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Abstract 
 

This thesis presents three chapters examining different aspects of market liquidity. The first 

chapter explores whether investor sentiment has the power to forecast stock market liquidity. 

The chapter employs the Amihud (2002) illiquidity measure as a proxy for price-impact, the 

bid-ask spread as a transaction cost measure of liquidity, and the individual investor sentiment 

spread and the Baker and Wurgler (2006) sentiment index to represent investor sentiment. 

Analysing NYSE stocks from 1994 to 2015 over weekly and monthly out-of-sample forecast 

horizons, the study finds investor sentiment is a statistically significant predictor of stock 

market liquidity. The second chapter explores the so-called “presidential gap” in U.S monetary 

aggregates. By examining monthly data from 1959 to 2017, the study finds a positive and 

significant Democratic premium in the inflation adjusted growth rates of narrow money, broad 

money and the money multiplier. The Democratic premium remains statistically significant 

and economically meaningful in the M1 and M2 growth rates after controlling for 

autoregressive components and the distributed lags of the federal funds rate. Moreover, the 

chapter finds a partisan Fed chair is a statistically significant indicator to explain the 

presidential gap. Finally, the third chapter investigates the transmission of commodity prices 

to the illiquidity of 22 currencies relative to the U.S dollar. The chapter exploits a new monthly 

dataset of commodity terms of trade (CTOT) in a GVAR framework over the period between 

01/1994 and 12/2016. On the supply side, illiquidity of the currencies of less developed 

economies experience a significant and persistent fall following a local CTOT shock. On the 

demand side, the study finds a negative and persistent effect of a local CTOT shock on the 

illiquidity of most currencies, excluding highly liquid currencies. Finally, illiquidity of the 

currencies that are considerably exposed to commodity exporting and the currencies of smaller 

economies are significantly influenced by common commodity price shocks.   
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Overview 
 

Background and objectives of the study 

Liquidity is one of the fundamental building blocks of modern financial markets. It can perhaps 

be defined as easiness to execute market operations with little transaction cost, short time frame 

and minimal price impacts. As Easley and O’Hara (2004) explains, liquidity is hard to define 

but easy to feel, especially during crises.  

Market liquidity is not a unique concept for a specific market. It has implications for almost all 

segments of global financial markets. Understanding the drivers of market liquidity is of 

interest to investors, portfolio managers and policymakers. Especially in the recession period, 

market liquidity can dry up very quickly and cost financial institutions and tax payers much 

more than expected. Additionally, the theoretical models show that market liquidity can 

evaporate very quickly during a crisis through the interaction effects between lower prices and 

higher volatility as financial agents faces losses and higher margins (Brunnermeier and 

Pederson, 2009). Given the existence of leverage and moral hazard, liquidity can be insufficient 

when it is needed most (Acharya and Viswanathan, 2011). Therefore, understanding areas of 

market liquidity is of the utmost importance not just because of the interest of market players, 

but also to stabilize negative future outcomes by revealing the interactions of market liquidity.  

This thesis studies three aspects of market liquidity, namely, forecasting stock market liquidity, 

exploring the US monetary aggregates under different political regimes and the transmission 

of commodity price to FX liquidity. 

Examining the stock market, I investigate whether investor sentiment has a statistical power to 

forecast market liquidity. Investor sentiment is linked with market liquidity by direct volume 

channels (Baker and Wurgler, 2006; Baker and Wurgler, 2007; Baker and Stein, 2004) as well 
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as indirect behavioural channels (DeLong et al., 1990; Liu, 2015; Kahneman and Riepe, 1998; 

Gervais and Odean, 2001). However, none of these papers attempts to assess whether investor 

sentiment can forecast stock market liquidity. On the other hand, the existing studies in 

liquidity forecasting are bounded by either short-term quote predictability (Hardle, Hautsch 

and Mihoci, 2012) or focus on modelling liquidity risk (Weiß and Supper, 2013) rather than 

liquidity itself. NYSE liquidity is characterized by employing transaction cost, price-impact 

measures, and investor sentiment using sentiment spread from the American Association of 

Individual Investor and the Baker and Wurgler (2006) sentiment index. By examining more 

than 2000 NYSE stocks from 1994 to 2016 in a weekly and monthly out-of-sample forecasting 

framework, I show that investor sentiment can be a useful indicator to forecast the NYSE 

liquidity 1-4 steps ahead in the weekly and 1-2 steps ahead in the monthly estimations.  

From the aspect of monetary liquidity, I investigate U.S. monetary aggregates within different 

political regimes in the second chapter. Previous studies document a striking phenomenon in 

U.S. political-economy cycles. The U.S. economy (Blinder and Watson, 2016) and stock 

markets (Santa-Clara and Valkanov, 2003; Pastor and Veronesi, 2017) perform significantly 

better under Democrat presidencies than Republican presidencies. Despite several attempts 

(Santa-Clara and Valkanov, 2003; Pastor and Veronesi, 2017; Blinder and Watson, 2016; Sy 

and Zaman, 2011) to provide explanations of this partisan gap, the phenomenon is still 

considered as a puzzle. Given the importance of monetary aggregates to the economy and stock 

markets (Thorbecke, 1997; Chen, 2007), it is surprising that no previous studies consider U.S. 

monetary aggregates under different political regimes. As the “partisan” model of political 

business cycles supports the idea that real output may become significantly different under the 

Democrat and the Republican presidencies, the chapter expects that the money base, M1 and 

money multiplier may also be in line with the partisan cycles. After defining the main monthly 

U.S. monetary aggregates from 1959 to 2017, I carry out the diagnostic tests, adjusting the data 



10 
 

from inflation, trends, unit roots and seasonality. I find that the partisan gap in narrow and 

broad money indicators is even more pronounced than GDP growth and stock market 

performance, while it is less noticeable in the case of the money multiplier. The Democratic 

premium is found to be 5.15 percent and 9.12 percent for M1 and M2 growth rates, respectively. 

The Democratic premium remains statistically significant and economically meaningful in M1 

and M2 growth rates after controlling for the autoregressive components and the distributed 

lags of the federal funds rate. Moreover, the chapter finds a partisan FED chair is a statistically 

significant indicator to explain the presidential gap. In other words, the democratic Fed chair 

gap is found to be more robust than the democratic presidential gap in the growth rates of the 

monetary aggregates.  

In the final research chapter, examining foreign exchange (FX) market, I investigate the 

transmission of commodity price movements to the illiquidity of 22 currency pairs relative to 

the U.S dollar.  The foreign exchange market is considered to be highly liquid. As of 2016 data, 

the average daily market turnover was $5.1 trillion per day (BIS, 2016). In recent years, FX 

liquidity has received increasing attention. Several studies (Banti et al., 2012; Banti and 

Phylaktis, 2015; Karnaukh, Ronaldo and Soderlind, 2015; Mancini et al., 2013; Menkhoff et 

al., 2012) explore the drivers of FX liquidity and find the TED spread, volatility as the main 

commonality and local money market and capital flows as the main cross-sectional 

determinants. However, none of these studies considers commodity prices as a determinant of 

FX liquidity. The linkages between commodity prices and international finance have received 

more attention in the exchange rate literature. The concept of “commodity currencies” indicates 

that commodity price is an important driver of the exchange rate movements under the sticky-

price model of an open economy with non-traded goods, a portfolio balance model and the 

terms-of trade hypothesis (Chen and Rogoff, 2003; Chen, 2004). From other way around, 

similar findings document that exchange rates also influence or Granger-cause commodity 
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prices as they are determined by the net present value of fundamental asset prices (Zhang et 

al., 2016; Obstfeld and Rogoff, 1996; Engel and West, 2005; Chen at al., 2010; Alquist et al., 

2012). Finally, some studies (Ferraro et al., 2015; Chen et al., 2010; Zhang, et al., 2016) 

document that commodity prices have the power to forecast exchange rates or the other way 

around, particularly in the case of “commodity currencies”. Commodity prices may influence 

FX liquidity from different channels. From the demand side perspective, commodities are a 

vital part of international trade flows, hence can be a determinant of FX liquidity. Since 

commodity prices are one of the factors that link exchange rates and economies each other, it 

would be a potential driver of FX liquidity from the commonality perspective. Finally, as 

commodity prices may significantly influence the local funding conditions especially in 

economies which are significantly exposed to exporting commodities, they affect FX liquidity 

from the supply side perspective. Considering the above channels that commodity prices may 

transmit to FX liquidity, it is clearly worthwhile exploring whether commodity prices are a 

determinant of FX liquidity.   

To better estimate local effects of commodity prices shocks, I assemble a new, monthly dataset 

for commodity terms of trade. The existing dataset has been improved by preparing it at a 

higher (monthly) frequency, updating trading weights every year in countries’ trade 

composition and extending the data to the end of 2016.  By estimating, the transmission of 

commodity prices to FX liquidity in a rich, GVAR framework, I find that local CTOT shocks 

have a negative and persistent effect on illiquidity of the currencies of less developed 

economies in the supply side estimation, all of the currencies excluding highly liquid and some 

Asian currencies in the demand side estimation, of the commodity and less developed 

currencies in the estimation expressing commodity prices as commonality factor.  
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Contributions of the thesis  

The thesis can be beneficial to researchers, investors and policymakers. The thesis contributes 

to the literature in three areas of market liquidity from several aspects. It provides major 

contributions to the liquidity forecasting, money supply and FX liquidity literature, and other 

contributions and suggestions relate to the market microstructure, behavioural finance, U.S 

presidential gap, commodity prices and GVAR areas. The contributions to the literature can be 

structured as follows. 

The thesis contributes to the market microstructure literature in the first chapter. By analysing 

more than 2000 stocks on the NYSE over more than two decades, the thesis provides new 

empirical work to forecast stock market liquidity by using investor sentiment indicators. It finds 

that investor sentiment is a useful indicator to forecast the transaction cost and price-impact 

measures of stock market liquidity in the weekly and monthly out-of-sample forecast 

framework. The chapter also contributes to the scarce literature on liquidity forecasting. 

Additionally, the chapter suggest to the behavioural finance literature that simple survey 

measures of investor sentiment might become more successful measurements than academic 

proxies such as Baker and Wurgler (2006).  

The thesis makes a significant contribution in the second chapter by exploring the US monetary 

aggregates under different political regimes from 1959 to 2017. The chapter contributes to the 

money supply, monetary policy and the U.S presidential puzzle literature by providing 

empirical evidence that there is a positive and significant Democratic premium in the inflation 

adjusted growth rates of narrow money, broad money and the money multiplier. The chapter 

emphasizes that the partisan Fed chair is a statistically significant indicator to explain the 

presidential gap and the democratic Fed chair gap seems statistically more robust than the 

democratic presidential gap in the growth rates of the monetary aggregates. By emphasising 
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these findings, the chapter suggests to the U.S. presidential puzzle literature that it might be 

more worthwhile to focus on the local scale political affiliation rather than the country wide 

presidential gap. Finally, the chapter suggests to the political theory and all relevant 

stakeholders that the role of political affiliation in deriving successful economic and financial 

outcomes is important. 

The thesis provides major contributions to international finance literature in the third chapter. 

First, it provides a new, monthly dataset for commodity terms of trade (CTOT). The chapter 

improves the current CTOT dataset by constructing at a monthly frequency, updating trade 

weights of countries’ trade composition and extending the dataset to the end of 2016. Second, 

the chapter provides rich empirical work for the transmission of commodity prices to FX 

liquidity. The chapter finds that commodity price shocks significantly matter to the cross-

sectional illiquidity of most floating exchange rates. Commodity prices are also found as a 

significant commonality factor of FX liquidity.  

The thesis can be useful to investors. In the first chapter, investors can benefit from the results 

by having a better vision of the future direction of stock market liquidity in a straightforward 

forecasting framework. Investors specializing in liquidity investing can also benefit from the 

results of the third paper to better model the illiquidity component of a given currency by using 

the relevant information on commodity prices.  Policymakers and investors can both benefit 

from the findings of the second chapter: (i) The democratic Fed chair gap seems statistically 

more robust than the democratic presidential gap in the growth rates of the monetary 

aggregates. (ii) It might be worthwhile to focus on the local scale political affiliation rather 

than the country wide presidential gap. (iii) The role of political affiliation in deriving 

successful economic and financial outcomes is important.  
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Structure of the thesis 

This thesis presents empirical investigations in the stock market, monetary and FX areas of 

market liquidity. The main body of the thesis is structured in the following three chapters. The 

chapters are followed by concluding remarks section that summarize the thesis, highlights the 

limitations and suggests the areas for further research. 

The first chapter is an empirical investigation that examines the power of investor sentiment to 

forecast stock market liquidity at the weekly and monthly horizons from 1994 to 2015. The 

chapter defines bid-ask spread as a transaction cost measure and Amihud (2002) as a price-

impact measure of liquidity. In the meantime, investor sentiment is defined using investor 

sentiment spread from the American Association Individual Investor and Baker and Wurgler 

(2006) sentiment index. The chapter applies all common stocks of the NYSE in a 

straightforward forecasting framework. 

The second chapter explores U.S monetary aggregates under different political regimes from 

1959 to 2017. The chapter introduces several empirical models to control the main possible 

drivers of monetary aggregates that could potentially sweep away the effects of the partisan 

gap. Additionally, the chapter explores the partisan gap in the Fed chairman and model with 

potential determinants. 

The third chapter is an empirical work that investigates the transmission of commodity prices 

to the illiquidity of 22 currencies relative to the U.S dollar. The chapter exploits a new monthly 

dataset of commodity terms of trade (CTOT) in the GVAR framework over the period between 

1994:01 and 2016:12. The study explores the transmission of commodity prices to FX liquidity 

in demand side and supply side equations of liquidity as well as in the equation expressing 

commodity prices as commonality factor.  
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Chapter 1. Does investor sentiment forecast stock 

market liquidity?  

1.1 Introduction 
 

Forecasting stock market liquidity is of interest to investors, portfolio managers and policy 

makers. Particularly in the recession period, market liquidity can evaporate very quickly and 

cost financial markets much more than anticipated. Therefore, modelling and forecasting 

liquidity is important not just because of the interest of the market players but also to stabilize 

negative future outcomes that arise from liquidity shortages in the markets.  

Nevertheless, a few natural and practical challenges remain in the existing literature that 

prevent sophisticated liquidity modelling and forecasting framework. The first challenge is the 

fact that unfortunately, market liquidity is an unobservable phenomenon as the market data 

cannot directly reveal the liquidity component. Since the first ever comprehensive attempt by 

Roll (1984) to extract the liquidity component from the data, several metrics have been 

suggested to adopt a proxy for the liquidity component. As this paper does not aim to test the 

validity of the existing measurements, we focus on comparative studies (Goyenko, Holden and 

Trzcinka, 2009) to adopt appropriate liquidity metrics. The second shortcoming is practical 

limitations of current studies. In other words, existing studies either are constrained by short 

term quote predictability (Härdle, Hautsch and Mihoci, 2012) or focusing on modelling 

liquidity risk (Weiß and Supper, 2013) rather than liquidity itself.  

Investor sentiment as a concept is considered as an important contribution in behavioural 

finance theory.  Investor sentiment, in a broad sense, can be defined as investors’ optimistic 

and pessimistic biases while investing in the financial markets (Baker and Wurgler, 2006). 

Although, several proxies are suggested to capture different aspects of investor sentiment, 
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Baker and Wurgler (2006), Baker and Wurgler (2007) develop a conceptual proxy for investor 

sentiment designed to capture possible deriving factors under an umbrella.  Investor sentiment 

is linked with market liquidity with direct volume channels (Baker and Wurgler, 2006; Baker 

and Wurgler, 2007; Baker and Stein, 2004) as well as indirect behavioural channels (DeLong 

et al., 1990; Liu (2015); Kahneman and Riepe, 1998; Gervais and Odean, 2001). However, 

none of these papers attempts to assess whether investor sentiment can forecast stock market 

liquidity.  

In this study, we aim to test whether stock market liquidity can be forecasted by using investor 

sentiment indicator. In other words, the paper assesses whether investor sentiment has the 

power to forecast stock market liquidity over the weekly and monthly horizons. To maintain 

the validity of the results, we apply both transaction cost and price-impact measures of 

liquidity. Regarding investor sentiment, we utilize a survey measure as well as abovementioned 

academic proxy. 

After carrying out the cross-metrics empirical analysis in the weekly and monthly out-of-

sample forecasting framework, we find that investor sentiment as a behavioural proxy can 

become a useful indicator to forecast stock market liquidity. The forecast performance is found 

to be better in the weekly estimations with the survey-based sentiment measure rather than the 

monthly estimation with the academic proxy.  By contrast, the survey measure can forecast the 

NYSE liquidity better than the Baker and Wurgler (2006) sentiment index in monthly 

frequency, as well. 

This chapter contributes to the liquidity forecasting literature by finding a statistically 

significant predictor (i.e investor sentiment) which can successfully forecast stock market 

liquidity at the weekly and monthly frequencies. Additionally, the forecasting work does not 

require on heavy computational burden as it is merely carried out in the OLS framework. 
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Therefore, investors can benefit it and easily use publicly available investor sentiment 

indicators to have a vision on the future direction of stock market liquidity. The chapter also 

contributes to the scarce literature on the linkage between investor sentiment and market 

liquidity.  

The rest of this chapter is organized as follows. The second section reviews the literature on 

the theoretical link between market liquidity and investor sentiment as well as featured works 

on liquidity forecasting and well-known academic liquidity metrics. In the third section, we 

describe applied liquidity and investor sentiment indicators in detail, present the forecasting 

methodologies and the forecasting performance measurements. The fifth section outlines the 

results and the forecasting power of the model relative to the benchmark. In the last section, 

we emphasize the major findings and summarize the paper with concluding remarks. 

1.2 Literature review and theoretical underpinnings 

 

A wide range of the market liquidity measures are applied in the academic literature. For 

instance, in the context of the price-impact relationship, market liquidity has been defined as 

the inverse of the price sensitivity to order flows (Kyle, 1985). In his effective bid-ask spread 

setup, Roll (1984) defines liquidity as the negative serial dependency between successive price 

changes. In the transaction cost view, a variety of spread measures are available in market 

microstructure works. Meanwhile, investor sentiment as a conceptual framework is proposed 

by Baker and Wurgler (2006) to characterize optimism or pessimism about the future stock 

market performance. Nevertheless, some survey-based sentiment measures, of which one is 

applied here, are available designed to capture direct investor opinions.  
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1.2.1 Market liquidity and investor sentiment 

 

Investor sentiment may influence to market liquidity through three distinct channels: 

1.2.1.1 Noise trading 

In the context of illiquidity, Kyle (1985) classifies market participants into three groups: noise 

trader, the insider and market makers. As any of these traders are affected by investor 

sentiment, market liquidity will be affected as well. When noise trading is larger, the market 

makers believe that the proportion of the insider trading is lower. This belief subsequently 

induces market makers to adjust the price by a smaller amount which means the price impact 

caused the order flow is lower and liquidity increases.  

Moreover, DeLong et al. (1990) show that noise traders aggressively short sell stocks if their 

sentiment is high (bullish) or low (bearish) by means of overvaluation or undervaluation of the 

stock price. As noise traders misperceive the future market prices, higher sentiment induces 

noise trading to sell or buy aggressively. In addition, Liu (2015) emphasizes real world short 

sale constraints and claims that the noise traders can only trade when their sentiment is high. 

Consequently, the higher sentiment induces noise traders to trade more aggressively. Thus, the 

synthesized results from these two studies stimulates the conclusion that higher investor 

sentiment generates larger noise trading which in turn stimulates lower price impact of order 

flow. 

1.2.1.2 Inefficient market 

Baker and Stein (2004) differentiate market makers into rational and irrational categories. In 

this framework, rational market makers correctly infer the insider information whereas 

irrational market makers underreact to insider information as they are biased by 

overconfidence.  If the proportion of irrational market makers is higher relative to the rational 
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group, a lower price impact will be observed in the market, as the underreaction bias does not 

stimulate the correction of prices inflated by insiders.  

On the other hand, irrational market makers only exist if investor sentiment is higher and 

constantly overvalues the intrinsic value of the stock. Consequently, as investor sentiment 

induces higher irrational market makers, the market will be less efficient, the lower price 

impact will be observed which in turn stimulates more market liquidity. 

1.2.1.3 Overconfidence 

The Kahneman and Riepe (1998) research on investor psychology reveals that investment 

decision making process can be mostly affected by sentiment and overconfidence biases. From 

the psychological perspectives, optimistic investors are more likely to be overconfident which 

induces more aggressive trading, provides more market liquidity. Moreover, Gervais and 

Odean (2001) argue that past investment success generates additional overconfidence and make 

noise traders excessively bullish in the following investment cycles.  

In summary, the literature reveals investor sentiment may increase stock market liquidity 

through the channel that irrational market makers psychologically biased by overconfidence 

trade more aggressively in the inefficient markets. However, the reverse causality relationship, 

more clearly, market liquidity increasing investor sentiment might exist, although there is no 

empirical work to support it. 

1.2.2 Liquidity forecasting 

 

The liquidity forecasting literature is mostly bounded by forecasting monetary aggregates. 

Central Banks are closely interested in making strong projections on the expected amount of 

the money aggregates to make policy decisions on interest rates and financial stability. 
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However, published literature on forecasting market liquidity is limited by a few papers which 

attempted to model the dynamics of bid and ask curves.  

Weiß and Supper (2013) is one of the pronounced papers in the liquidity forecasting literature 

which attempts to model the joint distribution of bid-ask spread and log returns of a stock 

portfolio by using Autoregressive Conditional Double Poisson and GARCH processes for the 

marginals and vine copulas for the dependence structure. This paper finds evidence for strong 

co-movements in liquidity and strong tail dependence between bid-ask spreads and log returns 

from intraday data. Afterwards, they forecast three types of liquidity-adjusted intraday Value-

at-Risk measurement by incorporating commonalities in liquidity and co-movements of stocks 

and bid-ask spreads. They find from the backtesting results that the proposed models perform 

well in forecasting liquidity-adjusted intraday portfolio profits and losses.  

A few papers (for example, Härdle, Hautsch and Mihoci, 2012) attempt to model the dynamics 

of ask and bid curves in a limit order book market applying a dynamic semiparametric factor 

model. Best bid and best ask quotes are modelled with appropriate factor loading using vector 

error correction specification. By using a sample from the Australian Stock Exchange, they 

find that the model can capture the spatial and temporal dependencies of the limit order book. 

A noteworthy contribution of the paper is finding evidence for short-term quote predictability. 

Moreover, they show that recent liquidity demand has the strongest impact on the pattern of 

the variable reflecting the current state of the market.  

