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Abstract. In this paper we study the Hausdorff dimension of a measure µ related to a positive
weak solution, u, of a certain partial differential equation in Ω ∩ N where Ω ⊂ C is a bounded
simply connected domain and N is a neighborhood of ∂Ω. u has continuous boundary value 0 on
∂Ω and is a weak solution to

2
∑

i,j=1

∂

∂xi

(fηiηj
(∇u(z))uxj

(z)) = 0 in Ω ∩N.

Also f(η), η ∈ C is homogeneous of degree p and ∇f is δ-monotone on C for some δ > 0. Put
u ≡ 0 in N \ Ω. Then µ is the unique positive finite Borel measure with support on ∂Ω satisfying

ˆ

C

〈∇f(∇u(z)),∇φ(z)〉dA = −
ˆ

∂Ω

φ(z) dµ

for every φ ∈ C∞

0 (N). Our work generalizes work of Lewis and coauthors when the above PDE is

the p Laplacian (i.e., f(η) = |η|p) and also for p = 2, the well known theorem of Makarov regarding

the Hausdorff dimension of harmonic measure relative to a point in Ω.

1. Introduction

Let Ω′ denote a bounded region in the complex plane C. Given p, 1 < p < ∞,
let z = x1 + ix2 denote points in C and let W 1,p(Ω′) denote equivalence classes of
functions h : C → R with distributional gradient ∇h = hx1

+ ihx2
and Sobolev norm

‖h‖W 1,p(Ω′) =

(
ˆ

Ω′

(|h|p + |∇h|p) dν
)

1

p

<∞(1)

where dν denotes two dimensional Lebesgue measure. The space W 1,p
loc

(Ω′) is defined

in the obvious manner; h ∈ W 1,p
loc

(Ω′) if and only if h ∈ W 1,p(U) for every open
U ⋐ Ω′, i.e., compactly contained in Ω′.

Let C∞
0 (Ω′) denote infinitely differentiable functions with compact support in Ω′

and let W 1,p
0 (Ω′) denote the closure of C∞

0 (Ω′) in the norm of W 1,p(Ω′). Let 〈·, ·〉
denote the standard inner product on C.

Fix p, 1 < p < ∞ and let f : C \ {0} → (0,∞) be homogeneous of degree p on
C \ {0}. That is,

f(η) = |η|pf
(

η

|η|

)

> 0 when η ∈ C \ {0}.(2)
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We also assume that ∇f is δ-monotone in C for some 0 < δ ≤ 1. By definition, this
means that f ∈ W 1,1(B(0, R)) for each R > 0 and for almost every η, η′ ∈ C (with
respect to two dimensional Lebesgue measure)

〈∇f(η)−∇f(η′), η − η′〉 ≥ δ|∇f(η)−∇f(η′)||η − η′|.(3)

Next, given h ∈ W 1,p(Ω′) let A = {h + φ : φ ∈ W 1,p
0 (Ω′)}. From (21) and (22) in

section 2 and [HKM, Chapter 5] it follows that

inf
w∈A

ˆ

Ω′

f(∇w) dν =

ˆ

Ω′

f(∇u′) dν for some u′ ∈ A.(4)

Also u′ is a weak solution at z ∈ Ω′ to the Euler–Lagrange equation,

(5) 0 = ∇ · (∇f(∇u′(z))) =
2
∑

k=1

∂

∂xk

(

∂f

∂ηk
(∇u′(z))

)

=

2
∑

k,j=1

fηkηj (∇u′(z)) u′xkxj
(z).

That is, u′ ∈ W 1,p(Ω′) and
ˆ

Ω′

〈∇f(∇u′(z)),∇φ(z)〉 dν = 0 whenever φ ∈ W 1,p
0 (Ω′).(6)

Next, suppose Ω ⊂ C is a bounded simply connected domain, N is a neighbor-
hood of ∂Ω, and u > 0 is a weak solution to the Euler–Lagrange equation in (5) with
Ω′ = Ω ∩N , u′ = u. Also assume that u = 0 on ∂Ω in the W 1,p(Ω ∩N) sense. More
specifically, let u ≡ 0 on N \Ω. Then uζ ∈ W 1,p

0 (Ω) whenever ζ ∈ C∞
0 (Ω). Under this

scenario it follows from [HKM, Chapter 21] that there exists a unique finite positive
Borel measure µ with support on ∂Ω satisfying

(7)

ˆ

C

〈∇f(∇u(z)),∇φ〉 dν = −
ˆ

∂Ω

φ dµ,

whenever φ ∈ C∞
0 (N).

Remark 8. We remark from (7) that if ∂Ω and f are smooth enough then

dµ =
f(∇u)
|∇u| dH1|∂Ω.

We are now ready to introduce the notions of Hausdorff measure and Hausdorff
dimension of µ associated with a weak solution u to (5) in Ω ∩ N . Let λ > 0 be
defined on (0, r0) with lim

r→0
λ(r) = 0 for some fixed r0. We define the Hλ measure of

a set E ⊂ C as follows; For fixed 0 < δ < r0, let {B(zi, ri)} be a cover of E with
0 < ri < δ, i = 1, 2, . . ., and set

φλ
δ (E) = inf

∑

i

λ(ri),

where the infimum is taken over all possible covers of E. Then the Hausdorff Hλ

measure of E is

Hλ(E) = lim
δ→0

φλ
δ (E).

When λ(r) = rα we write Hα for Hλ. Next we define the Hausdorff dimension of the
measure µ obtained in (7) as

H-dimµ = inf{α : ∃Borel set E ⊂ ∂Ω with Hα(E) = 0 and µ(E) = µ(∂Ω)}.
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To give a little history, when f(η) = |η|2 then it turns out that (5) becomes
the usual Laplace equation. In this case, if u is the Green’s function for Laplace’s
equation with pole at some z0 ∈ Ω, then the measure associated to this function u
as in (7) is harmonic measure relative to z0 and will be denoted by ω.

Carleson showed in [C] that

Theorem 9. H-dimω = 1 when ∂Ω is a snowflake and H-dimω ≤ 1 when Ω is
any self similar Cantor set.

In [M], Makarov proved that

Theorem 10. Let Ω be a simply connected and µ = ω in (7) be harmonic
measure with respect to a point in Ω, and let

λ(r) = r exp

{

A

√

log
1

r
log log log

1

r

}

, 0 < r < 10−6.

Then there exists an absolute constant A > 0 such that harmonic measure ω is
absolutely continuous with respect to Hλ measure.

In [JW], Jones and Wolff proved that

Theorem 11. H-dimω ≤ 1 for an arbitrary domain Ω in the plane when ω
exists.

Later Wolff in [W] extended Theorem 11 by proving

Theorem 12. Harmonic measure ω is concentrated on a set of σ-finite H1 mea-
sure whenever Ω is an arbitrary planar domain for which ω exists.

In [BL], Bennewitz and Lewis obtained the following result for µ defined as in
(7) for fixed p, 1 < p <∞, relative to f(∇u) = |∇u|p. In this case the corresponding
pde (5) becomes

∇ · (|∇u|p−2∇u) = 0,(13)

which is called the p-Laplace equation. Moreover a weak solution of (13) is called a
p-harmonic function.

Theorem 14. Let Ω ⊂ C be a domain bounded by a quasi circle and let N
be a neighborhood of ∂Ω. Fix p 6= 2, 1 < p < ∞, and suppose u is p-harmonic
in Ω ∩ N with boundary value 0 in the W 1,p(Ω ∩ N) Sobolev sense. If µ is the
measure corresponding to u as in (7) relative to f(∇u) = |∇u|p, then H-dimµ ≤ 1
for 2 < p < ∞ while H-dimµ ≥ 1 for 1 < p < 2. Moreover, if ∂Ω is the von Koch
snowflake then strict inequality holds for H-dimµ.

