl if and only if vj ∈ ri<l.

Proof: This follows directly from the properties of inter-rank nondominance

and Lemma 2.3.

Note however that together with Lemma 2.2, the implication is that although

a given point cannot dominate another in the same or higher rank, it does not

follow that the point necessarily dominates any other point in A.

Lemma 2.5. For any set A of unique points vj in fitness space, there is exactly

one corresponding ranking <.

Proof : Firstly note that a valid ranking always exists, since Algorithm 2.2

will always allocate all individuals to a rank. Then note that if more than one

such ranking existed, then given a valid ranking <, we could move one or more

points from one rank to another and produce another valid ranking. However, if

we move any point vj ∈ ri to a lower rank, it must be dominated by some point

in its original rank, by Proposition 2.3; yet we know the point is nondominated

with respect to all points in ri, a contradiction. Similarly by the same axiom,

if we move the point to a higher rank, it must be nondominated with respect
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to all other members of that rank, yet we know it is dominated by at least one

point in each rank rl<i, because Pareto dominance is transitive. Hence each

point can belong to only one rank, and so there can only be one, unique valid

ranking.

Lemma 2.6. A ranking < = {r1, r2, . . . rn} over a set A represents a strict

total order over A.

Proof : Consider any two successive ranks ri, ri+1. The ranking is antisym-

metric since ri � ri+1 ⇐⇒ ri+1 � ri, and is a total relation since the ranks

cover A. Finally, the ranking is transitive, since each successive rank dominates

the next, i.e. r1,� r2 � . . . � rn, by Proposition 2.3. Hence a Pareto ranking

is a total order over A, and since there is never equality between ranks, it is a

strict total order.

Recall that for the points in the rank PFs, neither dominance nor non-

dominance are equivalence relations. Dominance has transitivity but not sym-

metry or reflexivity [43]. Non-dominance has reflexivity and symmetry but not

transitivity. As such, dominance represents a strict order, whilst nondominance

is a semi-order; but the existence of nondominated points means that dominance

is in general a partial order. As noted in [167], the addition of a tiebreaker func-

tion can facilitate the construction of a complete partial order, i.e. the points

within a rank are also ordered, but Lemma 2.6 emphasizes that a ranking is

a total order in terms of the ranks, without considering a tiebreaker function.

In any case, a tiebreaker function will guarantee a complete total order if and

only if each unique individual in a given rank also has a unique value for the

tiebreaker function.

To illustrate the construction of rankings and some of the propositions above,

consider Figure 2.1, which shows a full ranking (over 1000 ranks) for a randomly

generated biobjective TSP with N = 106 in the right panel, and the first 10

ranks only on the left1. The first rank contains only one point (in blue), which
1This is a simulated, toy problem but the axis values can be interpreted as objective values

with, for example, total distance on one axis and total cost on another.
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Figure 2.1: Typical ranking
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dominates all other points. If we consider the second rank (in red), note that the

rightmost two points do not dominate any point in the third rank (in yellow).

Of course, no point in any rank dominates any point in a higher rank, or is

dominated by any point in a lower rank. Note that the plots of the ranks do

not necessarily form approximations to convex curves; for example, some points

have a higher value for one objective than the points in the same rank with both

the next highest and the next lowest value for the other objective, forming a

kink in the curve.

In practice, genetic operators in MOEAs create new individuals and the

ranking is recalculated at each generation, meaning the membership and number

of ranks can change. However for the purpose of theoretical analysis, it is

assumed in the rest of this chapter that the set of available unique points is

fixed at generation 0, and that the number of ranks n and the membership of

each rank ri, i = 1 . . . n is also fixed, so that only the number of copies ri of

individuals mapped to points in each rank changes.

2.3 Elite nonsampling and nonselection in rank-

ing systems

2.3.1 Background

The classical tournament selection algorithm [65, 66] consists of two phases; in

the first, individuals are selected at random to participate in a given tournament,

and in the second, exactly which individual passes to subsequent algorithms

within the EA (i.e. genetic operations) is decided by comparing the outputs

of a given fitness function. These have been called the sampling and selection

phases, respectively [137]. We will adopt this terminology and consequently

refer to the probability of sampling and selection as psamp and psel, respectively,

and use the terms “sampled” and “participating” interchangeably. Also we shall

refer to the probability of victory, that is the probability of an individual being
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selected given that it is sampled, as pvic. In general, if sampling and selection

are independent, then

pvic = psamp · psel. (2.6)

The nonsampling problem can be simply described thus: that depending

on how the selection scheme is designed, there may be some probability that a

particular individual is never sampled for any tournament at a given generation;

of particular concern is elite nonsampling, i.e. the probability that one or more

individuals ∈ r1 or more generally, that are members of higher ranks are not

sampled and therefore not selected. This is distinct from the multisampling

issue, which in the literature on the single objective case refers to the probability

that more than one copy of an individual is sampled in a tournament; we can

refer to this as the individual multisampling issue. In the multiobjective case,

we must also consider the probability that more than one distinct individual of

the same rank is sampled in a tournament; we can refer to this as the in-rank

multisampling issue. Whilst elite nonsampling is clearly a problem as depending

on the design of an EA, it can lead to the elimination from the population of

the fittest individuals, multisampling alters the expected rank sizes, though in

what way depends on the tournament selection scheme used.

Here and for the rest of this chapter, we assume all variables to be non-

negative and in general non-zero and finite except where noted. In place of the

setup for single-objective problems, where scholars have described a distribution

in terms of the number of individuals for each fitness level [18, 19] , we rather look

at the number of individuals rig at generation g, g = 0 . . . G that are members

of each rank ri as fixed at generation 0. Note that the natural ordering of these

ranks is to denote the highest rank r1 as it is the first rank discovered by the

ranking algorithm, but this is the opposite order to that generally used in the

literature in the single objective case, hence care must be taken in interpretation.

Let R+
i be the set of all individuals mapped to points in any rank down to
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ri. That is:

R+
i =

i⋃
k=1

rk. (2.7)

We now define the actual cumulative total number of individuals mapped to

points in ranks from r1 down to a given rank i ≤ n after the tournament

selection phase at the g-th generation as:

R+
ig =

i∑
k=1

rkg, (2.8)

where rkg represents the number of individuals in rank rk at generation g. Thus

there are R+
ig individuals in total that are mapped to points in ranks down to

and including ri after selection at generation g, and in a constant population

algorithm, R+
ng = N ∀g, g = 1 . . . G.

Also note that whilst early research on the single-objective case [65] considers

a sequential steady-state algorithm where the distribution of the population

available for sampling changes after each tournament, it is easy to implement

tournament selection in parallel [66], and in subsequent literature including [19],

each tournament selection phase usually consists of m tournaments, often with

m = N so that population size stays constant across generations.

2.3.2 Tournament selection with replacement

Consider firstly a tournament with τ participants, drawn from a population of

size N, 2 ≤ τ < N, where each individual participating in a tournament is drawn

with replacement from a discrete uniform distribution on [1, N ], and denote

this tournament type Scheme A. This type of scheme is addressed for the single

objective case inter alia in [19, 147, 149]; for the rank-based multiobjective case,

we write the sampling probability for an individual in rank rk at generation

g as psampkg . The cumulative probability that any particular participant in a
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tournament at generation g will be one that is mapped to a point in R+
i is:

P sampig =

i∑
k=1

psampkg

=

i∑
k=1

(
rkg−1 ·

1

N

)

=
R+
ig−1

N
. (2.9)

The expected number sampled is:

E
[
R+
ig

]
=

τ ·R+
ig−1

N
∈ [0, τ ] , (2.10)

where τ represents the number of participants in each tournament (the tourna-

ment size), with variance:

var
(
R+
ig

)
=

τ ·R+
ig−1 ·

(
N −R+

ig−1
)

N2
. (2.11)

In [137], a negative exponential approximation of the number of individuals

sampled (or not sampled) in the single-objective case is obtained by analogy

to the coupon collector problem, and it is noted in [164] that the probability

does not depend on N . We now demonstrate that a general limit can be found

directly for the non-sampling probability for large N for all individuals mapped

to points down to a given rank. If we conduct m tournaments independently, as

is the case in parallel tournament selection, then the probability of no individual

mapped to a point in rank ri and above being sampled in any tournament is:

Pr
(
R+
ig = 0

)
=

(
1−

R+
ig−1

N

)mτ
. (2.12)

This leads us to the following results:

Lemma 2.7. In a generational MOEA using parallel tournament selection with
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constant population so that m = N/α, α < N, and α divides N , then for finite

R+
ig−1 and τ , Equation 2.12 approaches:

lim
N→∞

Pr
(
R+
ig = 0|m = N/α

)
= e−τ ·R

+
ig−1/α (2.13)

for N that is large with respect to τ ·R+
ig−1.

Proof:

lim
N→∞

(
1−

R+
ig−1

N

)N·τ
α

= lim
N→∞

e
ln

(1−
R

+
ig−1
N

)N·τ
α



= lim
N→∞

e

N·τ
α ln

(
1−

R
+
ig−1
N

)

= e
lim
N→∞

[
N · τ
α
· ln

(
1−

R+
ig−1

N

)]

=e

τ
α ·

 lim
N→∞

ln

1−
R

+
ig−1
N


1/N

.

Apply L’Hôpital’s rule:

= e

τ
α ·
(

lim
N→∞

N·R+
ig−1

R
+
ig
−N

)

= e

τ
α ·

 lim
N→∞

R
+
ig−1

R
+
ig−1
N

−1·

.

But as
R+
ig−1

N → 0 as N →∞,

= e−τ ·R
+
ig−1/α,

as required.

Lemma 2.8. The asymptotic probability at generation g that some elite indi-

vidual ∈ r1 is sampled and selected in at least one of N tournaments approaches:
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Figure 2.2: Ratio of Equations 2.12 and 2.13
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lim
N→∞

Pr (r1g = 0|m = N) = 1− e−τ ·r1g−1 . (2.14)

Lemma 2.8 follows from Lemma 2.7 and the observation that victory is

automatic for an elite individual sampled in any tournament, that is, P sel1g = 1.

Much of the analysis in this paper assumes that m = N , that is, the number

of tournaments at each generation equals the population size so that with a

single victor form each tournament, the population size does not change from

generation to generation, though some EAs may conduct a different number,

depending on for example crossover design. Lemma 2.7 permits a number of

tournaments different to N by introducing the variable α, which leads to fewer

than N tournaments if α is an integer greater than 1 (that divides N), and more

if α < 1; for example an algorithm might require 2 · N tournaments to feed a

crossover scheme that uses two parents to produce one offspring, in which case

α = 1/2.

In a given parallel tournament selection phase with constant population,

asymptotically there is a non-zero chance of nonsampling (and therefore nonse-

lection) of all individuals mapped to points in higher ranks, no matter how

large the number of tournaments is in each phase. For example in an algorithm

using binary tournaments with a single elite individual mapped to a point in

the top rank r1 and α = 1, i.e. a generational MOEA with N tournaments per

generation, the limiting probability at each generation is e−2 ≈ 0.135, which

agrees with the observation made in [137]. The nonsampling probability can be

varied by weighting the sampling probability by fitness score, but may not be

eliminated, depending on the weighting scheme.

Because the limit in Equation 2.13 is approached from below as the popula-

tion size rises, conversely the limit in Equation 2.14 is approached from above,

with the rate in each case dependent on the size of τ · R+
ig−1/α or τ · r1g−1

respectively, relative to N . Although it is generally recognised that increasing τ
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raises selection pressure, it is worth noting that although increasing τ will also

decrease the nonsampling problem (but also decrease diversity), the starting dis-

tribution in particular can also be expected to have a large effect on how serious

the elite nonsampling effect is, with the danger that in the absence of elitism

or archiving, elite individuals could be lost in early generations. This could

lead to suboptimal results, because good areas of the solution space are never

explored, or to an EA taking far longer than necessary to rediscover these good

areas through the effect of genetic operators. If elite individuals are archived,

they will remain on record, but will not be passed to genetic operators this

generation, or in future generations unless reintroduced into the population.

Higher values for the nonsampling probabilities might be acceptable if close

neighbours in representation space have similar ranks. However if, as is often

the case in real-world problems, there are one or more regions of the represent-

ation space where some individuals have much higher ranks compared to close

neighbours, then we might particularly value the elite individuals at each gen-

eration and require their participation in selection, meaning that we would find

a high probability of elite nonselection unacceptable. Hence if avoiding elite

nonsampling is a priority, tournaments with larger numbers of participants are

preferable (but note the caveat in Subsection 2.4.4). This limiting result is per-

haps the reason why researchers have found some form of elitism indispensable

when using sampling without replacement, particularly in binary tournaments.

Figure 2.2 shows the relationship between the general prediction for the

nonsampling probability in Equation 2.12 and the limit from Proposition 2.7 as

a ratio on the z-axis, calculated for values of R+ ∈ [1, 97] and N ∈
[
10, 106

]
with α = 1 so that m = N , and shown with a log scale for N on the y-axis and

a linear scale for R+, representing the number of individuals in some generic set

of elite ranks, on the x-axis.

In selection with replacement, individual multisampling somewhat increases

diversity because it implies that where rn = 1, that unique worst individual

can still win a tournament by being sampled τ times in a tournament, with
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probability N−τ . On the other hand, in the case of the highest rank individuals,

the operation of the in-rank multisampling issue means there is some probability

that more than one, different individual mapped to a point in ∈ r1 can be

sampled and hence at least one will not be selected, after the operation of

some tiebreaker function. Hence in the multiobjective case, even if all fitness

objective values are unique, it is possible for an elite individual to be sampled

for a tournament and yet not selected.

2.3.3 Tournament selection without replacement

A first alternative to selection with replacement might be a scheme in which

participation in each tournament is decided over a uniform distribution without

replacement, so that either no copies or exactly one copy of any given individual

will participate, but the rosters for each tournament are independent; we will

refer to this as Scheme B. Because we now have sampling without replacement,

we can use the hypergeometric distribution to calculate the probability that no

individuals in a given rank ri or below participate in a particular tournament:

Pr
(
R+
ig = 0

)
=

 N −R+
ig−1

τ


 N

τ


. (2.15)

Note again that the expression N − R+
ig−1 includes all ranks from the i-th to

the lowest rank. In the special case R+
ig−1 = r1g−1 = 1, Equation 2.15 reduces

to

Pr (r1g = 0|r1g−1 = 1) =

τ−1∏
k=0

N − k − 1

N − k

=
N − τ
N

. (2.16)
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Although derived from the hypergeometric distribution with a different sampling

probability to the binomial case considered in Scheme A, the expected number

of individuals mapped to some point in R+
i that are sampled is exactly the

same as Equation 2.10 for τ ≥ 2, but the variance is smaller, by a factor of

(N − 1) / (N − τ), than that under Scheme A (Equation 2.11):

var
(
R+
ig

)
=

τ ·R+
ig−1 ·

(
N −R+

ig−1
)
· (N − τ)

N2 (N − 1)
. (2.17)

Since all the tournaments are independent, the probability that no individuals

mapped to some point in R+
i participate in any tournament is:

Pr
(
R+
ig = 0

)
=



 N −R+
ig−1

τ


 N

τ





m

. (2.18)

Whilst Equation 2.18 will produce results that differ from Equation 2.12

for Scheme A when τ is small to N , for large N the limit in Proposition 2.7

will also apply to Scheme B, since in the limit the hypergeometric distribution

approaches the binomial. Figure 2.3 shows the relationship of Equation 2.18

to the limit as a ratio on the z-axis, while Figure 2.4 shows the relationship of

Equation 2.18 to Equation 2.12, i.e. the relationship of Scheme B to Scheme

A. In general, Scheme B approaches the limit more slowly and has a lower

nonsampling probability than Scheme A with smaller populations; for large

populations, there is no difference.

Although Scheme B eliminates the individual multisampling issue in each

tournament, it does not eliminate the in-rank multisampling issue, and because

the tournaments are independent, any individual may be sampled in any number

of tournaments, including none.

Finally, we consider a completely permuted scheme, i.e. where sets of tour-

naments at a given generation are formed from complete permutations of all
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Figure 2.3: Ratio of Equation 2.18 to the nonsampling limit
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Figure 2.4: Ratio of Equation 2.18 to Equation 2.12
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unique individuals, so that all participate in at least one tournament. In Scheme

C, as envisaged in [149], tournaments are formed by lining up τ complete per-

mutations, so that the first participant in each tournament comes from the first

permutation, the second from the second and so on. The mean and variance

under Scheme C of the number of individuals from a given set of ranks in a given

tournament, assuming no knowledge of any other tournaments, is the same as

under Scheme A (Equations 2.10 and 2.11). The advantage of a completely

permuted scheme is that the probability of nonsampling is always zero for any

individual [44], and hence2:

lim
N→∞

E
[
R+
ig

]
= τ ·R+

ig−1, (2.19)

as it becomes unlikely with large populations that more than individual mapped

to a point in R+
i will be sampled in a given tournament, provided R+

ig−1 is small

with respect to N , and hence any individual mapped to a point in R+
i that is

sampled will almost certainly win its tournament.

Scheme C does not eliminate either the individual or in-rank multisampling

issues, since the permutations are independent. In Chapter 4, a different per-

muted scheme is described which does largely eliminate multisampling issues,

but does not use rankings explicitly; more details are to be found in Section 4.4.
2Note that this scaling property is also proved in different ways for selection with replace-

ment in Theorem 2.3 and in Lemma 2.9.
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2.4 How tournament selection changes the fitness

rank distribution

2.4.1 Tournaments with replacement under a Pareto rank-

ing system

2.4.1.1 How rank sizes change under tournament selection with re-

placement

We look now at the expected size of ranks after tournament selection with

replacement (Scheme A).

Following the logic established for the single-objective case [19, 101, 137], for

an individual mapped to a point in R+
i to be selected, all individuals sampled in

a given tournament must also be mapped to a point in R+
i , since the presence of

any individual in any higher rank obviates the possibility of victory. We assume

here and in all that follows that ties are settled by selecting at random, since

this method of tie-break will not affect the expected rank distribution or any

of the results since the tied individuals are of the same rank, though of course

exactly which individual is selected will have an effect on other aspects of the

post-tournament population, including the set of schemata available to genetic

operators, but this affects representation space, not fitness rank space. The

results may also apply when other types of tiebreaker are used, but only if they

do not affect the expected rank distribution.

Now denote the rank of the l-th individual sampled for a tournament at

the g-th generation as rg (l) , l = 1 . . . τ ; since sampling is independent for

each tournament slot in a scheme without replacement, from Equation 2.9, the

probability that an individual not mapped to a point in R+
i is sampled and

selected is equivalent to the probability that no individual mapped to a point

in R+
i is sampled:

Pr (¬ [∃rg (l) ≤ i, l = 1 . . . τ ]) =

(
N −R+

ig−1

N

)τ
. (2.20)

61



Note here that the expression N −R+
ig−1 includes all ranks from the i-th to

the lowest rank. Hence the expected number of individuals mapped to a point

in ri that are sampled and selected after tournament selection over N tourna-

ments E [rig] , i = 1 . . . n can be derived as a difference between expectations of

binomially distributed variables:

E [rig] = N · Pr (¬ [∃rg (l) < i])−N · Pr (¬ [∃rg (l) ≤ i])

= N ·

[(
N −R+

i−1,g−1

N

)τ
−

(
N −R+

ig−1

N

)τ]
. (2.21)

This formula corresponds to that derived in a different way for the single-

objective case in [19]. Note that if rig−1 = 0, then E [rig] = 0. We can also

now define the complete set of expected post-tournament ranks as a vector of

expected numbers in each rank:

E [Rg] =



E [r1g]

E [r2g]

...