1.2.3 Liquidity measures 

 

Liquidity is an unobservable variable as the market data cannot explicitly reveal the liquidity 

of a security.  However, a number of liquidity measures have been suggested in the academic 

literature to capture different aspects of liquidity. We discuss some of them which are 

considered robust relative to the benchmark spreads (Goyenko, Holden and Trzcinka, 2009). 
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Roll (1984) develops an effective bid-ask spread measure based on the efficient market 

hypothesis. Within the efficient market, they assume the fundamental price fluctuates randomly 

while trading cost negative serial dependency in successive market price changes. Let denote 

𝑉𝑡 be the unobservable fundamental value of the stock on day t. Assume that it evolves as  

                                                             𝑉𝑡 = 𝑉𝑡−1 + 𝑒𝑡                                                            (1.1)                                                                                                                                               

Where 𝑒𝑡 is the mean-zero, serially uncorrelated public information shock on day t.  

Afterwards, let 𝑃𝑡 be the last observed trade price on day t. Assume it is determined by 

                                                             𝑃𝑡 = 𝑉𝑡 +
1

2
𝑆𝑄𝑡                                                           (1.2) 

Where S is the effective spread and 𝑄𝑡 is a buy/sell indicator for the last trade that equals +1 

for a buy and -1 for a sell. Assume that 𝑄𝑡 is equally likely to be +1 or -1, is serially uncorrelated 

and is independent of 𝑒𝑡. Taking the first difference in the equation (1.2) and combining it with 

equation (1.1) yields  

                                                               ∆𝑃𝑡 =
1

2
𝑆∆𝑄𝑡 + 𝑒𝑡                                                  (1.3) 

where Δ is the change operator. Roll (1984) shows that the serial covariance is  

                                                              𝐶𝑜𝑣(∆𝑃𝑡, 𝛥𝑃𝑡−1) =
1

4
𝑆2                                           (1.4) 

Or equivalently 

                                                        𝑆 = 2√−𝐶𝑜𝑣(∆𝑃𝑡, ∆𝑃𝑡−1)                                             (1.5) 

Lesmond, Ogden and Trzcinka (1999) develop a liquidity measure called LOT which is an 

estimator of the effective spread based on the assumption of informed trading on non-zero-
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return days and the absence of informed trading on zero-return days. The LOT model assumes 

that the unobserved “true return” 𝑅𝑗𝑡
∗  of a stock j on day t is given by  

                                                                𝑅𝑗𝑡
∗ = 𝛽𝑗𝑅𝑚𝑡 + 𝜀𝐽𝑡                                                  (1.6) 

Where 𝛽𝑗is the sensitivity of stock j to the market is return 𝑅𝑚𝑡 on day t and 𝜀𝐽𝑡 is a public 

information shock on day t. It is assumed that 𝜀𝐽𝑡 is normally distributed with mean zero and 

variance 𝜎𝑗
2. Let 𝛼1𝑗 ≤ 0 be the percent transaction cost of selling stock j and 𝛼2𝑗 ≥ 0 be the 

percent cost of buying stock j. The observed return 𝑅𝑗𝑡 on stock j given by  

𝑅𝑗𝑡 = 𝑅𝑗𝑡
∗ − 𝛼1𝑗 when 𝑅𝑗𝑡

∗  < 𝛼1𝑗  

𝑅𝑗𝑡 = 𝑅𝑗𝑡
∗  when 𝛼1𝑗 < 𝑅𝑗𝑡

∗ < 𝛼2𝑗  

𝑅𝑗𝑡 = 𝑅𝑗𝑡
∗ − 𝛼2𝑗 when 𝛼2𝑗 < 𝑅𝑗𝑡

∗  

The LOT measure is found by getting the difference between the percent buying cost and the 

percent selling cost: 

                                                            𝐿𝑂𝑇 = 𝛼𝑗2 − 𝛼𝑗1                                                       (1.7) 

Another well-known and extensively used liquidity measure is a price-impact indicator 

developed by Amihud (2002). The author assumes it captures the daily response associated 

with one dollar of trading volume. In this paper, it is one of two liquidity measures we used to 

forecast. The equations and the formulas are discussed in the third section. 

Pastor and Stambaugh (2003) develop a gamma which is considered another robust price-

impact measure (Goyenko, Holden and Trzcinka, 2009). They get a gamma by running the 

following regression: 

                                                 𝑟𝑡+1
𝑒 = 𝜃 + 𝜑𝑟𝑡 + (𝐺𝑎𝑚𝑚𝑎)𝑠𝑖𝑔𝑛(𝑟𝑡

𝑒)(𝑉𝑜𝑙𝑢𝑚𝑒𝑡) + 𝜀𝑡       (1.8) 
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Where 𝑟𝑡
𝑒 is the stock’s excess return above the CRSP value-weighted market return on day t 

and 𝑉𝑜𝑙𝑢𝑚𝑒𝑡 is the dollar volume of on day t. Gamma should have a negative sign (Goyenko, 

Holden and Trzcinka, 2009) as it measures the reverse of the previous day’s order flow shock.  

Thus, the larger the absolute value of the Gamma, the larger price impact that will be observed. 

1.3 Data and Methodology 
 

In this paper, we utilize two different liquidity and investor sentiment measures to capture size 

and cost dimensions across the weekly and monthly analysis to match the frequency of the 

investor sentiment data.  

1.3.1 Liquidity measures 

 

Our data set for the liquidity measures encompasses all common stocks on the NYSE. The 

reason for choosing NYSE rather than NASDAQ, as emphasized in Amihud (2002), is the 

differences of microstructure between the NASDAQ and the NYSE stock returns. Another 

distinguishing feature of the markets is the reported volume figures. Trading is done via market 

makers in the NASDAQ operations which cause the artificial high volumes in the data whereas 

NYSE is operated by directly seller-buyer principle.  The daily data covering the period 

between 01/1994 and 12/2015 has been collected from CRSP. The main reason for the chosen 

period is to follow the findings in the literature that the stock market has become relatively 

more liquid in last two decades.   

On average year, around 2000 stocks were traded during the period studied. However, not all 

stocks are traded every day. To clean the data, we follow Chordia et al. (2000). Firstly, to avoid 

any influence of the minimum tick size, we delete a stock on a day its average price falls below 

$2. Chordia et al. (2000) include all the stocks traded at least once in ten trading days. However, 

since our analysis covers a bigger data set and following Amihud (2002), we impose more 
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stringent requirements, at least 200 out of 252, for the trading days of stocks to make sure that 

the empirical analysis represents the market characteristics as much as possible. After cleaning, 

we still have more than 1900 stocks of the NYSE in the data set.  

The first liquidity measure used in this paper is the well-known price-impact measure proposed 

by Amihud (2002). This metric is considered an illiquidity measure that originates from the 

idea in Kyle (1985) that the price responses to order flows. Goyenko, Holden and Trzcinka 

(2009) demonstrate that the Amihud (2002) illiquidity measure is highly correlated with TAQ-

based price impact measures. The measure is obtained as the absolute price change per dollar 

of daily trading volume for each stock each day. If we denote 𝜆 as the Amihud measure, then 

the metric is computed as follows: 

                                                         𝜆𝑡𝑑
𝑖 =

|𝑅𝑡𝑑
𝑖 |

$𝑉𝑜𝑙𝑡𝑑
𝑖                                                                          (1.9) 

Where 𝑅𝑡𝑑
𝑖  is stock 𝑖’s return on day 𝑑 of week 𝑡 and $𝑉𝑜𝑙𝑡𝑑

𝑖  is the same day dollar trading 

volume (measured in millions of dollars) of this stock. The weekly and monthly illiquidity 

measures for each stock are computed by averaging the daily measures within each week and 

month, respectively. 

                                                         𝜆𝑡
𝑖𝐴 =

1

𝐷𝑡
𝑖 ∑

|𝑅𝑡𝑑
𝑖 |

$𝑉𝑜𝑙𝑡𝑑
𝑖

𝐷𝑡
𝑖

𝑑=1                                                         (1.10) 

Where 𝐷𝑡
𝑖 is the number of days in the week/month t for which data are available for the stock 

𝑖. It aggregates the daily measures over weekly and monthly. The market illiquidity is 

subsequently calculated as the cross-sectional equal-weighted average of the individual stock 

illiquidity in that week/month. To adjust the inflation effect on the dollar volume of trading, 

we scale the market illiquidity by Consumer Price Index. We also take the logarithmic 

transformation of market illiquidity following Amihud (2002). 
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TABLE 1. 1 SUMMARY STATISTICS OF THE LIQUIDITY AND INVESTOR SENTIMENT MEASURES 

Measure Horizon Mean Median Std 

Dev 

Min Max Skewness Kurtosis 

Amihud 

(2002) 

Weekly -7.17 -7.01 1.12 -13.54 -4.27 -1.28 3.14 

Monthly -6.79 -6.84 0.57 -8.08 -4.18 1.03 3.36 

Bid-Ask 

spread 

Weekly  -3.64 -3.63 0.09 -3.93 -1.69 9.47 18.4 

Monthly -3.64 -3.64 0.07 -3.81 -3.21 0.69 4.88 

Sentiment 

Survey 

Weekly 0.11 0.11 0.18 -0.51 0.63 0.05 -0.05 

Baker and 

Wurgler 

(2006) 

Monthly 0.15 0.02 -0.91 2.49 0.56 1.79 3.92 

 

The first two rows of Table 1.1 present the descriptive statistics of the log transformation of 

the Amihud (2002) illiquidity measure across the weekly and monthly horizons during 1994 

and 2015. The table reveals that the weekly and monthly data share similar patterns for all 

metrics but skewness which is negatively biased in the weekly data whereas being positively 

skewed in the monthly frequency. 

FIGURE 1. 1 LOG TRANSFORMATION OF AMIHUD (2002) ILLIQUIDITY 
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Figure 1.1 presents the time series pattern of the monthly averages of the weekly logarithmic 

transformation of the market illiquidity from 1994 to 2015. Although the extreme spikes 

associated with more liquid market can only be explained by their outlier nature, the general 

pattern of the graph is in line with major historically important, financial events. For instance, 

9/11 terror event, recent financial crisis is associated with high illiquidity. We also conduct 

Augmented Dickey Fuller (ADF) test to check the stationarity. We allow at least 12 lags for 

performing ADF tests. 

Table 1. 2 ADF test for the liquidity and investor sentiment measures 

Measure Horizon H0: unit root P value 

Amihud (2002) Weekly raw data Rejected 0.001 

Monthly raw data Failed to reject 0.3756 

Monthly filtered  Rejected 0.000 

Bid-Ask spreads Weekly raw data Failed to reject 0.2134 

Weekly filtered Reject 0.0000 

Monthly raw data Failed to reject 0.3781 

Monthly filtered Reject 0.0000 

Sentiment Survey Weekly, Monthly Rejected 0.001 

Baker and 

Wurgler (2006) 

Monthly Rejected 0.001 
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We find that for the weekly data, the null hypothesis of unit root is rejected in favour of 

stationary with and without drift for any chosen lags. However, the stationarity condition for 

the monthly data above is violated after 9th lags which might be explained by the data 

aggregation carried out by averaging 5 daily data for the weekly figures, subsequently 

computing the averages of 4 weekly data for the monthly series. 

Therefore, we perform diagnostic checks of monthly data, find the appropriate polynomials 

and filter the data. Afterwards, we get the following graph which is stationary and free of any 

trend and seasonal components. 

Figure 1. 2  Adjusted monthly Amihud (2002) measure  

 

The second liquidity measure is the traditional bid-ask spread calculated as the difference 

between the closing values of the bid and ask prices divided by mid-price for scaling and 

comparability across the stocks.  
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                                                          𝑆𝑡𝑑
𝑖 =

𝑃𝑡𝑑
𝐴𝑠𝑘−𝑃𝑡𝑑

𝐵𝑖𝑑

𝑃𝑡𝑑
𝑀𝑖𝑑                                                             (1.11) 

The bid-ask spread is also computed across the weekly and monthly horizons.  

The second two rows of Table 1.1 reports the descriptive statistics of the log transformation of 

the bid-ask spread across the weekly and monthly horizons from 1994 to 2015. The table 

suggests that weekly data is fatter tailed and more positively skewed than the monthly averages 

which might be explained by noisier nature of higher frequency data.   

FIGURE 1. 3 LOG OF MONTHLY BID-ASK SPREADS  

 

Figure 1.3 demonstrates the time series pattern of the monthly averages of the weekly 

logarithmic transformation of the market illiquidity from 1994 to 2015. The diagnostic checks 

reveal that the monthly data above contain trends and cyclical components after 9th lags. We 

conduct Augmented Dickey Fuller (ADF) test for the weekly and monthly bid-ask spread series 

to check the stationarity.  
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We find that the weekly bid-ask spread does not contain unit root in the Autoregressive Model 

with Drift whereas found as non-stationary in the pure Autoregressive framework. Therefore, 

we find the first difference which is stationary in any selected models. Regarding the monthly 

data, we get appropriate polynomial by applying 10th, 11th, 12th lap operators simultaneously 

and subsequently filtering from the original data. Afterwards, we get the graph in the Figure 

1.4 which is stationary in any selected models and free of trends, seasonal components. 

FIGURE 1. 4  ADJUSTED MONTHLY BID-ASK SPREADS 

 

It is worth to discuss the possible correlation between two liquidity measures. Although, 

Amihud (2002) and bid-ask spread measure two different types of liquidity, it makes sense 

thinking about their possible co-direction as they are originated from the same market 

movement. We find them positively correlated indeed. The correlation coefficient is found to 

be 0.4. Consequently, we can argue that although, Amihud (2002) and Bid-Ask Spread measure 

two distinct liquidity definitions, their movements have been found to be in the same direction, 

possibly due to the fact that they measure the same underlying concept. 
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1.3.2 Investor sentiment 

 

We apply two investor sentiment proxies across the weekly and monthly horizons. 

The first metric is a survey measure which is supposed to reflect the investors’ expectations on 

the future performance of the stock market. Following Liu (2015), we calculated the difference 

between the percentages of the investors’ bullish and bearish sentiments reported by American 

Association of Individual Investors (AAII) to adopt an investor sentiment proxy. AAII 

conducts weekly survey by polling random samples of its members and ask participants their 

expectation on the market direction of up, down or the same. Afterwards, the responses are 

labelled as bullish, bearish or neutral, respectively. The data set is adjusted to the time frame 

of liquidity measures which are available from 1994 and 2015. 

FIGURE 1. 5  INVESTOR SENTIMENT SPREAD 

 

The graph suggests that the general pattern of the sentiment data is in line with the global 

financial cycles. The lowest sentiment spreads are observed around the peak of dotcom and 

credit crisis while the highest spreads are found just before the bursts of the bubbles.  
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The third raw of table 1.1 demonstrates the descriptive statistics of the individual sentiment 

spreads across the given period. The results reveal that overall distribution of the data is close 

to the normality, although the sentiment spreads can be thought positively biased as the highest 

spreads can be found more than 60% whereas the lowest spreads are never found below -60%. 

This fact confirms the overconfidence theory and the noise trading behaviour. The equality of 

the mean and the median confirms that the data does not contain too many outliers.  

We also conduct ADF tests to check the stationarity and find that the data does not contain unit 

root in the 1 percent significance level. The second sentiment metric is considered an academic 

measure proposed by Baker and Wurgler (2006) and Baker and Wurgler (2007) which is a 

more comprehensive version of the closed end fund discount paradigm. They form a composite 

index that captures the common sentiment component in the six proxies. They define 

SENTIMENT as the first principal component of the correlation matrix of six variables and 

rescaling the coefficients so that the index has unit variance.  

𝑆𝐸𝑁𝑇𝐼𝑀𝐸𝑁𝑇𝑡 = −0.241𝐶𝐸𝐹𝐷𝑡 + 0.242𝑇𝑈𝑅𝑁𝑡−1 + 0.253𝑁𝐼𝑃𝑂𝑡 + 0.257𝑅𝐼𝑃𝑂𝑡−1 +

0.112𝑆𝑡 − 0.283𝑃𝑡−1
𝐷−𝑁𝐷                                                                                                         (1.12) 

Where CEFD is the closed-end fund discount is the average difference between the net asset 

values (NAV) of closed-end stock fund shares and their market prices. It was traditionally 

supposed to be an investor sentiment indicator and was used to forecast reversion in Dow Jones 

stocks. TURN is the NYSE share turnover is based on the ratio of reported share volume to 

average shares listed from the NYSE Fact Book. They define TURN as the natural log of the 

raw turnover ratio, detrended by 5 year moving average. NIPO and RIPO are considered as the 

number and the average first day returns on the IPO market, respectively. S shows the share of 

equity issues in total equity and debt issues as high values of the equity share predict low market 
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return (Baker and Wurgler, 2006). Last sentiment proxy is dividend computed as the log 

difference of the average market-to-book ratios of payers and non-payers.  

FIGURE 1. 6 INVESTOR SENTIMENT INDEX 

 

The data covers the period between 01/1994 and 09/2015 collected from Wurgler’s website1. 

The graph shows that the composite sentiment index is in line with global financial cycles. The 

data reveals that the sentiment is the highest just before dotcom bubble, found as the lowest in 

the peak of the dotcom bubble, the credit crisis of 2008-2009. 

The last row of table 1.1 summarizes the descriptive statistics of the sentiment index during 

01/1994 and 09/2015. Unlike the previous sentiment data, the index contains excess kurtosis 

and positively skewed. However, as in the survey data, the index is observed as the positively 

biased since the number of extreme bullish points are higher than the extreme bearish points. 

We also conduct ADF test to test stationarity of the data and find that the null hypothesis of 

series contain unit root is significantly rejected.  

                                                             
1 http://people.stern.nyu.edu/jwurgler/  
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1.3.3 Forecasting 

 

We employ unconditional out-of-sample forecasting for 1, 2, 3, 4 steps ahead for the weekly 

analysis, 1, 2 steps ahead for the monthly analysis. To get an unconditional, h step ahead 

forecast from a regression model, we should get the following regression equation:  

                                                𝑦𝑇+ℎ = 𝛽0 + 𝛽1𝑥𝑡 + 𝜀𝑡                                                           (1.13) 

Where the dependent variables in our case are liquidity measures, 𝜆𝑡𝑑
𝑖  and 𝑆𝑡𝑑

𝑖  , and the 

respective investor sentiment indicators are considered as the independent variables.  

The in-sample estimations are carried out in the rolling window, as investor sentiment data is 

quickly digested in financial markets, including liquidity. Therefore, constantly allowing data 

older data within recursive estimations may introduce “ghost effect” to the liquidity data. The 

sample is chosen by using one third of total data for the weekly estimation, half of the data for 

the monthly estimations. The first reason is the more data points in weekly data than monthly 

data. The second is in line “ghost effect” argument that to eliminate unnecessary effects of 

older data in quickly updated data environment.  

The forecast accuracy is measured by Root Mean Squared Forecasting Error (RMSFE) which 

is calculated as: 

                                                  𝑅𝑀𝑆𝐹𝐸 = √
1

𝑇
∑ 𝑒𝑡+ℎ,𝑡

2𝑇
𝑡=1                                                     (1.14) 

where  

                                                  𝑒𝑡+ℎ,𝑡 = 𝑦𝑡+ℎ − 𝑦𝑡+ℎ̂                                                           (1.15) 

𝑦𝑡+ℎ   shows the actual value of the logarithmic transformation of the market illiquidity while 

𝑦𝑡+ℎ̂ indicates h period ahead forecasts. 
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The relative forecasting strength of the model for h period is measured based on the relative 

RMSFE using Random Walk without drift as the baseline model: 

                                                 𝑅𝑀𝑆𝐹𝐸ℎ
𝑅𝐸𝐿 =

𝑅𝑀𝑆𝐹𝐸𝑚,ℎ

𝑅𝑀𝑆𝐹𝐸𝑏,ℎ
                                                        (1.16) 

where b denotes the baseline model. The model with more forecasting power than the baseline 

model should satisfy 𝑅𝑀𝑆𝐹𝐸ℎ
𝑅𝐸𝐿 less than 1.  

We also apply Diebold and Mariano (1995) test to check the significance of the forecasting 

accuracy. The test statistic defines loss between the two forecasts by  

                                                𝑑𝑡 = 𝑔(𝑒1𝑡) − 𝑔(𝑒2𝑡)                                                            (1.17) 

where 𝑔(𝑒𝑖𝑡) are the squared errors of the forecasting models: 

                                                𝑒𝑖𝑡 = 𝑦𝑖�̂� − 𝑦𝑡,   𝑖 = 1,2                                                         (1.18) 

The test statistic is based on the null hypothesis that 

𝐻0: 𝐸(𝑑𝑡) = 0        ∀𝑡 

versus the alternative hypothesis 

𝐻1: 𝐸(𝑑𝑡) ≠ 0 

The null hypothesis is that the two forecasts have the same accuracy. The alternative hypothesis 

is that the two forecasts have different level of accuracy.  

We also consider alternative forecasting comparison methods. As we do not have an empirical 

evidence for the structural break in the estimations, Clark and McCracken (2005) is not 

appropriate for the forecasting comparison. Additionally, due to the forecasting works based 

on a single, a rolling, non-nested model, Clark and West (2007), Hansen (2005), Clark and 
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McCracken (2009) are not suitable, as well. Finally, Rogoff and Stavrakeva (2008) show that 

Clark and West (2006) does not always test for minimum mean square forecast error.  

Thus, we apply log predictive as a third, alternative forecasting accuracy method. The metric 

compares the equality of probabilistic forecasts by giving a numerical value for the whole 

predictive distribution. The formula is based on the joint predictive density function of 

𝑦𝑡+1, 𝑦𝑡+2, … . , 𝑦𝑇+ℎ can be expressed as follows: 

                                     𝑆(ℎ, 𝑚) = ∑ 𝑙𝑜𝑔𝑝(𝑦𝑡+1, … , 𝑦𝑡+ℎ|𝑌𝑡
𝑇+𝑁ℎ−1
𝑡=𝑇 , 𝑚)                                    (1.19) 

We report the difference the log score of the model 𝑚  and the selected benchmark model. The 

model is considered as superior to the benchmark model if the difference in the log scores is 

positive which implies that the model m outperforms the benchmark model in term of 

predictive density accuracy.  

1.4 Empirical results 
 

We conduct the weekly and monthly analysis based on two liquidity and sentiment indicators. 

We conduct estimations after filtering seasonality and trends from the liquidity data. Two 

liquidity measures aim to capture price-impact and transactions cost aspects of market liquidity. 

In the main estimations, we apply the sentiment survey for the weekly estimations while Baker 

and Wurgler (2006) sentiment index is used for the monthly forecasts. Afterwards, we 

introduce monthly estimations with sentiment survey spread, as well. 