In [LNP], Lewis, Nyström, and Poggi-Corradini proved that

Theorem 15. Let Ω ⊂ C be a bounded simply connected domain and N a
neighborhood of ∂Ω. Fix p 6= 2, 1 < p < ∞, and let u be p harmonic in Ω ∩ N with
boundary value 0 on ∂Ω in the W 1,p(Ω ∩ N) Sobolev sense. Let µ be the measure
corresponding to u as in (7), relative to f(∇u) = |∇u|p and put

λ(r) = r exp

[

A

√

log
1

r
log log

1

r

]

for 0 < r < 10−6.
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a) If p > 2, there exists A = A(p) ≤ −1 such that µ is concentrated on a set of
σ-finite Hλ measure.

b) If 1 < p < 2, there exists A = A(p) ≥ 1, such that µ is absolutely continuous
with respect to Hλ measure.

In the recent paper [L], Lewis proved that

Theorem 16. Let Ω ⊂ C be a bounded simply connected domain and N be a
neighborhood of ∂Ω. Fix p 6= 2, 1 < p <∞, and let u be p-harmonic in Ω ∩N with
boundary value 0 on ∂Ω in the W 1,p(Ω ∩ N) Sobolev sense. Let µ be the measure
corresponding to u as in (7), relative to f(∇u) = |∇u|p and put

λ̃(r) = r exp

[

A

√

log
1

r
log log log

1

r

]

for 0 < r < 10−6.

a) If p > 2, then µ is concentrated on a set of σ-finite H1 measure.
b) If 1 < p < 2, there exists A = A(p) ≥ 1, such that µ is absolutely continuous

with respect to H λ̃ measure. Moreover, A(p) is bounded on (3/2, 2).

This theorem is the complete extension of Makarov’s theorem to the p-harmonic
setting.

In this paper we obtain that,

Theorem 17. Let Ω ⊂ C be a bounded simply connected domain and let N be
a neighborhood of ∂Ω. Fix p, 1 < p < ∞, let f be homogeneous of degree p and
let ∇f be δ monotone for some 0 < δ ≤ 1. Let û > 0 be a weak solution to (5) in
Ω∩N with boundary value 0 on ∂Ω in the W 1,p(Ω∩N) Sobolev sense. Let µ̂ be the
measure corresponding to û as in (7) and put

λ(r) = r exp

[

A

√

log
1

r
log log

1

r

]

for 0 < r < 10−6.

a) If p ≥ 2, there exists A = A(p) ≤ −1 such that µ̂ is concentrated on a set of
σ-finite Hλ measure.

b) If 1 < p ≤ 2, there exists A = A(p) ≥ 1, such that µ̂ is absolutely continuous
with respect to Hλ measure.

Note that Theorem 17 and the definition of H-dim µ̂ imply the following corollary.

Corollary 18. Given p, 1 < p <∞, let û, µ̂ be as in Theorem 17, and suppose Ω
is a simply connected domain. Then H-dim µ̂ ≤ 1 for 2 ≤ p <∞, while H-dim µ̂ ≥ 1
for 1 < p ≤ 2.

This paper is organized as follows. In section 2 we obtain some regularity results
for f and u. Indeed, in subsection 2.1 we first introduce some notation which we will
use throughout this paper and we mention some regularity properties of f satisfying
(2) and (3) suitable for use in elliptic regularity theory.

In subsection 2.2 we study a variational problem and indicate some properties of
weak solutions to the corresponding Euler–Lagrange equation: maximum principle,
Harnack inequality, interior Hölder continuity of a solution, and Hölder continuity
near the boundary of Ω. After that we study the behavior of û near ∂Ω and the
relationship between û and µ̂ as in (7). Using this relationship we see that H-dim µ̂
is independent of the corresponding û.
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In subsection 2.3, we use elliptic and quasiregularity theory to derive more ad-
vanced regularity properties of û: quasiregulariy of ûz, Hölder continuity of ∇û, and
∇û locally in W 1,2, so û is almost everywhere a pointwise solution to (5). We also
show for a certain u that ∇u 6= 0 near ∂Ω. Next we outline a proof in [LNP] which
shows for a certain u as in Theorem 17 that ∇u satisfies the so called fundamental
inequality. Using this inequality and previous results we first obtain that u and ∇u
are weak solutions to a certain pde and then that log f(∇u) is a weak sub, super or
solution to this pde, depending on whether p > 2, < 2, or = 2.

In section 3 we prove Theorem 17.
In general we follow the game plan of Lewis and coauthors who in turn were

influenced by the work of Makarov. However the equation we consider is more com-
plicated and has less regularity than the p Laplacian. Thus we had to overcome
numerous procedural difficulties not encountered in [LNP].

2. Some lemmas

Throughout this paper various positive constants are denoted by c and they may
differ even on the same line. The dependence on parameters is expressed, for example,
by c = c(p, f) ≥ 1. Also g ≈ h means that there is a constant c such that

1
c
h ≤ g ≤ c h.

Let B(z, r) denote the disk in R
2 or C with center z and radius r and let ν be two

dimensional Lebesgue measure.

Let η =

[

η1
η2

]

be a 2 x 1 column matrix and let ηT =
[

η1 η2
]

denote the transpose

of η. We specifically denote the unit disk, B(0, 1), by D. Ω will always denote an
open set and often Ω is a simply connected domain. That is Ω is an open connected
domain whose complement is connected.

2.1. Basic regularity results for f . In this subsection we state some regularity
result for f . Let f be as in (2), (3). Then ∇f has a representative in L1(C) (also
denoted by ∇f) that is δ-monotone on C. From homogeneity of f and Kovalev’s
theorem in [K] we see that ∇f is in fact a K-quasiconformal mapping in C where

K =
1 +

√
1− δ2

1−
√
1− δ2

.

So the eigenvalues of the Hessian matrix of ∇f either both exist and are zero or have
ratios bounded above by K and below by 1/K.

As f is homogeneous of degree p, i.e., f(η) = |η|pf(η/|η|) when η ∈ C \ {0}, if
we introduce polar coordinates; r = |η|, tan(θ) = η2/η1, then

f(r, θ) = rpf(cos(θ), sin(θ)).

Hence first and second derivatives of f along rays through the origin are

fr = prp−1f(cos(θ), sin(θ)) and frr = p(p− 1)rp−2f(cos(θ), sin(θ)).(19)

K-quasiregularity of ∇f implies that f is continuous in C. Since f > 0 it follows
that f(cos(θ), sin(θ)) is bounded above and below by constants 1 ≤ M and 1/M
respectively. We conclude from this fact and (19) that

1
M
p(p− 1)rp−2 ≤ frr ≤M p(p− 1)rp−2.(20)
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From (20) and K-quasiregularity of ∇f it follows for a.e. η ∈ C and all ξ with |ξ| = 1
that

1
MK

p(p− 1)|η|p−2 ≤ frr ≈ fξξ(η) = ηTD2f η ≤MK p(p− 1)|η|p−2(21)

where D2f = (fηiηj ). It follows from homogeneity of f and (21) for some M ′ ≥ 1
that

1
M ′

|η|p ≤ min{f(η), |η||∇f(η)|} ≤ max{f(η), |η||∇f(η)|} ≤M ′|η|p.(22)

Using (20) we also see from basic calculations that for η, η′ ∈ C,

(|η|+ |η′|)p−2|η − η′|2 ≈ 〈∇f(η)−∇f(η′), η − η′〉.(23)

Let θ(z) be the standard mollifier, i.e.,

θ(z) =

{

c exp( 1
|z|2−1

) if |z| < 1,

0 if |z| ≥ 1.