E [rng]


. (2.22)

Note however that whilst E [Rg] can potentially be stated for any selection

scheme, it gives information only on expected first moments; no other inform-

ation about the expected distribution is contained or implied, so we should be

careful from the outset not to conclude that, for example, different selection

schemes with identical E [Rg] are necessarily equivalent in a more general sense.

In the particular case of the elite individuals mapped to points in r1, since

R+
i<1 = Ø, that is, there are no individuals in any rank higher than rank 1 and

hence R+
0g = 0 ∀g, then:

E [r1g] = N ·

[(
N −R+

0,g−1

N

)τ
−

(
N −R+

1g−1

N

)τ]

= N ·
[
1−

(
N − r1g−1

N

)τ]
. (2.23)
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This implies importantly that:

E [r1g] > r1g−1, 1 ≤ r1g−1 < N, (2.24)

so that selection pressure guarantees that the expected number of elite indi-

viduals grows after each tournament phase unless the first rank is empty or all

individuals in the population are in the first rank, although as we shall see in

Subsection 2.4.4, this is not necessarily true for any other rank. Hence a more

complete formulation is:

E [rig] =



0, rig−1 = 0;

N ·
[
1−

(
N−r1g−1

N

)τ]
, i = 1;

N ·
[(

N−R+
i−1,g−1

N

)τ
−
(
N−R+

ig−1

N

)τ]
, otherwise.

(2.25)

2.4.1.2 Elitism

Many forms of elitism have been used (see inter alia [44, 37, 139]) and a full

investigation of the effects is beyond the scope of this chapter. However, to

illustrate the way elitism affects the expected rank sizes, consider a modification

of Scheme A where all elite individuals in the highest rank r1 only are passed

automatically, so that only N − r1 tournaments are conducted to find the rest

of the new population by sampling the whole population, including the elite

individuals. In this case, the expected number of elite individuals after selection

becomes:

E [r1g] = r1g−1 + (N − r1g−1) ·
[
1−

(
N − r1g−1

N

)τ]
= N − (N − r1g−1) ·

(
N − r1g−1

N

)τ
. (2.26)
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Hence with this particular form of elitism, Equation 2.25 becomes:

E [rig] =



0. rig−1 = 0;

N − (N − r1g−1) ·
(
N−r1g−1

N

)τ
, i = 1;

(N − r1g−1) ·
[(

N−R+
i−1,g−1

N

)τ
−
(
N−R+

ig−1

N

)τ]
, otherwise.

(2.27)

The nonsampling limit expressed in Equation 2.13 no longer applies to indi-

viduals in the first rank, but still applies to all others, including in particular

individuals of high rank but just below the top rank. The effect of elitism can

be seen by comparing equations 2.25 and 2.27. For the elite individuals, the

difference in the expected size of the first rank between the case with elitism

and without is:

[
N − (N − r1g−1) ·

(
N − r1g−1

N

)τ]
−N ·

[
1−

(
N − r1g−1

N

)τ]
= r1g−1 ·

(
N − r1g−1

N

)τ
, (2.28)

which is positive as long as N and r1g−1 are non-zero (as they cannot be neg-

ative). Hence, unsurprisingly, Equation 2.24 also holds in the case with elitism.

For the rest of the population, the difference is:

− r1g−1 ·

[(
N −R+

i−1,g−1

N

)τ
−

(
N −R+

ig−1

N

)τ]
, (2.29)

which is always negative provided N , r1g−1and = rig−1 are all non-zero.

2.4.2 Tournaments without replacement

For selection without replacement, an equivalent expression to Equation 2.21

is stated for the single-objective version of Scheme B in [23], which using this
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chapter’s notation and rank-ordering convention becomes:

E [rig] = N ·

 N −R+
i−1,g−1

τ

−
 N −R+

i,g−1

τ


 N

τ


. (2.30)

However we should also take account of the fact that under Scheme B, individu-

als of the lowest fitness levels can never win a tournament unless there are more

of them than the tournament size, meaning that such individuals will never be

passed to genetic operators or to the next generation; that is:

N −R+
i−1,g−1 < τ ⇐⇒ E [rjg] = 0 ∀j > i. (2.31)

This observation has important ramifications if a large tournament size is used;

all individuals mapped to a point in the one or more of the lowest ranks

rj , rj+1, . . . , rn may be automatically eliminated at a given generation, sub-

stantially increasing selection pressure.

We can also specify a special case for the highest rank, in a similar fashion

to Equation 2.23 :

E [r1g] = N ·


1−

 N − r1g−1

τ


 N

τ




. (2.32)
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Hence for Scheme B a full formulation is:

E [rig] =



0, rig−‘1 = 0;

0, N −R+
i−1,g−1 < τ ;

N ·


1−


N − r1g−1

τ



N

τ




, i = 1;

N ·


N −R+

i−1,g−1

τ

−

N −R+

i,g−1

τ



N

τ



, otherwise.

(2.33)

.

Under Scheme C, the total population available for sampling before the first

tournament with τ permutations of the complete population is Ň0 = N · τ ,

and even though tournaments can be computed in parallel once the permuta-

tions are chosen, sampling is sequential within the selection phase. Hence in

each successive tournament of N in total, the available population for sampling

decreases by τ , so that the population available after the t-th tournament is:

Ňt = τ · (N − t) , t = 1 . . .m, m ≤ N. (2.34)

The tournaments are not independent with respect to selection probability,

but each tournament may include any number between 0 and τ of individu-

als mapped to a point in R+
i , including copies of the same individual, sampled

independently for each permutation, and each successive tournament removes

one available member of the total population independently from each permuta-

tion.
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The total population mapped to points in R+
i available before the first tour-

nament at generation g across all permutations is equal to τ · R+
ig−1, and let

τ · R+
igt be the size of the remaining total population mapped to points in R+

i

after the t-th tournament, with R+
ig0 = τ · R+

ig−1 . For each successive tourna-

ment, we have:

E
[
τ ·R+

igt

]
= τ ·

(
R+
igt−1 −

τ ·R+
igt−1

Ňt−1

)
, t ∈ [1,m] , (2.35)

which as an expectation is not required to be integer. This leads to the following

result:

Theorem 2.1. Expected rank sizes after N tournaments under Scheme C are

the same as under Scheme A.

Proof: Solving the recurrence relation in Equation 2.35 yields:

E
[
τ ·R+

igt

]
= τ ·R+

ig0 ·
N − t
N

(2.36)

= τ ·R+
ig−1 ·

N − t
N

.

From Equations 2.20 and 2.9, the probability that no individual mapped to a

point in R+
i is sampled and selected in the t−th tournament is:

Pr (¬ [∃rgt (l) ≤ i]∀l = 1 . . . τ) =

(
Ňt − τ ·R+

ig−1,t

Ňt

)τ
. (2.37)

Hence, substituting from Equations 2.34 and 2.36, we have:

Pr (∃rgt (l) ≤ i) =

(
τ ·
[
(N − t)−R+

ig−1 · N−tN

]
τ · (N − t)

)τ

=

(
N −R+

ig−1

N

)τ
. (2.38)

But this is identical to the victory probability for selection with replacement in
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Equation 2.20, and setting m = N, we have:

E [rig] =

N−1∑
t=0

[(
Ňt − τ ·R+

i−1,g−1,t

Ňt

)τ
−

(
Ňt − τ ·R+

ig−1,t

Ňt

)τ]

= N ·

[(
N −R+

i−1,g−1

N

)τ
−

(
N −R+

ig−1

N

)τ]
. (2.39)

The special case for rank 1 also follows, hence the expected rank sizes under

scheme C are identical to those stated for Scheme A in Equation 2.25, as re-

quired.

As rank size expectations are the same as under Scheme A, much of the

analysis for Scheme A presented in the rest of this section also applies under

Scheme C. However, this does not imply that other distributional qualities are

the same; in particular, the nonsampling probability for all individuals is zero

under Scheme C, and hence elite nonselection is not an issue, unlike under

Schemes A or B.

2.4.3 Analysis of convergence

An expression is derived in [66] for the expected takeover time in the context of

a single objective problem and successive tournaments with replacement, and

we seek a similar expression for a generational MOEA using a ranking system.

For clarity, note once again that per the convention used in Subsection 2.2.2.1

above, the first rank r1 is the highest rank, so that the ordering runs in the

opposite direction to that used in the literature on the single objective case,

which follows the convention used in [19]. Let ρg = r1g/N , that is, the ratio of

the number of individuals in rank 1 to the overall population after selection at

generation g. Then in an algorithm using iterated tournament selection only,

i.e. without genetic operators or any other intervention, from Equation 2.23

we can model the expected number of individuals in those ranks at the next

generation as:
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E [ρg] = N · [1− (1− ρg−1)
τ
] , ρg ≤ 1, (2.40)

so that Equation 2.50 also applies, substituting ρg for r1g/N . Hence we can also

appropriately tune τ in ranking-based algorithms based on the desired growth

rate of the top ranks.

Theorem 2.2. Under a ranking scheme and tournament selection with replace-

ment, the expected number of generations to convergence for a large population

approaches:

G∗ = − ln (ρ0)

ln (τ)
. (2.41)

Proof : Assume that the total number of feasible ranks is known and finite.

From Equation 2.23 we have:

lim
N→∞

E [ρg] = lim
N→∞

N ·
[
1−

(
N − ρg−1

N

)τ]
(2.42)

= τ · ρg−1, (2.43)

so that we can write down a recurrence relation:

ρg = τ · ρg−1. (2.44)

Solving this recurrence relation yields:

ρG = τG · ρ0. (2.45)

Substituting ρG = 1 as the convergence condition, i.e. that the whole population

consists in the end of individuals mapped to points in rank r1, and rearranging,

we obtain Equation 2.41.

As stated earlier, Equation 2.41 assumes that only tournament selection
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takes place in successive generations and ignores inter alia the diversifying effects

of genetic operators on the population, which will generally delay convergence,

as well as the effect of any explicit elitism in an algorithm, which should speed

convergence. Nonetheless, Equation 2.41 should provide a useful baseline check

to creators and users of MOEAs that convergence is as expected, and perhaps

also aid in parameter tuning, including auto-tuning of the tournament size as

examined in [163].

2.4.4 Selection pressure

Equation 2.23, which gives the expected number of elite individuals after the

tournament selection phase under Scheme A, has the following partial derivative

with respect to tournament size:

∂E [r1g]

∂τ
= −N ·

[
1−

(
N − r1g−1

N

)τ]
× ln

(
N − r1g−1

N

)
, (2.46)

which is exponentially decreasing in τ , but from Lemma 2.8, asymptotically this

becomes:

lim
N→∞

∂E [r1g]

∂τ
= r1g−1 · e−τ ·r1g−1 , (2.47)

which is always positive for r1g−1 > 0 for all positive τ , hence E [r1g] > r1g−1,

confirming Equation 2.24. For all other fitness levels however,we have the fol-

lowing result:

Theorem 2.3. The tournament size that results in the largest expected rank

size for a given rank i > 1 at generation g is given by:

τ∗ig = − ln [ln (ρi,g−1) / ln (ρi−1,g−1)]

ln (ρi,g−1)− ln (ρi−1,g−1)
, i > 1, (2.48)
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Figure 2.5: Optimal selection pressure - example

where ρig =
(
N −R+

ig

)
/N, ρig ∈ (0, 1].

Proof: Take the partial derivative of Equation 2.21 with respect to τ , set

to zero and solving for τ , the result follows.

In general, τ∗ig < N , so that for all individuals mapped to points in R+
i , de-

pending on the values for ρ+ig−1 and ρ+i−1,g−1, there will generally be a level for τ

beyond which selection pressure will decrease, even for individuals of high (but

not the highest) fitness. For example in Figure 2.5, we set N = 10000, R+
ig−1 =

2000, R+
i−1,g−1 = 1000, so that ρi,g−1 = 0.1 and ρi−1,g−1 = 0.2. The green

diamonds show the values of E [rig] on the y-axis for values of τ = 2 . . . 10 on

the x-axis under selection with replacement (Scheme A); in this example, the

expected rank size peaks out with around 6 participants in each tournament.

Figure 2.6 shows the general situation with different values of ρig and ρi−1,g on

the x-axis and y-axis respectively, with a log scale for values of τ∗i on the z-axis.

A value of τ∗i = 2 or below implies that increasing tournament size will always
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Figure 2.6: Values of τ∗
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decrease the expected post-tournament size of the population mapped to points

in R+
i whilst τ∗i ≥ 3 implies there is some τ > 2 up to which increasing the

tournament size will increase the expected post-tournament size of the popula-

tion mapped to points in R+
i , but beyond which the expected population size

will decrease again. This suggests that careful consideration should be given

to the initial population distribution as well as to the parameter τ , as setting

tournament size too high can decrease the number of individuals of high but not

elite fitness, not just individuals of low fitness, possibly leading to premature

convergence. Given that we know from equation 2.24 that elite populations

always increase under tournament selection, in Equation 2.23 we can substitute

E [r1g] = β · r1g, β > 1 , where β represents the expected growth rate of the

elite population, so that:

β · r1g = N ·
[
1−

(
N − r1g
N

)τ]
. (2.49)

This leads to the following result:

Lemma 2.9. For large populations, the elite cohort will increase in size after

tournament selection by a factor approaching the tournament size.

Proof: If we solve for τ in Equation 2.49 to obtain the number of parti-

cipants required to achieve a given expected growth rate, we get:

τ =
ln
(
N−β·r1g

N

)
ln
(
N−r1g
N

) . (2.50)

If we consider the limit of the RHS of Equation 2.50, then by L’Hôpital’s rule:

lim
N→∞

ln
(
N−β·r1g

N

)
ln
(
N−r1g
N

) = lim
N→∞

β · N − r1g
N − β · r1g

, (2.51)

and as both numerator and denominator approach 1 as N →∞, this expression

tends towards β. Hence in the limit, Equation 2.50 reduces to β = τ . Equi-

valently, in Equation 2.23 substitute E [r1g] = β · rig and take the limit of the
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RHS:

β · r1g = lim
N→∞

N ·
[
1−

(
N − r1g−1

N

)τ]
= τ · r1g, (2.52)

so that again, β = τ .

This result was already hinted at in Equation 2.42; the intuition is that there

will be τ copies on average of each of the members of r1 selected to participate

over the N tournaments and these copies will win all of their tournaments except

where they face other individuals mapped to points in r1, the probability of

which tends towards zero provided r1 is small with respect to N . Knowing

this maximal value of τ , at each generation, could aid tuning of the number of

participants to achieve the desired level of selection pressure in terms of the rate

of growth β of the elite population.

As for iterated tournament selection, an expression is given in [65, 66] for

the elite population size under sequential selection (i.e. where the distribution

changes after each tournament), and following [19, 18], in the case of paral-

lel tournament selection in a generational MOEA after selection at the g-th

generation we can write the expression as:

ρ1g = 1− (1− ρ1,0)τ
g

, g = 1 . . . G, (2.53)

where ρ1g = r1g/N . This allows us to consider the case where elite individuals

are archived and kept in the population even if not sampled in the selection

phase at any given generation. Substituting into Equation 2.12 with m = N

yields:

Pr (r1g = 0) =
[
(1− ρ1,0)

τg−1
]N ·τ

, (2.54)

which leads to the following result:
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Theorem 2.4. Under iterated tournament selection with replacement (Scheme

A), given sn0 > 0 the nonsampling probability after g generations has the fol-

lowing limit:

lim
N→∞

Pr (r1g = 0) = e−r1,0·τ
g

. (2.55)

This follows from Equation 2.54 and proof is similar to that of Lemma 2.7. The

negative double exponential form of this expression implies that elite nonselec-

tion will be much less of an issue in algorithms with parallel tournament selection

that include archiving, so that elite individuals are kept in the population even

if they are not sampled. That said, nonselection for one or more generations

will still delay the introduction of schemata from the elite individuals into the

broader population via genetic operators.

2.5 Summary

In this chapter a set of results has been developed concerning both the operation

of ranking schemes under multiobjective tournament selection and the effect on

both the development of the rank or fitness distribution and the survivability

of individuals. Firstly, results were developed regarding the operation of Pareto

rankings, based in turn on axioms derived from the operation of a simple rank-

ing algorithm. Then it was shown that there exists a general limiting expression

for the probability of nonsampling under multiobjective tournament selection

without replacement using Pareto rankings, and hence for the nonselection of

elite individuals. This analysis can be adapted to selection without replacement

as well as to the effect of the addition of elitism, and we examined the effects of

these variations of the tournament selection algorithms, concluding that com-

pletely permuted schemes are of interest as they guarantee all individuals will

be sampled yet remains tractable to analysis of the expected rank or fitness
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distribution.

It has also been shown that there is a limiting expression for the expected

number of generations to convergence for an iterative search algorithm using

only tournament selection. This expression could be used as a useful check in

developing or choosing algorithms. For example, if an algorithm converges close

to or even faster than this limiting prediction, it could be considered likely that

the algorithm is demonstrating premature convergence. It was then shown that

one can find a tournament size that maximizes the expected rank size for any

given rank below the first rank. Finally, it was shown that there exists a limit

to the nonsampling probability across multiple generations that has a negative

double exponential form, implying that archiving can be a partial solution to

the elite nonsampling problem.

Whilst it has long been recognized that altering tournament size will tend

to increase selection pressure, it has been shown that for all but the individuals

in rank 1, there exists a value τ∗ig for tournament size, at a given generation,

beyond which selection pressure will in fact start to decrease. It has also been

shown that the value of τ partially determines the nonsampling limit in some

selection schemes, that the effect is doubly exponential under iterated tourna-

ment selection, and that it plays a role in expected time to convergence, which

implies a trade-off between algorithm efficiency and the potential for premature

convergence. Finally, it was shown that varying τ has a predictable effect on

the growth rate of the elite population. Lemma 2.9 and Theorem 2.2, Equation

2.50 and Theorem 2.4 all reveal important effects of the choice of tournament

size. Hence the value of τ must be carefully chosen, balancing these various

considerations.

This chapter has highlighted some of the many choices with regards to mul-

tiobjective selection schemes that are available to the designer when creating an

EA. In Chapter 4 we will see how the choice of permuted tournament selection

with randomized size which does not use or require the calculation of rankings is

an appropriate choice for a particular specialized MOEA. Before that however,

76



in the next chapter we will describe the mathematical model underlying the

specialized MOEA.
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Chapter 3

Partitioning multivariate

self-affine time series

3.1 Introduction

Given a multivariate time series, possibly of high dimension, with unknown

and time-varying joint distribution, it is of interest to be able to completely

partition the time series into disjoint, contiguous subseries, each of which might

be assumed for the purpose of further analysis to have different distributional or

pattern attributes from the preceding and succeeding subseries. Whilst in the

univariate case it is sometimes quite easy to agree on such a partitioning simply

by visual inspection, including the number of partitioned subseries into which it

is most appropriate to divide the time series and the location of the transitions

between subseries, in the multivariate case visual inspection becomes impossible

with more than a few dimensions. Clustering or partitioning of time series data

has been widely studied in the machine learning and data mining literature; [106]

and [91] contain good introductions to partitioning and clustering algorithms,

respectively. In the alternative data analysis literature, where partitioning is

generally referred to as change point detection (CPD) or break detection, [4] is
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a recent survey of methods with applications in inter alia medical monitoring,

climate change detection, speech recognition, image analysis, and analysis of

human activity.

In the case of financial data, it has long been recognized that distribution

varies over time, not in a smooth manner but rather in jumps between differ-

ent states. Many well-established econometric models developed to deal with

time-varying distributions nonetheless take the states as given, and do not ad-

dress the question of identifying the different subseries corresponding to such

states. Furthermore, most econometric models with time-varying parameters

have difficulty dealing with the multivariate case, especially in high dimensions.

An additional feature of many time series is that they display self-affinity,

which we may loosely define as the property that subseries at one time scale

are similar to subseries at another after application of an affine transformation.