 

 

 

 



36 
 

TABLE 1. 3 WEEKLY OUT-OF-SAMPLE FORECAST WITH AMIHUD (2002) AND SENTIMENT SPREAD  

Metrics h=1 h=2 h=3 h=4 

RMSFE 0.7215 0.7340 0.7456 0.7781 

Log Score 0.9234 0.6723 0.7844 0.3756 

DM test (***) (***) (***) (***) 

Notes: Amihud (2002) and Sentiment Survey Spread are used as the liquidity and the investor sentiment indicators, 

respectively. The dependent variable (the illiquidity measure) is used as the log transformation of Amihud (2002) 

measure. The stars, *, **, *** indicate the significance of Diebold and Mariano (1995) test in the 10%,5% and 

1% significance levels, respectively.  

Table 1.3 suggests that the investor sentiment survey spread is a powerful indicator to forecast 

the NYSE stocks’ illiquidity 1, 2,3 and 4 weeks ahead. The sentiment spread obviously 

outperforms the Random Walk model in the RMSFE and log score measures. Moreover, 

Diebold and Mariano (1995) test shows that the predictive accuracy of the models is 

significantly different from each other in the 1 percent significance level. 

TABLE 1. 4 MONTHLY OUT-OF-SAMPLE FORECAST WITH AMIHUD (2002) AND SENTIMENT INDEX 

Metrics h=1 h=2 

RMSFE 0.9434 0.9549 

Log score 0.4234 0.2673 

DM test (*) (*) 

Notes: Amihud (2002) illiquidity and Baker and Wurgler (2006) sentiment index are used as the liquidity and the 

investor sentiment indicators, respectively. The dependent variable (the illiquidity measure) is used as the log 

transformation of Amihud (2002) measure. The stars *, **, *** indicate the significance of Diebold and Mariano 

(1995) test in the 10%, 5% and 1% significance levels, respectively. 

Table 1.4 reports the monthly forecasting results. We here employ the academic sentiment 

proxy which is designed to capture 6 candidate proxies for the investor sentiment. Although 

the sentiment indicator is still better than random walk to forecast the price-impact measure of 

the market liquidity, it performs relatively worse than the survey indicator used for the weekly 

forecast carried out by sentiment spread.  The table shows that the sentiment index is able to 

forecast the market liquidity 1 and 2 month ahead and performs better than the benchmark 

model. The Diebold and Mariano (1995) test shows that the predictive accuracy of the models 
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is different from each other in the 10 percent significance level while less significant than the 

weekly forecast with sentiment spread.  

To test the validity of the results above, we estimate and forecast the model by applying another 

liquidity measure, well-known bid-ask spread calculated as the difference between ask price 

and bid price scaled by the mid-price for comparability. Similar to the Amihud (2002) measure, 

we get the log transformation of the spread ratio before estimating in the regression. We 

estimate the weekly analysis with the sentiment spread of the survey data and monthly analysis 

with the sentiment index. 

TABLE 1. 5 WEEKLY OUT OF SAMPLE FORECAST WITH BID-ASK SPREAD AND SENTIMENT SPREAD 

Metrics h=1 h=2 h=3 h=4 

RMSFE 0.7215 0.7340 0.7456 0.7781 

Log score 0.5487 0.4912 0.2876 0.2567 

DM test (***) (***) (***) (***) 

Notes: Bid-ask Spread and the sentiment spread are used as the liquidity and the investor sentiment indicators, 

respectively. The dependent variable (the illiquidity measure) is used as the log transformation of the original bid-

ask spread ratio. The stars *,**,*** indicate the significance of the Diebold and Mariano (1995) test in the 10%,5% 

and 1% significance levels, respectively. 

The results reveal that the sentiment survey spread is a statistically powerful indicator to 

forecast the bid-ask spread for 1, 2, 3, 4 weeks ahead. The sentiment spread obviously 

outperforms the Random Walk model in forecasting the bid-ask spread. Additionally, Diebold 

and Mariano (1995) test confirms the significance of the difference between the predictive 

accuracy of the models.  
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TABLE 1. 6  MONTHLY OUT-OF-SAMPLE FORECAST WITH BID-ASK SPREAD AND SENTIMENT INDEX 

Metrics h=1 h=2 

RMSFE 0.9434 0.9549 

Log score 0.9778 0.9907 

DM test (*) (*) 

 Notes: Bid-ask Spread and the Baker and Wurgler (2006) sentiment index are used as the liquidity and the 

investor sentiment indicators, respectively. The dependent variable (the illiquidity measure) is used as the log 

transformation of the original bid-ask spread ratio. The stars, *, **, *** indicate the significance of the Diebold 

and Mariano (1995) test in the 10%,5% and 1% significance levels, respectively.  

The monthly estimation results are in line with the weekly analysis, albeit being less significant. 

The Baker and Wurgler (2006) sentiment index is also found as a successful indicator to 

forecast the spread 1 and 2 months ahead. The sentiment index forecasts the monthly spread 

better than Random Walk. The test reveals the predictive accuracy of the models is significantly 

different in 5 percent significance level.   

So far, we have carried out the monthly estimations with the Baker and Wurgler (2006) 

sentiment index. For robustness check, we redo the monthly forecasts with the investor 

sentiment spread. 

TABLE 1. 7  MONTHLY OUT-OF-SAMPLE FORECAST WITH AMIHUD (2002) AND SENTIMENT 

SPREAD 

 Metrics h=1 h=2 

RMSFE 0.8356 0.8423 

Log score 0.7644 0.3412 

DM test (**) (**) 

 Notes: Amihud (2002) illiquidity and the sentiment survey spread are used as the liquidity and the investor 

sentiment indicators, respectively. The dependent variable (the illiquidity measure) is used as the log 

transformation of the original spread ratio. The stars *, **, *** indicate the significance of the Diebold and 

Mariano (1995) test in the 10%,5% and 1% significance levels, respectively. 

Table 1.7 shows that the monthly survey spread has better forecasting performance than the 

Baker and Wurgler (2006) sentiment index in forecasting Amihud (2002) liquidity. It 

performed better in terms of exposing a lower relative RMSFE, positive log score and more 

significant Diebold and Mariano (1995) test results. The survey directly asks investors’ 
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opinions on the future direction of market rather than extracting sentiment from the market-

based data. This fact could be an explanation for relatively better performance of the sentiment 

survey spread over Baker and Wurgler (2006).    

TABLE 1. 8   MONTHLY OUT-OF-SAMPLE FORECAST WITH BID-ASK SPREAD AND SENTIMENT 

SPREAD 

Metrics h=1 h=2 

RMSFE 0.8578 0.8876 

Log score 0.9123 0.8221 

DM test (***) (***) 

Notes: Bid-ask Spread and the sentiment survey spread are used as the liquidity and the investor sentiment 

indicators, respectively. The dependent variable (the illiquidity measure) is used as the log transformation of the 

original bid-ask spread ratio. The stars *, **, *** indicate the significance of the Diebold and Mariano (1995) test 

in the 10%, 5% and 1% significance levels, respectively. 

The same result can be found in forecasting the bid-ask spread over the monthly horizon. The 

survey spread is found to be a better and a more significant predictor than the sentiment index. 

1.5 Conclusion 

 

In this paper, we investigate whether investor sentiment has the power to forecast stock market 

liquidity. Despite the wide range of literature on liquidity estimation and market 

microstructure, only limited numbers of papers are available in liquidity forecasting. We 

employ Amihud (2002) for a price-impact measure and bid-ask spread for a transaction cost 

indicator of liquidity. On the right hand of the equation, we adopt individual investor sentiment 

survey spread and Baker and Wurgler (2006) sentiment index as the investor sentiment 

measurements. Our large data set of NYSE covers around 2000 stocks during 1994-2015.   

This paper is the first attempt conducting out-of-sample forecasts for stock market liquidity by 

using investor sentiment data. The weekly forecasts 1 to 4 steps ahead and the monthly 

forecasts 1 to 2 steps ahead are carried out with Diebold (2006) forecast equations while the 
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forecasts performances are measured with RMSFE, log score and Diebold and Mariano (1995) 

predictive accuracy tests. 

We conclude from the estimation results that investor sentiment is overall a significant 

indicator to forecast market liquidity. However, the sentiment survey spread is found as a better 

indicator than the Baker and Wurgler (2006) sentiment index to forecast the NYSE liquidity. 

The survey spread is found as a statistically and economically significant predictor of market 

liquidity in the weekly and monthly estimations. Likewise, Baker and Wurgler (2006) 

sentiment index is also able to forecast market liquidity better than Random Walk model, albeit 

less significantly. The results might also be explained by the frequency of analysis. Liquidity 

is better forecasted at the weekly rather than monthly frequencies. 

 Overall, regardless of being a survey measure or an academic index, the sentiment indicators 

may become powerful measurements to forecast the NYSE liquidity. However, a relatively 

higher frequency of data might be preferable to obtain a better forecast performance. 
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Chapter 2. U.S. Monetary Aggregates and Partisan 

Political Cycles   

  
     2.1 Introduction 

 

There is a striking phenomenon in U.S. political-economy cycles. The U.S. economy (Blinder 

and Watson, 2016) and stock markets (Santa-Clara and Valkanov, 2003; Pastor and Veronesi, 

2017) perform significantly better under Democrat presidencies than Republican presidencies. 

Although, these empirical findings are strong enough to be able to argue that the U.S. economy 

favours the Democratic Party, the theoretical implications of the U.S. partisan political cycles 

are less consistent with these findings. Tax reductions, deregulation and overall right-wing 

based economic policy should produce growth and therefore favoured the Republican 

Presidencies, given they are direct signals for less government interventions in the economy. 

Despite several attempts (Santa-Clara and Valkanov, 2003; Pastor and Veronesi, 2017; Blinder 

and Watson, 2016; Sy and Zaman, 2011) to suggest explanations for the partisan gap, the 

phenomenon is still considered as a puzzle. The partisan gap is associated with the findings 

that the observed significant return differences of stock markets, economic indicators under 

different political regimes in the U.S. that cannot be explained by rational factors. 

In this study, we explore the potential partisan gap in monetary aggregates. To our best of 

knowledge, it is the first study investigating a potential partisan gap in the monetary aggregates. 

Plenty of empirical and theoretical literature2 has suggested significant linkages between 

economic activity, especially real output, and business cycle related monetary aggregates. As 

the “partisan” model of the political business cycles supports the idea that real output may 

                                                             
2 For instance, Freeman and Kydland (2000) found positive linkages between the U.S business cycles variables 

and monetary aggregates. Beenstock (1989) expressed the similar findings between real output and money 

multiplier in the UK case. 
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become significantly different under the Democrat and the Republican presidencies, we might 

expect the money base, M1 and money multiplier may also be in line with the partisan cycles. 

Monetary aggregates can also be linked to political cycles via well-documented partisan gap in 

stock returns. The U.S partisan gap in stock returns is documented by multiple studies (Santa-

Clara and Valkanov, 2003; Sy and Zaman, 2011; Pastor and Veronesi, 2017). In the meantime, 

Thorbecke (1997) shows a positive linkage between ex-post stock returns and monetary policy. 

Furthermore, this linkage might be asymmetric as monetary policy has larger effects on stock 

returns in bear markets than bull market (Chen, 2007). Since, there is a strong evidence for the 

partisan gap in stock returns, the relationship between monetary policy and stock returns gives 

an additional stimulus to investigate the hypothesis that monetary aggregates might be also in 

line with presidential cycles. 

The partisan gap in the economy is a specific U.S. phenomenon as there is no evidence to 

support the puzzle elsewhere. Although the Conservative party positively influence the U.K. 

stock market performance, the return differences are not significantly associated with changing 

political cycles (Black et al., 2010). Similar findings are attributed to the German elections 

(Dobke and Pierdrioch, 2004). In the meantime, panel regression analysis across 15 countries 

confirms that the partisan political gap in the economy is not a global finding (Bohl and 

Gottschalk, 2006). We might explain it with the real partisan nature of the U.S. political system. 

Hence, we examine U.S. monetary aggregates to explore other evidence for the partisan 

political gap. 

Given these findings, it is a surprising fact that monetary aggregates as such important 

components of business cycles never get attention in the presidential puzzle literature. In 

particular, huge growth rates are historically observed in the U.S. monetary aggregates. 

Traditional explanations such as economic output, lagged effects might not be enough to fully 
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capture the huge growth rates of the money supply. Considering significant linkages between 

monetary aggregates and other economic indicators (stock returns, GDP growth) which are 

found to have a partisan gap, it is worthwhile to explore a similar phenomenon in monetary 

aggregates.  As a null hypothesis, the partisan gap in the growth rates of the U.S. monetary 

aggregates is statistically insignificant. In the meantime, if the growth rates of the monetary 

aggregates are significantly influenced by only its previously explored determinants (lagged 

values, monetary policy), the partisan gap should become insignificant after controlling for 

them. 

There might be concern about the aim of this study that would potentially question the concept 

of Central Bank independence. Of course, the Federal Reserve System (hereafter, Fed) 

operational independence was granted within the famous Treasury-Fed accord of 1951. 

However, historically, there have been several attempts such as Arthur Burn3’s contribution to 

the Richard Nixon re-election campaign (Abrams, 2006) and Reagan’s efforts to remove Paul 

Volcker (Silber, 2012) that could be argued to be political interventions in monetary policy. 

Moreover, given presidents have a mandate to appoint the Fed chairperson, this raises concern 

regarding the extent of institutional independence. The most recent example would be President 

Trump’s appointment of a Republican board member as Fed governor violating the general 

practice4 that Presidents usually allow the continuation of the current Fed governor to 

demonstrate the Fed’s institutional independence. The Fed, as any monetary organization, aims 

to maintain price stability by tracking the equilibrium point of output and inflation in a Taylor 

framework. As monetary organizations are mainly ex-post decision makers in the economy, 

                                                             
3 The FED chairman during 1970s 
4 https://www.federalreserve.gov/aboutthefed/bios/board/boardmembership.htm For example, William 
McChesney Martin was appointed by five different presidents, Alan Greenspan was appointed by four 
different presidents 

https://www.federalreserve.gov/aboutthefed/bios/board/boardmembership.htm
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Central Bank’s independence should be thought as operational independence but not 

determining the economic outlook of the country which is carried out by governments. 

Our monthly empirical estimations from 01/1959 to 09/2017 reveal that the presidential gap in 

narrow and broad money indicators are even more pronounced than GDP growth and stock 

market performance, but less notable in the case of money multiplier. The Democratic premium 

is found to be 5.15 percent and 9.12 percent for the M1 and M2 growth rates, respectively. 

However, and strikingly we did not find evidence for an economically stronger presidential 

gap after considering only first presidential terms. It might be explained by the fact that unlike 

stock markets, monetary aggregates may take more time to digest the information effect of 

changing a political party.  

Afterwards, we estimate several models to check if previously explored determinants5 of 

monetary aggregates eliminate the statistical significance of the partisan gap. We start with 

linear models by jointly estimating determinants of the U.S. monetary aggregates with the 

partisan gap as an additive dummy. From Autoregressive Distributed Lag (ARDL) model, we 

find that although contemporaneous and lagged values of the growth rates of monetary 

aggregates and monetary policy (proxied by the Federal Funds rate) keep the explanatory 

powers in the variation of the monetary aggregates growth rates, the partisan gap remains 

statistically significant and economically meaningful. For the first time in the literature, we 

estimate the effect of the partisan gap in the U.S. monetary aggregates using non-linear 

estimation. The findings in the Markov switching model are found to be line with the findings 

of the linear regression analysis. High growth rates of the monetary aggregates associated with 

                                                             
5 Such as lagged growth rates of monetary aggregates, monetary policy. See for example Freeman and Kydland 
(2000) and Beenstock (1989) 
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the Democratic presidential years and low growth rates linked to the Republican presidencies 

tend to be persistent with more than 90 percent probability in their respective regimes.  

Another interesting finding occurs after controlling for the partisan gap in the lagged values of 

the growth rates of the U.S. monetary aggregates. Apparently, the presidential gap is not only 

additive to the baseline growth of the monetary aggregates but also multiplicative in the 

coefficients. Moreover, the multiplicative partisan gap induces the additive partisan gap 

become less significant. However, this finding might be due to pure econometrical reasons as 

the multiplicative and additive dummies possibly have multi-collinear relationship.  

Finally, we test the role of a partisan Fed chair to explain the presidential gap. First, we find 

that a statistically significant and economically meaningful partisan Fed chair gap is present in 

the growth rates of U.S. monetary aggregates. Second, we find that after controlling for the Fed 

chair gap, the statistical significance of the presidential gap diminishes and becomes 

insignificant. Finally, the results show that Fed chair gap in the growth rates of the US monetary 

aggregates remains statistically significant and economically meaningful even after controlling 

for autoregressive components of the growth rates and monetary policy. Consequently, we 

argue that the partisan FED cycle is a statistically more powerful than the partisan presidential 

cycles in the case of the monetary aggregates.  

The rest of this chapter is organized as follows. The second section reviews the literature on 

the U.S. presidential cycles from an economic perspective and also discussed related works on 

monetary liquidity. In the third section, we present the data and the main empirical models to 

be applied in the estimations. The fourth section discusses the empirical findings and the 

additional checks for robustness. In the last section, we discuss the major findings and provide 

concluding remarks. 
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2.2 Literature review and theoretical underpinnings 

 

2.2.1 The U.S. political economic cycles 

 

The early literature on the economic models of political cycles, so called “political business 

cycle” theory describes the U.S. political cycles in the “opportunistic” models where all parties 

find it optimal to adopt the same policy in order to capture the median voter (Downs, 1957). In 

addition to the assumption of the opportunistic behaviour of the parties, Nordhaus (1975) and 

MacRae (1977) contributed two more crucial assumptions and rejected the “partisan” factor.   

First, they argue that the voters have short term memories and can be systematically fooled. 

Second, the economy is described by an exploitable Philips curve6 and the rational expectations 

critique is not considered. Therefore, the opportunistic models of the “political business cycle” 

theory could not explain any differences across the Democratic and Republic administrations. 

In contrast, originating with Hibbs (1977), the literature has developed “partisan” models of 

political cycles. Hibbs (1977) shows that lower income and occupational status groups are best 

served by a relatively low unemployment-high inflation macroeconomic configuration whereas 

a comparatively high unemployment-low inflation policy package serves the interests and 

preferences of upper income and occupational status groups.  Therefore, the governments in 

the office pursue macroeconomic policies broadly in accordance with the objective economic 

interests and subjective preferences of their electoral elites and core political objectives. This 

pioneering attempt to modelling political business cycles in the context of partisan nature 

encouraged further researches to examine the structural differences between the political 

objectives in the macroeconomic policies of the main parties.  

                                                             
6 An inverse relationship between unemployment rate and wage rises 
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In particular, Alesina (1987) and Alesina and Sachs (1988) develop a partisan economic model 

in a two party repeated game. By confirming Hibbs (1977) and Hibbs (1987), they find that 

partisan politics matters when it comes to the macroeconomic policy and its outcomes in the 

business cycles. Moreover, they show that the first half of the administration indicates 

significant differences in output growth whereas the second half does not show a consistent 

statistically significant difference between the macroeconomic outputs of the economic 

policies undertaken during the political cycles. Nevertheless, the Nixon (Beck, 1984) and 

Kennedy (Alesina, 1987) governments are considered exceptions in the “partisan” theory, more 

in line with the “political business cycle” theory due to political scandals and shorter span of 

the presidential terms, respectively.  

Another striking feature of a partisan economic model originates from the differences in the 

tax policies. More left-wing governments’ (i.e Democrats) periods in office have been marked 

by higher state tax burdens whereas right wing parties (i.e Republicans) are known as typically 

being in favour of low tax or small government principles (Reed, 2006). Moreover, left-wing 

governments across the world tend to expand government revenue and expenses (Cameron, 

1978; Tavares, 2004. The US real GDP growth, during 1930 and 2015, is found to be 4.9% 

under Democratic presidencies, whereas only 1.7% during Republican presidents’ periods in 

the office. The 3.2 % difference is found to be economically and statistically significant (Pastor 

and Veronesi, 2017). 

The discussion above sheds light on the role of the US partisan gap in business cycles, 

macroeconomic policy, economic growth and the tax burden. The differences in the aspects of 

the political objectives, historical roots and more importantly, subjective preferences of the 

electoral crowd may underlie explanations for the existing partisan political economy gap.  
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Additionally, the partisan gap in the stock market returns remains a puzzle and unresolved 

despite of several attempts. In a seminal paper, Santa-Clara and Valkanov (2003) demonstrate 

that stock markets perform significantly better under Democratic rather than Republican 

presidencies during the period 1927 and 1998. The nine percent difference for the value-

weighted portfolios and the sixteen percent difference for the equal-weighted portfolios are 

found to be statistically and economically significant. Moreover, business cycle variables, 

announcement effect, risk premium do not explain the return difference. An extended empirical 

analysis to 2015 by Pastor and Veronesi (2017) show that the evidence of partisan gap is even 

stronger. Their estimation from 1999 to 2015 reports 17.39 percent for the partisan return gap 

compared to 9.38 percent in the 1927-1998 period. A striking feature of the presidential stock 

return gap is its mean reverting characteristics. The Democratic-minus-Republic return gap is 

found the highest, 36.88 percent per year when averaged over the first year of presidency alone 

(Pastor and Veronesi, 2017). The gap gradually decreases starting from the second year when 

the difference is 15.55 percent; it is 12.43 percent over the three years. However, these values 

are still higher than full term average (10.90 percent) which might be explained by a higher 

risk premium earlier in the presidential term since there is more uncertainty on political and 

economic objectives of a new president.  

2.2.2 Monetary liquidity 

 

The definition of the monetary aggregates varies across countries and monetary organizations.  

For instance, the European Central Bank (ECB) does use M0 but adopts M1 as a narrow money 

indicator which includes physical currency in circulation as well as balances such as overnight 

deposits that can immediately be converted to cash or cash equivalents7. The ECB defines M2 

                                                             
7 https://www.ecb.europa.eu/stats/money_credit_banking/monetary_aggregates/html/hist_content.en.html  

https://www.ecb.europa.eu/stats/money_credit_banking/monetary_aggregates/html/hist_content.en.html
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as “intermediate money” that includes M1 plus deposits with maturity up to 2 years and 

redeemable deposits up to 3 months. M3 is considered as a broad money measurement that 

comprises all M2 plus money market fund shares, repurchase agreements and debt securities 

up to 2 years. Note that the Bank of England8 accepts the aggregates definitions of the ECB, 

additionally defines M4 as M3 plus foreign currency deposits held by the private sector in the 

UK and sterling and foreign currency deposits held by UK public corporations with Monetary 

Financial Institutions (MFI) in the UK. 

US monetary aggregates definitions are slightly different from their European counterparts. 