Let fε = f ∗ θε where

fε(z) =

ˆ

C

θε(z − w)f(w) dw =

ˆ

B(0,ε)

θε(w)f(z − w) dw(24)

for z ∈ C. For later use we note that (23) and the definition of fε easily imply

(|η|+ |η′|+ ε)p−2|η − η′|2 ≈ 〈∇fε(η)−∇fε(η′),η − η′〉.(25)

Finally, we state for further use a lemma which is a direct consequence of (21)
and (22) for u ∈ W 1,1(Ω).

Lemma 26. For some constants c, c′, c′′ ≥ 1 depending only on f , we have for
a.e. z ∈ Ω,

1

c
|∇u|p ≤ f(∇u) ≤ c|∇u|p,

1

c′
|∇u|p−1 ≤ |∇f(∇u)| ≤ c′|∇u|p−1,

1

c′′
|∇u|p−2 ≤ ‖D2f(∇u)‖ ≤ c′′|∇u|p−2,

where ‖D2f(∇u)‖ denotes the absolute value of an arbitrary second derivative of f
evaluated at ∇u(z).

2.2. Interior and boundary estimates for û. We refer to [BL] for references
to the proofs of Lemmas 27–31. Let w ∈ ∂Ω and 0 < r < diamΩ. Moreover, let f be
as in Theorem 17. We also put f(0) = 0. In this subsection we begin by stating some
interior and boundary estimates for û a positive weak solution to (5) in B(w, 4r)∩Ω
with û = 0 on B(w, 4r) ∩ ∂Ω in the Sobolev sense.

Lemma 27. For fixed p, 1 < p <∞, let û, f,Ω, w, r be defined as above. Then

1
c
rp−2

ˆ

B(w, r
2
)

f(∇û) dν ≤ ess sup
B(w,r)

ûp ≤ c
1

r2

ˆ

B(w,r)

ûp dν.(28)

Lemma 29. (Harnack’s inequality) Let û,Ω, r, w be as in Lemma 27. Then there
is a constant c = c(p, f) such that

ess sup
B(w̃,s)

û ≤ c ess inf
B(w̃,s)

û.(30)
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whenever B(w̃, 2s) ⊂ B(w, 4r) ∩ Ω.

Next we state local Hölder continuity of û.

Lemma 31. Let û,Ω, w, r be as in Lemma 27. Let 0 < s0 <∞ and suppose that
B(w0, s0) ⊂ B(w, 4r)∩Ω. Then for 0 < s < s0 there is a constant 0 < α = α(p, f) ≤ 1
such that

|û(w̃)− û(ŵ)| ≤ c

( |w̃ − ŵ|
s

)α

ess sup
B(w0,s0)

û.

Next we indicate Hölder continuity of û near B(w, 4r) ∩ ∂Ω.

Lemma 32. (Behavior of û near the boundary) Let û,Ω, w, r be as in Lemma 27.
Then there is α′ = α′(p, f) > 0 such that û has a Hölder continuous representative
in B(w, r) and if w̃, ŵ ∈ B(w, r) then

|û(w̃)− û(ŵ)| ≤ c

( |w̃ − ŵ|
r

)α′

ess sup
B(w,2r)

û.(33)

Proof. The proof for p > 2 follows from Lemma 27 and Morrey’s theorem. For
1 < p ≤ 2 we note that there is a continuum ⊂ B(w, t)\Ω connecting w to ∂B(w, t) as
follows from simply connectivity of Ω. We also note that this continuum is uniformly
fat in the sense of p-capacity (see [L88] for the definition of a uniformly fat set). That
is, the p-capacity of this continuum is ≥ c−1 times the p-capacity of B(w, r). Using
this fact in the Wiener integral in [HKM, Theorem 6.18] we obtain for 0 < ρ ≤ r/2

osc
B(w,ρ)∩Ω

û ≤ c
(ρ

r

)α′

ess sup
B(w,r)

û(34)

for some c = c(p, f,Ω) > 0. From (34) we obtain Lemma 32 for 1 < p ≤ 2 when w̃ or
ŵ in B(w, 4r) ∩ ∂Ω. Other values of w̃, ŵ in (33) are handled by using this estimate
and the interior estimate in Lemma 31. �

Lemma 35. For fixed p, 1 < p <∞, let û,Ω, w, r be as in Lemma 27. Let µ̂ be
the measure corresponding to û as in (7). Then

1
c
rp−2µ̂(B(w, r

2
)) ≤ ess sup

B(w,r)

ûp−1 ≤ c rp−2µ̂(B(w, 2r)).(36)

Proof. A similar argument to the one in [EL] can be applied to obtain Lem-
ma 35. �

We next study the so called capacitary function. To this end, we choose z0 ∈ Ω
and let D = Ω \ B(z0, d(z0, ∂Ω)/4). Let u be a capacitary function for D relative
to f . That is, u is a positive weak solution to (5) in D with continuous boundary
values, u ≡ 0 on ∂Ω and u ≡ 1 on ∂B(z0, d(z0, ∂Ω)/4).

Remark 37. It easily follows from Lemma 35 that µ̂, µ corresponding to û, u
respectively as in (7) are mutually absolutely continuous,

µ̂≪ µ ≪ µ̂.

Hence H-dim µ̂ = H-dimµ. We also conclude from mutual absolute continuity of µ̂, µ
that Theorem 17 holds for µ̂ if and only if it holds for µ (for a proof see [LNP]).

2.3. More advanced regularity results. In this subsection we study more
advanced regularity properties of a weak solution û to (5). We first obtain regularity
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results for ∇û. To this end, assume that B(ŵ, 4r) ⊂ Ω and let ûε be a weak solution
to

0 = ∇ · (∇fε(∇ûε)) =
2
∑

k=1

∂

∂xk

(

∂fε(∇ûε)
∂ηk

)

(38)

in B(ŵ, 2r) with ûε − û ∈ W 1,p
0 (B(ŵ, 2r)) where fε = f ∗ θε is as in (24).

Using the De Giorgi method, (25), and pde theory, it can be shown that ζ = (ûε)ξ
is in W 1,2(B(ŵ, r)) and satisfies a uniformly elliptic equation in divergence form (for
more details see [LU]). That is, ζ = (ûε)ξ in W 1,2(B(ŵ, r)) is a weak solution to

0 =
2
∑

k,j=1

∂

∂xk

(

∂
2f ε(∇ûε)

∂ηk∂ηj

∂ζ

∂xj

)

(39)

in B(ŵ, 2r). Here ellipticity constants and W 2,2 norm of ûε depend on ε. On the
other hand, ûε also satisfies a nondivergence form equation

0 =
1

(|∇ûε|+ ε)p−2

2
∑

j,k=1

(

∂
2f ε(∇ûε)

∂ηk∂ηj

)

ζxjxk(40)

in B(ŵ, 2r). It follows from (25) that ellipticity constants are independent of ε. Using
this fact and arguing as in [GT, Chapter 5] it follows that (ûε)z = ûx1

− iûx2
is a

K-quasiregular mapping for some constant K which depends on the constant c in
(25). Then ûε ∈ W 2,2(B(ŵ, 2r)) with norm independent of ε. Also ∇ûε is α′′-Hölder
continuous where α′′ = K −

√
K2 − 1 with constant independent of ε (see [AIM]).