Such observations in the natural world date back at least to work in the mid-20th

century on hydrography of the Nile [82] and the length of international borders

[142], and a more general theory was advanced in [119]. Many examples have

since been found; for example one survey of the literature [135] cites inter alia

work on air temperature, river discharge and tree ring spectra; variations in

solar luminosity, sedimentation, and the earth’s magnetic field; the structure of

river networks; growth of plankton and many other flora and fauna; and in the

human world, automotive and internet traffic flows. Many techniques exist for

quantifying self-affinity, of which the best known perhaps is fractal dimension;

a related, but different concept is to measure the complexity of a time series in

terms of its multiscale entropy (MSE) [39, 36].

In economic and financial data, [117, 118] advanced the idea of self-similarity

under power laws, later generalized and developed into the (MMAR) [121]. Ideas

of self-similarity and power laws at work in financial data however have a longer

history, at least back to work in the 1930s by R.N. Elliott [49, 50] in which he

posits particular patterns occurring at different time scales with a relationship

governed by a power law based on the golden ratio. A good deal of the most
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interesting work on self-affine time series has been conducted within the fields

of finance and econometrics, but many of the theoretical findings and tools

developed can be of use in analysing a wider range of data types. However, to

our knowledge there is nothing in the literature that addresses the inherently

biobjective problem of identifying optimal partitionings of multivariate, self-

affine data, as we will describe in this chapter.

The limitations shared by most econometric models that allow time-varying

parameters in respect of higher dimension time series have already been noted.

An additional problem is that most rely on particular assumptions regarding

the underlying distributions and processes, and often require large numbers of

parameters to be either provided or estimated from the data. This can make

it difficult to separate the validity of the model and its assumptions from the

particular data set and parametrization applied. An alternative approach is to

build a model with as few assumptions and parameters as possible, in particular

limiting the number of a priori choice parameters supplied by the modeller. The

latter approach used in this chapter, the main contribution of which is is the

development of a theoretical model based on self-affinity of a time series in terms

of the similarity of a coarse-grained partitioning of the whole to a fine-grained

partitioning of a subseries, and in Chapter 4, in which a specialized MOEA with

limited parameters is developed to apply the model.

The remainder of this chapter is organized as follows. Section 3.2 explains

the necessity of a specialized a approach in designing an MOEA suitable for

this task, introduces the concepts of self-affinity and partitioning into distinct

subseries for univariate and multivariate time series, and discusses some common

statistical models. Section 3.3 discusses more specific aspects of modelling self-

affine multivariate time series of financial data including techniques to reduce

computational complexity, and defines the biobjective optimization problem to

be addressed in validly partitioning such time series. A summary of this chapter

follows.
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3.2 Background and motivation

3.2.1 Necessity of a specialized approach

In this chapter an approach is presented which is designed specifically to sim-

ultaneously identify non-overlapping partitionings of both coarse-grained and

fine-grained subseries. The aim is thus explicitly not to define clusters of over-

lapping or non-contiguous time series subsequences. Although certain types of

clustering algorithm, including the widely-used k -means algorithm, have been

categorized as partitional algorithms [55], such algorithms are typically not con-

strained to produce only partitions that are contiguous along one dimension (i.e.

time) but if used for time series data, can cluster together individual observa-

tions from many different parts of the entire time series. In terms of taxonomy,

we thus draw a distinction between partitioning algorithms of the type set out

in this paper, which are also called segmentation approaches [133, 70, 140],

and the more general case of clustering algorithms. Hence the approach is also

significantly different in this respect to clustering EAs [40, 124, 74].

Furthermore, clustering algorithms commonly have an assumption of de-

creasing similarity of points in a cluster as distance from a centroid increases,

as well as decreasing dissimilarity from points in other clusters as distance from

them decreases. The time series partitioning algorithm presented here rather as-

sumes homogeneity within partitions and sharp differences with other partitions,

and so is arguably much more suitable for data that displays rapid transitions

between different subseries in terms of some measure or set of measures. The

combination of a population-based approach and subgroup separation means

that useful results can be obtained from a single run, although the stochastic

nature of the algorithm still means more useful results may be obtained from

multiple runs.

In this Chapter, as well as in the description of the specialized MOEA de-

veloped in Chapter 4 and of testing methodology and results in Chapter 5,

there is an explicit assumption that data being examined have the property
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of self-affinity. As we shall see in Subsection 3.2.4, although methods exist to

identify partitions in time series, these are generally based on a single object-

ive and are not suitable for, or easily extended to, the inherently biobjective

problem described in this chapter. Furthermore, the particular nature of the

objective functions required for simultaneous identification of coarse-grained and

fine-grained partitions together with the constraints necessary to produce valid

partitions cannot be handled by EAs and other methods not created specifically

to solve this particular problem, and requires a specialized approach, as we will

see in later sections.

Specialization also has implications for the design of all the main elements of

the MOEA. In particular, the choice of a tournament selection scheme that uses

permutations and randomized tournament size accords with some of the con-

clusions from Chapter 2. However, whilst choice of selection scheme is certainly

key to the development of the multiobjective fitness distribution of the popu-

lation, specialization involves many other choices in MOEA design, as will be

explained in greater detail in Chapter 4. The design of the tournament selection

algorithm is founded in the theory developed in Chapter 2; many of the other

choices and innovations however are of a more practical nature to ensure the

MOEA executes efficiently, or indeed that it can produce an acceptable solution

set at all.

3.2.2 Subseries and self-affinity

Consider the general case of a multivariate time series S with m simultaneous

individual time series, each with T time-ordered samples. Initially we know

nothing a priori about the distributions of the individual series or about the joint

distribution, except that some distributional features may be time-varying, and

in particular that S may be partitioned into two or more disjoint subseries each

of which has distinct distributional attributes that distinguish each subseries,

or partition, from the preceding or following one, forming a complete and still

strictly time-ordered partitioning of S. We also know that the first and last time-
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ordered subseries may be incomplete, in the sense that data collected after the

T -th sample may still be part of the final subseries, whilst if we could collect data

before the first sample, some number of additional, earlier samples might still

belong to the first subseries. Hence we may firstly typify such a coarse-grained

partitioning Kκ of S into κ disjoint multivariate subseries Sk, k = 1 . . . κ, in

terms of an ordered set of κ − 1 cutpoints Cκ = {c1, c2,..., cκ−1}, with each

ck ∈ [1, T ] , k = 1 . . . κ − 1. By convention we will consider each cutpoint

ck, k < κ to be the last point in a subseries, so that the next subseries Sk+1

begins immediately after cutpoint ck , and all the ck are unique, so that each

subseries Sk 6= Ø, k = 1 . . . κ, and the final subseries Sκ ends at time T . Hence

a coarse-grained partitioning Kκ = {S1,S2, . . . ,Sκ} is a time-ordered set of

non-overlapping subseries of S, and S = ∪κk=1Sk.

Our motivation is to discover what we can about the partitions, in particular

where the dividing points ck between partitions may most usefully be placed for

the type of analysis in which we are interested; yet we do not necessarily even

know yet how many such partitions there are. Indeed, several optimal parti-

tionings Kκ with different numbers κ of subseries may be considered possibly

equally valid, and indeed as we shall see later, if we have more than one met-

ric for considering different partitionings, there may be more than one Pareto

optimal partitioning even when the number of partitions is the same. Such a

partitioning of a multivariate time series could have many uses for a variety of

different types of data. Beyond using such a partitioning for further analysis of

the data set, it may in particular be possible to solve a further multiobjective

optimization problem of the form:

Minimize

fω (Kκ) = [fω (S1) , fω (S2) ...fω (Sκ)] , (3.1)

where some vector-valued function fω (Sk) = [f1 (Sk) , f2 (Sk) . . . fω (Sk)]
T, cal-

culated over ω objectives, is applied separately to each partitioned subseries
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Sk, k = 1 . . . κ and a Pareto-efficient solution set is obtained. One application of

this would be portfolio optimization, where one could produce portfolios robust

to several different sets of market circumstances, but many other applications

could be imagined. The problem of identifying the nature of the last partition,

which we may term the current partition, is of particular interest, but as already

noted we may have incomplete information, since the true end point cκ of the

final subseries cannot be known at time T as it falls at some later point.

Furthermore, we will consider data that has a particular structural attribute,

namely that of self-affinity. Sets with fractal properties are sometimes loosely

referred to as self-similar, but in many datasets true scale invariance or statistical

self-similarity as posited in [119] is replaced by self-affinity, and [121] reserves

the term self-similarity for geometric objects that are invariant under isotropic

contraction. The concept of self-affinity is defined in [120] as follows: let X (t, ω)

be a random function defined on −∞ < t < ∞, with ω ∈ Ω the set of possible

values of the functions. Then such a random function is self-affine with exponent

H > 0 if for every h > 0 and any t0,

X (t0 + τ, ω)−X (t0, ω)
d
= (3.2){

h−H [X (t0 + hτ, ω)−X (t0, ω)]
}
,

where X (t0, ω)
d
= Y (t, ω) indicates two random functions with the same joint

distributions. The literature generally analyses self-affinity in terms of fraction-

ally integrated Brownian motion (FBM) processes, i.e. X (t, ω) = BH (t, ω).

In contrast, except where noted we will make no assumptions about the

underlying data-generating process (DGP) and will rather describe self-affine

sets in terms of similarity achieved by making affine transformations equi-

valent to a restriction of the usual geometric type at different time scales;

later we will consider the statistical invariances involved. In the most gen-

eral sense, however, we will define the property of self-affinity as follows: let

Fκ = {W1,W2, . . . ,Wκ−2} , κ ≥ 3 be a fine-grained partitioning of some sub-
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series W of S which in general terms is sufficiently short compared to S that it

can be considered of a different “scale”. Then S can be described as self-affine

if the two-scale partitioning pair {Kκ,Fκ} obeys

∃ (A·Wj + B)
µ
≈ Sk∀j, k, k ∈ [2, κ− 1] , j = k − 1, (3.3)

for at least one such subseries W; that is to say, at least one fine-grained parti-

tion of some subseries of S is by some measure µ similar, after the application

of a suitable affine transformation, to a coarse-grained partition of the whole

of S, excluding an initial and a final incomplete subseries. We define the rela-

tionship
µ
≈ in terms of the similarity, by a measure yet to be defined, of some

fine-grained, time-ordered set of subseries {Wj , j = 1 . . . κ− 2} after such an

affine transformation to the coarse-grained set of subseries {Sk, k = 2 . . . κ− 1};

later we will impose limitations on the nature of A, induced by the choice of

measure. The first and last subseries of the coarse-grained partitioning Kκ are

excluded because they are incomplete, so we must always have κ ≥ 3, and Fκ

comprises κ − 2 fine-grained partitions. Self-affinity should be understood at

this stage in a very general sense; it does not necessarily imply that the com-

pared subseries have the same statistical distribution, though this may be so

depending on the measure employed, but might also refer to other attributes,

such as the recurrence of certain patterns in the time series data.

Consider initially the case with κ = 3 so that there is a single complete

interior coarse-grained partition, and hence a single fine-grained subseries is

considered, so that Equation 3.3 reduces to

(A·W1 + b)
µ
≈ S2; (3.4)

that is, an affine-transformed version of the single fine-grained subseries is sim-

ilar under µ to the second, i.e. the only interior, coarse-grained subseries (the

first and third being incomplete). If we compare Equations 3.2 and 3.4, several

key differences emerge. Firstly Equation 3.2 refers to affinity between a con-
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tinuity of subseries of different lengths starting from t0 which can be thought of

as an expanding moving average, but Equation 3.4 compares the interior part

of one coarse-grained partition within the portion of S that excludes the incom-

plete initial and final subseries to a single fine-grained subseries which may start

and end at any point within S.

Secondly, Equation 3.2 requires some assumptions about the nature ofX (t, ω)

in order to be useful. In the literature X (t, ω) is usually an FBM process; by

contrast, Equation 3.4 makes no assumptions about the underlying process.

Thirdly, if we consider a univariate version of Equation 3.4 and take h = b,

Equation 3.2 requires a particular power law relationship between the transla-

tion and linear transformations, namely a = bH ; Equation 3.4 does not make

any assumptions about the relationship between A and B.

We can now define the principal problem, which we can cast as a biobjective

minimization problem. Let dKκ be a (κ− 1)×1 vector of values of some distance

function d (Sj ,Sk) ∈ [0, 1] , k = 2 . . . κ, and g (dKκ) be some summarizing

function that returns a non-negative scalar, so that:

f1 (S) = g (dKκ) . (3.5)

Also, let:

f2 (S) = h (−dFκ) , (3.6)

where dFκ is a vector of the same distance function calculated for each of the

κ− 2 pairs of sequential subseries at the fine-grained and coarse-grained levels,

excluding the incomplete first and last subseries of the coarse-grained partition:

dFκ = [d (W1,S2) . . . d (Wκ−2,Sκ−1)]
T
, (3.7)

and h (−dFκ) is a summarizing function of the negative of the distance vector, so

that it indicates similarity between the coarse-grained and fine-grained subseries.

86



Then the problem for a partition into a given number of subseries κ is the

following biobjective problem:

Minimize

f (S) = [f1 (S) , f2 (S)] (3.8)

= [g (dKκ)h (−dFκ)] .

The only explicit assumptions here are that S may be validly partitioned into

κ distinct coarse-grained subseries, the first and last of which may be incom-

plete; that the coarse-grained partitioning may be typified as similar to some

fine-grained partitioning of a subseries of S; and that the differences between

the subseries of the coarse-grained partitioning and the similarities between

the sequential subseries of the coarse-grained and fine-grained partitionings re-

spectively can be measured by the same distance function d. We make no other

assumptions about the actual distributions or DGPs of S or its subseries. Of

course Equation 3.8 allows the possibility that there may be many valid fine-

grained partitionings of different subseries that show similarity to any given

coarse-grained partitioning, and in forming the Pareto frontier the biobjective

function will make use of functions g, h which in some sense summarize the

distributions of all solutions found.

3.2.3 Regimes in econometrics and finance

Having established the framework for a general multivariate time series S and an

unspecified distance function, we now make a more specific assumption, namely

that changes over time in S may be identified and partitioned with reference to

changes in variance and covariance of subseries of S. Such cases have been ex-

tensively studied in econometrics, where the partitioned subseries are commonly

referred to as regimes, and we will use the terms partition, regime and subser-

ies interchangeably henceforth. However most of the literature concentrates on

univariate data or data with only a very few variables, and rather than seeking
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to identify the regimes, concentrates on analysis of the distributional qualities

of the data with the regimes taken as given. A very brief summary of a large

literature follows, which although principally from the areas of econometrics and

finance, contains principles and techniques which may shed light on processes

observed in many types of data.

3.2.3.1 Volatility regimes

Although there is no consistent definition of a regime, the terminology comes

largely from seminal papers by Hamilton [71, 72, 73] which consider the case

where κ possible regimes exist from which a particular observation yt1 may be

drawn, and an unobserved state variable st which takes an integer value (1 . . . κ)

such that yt depends on the current and most recent m autoregressive lags of

yt, the current and most recent m values of st and a vector of parameters θ;

that is:

p
(
yt|st, st−1, . . . st−m,y′t−1,y′t−2 . . .y′t−m

)
(3.9)

≡ p (yt|zt;θ) ,

zt ≡
(
st, st−1, . . . st−m,y

′
t−1,y

′
t−2 . . .y

′
t−m

)
.

Note that there is an assumption that the data is stationary, and it may be

necessary to transform the data, for example by taking differences, in order to

ensure stationarity. A vector autoregression may be generalized such that the

constant terms, the covariance matrix and the autoregressive coefficients may all

be functions of the state st, and the transition between states is modelled as a

Markov chain. Although the subsequent literature explores many of the possib-

ilities of this general formulation, most often the number of states is small (2 or

3) and a change in level or in volatility are considered more often than a change
1Note that in general notation follows that of the original authors for the rest of Section

3.2.
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in autoregressive structure. An earlier paper [72] considered the proposal that

there might be an occasional shift in the constant term around which a scalar

fourth-order regression clusters, and many later papers find strong evidence for

volatility clustering in financial time series.

Examples of volatility regimes in the literature include the finding in [63] that

real interest rates can be partitioned in the time domain into regimes separated

by sharp jumps caused by structural breaks such as the oil shocks of the 1970s;

the analysis in [33] of volatility regime switches in world stock markets; and

the study in [68] of changes in volatility regime evidenced by the behaviour of

the VIX volatility index. Econometricians have continued to develop a testing

methodology for such regime shifts, and the most commonly used test is the

iterated cumulative sum of squares (ICSS) [85], later modified in [146] to be more

robust to heteroskedastic2 and leptokurtic3 distributions of returns. Such tests

however concentrate on detecting structural breaks in volatility in a univariate

sense; they cannot analyse shifts in the overall covariance structure of the returns

of a set of assets, such as the constituents of an index.

3.2.3.2 Time varying models: ARCH and GARCH

In recent years substantial research has been devoted to applying the self-affine

FBM processes described in Section 3.2.2 to the regime-switching paradigm out-

lined in Section 3.2.3. By way of background, it had long been recognized that

standard statistical models which assumed financial time series to be formed

from independent, normally distributed random variables do not adequately

describe the data. [117] and [52] found that return distributions did not con-

form to the standard normal distribution but were leptokurtic and [17] noted

that returns were also asymmetric. As a result, the autoregressive condition-

ally heteroskedastic (ARCH) model of [51] and its various generalizations and

adaptations have been used extensively to model financial data, as have the
2In the context of a time series, heteroskedasticity is observed if the variance is different

for different subseries.
3Normal distributions with a kurtosis greater than 3 are described as leptokurtic.
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stochastic volatility (SV) models of [125] and others.

To recap, the original ARCH model of [51] considers a first-order autore-

gressive (AR(1)) process of the form

yt = γyt−1 + εt,, (3.10)

where E [ε] = E [y] = 0, V (ε) = σ2, but the conditional mean E [yt|yt−1] =

γyt−1. By introducing heteroskedasticity, that is, time-varying variance,we find

the ARCH(1) model:

yt = εth
1/2
t (3.11)

ht = h (yt−1,α) = α0 + α1y
2
t−1, (3.12)

where α is a vector of unknown parameters, and the ARCH(p) model follows

from a generalization of ht to p lags. The GARCH model [21] offered a gener-

alization of ARCH which has been shown to outperform empirically and can be

more parsimonious than a higher-order ARCH model. The GARCH(p,q) model

defines:

ht = α0 +
∑q
i=1 αiε

2
t−i +

∑p
i=1 βiht−1 , (3.13)

so that GARCH(0,q)≡ARCH(q).The general null hypothesis is thatα = β = 0.

Multivariate extensions to the ARCH/GARCH family exist, but are gener-

ally hard to specify and estimate in higher dimensions. In [7], a an asymptotic

test procedure introduced that can detect a single break point in a multivariate

GARCH process, with extensions proposed, though not tested, for both mul-

tiple break points and heavy-tailed distributions, since the latter can make it

difficult to successfully fit a GARCH process to the data.