Additionally, note that since 2006, the Federal Reserve System has ceased to track M3, large-

denomination time deposits, repurchase agreements and Eurodollars. Narrow money is 

defined9 as M1 which includes all physical currency outside the U.S Treasury and Federal 

Reserve, demand deposits and travellers’ checks. In the meantime, M2 is accepted as a broader 

monetary concept encompassing M1 plus saving deposits, small denomination time deposits 

and balances in retail money market funds. Finally, the money multiplier is calculated as the 

ratio of M1 to money base which is the sum of currency in circulation plus reserve deposits. In 

other words, the money multiplier demonstrates how banks can create additional money in the 

economy by per unit reserve deposits in the Federal Reserve.   

A handful of empirical macroeconomic papers have attempted to model money supply 

employing a wide range of time series models. Nelson (2002) develops a theoretical model of 

the real money base growth and the real economic activity. The empirical evidence for the UK 

and the US from 1961 to 1999 shows that the money base growth is a significant determinant 

of economic activity. As the “partisan” model of the political business cycles supports the idea 

that the economic activity may become significantly different under the Democrat and the 

                                                             
8 http://www.bankofengland.co.uk/statistics/Pages/iadb/notesiadb/m3.aspx  
9 https://fred.stlouisfed.org/series/M1SL  

http://www.bankofengland.co.uk/statistics/Pages/iadb/notesiadb/m3.aspx
https://fred.stlouisfed.org/series/M1SL


50 
 

Republican presidencies, we can expect the money base may also be in line with the partisan 

cycles.  

Apart from modelling monetary aggregates separately, Kurita (2011) attempted to model the 

money multiplier by employing co-integration analysis for the Bank of Japan data. It is a 

stylised fact that the log of monetary aggregates contains stochastic 𝐼(2) trends. The paper 

shows that constructing linear combinations of logged monetary aggregates with linear 

combinations of logged prices indices can remove 𝐼(2) stochastic trends and leave the data as 

𝐼(1).  Consequently, the paper finds that the main monetary aggregates can be modelled in the 

light of the 𝐼(2) 𝑡𝑜 𝐼(1) transformation on the money multiplier.  

The endogenous nature of monetary aggregates has firstly been explored with the procyclical 

movement of the nominal money stock by Friedman and Schwartz (1963). Since then, the 

business cycle literature has attempted to model the money multiplier in the classical business 

cycle set-up (Freeman and Huffman, 1991) and to calibrate the money aggregates considering 

a long-run vision for the U.S. economy (Kydland and Prescott, 1982). In contrast to the 

monetary models, Freeman and Kydland (2000) develop a money-output model using sticky 

prices or fixed money holdings and assuming all prices and quantities are fully flexible. The 

paper finds several significant linkages between business-cycle related monetary aggregates 

and U.S. real output such as a positive correlation between M1 and real output. Additionally, 

the money multiplier and deposit-to-currency ratios are positively correlated with real output, 

whilst the price level is negatively correlated with output. Note that the correlation of M1 with 

contemporaneous prices is substantially weaker than the correlation of M1 with real output and 

these correlations among real variables are essentially unchanged under different monetary-

policy regimes and real money balances are smoother than money-demand equations would 

predict.  
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The determinants of the money multiplier have also been explored for UK monetary data. 

Beenstock (1989) investigates evolutionary of monetary policy in the United Kingdom and 

concludes that monetary aggregates were endogenously determined until the mid-1970s when 

sterling was allowed to free float. Specifically, the free float regime of the exchange rate 

allowed the money supply to become exogenous starting in the 1980s. Consequently, the 

money multiplier has become more responsive to the interest rates and economic activity. 

Although, there is no investigation for the existence of the partisan business cycles in the 

United Kingdom, the findings of the paper provide additional motivation to consider the 

possible indirect linkages between the monetary aggregates and the political regimes via 

economic activity and output.   

To sum up, monetary aggregates can be significantly different under different political regimes 

in the U.S. motivating by the economic activity and stock markets channels they are empirically 

proven to have partisan gap.  

2.3 Data and Methodology 
 

2.3.1 Data 

 

Our monthly data set covering the period between 1959:01 and 2017:09 is available from the 

of Federal Reserve Bank of St. Louis (FRED). The official definitions of the U.S monetary 

aggregates have considerably changed over the years before our sample period. Since Federal 

mandatory reserve requirements were officially imposed in 1914, banks did not differentiate 

among demand, saving and time deposits (Anderson, 2003).  Therefore, it is not possible 

differentiate between M1 and M2 until 1914 according to the modern definitions. Likewise, 

U.S. financial institutions did not distinguish between small and large denomination time 

deposits that are necessary to split M2 from the rest of “higher order” monetary liquidity.  More 
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importantly, the Board of Governors of the Federal Reserve System approved the monetary 

aggregates data from 01/1959, possibly due to the reasons emphasized above.  

The first monetary aggregate we employ is M1 which is officially defined10 as the sum of 1) 

currency outside the U.S. treasury, Federal Reserve Banks, the vaults of depository institutions 

2) traveller’s checks of nonbank issuers 3) demand deposits and 4) other checkable deposits.  

Figure 2.1 presents the monthly M1 aggregate for the USA from 01/1959 to 09/2017. The 

seasonally adjusted data is collected from FRED. We subsequently adjusted it for monthly 

inflation which is available from FRED as Consumer Price Index (CPI) with all items, then 

take the log value. 

FIGURE 2. 1 LOG OF THE U.S M1 INDICATOR ADJUSTED FOR SEASONALITY AND INFLATION 

  

The graph overall suggests a gradual increase in the M1 amount in real terms throughout the 

sample period. The small fluctuations and the levelling of the trends during the 1990s and 

2000s are followed by a sharper increase during the recent years. The latest trend might be 

                                                             
10 https://fred.stlouisfed.org/series/M1SL  
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explained by the recent FED interest rate policy which remained historically low since last 

financial crises due to the fact that expansionary monetary policy increases money circulation 

in the financial system. The second monetary aggregate we use is U.S. M2 which is officially 

defined11 as the sum of all the M1 components, saving deposits, small-denomination time 

deposits and balances in retail money market mutual funds.  

Figure 2.2 demonstrates the monthly U.S. M2 aggregate from 01/1959 to 09/2017. The 

seasonally adjusted data is collected from FRED and adjusted for the monthly inflation by 

using Consumer Price Index (all items). 

FIGURE 2. 2 LOG OF THE U.S M2 INDICATOR ADJUSTED FOR SEASONALITY AND INFLATION 

 

The graph suggests a similar pattern to M1 but with a sharper increase in the M2 amount across 

the entire sample period. The difference between Figures 2.2 and 2.1 suggests a considerable 

increase in the saving and small-time deposits and the balances of money market funds after 

                                                             
11 https://fred.stlouisfed.org/series/M2SL  
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carrying out the quantitative easing and expansionary monetary policy actions during the 

2008/2009 crisis.   

The final indicator, we employ is the U.S money multiplier computed as the ratio of M1 to the 

U.S. monetary base. The ratio literally demonstrates how banks can create additional money in 

the economy by per unit reserve deposits in the Federal Reserve.  The seasonally adjusted 

monthly data from 01/1959 to 09/2017 for the U.S. money base is collected from FRED12 , 

subsequently adjusted for inflation as in the previous aggregates. To get money multiplier, we 

find the ratio of the previously adjusted M1 to the adjusted monetary base. 

FIGURE 2. 3 LOG OF THE U.S MONEY MULTIPLIER ADJUSTED FOR SEASONALITY AND 

INFLATION 

 

On the contrary to the M1 and M2 graphs, the money multiplier in Figure 2.3 exhibits a 

downward trend throughout the observed time frame. The graph suggests that the banks created 

less money on the economy per unit of reserved deposits in the Federal Reserve year by year 

since 1959.  

                                                             
12 https://fred.stlouisfed.org/series/AMBSL  

-2

-1.5

-1

-0.5

0

0.5

1

1.5

0
1

/0
1

/1
9

5
9

0
1

/0
4

/1
9

6
1

0
1

/0
7

/1
9

6
3

0
1

/1
0

/1
9

6
5

0
1

/0
1

/1
9

6
8

0
1

/0
4

/1
9

7
0

0
1

/0
7

/1
9

7
2

0
1

/1
0

/1
9

7
4

0
1

/0
1

/1
9

7
7

0
1

/0
4

/1
9

7
9

0
1

/0
7

/1
9

8
1

0
1

/1
0

/1
9

8
3

0
1

/0
1

/1
9

8
6

0
1

/0
4

/1
9

8
8

0
1

/0
7

/1
9

9
0

0
1

/1
0

/1
9

9
2

0
1

/0
1

/1
9

9
5

0
1

/0
4

/1
9

9
7

0
1

/0
7

/1
9

9
9

0
1

/1
0

/2
0

0
1

0
1

/0
1

/2
0

0
4

0
1

/0
4

/2
0

0
6

0
1

/0
7

/2
0

0
8

0
1

/1
0

/2
0

1
0

0
1

/0
1

/2
0

1
3

0
1

/0
4

/2
0

1
5

0
1

/0
7

/2
0

1
7

Money Multiplier

https://fred.stlouisfed.org/series/AMBSL


55 
 

 

FIGURE 2. 4 LOG OF THE U.S MONEY BASE ADJUSTED FOR SEASONALITY AND INFLATION 

 

Considering the fact that M1 (Figure 2.1) exhibits an upward trend throughout the period, the 

downward pattern in the U.S money multiplier might be explained by an explosively increasing 

monetary base. Figure 2.4 confirms this supposition, as the increasing trend in the money base 

amount starting 2000s years, is followed by an explosive growth since last financial crisis. On 

the other hand, the considerable increase in the monetary base might be linked to the increased 

regulatory pressure on the banks since financial crises including “Dodd-Frank”, the 

implementation the new Basel rules and so on.  

Table 2.1 presents the summary statistics of the underlying U.S monetary aggregates across 

the presidential cycles. In our estimation period, Republicans have more presidents with seven 

compared to the Democrats with five presidents. In general, Republicans have been in the 

office for 369 months compared to 348 months of Democrats. The new elected president 

usually starts governing the White House after the inauguration day which takes place about 

2-3 months after the election day. The U.S presidential elections usually take place in 
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November followed by the inauguration day in January. However, the certain historical events 

contributed to the breaking of this chain such as John F. Kennedy’s assassination of in 

November 1963 and Richard Nixon’s resignation in August 1974. 

Although, the political science literature (e.g Bartels, 2008; Comiskey and Marsh, 2012) 

frequently prefers to adopt one year lag or more to estimate the effect of changing political 

parties, we apply the most recent approach (Pastor and Veronesi, 2017) from the political 

economy literature which attributes the inauguration day as the beginning of each presidential 

term. The rationale behind this approach is to take the fact into account that the partisan 

political gap of the economic and financial indicators is found to be more robust in the first 

year of each presidency (Pastor and Veronesi, 2017). Nevertheless, we carry out the robustness 

checks to examine several other lagged responses.  

Continuing with Table 2.1, the monetary aggregates, in growth terms, are observed with a 

higher magnitude under the Republican presidencies (3.95% and 5.16% p.a for M1 and M2, 

respectively) than the Democrat presidencies (3.35% and 4.93% p.a for M1 and M2, 

respectively) which are associated with lower growth rate of the monetary aggregates, albeit 

almost the same standard deviations. Mr. Obama’s presidential terms are observed with 

relatively higher growth rates of the monetary aggregates. Mr. Obama’s presidential terms 

started in the peak of finacial crisis in January 2009, although he was elected in November 

2008 and heightened public expectations13 that his government was likely going to adopt an 

expansionary fiscal policy.   

Although, the Federal Reserve System started to decrease the fund rate from the end of 2007, 

the transmission was either delayed or less noticeable. Fed subsequently accompanied the 

                                                             
13 It is specifically about Obama’s government but in general, left-wing government. Nevertheless, liberal 
economists (e.g see Krugman (2009)) had higher expectations from Obama’s  government. 
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expansionary monetary policy in 2008 by decreasing the fund rate six times and reached to de-

facto zero rates14. From an econometric perspective, the lagged responses of the monetary 

aggregates to the monetary shocks absolutely make sense. Since most of the monetary shocks 

materialized under Obama’s presidency, the monetary aggregates expose high volatility. A 

complementary note that in November 2008, the Federal Reserve Open Market Committee 

launched the first quantitative easing package and announced it would purchase up $600 billion 

agency mortgage-backed securities and agency debt. The decision was made two months 

before the Obama’s inauguration day. Consequently, the combined effect of the monetary 

policy shocks and the quantitative easing package contributed to the high volatility of the 

monetary aggregates during the Obama’s presidential terms in the White House.

                                                             
14 https://www.federalreserve.gov/monetarypolicy/historical-approaches-to-monetary-policy.htm  

https://www.federalreserve.gov/monetarypolicy/historical-approaches-to-monetary-policy.htm
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TABLE 2. 1 THE GROWTH RATES OF THE MONETARY AGGREGATES ACROSS THE U.S PRESIDENTIAL CYCLES 

Notes: The figures are adjusted for seasonality and consumer price index. Column 2 shows the official presidential terms. Following (Pastor and Veronesi, 2017), we adopt 

the inauguration day as the beginning of each presidential term. Although, Eisenhower’s office period started in 1953, we do not count his presidential term until 01/1959 

when the data set starts to cover. The disruptions of the presidential terms are linked to the certain political events such Kennedy’s assassination in 11/1963 and Nixon’s 

resignation in 08/1974.  

President (Party) Period in office 

M1 M2 Money Multiplier 

Mean Standard Dev. Mean Standard Dev. Mean Standard Dev. 

Panel A. By President 

Dwight Eisenhower (R) 01/1959-01/1961 1.47 4.11 5.27 2.75 -0.017 0.0091 

John F. Kennedy (D) 02/1961-11/1963 2.75 2.45 6.54 1.35 -0.044 0.0078 

Lyndon B. Johnson (D) 12/1963-01/1969 4.28 4.21 4.55 2.51 -0.033 0.0079 

Richard M. Nixon (R) 02/1969-07/1974 3.81 4.33 6.24 5.28 -0.066 0.0092 

Gerald R. Ford (R) 08/1974-01/1977 1.98 4.23 8.76 4.63 -0.063 0.0096 

James E. Carter (D) 02/1977-01/1981 3.10 6.48 3.92 3.37 -0.082 0.0081 

Ronald W. Reagan (R) 02/1981-01/1989 6.04 7.56 5.71 5.06 -0.027 0.0074 

George H.W. Bush (R) 02/1989-01/1993 4.47 6.61 0.93 3.08 -0.046 0.0059 

William J. Clinton (D) 02/1993-01/2001 -0.79 6.15 2.09 3.62 -0.063 0.0046 

George W. Bush (R) 02/2001-01/2009 3.15 14.19 4.84 6.39 -0.041 0.0125 

Barack H. Obama (D) 02/2009-01/2017 8.42 11.15 7.72 4.61 -0.007 0.0076 

Donald J. Trump (R) 02/2017-09/2017 5.96 14.91 3.76 3.65 -0.009 0.0045 

Panel B. By Party 

Political party Total months in office 

M1 M2 Money Multiplier 

Mean Standard Dev. Mean Standard Dev. Mean Standard Dev. 

Republicans 370 3.95 7.99 5.16 4.41 -0.038 0.0083 

Democrats 335 3.35 6.09 4.93 3.09 -0.046 0.0051 
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Table 2.2 presents the results of unit root tests for the log of the U.S monetary aggregates across 

the sample period. We employ three different, widely applied unit root tests. Augmented 

Dickey Fuller (ADF) and Philips Perron (PP) tests are performed under the null hypothesis that 

the series contains a unit root against the alternative that the series are stationary. The PP test 

is the modified version of the ADF test as it accounts for the serial correlation in the 

innovations. Conversely, KPSS test assumes that the observed time series are stationary around 

the deterministic trend (i.e trend stationary) against the alternative of a unit root.  

The results from the three tests demonstrate that the U.S monetary aggregates contain a unit 

root throughout the sample period. Apparently, we fail to reject the ADF and PP tests under 

the null hypothesis that the series follow a unit root process. Meanwhile, the null hypothesis 

that the series are stationary around the deterministic trend is significantly rejected with KPSS 

test.  It is also revealed the first differences (i.e growth rates) of the underlying monetary 

aggregates are stationary. Concluding from the respective p values, the null hypothesis that the 

first differences are unit root processes are significantly rejected under the ADF and PP tests 

whereas fails to reject the null hypothesis of the stationarity for the KPSS test.  
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TABLE 2. 2 UNIT ROOT TEST FOR THE U.S. MONETARY AGGREGATES 

Notes: The series are converted into the natural logarithm values before carrying out the unit root tests. By definition, the null hypothesis of ADF and Philips Perron test are 

imposed as the series contain unit root whereas KPSS test assumes series are stationary under the null hypothesis.   

ADF test; 𝑯𝟎: Series contain unit root 

 M1 M2 Money Multiplier 

P value 

Level 0.97 0.99 0.64 

First difference 0.00 0.00 0.00 

KPSS test; 𝑯𝟎: Series are stationary 

 M1 M2 Money Multiplier 

P value 

Level 0.01 0.00 0.00 

First difference 0.65 0.64 0.73 

Philips-Perron test; 𝑯𝟎: Series contain unit root 

 M1 M2 Money Multiplier 

P value 

Level 0.99 0.99 0.73 

First difference 0.00 0.00 0.00 
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2.3.2 Methodology 

 

We start our empirical estimations with linear models which were previously employed in 

exploring other areas of the partisan gap in economics and finance. To build the baseline 

models, we define our political variable as 𝜋𝑡 following Santa-Clara and Valkanov (2003) and 

run the following regression:  

                                             ∆𝑙𝑛𝑦𝑡 = 𝛼 + 𝛽𝜋𝑡 + 𝑢𝑡                                                              (2.1) 

Where the left-hand side variable is log growth rate of the underlying monetary aggregate and  

𝜋𝑡 is the political variable included as an additive dummy indicate the Republican presidencies 

as 1, alternatively 0 for the Democratic presidents. Alternatively defining:  

𝑅𝐷𝑡 = 1 if a Republican is in office at time 𝑡; 𝑅𝐷𝑡 = 0 otherwise 

                           and 

𝐷𝐷𝑡 = 1 if a Democrat is in office at time 𝑡; 𝐷𝐷𝑡 = 0 otherwise 

Then regression (2.1) can also be estimated as with two dummies (and without intercept) as in 

Santa-Clara and Valkanov (2003): 

                                        ∆𝑙𝑛𝑦𝑡 = 𝛼1𝑅𝐷𝑡 + 𝛼2𝐷𝐷𝑡 + 𝑢𝑡                                                       (2.2) 

The lagged coefficients are shown to be the main explanatory variables for monetary 

aggregates growth rates (Nelson, 2003). Therefore, in the second step, we allow the 

autoregressive components in the equation (2.1) to examine the ability to eliminate the 

significance of the partisan gap: 

                                 ∆𝑙𝑛𝑦𝑡 = 𝜇𝑡 + ∑ 𝜌𝑖∆𝑙𝑛𝑦𝑡−𝑖
𝑝
𝑖=1 + 𝛽𝜋𝑡 + 𝑢𝑡                                             (2.3)                
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Following Blinder and Watson (2016), we choose the optimal number of lags for the 

autoregressive component based on SBIC information criteria due to the fact AIC inherently 

choose a higher order model that is not necessary in this study.  

In previous equations, we assess the relation between growth rates of the underlying monetary 

aggregates and two political regimes. Following Sy and Zaman (2011), we next allow the 

coefficients of the autoregressive components change across the presidential cycles, so called 

multiplicative dummies given as follows: 

                    ∆𝑙𝑛𝑦𝑡 = 𝜇𝑡 + ∑ (𝜌𝑖 + 𝜋𝑡)∆𝑙𝑛𝑦𝑡−𝑖
𝑝
𝑖=1 + 𝛽𝜋𝑡 + 𝑢𝑡                                               (2.4) 

Where (𝜌𝑖 + 𝜋𝑡) implies that, the coefficients of lagged growth rates of monetary aggregates 

can be different under different political regimes. 

Monetary policy decisions are considered an important determination of monetary aggregates. 

Hence, we control for the federal funds rate by augmenting the equation (2.3). Specifically, 

following Blinder and Watson (2016), we estimate the model based on the Autoregressive 

Distributed Lag Specification given by: 

                ∆𝑙𝑛𝑦𝑡 = 𝜇𝑡 + ∑ 𝜌𝑖∆𝑙𝑛𝑦𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝜑𝑗∆𝑙𝑛𝑖𝑡−𝑗

𝑞
𝑗=0 + 𝛽𝜋𝑡 + 𝑢𝑡                                (2.5) 

where 𝑖 is the federal funds rate defined15 as the interest rate at which depository institutions 

trade federal funds with each other overnight.  

For the first time in the literature, we employ non-linear Markov Switching models to provide 

further evidence. Since the White House has been governed by only the Republicans and the 

Democrats parties, switching models can be applied to model US monetary liquidity in two 

political regimes. Non-linear time series models allow underlying variable(s) change under the 

                                                             
15 https://fred.stlouisfed.org/series/FEDFUNDS  

https://fred.stlouisfed.org/series/FEDFUNDS
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existence of different regimes, so called state-dependent models (Gonzalez-Rivera and Hwy 

Lee, 2008). In spite of the large number of non-linear models in econometric literature, 

Hamilton (1989, 1990) and Tong (1983, 1990) are considered as two widely applied models in 

financial time series (Brooks, 2014).  

Markov switching model 

The first class of non-linear model we employ is the Markov switching model with two separate 

regimes. We denote the republican presidencies in White House as “republican regime” 

(regime 1) and the democrat presidencies in office as “democrat regime” (regime 2) Under 

Markov switching models, underlying monetary liquidity variables 𝑦𝑡 switches regime 

according to some unobserved state variables 𝑠𝑡 , takes two values. In other words, when 𝑠𝑡 is 

equal 1, we will observe pattern of the US monetary liquidity in regime 1, “republican 

regimes”, otherwise st takes value 2, the dependent variables will be observed in regime 2, 

“democrat regime”. The model assumes the movements of the state variable between regimes 

are governed by a Markov process which can be expressed as  

                           𝑃[𝑎 < 𝑦𝑡 ≤ 𝑏|𝑦1, 𝑦2, … , 𝑦𝑡−1] = 𝑃[𝑎 < 𝑦𝑡 ≤ 𝑏|𝑦𝑡−1]                                (2.6)                  

The equation states that the probability distribution of the state at any time 𝑡 depends only on 

the state at time 𝑡 − 1 not on the states that were passed through at times 𝑡 − 2, 𝑡 − 3, .. 

Therefore, Markov process are not path dependent (Brooks, 2014).  