Since ∇ûε → ∇û in W 1,p(B(ŵ, 2r)), then for some subsequence, εi → 0 we have
∇ûεi → ∇û a.e. in B(ŵ, 2r). {∇ûεi} is equicontinuous as {∇ûεi} is uniformly Hölder
continuous with constant independent of ε. We may redefine ∇û in a set of measure
zero if needed. Thus, ∇ûεik → ∇û uniformly on compact subsets of B(ŵ, 2r). Then

it follows from [AIM] that ∇û is a K-quasiregular mapping.
From quasiregularity we also have

‖∇û‖W 1,2(B(ŵ,r)∩Ω) ≤ c‖∇û‖
L2(B(ŵ,

3r
2
)∩Ω)

(41)

where c = c(p), and ∇û is Hölder continuous. Using these facts and basic Cacciopoli
type estimates for ûξ we deduce the following lemma.

Lemma 42. Local interior regularity for ∇û) Let û, f,Ω, w be as in Lemma 27.
If B(w̃, 4s) ⊂ B(w, 4r) ∩ Ω, then û has a representative with Hölder continuous
derivatives in B(w̃, 2s) (also denoted û). Moreover ∇û is K-quasiregular and there
exists ᾱ, 0 < ᾱ < 1, and c ≥ 1, depending only on f and p, with

|∇û(z̃)−∇û(ẑ)| ≤ c

( |z̃ − ẑ|
s

)ᾱ

ess sup
B(w̃,s)

|∇û| ≤ c

s

( |z̃ − ẑ|
s

)ᾱ

ess sup
B(w̃,s)

û.(43)

Also, if ∇û 6= 0 in B(w̃, 2s), then

ˆ

B(w̃,s)

|∇û|p−2

2
∑

k,j=1

(ûxkxj
)2 dν ≤ c

(t− s)2

ˆ

B(w̃,t)

|∇û|p dν(44)

for s < t < 2s.
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Lemma 45. Let û, f,Ω, w, r be as in Lemma 27. If ∇û 6= 0 in B(w̃, 4s) ⊂
B(w, 4r)∩Ω then h(z) = log |∇û|(z) is a weak solution to a uniformly elliptic diver-
gence form partial differential equation for which a Harnack’s inequality holds.

Proof. From Lemma 42 ∇û is a K-quasiregular mapping and by assumption
∇û 6= 0 in B(w̃, 4s). Thus h(z) is well-defined in B(w̃, 4s) and also a weak solution
to

2
∑

k,j=1

∂

∂xk

(

Akjhxj

)

= 0 in B(w̃, 4s)(46)

where (Akj) = A, D2û =
(

∂
2
û

∂xk∂xj

)

, and

A =

{

detD2û
(

D2ûTD2û
)−1

if D2û is invertible,

Identity matrix otherwise,

(for more details see [HKM, Chapter 14]). It follows from an observation in [HKM,
Theorem 14.61] and K-quasiregularity of ∇û that

1
c
|η|2 ≤ Aη · η ≤ c|η|2 a.e. in B(w̃, 4s) and for all η ∈ R

2.

Therefore h = log |∇û| is a weak solution to a uniformly elliptic partial differential
equation in divergence form in B(w̃, 4s) from which we conclude that Harnack’s
inequality can be applied to h in B(w̃, 4s) when h > 0. �

Lemma 47. Let u be the capacitary function for D defined after Lemma 35.
Then ∇u 6= 0 in D.

Proof. Since (5) is invariant under dilation and translation we may assume that

D = Ω \B(0, 1). To prove Lemma 47 we use the principle of the argument. Indeed,
we use the principle of the argument for a K-quasiregular mapping.

Let uz = ux1
− iux2

. We know from the previous subsection that uz is a non
constant K-quasiregular mapping and therefore that the zeros of uz are isolated and
countable in D. Hence, there exist 0 < t0 < t1 < 1 with t0 arbitrarily close to
0 and t1 arbitrarily close to 1 such that uz 6= 0 on γj = {z ∈ D; u(z) = tj} for
j = 0, 1. K-quasiregularity of uz implies that uz is α′′′-Hölder continuous for some
0 < α′′′ < 1. Then from Lemma 42 γj , j = 0, 1, is a C1,α′′′

Jordan curve and without
loss of generality we can assume that γj is oriented counterclockwise for j = 0, 1.

Let Γj = uz(γj) for j = 0, 1, and D(t0, t1, ·) =: {z ∈ D; t0 < · < t1}. We claim
that

1

2πi

(
ˆ

Γ0

dw

w
−
ˆ

Γ1

dw

w

)

= #of zeros of uz(z) in D(t0, t1, u(z)).(48)

Indeed, (48) is well-known if uz is an analytic function as follows from the “principle
of the argument”.

We prove (48) using this idea and the Stoïlov factorization theorem, that is,

uz(z) = h ◦ g(z), z ∈ D,(49)

where h is an analytic function in g(D) and g is a K-quasiconformal mapping of D.
Then

∂g(D(t0, t1, u(z))) = τ0 ∪ τ1 = (g ◦ γ0) ∪ (g ◦ γ1)(50)
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where τj = g ◦γj is a Cβ Jordan curve for some 0 < β < 1, oriented counterclockwise
for j = 0, 1. Applying the principle of the argument to h as in (48) we get

1

2πi
[△arg (h ◦ τ0)−△arg (h ◦ τ1)] = # of zeros of h in g(D(t0, t1, |z|)).(51)

Here △arg (h ◦ τj), j = 0, 1, denotes the change in the argument of h ◦ τj as τj is
traversed counterclockwise. (48) follows from the fact that g−1 is a homeomorphism
of C onto C and (51)(See [AIM]).

Now, let zj(s), 0 ≤ s ≤ 1 be a parametrization of γj for j = 0, 1. Since γj is C1,α

we have

0 =
d

ds
(tj) =

d

ds
(u(zj(s))) = uz

dzj(s)

ds
+ uz

dzj(s)

ds
= 2Re

[

uz
dzj(s)

ds

]

.(52)

Therefore, uz
dzj(s)

ds
is always pure imaginary on γj , j = 0, 1, and so

0 = △ arg

[

uz
dzj(s)

ds

]

= △ arg uz(γj) +△ arg
dzj(s)

ds
.(53)

From (53) we see that

△ arg uz(γj) = −△ arg
dzj(s)

ds
.(54)

Finally, as γj, j = 0, 1 is a Jordan curve oriented counterclockwise, it follows
from the Gauss–Bonnet theorem that

1

2π
△ arg

dzj
ds

= 1 for j = 1, 2.(55)

Another way to prove (55) using analytic function theory is to use the Riemann
mapping theorem to first get ψj mapping {z; |z| < 1} onto Gj =: inside of γj, j = 0, 1.
As in [T] it follows that ψj extends to a C1,β homeomorphism of {z; |z| ≤ 1} onto

Gj. Then we can put

zj(s) = ψj(e
2πis), 0 ≤ s ≤ 1,(56)

and observe that

dzj(s)

ds
= 2πiψ′

j(e
2πis)e2πis.(57)

Then on {z; |z| = 1} we have

△ arg
dz

ds
= △ argψ′

j(z) +△ arg z = 0 + 2π = 2π.(58)

In view of (49), (51), (54), and (55) we conclude uz 6= 0 in G1 \ G0, i.e between the
level sets γ0 and γ1. Using this observation and letting t0 → 0, t1 → 1 in (48) we
have the desired result, uz 6= 0 in D. �

Next we state the fundamental inequality from [LNP].