3.2.3.3 The Multifractal Model of Asset Returns

Likelihood-based estimation of Markov-switching processes in the statistics liter-

ature predates the treatment of regimes in finance outlined in Subsection 3.2.3.1
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[30]. Stochastic regime-switching models involve the conditional mean and vari-

ance being dependent on an unobserved and time-variant latent state which can

change markedly and quickly. The latent state Mt =
{
m1,m2, . . .md

}
gives rise

to a model of returns:

rt = µ (Mt) + σ (Mt) εt. (3.14)

The Markov chain Mt is governed by a transition matrix A, the components

aij of which represent the probability that state j will follow state i. In [121],

the authors introduced a new model based on FBM incorporating new scaling

properties. They note that whilst FBM captures long memory in the persistent

case where 1/2 < H < 1, H = 1/2 representing ordinary Brownian motion,

it captures neither the fat tails of the distribution of returns nor the time-

variant volatility clustering often observed in financial data. Consider first a

generalization of Equation 3.2:

X(t+ c∆t)−X(t)
d
= (3.15)

M(c)[X(t+∆t)−X(t)], c > 0,

where X and M are independent random functions. With certain restrictions

on the distribution of the process, this implies the scaling rule:

E(|X(t)|q) = c(q)tτ(q)+1, (3.16)

where τ(q) and c(q) are both deterministic functions of q, and τ (q) is referred

to as the scaling function. In the special case of self-affine processes, the scaling

function τ(q) is linear and fully determined by its index H, and such processes

are referred to as unifractal or uniscaling; in the more general case, where τ(q)

is non-linear, the processes are referred to as multiscaling.
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Now let:

X(t) = lnP (t)− lnP (0), 0 ≤ t ≤ T, (3.17)

where P (t) is the price of a financial asset at time t. Note that X (t) is generally

assumed to be a stationary process in the econometrics literature. Then under

the MMAR, it is assumed that:

X(t) ≡ BH [θ(t)], (3.18)

where stochastic trading time θ (t) is the cumulative distribution function of a

multifractal measure defined on [0, T ], BH(t) is FBM with self-affinity index

H, and BH(t) and θ (t) are independent. Under these assumptions, X (t) is

multifractal, with scaling function:

τX(q) = τθ(Hq). (3.19)

Trading time θ (t)can be thought of as a time deformation process, squeezing

or stretching the price action, and trading time controls the moments of the

distribution of X (t).

3.2.3.4 Markov-Switching Multifractal (MSM) models

In [28], a discretized version of trading time is introduced in which prices are

driven by a first-order Markov state vector with k components:

Mt = {M1,t;M2,t; . . . ;Mk,t} ∈ Rk+, (3.20)

E [Mk,t] = 1.

Returns are modelled as:

rt = σ

(
k∏
i=1

M
(i)
t

)1/2

· µt, (3.21)
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where σ is the unconditional standard deviation and µt the mean return at time

t. The multipliers in Equation 3.20 differ in their transition probabilities γk

but not in their marginal distribution M , and M ≥ 0, E [M ] = 1. The Markov

property guarantees that the distribution of the future multipliers depends only

on the current multipliers. The transition probabilities are specified as:

γk = 1− (1− γ1)
bk−1

, (3.22)

γ1 ∈ (0, 1) , b ∈ (0,∞) ,

and this process is referred to as Markov-Switching Multifractal (MSM) [29].

MSM is the main statistical technique embodying and generalizing the idea of

self-affinity in financial time series in use today and indeed has become one

of the more popular models in financial econometrics overall. The model can

be estimated using maximum likelihood (ML) methods and the log-likelihood

has a parsimonious closed form, making estimation relatively simple, albeit for

restricted cases. Generalized Method of Moments (GMM) estimation techniques

were introduced in [113], which address the case where the distributional model

requires an infinite state space, as in the lognormal model proposed in [121],

as well as addressing the computational complexity implied by some choices of

distribution, for example the 2k×2k transition matrix required by the binomial

model proposed in [28]. However the author notes that GMM is itself relatively

computationally intensive compared to ML methods.

A sizeable body of empirical work has grown up in recent years around vari-

ous approaches to the estimation of MSM models on different data sets using

differing underlying distributions, including findings in inter alia [12, 29, 35, 69,

83, 84, 107, 108, 115, 114, 127, 144, 166]. However there is evidence that not

all financial data fit well with the hypothesis that the data-generating process

(DGP) for financial data is FBM; for example [131] finds anomalies in high-

frequency data, especially when stock index data from emerging markets is ana-

lysed. Also, [38] claims that a new approach, discrete autoregressive stochastic
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volatility (DSARV) outperforms MSM, and critique the high-dimensional state

space inherent to the MSM approach.

A multivariate extension has been proposed [31], but in the natural gener-

alization of the univariate MSM, the number of parameters therefore grows at

least as fast as a quadratic function of the number of assets and so like mul-

tivariate GARCH is potentially highly computationally expensive, as well as

complicated to analyse, for larger number of assets; hence the authors propose

a factor model simplification rather than the true multivariate model. A bivari-

ate model based on univariate decomposition [31, 83, 109] has also been studied,

although the approach in [109] requires different volatility parameters at high

and low frequencies, and [107] considered an extension of the GMM approach

to multivariate models. A further approach to multivariate multifractals in the

general literature uses operator fractional Brownian motion (OFBM) [45, 1]. In

general however, as with most competing econometric models with time-varying

volatility, most studies consider only the bivariate case or at most a handful of

assets.

However [128] finds that the degree of multifractality displayed by differ-

ent stocks is positively correlated to their depth in the hierarchy of cross-

correlations, as measured through a correlation based clustering algorithm (

DBHT, [150]). Since we know that such hierarchies demonstrate persistence in

related correlation-based clustering techniques but nonetheless vary over time

[122, 156], this further suggests the possibility that the correlation structure of

financial markets may itself display multifractal characteristics.

3.2.4 Single objective methods for partitioning time series

Numerous methods for multiple change point detection are described in the

alternative data analysis literature; in this subsection we will briefly examine

some more recent statistically based, nonparametric, offline methods which are

designed for or can be extended to the multivariate case, these being closest

to the problem discussed in the rest of this thesis. Methods for detection of
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change points4 based on minimizing log-likelihood in univariate time series of

known distribution have been considered for more than 6 decades [134]. For

multivariate data, nonparametric techniques that have been considered more

recently include relative density-ratio estimation [110], rank statistics [112] and

minimum description length (MDL) [42].

Many, though by no means all, methods that are more specialized to finan-

cial time series applications make use of variance-covariance matrices, or their

inverse form, sometimes called the precision matrices. These models often make

strong assumptions; for example in [154], a graphical model is developed based

on graphs formed with near-zero entries in the precision matrices for “blocks” of

time-ordered multivariate observations removed; the model assumes inter alia

that the data are normally distributed, that the graphs change gradually and

that the distribution of block lengths is geometric; it also requires estimation of

both parameters and hyperparameters.

By contrast, in [123] a nonparametric model is developed which has applic-

ation both to financial and other multivariate data. Both agglomerative and

hierarchical algorithms are proposed for identifying change points, and the ob-

jective function requires maximization of a form of Euclidean distance; in the

case of financial data, this is applied to the underlying log returns. Testing is

carried out using both simulated and real data.

In [42], financial data is not specifically considered, but a genetic algorithm is

deployed to find change points, the fitness function being based on minimization

of the Minimum Descriptive Length (MDL) which in this case is in effect a

minimization of the residuals from a piecewise autoregressive model. Hence the

data is assumed to have such a time-varying autoregressive structure, but has

limited assumptions otherwise. The model also imposes constraints on block

lengths, and uses an island approach with limited migration to subdivide the

search space, as well as elitism, though the section mechanism is not described.
4Change points, break points or cutpoints are all interchangeable terms for the points

marking the change from one regime, partition, subseries or block (terms that are again
interchangeable) to another.
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The convergence criteria are based on lack of change in the elite individuals

and/or large number of migrations.

Although the approach developed in the rest of this thesis has some simil-

arities with various of the approaches outlines above, as well as others in the

literature, the principal differences are that in what follows the data is assumed

to be self-affine, and the model developed is biobjective. The aim is thus not

just to maximize the difference between partitions, as is generally the case with

other approaches in the literature, but to simultaneously minimize the difference

between sets of the same number of partitions at different timescales, to ensure

the partitioning also fits as well as possible with the self-affine nature of the

data. When various constraints on partition length are taken into account, as

well as the large size of the search space, the complexity of the problem suggests

an MOEA may be well suited, as we shall see in Chapter 4.

3.3 Partitioning based on realized covariance

3.3.1 Correlation of subseries covariances

Consider again a T × m multivariate time series S consisting of individual,

in general correlated series sj , j = 1 . . .m, where sjt = lnxjt − lnxjt−1, t =

2 . . . T , the xjt being the raw data observations. We assume that S is globally

weakly stationary and that a valid partitioning Kκ into κ non-overlapping and

contiguous coarse-grained subseries is locally jointly ergodic, meaning that over

sufficient time each mean µj −→ 0 and that S may have joint distributional

features that vary over time but are similar within a given subseries Sk, k =

1 . . . κ. In particular, we assume initially that at a particular level of scaling,

the cross-sectional vector of the log differences skjt of the m time series at time

t obeys:

[sk1t, sk2t . . . skmt]
T

= µk + Σkεt, (3.23)

k ∈ [1, κ] ,
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where µk is a vector of the subseries-dependent means for each individual series

of log differences sj , Σk is the subseries-dependent variance-covariance matrix

and εt is a vector of random innovations for each sj at time t with unknown

distribution. Let us further assume that the variances and covariances are suf-

ficiently locally stable for the purpose of forming a valid partitioning.

We might consider a distance function of the form:

d (Sj ,Sk) =

√
1

2
(1− ρjk), k ∈ [2, κ] , (3.24)

where Sj ,Sk are two subseries of S, and ρjk is a standard matrix correlation

between two covariance matrices, so that d (Sj ,Sk) ∈ [0, 1]. There would how-

ever be several problems with using ordinary covariance matrices for such cal-

culations in an EA with a large population and many generations. Firstly, the

computational complexity scales in theory quadratically with m, although in

practice the use of parallel processing and efficient algorithms reduces this scal-

ing substantially. More seriously, the covariance matrices must be recalculated

for each and every instance of the metric. In the next subsection we examine the

potential for a technique from financial econometrics to considerably decrease

the computational complexity.

3.3.2 Realized covariance

There is always a tension in considering sampling frequency between the desire

to gain potentially greater accuracy, especially in complex time-varying frame-

works, from a higher sampling rate against the inevitable increase in noise. As

higher-frequency financial data has become more freely available, one approach

to this has been to use realized volatility, where time-varying volatility is estim-

ated as a series of observations for sub-periods (typically one trading day), the

latter in turn being estimated from intraday data sampled at 5-minute or more
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frequent intervals, so that an estimator of RV [5, 6, 10, 11] is:

ψ2
t =

L∑
l=1

s2lt, t = 1..T, (3.25)

where slt is the l-th return observation of L total on day t; this very simple

formulation is derived from arguments using stochastic calculus. Through ag-

gregation, the use of RV can reduce the complexity inherent in the use of high-

frequency data. As such, it is used as an input to many models, including

GARCH, but can also be used in and of itself as a non-parametric modelling

device; [13] proposes RV as a third dynamic volatility model class in its own

right, alongside SV and GARCH, and use RV estimates both as an input to SV

and GARCH and on their own to estimate volatility dynamics on the WIG20

stock index and the EUR/PLN exchange rate. The authors conclude that in

general, models perform better using progressively higher sampling rates for RV,

but that this is also true simply using RV on its own.

A natural extension of RV is realized covariance:

RCijt =

L∑
l=1

siltsjlt, i, j = 1 . . .m, (3.26)

t = 1..T.

Realized variance/covariance has the useful property that it simply sums over

periods of aggregation:

RCijT =

T∑
t=1

L∑
l=1

siltsjlt. (3.27)

In practice this means much simpler recalculation of the realized covariance

matrices for a given subseries compared to calculating ordinary covariances.

We can then conveniently specify a single partitioned 1
2m (m+ 1) × κ array

consisting of the realized variances and covariances for each subseries stacked

into column vectors σk, k = 1 . . . κ:

98



RC11t1 . . . RC11tκ

...
. . .

...

RCmmt1 . . . RCmmtκ

RC21t1 . . . RC21tκ

...
. . .

...

RCmm−1t1 . . . RCmm−1tκ

(3.28)

=

[
σK1 · · · σKk · · · σKκ

]
. (3.29)

We can then simply define the correlation of covariance matrices for successive

coarse-grained partitions as:

ρKk,Kk−1
= corr

(
σKk ,σ

K
k−1
)
, k = 2 . . . κ, (3.30)

and similarly the correlation of the correlation of a fine-grained partition as:

ρFk,Kk = corr
(
σFk ,σ

K
k

)
, k = 2 . . . κ− 1, (3.31)

where the variances and covariances of the fine-grained partitions, labelled σFk ,

are constructed analogously with Equation 3.29. It then remains only to specify

suitable summarization functions g and h that capture enough of the distribu-

tion of the correlations. We will use:

g (dFk,Kk) =

√
1

4

(
ρg + sup

{
ρKk,Kk−1

}
+ 2
)
, (3.32)

ρg =
1

κ− 1

κ∑
k=2

ρKk,Kk−1
;
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h (dFk,Kk) =

√
1

4

(
2− ρh − inf

{
ρFk,Fk−1

})
, (3.33)

ρh =
1

κ− 2

κ−1∑
k=2

ρFk,Kk .

Both g, h ∈ [0, 1], and these formulations are suitable for use in a minimization

problem per Equation 3.8, given that we wish to simultaneously minimize the

similarity between successive coarse-grained subseries and the difference between

the coarse-grained subseries and some set of fine-grained subseries.

3.3.3 Formulation of the optimization problem

We are now ready to fully state the computable final form of our optimization

problem. Consider a set of m data series each of length T , with the observations

grouped into equal periods of length n of log differences of observations. Form

a (T − 1) × m matrix which can be completely partitioned into κ ≥ 3 non-

overlapping and contiguous coarse-grained subseries Sk k = 1 . . . κ, and call this

partitioning Kκ, noting that the first and last subseries S1 and Sκ are considered

incomplete. Further, let Fκ be a fine-grained partition of κ − 2 sub-subseries

Wj , j = 2 . . . κ − 1 of some subseries W of S which is sufficiently short as to

be considered of a different scale to S as a whole.

We further require a minimum number of observations tmin in a given sub-

subperiod in order for statistics such as covariance to be meaningful, and hence

it is also a requirement that the length ` (Wj) of each fine-grained sub-subseries

be at least tmin. In order to maintain scale differentiation we further require that

the length ` (Sk) of each coarse-grained interior subseries be at least (κ− 2)
2 ·

tmin, the idea being that any coarse-grained subseries could at least contain a

fine-grained partition which has all its sub-subseries of minimum length tmin.

For the first and last incomplete coarse-grained subseries, we only require that

they are of length at least tmin. Hence for a given T, tmin, we can calculate a
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maximum feasible number of coarse-grained subseries:

κMAX =

⌊√
T − 1− 2 · tmin

tmin
+ 2

⌋
, (3.34)

T > 0, 0 < tmin ≤
⌊
T − 1

2

⌋
.

We wish firstly to minimize the similarity between each successive coarse-

grained subseries Sk, k = 2 . . . κ and the preceding subseries; note that we do

not require dissimilarity of non-contiguous subseries, so a partition in which

Sk is statistically very similar to Sk−a, a > 1 is permissible in this scheme.

Next, for some fine-grained partition, we wish to minimize the dissimilarity of

each sub-subseries Wj , j = 2 . . . κ− 1 to its counterpart interior coarse-grained

subseries Sk, k = 2 . . . κ− 1. We might also consider a third objective, namely

the maximization of the dissimilarity of successive fine-grained sub-subseries,

but this is implied by the first two objectives, and is omitted in order to simplify

the problem. Hence the biobjective minimization problem is:

Minimize

f (S) =
[
g
(
dKk,Kk−1

)
, h (dFk,Kk)

]
, (3.35)

subject to:

` (Kk) ≥ (κ− 2)
2 · tmin, k = 2 . . . κ− 1; (3.36)

` (Kk) ≥ tmin, k = 1, k = κ; (3.37)

` (Fk) < ` (Kk) , k = 2 . . . κ− 1, (3.38)

where g
(
dKs,Ks−1

)
and h (dFk,Ks) are as defined in Equations 3.32 and 3.33.
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3.4 Summary

We have seen that the problem of how to best partition a multivariate time

series into subseries with different distributional properties is an important one

with many potential uses in different areas of research, but is also at root a dif-

ficult combinatorial problem with high computational complexity. The problem

becomes more complex still if we assume self-affinity in the underlying DGP;

yet many real data types, including but by no means limited to financial data,

display this attribute. Identifying valid partitions on this basis may not only

be the best way to identify time-varying features of the data but may also open

the door to prediction of future states, or at least identification of the cur-

rent state on some scale. However, statistical techniques currently available are

not well-suited to high-dimensional multivariate analysis of time series show-

ing time-varying, self-affine distributional attributes. Furthermore, all rely on

assumptions about the underlying DGP and often on large numbers of model

parameters.

The problem is formulated so as to minimize the similarity between success-

ive coarse-grained subseries and maximize the similarity between this coarse-

grained partitioning and some fine-grained partitioning at a smaller time scale,

using functions that summarize each objective. This biobjective approach is spe-

cialized to self-affine time series, and as such is differentiated from the various

single-objective partitioning approaches in the alternative data analysis literat-

ure. This summarizing approach significantly simplifies the problem, yet still

yields a set of solutions for analysis a posteriori rather than a single solution

based on a priori objective weightings, say, which would yield much less in terms

of insights into the fitness landscape.

In the next chapter, we will see how this problem can addressed using a spe-

cialized partitioning MOEA, and will consider some of the trade-offs involved in

designing an algorithm which produces satisfactory results with limited compu-

tational resources, as well as outlining the specialized techniques necessary to
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solve the particular challenges of partitioning self-affine time series.
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Chapter 4

A specialized MOEA for

partitioning self-affine

multivariate time series

Introduction

Although the theoretical model set out in the previous chapter makes a contri-

bution to the understanding of the problem, unless we can find a way to address

the problem in a way that is tractable given finite computational resources, that

contribution would be purely theoretical. Unfortunately to develop an effect-

ive deterministic algorithm to solve such a complex, biobjective combinatorial

problem nay not be possible, and standard stochastic approaches are unlikely

to be effective given in particular the difficulties involved in producing solutions

that are feasible for both coarse-grained and fine-grained partitionings.

Fortunately, evolutionary algorithms can be particularly well suited to such

complex problems if suitably designed, and the main contribution of this chapter

is to describe the implementation via a specialized MOEA with limited choice

parameters of the theoretical model developed in Chapter 3. In terms of the
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computational complexity tradeoff as formulated in Equation 1.2, at the highest

level analysis, we can take CT to be the main optimization objectives as de-

scribed in Equation 3.8.

This chapter is arranged as follows. After a statement of the general aims

of the MOEA, Section 4.2 describes the evolutionary algorithm, as well as cer-

tain general principles of design when addressing problems with high computa-

tional complexity and limited computational resources. Section 4.3 addresses

the important topics of the choice and use of parameters, parallelization and

the specialized nature of key aspects of the design of the MOEA. Section 4.4

describes the mathematical implications of the choice of permuted multiobject-

ive tournament selection for the MOEA, and this is followed by a summary of

this chapter.

4.1 General aims of the MOEA

Following [37], we note four general goals common in design of (a posteriori)

MOEAs:

1. Preservation of nondominated points;

2. Progress towards points on PFtrue, the Pareto front (PF) representing the

global optimal multiobjective solution set;

3. Maintenance of diversity of points on PFknown, the set of currently known

nondominated solutions;

4. Provide the decision-maker (DM) with a limited number of PF points on

termination of the algorithm.

The first goal may be attained by virtue of the operation of genetic operators or

through explicit or implicit elitism strategies. The second implies that successive

generational PFs should themselves be nondominated with respect to previous

PFs and should if possible be better than previous PFs, in that they either

contain additional points that fill out the previous PF or contain points that
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dominate one or more points from the previous PF. The third implies that points

on the PF should not be crowded into a small number of regions, as this may

indicate similar crowding into particular regions of the representation space, i.e.

a lack of diversity in search directions, and also does not provide the DM with a

diverse set of combinations of objective values. The fourth goal highlights that

solution sets with a large number of points may be counterproductive in that

they make it too hard for the DM to choose between them. We will refer to

these goals in describing the specialized MOEA in following sections.