In a two-regime model, Hamilton (1989) defines an unobserved, latent state variable denoted 

as 𝑧𝑡 evaluated in the first order Markov process 

                             𝑝𝑟𝑜𝑏[𝑧𝑡 = 1|𝑧𝑡−1 = 1] = 𝑝11                                                                    (2.7) 

                             𝑝𝑟𝑜𝑏[𝑧𝑡 = 2|𝑧𝑡−1 = 1] = 1 − 𝑝11                                                             (2.8) 
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                             𝑝𝑟𝑜𝑏[𝑧𝑡 = 2|𝑧𝑡−1 = 2] = 𝑝22                                                                    (2.9) 

                             𝑝𝑟𝑜𝑏[𝑧𝑡 = 1|𝑧𝑡−1 = 2] = 1 − 𝑝22                                                           (2.10) 

Where 𝑝11   and 𝑝22 denote the probability in regime one, given that the system was in regime 

one during the previous period and the probability of being in regime two, given that the system 

was in regime two during the previous period, respectively. Accordingly, 1 − 𝑝11 defines the 

probability that 𝑦𝑡 will change from state one in the period 𝑡 − 1, to state two in the period 𝑡 

and 1 − 𝑝22 defines the probability of a shift from state two to state 1 between times 𝑡 − 1 and 

𝑡. Based on this specification, 𝑧𝑡 evolves as an AR (1) process 

                                      𝑧𝑡 = (1 − 𝑝11) + 𝜌𝑧𝑡−1 +  𝜗𝑡                                                          (2.11) 

Where 𝜌 = 𝑝11 + 𝑝22 − 1. In our case, assuming the US monetary aggregates follow a Markov 

process, to forecast the probability in a given regime during the next period, we have to find 

out the current period probability and a set of transition probabilities given for the case of 

“republican regime” and “democrat regime”. 

To get a univariate Markov switching model, we use an autoregressive 𝑝 order process for the 

underlying monetary aggregates 𝑦𝑡 which can be specified as follows: 

                            𝑦𝑡 = 𝜇𝑠𝑡
+ ∑ 𝜌𝑖,𝑠𝑡−𝑖

𝑦𝑡−𝑖 + 𝜎𝑠𝑡

𝑝
𝑖=1 𝜀𝑡                                                           (2.12) 

Where the parameters in the regression (2.2) can be defined as: 

                            𝜇𝑆𝑡
= 𝜇1(1 − 𝑆𝑡) + 𝜇2𝑆𝑡 = 𝜇1 + (𝜇2 − 𝜇1)                                             (2.13) 

                  𝜌𝑖,𝑆𝑡−𝑖
= 𝜌𝑖,0(1 − 𝑆𝑡−𝑖) + 𝜌𝑖,1𝑆𝑡−𝑖 = 𝜌𝑖,0 + (𝜌𝑖,1 − 𝜌𝑖,0)𝑆𝑡−𝑖                             (2.14) 

                  𝜎𝑆𝑡
= 𝜎0(1 − 𝑆𝑡) + 𝜎1𝑆𝑡 = 𝜎0 (1 +

(𝜎1−𝜎0)

𝜎0
𝑆𝑡) = 𝜎0(1 + ℎ𝑆𝑡)                         (2.15) 
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Where 𝜇𝑆𝑡
is the regression constant that defines 𝜇1 and 𝜇2 as the regression means for the 

“republican regime” and “democrat regime”, respectively; 𝜌𝑖,𝑆𝑡−𝑖
 is the slope coefficient for 

the 𝑖𝑡ℎ order regression term; 𝜎𝑆𝑡
 is the standard deviation; 𝜀𝑡 is a zero mean and unit variance 

shock; 𝑆𝑡 is the Markov switching variable takes value 0 at the “republican regime” and value 

1 for the “democrat regime”. The transition probabilities are assumed to be time-invariant and 

constant over time.  

TABLE 2. 3 THE U.S. MONETARY AGGREGATES ACROSS THE PRESIDENTIAL CYCLES 

Notes: The table reports the empirical results based on the following regressions: 

∆𝑙𝑛𝑦𝑡 = 𝛼 + 𝛽𝜋𝑡 + 𝑢𝑡 

∆𝑙𝑛𝑦𝑡 = 𝛼1𝑅𝐷𝑡 + 𝛼2𝐷𝐷𝑡 + 𝑢𝑡 

All the data covers the period from 1959:01 to 2017:09. The growth rates of the monetary aggregates are 

annualized by multiplying the monthly growth rates by 12. The numbers in the parentheses below the coefficients 

of “RD” and “DD” dummies represent p values under the null hypothesis that the estimated growth rates are not 

significantly different from zero. The p values of the tests are calculated using Newey-West (1987) 

heteroskedasticity and serial-correlation robust t-statistics following Santa-Clara and Valkanov (2003).  The p 

values under the coefficients in the “Diff” column is also obtained from Newey-West test indicating the null 

hypothesis that the monetary aggregates growth rates across the democrat and the republican presidencies are 

not significantly different from each other. The row “T/Republicans” indicates the number of observations and 

the number of the months that republican presidents are in the office throughout the sample period.   
 The �̅�2  row displays the average adjusted 𝑅2   during full sample and the first four years. The symbols *, **, 

*** are used indicate the statistical significance at 10%, 5% and 1% significance levels, respectively.  

Monetary Aggregates Full Sample First Terms 

 RD DD Diff RD DD Diff 

M1 13.19*** 

(0.00) 

18.34*** 

(0.00) 

-5.15*** 

(0.00) 

13.56*** 

(0.00) 

13.37*** 

(0.00) 

0.19* 

(0.07) 

M2 59.28*** 

(0.00) 

68.4*** 

(0.00) 

-9.12*** 

(0.00) 

53.18*** 

(0.00) 

40.32*** 

(0.00) 

12.85** 

(0.03) 

MM -

0.036*** 

(0.00) 

-0.042*** 

(0.00) 

-0.01* 

(0.10) 

-

0.036*** 

(0.00) 

-0.056*** 

(0.00) 

0.0198** 

(0.03) 

T/Republicans 705/370 435/255 

�̅�𝟐 0.03 0.01 
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2.4 Empirical Results 
 

We start with the significance of the correlation test between U.S monetary aggregates and 

political cycles by using an additive dummy variable which represents political parties in the 

USA. After estimating regression (2.2), we re-estimate the monetary aggregates across the 

political parties based on the equation (2.1) for the full sample period. Subsequently, we 

eliminate the second presidential terms from the data to examine the previous empirical 

findings that the partisan gap in the economic variables might be much stronger while 

considering only the first four years16 in the office rather than full presidential period (Blinder 

and Watson, 2016).  

Table 2.3 reports the significance of the correlation between growth rates of the underlying U.S 

monetary aggregates and the additive dummy variable indicating two political parties in the 

repeated manner. We conduct regression (2.1) and regression (2.2) across the full sample and 

only first four years of the presidential periods, accordingly. During the full sample period, 

from 1959:01 to 2017:09, real growth rate of the U.S narrow money aggregate (i.e M1) is on 

average 18.34 percent per year under the Democratic presidencies versus 13.19 percent under 

the Republican presidential terms in the office. The Democratic partisan gap amounting 5.15 

percent is found to be statistically and economically significant. Likewise, real growth rate of 

the broader money aggregate considered as M2 is found on average 68.4 percent per year under 

the Democratic presidencies whereas 59.28 percent during the Republicans’ office periods. The 

suggested 9.12 percent Democratic partisan gap is found even more economically meaningful 

than M1 aggregate.  We can observe similar findings for the money multiplier, albeit the growth 

difference across the political cycles appears less significant. 

                                                             
16 Even more robust in the first years 
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Surprisingly, the partisan gap in the monetary aggregates during the first presidential terms is 

found exactly opposite to the results of the full sample period. The growth rates of the 

underlying monetary aggregates are found to be more favourable under the Republican 

president in the office than the Democratic presidencies. The growth differences of the money 

aggregates are found to be statistically significant, albeit less economically notable. This 

finding is contrary to what Blinder and Watson (2016) found for the partisan gap in economic 

output.  

TABLE 2. 4 MONETARY AGGREGATES CONTROLLED BY AUTOREGRESSIVE COMPONENTS 

Notes: The table represents the statistical results based on the following regression: 

∆𝑙𝑛𝑦𝑡 = 𝜇𝑡 + ∑ 𝜌𝑖∆𝑙𝑛𝑦𝑡−𝑖

𝑝

𝑖=1

+ 𝛽𝜋𝑡 + 𝑢𝑡 

All the data covers the period from 1959:01 to 2017:09. The optimal lag length is chosen with SIC information 

criteria which determines two lags for the M1 and M2 equations, while only AR(1) component for the MM 

equation. In the table, 𝜌1 and 𝜌2 indicate the coefficients of AR (1) and AR (2) components, respectively. The 

political variable is measured by 𝜋𝑡 which indicates 1 if a Republican president is in the office, otherwise 0 if a 

Democrat president is in the office. Under the null hypothesis, the political variable should not be significantly 

different from zero.  The numbers in the parentheses shows the p values to present the statistical significance of 

the coefficients.  The p values of the tests are calculated using Newey-West (1987) heteroskedasticity and serial-

correlation robust t-statistics. The regression performance is given by 𝑅2̅̅̅̅  in last column. The symbols *, **, *** 

are used indicate the statistical significance at 10%, 5% and 1% significance levels, respectively.    

 𝝁𝒕  𝝆𝟏 𝝆𝟐 𝝅 𝑹𝟐̅̅̅̅  

M1 0.96*** 

(0.00) 

0.11*** 

(0.00) 

0.27*** 

(0.00) 

-0.29*** 

(0.00) 

0.21 

M2 2.21*** 

(0.00) 

0.47*** 

(0.00) 

0.14*** 

(0.00) 

-0.35*** 

(0.00) 

0.41 

MM -0.003*** 

(0.00) 

0.27*** 

(0.00) 

- -0.001* 

(0.09) 

0.15 

 

Table 2.4 presents the statistical results of the estimating equation (2.3) which allows 

autoregressive components in assessing the presidential gap in the growth rates of monetary 

aggregates. The number of AR lags is determined with SIC criteria which allow two lags for 
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the M1 and M2 equations, while only one lag for the MM equation. The maximum number of 

lags is chosen based on the frequency of the data (i.e if it is monthly, then 12) following the 

rule of thumb. 

As one might expect the AR lags are found to be positive and highly significant at the 1 percent 

level.  However, it does not eliminate the significance of the political variable. The additive 

dummy indicating the presidential parties is still significant for all three equations albeit less 

economically noticeable for the MM equation. The positive Democratic gap (or negative 

Republican) in the growth of the monetary aggregates remains significant after controlling for 

the lagged growth rates as explanatory variables.  

In the previous estimations, we measured the presidential gap in the monetary aggregates 

growth rates by only additive dummy. Table 2.5 reports the empirical results based on the 

equation (2.4) which allows the coefficients of AR lags change across the presidential parties 

by simultaneously enabling the previously estimated additive dummy. The table exhibits 

interesting findings. The coefficients of the multiplicative dummies, as expected, are negative 

indicating the positive democratic gap (or negative republican gap) in the coefficients of AR 

lags and statistically significant in the all three equations. Moreover, after controlling for the 

multiplicative dummies, the additive dummies become less significant, albeit still 

economically meaningful.  

One the one hand, this finding might be explained by the relative explanatory power of 

multiplicative political variable over the additive political dummy.  On the other hand, 

however, it can be due to the merely econometrical reasons. We controlled both political 

variables in the same equation which may potentially increase the chance of the existence of 

the multicollinearity problem in the regression, even if 𝑅2 value deliberately increases. 
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Nevertheless, the additive political variables for the M1 and M2 equations are still significant 

at 10 percent and 5 percent levels, respectively whereas insignificant in the MM equation.  

TABLE 2. 5 MONETARY AGGREGATES WITH CONTROLLED BY AUTOREGRESSIVE 

COMPONENTS AND MULTIPLICATIVE POLITICAL DUMMIES 

Notes: The table represents the statistical results based on the following regression: 

                                     ∆𝑙𝑛𝑦𝑡 = 𝜇𝑡 + ∑ (𝜌𝑖 + 𝜋𝑡)∆𝑙𝑛𝑦𝑡−𝑖
𝑝
𝑖=1 + 𝛽𝜋𝑡 + 𝑢𝑡                                                 

All the data covers the period from 1959:01 to 2017:09.  The optimal lag length is chosen with SIC information 

criteria which determines two lags for the M1 and M2 equations, while only AR(1) component for the MM 

equation. In the equation, 𝜌1 and 𝜌2 indicate the coefficients of AR (1) and AR (2) components, respectively. The 

political variable is measured by  𝜋𝑡, an additive dummy variable which indicates 1 if a Republican president is 

in the office, otherwise 0 if a Democrat president is in the office. In the meantime, multiplicative dummies are 

added to the AR coefficients to measure the changes in the coefficients across the political cycles. Under null 

hypothesis the political variable should not be significantly different from zero.  The numbers in the parentheses 

shows the p values present the statistical significance of the coefficients.  The p values of the tests are calculated 

using Newey-West (1987) heteroskedasticity and serial-correlation robust t-statistics. The regression 

performance is given by 𝑅2̅̅̅̅  in last column. The symbols *, **, *** are used indicate the statistical significance 

at 10%, 5% and 1% significance levels, respectively.     

 𝝁𝒕 𝝆𝟏  𝝆𝟏*𝝅 𝝆𝟐 𝝆𝟐*𝝅 𝝅 𝑹𝟐̅̅̅̅  

M1 0.91*** 

(0.00) 

0.16*** 

(0.00) 

-0.11** 

(0.03) 

0.25*** 

(0.00) 

-0.03 ** 

(0.05) 

-0.197* 

(0.07) 

0.29 

M2 2.12*** 

(0.00) 

0.43*** 

(0.00) 

-0.09** 

(0.03) 

0.21*** 

(0.00) 

-0.13*** 

(0.01) 

-0.17** 

(0.05) 

0.48 

MM -0.001** 

(0.04) 

0.18*** 

(0.00) 

-0.15** 

(0.05) 

- - 0.00 

(0.14) 

0.20 

 

The money supply is thought to be linked to monetary policy. One might suspect that the 

presidential gap in the monetary aggregates growth rates could be merely explained by the 

monetary policy decisions. Hence, we control the federal funds rate in the estimations based 

on the equation (2.5). Following Blinder and Watson (2016) on studying the partisan gap in 

the economic output, we model the growth rates of the monetary aggregates in the 

Autoregressive Distributed Lag framework which allows the current and lagged values of the 

federal funds rates as well as the lagged values of the growth rates of monetary aggregates as 

the explanatory variables. Consistent with the previous estimation, the optimal lag length is 
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determined with SIC criteria. Meanwhile, the political variable is modelled with an additive 

dummy variable  

Table 2.6 reports the findings. Apparently, the SIC criteria choose a lag of federal funds for the 

M1 equation while leaves only contemporaneous values for the M2 and MM equations. As 

expected, the federal funds rates are highly significant and negatively linked to the monetary 

aggregates growth rates. However, an interesting finding is that the partisan gap becomes even 

stronger after controlling for the funds rate. The coefficients of the dummy variable are found 

to be highly significant; the absolute values of the coefficients are even higher than the previous 

estimations.  

Table 2.7 and 2.8 report the findings of Markov Switching Autoregressive model and its 

transition probabilities. In the estimations, we allowed the intercept and the volatilities to 

change across the regimes, while remaining the AR coefficients constant (i.e non-switching 

regressors).  The switching intercepts and volatilities are found significant and economically 

meaningful. The democratic presidential periods in the office are observed with higher growth 

rates whereas low growth rates are associated with the republican office periods. As expected, 

the AR coefficients are mostly positive and highly significant, except AR (2) in the M2 

equation. It is clear from Table 2.8 that the regimes are highly stable with less than 10% 

probability that the monetary aggregates may shift from a low growth rate state (the republican 

state) to a high growth state (the democratic state) or vice versa. The monetary aggregates 

growth rates tend to exhibit path dependence as dictated by the theory of Markov process.  
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TABLE 2. 6   MODELLING MONETARY AGGREGATES WITH AUTOREGRESSIVE COMPONENTS 

CONTROLLED BY POLITICAL DUMMY AND FED FUND RATES 

 

Notes: The table represents the statistical results based on the following ARDL regression: 

                         ∆𝑙𝑛𝑦𝑡 = 𝜇𝑡 + ∑ 𝜌𝑖∆𝑙𝑛𝑦𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝜑𝑗∆𝑙𝑛𝑖𝑡−𝑗

𝑞
𝑗=0 + 𝛽𝜋𝑡 + 𝑢𝑡                                             

All the data covers the period from 1959:01 to 2017:09.  The optimal distributed lag length is chosen with SIC 

information criteria which determines two lags for the growth rate of M1 and the growth rate of the federal funds 

rate in the first row. M2 equation, however, is specified only AR (1) component and the contemporaneous funds 

rate followed by the fixed repressor political variable. The Money Multiplier equation is determined by only AR 

(1) and the contemporaneous value of the funds rate. In the equation, 𝜌1 and 𝜌2 indicate the coefficients of AR (1) 

and AR (2) components while 𝜑0 and 𝜑1 represent the current and lagged value of the federal funds rate. The 

political variable is measured by  𝜋𝑡, an additive dummy variable which indicates 1 if a Republican president is 

in the office, otherwise 0 if a Democrat president is in the office. Under null hypothesis the political variable 

should not be significantly different from zero.  The numbers in the parentheses shows the p values present the 

statistical significance of the coefficients.  The p values of the tests are calculated using Newey-West (1987) 

heteroskedasticity and serial-correlation robust t-statistics. The regression performance is given by 𝑅2̅̅̅̅  in last 

column. The last column presents the F statistics results under the null hypothesis that all the coefficients of the 

repressors are simultaneously equal to zero.  The symbols *, **, *** are used indicate the statistical significance 

at 10%, 5% and 1% significance levels, respectively.    

  

 𝝁𝒕 𝝆𝟏  𝝆𝟐 𝝋𝟎 𝝋𝟏 𝝅 𝑹𝟐̅̅̅̅  Pr(Fstat

) 

M1 1.08*** 

(0.00) 

0.09*** 

(0.01) 

0.26*** 

(0.00) 

-2.25* 

(0.10) 

-3.89*** 

(0.01) 

-0.48*** 

(0.00) 

0.34 0.00 

M2 2.41*** 

(0.00) 

0.46*** 

(0.00) 

0.14 

(0.21) 

-8.73*** 

(0.00) 

- -0.58*** 

(0.00) 

0.54 0.00 

MM -0.29*** 

(0.00) 

0.22*** 

(0.00) 

- 0.02*** 

(0.00 

- 0.04** 

(0.05) 

0.25 0.00 

 



72 
 

TABLE 2. 7 MODELLING THE U.S. MONETARY AGGREGATES WITH MARKOV SWITCHING MODEL 

Notes: The table represents the statistical results based on the following Markov Switching Autoregressive model 

𝑦𝑡 = 𝜇𝑠𝑡
+ ∑ 𝜌𝑖,𝑠𝑡−𝑖

𝑦𝑡−𝑖 + 𝜎𝑠𝑡

𝑝

𝑖=1

𝜀𝑡 

All the data covers the period from 1959:01 to 2017:09. The optimal AR lags is chosen based on the findings from the previous estimations. We allow intercept and volatility 

to change across the regimes while remaining the autoregressive coefficients constant. 𝑁1and 𝑁2 denote the number of observations through the republican and the democrat 

regimes. Last two columns show the average expected duration of two regimes across the equations. The numbers in the parentheses indicate the p values.  

Statistic 𝝁𝟏 𝝁𝟐 𝝈𝟏
𝟐 𝝈𝟐

𝟐 AR(1) AR(2) 𝑵𝟏 𝑵𝟐 𝒅𝟏 𝒅𝟐 

M1 -0.33 

(0.00) 

0.60 

(0.00) 

0.83 

(0.09) 

3.36 

(0.00) 

0.43 

(0.00) 

0.22 

(0.00) 

370 332 27.84 12.85 

M2 3.04 

(0.00) 

10.11 

(0.00) 

0.70 

(0.00) 

2.03 

(0.00) 

0.68 

(0.00) 

0.04 

(0.39) 

370 332 44.19 94.58 

MM -0.07 

(0.00) 

-0.02 

(0.00) 

-4.13 

(0.00) 

5.19 

(0.00) 

0.25 

(0.00) 

- 370 332 10.69 39.81 
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TABLE 2. 8 THE TRANSITION PROBABILITIES OF THE MARKOV SWITCHING AUTOREGRESSIVE MODEL 

Notes: The table represents the transition probabilities under the Markov Switching model 

𝑝𝑟𝑜𝑏[𝑧𝑡 = 1|𝑧𝑡−1 = 1] = 𝑝11 

                                                                                                                   𝑝𝑟𝑜𝑏[𝑧𝑡 = 2|𝑧𝑡−1 = 1] = 1 − 𝑝11 

𝑝𝑟𝑜𝑏[𝑧𝑡 = 2|𝑧𝑡−1 = 2] = 𝑝22 

                                                                                                                   𝑝𝑟𝑜𝑏[𝑧𝑡 = 1|𝑧𝑡−1 = 2] = 1 − 𝑝22 

 

In the equations, 𝑝11   and 𝑝22 denote the probability in regime one, given that the system was in regime one during the previous period and the probability of being in regime 

two, given that the system was in regime two during the previous period, respectively. Accordingly, 1 − 𝑝11 defines the probability that 𝑦𝑡  will change from state one in the 

period 𝑡 − 1, to state two in the period 𝑡 and 1 − 𝑝22 defines the probability of a shift from state two to state 1 between times 𝑡 − 1 and 𝑡.  

Statistic 𝒑𝟏𝟏 𝒑𝟏𝟐 𝒑𝟐𝟐 𝒑𝟐𝟏 

M1 0.96 0.04 0.92 0.08 

M2 0.98 0.02 0.99 0.01 

MM 0.91 0.09 0.97 0.03 
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Fed chairs have political views either having party membership or an ideological outlook. More 

importantly, the Fed governing cycles are independent17 from presidential cycles, as there has 

been a long tradition that the presidents allow for the continuation of the current chair even if 

he/she is a member of the rival party. The only exception can be considered the most recent 

case that president Trump removed Janet Yellen at the end of her first term.  

In Table 2.9, we present descriptive statistics of the growth rates of the U.S Monetary 

Aggregates under partisan Fed chair cycles. Although Democrats are represented with four, 

Republicans with three governors, Republican Fed governors are reported to be 413 months in 

the office compared to 291 months of Democrats. In annualized percentage growth term, M1 

and MM are observed to be higher under Democrat Fed governors (4.9% and -0.42%, 

respectively) than the Republicans (4.2% and -6.51%, respectively) whereas the opposite for 

M2 being 5.16% and 5.04% for Republicans and Democrats, respectively.   