Lemma 59. Let u be a capacitary function defined after Lemma 35 for D =
Ω \B(z0, d(z0, ∂Ω)/4). Then there is a constant c = c(f, p) such that

1
c

u(z)

d(z, ∂Ω)
≤ |∇u(z)| ≤ c

u(z)

d(z, ∂Ω)
(60)

whenever z ∈ D and d(z, ∂Ω) ≥ d(z0,∂Ω)
2

.
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Proof. Fix p, 1 < p < ∞, and let u Let u be a capacitary function defined
after Lemma 35 for D = Ω \ B(z0, d(z0, ∂Ω)/4). The proof in [LNP] uses only
Harnack’s inequality for a p-harmonic function and Hölder continuity of u as well
as Harnack’s inequality for log |∇u| when ∇u 6= 0. Since our function u has these
properties we conclude that (59) is also valid in our situation (for more details see
[LNP, Theorem 1.5]). �

Lemma 61. Let u be a capacitary function for D defined after Lemma 35 and
let f be as in Theorem 17. Then v = log f(∇u) is a weak sub solution, solution or
super solution to Lζ = 0 respectively when 2 < p <∞, p = 2 or 1 < p < 2, where

Lζ =

2
∑

k,j=1

∂

∂xk

(

fηjηk(∇u)
∂ζ

∂xj

)

.(62)

Remark 63. When f in (5) is smooth enough and homogeneous of degree p
in C \ {0} and u is smooth enough as well as a pointwise solution to (62), then in
[ALV, Theorem 1] it is shown by a direct calculation that log f(∇u) is a sub solution,
solution or super solution to the partial differential equation in (62) respectively when
2 < p <∞, p = 2 or 1 < p < 2.

Proof of Lemma 61. Using Lemmas 42, 59 in (5) with u′ = u, we find for
φ ∈ C∞

0 (D) that

0 =

ˆ

Ω

〈∇f(∇u),∇φxl
〉 dν = −

ˆ

Ω

2
∑

k=1

∂(fηk(∇u))
∂xl

φxk
dν

= −
ˆ

Ω

2
∑

k,j=1

fηkηj (∇u))(uxl
)xj
φxk

dν.

(64)

From homogeneity of f and Euler’s formula we have

2
∑

j=1

ηjfηkηj (η) = (p− 1)fηk(η) and
2
∑

j=1

ηjfηj (η) = pf(η)(65)

for k = 1, 2 and for a.e. η. Then it follows from (64) and (65) that

ˆ

Ω

2
∑

k,j=1

fηjηk(∇u)uxj
φxk

dν = (p− 1)

ˆ

Ω

2
∑

k=1

fηk(∇u)φxk
dν = 0.(66)

From (66) we see that ζ = u is also a weak solution to Lζ = 0. We note also that
since u, f ∈ W 2,2

loc
(D) thanks to Lemmas 26, 42, and 59 then for ν a.e. z ∈ Ω

0 =

2
∑

k,l=1

fηkηl(∇u(z))uxkxl
(z).(67)

Let v = log f(∇u), bij = fηiηj (∇u), D2u = (uxixj
), D2f = (fηiηj ) and observe that

bkjvxj
=

1

f(∇u)

2
∑

n=1

fηn(∇u)bkjuxnxj
.(68)
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Using (68) we see that

ˆ

Ω

2
∑

k,j=1

bkjvxj
φxk

dν =

ˆ

Ω

2
∑

k,j=1

1

f(∇u)

2
∑

n=1

bkjfηn(∇u)uxnxj
φxk

dν

= −
ˆ

Ω

2
∑

n,k,j=1

∂

∂xk

(

fηn(∇u)
f(∇u)

)

bkjuxnxj
φ dν

(69)

where to get the last line in (69) we have used

0 =

ˆ

Ω

2
∑

n,k,j=1

bkjuxnxj

∂

∂xk

(

fηn(∇u)
f(∇u) φ

)

dν.(70)

(70) is a consequence of (64) with n = l and φ replaced by fηn (∇u)
f(∇u)

φ as well as the

fact that
fηn(∇u)
f(∇u) ∈ W 1,2

loc
(D).

From (69) we have

ˆ

Ω

2
∑

k,j=1

bkjvxj
φxk

dν = −
ˆ

Ω

2
∑

n,k,j=1

∂

∂xk

(

fηn(∇u)
f(∇u)

)

bkjuxnxj
φ dν

= −
ˆ

Ω

(I ′ + I ′′)φ dν

(71)

where

I ′ =
2
∑

n,j,k,l=1

1

f(∇u) bnlbkjuxlxk
uxnxj

(72)

and

I ′′ = − 1

f 2(∇u)

2
∑

n,j,k,l=1

bkjfηn(∇u)fηl(∇u)uxlxk
uxnxj

.(73)

We can rewrite (72) and (73) using matrix notation. First notice that (67) becomes

tr
(

D2f ·D2u
)

= 0 for ν a.e. z in D.(74)

It follows from (74) that there exists m, n, l such that

D2f ·D2u =

[

m n

l −m

]

for ν a.e. z in D.(75)

Squaring both sides of (75) gives that

(D2f ·D2u)2 = (m2 + nl)

[

1 0
0 1

]

= − det(D2f ·D2u)I for ν a.e. z in Ω.(76)

Using (75) and (76) we can write (72) as

I ′ =
1

f
tr
(

(D2f ·D2u)2
)

= −det(D2f ·D2u)

f
tr(I) = −2

det(D2f ·D2u)

f
.(77)
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To handle (73) note from symmetry of D2u and D2f that

2
∑

k,j=1

bkjuxlxk
uxnxj

is the ln element of D2u ·D2f ·D2u.
Using homogeneity of f for ν a.e z in D we obtain

I ′′ = − 1

f 2
tr
(

Df · (Df)T ·D2u ·D2f ·D2u
)

= − 1

f 2
tr
(

1
(p−1)2

D2f · ∇u · (D2f · ∇u)T ·D2u ·D2f ·D2u
)

= − 1

f 2
tr
(

1
(p−1)2

D2f · ∇u · (∇u)T ·
(

D2f ·D2u
)2
)

= 1
(p−1)2

det(D2f ·D2u)

f 2
tr
(

D2f · ∇u · (∇u)T
)

= 1
(p−1)2

det(D2f ·D2u)

f 2
(∇u)T ·D2f · ∇u

= p(p−1)
(p−1)2

f det(D2f ·D2u)

f 2
= p

(p−1)

det(D2f ·D2u)

f

(78)

where we have used

tr(D2f · ∇u · (∇u)T) =
2
∑

l,k=1

blkuxl
uxk

= (∇u)T ·D2f · ∇u.(79)

Note that (77) and (78) imply for ν a.e z in D

I ′ + I ′′ = −2
det(D2f ·D2u)

f
+

p

(p− 1)

det(D2f ·D2u)

f

= −
(

p− 2

p− 1

)

det(D2f ·D2u)

f
.

(80)

Rearranging (67) for ν a.e z in D and using Lemma 26 and we find that

− b11

|∇u|p−2
det(D2u) =

1

|∇u|p−2

(

(∇ux2
)T ·D2f · ∇ux2

)

≈ |∇ux2
|2(81)

where we have used −b11 det(D
2u) = (2b12ux1x2

+ b22ux2x2
)ux2x2

+ b11u
2
x1x2

.
Likewise,

− b22

|∇u|p−2
det(D2u) =

1

|∇u|p−2

(

(∇ux1
)T ·D2f · ∇ux1

)

≈ |∇ux1
|2.(82)

Now from (71) and (80) we see that

ˆ

Ω

2
∑

k,j=1

bkjvxj
φxk

dν =

(

p− 2

p− 1

)
ˆ

Ω

det(D2u ·D2f)

f
φ dν

≈ −
(

p− 2

p− 1

)
ˆ

Ω

−b11 det(D
2u)

|∇u|p−2

det(D2f)

f
φ dν.