The process of creating a specialized MOEA is in itself a complex, multiob-

jective optimization problem, with potentially conflicting objectives that include

inter alia:

• accuracy - actually finding the most optimal solution set;

• robustness - avoiding oversensitivity to parameter changes;

• model parsimony - using as few parameters as possible;

• speed of execution - which should apply to a range of data and para-

meters;

• compactness - making the code as compact as possible;

• clarity - making the code easy to understand both for yourself and others;

• reusability - making all the elements of the code useful for future projects;

• platform universality - the MOEA should run on a variety of hardware

platforms (with necessary adjustments) and if possible, be convertible to

other languages;

• suitability - the MOEA must suit the actual specialized use it is intended

for.

A further set of aims in designing the specialized MOEA was to ensure that at

least some minimum standard was met in all of the above.
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Algorithm 4.1 Random initial assignment of constrained cutpoints (coarse-
grained version)
Step 0: initialize a T × 1 vector w of true binary values and set the first and
last tmin entries to false, indicating these zones are unavailable for cutpoints
Step 1: randomly assign a cutpoint to any point in w with a true value and
set the up to (κ− 2) tmin entries wk, k ≥ 1 preceding the cutpoint and the up
to (κ− 2) tmin entries wk, k ≤ T including and following the cutpoint to false,
i.e. [min {1, ck − (κ− 2) tmin + 1} ,max {ck − (κ− 2) tmin, T}] = false;
Step 2: loop to Step 1 until κ− 1 valid cutpoints are found;
Step 3: return the initial cutpoints.

Algorithm 4.2 Random assignment of initial constrained cutpoints (fine-
grained version)
Step 0: initialize a (t2 − t1 + 1) × 1 vector w of true binary values, where
[t1, t2] ∈ R, tmin < t1 < t2− tmin ≤ T − 2 · tmin corresponds to a subinterval of
a coarse-grained partition in Algorithm 4.1;
Step 1: randomly assign a cutpoint to any point in w with a true value
and set the up to tmin entries wk, k ≥ 1 preceding the cutpoint and the up
to tmin entries wk, k ≤ T including and following the cutpoint to false, i.e.
[min {1, ck − tmin + 1} ,max {ck − tmin, T}] = false;
Step 2: loop to Step 1 until κ− 3 valid cutpoints are found;
Step 3: return the initial cutpoints.

4.2 Functional description of the specialized MOEA

4.2.1 Representation, initialization and specialization in

selection of fine-grained subseries

Each individual is represented by a pair of integer vectors of κ− 1 cutpoint loc-

ations, one coarse-grained and one fine-grained, with the cutpoint representing

the first point in each coarse-grained subseries or fine-grained sub-subseries.

Random initialization of the population N of initial solutions is performed

using Algorithms 4.1 and 4.2. However, were we to leave a single, unrestricted

population, we should leave the evolutionary selection process open to two un-

desirable features. Firstly, as is usual with unrestricted EAs, solutions would

quickly crowd into certain sections of the solution space, potentially leading to

premature convergence. Secondly, the sets of fine-grained and coarse-grained

cutpoints cutpoints would tend to approach each other in scale and location.

Typical countermeasures to the first effect [37] include:
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• A weight-vector approach, where different weights are applied to bias the

search and move solutions away from neighbours:

• Niching, where a penalty is applied to the fitness of solutions based on

the number of solutions sharing some neighbourhood. MOEAs employing

versions of this strategy include NSGA [151];

• Crowding/clustering, where solutions are subject to selection based on a

crowdedness metric, as used in NSGA-II [44];

• Relaxed dominance, as in the ε-dominance technique used in [102];

• Restricted mating, where a minimum distance is required for recombina-

tion between any two given individuals.

In some other approaches, diversity may be intrinsic to the EA design; for

example [165] finds that the decomposition technique that forms the basis of

MOEA/D leads to a good chance of producing a uniform distribution of Pareto

solutions.

In this specialized MOEA, we subdivide the population into a number of

subgroups, and restrict the range [t1, t2] within which each fine-grained subseries

may be initialized, but with the requirement that the whole of S is covered,

so that these ranges usually overlap. No restriction is placed on the coarse-

grained subseries, which are initialized over the whole of S. Since crossover

is only allowed within a given subgroup, and mutation is also restricted (see

Subsection 4.2.6 below), the algorithm is forced to try to find solutions involving

fine-grained sub-subseries within the initial range unless mutation changes the

available range. This maintains diversity, but it also solves the problem that

in the absence of such subdivision, selection would over time push the fine-

grained sub-subseries towards the same scale as the coarse-grained subseries,

yielding a trivial solution set. This approach differs somewhat from the Island

Model of [160] and similar distributed EAs in that no migrations of individuals

between subgroups or crossover between individuals from different subgroups is
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allowed, and the subgroups overlap, potentially to an increasing degree under

the operation of mutation over numerous generations, which to some extent

substitutes for migration (see Subsection 4.2.4).

The number of subgroups is set to:

I =
⌊√

T/tmin

⌋
; (4.1)

initial cutpoints for the coarse-grained partitions are determined randomly but

subject to the length constraints (Equations 3.36 and 3.37), and initial fine-

grained partitions are set by first selecting two successive points from a random

permutation of available coarse-grained cutpoints as the start and end points

and then selecting fine-grained cutpoints randomly, subject to the constraint

given in Equation 3.38. This initialization scheme is designed, subject to the

amount of data available, to produce a wide variety of initial fine-grained par-

titions, in terms of both size and location, which also cover the entire data

set. On average the length of the initial fine-grained partitions decreases with

increasing κ. Note that initialization is in effect a constrained a priori multiob-

jective optimization process in itself, given the need to to balance variety and

total coverage of the fine-grained partitions and obey all length constraints, and

in practice Algorithms 4.1 and 4.2 require careful programming to ensure valid

results, especially if solutions are sought entailing large numbers of partitions.

Initialization of the population for an EA is sometimes no more than the

generation of random numbers, but here the necessity to obey the constraints,

set up coarse-grained cutpoints within the different subgroups, and to then set

up valid fine-grained cutpoints for each set of coarse-grained cutpoints leads to

more intricate programming and quite a high computational burden, though

fortunately the setup only takes place once. Although the necessary code is

not large, in fact this and the specialized crossover were the most difficult and

time-consuming sections of code to get right when constructing the specialized

MOEA. After problems in early versions with highly variable and sometimes

109



large numbers of infeasible individuals generated at various points during the

operation of the MOEA, the decision was taken to minimize the number of

infeasible individuals at all stages as far as possible. For initialization, this

meant designing Algorithms 4.1 and 4.2 in a way that guarantees all of the

initial population was feasible, as well as meeting the restrictions imposed by

the island structure, whilst still producing an initial population that was as

diverse as possible, by making all feasible individuals possible to generate. Key

to this was to effectively subdivide all the available points in the input time

series, whatever the length, according to the number of regimes required but to

make sure the slack space - that is, the remaining points left at the beginning

and end of the time series, if the number of regimes does not exactly divide

the number of points - is available for deciding the first and last cutpoints, in a

random, unbiased way.

4.2.2 Fitness function and invariance properties of correl-

ation

We will now consider the suitability of metrics of the type developed in Sec-

tion 3.3 for developing a fitness function for use in the MOEA. For the pur-

pose of summarizing the distributional properties of a given subseries, variance-

covariance has the advantages of familiarity and well-understood properties,

and as explained in Section 3.3, realized covariance has additional advantages

in terms of simplicity and speed of computation. Furthermore, there are spe-

cific properties of invariance in respect of the standard coefficient of correlation

between two sets of subseries variances-covariances that will prove most useful in

relation to the value of our fitness function in assessing similarity and difference

under affine transformations.

Recall firstly the basic property of the correlation coefficient that

corr (a1x1 + b1, a2x2 + b2) = corr (x1, x2) , (4.2)

110



provided that a1a2 > 0. Now let X and Y be sets of observations, with the

latter an affine-transformed copy of the former, and ρX,Y = corr (σX ,σY ) be

the correlation between the set ofm realized variances andm (m− 1) /2 realized

covariances for X and Y , stacked into column vectors σX and σY as defined in

Equation 3.29 ; then from Equation 4.2,

corr ([a · σX + b] , [c · σY + d]) = 1, (4.3)

where a, c and b,d are non-zero real-valued vectors. This leaves ρX,Y invari-

ant to affine transformations. In particular, ρX,Y is invariant to stretching or

squeezing in either the frequency or amplitude domains. Note that since we are

dealing with log differences of the form sjt = lnxit − lnxjt−1, then with regard

to the original data, applying a translation will change the slope of the time

series trajectory, whilst applying a scalar linear transformation sj 7→ aj · sj is

equivalent to applying a nonlinear, power law effect to the original observations.

These properties are inherited by the metrics used in the constrained ob-

jective (Equation 3.35). In the case that successive coarse-grained subseries in

a given partitioning are all identical except for affine transformations of the

types specified, then g
(
dKk,Kk−1

)
= 1, whilst if successive fine-grained sub-

subseries are all identical to their reference coarse-grained subseries except for

affine transformations of the types specified, then h (dFk,Kk) = 0. More im-

portantly, in the data if successive coarse-grained subseries are close but for

such affine transformations, in other words the underlying DGPs are quite sim-

ilar, then the objective function f1 should have values close to 0, whilst if the

underlying DGPs are quite different, objective values will approach 1 as the

correlation approaches -1. For f2, the value will approach 1 if the correlation

of the relevant pair of coarse-grained and fine-grained subseries approaches -1,

and will be close to 0 if they are quite similar.

Hence our biobjective fitness function will be that given in Equation 3.35,

with the summarizing functions defined as per Equations 3.32 and 3.33, and
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the constraints given in Equations 3.36, 3.37, and 3.38 are dealt with as far as

possible by obeying these constraints at all stages of the programming.

4.2.3 Fitness function evaluation and the set of Pareto

fronts

After an initial calculation of T vectors σt, each containing sets of m (m+ 1) /2

stacked realized variance and covariance entries RC(n)
ijt , fitness function evalu-

ation using the form outlined above requires for each subgroup with population

Ng at each generation, only κ summations of vectors, as per Equation 5, which

is far simpler in computational terms than recalculating covariance matrices

repeatedly. It is also guaranteed that all individuals in the population at all

generations will be feasible, provided all the original σt have valid entries.

We can then find the Pareto front for each subgroup. For a minimization

problem with ω objectives, letM be the set of points vmini out of N total which

have the minimum values for each individual objective fi; that is:

M =
{
pmini = arg min {fi (pj)} , (4.4)

i = 1 . . . k, j = 1 . . . N} .

Define Pareto dominance in the usual fashion:

pA � pB ⇐⇒ (4.5)

fi (pA) ≥ fi (pB)∀fiand (4.6)

∃fi| [f (pA) > fi (pB)] .

This leads to the definition of the nondominated set:

PF = {p ∈ Ω : p ⊀ p′∀p′, p 6= p′} . (4.7)
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It follows that

‖pj‖1 > ‖supM‖1 ⇐⇒ pj /∈ PF, (4.8)

where ‖p‖1is the taxicab norm of the objective function values, that is

‖pj‖1 =

k∑
i=1

|fi (pj)| , (4.9)

and ‖supM‖1 is the norm of the lowest values for each objective of any of the

points in M ; all such points must be dominated by at least one point in M , and

we can immediately eliminate them from consideration as members of the PF.

In the biobjective minimization case, this then implies that if we first take the

point with the lowest global value of f1, all points with a higher value for f2

than that point can be excluded; we then find the point with the next lowest

value for f1 from the points not dominated by the first point, and so on.

We do not need to sort the points at any stage, only find the suprema of

successively smaller nondominated sets. Taking the number of points on the

final PF as nPF and the number of remaining nondominated points at each

iteration as m⊀
i the complexity is thus

O

(
m+

nPF∑
i=2

m
⊀
i

)
≤ O (nPF ·M) . (4.10)

This compares favourably with the O
(
kM2

)
complexity of exhaustive al-

gorithms. Because and all individuals are unique, and because this is a biob-

jective problem using continuous values, meaning we can assume that all values

for each objective are unique for the individuals in a given tournament, we can

use a particularly fast and simple algorithm to find the PF; Algorithm 4.3 works

as a simplification of Algorithm 2.1, and does not need to calculate norms.

Each subgroup thus yields its own PF at each generation and these are stored

and added to the next generation only for the purpose of calculating the new

PF, which will change only if new points are found that dominate points on

the old PF so that the location of the PF changes and the number of points
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Algorithm 4.3 Fast biobjective Pareto front algorithm
Step 0:initialize with m pairs of fitness function values {f1, f2};
Step 1: find and archive the point pmin1 with the lowest value for f1;
Step 2: eliminate all points with a value for f2 more than or equal to f2

(
pmin1

)
;

Step 3: loop to Step 1 whilst any points remain;
Step 4: return the PF.

thereon may shrink, or if additional nondominated points are found, so that

the number of points on the PF grows. We can apply Algorithm 4.3 a second

time to these points if we wish to find a global PF for the union of populations

all the subgroups, and the result will be the same as if we had calculated the

global PF directly from this total population, but a further advantage of the

subgroup approach is that computation is generally faster if we compute in two

stages. However the union of the subgroup PFs is itself of interest, as discussed

in Subsection 5.4.2.

Although the nature of the fitness function and the method devised for its

calculation mean that successive covariance calculations can be greatly simpli-

fied, the calculations are still highly computationally intensive. It was here that

he greatest gains were seen from experimentation with the use of GPUs for the

comparatively simple calculations (in essence, mostly vector addition), although

this was not implemented in the final version for reasons discussed in Appendix

A. Infeasible individuals are also checked for and eliminated from the popula-

tion after fitness function evaluation. After improvements to the initialization,

crossover and mutation algorithms, which were found to be the main sources

for the creation of infeasible individuals, error logs created in the MOEA re-

vealed generally modest numbers of such individuals, generally zero to at most

a low single digit percentage of the population in each island subgroup, which

was considered acceptable, and the problem is not compounded because such

individuals are removed and not passed to genetic operators.

114



Algorithm 4.4 Permuted tournament selection
Step 0: initialize with objective values of current population, including those
on the PF;
Step 1: randomly permute the current population;
Step 2: Take the next τ̂ of Ňt remaining individuals in the permutation, where τ̂
is uniform random ∈

[√
Ňt, 2 ·

√
Ňt

]
; use Algorithm 4.3 to find non-dominated

individuals, and add copies of these to the list to be passed to genetic operators;
Step 3: while individuals remain in the permutation which have not competed,
loop to Step 2;
Step 4: whilst the list of copies of individuals to be passed is smaller than the
twice the desired population N , loop to Step 1;
Step 5: if necessary, select at random from the nondominated individuals in
the final tournament;
Step 6: Return in total 2 ·N selected individuals.

4.2.4 Permuted tournament selection

Selection is performed per Algorithm 4.4; note that the number of participants

in each tournament, τ̂ , is randomized so that selection pressure [19] for each

subgroup at each generation is also random. Individuals may compete in more

than one tournament and all individuals will compete at least once, and indi-

viduals in the population PF found using Algorithm 4.3 will win all tournaments

in which they take part. The use of complete permutations of the population

also removes the chance that elite individuals fail to participate in any tourna-

ment and obviates the need for explicit elitism. Note also that elite individuals

are archived and hence will remain nondominated until the MOEA terminates

unless new individuals emerge that dominate them. Finally, note that in this

implementation, tournaments are performed sequentially with all nondominated

individuals from each tournament passed, up to 2 ·N individuals; only the final

tournament potentially requires a tiebreaker.

The mathematical implications of this choice of tournament selection al-

gorithm are discussed in Section 4.4.

The mathematical arguments underpinning the choice of permuted biob-

jective tournament selection are discussed in Section 4.4, as well as in various

discussions in Chapter 2. From a computational point of view, the advantage of

avoiding explicit calculations of rankings is that as noted in Section 3.2, ranking
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algorithms have high complexity and avoiding calculating complete rankings at

each generation, or even updating them (which in the case of the specialized

MOEA, would not save time as all the individuals change at each generation),

can save a great deal of computation time. Instead, Algorithm 4.3, which de-

termines biobjective nondominance and is in turn called by Algorithm 4.4, the

tournament selection routine, has only to determine nondominance amongst

τ̂ ∈
[√

Ňt, 2 ·
√
Ňt

]
individuals, in a very simple way. This algorithm was also

used to produce the larger PF used for determining which elite individuals across

the whole population should be archived. The simple while loop structure used

in coding was found in testing to outperform versions using recursive program-

ming and arrayfun, as well as optimized code found in online forums. The key

to its success is that it progressively eliminates many points from consideration,

but it was found to be as fast as even simpler alternatives for comparing just

two points in tournament selection.

4.2.5 Permuted affine crossover

Crossover is performed as per Algorithm 4.5. All individuals are subject to cros-

sover and existing individuals are passed intact only if two copies are sampled for

the same tournament, although individuals on the PF are ultimately recorded

and stored; hence there is no parameter associated with crossover probability.

The spacing conditions referred to are those used in Algorithms 4.1 and 4.2. In

practice, programming Algorithm 4.5 in such a way that each new individual is

guaranteed to have a feasible pair of sets of cut points obeying all constraints

may be very computationally expensive and it may be necessary to allow through

a certain number of infeasible individuals to be caught and eliminated by er-

ror checking later. The effect of combining sets of cutpoints in this way is to

stretch or squeeze the coarse-grained subseries and fine-grained sub-subseries

in a way tantamount to applying offsetting affine transformations in the time

domain so that the new set of cutpoints does not change the length or loca-

tion of the specialized subperiod on which the fine-grained cuts are determined.
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Algorithm 4.5 Affine crossover
Step 0: initialize with list from Algorithm 4.4;
Step 1:randomly split list into 2 parent lists;
Step 2: take the next parent from each list; if both parents are copies of
the same individual, add an untransformed copy of that individual to the next
generation and move to the next entry pair;
Step 3: merge the sets of coarse-grained and fine-grained cut points from each
parent;
Step 4: check which cutpoints in the combined lists (if any) violate no spacing
conditions;
Step 5: randomly remove one cutpoint not included in those found in step 4
(if any) or otherwise randomly remove any one cutpoint;
Step 6: loop to Step 4 until the required number of cut points for the number
of subperiods κ is reached and all spacing conditions are met;
Step 7: if left with insufficient cutpoints, randomly add back deleted cutpoints
which do not violate spacing conditions;
Step 8: loop to Step 1 until all pairs of parents have been subject to crossover;
Step 9: return the new population.

It is worth noting that the crossover scheme implemented in Algorithm 4.5 is

highly specialized and it is not possible to replicate its operation using general

purpose EAs. Employing a more standard crossover scheme, even with many

constraints, results in an unacceptable number of infeasible individuals at each

generation.

Although Algorithm 4.5 was coded to be able to handle a situation where

two copies of the same individuals, one in each permutation, are used as par-

ents, in practice this rarely happens and because the parents are removed and

replaced by offspring at each generation, multiple copies of any individual do not

propagate as a result. Two separate but similar algorithms are run to create first

the new coarse cutpoints for each individual and then the new fine cutpoints; in

both cases, the resultant new child individuals are checked for violation of spa-

cing conditions, and repair is attempted; if all else fails, some possibly infeasible

are allowed through but as mentioned above, if they are indeed infeasible they

will be caught at the next generation when fitness values are calculated, and in

practice the number was small in experiments run. The alternative would be

to continue to try to generate feasible individuals, leading to a still more com-

putationally expensive crossover phase with computation time that is highly
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Algorithm 4.6 Mutation
Step 0: initialize with new population generated from Algorithm 4.5;
Step 1: randomly select individuals based on the mutation probability (4.11);
Step 2: randomly select one cutpoint for each selected individual, delete these
cutpoints and replace with new valid cutpoints subject to length constraints;
for the fine-grained partitions, allow new cutpoints up to tmin before and after
the original range of the partition;
Step 3: loop to Step 2 until mutation complete;
Step 4: return the new population.

variable and difficult to predict. Even so, after fitness evaluation, crossover as

implemented was still the second most computationally expensive part of the

MOEA.