The U.S monetary policy history of last 50-60 years may suggest us to hypothesize that whether 

partisan FED chairs are able to explain the presidential gap in the monetary aggregates. For 

instance, we already know that Paul Volcker (Democrat) was quite successful in curbing high 

inflation inherited from the Arthur Burns’s (Republican) governing years (Silber, 2012). Alan 

Greenspan (Republican) is known his ultra-liberal views on the financial regulation which is 

partially blamed18 for dotcom bubble as well as 2008-2009 crisis. We test the significance of 

partisan FED chair gap in explaining the presidential gap in the monetary aggregates. Firstly, 

we carry out the significance of the correlation analysis as done for the presidential gap in Table 

2.10. 

                                                             
17 https://www.federalreserve.gov/aboutthefed/bios/board/boardmembership.htm  
18 https://www.nytimes.com/2008/10/24/business/economy/24panel.html  

https://www.federalreserve.gov/aboutthefed/bios/board/boardmembership.htm
https://www.nytimes.com/2008/10/24/business/economy/24panel.html
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TABLE 2. 9 THE REAL GROWTH RATES OF THE MONETARY AGGREGATES ACROSS THE U.S PRESIDENTIAL CYCLES 

 

 

FED Chair (Party) Period in Office 

M1 M2 MM 

Mean Std. Deviation Mean Std. Deviation Mean Std. Deviation 

Panel A. By FED Cahir 

William Martin (D) 01/1959-01/1970 2.99 3.96 5.97 2.78 -1.31 3.85 

Arthur F. Burns (R) 02/1970-01/1978 3.99 4.21 7.65 4.83 -3.46 5.08 

G. William Miller (D) 03/1978-08/1979 3.91 4.28 3.64 1.92 -4.09 4.19 

Paul A. Volcker (D) 09/1979-08/1987 5.87 8.33 5.6 5.28 -2.19 6.86 

Alan Greenspan (R) 09/1987-01/2006 1.56 8.06 2.97 4.15 -5.07 7.39 

Ben Bernanke (R) 02/2006-01/2014 7.06 14.82 4.86 6.42 -10.99 44.09 

Janet Yellen (D) 02/2014-09/2017 6.69 10.94 4.95 3.12 5.94 31.34 

Panel B. By Party 

Political Party Total months in 

office 

M1   

Mean Std Deviation Mean Std Deviation Mean Std Deviation 

Republicans 413 4.2 9.03 5.16 5.13 -6.51 18.85 

Democrats 291 4.9 6.9 5.04 3.28 -0.42 11.56 
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TABLE 2. 10 THE U.S MONETARY AGGREGATES GROWTH RATES ON THE PARTISAN FED 

CHAIRS CYCLES 

  

Notes: The table reports the empirical results based on the following regressions: 

∆𝑙𝑛𝑦𝑡 = 𝛼 + 𝛽𝜋𝑡 + 𝑢𝑡 

∆𝑙𝑛𝑦𝑡 = 𝛼1𝑅𝐷𝑡 + 𝛼2𝐷𝐷𝑡 + 𝑢𝑡 

All the data covers the period from 1959:01 to 2017:09. The growth rates of the monetary aggregates are 

annualized by multiplying the monthly growth rates by 12. The numbers in the parentheses below the coefficients 

of “RD” and “DD” dummies represent p values under the null hypothesis that the estimated growth rates are not 

significantly different from zero. The p values of the tests are calculated using Newey-West (1987) 

heteroskedasticity and serial-correlation robust t-statistics following Santa-Clara and Valkanov (2003).  The p 

values under the coefficients in the “Diff” column is also obtained from Newey-West test indicating the null 

hypothesis that the monetary aggregates growth rates across the democrat and the republican FED cycles are 

not significantly different from each other. The row “T/Republicans” indicates the number of observations and 

the number of the months that republican FED chairs are in the office throughout the sample period.   
The symbols *, **, *** are used indicate the statistical significance at 10%, 5% and 1% significance levels, 

respectively.  

 RD DD Diff 

M1 12.36*** 

(0.00) 

27.24*** 

(0.00) 

-14.88*** 

(0.00) 

M2 56.76*** 

(0.00) 

87.96*** 

(0.00) 

-31.2*** 

(0.00) 

MM -0.05*** 

(0.00) 

-0.03*** 

(0.00) 

-0.02*** 

(0.00) 

T/Republicans 705/547 

 

Table 2.10 shows that there is an economically and statistically significant Democratic (or 

negative Republican) Fed chair gap in the growth rates of narrow and broad money indicators. 

Although, money multiplier is also found to be significant, it is economically less notable. 

Remarkable Democratic gap is found as much as 14.88 and 31.2 percent for the M1 and M2 

growth rates, respectively which apparently outperform respective presidential gaps.  

Afterwards, for the first time in the literature, we check the statistical significance of partisan 

Fed chair gap in explaining the presidential gap. As emphasized above, we can simultaneously 

model partisan the Fed chair gap with the presidential gap in the same equation, as there is no 
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direct relationship between them based on the structure of the U.S political system. In other 

words, the equation will not suffer from multicollinearity problem. Therefore, we include the 

Fed chair variable in the equation (2.1) to check the possible explanatory power of partisan Fed 

chair in explaining the presidential gap. Under the null hypothesis, the coefficient of partisan 

Fed chair should not be significantly different from zero.  

TABLE 2. 11 THE U.S MONETARY AGGREGATES IN THE PARTISAN FED CHAIR AND 

PRESIDENTIAL CYCLES 

  

Notes: The table reports the empirical results based on the following regressions: 

∆𝑙𝑛𝑦𝑡 = 𝜇 + 𝛽1𝜋𝐹𝐸𝐷 + 𝛽2𝜋𝑃𝑟𝑒𝑠 + 𝑢𝑡 

All the data covers the period from 1959:01 to 2017:09. The growth rates of the monetary aggregates are 

annualized by multiplying the monthly growth rates by 12. The numbers in the parentheses below the coefficients 

of 𝜋𝐹𝐸𝐷  and  𝜋𝑃𝑟𝑒𝑠 dummies represent p values under the null hypothesis that the estimated growth rates are not 

significantly different from zero. The p values of the tests are calculated using Newey-West (1987) 

heteroskedasticity and serial-correlation robust t-statistics following Santa-Clara and Valkanov (2003).  The row 

“T/Republicans” indicates the number of observations and the number of the months that republican FED chairs 

are in the office throughout the sample period. The symbols *, **, *** are used indicate the statistical significance 

at 10%, 5% and 1% significance levels, respectively.  

 

 𝝁 𝝅𝑭𝑬𝑫 𝝅𝑷𝒓𝒆𝒔 

M1 2.52*** 

(0.00) 

-1.26*** 

(0.00) 

-0.45 

(0.12) 

M2 7.78*** 

(0.00) 

-2.63*** 

(0.00) 

-0.81 

(0.11) 

MM -0.01*** 

(0.00) 

-0.002*** 

(0.00) 

-0.01 

(0.27) 

 

Finally, to test the robustness of the explanatory power of the partisan Fed chair gap, we control 

autoregressive components of the monetary aggregates in the same equation. As previously 

carried out, the optimal lag length is chosen with SBIC information criteria. 
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TABLE 2. 12 THE U.S MONETARY AGGREGATES CONTROLLED BY AUTOREGRESSIVE 

COMPONENTS IN THE PARTISAN FED CHAIR AND PRESIDENTIAL CYCLES    

Notes: The table represents the statistical results based on the following regression: 

∆𝑙𝑛𝑦𝑡 = 𝜇𝑡 + ∑ 𝜌𝑖∆𝑙𝑛𝑦𝑡−𝑖

𝑝

𝑖=1

+ 𝛽1𝜋𝐹𝐸𝐷 + 𝛽2𝜋𝑃𝑟𝑒𝑠 + 𝑢𝑡 

All the data covers the period from 1959:01 to 2017:09. The optimal lag length is chosen with SIC information 

criteria which determines two lags for the M1 and M2 equations, while only AR(1) component for the MM 

equation. The political variable is measured by 𝜋𝑡 which indicates 1 if a Republican is in the office, otherwise 0 

if a Democrat is in the office. Under the null hypothesis, the political variable should not be significantly different 

from zero.  The numbers in the parentheses shows the p values to present the statistical significance of the 

coefficients.  The p values of the tests are calculated using Newey-West (1987) heteroskedasticity and serial-

correlation robust t-statistics. The symbols *, **, *** are used indicate the statistical significance at 10%, 5% 

and 1% significance levels, respectively.    

 𝝁𝒕 AR (1) AR (2) 𝝅𝑭𝑬𝑫 𝝅𝑷𝒓𝒆𝒔 

M1 2.45*** 

(0.00) 

0.11*** 

(0.00) 

0.26*** 

(0.00) 

-1.18*** 

(0.00) 

-0.45 

(0.31) 

M2 2.36*** 

(0.00) 

0.47*** 

(0.00) 

0.14*** 

(0.00) 

-0.89** 

(0.03) 

-0.38 

(0.44) 

MM -0.002** 

(0.05) 

0.27*** 

(0.00) 

- -0.03* 

(0.07) 

-0.01 

(0.93) 

 

Table 2.11 apparently shows that the Fed chair gap remains its power in explaining the 

presidential gap even after controlling for the autoregressive components. 

2.5 Discussion and Conclusion 
 

We explore the presidential gap in U.S monetary aggregates. The consistent findings regarding 

the partisan gap in the U.S economic output (Blinder and Watson, 2016) and stock market 

performance (Santa-Clara and Valkanov, 2003) motivated us to investigate the similar gap in 

the monetary aggregates. Based on strong theoretical and empirical links between monetary 

aggregates and economic activity as well as stock market return, we impose a hypothesis that 

the presidential gap might be present in the monetary aggregates. Additionally, this study 

potentially aims to shed light on the unexplored reasons of excessive growth rates of monetary 
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aggregates over economic activity and monetary policy decisions. The major findings can be 

summarized as the followings. 

A positive and significant democratic gap is existent in the U.S monetary aggregates. While 

the gaps are found as much as 5 percent and 9 percent per annum in the M1 and M2 growth 

rates, respectively, the MM gap is less economically noticeable. The partisan gap remains 

significant after controlling for the autoregressive components and the federal funds rates. The 

presidential gap is not only persistent as an additive component to the growth rates, but also 

highly significant in the coefficients. Hence, the magnitudes of the lagged growth rates are 

sensitive to the presidential cycles. 

The monetary aggregates are also found significantly different under the Democratic FED 

chairs than the Republican governors. The gaps are remarkably high, as much as 14 percent 

and 31 percent in the M1 and M2 growth rates which considerably outperform the similar 

presidential gaps. Moreover, controlling the Fed chair gap sweeps away the statistical 

significance of the presidential gaps. Consequently, the Democratic FED chair gap is found 

more robust partisan gap than the Democratic presidential gap. 

In general, this study might be suggestive to the new way of thinking in the U.S presidential 

puzzle literature. The local partisan gaps might be a more promising way of exploring the 

binary nature of the appropriate growth rather than the whole, country wide political picture.  
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Chapter 3. Commodity Prices and FX Liquidity: A 

GVAR Approach 
 

3.1 Introduction 
 

The foreign exchange (FX) market is one of the biggest and most liquid in the financial 

markets. As of 2016 data, the average daily market turnover was $5.1 trillion per day (BIS, 

2016).  

In recent years, a considerable number of studies has been dedicated to explore the 

determinants, commonality and the investment implications of FX liquidity (Banti et al., 2012; 

Banti and Phylaktis, 2015; Karnaukh, Ronaldo and Soderlind, 2015; Mancini et al., 2013; 

Menkhoff et al., 2012). Common findings can be summarized as: (i) liquidity risk is priced in 

the cross section of currency returns, especially, the currencies of the emerging economies (ii) 

the TED spread (i.e the difference between the interest rates on interbank loans and short term 

U.S government debt) and market volatility are significant commonality factors of FX liquidity 

(iii) local money market rates and capital flows with the country of quoted currency are 

significant determinants of the cross section of the liquidity of floating exchange rates. 

However, none of these papers studies the potential transmission of commodity price 

movements to FX liquidity.  

The linkages between commodity prices and international finance have received some attention 

in the exchange rate literature. The introduction of the concept of “commodity currencies” 

(Chen and Rogoff, 2003) led to the findings that commodity price is an important driver of the 

exchange rate movements under the sticky-price model of an open economy with non-traded 

goods, a portfolio balance model and the terms-of trade hypothesis (Chen, 2004).   
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In the meantime, similar findings are also documented from the other perspective. Exchange 

rates also influence or Granger-cause commodity prices as they are determined by the net 

present value of fundamental asset prices (Zhang et al., 2016; Obstfeld and Rogoff, 1996; Engel 

and West, 2005; Chen at al., 2010; Alquist et al., 2012). Finally, multiple studies (notably, 

Ferraro et al., 2015; Chen et al., 2010; Zhang, et al., 2016) document that commodity prices 

have the power to forecast exchange rates or vice versa, particularly in the case of “commodity 

currencies”. 

Given the numerous findings on the linkage between commodity prices and exchange rates, it 

is a surprising fact that the FX liquidity literature never, as far as we know, emphasises 

commodity prices as potential determinant or commonality factor. Commodity prices may 

influence FX liquidity from different channels. From the demand side perspective, 

commodities are vital part of international trade flows and this generates a demand for FX 

liquidity, hence can be determinant of FX liquidity. Since commodity prices are one of the 

factors that the exchange rates and economies are linked to each other, it would be a potential 

driver of FX liquidity from the commonality perspective. Finally, as commodity prices may 

significantly influence the local funding conditions especially in economies that are 

significantly exposed to exporting commodities, then they affect FX liquidity from the supply 

side perspective. Considering the channels above that commodity prices may transmit to FX 

liquidity, it is clearly worthwhile exploring whether commodity prices are a determinant of FX 

liquidity.  

Exploring FX liquidity is also of interest to investors. Factor investing is a growing field of 

investment management. It is based on dedicating a specific fund to each factor or building a 

multifactor investment structure (Bender et al., 2013). Liquidity based investment involves 

exploiting a liquidity premium from holding illiquid assets rather than liquid assets. This study 

can be useful to investors who aim to exploit profit opportunities from the liquidity factor in 
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the FX market by introducing commodity prices as an additional tool to model the direction of 

the liquidity of major exchange rates.  

This chapter contributes to the literature in three ways. First, we assemble a new dataset for 

CTOT. Specifically, we improve the existing resources in three aspects: 1) We construct CTOT 

at a new monthly frequency which can be useful for other researchers 2) We apply yearly 

updated trading weights of countries’ trade composition to commodity prices in contrast to the 

currently available dataset which has been constructed with fixed weights and 3) We also 

extend the latest available data of 2010 to the end of 2016. We cover 41 countries (of which 19 

are eurozone countries) to cover floating exchange rates over the period 01/1994 to 12/2016. 

The second contribution is exploring the transmission of commodity prices to the cross-

sectional illiquidity of the currencies. We estimate the impulse responses of illiquidity to one- 

unit local CTOT shock. Analogous estimations are carried out on the supply and demand side 

models of liquidity, separately. We also explicitly explore commodity price as a commonality 

factor by taking advantages of a GVAR model.  

The third contribution is applying a GVAR model to the international finance literature. Similar 

works have already been carried out in other areas of finance (see Pesaran et al., 2006; Pesaran 

et al., 2007a; Favero, 2013; Gray et al., 2013). The GVAR model allows us to build a local 

currency specific endogenous FX liquidity model to enable us to estimate the interlinkages of 

FX liquidity among currencies by applying common variables. In this manner, we are able to 

explore CTOT as a domestic and weighted foreign determinant of cross-sectional currency 

illiquidity, while allowing previously known commonality factors (e.g TED spread, VIX, FX 

volatility) to be global variables. In the second stage, we jointly model cross-sectional demand 

and supply side factors together, while defining commodity price as a global variable, therefore 

modelling the commodity price as a commonality factor in FX liquidity. 
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Some clear results emerge from our estimations. First, we find commodity prices do matter for 

FX illiquidity; in particular, the illiquidity of the currencies of developing economies 

experience a persistent fall, following a positive local CTOT shock in the supply side model. 

We do not a find a similar effect for the highly liquid currencies from developed economies 

which might be explained by the high explanatory power of local money market rates and 

global funding conditions, as well as, the influence of short-term trading strategies. In the 

meantime, local CTOT shocks leave a significant but temporary effect on the illiquidity of the 

currencies of developed economies that are relatively more exposed to commodity exporting 

such as AUD, CAD, NZD, ZAR and NOK.  

Second, we find strong evidence for the effect of local CTOT shocks on cross-sectional FX 

illiquidity in the demand side framework. A one-unit standard deviation shock on local CTOT 

is followed by a negative and persistent effect on illiquidity for most currencies excluding the 

highly liquid and some Asian currencies. CTOT shocks stimulate the market demand for the 

local currency and push liquidity up for most currencies. On the other hand, jointly modelling 

capital flows while controlling for market sentiment (VIX) and general market condition 

enhances the effects of CTOT shocks. We can explain the insignificant effect for highly liquid 

currencies (GBP, CHF, EUR, JPY) with the similar reasons in the supply side model.  

Third, we find that the illiquidity of currencies that are considerably exposed to commodity 

exporting, also known as “commodity currencies” (AUD, CAD, BRL, ZAR, NOK, NZD, 

MXN) are significantly influenced by the common commodity price shocks. The currencies of 

small economies (CLP, SEK, PLN, HUF, CZP and DKK) are also significantly influenced by 

commodity price shocks. Consistent with the findings above, highly liquid currencies are not 

significantly affected by common commodity price shocks that might be explained by the 

similar reasons- the impact of local money market rates and global funding conditions, as well 

as, trading strategies.  
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The rest of this chapter is organized as follows. The second section reviews the literature on 

different aspects of FX liquidity, the featured works on the linkages between commodity prices 

and exchange rates and the theory and practice of GVAR modelling. In the third section, we 

present the data sources, the description of monthly CTOT and the key features of GVAR 

model. The fourth section discusses the empirical findings and the theoretical implications. We 

discuss the major findings with concluding remarks in last section. 

3.2 Related Literature and theoretical underpinnings 
 

3.2.1 Commonality in FX Liquidity 

 

The extant literature explores cross-sectional commonality of liquidity in the stock market and 

several papers find a significant co-movement (Datar et al.,1998; Chordia et al., 2000, 2001; 

Hasbrouck and Seppi, 2001; Huberman and Halka, 2001; Lesmond, 2005). For some reason, 

FX market liquidity has not received similar attention until relatively recently perhaps due to 

the to the segmented structure of the FX market and the heterogeneity of economic players 

(Mancini et al., 2013). Commonality in the FX market has been empirically investigated for 

the recent global financial crisis (Melvin and Taylor, 2009; Mancini et al., 2013) suggesting 

that the FX market has expose commonality during the crisis years However, since the time 

span is limited, drawing general conclusion regarding strong commonality is overly ambitious.   

Covering both the crisis and non-crisis years from 1994 to 2008, Banti et al., (2012) find a 

similar co-movement pattern in 20 exchange rates. They additionally document that a liquidity 

risk premium is more prominent in the returns of the emerging market currencies. Extending 

the works carried out using bond and equity markets, Mancini et al. (2013) develop a PCA 

factor model by using intraday data from 2007 to 2009 for testing commonality in the FX 

market and find that commonality in the FX market is more pronounced than in equity markets. 
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Given the relatively short estimation period of previous papers, Karnaukh, Ronaldo and 

Söderlind (2015) empirically test the FX market commonality with a monthly data set covering 

thirty exchange rates from 1991 to 2012. They find a stronger co-movement of FX liquidity in 

distressed markets, especially when combined with the underlying negative determinants of 

FX liquidity such as high volatility, funding constraints and losses of FX speculators.  

3.2.2 Determinants of FX liquidity 

 

Previous studies explore the determinants of FX liquidity in three groups. From demand side 

factors, Banti and Phylaktis (2015) document capital flows as the main driver of the time 

variation of FX liquidity. As large capital flows improve the efficiency of the FX market, they 

are documented to positively influence FX liquidity. In the meantime, volatility is reported as 

the main important determinant of FX market by multiple studies including Menkhoff et al. 

(2012), Lustig, Rousssanov and Verdelhan (2011) and Banti and Phylaktis (2015).  Since 

volatility, typically proxied by VIX, is a measure of financial uncertainty, it negatively 

influences FX liquidity.  

Additionally, Karnaukh, Ronaldo and Söderlind (2015) provide empirical evidence that FX 

liquidity is not just negatively influenced by volatility in the FX market, but also general market 

conditions including bond and stock market liquidity. In recent work, Karnaukh, Ronaldo and 

Söderlind (2015) extend the empirical investigation of the demand side factors to current 

accounts, portfolio balances, and sentiment by using additional proxies. They find that FX 

liquidity declines with the deterioration of investor sentiment, the demand for U.S safe assets 

and depreciation of local currencies.  

The supply side drivers demonstrate to what extent financial intermediaries are inclined to 

provide liquidity during either tight or loose funding (Karnaukh, Ronaldo and Söderlind, 2015). 

In particular, the basic idea is in line with the earlier work of Brunnermier and Pederson (2009) 
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suggesting a feedback loop effect between market liquidity and funding liquidity. Brunnermier 

and Pederson (2009) document that market liquidity can dry up quickly during lower prices 

and higher volatility of securities. Meanwhile, a deterioration of market liquidity is quickly 

followed by further losses and margin calls, ultimately creating “liquidity spirals”. Drawing on 

the underlying theoretical model, studies (i.e Mancini et al., 2013; Banti and Phylaktis, 2015; 

Karnaukh, Ronaldo and Söderlind, 2015) show evidence that FX liquidity decreases with 

higher money market rates, TED spread and monetary aggregates.  

Finally, Karnaukh, Ronaldo and Söderlind (2015) explore the cross-sectional determinants of 

FX liquidity. Consistent with the time-series explorations, the cross-sectional determinants are 

estimated with demand and supply side characteristics while substituting market conditions 

with economic performance as control variables. They find that higher central bank 

transparency, sovereign credit rating and higher GDP per capita are associated with higher 

commonality in cross-sectional FX liquidity. In other words, institutional factors stimulate 

more international trading. Conversely, the findings imply that local money market rates tend 

to decrease commonality as it induces higher funding costs from the supply side. 

3.2.3 Measurement of FX liquidity 

 

Liquidity is an unobservable phenomenon as real market data do not explicitly reveal liquidity 

of an asset. In practice, the liquidity component is extracted from data based on measurement 

concepts theories such as “tightness”, “depth”, and “resiliency”.  

Bid-ask spread as a transaction cost measure of liquidity is widely applied by academic 

literature and practitioners (Bessembinder, 1994; Bollerslev and Melvin, 1994; Lee, 1994; 

Hsieh and Kleidon, 1996). The bid-ask spread as a measurement, is known to have obvious 

limitations. For example, Grossman and Miller (1988) emphasize the need to be cautious when 

using bid-ask spread as it is an indication of immediate cost of market makers in the 
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contemporaneous buy and sell transactions. In practice, immediate cost of market makers might 

not be clearly observed since larger transactions might take a longer time to realize.   