(83)
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Moreover, we note that combining (81), (82) and using (83), Lemma 26 we have

Lv = (p− 2)F weakly(84)

where F ≈ |∇u|p−4
2
∑

i,j=1

(uxixj
)2. From (84) we conclude for p = 2 that we have

ζ = v = log(f(∇u)) is a weak solution to (62), Lζ = 0. Similarly, ζ = v is a
weak sub solution or super solution to Lζ = 0 respectively when 2 < p < ∞ or
1 < p < 2. �

3. Proof of Theorem 17

In this section, we first obtain Lemma 86, and then using this lemma we prove
Theorem 17 for fixed p when 1 < p ≤ 2 and 2 ≤ p < ∞ separately. To this end, we
shall give the definitions of u,Ω, z0, µ again.

Let Ω be a bounded simply connected domain in the plane. Let z0 ∈ Ω and let
D = Ω \ B(z0, d(z0, ∂Ω)/4). Let u be a capacitary function for D. That is, u is a
positive weak solution to (5) in D with continuous boundary values, u ≡ 0 on ∂Ω
and u ≡ 1 on ∂B(z0, d(z0, ∂Ω)/4). Then by Remark 37 we have H-dim µ̂ = H-dimµ.
Therefore, it suffices to prove Theorem 17 when u is a capacitary function and µ is
the measure corresponding to u as in (7).

Let D be as above and let 4s̃ = d(z0, ∂Ω) and set Ξ(z) = z0+ ŝz. Then it follows
from the fact that (5) is invariant under translation and dilation that ũ = u(Ξ(z))
for Ξ(z) ∈ D is also a weak solution to (5) in Ξ−1(D). Let µ̃ be the measure
corresponding to ũ in (7). It can be easily shown from (5) that

µ̃(E) = ŝp−2µ(Ξ(E)) whenever E ⊂ R
2 is a Borel set.(85)

Clearly, (85) implies that H-dim µ̃ = H-dimµ. Therefore without loss of generality

we can assume that z0 = 0 and d(z0, ∂Ω) = 4, D = Ω \B(0, 1).
To prove Theorem 17 we first need a lemma. To this end, let u be a capacitary

function for D = Ω\B(0, 1) corresponding to f , and let µ be the corresponding Borel
measure. Define

w(z) =

{

max(v(z), 0) when 1 < p < 2,

max(−v(z), 0) when 2 < p <∞,

for z ∈ D where v(z) = log(f(∇u)(z)).
Lemma 86. Let m be a nonnegative integer. There exists c∗ = c∗(f, p) ≥ 1 such

that for 0 < t < 1/2,
ˆ

{z∈D: u(z)=t}

f(∇u)
|∇u| w

2mdH1(z) ≤ cm+1
∗ m!

[

log
1

t

]m

.(87)

Proof. Define g(z) = max(w(z) − c′, 0), z ∈ D where c′ is large enough so that
g ≡ 0 in B(0, 2) ∩ D. Since u is continuous in D, there is such a c′. Extend g

continuously to Ω by putting g ≡ 0 in B(0, 1). Set bij = fηiηj (∇u) and let L be as in
Lemma 61. Let Ω(t) = {z ∈ D : u(z) > t} for 0 < t < 1/2 and let ũ = max(u− t, 0).
Note that g2 ∈ W 2,∞(Ω(t)).

Fix p, 1 < p ≤ 2 until further notice. From Lemma 61, ζ = v = log f(∇u) is a
weak super solution to Lζ = 0 in D (see (62)). Using g2m−1ũ ≥ 0 as a test function
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in (62) for ζ = g and the fact that g ≡ 0 in B(0, 2), we get

0 ≤ 2m

ˆ

Ω(t)

2
∑

k,j=1

bkj
∂

∂xj
(log f(∇u)) ∂

∂xk

(

g2m−1ũ
)

dν

= 2m

ˆ

Ω(t)

2
∑

k,j=1

bkjgxj

∂

∂xk

(

g2m−1(u− t)
)

dν

= 2m(2m− 1)

ˆ

Ω(t)

2
∑

k,j=1

bkjgxj
gxk

g2m−2(u− t) dν

+ 2m

ˆ

Ω(t)

2
∑

k,j=1

bkjgxj
g2m−1(u− t)xk

dν = II ′ + II ′′.

(88)

We first handle II ′′. To this end, let ψ ∈ C∞
0 ({z : u(z) > t− ε}) with ψ = 1 on Ω(t).

Then since ζ = u is a weak solution to (62) and using g2mψ as a test function, we
obtain

0 =

ˆ

Ω(t−ε)

2
∑

k,j=1

bkjuxk

∂

∂xj

(

ψg2m
)

dν

= 2m

ˆ

Ω(t−ε)

2
∑

k,j=1

bkjuxk
g2m−1gxj

ψ dν +

ˆ

Ω(t−ε)

2
∑

k,j=1

bkjuxk
g2mψxj

dν

= II ′′1 + II ′′2 .

(89)

Letting ε → 0 and using the Lebesgue dominated convergence theorem gives II ′′1 →
II ′′.

We now show that for H1 a.e. t ∈ (0, 1/2) and properly chosen ψ that

II ′′2 →
ˆ

{z∈D:u(z)=t}

2
∑

k,j=1

bkjg
2muxk

uxj

|∇ũ| as ε→ 0.(90)

To this end let φ : R → R be a C∞ function satisfying 0 ≤ φ ≤ 1, and |φ′| ≤ c/ε
such that

φ(s) =

{

1 when s ≥ 1,

0 when s ≤ 1− ε.

If we set ψ = φ(u(z)/t) in II ′′2 and use the Coarea formula we see that

II ′′2 =

ˆ

Ω(t(1−ε))

2
∑

k,j=1

bkjuxk
g2mψxj

dν

=

ˆ

Ω(t(1−ε))

2
∑

k,j=1

bkjuxk
g2m

(

φ

(

u(z)

t

))

xj

dν

=
1

t

ˆ

Ω(t(1−ε))

2
∑

k,j=1

bkjuxk
g2mφ′

(

u(z)

t

)

uxj
dν

(91)
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=
1

t

ˆ t

t(1−ε)

φ′
(τ

t

)

(

ˆ

{z∈D:u(z)=τ}

2
∑

k,j=1

bkjuxk
g2m

uxj

|∇u| dH
1

)

dτ.

Let

Θ(τ) =

ˆ

{z∈D:u(z)=τ}

2
∑

k,j=1

bkjuxk
g2m

uxj

|∇u| dH
1.