4.2.6 Mutation

Mutation is implemented using Algorithm 4.6A simple random point mutation

is applied to the whole representation of the individuals in each generation, so

that either either the coarse-grained and fine-grained part of the representation

is affected. If an individual is selected for mutation, one cut point is deleted and

another one randomly inserted in such a way that spacing conditions are again

met. A difference with crossover is that a small time window of length tmin is

added to the beginning and end of the list of valid locations in the specialization

subperiod for the purpose of randomly determining the location of the new

cutpoint, so that it is possible for the fine-grained sub-subseries to migrate in

the time domain. The mutation threshold probability should be set quite low,

so that most mutation will typically still occur within the original specialization

parameters, and this migration is typically slow and not of great magnitude

unless the number of generations is large. This migration is the only mechanism

by which the original specialization locations can be changed, but the algorithm

needs to prevent the tendency for the scale of the fine-grained subseries to simply

expand over many generations towards the scale of the coarse-grained subseries,

leading to favouring of individuals with fine-grained subseries almost identical
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to their coarse-grained subseries. In the algorithm, the mutation rate is fixed as

mutRate =
I

N
, (4.11)

so that on average just one population member per subgroup will be subject to

mutation in each generation. Note that the number of subgroups I is itself a

function of the length of the dataset, per Equation 4.1.

During development, experiments were conducted using an adaptive muta-

tion rate, but this only proved effective when the number of generations was

very large, making use impractical; hence the rate was fixed, as noted in Sub-

section 4.2.6. Feasible individuals after mutation are guaranteed by only allow-

ing change of a single cutpoint within a range allowed by spacing conditions.

This also guarantees changes to the representation through mutation are small,

though the effect on fitness values may not be. In comparison to crossover, code

for mutation is comparatively simple and its computation burden low.

4.3 Parameters, parallelization and the special-

ized nature of the MOEA

A notable feature of the construction of the EA is that it has very few choice

input parameters; in fact the only choices are:

• N , the total population size;

• G, the number of generations;

• tmin, the minimum number of observations in any subperiod.

In practice, given limited computational resources, whilst results can be expec-

ted to improve with higher N and G, the first is limited by available memory

and if parallel processing is used, the available number of cores, and the second

by processor speed and the number of cores used. The third parameter tmin

can generally be left to the minimum meaningful value of 2, as it was in all the
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studies described in Chapter 3, but might need to be adjusted for very large and

complex problems if it is found that too many infeasible individuals are gener-

ated. This problem did not come up in testing as described later in Chapter 5,

however.

On the subject of parallelization, in general the specialized MOEA shares

attributes with many other MOEAs, namely that:

• Multiple runs can be executed in parallel, with the same or different para-

meters;

• Many operations within a single generation can be parallelized;

• The whole set of operations on a given subgroup within a single generation

can be parallelized;

• Generations themselves cannot be parallelized within a given run, by the

fundamental nature of the evolutionary process.

The first and fourth aspects are standard and require no further explanation.

As to the second, all of the key algorithms as set out in Algorithm 4.7 below for

each generation can be parallelized. Furthermore, certain aspects, such as the

evaluation of the fitness function and tournament selection, are also tractable

to GPU computation by virtue of their simplified nature, though this was not

implemented for final testing, as explained in Subsection A.3.3. Finally as to

the third, operations on different subgroup can be entirely parallelized across

generations, unless any adjustment to the groups is required from generation to

generation, for example changing population sizes in an adaptive manner; such

intergenerational adjustments were not implemented in the MOEA.

As noted, the algorithm permits only 3 choice input parameters, and the

values used for these is generally driven by practical matters including available

time and computational resources as well as the size and complexity of the data

used, rather than any speculation on the part of the user about what parameter

settings might produce the best results. For this reason, if multiple runs are
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conducted, it should only be to increase confidence in the optimality of results,

and it may well be that better results are to be obtained by using available

computation time and resources to increase N and G, rather than performing

more runs, with the caveat that this may also depend on the nature of the data.

Otherwise as regards selection and genetic operations, the use of permuted

biobjective tournament selection (Subsection 4.2.4) means that all individuals

in each generation are sampled for at least one tournament and have the same

chance of being sampled for more than one tournament, depending on the num-

ber of victors produced by the initial permutation. Rather than setting an

arbitrary number of participants per tournament (many convergent algorithms

use τ = 2 to maximize diversity), τ̂ is randomized, and as a consequence so is

selection pressure. In crossover (Subsection 4.2.5), individuals are passed as is

only if two copies are assigned as parents in a particular pairing, and all indi-

viduals passed from tournament selection are assigned as parents, so there is no

crossover probability parameter. Finally, the mutation probability is determined

by population size and length of the dataset (Equation 4.11).

It is worth emphasizing that the MOEA is highly specialized in several re-

spects, most notably in the initialization, the type of fitness function and its

method of calculation, the affine crossover algorithm and the design of muta-

tion to avoid infeasible individuals. Some of these innovations can be expected

to improve performance for this very specific task against other types of al-

gorithms, but others, in particular the crossover and mutation algorithms, are

designed to avoid the population being swamped with infeasible or very low

fitness individuals, which is what should be expected if general purpose EAs

are used for this problem. This, together with the issue of how to set the many

parameters general purpose EAs generally require, makes comparison with ex-

isting EAs very tricky in practice, and for these reasons such comparisons were

not conducted.

The entire specialized MOEA is summarized as Algorithm 4.7.
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Algorithm 4.7 MOEA for partitioning self-affine multivariate time series
Step 0: load (T − 1)×M array of log differences of the multivariate time series
S. Generate initial population divided into subgroups using Algorithms 4.1 and
4.2;
Step 1: calculate fitness function and find subgroup PFs using Algorithm 4.3;
Step 2: perform tournament selection using Algorithm 4.4;
Step 3: perform crossover using Algorithm 4.5;
Step 4: perform mutation using Algorithm 4.6;
Step 5: loop to Step 1 until convergence conditions met or maximum number
of generations reached;
Step 6: return the new population.

4.4 Implications of the use of permuted multiob-

jective tournament selection with randomized

tournament size

In Algorithm 4.4, the selection scheme without replacement differs from Scheme

C described in Chapter 2 in several ways. Firstly, since no ranks or rankings are

explicitly calculated, nondominance between the participants in each tourna-

ment is calculated. However, as nondominance is calculated in the same way as

that underlying Algorithm 2.2, the results in all cases will be just as if a ranking

had been calculated; that is to say, the resultant PF will contain individuals

only of the same rank, which is the highest rank of any participant in a given

tournament. Secondly, the number of participants for all tournaments at each

generation is now a random number τ̂ ∈
[√

Ňt, 2 ·
√
Ňt

]
, so that τ̂ unique in-

dividuals are sampled for each tournament from the same permutation. There

are never any copies of the same individual in the specialized MOEA, by design,

and there are generally no individuals with all identical fitness values. Thirdly,

as there is no tiebreaker used, all individuals of highest rank in a given tour-

nament are passed to genetic operators, meaning the number of tournaments

conducted T̂ is also a random number. Finally, as the range of τ̂ depends on

the size of the remaining population in a permutation, the expected tournament

size decreases as the algorithm runs through the permutation, but then resets

as a new permutation is calculated, until 2 · N individuals in total have been
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passed.

Elite nonsampling is not an issue due to the use of permutations. Also,

all individuals are passed to genetic operators after selection, fitness values are

continuous, and the initial population does not contain multiple copies, we can

assume that all individuals are unique before selection at each generation, so

the individual multisampling issue does not require consideration. Furthermore,

although no ranks are calculated, the in-rank multisampling issue is also not a

concern, because all individuals of the highest rank in a given tournament are

passed apart from in the final tournament, where some random selection may be

necessary. Hence we can assume, from the analysis in Chapter 2, that the elite

population can be expected to increase by a factor related to the distribution

of τ̂ .

It is also worth noting that a consequence of Theorem 2.3 is that for each rank

below the first, there is an optimal tournament size that will maximize the rank

size after selection, but this optimal tournament size changes at each generation.

Hence if tournament size is randomized, any distributional parameters such as

mean and variance would need to be chosen with care, perhaps by parameter

tuning, or else by adaptation; the choice of the uniform distribution for τ̂ . largely

avoids these complications. Finally, we should also note that as with Scheme

B, Equation 2.31 also applies, so that individuals of the lowest fitness levels can

never win a tournament unless there are more of them than the tournament

size, meaning that such individuals will never be passed to genetic operators or

to the next generation.

To summarize, the selection scheme described here has the following advant-

ages:

• the nonsampling probability is zero for all individuals, so that elite nonse-

lection is not an issue;

• the rate of increase of elite individuals is well described for large popula-

tions;
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• the scheme features neither individual nor in-rank multisampling.

However, diversity is to a greater or lesser extent decreased, and selection pres-

sure increased, at least in comparison to Schemes A and C as described in

Chapter 2, because low-ranked individuals may be automatically eliminated.

Given that as coded, τ̂ ∈
[√

Ňt, 2 ·
√
Ňt

]
, selection pressure is deliberately

high to balance the nonconvergent nature of the MOEA given that all selected

individuals are passed to crossover, and the lack of explicit elitism in the al-

gorithm (though elite nonsampling is not an issue due to the use of permuted

tournament selection). An additional consequence of the average number of

participants in each tournament being quite high is that low-ranked individuals

are all the more likely to be automatically eliminated.

4.5 Summary

The novel approach to creating an MOEA to partition multivariate self-affine

time series, as described in this chapter, makes only the simplest of assump-

tions about the DGP and uses only 3 input parameters, two of which, the

population size N and the maximum number of generations G, relate to the

computational structure of the MOEA rather than being model parameters as

such, with the third, the minimum partition size tmin, in practice being set to

the effective minimum value 2 in all experiments. The price paid is that the

starting computational complexity is very high. To address this, a highly paral-

lelizable population-based evolutionary algorithm was developed, which reduces

the problem to a biobjective one using objective functions based on the cor-

relation of realized covariances for successive coarse-grained subseries and for

fine-grained sub-subseries with the coarse-grained subseries.

The summarizing approach developed in Chapter 3 significantly simplifies

the problem, yet still yields a set of solutions for analysis a posteriori rather

than a single solution based on a priori objective weightings, say, which would

yield much less in terms of insights into the fitness landscape.The population is
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split into subgroups specialized to examining fine-grained partitions in differing

sections of the time series, and all possible partition sizes can be investigated.

The algorithm uses biobjective permuted tournament selection with ran-

domized size; a crossover method that in effect applies affine transformations

where necessary to fit together elements of each parent’s representation; and

a mutation method developed to maximize the number of feasible individuals

after operation. The mathematics of the choice of tournament selection scheme

imply that the nonselection probability for elite individuals is zero, obviating

the need for explicit elitism.

In the next chapter, we describe testing of the specialized MOEA with sim-

ulated and real data.
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Chapter 5

Testing with Simulated and

Real Data

5.1 Introduction

Testing the MOEA described in Chapter 4 presents particular problems. Under-

lying the choice and design of the MOEA are the assumptions that training data

is not available, and in particular, that it is difficult of impossible to definitively

declare that a given time series should be partitioned in one clearly defined way;

rather, we assume that there are many ways in which a self-affine multivariate

time series can validly be partitioned, and so the MOEA is deliberately de-

signed to be nonconvergent and to produce a cloud of valid solutions. This

chapter describes the testing approach developed to cope with such a situation.

The principal hardware platform used in his project was a 3.7GHz, 4 core

system with 32GB of RAM. During the development period, memory was up-

graded to 64GB, to overcome problems with oversized arrays during testing, as

well as to improve performance.

The rest of this Chapter is arranged as follows. Section 5.2 describes the high

level algorithm used to test the MOEA and how it was implemented. Section 5.3
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describes the formation of simulated self-affine multivariate time series via the

technique of stitching together time series generated using fractionally integrated

time series (FITS), the advantage of which is that we do know the points at

which the different FITS have been joined, or stitched. The testing methodology

is described, and results discussed. Section 5.4 describes the use of real financial

data for testing and results are presented, with some interpretation.

5.2 Structure of the MOEA testing environment

To test the MOEA, a high level algorithm was employed to run the algorithm

multiple times and create the large solution set described in Chapter 5. The

Matlab code sets up cell arrays to handle the MOEA outputs - specifically,

the sets of course and fine cutpoints for the final PFs from each run, and the

associated objective values - and then calls the MOEA multiple times, using the

specified parameters. The code for this high level testing algorithm contains a

parfor loop, and is the only code used that calls CPU parallel processing, using a

pool of 4 workers. It is generally best practice to use parfor loops at the highest

nesting level1, since the MOEA itself is run sequentially in each iteration on a

separate CPU core, automatically allocated by Matlab. Testing cycles were very

lengthy, reflecting the considerable complexity of the problem; for example, the

testing of the simulated FITS data for 100 iterations took, depending on the

other parameters and size of dataset used, between 47-53 hours per run of the

testing.

This means that in the testing version, the MOEA itself does not explicitly

employ parallel processing through use of parfor loops, although it still employs

vectorization extensively. In the stand-alone version however, parfor loops are

employed at the highest level of the MOEA itself, with each subgroup dealt with

by a separate run of the MOEA, i.e. the MOEA is run as a PGA. An overview of

the general structure of the specialized MOEA was shown in Algorithm 4.7. The
1This approach has the added advantage of avoiding all of the issues and pitfalls with

parfor loops highlighted in the Appendix.
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specialized MOEA in many respects conforms to the classical structure of the

genetic algorithm, with initialization based on representation followed by iterat-

ively running fitness evaluation, selection and genetic operator algorithms, with

the PF recorded and the best individuals archived after fitness evaluation. One

difference from the typical structure is that the initial population is segmented

into subgroups, and these subgroup populations are kept separate throughout

the MOEA’s operation, with PFs recorded and elites archived separately for

each.

The output of the testing algorithm consists of arrays of the coarse and fine

cutpoints and associated objective values for the PFs at each generation. Note

again that the MOEA is deliberately non-convergent; the only stopping criterion

is the passing of a given number of generations, and in general since objective

values are convergent and all individuals undergo crossover, all individuals are

unique at each generation, which maximizes diversity but means the MOEA

would not terminate in the absence of a generation limit, even if the true PF

were found and archived. A combined PF from all individuals in all islands

is also calculated, and this is the level at which archiving of elites takes place.

Since this is strictly implicit elitism, the elites are only archived; they are not

reintroduced into the population, and multiple copies cannot propagate.

5.3 Testing with simulated data

5.3.1 Formation of the simulated data

Testing with real multivariate data, especially of higher dimension, is problem-

atic as in general we do not know how to partition the data, this being precisely

the problem the techniques developed in this chapter are designed to address.

A first step is to formulate a set of data we know more about, specifically one

in which we know that the data inherently displays self-affinity. The approach

used in testing is to “stitch” together subseries which are individually self-affine

and which repeat patterns from one subseries to the next, but which are each
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sufficiently different to the preceding subseries in terms of the coarse-grained

metric (Equation 3.32) that the MOEA can detect a change in subseries.

The fundamental building blocks of this approach are multivariate fraction-

ally integrated time series (FITS), which use FBM processes in their construc-

tion. The approach used is the p-model set out in [41], and the implementation

is adapted from [159]. The p-model itself produces only stationary random time

series and has one parameter, p ∈ [0, 1], which is associated with increasingly

peaked series as it approaches 0 or 1, and calmer series as it approaches 0.5.

To create nonstationary series, the result of the p-model is filtered in Fourier

space and a further slope parameter is specified; slopes flatter than -1 are called

stationary in [41], whilst slopes between -1 and -3 are called nonstationary, with

stationary increments. These nonstationary cases are at least continuous, but

not differentiable. Slopes steeper than -3 are nonstationary and differentiable.

The approach in constructing multivariate test series with differentiated sub-

series is as follows. Firstly, for each of κ subseries as required, m “master”

series of length L · Tk, k = 1 . . . κ and random parameters p ∈ [0.25, 0.49] and

slope ∈ [−3,−1] are generated, the random parameters recorded and log differ-

ences taken and the series “stitched” together so that the total length is L · T

. The parameter ranges are set so that the series are neither too peaked nor

excessively smooth and are nonstationary. Next, for each subseries k = 1 . . . κ

, m FITS of length Tk are generated for each subseries, again each with inde-

pendent uniformly random parameters but with the random seed reset to the

same state s recorded before the first series was generated. Hence the random

numbers used are the same for each FITS, but the parameters are different, such

that the correlations between different FITS vary randomly. Log differences are

taken and scaled down by a factor of L1/α, where α is a scaling parameter, and

each t-th log difference from these series is added to the t ·L-th log difference of

each of the m FITS. The effect is to add an additional shock to the beginning

of each period. This might be thought of for example in the context of financial

returns series, as reflecting new information available at the beginning of each
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trading day, and is meant to simulate the phenomenon of price jumps at the

beginning of the trading day which is commonly observed in financial data. Fi-

nally the entire system is normalized to be non-zero and have the same starting

values.

It is not of course guaranteed that the stitched FITS generated by such a

process will have subseries that are sufficiently distinct, in terms of the serial

correlation of the realized covariances of the constructed coarse-grained subser-

ies, to be useful in testing the MOEA. Therefore, suitable FITS were found by

a Monte Carlo process, selecting FITS with sufficiently distinct subseries. With

small values of T , it is not hard to find series with significantly negatively correl-

ated subseries, but with larger values of T it becomes difficult to find series with

maximum correlations between successive subseries that are any lower than a

small positive number (less than 0.1, say). This means that the task faced by

the MOEA will not necessarily be easy, as the original cutpoints in the con-

struction of the simulated data are hard to identify. The actual stitched FITS

generated and used in the first study study with just described below are illus-

trated in Figure (5.1), with actual observations plotted in the upper window,

and log differences in the lower window.

5.3.2 Results from the MOEA for simulated data

In an initial experiment the generated FITS comprised m = 8 series with 2

central partitions and a further 2 incomplete subseries at the beginning, so that

κ = 4, with a total length of T = 512 periods, each comprising L = 32 observa-

tions, for 16,384 high frequency observations in all. Because of the difficulties

in constructing test data with significantly negative serial correlations between

subseries, especially with larger numbers of periods, correlation coefficients ob-

served in data used tend to be slightly negative and close to zero (typically in

[0,−0.1]. The MOEA was run over 15 generations with a population size of

10,000 individuals for each of 11 subgroups. All testing was conducted on a

3.7GHz, 4 core system with 32GB of RAM. Earlier experimentation had shown

130



that such population sizes could lead to relatively rapid convergence with reas-

onable results, whilst smaller population sizes tend to lead to convergence after

more generations but with poorer results, though possibly with lower overall

runtime. The number of series in the multivariate system was chosen so that

sufficient covariances were generated to make correlations meaningful but not so

many that in particular the clarity of graphical representations is compromised.

Computational complexity is also an issue but for reasons explained in Subsec-

tion 4.2.3, the choice ofm affects only the κ−1 correlation calculations, generally

in a sub-quadratic manner, and does not affect the underlying calculations of

realized covariance at each generation. Hence this approach is potentially well

suited to high-dimensional problems.