Price-impact measures (such as Pastor and Stambaugh, 2003; Amihud, 2002) are considered 

as alternatives to transaction cost measurements, particularly in the case of estimation with 

lower frequency of data (Goyenko, Holden and Trzcinka, 2009). Vayanes and Wang (2013) 

show that the Pastor and Stambaugh (2003) measure does not suffer from the shortcomings of 

bid-ask spread. In the spirit of Pastor and Stambaugh (2003), Banti et al. (2012) develop an 

analogous price-impact measure of liquidity in the FX market.  

3.2.4 Commodity Currency 

 

As opposed to standard exchange models which cannot explain the high volatility and 

persistence of the real exchange rate, Chen and Rogoff (2003) introduce the phenomenon of 

commodity currencies by focusing on three OECD economies (Australia, Canada and New 

Zealand) where commodities comprise a significant share of total exports. They show that the 

US dollar price of commodity exports of the underlying countries has a persistent effect on 

their floating exchange rates. 

But why might commodity prices affect currencies? Based on the theoretical relationship 

between the macroeconomy and trade, an increase in the price of commodity fires the demand 

for national currencies of the countries whose exports heavily depend on this particular 

commodity. Thus, exchange rate movements can be predicted via economic indicators such as 

commodity prices. 

The idea that commodity prices can be an important driver of exchange rate movements is 

supported with a sticky-price model of an open economy with non-traded goods, a portfolio-

balance model, and the terms-of-trade hypothesis (Chen and Rogoff, 2003; Chen, 2004). 
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However, studies focusing on the effect of the export side of commodity trading, neglect 

countries that are heavily dependent on the imports of commodities. Moreover, the existing 

commodity currency studies generally emphasize only a few commodities such as crude oil, 

gold and copper. 

A second group of literature explores the opposing relationship arguing that exchange rates 

should influence or Granger-cause commodity prices as they are determined by the net present 

value of fundamental asset prices including commodities (see Zhang et al., 2016; Obstfeld and 

Rogoff, 1996; Engel and West, 2005; Chen at al., 2010; Alquist et al., 2012).  

Apart from the theoretical works, several studies use an empirical approach to explore whether 

exchange rates have the power to forecast commodity prices (or the other way around) in an 

out-of-sample framework. A common finding is that the theoretical link between exchange 

rates and commodity prices, irrespective of the direction of effect, is statistically more justified 

with relatively high frequency estimation (i.e daily) rather than lower frequency (i.e monthly 

and quarterly) (see Ferraro et al., 2015; Chen et al., 2010; Zhang, et al., 2016).  

However, studies find conflicting results as to whether exchange rates are statistically more 

powerful in forecasting commodity prices or vice versa. Notably, Chen et al. (2010) finds that 

exchange rates of “commodity currencies” have robust statistical power to predict global 

commodity prices while the reverse relationship remains less robust. The theoretical 

explanation is a suggest that exchange rates are strongly forward looking, while commodity 

prices remain fragile with short-term fluctuations.  

Conversely, Ferraro et al. (2015) find both contemporaneous and lagged commodity prices 

(focusing on oil prices) have robust statistical power to forecast exchange rates in daily out-of-

sample forecasting work. Zhang et al. (2016) emphasizes findings from causality analysis at 

multiple horizons. They show evidence that there is strong Granger-causality between 
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commodity prices and exchange rates at multiple horizons in both directions, although the 

direction is statistically stronger from commodity price to exchange rates. It should be noted 

that these findings are robust after controlling for the U.S dollar denomination effect   

3.2.5 Theory and practice of GVAR modelling 

 

The GVAR model, originally developed for credit risk analysis in Pesaran et al. (2004) is a 

systematic tool to assess regional and global macroeconomic interdependences across various 

countries. The model has also a wide range of policy applications (Galesi and Lombardi, 2009; 

Anderton et al., 2010). 

Conceptually, the GVAR encompasses a two-step modelling procedure. In the first step, 

country specific macro-econometric models are estimated using Vector Autoregressive (VAR) 

models with exogenous variables denoted as VARX*. Country specific models include 

domestic variables and the weighted cross-sectional averages of foreign variables which are 

assumed to be weakly exogenous. In the second step, the country specific models are solved as 

a system in a global VAR model. This approach permits measurement of interdependence 

among cross sections-not only countries but also regions, industries and banks- while allowing 

simultaneously control country specific determinants.  

A number of GVAR applications for finance have been developed in recent years. Credit risk 

modelling on a global perspective (Pesaran et al., 2006), the determinants of portfolio 

diversification across industry sectors and different countries (Pesaran et al., 2007a) are both 

employed as original GVAR applications. Several policy related papers focus on modelling 

different kinds of risk including the determinants of sovereign bond spreads across euro zone 

countries (Favero, 2013), interactions of banking sector risk, sovereign risk, corporate sector 

risk, real economic activity and credit growth of 15 European countries and the U.S (Gray et 

al., 2013).  
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Another major area of GVAR practice is evaluating systemic risk and modelling macro-

financial linkages across regional groups of countries. For instance, Alessandri et al. (2009) 

develop a quantitative model to evaluate the transmission mechanisms of systemic risk to 

banks’ balance sheets via feedback effects of macro-credit risk, interest income risk and market 

risk. The model is widely applied in the macro stress test modelling framework of the European 

Central Bank (ECB) (Foglia, 2009). Chen et al. (2010) also show international evidence for 

macro-financial linkages within domestic and global economies which lead to the transmission 

of bank and corporate default risk at the global level.  

More recent GVAR evidence shows that liquidity shocks are strongly linked to price bubbles 

in global asset markets (Dreger and Wolters, 2011) and the evidence is more pronounced for 

advanced economies (Chudik and Fratzscher, 2011). Cesa-Bianechi et al. (2014) explore the 

linkages between financial market volatility and macroeconomic conditions. They show that 

the transmission of news is more pronounced in financial markets than the real economy. The 

evidence from a GVAR framework suggests that volatility can be considered as an ex-post 

symptom of economic “disease” rather a cause of instability.  

Another interesting application of GVAR framework is investigating the hypothesis that global 

financial cycles determine domestic financial conditions regardless of the exchange regime. 

Georgiadis and Mehl (2014) find evidence from the interrelationships of 59 economies that the 

classical Mundell-Flemming trilemma still remains valid, in spite of globalization and the 

increased country interlinkages in global economy.  

Most notably for our study, a few studies attempt to model global commodity prices, supply 

and demand by applying the GVAR model. Gutierrez and Piras (2013) model a global wheat 

market in the GVAR framework by considering feedback effects between real and financial 

sectors as well food and energy prices. They find that inflationary effects on wheat export 
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prices can be explained by a negative shock to wheat consumption, an increase in oil prices 

and exchange rate devaluations, despite the heterogeneity across wheat export countries. 

Identification of oil shocks is also attempted in the GVAR context. For example, Cashin et al., 

(2014c) shows that economic consequences of supply and demand shocks are inherently 

different. A positive oil demand shock is found to be linked with inflationary pressures, an 

increase in real output, a rise in interest rates and a fall in equity prices while the negative 

impact of adverse oil supply shocks is observed in the economic growth of energy importers. 

3.3 Data and Methodology 

3.3.1 Commodity terms of trade 

 

The commodity terms-of-trade (CTOT) index, as a comprehensive measurement, was initially 

constructed by Spatafora and Tytell (2009) based on 32 main commodities19 over the period 

1970-2007 and using an annual frequency. Makhlouf, Kellard and Vinogradov (2017) extend 

this dataset to 2010.  

We improve the existing dataset in three aspects: 1) We construct CTOT at a monthly 

frequency which we expect will be useful for other researchers, especially when integrating the 

higher frequency data of financial markets with the lower frequency data of macro-econometric 

variables 2) Previous studies apply time-averaged weights of countries’ trade composition to 

commodity prices. As a result, any fluctuations in CTOT are merely related to the changes in 

global commodity prices (Makhlouf, Kellard and Vinogradov, 2018). We improve this 

approach and update trading weights every year 3) We also extend the latest available data of 

2010 to the end of 2016. We cover 41 countries (of which 19 are eurozone countries) over the 

                                                             
19 Shrimp, Beef, Lamb, Wheat, Rice, Maize, Bananas, Sugar, Coffee, Cocoa, Tea, Soybean meal, Fish meal, 

Hides, Soybeans, Natural Rubber, Log, Cotton, Wool, Iron Ore, Copper, Nickel, Aluminium, Lead, Zinc, Tin, 

Soy oil, Sunflower oil, Palm oil, Coconut oil, Gold, Crude oil 
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period 01/1994 to 12/2016. The reason for choosing these countries to cover floating exchange 

rates over this period. 

The general description of the equation is given as follows: 

                                                  𝐶𝑇𝑂𝑇𝑖𝑡 =
∏ (

𝑃𝑗𝑡

𝑀𝑈𝑉𝑇
)

𝑋𝑖𝑗𝑇

𝑗

∏ (
𝑃𝑗𝑡

𝑀𝑈𝑉𝑇
)

𝑀𝑖𝑗𝑇

𝑗

                                                           (3.1) 

Where 𝑃𝑗𝑡 is the price of commodity 𝑗 at month 𝑡, 𝑀𝑈𝑉𝑡 is a manufacturing unit value index 

of year 𝑇 used as a deflator, 𝑋𝑖𝑗𝑇(𝑀𝑖𝑗𝑇) is the share of export (import) of commodity 𝑗 in 

country 𝑖′𝑠 GDP, updated every year.  

Taking the logarithm, equation (3.1) can be rewritten as follows: 

                                                  𝑙𝑛𝐶𝑇𝑂𝑇𝑖𝑡 = ∑ (𝑋𝑖𝑗𝑇 − 𝑀𝑖𝑗𝑇)ln (
𝑃𝑗𝑡

𝑀𝑈𝑉𝑡
)𝑗                                  (3.2) 

Equation (3.2) demonstrates that country-specific net exports (𝑋𝑖𝑗𝑇 − 𝑀𝑖𝑗𝑇) determine how a 

country’s index respond to the global commodity price movements ln (
𝑃𝑗𝑡

𝑀𝑈𝑉𝑡
). In our dataset, 

therefore 𝐶𝑇𝑂𝑇𝑖𝑡 is not only influenced by the changes in the underlying commodity prices, 

but also a country’s trade composition.  

As this paper aims to explore the transmission of commodity prices to the liquidity of exchange 

rates, 𝐶𝑇𝑂𝑇𝑖𝑡 is again computed for euro by weighting eurozone countries with the share of a 

member country’s GDP in the eurozone’s total GDP. Table 3.1 demonstrates summary 

statistics of monthly CTOT.  

The prices of the 32 commodities are collected from the IMF Commodity Price System 

database. The MUV deflator are taken from the IMF’s World Economic Outlook database or 

the World Bank’s database. Exports and imports of individual commodities are obtained from 
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the United Nations’ COMTRADE database. Total GDPs of the countries are collected from 

the World Bank’s World Development Indicators and the IMF’s World Economic Outlook 

database.  
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TABLE 3. 1 MONTHLY CTOT OF 23 COUNTRIES/REGIONS FROM 01/1994 TO 12/2016 

CTOT Mean Median Max Minimum Std Dev. Skewness Kurtosis Jarque-Bera Probability 

Australia 99.61 99.84 100.37 98.33 0.60 -0.45 -1.34 29.75 0.00 

Canada 99.83 99.68 101.08 98.55 0.65 0.19 -1.31 21.37 0.00 

New Zealand 99.76 99.75 101.53 98.41 0.88 0.18 -1.27 20.03 0.00 

South Africa 99.98 100.01 100.21 99.62 0.13 -0.78 -0.47 58.14 0.00 

Norway 99.98 99.98 100.10 99.87 0.05 0.35 0.09 5.64 0.00 

Brazil 99.90 99.94 100.10 99.39 0.16 -0.99 0.01 44.79 0.00 

Mexico 99.69 99.86 100.47 98.43 0.54 -0.64 -0.76 25.09 0.00 

Malaysia 99.71 99.62 101.32 98.34 0.77 0.01 -0.86 8.49 0.00 

Thailand 96.85 98.30 107.64 84.71 6.25 -0.31 -1.23 21.53 0.00 

Eurozone 99.16 99.88 100.46 95.62 1.62 -1.32 -0.13 79.29 0.00 

Czech 99.99 100.00 100.03 99.95 0.02 -0.46 -0.99 19.38 0.00 

Switzerland 100.03 100.05 100.22 99.79 0.11 -0.23 -1.18 16.30 0.00 

Denmark 99.97 99.90 101.36 99.20 0.52 0.42 -0.84 16.25 0.00 

Turkey 99.99 99.99 100.02 99.94 0.02 -0.42 -0.63 13.06 0.00 

UK 100.01 100.01 100.06 99.97 0.02 0.34 -0.01 5.23 0.00 

Japan 100.26 100.22 101.25 99.22 0.61 0.01 -1.48 24.79 0.00 

Singapore 99.99 99.99 100.75 99.21 0.35 -0.20 -0.67 7.10 0.00 

Chile 99.98 99.99 100.17 99.74 0.10 -0.51 -0.39 13.53 0.00 

Sweden 100.05 100.07 100.44 99.63 0.20 -0.16 -1.16 16.69 0.00 

Poland 100.01 100.01 100.15 99.93 0.05 0.45 -0.16 9.67 0.00 

Korea 99.98 100.07 100.5 99.39 0.27 -0.44 -0.94 19.25 0.00 

Hungary 99.99 100.00 100.02 99.97 0.01 -0.51 -0.71 17.81 0.00 

USA 100.08 100.12 100.53 99.51 0.28 -0.23 -1.31 21.92 0.00 
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TABLE 3. 2 MONTHLY QUOTED BID-ASK SPREAD 

Notes: The table shows summary statistics for the quoted bid-ask spread of twenty-two currency pairs with USD dollar over the period 01/1994 and 12/2016. For 

comparability purposes, the spread is calculated as the difference between ask and bid prices divided by mid prices.   

Statistics AUD CAD NZD ZAR NOK BRL MXN MYR THB EUR CZK CHF DKK TRY GBP JPY SGP CLP SEK PLN KRW HUF 

Mean 1.83 1.12 2.84 8.61 1.88 2.24 3.48 2.08 4.85 0.85 4.04 1.35 1.15 8.60 0.89 1.17 1.63 2.60 2.41 4.44 4.17 5.51 

Median 1.69 0.98 2.60 4.48 1.69 1.82 2.32 1.59 2.92 0.74 3.04 1.29 1.16 4.47 0.77 1.11 1.49 2.00 2.43 3.49 2.39 4.58 

Std. dev. 1.29 0.44 1.49 8.19 1.04 2.94 5.55 2.33 6.52 0.50 3.10 0.63 0.61 14.94 0.45 0.55 0.97 1.83 1.18 3.68 4.92 4.69 

Skewness 7.03 0.71 3.23 1.14 1.04 5.87 8.90 4.04 3.41 0.95 2.55 0.73 0.48 5.24 1.29 0.86 3.33 2.88 0.98 2.98 2.42 1.99 

Kurtosis 79.98 1.17 19.63 0.59 1.71 44.80 108.32 25.31 13.74 1.47 9.22 0.41 0.08 33.96 0.63 1.07 17.7 13.6 2.21 13.27 5.77 5.60 
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3.3.2 Liquidity measure 

 

We apply the quoted bid-ask spread calculated as the difference between ask and bid prices 

divided by mid-price as the liquidity measure while bearing in mind its limitations (Grossman 

and Miller, 1988). In Table 3.2, we report summary statistics for the monthly bid-ask spreads 

of twenty-two currency pairs with the U.S (USD) dollar over the period 01/1994 to 12/2016. 

The table shows that the most liquid currency pairs with USD, as expected, are EUR, GBP and 

CAD while the least liquid currencies are found to be TRY, ZAR and HUF. In the meantime, 

more liquid currencies tend to exhibit smaller volatility, lower skewness and kurtosis of the 

spread and vice versa for relatively less liquid currencies.  

3.3.3 The Global VAR (GVAR) methodology 

 

We employ a GVAR system to build the local currency specific endogenous FX liquidity 

model, as well as, to estimate the interlinkages of FX liquidity among the currencies by 

applying common variables which are supposed to be weakly exogenous. We follow the similar 

application of the model to the global and regional economies in Pesaran, Schuermann and 

Weiner (2004), Cashin et al. (2014), Dees et al. (2007a, b) and Chudik and Pesaran (2016).  

We consider 𝑁 + 1 currencies indexed by 𝑖 = 0, 1, … . , 𝑁. We label USD dollar as 0 and 

indicate it as the reference currency while the other 𝑁 currencies are modelled as endogenous 

liquidity models during the time -periods 𝑡 = 1, 2, … 𝑇. Denoting 𝑥𝑖𝑡 as a 𝑘𝑖 × 1 vector of local 

determinants of FX liquidity treated as endogenous and 𝑥𝑡 = (𝑥′
1𝑡, 𝑥′

2𝑡, … . . , 𝑥′
𝑁𝑡) denote a 

𝑘 ∗ 1 vector of all the variables in the panel where 𝑘 = ∑ 𝑘𝑖
𝑁
𝑖=1 . The VARX* model is used to 

build the individual liquidity models. The individual models are designed to estimate domestic 
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variables of the liquidity of a given currency, 𝑥𝑖𝑡, conditional on currency-specific averages of 

foreign variables, collected in the 𝑘∗ × 1 vector  

                                                         𝑥𝑖𝑡
∗ = 𝑊𝑖

′𝑥𝑡                                                                      (3.3) 

for 𝑖 = 0, 1, … . , 𝑁 , where 𝑊𝑖
′ is 𝑘 × 𝑘∗ matrix of country-specific weights, constructed using 

data of bilateral capital flows. The model performs best by treating 𝑘𝑖 and 𝑘∗ relatively small, 

up to 4 and 6. 𝑥𝑖𝑡 is modelled as a VARX* model representing a VAR model augmented by 

the vector of the “star” variables 𝑥𝑖𝑡
∗ , and their lagged values, 

                                          𝑥𝑖𝑡 = ∑ Φ𝑖𝑙𝑥𝑖,𝑡−𝑙
𝑝𝑖
𝑙=1 + Λ𝑖0𝑥𝑖𝑡

∗ + ∑ Λ𝑖𝑙𝑥𝑖,𝑡−𝑙
∗𝑞𝑖

𝑙=1 + 𝜀𝑖𝑡                        (3.4) 

for 𝑖 = 1,2, … 𝑁, where 𝚽𝒊𝒍, for 𝑙 = 1, 2, … , 𝑝𝑖, 𝚲𝒊𝒍, for 𝑙 = 0, 1, 2, … 𝑞𝑖 are 𝑘𝑖 × 𝑘𝑖 and 𝑘𝑖 × 𝑘∗ 

matrices of unknown parameters, respectively, and 𝜀𝑖𝑡 are 𝑘𝑖 × 1 error vectors. Star variables 

𝑥𝑖𝑡
∗  in liquidity-specific models are treated as weakly exogenous to estimate unknown 

coefficients of the conditional exchange rate specific liquidity models. The assumption of weak 

exogeneity can be tested by Harbo et al. (1998) and Pesaran et al. (2000). It is not a particularly 

strong assumption due to the fact that the impact of individual exchange rates is small relative 

to the rest of the world and the weights used in the construction of the star variables are 

granular. 

Next, we denote 𝑧𝑖𝑡 = (𝑥𝑖𝑡
′ , 𝑥𝑖𝑡

∗ ′
) as a  𝑘𝑖 + 𝑘∗ dimensional vector of domestic and exchange 

rate-specific foreign variables included in the submodel of exchange rate 𝑖 and therefore (3.4) 

can be rewritten as: 

                                                   𝐴𝑖0𝑧𝑖𝑡 = ∑ 𝐴𝑖𝑙𝑧𝑖𝑡−𝑙 + 𝜀𝑖𝑡
𝑝
𝑙=1                                                     (3.5) 

where 𝐴𝑖0 = (𝐼𝑘𝑖
− Λ𝑖0), 𝐴𝑖𝑙 = (Φ𝑖𝑙, Λ𝑖𝑙) for 𝑙 = 1, 2, … . 𝑝 
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and 𝑝 = max
𝑖

(𝑝𝑖, 𝑞𝑖). We define Φ𝑖𝑙 = 0 for 𝑙 > 𝑝𝑖 and similarly Λ𝑖𝑙 = 0 for 𝑙 > 𝑞𝑖.Individual 

exchange rate models in (3.5) can also be written in the form of an error-correction 

representation as follows: 

                                               ∆𝑥𝑖𝑡 = Λ𝑖0Δ𝑥𝑖𝑡
∗ − ∏ 𝑧𝑖.𝑡−1 + ∑ 𝐻𝑖𝑙Δ𝑧𝑖,𝑡−1

𝑝
𝑙=1 + 𝜀𝑖𝑡                    (3.6) 

where ∆= 1 − 𝐿 is the usual first difference operator and  

                    ∏ = 𝐴𝑖0 − ∑ 𝐴𝑖𝑙
𝑝
𝑙=1  and 𝐻𝑖𝑙 = −(𝐴𝑖,𝑙+1 + 𝐴𝑖,𝑙+2 + ⋯ . +𝐴𝑖,𝑙+𝑝) 

The second step of the GVAR approach consists of stacking estimated exchange rate models 

to form one large global VAR model. Using the (𝑘𝑖 + 𝑘∗) × 𝑘 dimensional “link” matrices 

𝑊𝑖 = (𝐸′
𝑖, 𝑊𝑖)̃, where 𝐸𝑖 is a 𝑘 × 𝑘𝑖 dimensional selection matrix that select 𝑥𝑖𝑡, and 𝑥𝑖𝑡 =

𝐸𝑖
′𝑥𝑡 and 𝑊′𝑖

̂  is the weight matrix introduced in (3.3) to define exchange rate specific foreign 

star variables, then we have: 

                                                        𝑧𝑖𝑡 = (𝑥𝑖𝑡
′ , 𝑥𝑖𝑡

∗ )′ = 𝑊𝑖𝑥𝑖                                                          (3.7) 

Using (3.7) in (3.5), we get 

𝐴𝑖0𝑊𝑖𝑥𝑡 = ∑ 𝐴𝑖𝑙𝑊𝑖𝑥𝑡−𝑙

𝑝

𝑙=1

+ 𝜀𝑖𝑡 

And stacking these models for 𝑖 = 1, 2, … … 𝑁, we obtain 

                                               𝐺0𝑥𝑡 = ∑ 𝐺𝑙𝑥𝑡−𝑙
𝑝
𝑙=1 + 𝜀𝑡                                                            (3.8) 

Where 𝜀𝑡 = (𝜀′
1𝑡, 𝜀′

2𝑡 , … . . 𝜀𝑁𝑡
′ )′ and 

                                               𝐺𝑙 = (

𝐴1,𝑙 𝑊1

𝐴2,𝑙 𝑊2

𝐴𝑁,𝑙 𝑊𝑁

)                                                                                      (3.9) 
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If the matrix  𝐺0 is invertible, then by multiplying (3.9) by 𝐺0
−1 from the left we obtain the 

solution to the GVAR model 

                                                 𝑥𝑡 = ∑ 𝐹𝑙𝑥𝑡−𝑙
𝑝
𝑙=1 + 𝐺0

−1𝜀𝑡                                                       (3.10) 

Where 𝐹𝑙 = 𝐺0
−1𝐺𝑙 for 𝑙 = 1, 2, … . . 𝑝.  