Then using
1

t

ˆ t

t(1−ε)

φ′
(τ

t

)

dτ = φ(1)− φ(1− ε) = 1

we have

II ′′2 =
1

t

ˆ t

t(1−ε)

φ′
(τ

t

)

[Θ(τ)−Θ(t)] dτ +Θ(t)(92)

for almost every t ∈ (0, 1/2). If we let ε → 0 it follows from the strong form of the
Lebesgue differentiation theorem that

lim
ε→0

∣

∣

∣

∣

1

t

ˆ t

t(1−ε)

φ′
(τ

t

)

[Θ(τ)−Θ(t)] dτ

∣

∣

∣

∣

≤ lim
ε→0

1

t ε

ˆ t

t(1−ε)

|Θ(τ)−Θ(t)| dτ = 0(93)

for H1 a.e. t ∈ (0, 1/2). From (91) and (93) for H1 a.e. t ∈ (0, 1/2) we have

II ′′2 → Θ(t) as ε→ 0.(94)

Thus (90) is true. Hence using (94) in (90) and then (89) and (90) in (88) we see
that

ˆ

{z : u(z)=t}

2
∑

k,j=1

bkjg
2muxk

uxj

|∇u| dH
1(z)

≤ 2m(2m− 1)

ˆ

Ω(t)

2
∑

k,j=1

bkjgxj
gxk

g2m−2(u− t) dν

(95)

Similarly, for fixed p, 2 < p < ∞ from Lemma 61, ζ = v = log f(∇u) is a weak
sub solution to (62), Lζ = 0 in D. Using this observation and g2m−1ũ ≥ 0 as a test
function and the fact that g ≡ 0 on B(0, 2), we have

0 ≥ 2m

ˆ

Ω(t)

2
∑

k,j=1

bkj
∂

∂xj
(log f(∇u)) ∂

∂xk

(

g2m−1ũ
)

dν

= −2m

ˆ

Ω(t)

2
∑

k,j=1

bkjgxj

∂

∂xk

(

g2m−1(u− t)
)

dν

= −2m(2m− 1)

ˆ

Ω(t)

2
∑

k,j=1

bkjgxj
gxk

g2m−2(u− t) dν

− 2m

ˆ

Ω(t)

2
∑

k,j=1

bkjgxj
g2m−1uxk

dν = −(III ′ + III ′′).

(96)

Arguing as in the previous case we have (95) when p > 2. Therefore, for fixed p,
1 < p <∞, (95), Lemma 26, and Euler’s formula for a homogenous function yield
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ˆ

u(z)=t

g2m
f(∇u)
|∇u| dH1(z) =

1

p(p− 1)

ˆ

u(z)=t

2
∑

k,j=1

bkj
uxk

uxj

|∇u| g
2m dH1(z)

≤ 2m(2m− 1)

p(p− 1)

ˆ

Ω(t)

2
∑

k,j=1

bkjgxj
gxk

g2m−2(u− t) dν

≤ c 2m(2m− 1)

ˆ

Ω(t)

|∇u|p−2|∇g|2g2m−2u dν.

(97)

Let {Qi} be a closed Whitney cube decomposition of Ω(t) and let zi be the center
of Qi for i = 1, . . .. Let Ri be the union of cubes that have a common point in the
boundary with Qi.

Note that the definition of g and Lemma 26 yield for a.e. z ∈ Ω

|∇g| ≤ c
|∇f(∇u)|‖D2u‖

f(∇u) ≈ ‖D2u‖
|∇u| .(98)

Moreover, it easily follows from Lemma 42 that
ˆ

Qi

|∇u|p−2
∑

k,j

(

uxkxj

)2
dν ≤ c

ˆ

Ri

|∇u|p
d(z, ∂Ω(t))

dν(99)

for every i = 1, . . ..
Using (98), (99), Lemmas 26, 59 in (97) on the Whitney cubes Qi we see that
ˆ

{z: u(z)=t}

g2m
f(∇u)
|∇u| dH1 ≤ c′m2

ˆ

Ω(t)

u|∇u|p−2|∇g|2g2m−2 dν

≤ c′m2
∑

i

ess sup
Qi

(

u

|∇u|2g
2m−2

)
ˆ

Qi

|∇u|p|∇g|2 dν

≤ c′m2
∑

i

ess sup
Qi

(

u

|∇u|2g
2m−2

)
ˆ

Qi

|∇u|p |D
2u|2

|∇u|2 dν

≤ c′m2
∑

i

ess sup
Qi

(

u

|∇u|2g
2m−2

)
ˆ

Qi

|∇u|p−2|D2u|2 dν

≤ c′m2
∑

i

ess sup
Qi

(

u

|∇u|2g
2m−2

)
ˆ

Ri

|∇u|p
(d(z, ∂Ω))2

dν

≤ c′m2
∑

i

ess sup
Qi

(

g2m−2
)

ˆ

Ri

u|∇u|p−2 1

(d(z, ∂Ω))2
dν

≤ c′m2
∑

i

ess sup
Qi

(

g2m−2
)

ˆ

Ri

u|∇u|p−2 |∇u|2
u2

dν

≤ c′m2
∑

i

ess sup
Qi

(

g2m−2
)

ˆ

Ri

|∇u|p
u

dν

≤ c′m2

ˆ

Ω(t)

(g + c̃)2m−2 f(∇u)
u

dν.

(100)
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Here we have used the fact that Qi intersects with finitely many Ri which allows us
to interchange freely Ri and Qi.

Moreover, Lemmas 59, 31 yield

log f(∇u) ≈ log |∇u| ≤ log

(

c
u(z)

d(z, ∂Ω(z))

)

≤ log
(

c u
1

α
−1
)

≤ ĉ log

(

1

t

)

(101)

whenever z ∈ {z̃ ∈ D : u(z̃) = t} and 0 < t < 1/2. Therefore, for z ∈ {z̃ ∈ D : u(z̃) =
t} and 0 < t < 1/2 we see from Lemmas 59, 29 that

(g + c̃)2m−2 = (g2 + 2gc̃+ c̃2)m−1 ≤ (g2 + c log 1/t)m−1(102)

whenever 0 < t < 1/2. Using the Binomial theorem and (102) we can write

(g2 + c log 1/t)m−1 =

m−1
∑

k=0

(m−1)!
k!(m−k−1)!

g2k
(

c log
1

t

)m−1−k

.(103)

Let

Im(t) =

ˆ

{z:u(z)=t}

g2m
f(∇u)
|∇u| dH

1(z) for 0 < t <
1

2
.

Then using the Coarea formula, (97), (100) and (103) we obtain

Im(t) =

ˆ

{z:u(z)=t}

g2m
f(∇u)
|∇u| dH1(z)

≤ c′m2

ˆ

Ω(t)

(g + c)2m−2 f(∇u)
u

dν

= c′m2

ˆ 1

t

1

τ

(
ˆ

{z:u(z)=τ}

(g + c)2m−2 f(∇u)
|∇u| dH1(z)

)

dτ

≤ c′m2

ˆ 1

t

1

τ

(

ˆ

{z:u(z)=τ}

m−1
∑

k=0

(m−1)!
k!(m−k−1)!

g2k(c log
1

τ
)m−1−k f(∇u)

|∇u| dH1(z)

)

dτ

≤ c′m2

m−1
∑

k=0

(m−1)!
k!(m−k−1)!

ˆ 1

t

(c log 1
τ
)m−1−k

τ

(
ˆ

{z:u(z)=τ}

g2k
f(∇u)
|∇u| dH1(z)

)

dτ

≤ c′m2

m−1
∑

k=0

(m−1)!
k!(m−k−1)!

[
ˆ 1

t

(c log 1
τ
)m−1−k

τ
Ik dτ

]

.

(104)

It easily follows from ∇ · ∇f(∇u(z)) = 0 for a.e. z ∈ D, homogeneity of f and the
divergence theorem that

I0(t) =

ˆ

{z:u(z)=t}

f(∇u)
|∇u| dH1(z) = constant = c(p, f) for 0 < t < 1.(105)

One can now use an induction argument on m in the following way: by (105) we
have I0 ≤ c∗ for 0 < t < 1/2, and next assume that we have

Ik ≤ ck+1
∗ k!

[

log
1

t

]k

when 0 < t <
1

2
and for every 1 ≤ k ≤ m− 1,(106)
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where 1 ≤ c∗. Then for k = m a positive integer we have

Im(t) ≤ c′m2

m−1
∑

k=0

(m− 1)!

k!(m− k − 1)!