Two measures were considered to assess the success of the MOEA in finding

suitable coarse-grained partitions. The first looks at the errors between the

individuals with the best (i.e. lowest) values for the first objective f1, i.e. the

solutions with the highest dissimilarity between regimes, as assessed by the

following formula:

θ
(1)
i,r,g =

1

T · (κ− 1)

κ−1∑
k=1

∣∣cEAk,i,r,g − cFITSk

∣∣ , (5.1)

where cEAk,i,r,gis the k-th cut point for a given subgroup, partition and genera-

tion, and cFITSk is the actual cut point used to generate the FITS; lower scores

are better. The second is derived from our coarse-grained summation function

(Equation 3.32) as follows:

θ
(2)
i,r,g = (5.2)[√

1

4

(
ρFITS + sup {ρFITS (s, s− 1)}+ 2

)
−
√

1

4

(
ρ∗EAi,r,g + sup

{
ρ∗EAi,r,g (s, s− 1)

}
+ 2
)]

,

that is, the difference between the coarse-grained summation function values
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for the best individual generated by the MOEA and for the FITS cut points;

again, lower scores are better. Note that these measures consider only the

coarse-grained partitioning for a given solution.

The best results in terms of the first measure had a maximum error of 5

periods, i.e. an “error” of less than 1%, for any cut point (there were several

individuals, distributed across different subgroups, which met this standard).

The results demonstrate that the MOEA can find the “correct” cutpoints with a

good degree of accuracy, although larger T and κ will lead to slower convergence

or equivalently, lower accuracy for a given computational budget. One solution

is illustrated in Figure 5.12, where the solid lines indicate the cutpoints in the

original data and the dashed lines the coarse-grained cutpoints found by the

algorithm.

A second simulated FITS dataset was then generated for the main experi-

ment withm = 8 and n = 32 as before but with a much larger number of periods,

T = 4096, or 131,072 observations in all, and κ = 6, so 4 internal partitions

instead of 2; constructing the test data was significantly more computationally

expensive, and this time the correlations of successive subseries tend to to be

close to zero but slightly positive, typically in [0, 0.1]. The MOEA was then

run for 100 generations with a total of 32 subgroups, each with a population

of 10,000, and a total of 30 runs, and the results were aggregated by subgroup

across the runs. Typical running times for this data were around 22 seconds

per generation but this dropped to below 7 seconds when parallelization of sub-

groups across 4 cores was implemented, showing that parallelization is highly

effective in reducing computation time.

Figure 5.2 shows an example result. In the upper plot, the solid black lines

represent the coarse-grained cutpoints used to set up the actual dataset, whilst

the dashed lines represent the cutpoints found in the MOEA solution. The plots

of the data use log differences rather than the untransformed data, and this

makes the distinctions between the partitions much clearer. In the lower plot of
2All figures are to be found at the end of this chapter.
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Figure 5.2, only a zoomed-in section of the data is shown, and the dashed lines

represent the cutpoints of the fine-grained partitioning found in this particular

solution. Note that the relative lengths of the subseries in the fine-grained

partitioning are quite different to those in the coarse-grained partitioning. It

is also quite difficult to detect by eye, even with a system with just 8 different

series, that the subseries in the fine-grained partitions correlate quite closely

with those in the coarse-grained partitions, even though this is in fact the case;

for a higher-dimensional system, visual interpretation becomes impossible, but

for the MOEA, only a relatively modest increase in computational complexity

is involved.

Figure 5.3 shows scatter plots of solutions for selected subgroups in terms of

their values for θ(1)i,r,g on the x-axis and θ(2)i,r,g on the y-axis. The lines represent

Pareto fronts for each of the subgroups shown; these PFs are not to be confused

with the ones constructed during the running of the MOEA, which use Equations

3.32 and 3.33 instead of Equations 5.1 and 5.2, and so have no knowledge of

the partitioning used to set up the simulated data. The best results from the

MOEA show an error (as measured by θ(1)) of less than 2%, and manage to find

reasonable fine-grained partitionings as well.

There is a clear trade-off between θ(1) and θ(2), but notice also that most

individuals have a negative value for θ(2), indicating that in terms of Equation

3.32, the MOEA finds coarse-grained partitions of subseries that are actually

better differentiated than those used in the original construction of the test data.

Also note that, although the MOEA has no knowledge of the partitioning used

to set up the simulated data but which is used in the ex post calculation of θ(1)i,r,g

and θ(2)i,r,g after the MOEA has run, at the last generation the MOEA has in fact

found many more solutions close to the bottom left extremes of the plot, that

is, solutions with, in particular, better solutions in terms of θ(1), than was the

case at the first generation. Note also that no single subgroup’s PF completely

dominates that of all others, though some are completely dominated; indeed,

just 6 of the original 32 subgroups (only 10 of which in total are shown in the
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plots, for clarity) have PFs containing points which are non-dominated with

respect to all other points from all subgroups.

It is simple to extract from the several subgroup PFs for any given partition

into κ subseries a single global PF. However, each subgroup PF is a valid subset

of solutions on its own, and if not completely dominated by another subgroup

PF, has valuable information about the solution space, given that each sub-

group is optimizing over a different location of the fine-grained partition and

potentially also a different scale. Similarly, with real data where the actual

number of partitions is unknown, for each partition size κ = 3 . . . κMAX , that

solution subset is also valid in its own right, and in many cases we cannot say

that one number of subseries κ forms a superior partition to another number;

it is again operating at a different scale. Taken together, all the subgroup PFs

for all the partition sizes κ may be thought of as forming a single solution set

over a number of different scalings and fine-grained subseries locations; in other

words an optimized sample of a much larger optimal solution set.

5.4 Testing with real data

5.4.1 Data source

We used the public access CRSP data3 for second-by-second calculations of 9

capitalization and market indices calculated using intraday prices of US stocks

over a 12-month period ending March 2016. As examples, CRSPSCT is an

index of the total return of smaller stocks, whilst CRSPTMT is an index of total

market return. To ensure greater stability of the realized covariance matrices

and reduce noise, the second-by-second measurements were first aggregated into

5-minute bars and the daily covariance matrices were then calculated from these.

The system is highly correlated, with correlations between series over the period

varying between 0.0072 and 0.9985 but averaging 0.7718.
3Available at: https://wrds-web.wharton.upenn.edu/wrds/about/index.cfm
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5.4.2 Results from the MOEA for real data

A total of 100 runs were effected for the data and the results, i.e. the sets

of coarse-grained and fine-grained cutpoints with objective values on the PFs

produced after 100 generations for each run, were recorded for each subgroup.

This produced a large number of partitionings, all of which are potentially valid

(as they are non-dominated). The MOEA was used to investigate partitionings

with 3 and with 4 cutpoints (i.e. 2 or 3 regimes), and was run with a smaller

population per subgroup (1000) and a smaller number of subgroups (11) than

used in the experiment with simulated data, and 100 generations per run as

before.

The progress of of the combined PFs for the whole population, aggregated

from all runs and subgroups, is illustrated in Figure 5.4, with the objective

values for f1and f2on the x-axis and y-axis, respectively. The algorithm shows

progress generation by generation, with PFs from later generations often com-

pletely dominating those produced at earlier generations; this was also the case

for the simulated data. Note that in later generations the f2 values are extremely

small (and so close to the axis) and this phenomenon is seen more quickly for

the runs with 3 regimes; this provides strong evidence of the self-affinity of the

real data set.

In order to cluster the sets of coarse-grained cutpoints obtained from all the

PFs obtained from the MOEA, the k-means clustering algorithm was used[152,

116], with k = {2, 3, 4, 5}, running the algorithm 1000 times for each k and

retaining the results with the lowest sums of in-cluster distances from centroids.

We then calculated silhouette numbers [143] for each subgroup; 5.5 shows the

means and variances for each subgroup, for both 2 and 3 regimes.The subgroups

generally show similar patterns. For 2 regimes, the silhouette means do not

vary greatly but variances increase with the number of clusters, indicating more

low silhouette values. For 3 regimes, means decrease significantly for more

than 4 clusters and variances also increase with the number of clusters. This

indicates that a low number of clusters is most supported by the data, with in all
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likelihood, just 2 clusters being best of all in the case of 2 regimes, whilst for 3

regimes, results are very similar for 2-4 clusters. Overall this implies that after

100 generations, results were already tightly grouped into a small number of

clusters. In particular, the number of clusters is much smaller than the number

of subgroups, indicating some convergence of results between subgroups.

The silhouette plots for different numbers of clusters for 2 regimes and for

3 regimes are shown in Figures 5.7 and 5.6; note that whatever the number

of clusters, with 2 regimes there are 2 clusters of results that contain most of

the results, whilst with 3 regimes a single cluster contains most of the results.

Figures 5.8 and 5.9 for partitionings with 3 and 4 cutpoints respectively show

the various CRSP index levels plotted against time, together with vertical lines

indicating the centroids of the 4 clusters; each cluster has 3 cutpoints with the

line colour and line type the same, which may be taken as representative of a

particular type of solution with two defined partitions (which have corresponding

fine-grained partitions) plus “incomplete” partitions before the first and after the

last cutpoint.

With real data, we do not know the “true” partitioning, though with small

systems we might be guided by visual cues, standard multivariate statistical

techniques or some other known facts in guessing one or more valid partitionings;

with large systems, such guesses may be impossible. If we look at the results as

represented in the two figures without any prior knowledge, several observations

can nonetheless be made regarding the representative partitionings. Firstly, the

“incomplete” final partition of the data lying after each final cutpoint is in all

cases quite large, with almost all final cutpoints indicated before the end of

2015 and some much earlier. This tells us either that later data the system

is considerably different from earlier sections in terms of our coarse-grained

summation function (Equation 3.32) or that it is easier to find similar fine-

grained partitions in terms of our fine-grained summation function (Equation

3.33) for earlier data, or both. With this relatively low-dimension and highly

correlated dataset, it is perhaps possible to note visually that there is a change
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in the system in late 2015, but it is not feasible to check the similarity of

coarse-grained and fine-grained partitions visually even with such a relatively

small system. Secondly, the partitionings vary considerably in spread, i.e. the

distance between the first and last cutpoints, so some solutions involve much

larger “incomplete” first and last partitions than others, or looked at differently,

the partitionings in effect operate on different time scales to one another; this is

arguably a desirable feature in the context of our assumption that the system

has scalable, fractal properties and is likely maintained by the island approach to

segregating the EA population. Finally, the greatest concentration of cutpoints

is in the August-November period, this being particularly noticeable in the

second figure, and this is perhaps indicative of a greater change in the system

covariances during that period.

5.5 Conclusion

Testing was conducted using both simulated data and real stock market data.

The simulated data was constructed using generation processes known to be

self-affine and designed to have as clear a partitioning as possible in terms

of the main metric used by the MOEA to assess differentiation of successive

subseries. Initial results have indicated that the MOEA may be able to come

close to the partitioning used in the simulated data whilst simultaneously finding

reasonable self-affinity, and indeed in limited testing was able to find partitions

with better differentiation than the ones used to set up the test data. It was also

observed that there is a clear trade-off between closeness to the original partition

and the measured power of the differentiation between successive coarse-grained

subseries, but that the overall solution set improved with successive generations.

For the testing using real data, although it is not possible to comment directly

on the accuracy of results as the “true” partitions are unknown, we were able to

make several useful observations regarding the operation of the MOEA on the

specific data set.
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Figure 5.1: A typical close fit to the original subseries cut points
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Figure 5.2: Coarse-grained and fine-grained partitionings
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Figure 5.3: trade-off of theta scores
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Figure 5.4: Progress of PFs by generation
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Figure 5.5: Means and variances of silhouette numbers
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Figure 5.6: Silhouette plots for clusters of results with 3 regimes
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Figure 5.7: Silhouette plots for clusters of results with 2 regimes
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Figure 5.8: CRSP data with representative partitionings: 3 cutpoints
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Figure 5.9: CRSP data with representative partitionings: 4 cutpoints
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Chapter 6

Conclusion

The main contributions of the research detailed in this thesis are in specific

areas of the theory, design, execution and testing of MOEAs. In particular,

several advances in the theory of multiobjective tournament selection have been

detailed; an optimization model has been developed to address a hard multiob-

jective problem, namely the partitioning of multivariate self-affine time series; a

specialized MOEA has been designed to solve this problem with several unique

design elements, including the choice of tournament selection scheme, in line

with theory; and specific testing paradigms were developed, with promising

results for performance of the MOEA.

In Section 6.1 below, the main contributions of and findings contained in

this thesis are summarized, followed by comments on possible future directions

of research in Section 6.2.

6.1 Summary of main contributions and findings

In Chapter 2, the main contribution was a set of results was developed concern-

ing both the operation of ranking schemes under multiobjective tournament se-

lection and the effect on both the development of the rank or fitness distribution;

these findings underpin the design of the tournament selection algorithm which
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forms a key part of the specialized MOEA described in subsequent chapters.

Firstly, results regarding the operation of Pareto rankings were shown, based in

turn on axioms derived from the operation of a simple ranking algorithm. Then

it was shown that there exists a general limiting expression for the probability

of nonsampling under multiobjective tournament selection without replacement

using Pareto rankings, and hence for the nonselection of elite individuals. This

analysis can be adapted to selection without replacement as well as to the effect

of the addition of elitism, and the effects of these variations of the tournament

selection algorithms were examined, with the conclusion that completely per-

muted schemes are of interest as they guarantee all individuals will be sampled

yet remains tractable to analysis of the expected rank or fitness distribution.

It was also shown shown that there is a limiting expression for the expected

number of generations to convergence for an iterative search algorithm using

only tournament selection. This expression could be used as a useful check

in developing or choosing algorithms. For example, if an algorithm converges

close to or even faster than this limiting prediction, it could be considered

likely that the algorithm is demonstrating premature convergence. It was shown

furthermore that one can find a tournament size that maximizes the expected

rank size for any given rank below the first rank. Finally, it was shown that

there exists a limit to the nonsampling probability across multiple generations

that has a negative double exponential form, implying that archiving can be a

partial solution to the elite nonsampling problem.

Whilst it has long been recognized that altering tournament size will tend to

increase selection pressure, it was shown that for all but the individuals in rank

1, there exists a value τ∗ig for tournament size, at a given generation, beyond

which selection pressure will in fact start to decrease. It was also shown that the

value of τ partially determines the nonsampling limit in some selection schemes,

that the effect is doubly exponential under iterated tournament selection, and

that it plays a role in expected time to convergence, which implies a trade-

off between algorithm efficiency and the potential for premature convergence.
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Finally, it was also shown that varying τ has a predictable effect on the growth

rate of the elite population. Lemma 2.9 and Theorem 2.2, Equation 2.50 and

Theorem 2.4 all reveal important effects of the choice of tournament size. Hence

the value of τ must be carefully chosen, balancing these various considerations.

In Chapter 3 we saw that the problem of how to best partition a multivariate

time series into subseries with different distributional properties is an import-

ant one with many potential uses in different areas of research, but is also at

root a difficult combinatorial problem with high computational complexity. The

problem becomes more complex still if we assume self-affinity in the underlying

DGP; yet many real data types, including but by no means limited to financial

data, display this attribute. Identifying valid partitions on this basis may not

only be the best way to identify time-varying features of the data but may also

open the door to prediction of future states, or at least identification of the cur-

rent state on some scale. However, statistical techniques currently available are

not well-suited to high-dimensional multivariate analysis of time series show-

ing time-varying, self-affine distributional attributes. Furthermore, all rely on

assumptions about the underlying DGP and often on large numbers of model

parameters.

The problem was formulated so as to minimize the similarity between suc-

cessive coarse-grained subseries and maximize the similarity between this coarse-

grained partitioning and some fine-grained partitioning at a smaller time scale,

using functions that summarize each objective, based on realized covariance.

The main contribution of this summarizing approach is that it significantly sim-

plifies the problem, yet still yields a set of solutions for analysis a posteriori

rather than a single solution based on a priori objective weightings, say, which

would yield much less in terms of insights into the fitness landscape.

In Chapter 4, the main contribution is the novel approach to creating a

specialized MOEA to partition multivariate self-affine time series. The MOEA,

makes only the simplest of assumptions about the DGP and uses only 3 input

parameters, two of which, the population size N and the maximum number of
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generations G, relate to the computational structure of the MOEA rather than

being model parameters as such, with the third, the minimum partition size

tmin, in practice being set to the effective minimum value 2 in all experiments.

The price paid is that the starting computational complexity is very high. To

address this, a highly parallelizable population-based evolutionary algorithm

was developed, which reduces the problem to a biobjective one using objective

functions based on the correlation of realized covariances for successive coarse-

grained subseries and for fine-grained sub-subseries with the coarse-grained sub-

series.

The summarizing approach developed in Chapter 3 significantly simplifies

the problem, yet still yields a set of solutions for analysis a posteriori rather

than a single solution based on a priori objective weightings, say, which would

yield much less in terms of insights into the fitness landscape. The population is

split into subgroups specialized to examining fine-grained partitions in differing

sections of the time series, and all possible partition sizes can be investigated.

The algorithm uses biobjective permuted tournament selection with random-

ized size, a choice supported by the findings in Chapter 2. The mathematics of

the tournament selection scheme chosen imply that the nonselection probability

for elite individuals is zero, obviating the need for explicit elitism.

The specialized MOEA also uses a crossover method that in effect applies

affine transformations where necessary to fit together elements of each parent’s

representation, and a mutation method developed to maximize the number of

feasible individuals after operation.

In Chapter 5 the main contribution is the development of techniques to

test the specialized MOEA using both simulated data and real stock market

data. The simulated data was constructed using generation processes known to

be self-affine and designed to have as clear a partitioning as possible in terms

of the main metric used by the MOEA to assess differentiation of successive

subseries. Initial results indicated that the MOEA may be able to come close

to the partitioning used in the simulated data whilst simultaneously finding
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reasonable self-affinity, and indeed in limited testing was able to find partitions

with better differentiation than the ones used to set up the test data. It was also

observed that there is a clear trade-off between closeness to the original partition

and the measured power of the differentiation between successive coarse-grained

subseries, but that the overall solution set improved with successive generations.

For the testing using real data, although it is not possible to comment directly

on the accuracy of results as the “true” partitions are unknown, several useful

observations regarding the operation of the MOEA on the specific data set

were made. Although parallelism was implemented in the MOEA described

in Chapter 4, in testing, it was rather the high-level testing algorithm that

implemented parallel processing.

6.2 Direction of future research

The work presented in this in this thesis has addressed certain key questions

regarding the theory, design and execution of MOEAs, but has also raised a num-

ber new questions, or highlighted existing ones that remain to be adequately

addressed. In the course of the work on the mathematics of tournament selec-

tion, it was found that far from being a topic that is largely understood in all its

key aspects, this area still has much worth researching. Throughout the work,

there are specific assumptions about the selection schemes used, as well as the

precise method for determining rankings; hence all findings are dependent on

these assumptions and particular methods. This work is in many ways still its

early stages, and many questions remain. The effect of elitism of different types

in different ranking and selection schemes is one area for future research. The

effect of different tiebreakers in Pareto ranking schemes on subsequent fitness

distributions is another area of interest. Furthermore, researchers may wish to

investigate the effect of genetic operators in conjunction with tournament se-

lection of the fitness landscape. This is perhaps the hardest area to address,

since tournament selection operates on the fitness space, whilst genetic operat-
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ors have their effect in the representation space, and the mapping between the

representation and fitness spaces is generally unknown; but progress in this area

could lead to a much deeper understanding of the mathematics of evolutionary

algorithms in general.