Afterwards, we introduce a dominant exchange rate model by following a similar approach of 

dominant country model in Chudik and Pesaran (2013b). The conditional exchange rate models 

need to be augmented by 𝜔𝑡 and its lagged values, in addition to the exchange rate specific 

vector of cross-section averages of the foreign variables, namely 

                𝑥𝑖𝑡 = ∑ Φ𝑖𝑙𝑥𝑖,𝑡−𝑙
𝑝𝑖
𝑙=1 + Λ𝑖0𝑥𝑖𝑡

∗ + ∑ Λ𝑖𝑙𝑥𝑖,𝑡−𝑙
∗𝑞𝑖

𝑙=1 + 𝐷𝑖0𝜔𝑡 + ∑ 𝐷𝑖𝑙𝜔𝑡−𝑙
𝑠𝑖
𝑙=1 + 𝜀𝑖𝑡   (3.11) 

for 𝑖 = 1, 2, … . 𝑁. Both common variables and cross-section averages are treated as weakly 

exogenous to estimate the model.  

Finally, we conduct an impulse-response analysis which is similar to the one in small-scale 

VARs but complicated due to the dimensionality of the GVAR model. We suppose 𝑘  distinct 

structural (orthogonal) shocks. Identification of structural shocks, defined by 𝑣𝑡 = 𝑃−1𝜀𝑡 

requires finding the 𝑘 × 𝑘 matrix of contemporaneous dependence, 𝑃, such that  

                                                            ∑ = 𝐸(𝜀𝑡𝜀′
𝑡) = 𝑃𝑃′                                                   (3.12) 

Therefore, by construction we have 𝐸(𝑣𝑡𝑣𝑡
′) = 𝐼𝑘 and the 𝑘 × 1 vector of structural impulse 

response function is given by  

                         𝑔𝑣𝑗(ℎ) = 𝐸(𝑥𝑡+ℎ|𝑣𝑗𝑡 = 1, 𝒥𝑡−1) − 𝐸(𝑥𝑡+ℎ|𝒥𝑡−1) =
𝑅ℎ𝐺0

−1𝑃𝑒𝑗

√𝑒𝑗
′ ∑ 𝑒𝑗

                       (3.13) 
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For 𝑗 = 1, 2, … . 𝑘, where 𝒥𝑡 = {𝑥𝑡 , 𝑥𝑡−1, … . } is the information set consisting of all available 

information at time 𝑡, and 𝑒𝑗 is a 𝑘 × 1 selection vector that selects the variable 𝑗 and the 𝑘 × 𝑘 

matrices, The 𝑅ℎ are obtained recursively as: 

𝑅ℎ = ∑ 𝐹𝑙𝑅ℎ−𝑙
𝑝
𝑙=1  with 𝑅0 = 𝐼𝑘 and 𝑅𝑙 = 0 for 𝑙 < 0 

Previous GVAR studies (Pesaran et al., 2004; Pesaran and Smith, 2006; Dees et al., 2007a) 

tend to adopt the generalized impulse response function (GIRF) approach as it does not aim at 

identification of shocks according to some canonical system or a priori economic theory but 

considers a counterfactual exercise where the historical correlations of shocks are assumed as 

given. In the context of GVAR model (3.10) the 𝑘 × 1 vector of GIRFs is given by  

                    𝑔𝜀𝑗(ℎ) = 𝐸(𝑥𝑡+ℎ|𝜀𝑗𝑡 = √𝜎𝑗𝑗 , 𝒥𝑡−1) − 𝐸(𝑥𝑡+ℎ|𝒥𝑡−1) =
𝑅ℎ𝐺0

−1∑𝑒𝑗

√𝑒𝑗′∑𝑒𝑗
                       (3.14) 

For 𝑗 = 1, 2, … . , 𝑘 ,   ℎ = 0, 1, 2, … . ., where √𝜎𝑗𝑗 = √𝐸(𝜀𝑗𝑡
2 ) is the size of shock which is set 

to one standard deviation (s.d) of 𝜀𝑗𝑡. 

3.3.4 Supply side modelling 

 

Following the FX liquidity literature, we attempt to investigate the transmission of commodity 

prices to FX liquidity from the cross-sectional demand and supply-side sources, as well as, a 

commonality factor.  

The supply-side represents to what extent financial intermediaries are inclined to provide 

liquidity in favourable (or adverse) times of funding. Based on the structure of GVAR model, 

we use two common variables:  1) the TED spread (i.e the difference between the interest rates 

on interbank loans and short term U.S government debt) to capture general funding conditions 

and 2) FX volatility (i.e changes in the JP Morgan Global FX volatility index which tracks the 
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implied volatility of three-month at-the-money forward options on major and developed 

currencies) to control the general market condition.  

From the domestic side, we endogenously model the cross section of liquidity of 23 exchange   

rates by using individual bid-ask spreads, local money market interest rates, and country 

specific CTOT. In Table 3.3, we present a detailed description of all the relevant data sources.  

3.3.5 Demand side modelling 

 

The demand side represents the determinants that increase the market demand for a specific 

currency. Following Karnaukh, Ronaldo and Soderlind (2015), we adopt trade and capital 

flows as the main determinants of the demand side of FX liquidity. To test the effect of CTOT, 

we jointly model the cross section of bid-ask spreads and capital flows (i.e measured as total 

export to the U.S scaled by the GDP of the quoted currency) in the endogenous system.  Since 

more financially developed countries can benefit from better funding conditions and higher 

leverage (see Maggiori, 2012) and currencies of larger economies can better hedge against 

global shocks (see Hassan, 2013), we use two common variables in the demand side model: 1) 

VIX as a global volatility index 2) FX volatility as a proxy for the market condition. Again, in 

Table 3.3, we present a detailed description of all the relevant data sources.   

3.3.6 Commodity price as a commonality  

 

In the demand and supply sides equations, we estimate the impulse responses of the spreads to 

the exchange rate specific CTOT shocks.  

Additionally, by taking the advantage of the GVAR model, we also explore commodity prices 

as a commonality factor of FX liquidity. The model allows us to explicitly define a common 

variable in the model setup rather than finding covariances between an exchange rate and the 

average market which is commonly used in the FX liquidity literature. In this manner, we can 
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estimate the impulse responses of individual bid-ask spreads to the shocks to global commodity 

price index. 

In this setup, we jointly model the cross-sectional bid-ask spreads together with supply and 

demand determinants (i.e local money market rates and capital flows) in the endogenous 

system, while using commodity prices index of IMF and FX market volatility indicators as 

common variables. In Table 3.3, we show the detailed description of the data sources.  
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TABLE 3. 3 DESCRIPTION OF THE DATA SOURCES 

Variable Description Source 

TED spread 
The difference between the interest rates in interbank loans and on short term U.S government 

debt 
Bloomberg 

FX volatility 
JP Morgan Global FX volatility index which tracks implied volatility of three-month at-the-

money forward options on major and developed currencies 
Bloomberg 

Local money market 

rates 
Short-term money market interest rates DataStream 

VIX 
Chicago Board Options Exchange Market Volatility (VIX) Index which measures implied 

volatility of S&P 500 index options 
Bloomberg 

Export of BC to QC Export from the BC country to the QC country, scaled by the BC GDP DataStream 

Commodity price index IMF commodity price index calculated based on the prices of all commodities IFS 

Bid-ask spread The difference bid-ask prices divided by mid prices DataStream 
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3.4 Empirical Results 

As explained in the previous section, we estimate the impulse responses of the cross-section 

currency illiquidity to exchange-rate specific CTOT shocks, as well as, including a commodity 

price index shock as a commonality factor. Specifically, we obtain the generalized impulse 

response functions as given in equation (3.14). We separately estimate the CTOT shocks in the 

cross-sectional supply and demand side of FX liquidity by following previous studies 

(Karnaukh, Ronaldo and Soderlind, 2015; Banti and Phylaktis, 2015). Afterwards, we estimate 

the transmission of commodity price shocks as a commonality factor to the cross-sectional 

illiquidity while simultaneously controlling the main cross-sectional demand and supply 

determinants as domestic and foreign variables.  

First then, we estimate the impulse responses of the cross-sectional illiquidity to the exchange 

specific CTOT shocks in supply side context. Although, the commodity price as a factor seems 

more appropriate to the demand side model, the exchange rates, especially those which have a 

small and commodity-export based economy can be expected to be affected by CTOT shocks 

via the local and global funding rates channels. CTOT shocks can influence the investment 

decisions and sentiments of local financial intermediaries, can be ultimately reflected in the 

illiquidity of local currency.  

Figure 3.1 reports the median (solid line) impulse responses of illiquidity of the currencies to 

one-unit standard deviation shock for country specific CTOT in the supply side framework 

over 3 years (36 months). The estimation period covers from 01/1994 to 12/2016. The dotted 

lines are bootstrap 95% confidence bands obtained with 1000 bootstrap replication. 

 The graphs show that illiquidity of the currencies belonging to relatively developed economies 

(such as GBP, JPY, CHF, SGD, KRW), excluding SEK is not significantly influenced by local 

CTOT shocks.  



105 
 

FIGURE 3. 1 GIRFS OF THE CROSS-SECTIONAL ILLIQUIDITY TO ONE STANDARD DEVIATION SHOCK TO COUNTRY SPECIFIC CTOT SHOCKS WITHIN THE SUPPLY SIDE 

FRAMEWORK. THE ESTIMATION PERIOD COVERS 01/1994 TO 12/2016. THE SOLID LINE INDICATES THE MEDIAN IMPULSE RESPONSE WHILE THE DOTTED LINES ARE 

BOOTSTRAP 95% CONFIDENCE BANDS OBTAINED WITH 1000 BOOTSTRAP REPLICATIONS. THE MAGNITUDES OF THE RESPONSES ARE SCALED UP BY THE SAME AMOUNT. 
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It is not hard to explain this finding as the variation in illiquidity of the currencies of developed 

economies can be significantly explained by local money market rates within the supply side 

model.  

Additionally, combining global FX volatility and TED spread which are known as highly 

significant commonality factors for the most popular currencies in the supply model, leave a 

very small room for CTOT shocks to explain the variation in the cross-sectional illiquidity. Of 

course, it should be noted that currency illiquidity of developed economies but are more 

exposed to commodity exporting (such as AUD, NOK, NZD, CAD) does respond the local 

CTOT shocks significantly during first few lags but dies away afterwards. In these cases, the 

local CTOT shocks may stimulate the sentiments of market participants in these countries due 

to their dependence on commodity exporting. However, portfolio rebalancing, international 

investments can reasonably stabilize the short-term plunges in illiquidity.  

Conversely, the currency illiquidity of less developed countries (commodity currencies or 

others) significantly respond to the local CTOT shocks over a prolonged period. Following the 

CTOT shocks, the illiquidity of the currencies such as BRL, CLP, CZK, HUF and PLN tend to 

experience a persistent, long-lived fall. Three currencies, MYR, THB, TRY, can be considered 

exceptions because they are less developed currencies, but illiquidity is not influenced by the 

CTOT shocks.  

Subsequently, we estimate the impulse responses of cross-sectional illiquidity to the exchange 

specific CTOT shocks in the cross- sectional demand side framework. We replace local money 

market rates with capital flows (i.e export to U.S) as a domestic variable. Thus, we jointly 

model bid-ask spreads, capital flows with U.S and CTOT in the endogenous system. Similarly, 

we add the VIX index, known as a common determinant in FX liquidity, as a proxy for market 
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sentiment, instead of the TED spread as a global variable. We also keep FX volatility as a 

global variable for proxying general market conditions.  

Figure 3.2 reports the median (solid line) impulse responses of illiquidity of the currencies to 

one-unit standard deviation for the country specific CTOT shocks in the demand side 

framework over 3 years (36 months). The estimation period covers 01/1994 to 12/2016. The 

dotted lines are bootstrap 95% confidence bands obtained with 1000 bootstrap replication. 

As expected, illiquidity of most of the currencies significantly responds to local CTOT shocks. 

A one-unit standard deviation shock is followed by a persistent effect on illiquidity in most of 

currencies, excluding highly liquid currencies such as CHF, JPY and GBP and Asian currencies 

such as THB, KRW, MYR and SGD. 
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FIGURE 3. 2 GIRFS OF THE CROSS SECTION OF ILLIQUIDITY TO THE COUNTRY SPECIFIC CTOT SHOCKS WITHIN THE DEMAND SIDE FRAMEWORK. THE ESTIMATION 

PERIOD COVERS 01/1994 TO 12/2016. THE SOLID LINE INDICATES THE MEDIAN IMPULSE RESPONSE WHILE THE DOTTED LINES ARE BOOTSTRAP 95% CONFIDENCE BANDS 

OBTAINED WITH 1000 BOOTSTRAP REPLICATIONS. THE MAGNITUDES OF THE RESPONSES ARE SCALED UP BY THE SAME AMOUNT.    
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Our demand side approach explores the determinants that increase the market demand for a 

specific currency. CTOT shocks stimulate the market demand for the local currency and pushes 

up liquidity for most of our currencies. Not surprisingly, jointly modelling capital flows while 

controlling for market sentiment (VIX) and general market condition increases the effects of 

CTOT shocks. The reason for not observing a significant effect on highly liquid currencies 

might be that illiquidity of these currencies is influenced by a lot of other factors. Therefore, 

the effect of CTOT shocks on monthly basis might not be observable.  

Finally, we explicitly explore commodity price as a commonality factor in the cross-sectional 

variation of illiquidity of the currencies. The GVAR model allows us to explicitly define 

commonality factor in the global variables section. The common factor pass-through to the 

cross-sectional variable of interest via trade flow and interlinkages of cross sections. Since 

CTOT is a country specific data, we use the commodity price index from the IMF as a global 

variable. In the endogenous system, we simultaneously model cross-sectional demand (capital 

flows), supply (local money market rates) side factors and bid-ask spread.  

Figure 3.3 reports the median (solid line) impulse responses of illiquidity of the currencies to 

a one-unit standard deviation shock for commodity price index over 3 years 6 months). The 

estimation period covers from 01/1994 to 12/2016. The dotted lines are bootstrap 95% 

confidence bands obtained with 1000 bootstrap replications.  
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FIGURE 3. 3 GIRFS OF THE CROSS SECTION OF ILLIQUIDITY TO THE COMMON COMMODITY PRICE SHOCKS. THE ESTIMATION PERIOD COVERS 01/1994 TO 12/2016. THE 

SOLID LINE INDICATES THE MEDIAN IMPULSE RESPONSE WHILE THE DOTTED LINES ARE BOOTSTRAP 95% CONFIDENCE BANDS OBTAINED WITH 1000 BOOTSTRAP 

REPLICATIONS. THE MAGNITUDES OF THE RESPONSES ARE SCALED UP BY THE SAME AMOUNT. 
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The graphs show that illiquidity of the currencies considerably exposed to commodity 

exporting, also known as “commodity currencies” (AUD, CAD, BRL, ZAR, NOK, NZD, 

MXN) are significantly influenced by the common commodity price shocks. The currencies of 

small economies (CLP, SEK, PLN, HUF, CZP, DKK) are also significantly influenced by 

commodity price shock. As in the demand side model, highly liquid currencies are not 

significantly affected by common commodity price shock which might be explained by similar 

reasons.  

 

3.5 Conclusion 

This chapter explores the transmission of commodity prices to the illiquidity of 22 currency 

pairs with the USD. The empirical findings in the extant literature on the linkages between 

commodity prices and exchange rates, the role of liquidity in factor investing and the 

shortcomings of methodologies used in the FX literature motivated us to investigate 

commodity price pass-through to FX liquidity. In particular, we construct a new monthly 

dataset of country specific CTOT with updated trade weights and apply this in a GVAR 

framework.  

This study can be useful for other researchers in the international finance area who wish to use 

higher frequency country-specific commodity terms-of-trade data. Our novelty lies in the 

dataset, considering commodity price as an additional determinant of FX liquidity, and the use 

of the GVAR approach. Moreover, we contribute to the FX liquidity literature with the 

following findings.  

Illiquidity of the currencies of less developed economies experience a persistent fall, following 

local CTOT shock in the supply side framework. In the meantime, local CTOT shocks leave a 

significant but temporary effect on illiquidity of the currencies of developed economies but 

relatively more exposed to commodity exporting. Illiquidity of most currencies significantly 
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responds to local CTOT shocks in the demand side framework. A one-unit standard deviation 

shock is followed by a persistent effect on illiquidity in most of currencies, excluding highly 

liquid currencies. Illiquidity of the currencies that are considerably exposed to commodity 

exporting is significantly influenced by common commodity price shocks. The currencies of 

small economies are also significantly influenced by commodity price shocks. We do not a find 

a similar effect for highly liquid currencies which might be explained by a high explanatory 

power of local money market rates and global funding conditions, as well as, the influence of 

short-term trading strategies.  

This study suggests to the international finance literature that it is important not to limit with 

commodity currencies to explore the links between commodity price and exchange rates. Given 

the significant variation in the sensitivity of the exchange rates to the commodity price changes, 

the selection of an appropriate commodity price indicator might be a decisive factor to have 

comprehensive empirical findings. Apart from the international finance literature, this study 

can be useful to investors who wish to exploit the illiquidity premium in factor investing. The 

findings suggest investors that commodity prices can be an additional tool to model the 

direction of the liquidity of floating exchange rates. 
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Concluding Remarks 
 

Liquidity is characterized by transaction cost, time and price impact dimensions to execute 

market operations. Due to its importance in financial markets, market liquidity has received 

considerable attention by researchers in recent years. At the stock market level, although the 

time series and cross-sectional determinants are extensively investigated, forecasting stock 

market liquidity has not been attempted so far. Monetary aggregates are known to have been 

influenced by monetary policy and economic activity, but never explored in different political 

regimes. While FX liquidity can be considered as a relatively new area in market liquidity, a 

number of studies have explored its cross-sectional and time series determinants after recent 

financial crisis. Although a strong link between commodity prices and exchange rates has been 

documented in the literature, none of the studies attempts to study commodity prices as a 

potential cross-sectional determinant and commonality factor of FX liquidity.  

This thesis studies three aspects of market liquidity, namely, forecasting stock market liquidity, 

exploring the US monetary aggregates under different political regimes and the transmission 

of commodity price to FX liquidity.  

The first chapter explores the power of investor sentiment to forecast stock market liquidity. 

Motivated by the theoretical links between market liquidity and investor sentiment, the chapter 

aims to investigate whether investor sentiment has the ability to forecast stock market liquidity. 

By carrying out 1-4 steps at the weekly and 1-2 steps at the monthly out-of-sample forecasting 

works, the study finds that investor sentiment is a statistically significant indicator to forecast 

NYSE liquidity at the weekly and monthly frequences. The forecasting performance is found 

to be better at the weekly than monthly estimations. Moreover, investor sentiment spread is 

shown to exhibit a better performance than the Baker and Wurgler (2006) sentiment index. The 
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study contributes to the scarce liquidity forecasting literature, and also provides empirical 

insight to the microstructure of the stock market literature.  

The second chapter explores the partisan gap in U.S. monetary aggregates. Based on strong 

theoretical and empirical links between monetary aggregates and economic activity, as well as 

stock market returns, the chapter aims to investigate whether the presidential gap might be 

present in the monetary aggregates. The study documents that there is a positive Democratic 

gap in U.S. monetary aggregates. The gap found is as much as 5 percent and 9 percent per 

annum in the M1 and M2 growth rates, respectively. The study finds a partisan Fed chair is a 

statistically significant indicator to explain the presidential gap. In other words, the Democratic 

Fed chair gap is found to be statistically more robust than the Democratic presidential gap in 

the growth rates of the monetary aggregates. The chapter contributes to the money supply 

literature by exploring it under political regimes to enrich the U.S. presidential puzzle literature. 

The third chapter explores the transmission of commodity prices to the illiquidity of 22 

currency pairs relative to the U.S. dollar. The chapter investigates commodity price pass-

through to FX liquidity by exploiting a new monthly dataset of country specific CTOT with 

updated trade weights in a GVAR framework. The chapter finds that illiquidity of the 

currencies of less developed economies and commodity currencies experience a persistent fall, 

following a local CTOT shock in the supply side framework. The chapter also documents that 

illiquidity of most currencies, excluding highly liquid ones significantly responds to local 

CTOT shocks in the demand side framework. Finally, illiquidity of the commodity currencies 

and the currencies of small economies are significantly influenced by commodity price shocks. 

The chapter suggests to the international finance literature that commodity price shocks 

significantly influence the illiquidity of the FX market not only for the commodity currencies 

but for most floating exchange rates. Given the significant variation in the sensitivity of the 
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exchange rates to the commodity price changes, the selection of an appropriate commodity 

price indicator might be an important factor in improving estimation.  

As in all research, these thesis chapters have several limitations. In the first chapter, the original 

liquidity metrics have to be filtered to match the data series with the econometric requirements 

of the forecasting model. One might consider it forecasting a filtered series rather than liquidity 

metrics. In the second chapter, I empirically demonstrate that the democratic FED chair gap 

can statistically explain the democratic presidential gap. However, the political aspects of 

whether Fed chair cycles are truly independent from presidential cycles have not been explored, 

as it is beyond the scope of the chapter. In the third chapter, I document that commodity prices 

shocks matter for the illiquidity of most floating exchange rates. However, only the transaction 

cost aspect of market liquidity is employed due to the data limitations. Perhaps, using a price-

impact measure may produce different results, as bid-ask spread is not always a reliable 

measure.  

The findings of this thesis can be further studied in several ways. First, forecasting stock market 

liquidity with or without investor sentiment can be carried out in a more sophisticated 

modelling framework. Second, the political and institutional aspects of the relationship 

between U.S president and Fed chair and the implications for the monetary aggregates can be 

further explored. Empirically, bootstrap tests can be applied to overcome small sample 

problem. Finally, the third chapter can be further extended to explore the reasons why 

commodity price shocks matter for the illiquidity of some currencies but not others. Moreover, 

it might be a good idea to revisit the “commodity currency” concept, as we find that commodity 

terms of trade shocks leave more persistent effects on the illiquidity of the currencies of less 

developed economies rather than on commodity currencies.   
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