To progress further with the work on partitioning multivariate self-affine time

series , it is anticipated that it will be necessary to develop new techniques and

extensions to the MOEA framework to test whether the partitionings produced

are useful for example in minimizing variance of a portfolio of assets in out-

of-sample testing when the current state of the asset market is unknown. It

will then be possible to address the feasibility of probabilistically assessing the

current state. It would also be useful to develop suitable metrics for quality of

the PF, with attention to the particular nature of the problem. Although the

motivation for this research comes from financial applications, it can be seen

more widely as the first steps on the road to a broader framework for threat

analysis, detection and mitigation, and it would be useful to extend testing to

other types of data. For example, the work presented in this thesis could be

used to detect abnormal patterns temporarily present at different time scales

in multivariate data of many types. Future work might allow optimization to

mitigate the adverse impact of such patterns, and even detect the onset of such

patterns in real time, allowing re-optimization.
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Appendix A

Appendix - programming and

parallel processing

This appendix contains additional information regarding the choice and use of

Matlab as a programming environment, and on the use of GPU computing in the

development of the MOEA, although for reasons discussed below, GPU comput-

ing was not used in the final version as tested; only CPU parallel computation

was deployed.

Much of the material Matlab in this appendix has been gleaned from the pro-

gramme’s own extensive online documentation and online forums, both Math-

works’ own and others. For Subsection A.3, [92] is useful but technical and now

quite outdated. For Subsection A.3.3, [136] is a relatively recent study, whilst

[153] is less recent but still useful. However, the most important source material

is extensive experience of iterative bug fixing and performance tweaking in the

course of developing the specialist MOEA, for which there is no substitute.

A.1 Hardware

As noted in Chapter 5, the principal hardware platform used in his project

was a 3.7GHz, 4 core system with 32GB of RAM upgraded during testing to
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64GB to overcome problems with oversized arrays during testing, as well as

to improve performance. In addition, two high performance GPUs were added

at different times; an Nvidia GTX Titan Black with 6GB memory and 2880

CUDA cores, and an Nvidia GTX 1080 Ti with 11GB memory and 3584 CUDA

cores. Whilst these are both consumer graphics cards, they are both enabled for

Nvidia’s CUDA parallel processing platform and have high performance as GPU

processors, used with Matlab’s Parallel Computing Toolbox. The availability

of two GPU cards and more than two CPU cores makes it possible to operate

the GPUs in parallel, as well as distributing tasks over the cores of the GPU,

though as explained in Section A.3. However, the system only supports 16 lanes,

meaning that only 8 lanes are available for each GPU when both are used; a

more powerful CPU/motherboard combination could provide 16 lanes to each

GPU, increasing computational throughput.

A.2 Choice of programming language

Which programming language and environment to use is a critical choice, typic-

ally made very early on in a project and difficult to change once started. Choice

of language can affect, inter alia:

1. Ease of programming, including interface, debugging, reuse and making

changes;

2. Speed of execution, analysis of computational efficiency and making im-

provements to execution time;

3. Availability of ready-made code, whether third party or proprietary,and

ability to audit and override code;

4. Implementation of specific computational features pertinent to the specific

task a researcher is attempting;

5. Extent and ease of use of parallel processing;
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6. Quality and ease of use of graphics, in particular visualization tools;

7. Stability, reliability and upgradabilty.

The specialized MOEA described in Chapter 4, as well as many investigations

done behind the scenes to investigate and verify theoretical results, was de-

veloped entirely in Matlab Versions 2014b - 2018a, as published by Mathworks

Inc. In addition, Maple Versions 18 and 2016-2018 was used for algebraic in-

vestigation and generation of certain graphics. Maple has the advantage that

one can work directly with algebraic formulae, and generate results and graph-

ics therefrom, making it useful for investigation, verification and visualization,

particularly in Chapter 2. Although Maple does have programming capabilities,

they are rudimentary compare to Matlab, so Maple was only used in conjunction

with the MOEA with respect to investigations of more theoretical aspects.

With regard to points 1-7 above, below is a brief summary of how, with

the benefit of extensive use on this project, Matlab fares as a development

environment for a specialized MOEA:

1. Matlab is a high level programming language with a helpful programming

interface, extensive documentation, and reasonable debugging tools. It is,

with certain exceptions noted later, relatively tolerant and informal, in

the sense that many different syntaxes can be used to achieve a desired

result, and indeed object oriented code can be mixed with standard or

legacy code fairly freely. Changes can be made on he fly without the need

to recompile code, as Matlab uses a just-in-time compiler, and it is easy

to build up a library of specialized function which can freely call each

other in a nested manner. Memory allocation and garbage collection are

automatic, and in general there is little need to worry about the interface

with hardware (other than keeping within memory limitations); the only

exception being parallel processing, as discussed in Section A.3.

2. Perhaps the greatest argument against using Matlab historically has been

computation speed, in particular compared to lower level languages such

157



as C. However, since the new Matlab execution engine was implemen-

ted in Release 2015b, code has run noticeably faster - informally, some

key routines used in the MOEA have been observed to run several times

faster - and in any case, many low-level functions in Matlab are reputedly

compiled in C/C++ anyway (and many other languages - the interface is

reportedly written in Java, CUDA is implemented for GPU computing,

and use of other languages has been reported for specialized use1. Many

routes exist to improving execution time in Matlab, including, but not

limited to, exploitation of its strength in manipulation of large matrices;

vectorization; use of Matlab executable (MEX) files to call routines written

in C/C++; parallel processing; and use of object-oriented programming.

All of these topics are discussed in varying degrees of detail in following

sections. Matlab also features Profiler, a tool that highlights the most

computationally intensive parts of a user’s code, at any level from highest

(for example, in the context of the specialized MOEA, that calculation of

fitness functions is consuming a large portion of CPU time) to the lowest,

i.e. specific subroutines.

3. Matlab uses a wide variety of toolboxes to provide specialized functions

to the user, which have the advantage of having been extensively tested

and optimized by Mathworks Inc. yet are generally written themselves in

Matlab, meaning they can be examined by the user and if necessary, over-

ridden in various ways to meet specific needs. A less desirable side-effect

is that useful functions are often contained in toolboxes that a researcher

in a given field might not think of looking at, or have access to (given that

each toolbox must be bought separately); for example, graph theory tools

are to be found in the Bioinformatics Toolbox. Beyond the toolboxes,

many users share stand-alone functions for specific purposes or develop

entire toolboxes that are shared online. However, such third party soft-

ware is certainly not guaranteed to be bug free, accurate (in performing as
1http://www.walkingrandomly.com/?p=4333
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specified) or efficient. The MOEA avoided using such third party software,

but extensive use was made in testing of a third party tool to generate the

FITS, as described in Section 5.3.

4. Matlab started life as a matrix manipulation library, and remains partic-

ularly good at this, in particular fast execution of many matrix manipu-

lation and calculation functions, including very large and sparse matrices.

Given that, as can be seen in the explanations in Chapter 3, the MOEA

relies heavily on matrix functions, Matlab is ideally suited to develop-

ment and execution of some of the core algorithms within the specialized

MOEA, especially on large datasets with high dimensionality.

5. Matlab implements parallel processing across multiple CPUs and GPUs

using the Parallel Computing Toolbox and for larger implementations, the

Distributed Computing Server. Parallel computing in Matlab is discussed

in more detail in Section A.3.

6. Whilst lacking the range of visualization tools available from specialist pro-

grammes such as Tableau, Matlab nonetheless has considerable flexibility

in graphics production tools, as can be seen from the variety of visualiza-

tions reproduced in Chapter 5; the graphics in Chapter 2 were generated

using both Matlab and Maple. Most of these graphics were produced not

by using one-off commands, but by writing customized, reusable functions,

often themselves incorporating specialized graphics functions contained in

Matlab toolboxes; for example, the silhouette visualizations in Section 5.4

use functions contained in the Statistics and Machine Learning toolbox.

7. As a commercial product developed, refined, extended and updated over

decades, Matlab is very stable, and few crashes were experienced during

development and testing of the specialized MOEA or in other preparat-

ory work, though mistakes in programming can cause non-terminating

loops which occasionally cannot be stopped other than by exiting the pro-

gramme. Runtime errors are handled by terminating the user programme
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within Matlab and returning control of the interface, usually with a (more

or less) useful error message. Matlab is upgraded twice a year, generally

with a high degree of backwards compatibility.

Hence, whilst no doubt other programming languages could have been used suc-

cessfully, Matlab fulfilled the requirements for the development and implement-

ation of the specialized MOEA well. For a high-usage or commercial applica-

tion, after further development it might be preferable to convert the programme

to another language, but note that Matlab also has a range of add-on Coder

products that can automate a good deal of this process.

A.3 Use of parallel processing in Matlab

Matlab’s Parallel Computing Toolbox provides tools for the use of multiple

CPUs and/or multi-core CPUs to run programmes in parallel, but also tools

to use a GPU with many cores - modern GPUs have thousands - for parallel

processing, and more recently, has introduced specific features to handle the

use of multiple GPUs, themselves running in parallel, as well as support for dis-

tributed clusters of CPUs and for cloud computing platforms including Amazon

Web Services and others. What follows below is a description of the deployment

of a local system with multiple CPU cores and multiple GPUs, as this was the

type of system used in the development and testing of the specialized MOEA .

A.3.1 Implicit parallel processing

Matlab uses parallel CPU processing “under the hood” for many low level func-

tions, in particular operations on arrays. Continuous improvements to the way

Matlab uses multiple CPU cores without explicit instruction from the user have

increased performance, but also mean that in many circumstances (but by no

means all), programmes run as fast or faster without explicitly coding parallel

CPU loops. It is difficult or impossible to predict what will work best; often, he

only way is to try both and measure performance. On the other hand, GPUs if
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present are never used by Matlab unless specifically instructed.

The programmer can also often significantly increase execution speed by use

of vectorization, which has been a key feature of Matlab since its early days.

Vectorization is a large topic, a proper treatment of which is beyond the scope

of this chapter, but the basic idea is that by putting variables into arrays and

operating on the whole array, rather than single variables sequentially, one can

speed up execution substantially, in part by Matlab’s use of multiple CPU cores

in parallel. The basic way to do this is by using vector valued functions, but there

are more advanced methods, using specific Matlab constructs such as arrayfun,

together with anonymous functions (very simple compact functions that are

not stored separately in a function file). Vectorization is always advised in the

documentation as the first step in speeding up code; however, the sophisticated

optimization in recent versions of the execution engine has reduced the relative

advantage of this technique, the exception being in GPU processing, as we shall

discuss in Subsection A.3.3.

A.3.2 The use of the parfor syntax for CPU parallel pro-

cessing

The implementation of CPU parallel processing in Matlab is superficially very

simple. A pool of “workers” (objects presenting CPU cores) is initialized using

the parpool command, or by certain other means, and parallel processing is in-

voked by substituting the parfor command for other types of loop commands (

for or while). Matlab automatically divides processing of iterations of the loop

between workers, in theory cutting loop execution time substantially. There are

two important caveats however. Firstly, one may use parfor at only one level

of nesting, whether within a particular function or where functions are nested.

Whilst Matlab will allow nested parfor commands, tasks can only be divided

amongst multiple workers at one level, so nesting will not improve performance

and may detract from performance as Matlab wastes time dealing with redund-

ant allocations. Secondly, in general dependency between different iterations is
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not allowed Matlab deals with code within a loop in very particular ways that

require much tighter programming following particular rules which do not apply

to regular execution.

In Matlab programmes generally, one does not have to explicitly declare

a type for a variable, and in normal (i.e. non-parallel) Matlab programming

one has to spend little time worrying about what role a variable will pay in

programme execution, as opposed to its type (structure, matrix etc.) and one

does not always even have to explicitly declare a type. In parfor loops, however,

there are several different roles played by variables that are handled differently,

namely:

• Loop variables which are used to index the loop execution;

• Temporary variables which are created and used solely inside the loop;

• Reduction variables whose values change across loops but without refer-

ence to loop execution order;

• Broadcast variables, which are defined before and whose values are used

within the loop but not assigned or changed within the loop;

• Sliced variables, which are arrays or other similar constructs where differ-

ent parts of the variable are operated on by different iterations within he

loop.

It is typically the last two types of variable that cause problems. Broadcast

variables can impose a heavy communication burden which can slow down ex-

ecution, possibly to below that of a normal loop. However, such code will

typically run. The trickiest to deal with are sliced variables, which can pre-

vent code from running for many reasons, often difficult to analyse even given

error messages from Matlab. The most common issue is that Matlab cannot

work out whether there are dependencies between different parts of the same

variable, and therefore cannot assign different workers to different iterations.

162



However, there are many other wrinkles. For example direct assignment

to arrays indexed by the parfor loop within a nested for loop is not generally

possible, and the same can apply to other types of multilevel assignment, for

example assignment to objects using dot notation. Frequently a work-around

can be found by first assigning to a temporary variable and then to a sliced

variable, or else by writing a new function and calling that function within the

parfor loop, rather than the underlying code, but these measures still have to

avoid cross-iteration dependencies to be allowed within a parfor loop.

A.3.3 GPU processing

The use of GPUs to speed up execution is a relatively recent addition to Matlab,

and effective (or at least easy) use of multiple GPUs is more recent still. GPUs

have a fundamentally different architecture which means that they can contain

many more cores in a single chip than a CPU; however, the limited instruc-

tion set means typically that they can only execute very simple operations, or

combinations thereof, and typically do not handle logic operations, in particular

branching, well, if at all. When well implemented in very suitable applications

however, for example the calculation of realized covariance on large arrays as

described in Chapter 4, the speed improvements can be very large, depending

on the relative power of GPUs v CPUs in the system. Whilst in this project

speed increases of the order of many tens or even hundreds of times which are

sometimes reported from testing were rarely is ever seen, improvements of sev-

eral times or even more than 10x were observed in some cases. However, the

degree of speed improvement depends critically on the problem addressed and

the techniques employed; in many cases, use of the GPU can slow execution,

possibly substantially. This is because any data and variables to be used, includ-

ing empty arrays, must first be moved from computer general-use memory to

the dedicated GPU memory, and if results are required for execution of code by

the CPU, then the necessary data must be moved into general memory. These

processes can create a communication overhead that can more than offset any
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speed gains from the portions of code executed on the GPU.

The main methods for moving data from main memory to the GPU and

back are the function gpuArray and its mirror function gather. However, where

possible it can be more efficient to initiate data on the GPU. A substantial subset

of Matlab built-in functions, including those in toolboxes, have an overridden

version that works with the GPU, an option to work with the GPU, or in

some cases, will work with no change to coding with data on the GPU and will

return data also on the GPU. In particular, it is possible to initiate arrays -

blank, filled with ones or zeros, random numbers or defined sequences - on the

GPU with no transfer from main memory, saving substantially on computation

time. Best practice is as far as possible to initiate variables this way, and to

transfer any other data from main memory just once at the beginning of a

programme or subroutine and once back when processing is complete. This

requires programming everything on the GPU, as far as possible.

The issue is that many commonplace Matlab functions either do not work

at all on the GPU, or have some restrictions on how they are used or available

options. This means it is often necessary to programme in a different way, or

to find ways of producing the same results s a given function but using simpler

functions that will work on the GPU. An advantage however is that one does

not generally face the kinds of difficult-to-trace errors that parfor throws - the

issue is rather finding a way to produce a desired result with more limited

tools. Finally, another option is to run MEX files containing CUDA code, but

this requires additional knowledge of CUDA and how the language controls the

GPU.

Loops and branching are difficult to perform on the GPU as common con-

structs like if...then statements and for loops cannot be directly executed on

the GPU. Loops however execute reasonably well in many cases with the loop

itself run on the CPU and all the rest of the code on the GPUs as long as data

is not transferred between GPU and main memory during the loop. However,

if...then statements present more of a challenge as data transfer is usually un-
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avoidable. One workaround for both loops and conditional statements is the

use of the GPU versions of arrayfun, bsxfun and pagefun, which can replicate

the effect of loops and can also use conditional commands within the body of

user-defined anonymous functions, though careful programming is required, and

actual results in terms of speed are not always as expected.

In recent versions of Matlab, use of multiple GPUs has become quite simple,

as Matlab will now automatically assign workers within a pool created by parpool

to GPUs in an optimal way, though it is also possible to assign them manually.

Efficient use of multiple GPUs with automated worker allocation requires use of

parfor loops or of other functions that explicitly support multiple GPUs. The

only additional complication is that one must specify which GPU data resides

on and keep track of this. Moving data between GPUs is best avoided for similar

reasons to those for avoiding moving data between GPUs and main memory.

Another complication in using GPUs is that some degree of explicit memory

management is often required. In general with CPU computing in Matlab, one

has to do little more than ensure one does not throw out of memory errors. In

GPU computing, firstly the dedicated memory available to the GPU is often

rather smaller than main memory, meaning care must be taken when transfer-

ring large amounts of data. Secondly, if using multiple GPUs, one must keep

track of memory usage on each GPU. Finally, an irksome feature of GPU com-

puting is that the GPU memory tends to fragment over time leading to slower

execution speed, less available memory and potentially, out of memory errors

even when memory used appears to be within limits. The only solution to this

appears to be to periodically take all the data off the GPU, reset it and move

the data back, which can add substantially to execution time.

GPU-enabled versions of several key functions, including fitness evaluation

and tournament selection, were developed and tested successfully in single runs

of the MOEA, but not used in the version of the MOEA with multiple runs

in parallel on the CPU used for testing in Chapter 5, despite working well on

single runs with significant speed increases over CPU-only versions. The main
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reason was that the memory fragmentation issue over many runs in testing

made the MOEA unstable and prone to crash when available memory on the

GPU reduced to below requirement. Further development would be necessary

to solve this issue, unless future updates to Matlab take care of fragmentation

automatically.

.
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Nomenclature

α proportion of the population sampled for tournaments in a generation

β expected growth rate of the elite population: E [r1g] = β · r1g

Ω set of constraint parameters

Ňt total population available across all permutations after the t-th tourna-

ment in Scheme C

Fκ fine-grained partitioning

Kκ coarse-grained partitioning

Sk coarse-grained subseries

Wj fine-grained subseries

Rg vector of rank sizes: E [Rg] =
[
E [r1g] , E [r2g] , . . . , E [rng]

T
]
.

ω number of objectives

ρg ratio of the number of individuals in rank 1 to the overall population

after selection at generation g: ρg = r1g/N

τ Tournament size parameter

Ñ number of unique fitness vectors in the population

CT value of the solution obtained from an algorithm

G total number of generations in a run
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G∗ expected number of generations to convergence

I number of subgroups (islands)

N population size

n number of ranks or fitness values

O set of vectors of fitness values

psamp selection probability

psel sampling probability

pvic victory probability

R+
ig total number of individuals of rank i and above at generation g

TC computational cost of an algorithm

Kκ coarse-grained partitioning

ARCH(p) p-th order autoregressive conditionally heteroskedastic model

CPD Change point detection

CUDA NVIDIA’s language for GPU computing

DBHT Directed Bubble Hierarchical Tree

DGP data-generating process

DM decision-maker

DSAV discrete autoregressive tochastic volatility

EA Evolutionary algorithm

ES evolutionary strategies

FBM fractionally integrated Brownian motion

FITS fractionally integrated time series
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GA genetic algorithms

GARCH(p, q) generalized autoregressive conditionally heteroskedastic model

GMM Generalized Method of Moments

GP genetic programming

ICSS iterated cumulative sum of squares

L Number of observations per day

MC Monte Carlo simulation

MCDA multi-criteria decision analysis

MDL Minimum description length

MEX Matlab executable file type

ML maximum likelihood

MMAR Multifractal Model of Asset Returns

MOEA multiobjective evolutionary algorithm

MSE multiscale entropy

MSM Markov-Switching Multifractal

NFL no free lunch theorems

PF Pareto front

PF Pareto front

PGA parallel genetic algorithm

PMX partially-mapped crossover

PSO particle swarm optimization

SV Stochastic volatility
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T number of samples in time series

TSP travelling salesman problem
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