[
ˆ 1

t

(c log 1
τ
)m−1−k

τ
Ik dτ

]

≤ c′m2
m−1
∑

k=0

(m− 1)!

k!(m− k − 1)!

[
ˆ 1

t

(c log 1
τ
)m−1−k

τ
ck+1
∗ k!(log(

1

τ
))k dτ

]

≤ c′m2
m−1
∑

k=0

(m− 1)!

k!(m− k − 1)!
cm−k−1ck+1

∗ k!

[
ˆ 1

t

(log 1
τ
)m−1

τ
dτ

]

≤ c′m2
m−1
∑

k=0

(m− 1)!

k!(m− k − 1)!
cm−k−1ck+1

∗ k!
(log(1

t
))m

m

≤ c′ cm∗ m!(log
1

t
)m

(

m−1
∑

k=0

1

(m− k − 1)!

)

≤ cm+1
∗ m!(log

1

t
)m.

(107)

for 0 < t < 1/2, and c∗ large enough.
Hence by (107), Lemma 86 is true with w replaced by g. It follows from w ≤ g+c′

that Lemma 86 is also true for w. �

By Lemma 86 we get for 0 < t < 1/2
ˆ

{z∈D:u(z)=t}

f(∇u)
|∇u|

w2m

(2c∗)mm![log 1
t
]m

dH1(z) ≤ 2−mc∗.(108)

Summing over m in (108) yields for 0 < t < 1/2
ˆ

{z∈D:u(z)=t}

f(∇u)
|∇u| exp

[

w2

2c∗ log
1
t

]

dH1(z) ≤ 2c∗.(109)

Define

D(t) =

√

4c∗

(

log
1

t

)(

log log
1

t

)

for 0 < t < e−2,(110)

and

B(t) = {z : u(z) = t and w(z) ≥ D(t)}.(111)

Then by (109) we have

2c∗ ≥
ˆ

{z∈D:u(z)=t}

f(∇u)
|∇u| exp

[

w2

2c∗ log
1
t

]

dH1(z)

≥
ˆ

B(t)

f(∇u)
|∇u| exp

[

w2

2c∗ log
1
t

]

dH1(z)

≥
ˆ

B(t)

f(∇u)
|∇u| exp

[

(D(t))2

2c∗ log
1
t

]

dH1(z) =

ˆ

B(t)

f(∇u)
|∇u| (− log t)2 dH1(z).

(112)

We conclude from (112) that
ˆ

B(t)

f(∇u)
|∇u| dH1(z) ≤ 2c∗∗

(

log 1
t

)2 .(113)

For a fixed and large A, we define the Hausdorff measure Hλ as follows;
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Let

λ(r) =

{

reAD(r) when 1 < p ≤ 2,

re−AD(r) when 2 ≤ p <∞.
(114)

Let Hausdorff Hλ measure and Hausdorff dimension of a measure be as defined before
Theorem 9 relative λ as in (114). We can now follow closely the argument in [LNP,
Section 3] and deduce that Theorem 17 is true. For the reader’s convenience we give
the argument.

Proof of Theorem 17. To prove Theorem 17 for fixed p, 1 < p ≤ 2 we show that
for a large A, µ is absolutely continuous with respect to Hλ measure. To this end,
let E ⊂ ∂Ω be a Borel set with Hλ(E) = 0. Let E = E1 ∪ E2 where

E1 :=

{

z ∈ E; lim sup
r→0

µ(B(z, r))

λ(r)
<∞

}

,(115)

and

E2 :=

{

z ∈ E; lim sup
r→0

µ(B(z, r))

λ(r)
= ∞

}

.(116)

It is easily shown that µ(E1) = 0. It remains to show that µ(E2) = 0. By measure
theoretic arguments, definition of λ and by Vitali’s covering argument it can be shown
that given 0 < r0 < 10−100 there is {ri < r0/100, zi ∈ E2} such that

B(zi, 10ri) are disjoint balls,

{B(zi, 100ri)} is a covering for E2,

µ(B(zi, 100ri)) ≤ 109µ(B(zi, ri)) and λ(100s) ≤ µ(B(z, s)) for every i

(117)

(see [LNP, Proof of Theorem 1.3]).

Choose ζi ∈ ∂B(zi, 2ri) such that u(ζi) = maxu on B(zi, 2ri). From the last

line of (117) and Lemma 35 we know that the maximum of u on B(zi, 2ri) and the

maximum of u on B(zi, 5ri) are proportional. Thus, this observation and Lemma 32
yield d(ζi, ∂Ω) ≈ ri.

Moreover, using d(ζi, ∂Ω) ≈ ri and Lemmas 26, 35 we see for fixed i that

µ(B(zi, 10ri))

ri
≈
(

u(ζi)

d(ζi, ∂Ω)

)p−1

≈ f(∇u(z))
|∇u(z)|(118)

whenever z ∈ B(ζi, d(ζi, ∂Ω)/2). Choose m so that 2−m ≤ u(ζi) ≤ 2−m+1, and let
ηi be the first point on the line segment from ζi to a point on ∂Ω ∩ ∂B(ζi, d(ζi, ∂Ω))
satisfying u(ηi) = 2−m. Then we see that (118) holds with ζi replaced by ηi. That is,

u(ηi) = 2−m and d(ηi, ∂Ω) ≈ ri,

µ(B(zi, 10ri))

ri
≈
(

u(ηi)

d(ηi, ∂Ω)

)p−1

≈ f(∇u(z))
|∇u(z)| ≈ |∇u(z)|p−1

(119)

whenever z ∈ B(ηi, d(ηi, ∂Ω)/2).
From (117) and (119) for z ∈ B(ηi, d(ηi, ∂Ω)/2) we have

AD(100ri) = log

(

λ(100ri)

100ri

)

≤ log

(

µ(B(zi, ri))

100ri

)

≤ c log

(

µ(B(zi, 10ri))

ri

)

≤ c log |∇u|p−1 ≤ c log f(∇u) + c = w(z) + c

(120)
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where A is as in (114) and c = c(p, f) ≥ 1.
Using Lemma 31 we can estimate 2−m above in terms of ri. We can also estimate

2−m below in terms of ri using the last line in (117) and (119). That is, there exist
c′ = c(p, f) and β = β(p, f) < 1 such that

ri ≤ c′(2−m)β and 2−m ≤ c′rβi .(121)

From (113), (120)–(121) we have,

µ[B(zi, 10ri)] ≤ c

ˆ

B(2−m)∩B(zi,10ri)

f(∇u)
|∇u| dH1(z).(122)

For large A, (113), (121), and (122) yield

µ(E2) ≤ µ

(

⋃

i

B(zi, 100ri)

)

≤ 109
∑

i

µ(B(zi, 10ri))

≤ c
∑

m=m0

ˆ

B(2−m)

f(∇u)
|∇u| dH1(z) ≤ c2

∑

m=m0

m−2 ≤ c3

m0

(123)

where 2−m0β = crβ
2

0 . As r0 → 0 we have µ(E2) → 0. So we have the desired result
when 1 < p ≤ 2.

To finish the proof of Theorem 17, it remains to show that for 2 ≤ p < ∞,
µ is concentrated on a set of σ-finite Hλ measure. To obtain this, by definition,
we show that there is a Borel set K ⊂ ∂Ω having σ-finite Hλ measure satisfying
µ(K) = µ(∂Ω).

We first show that µ(K ′) = 0 where

K ′ :=

{

z ∈ ∂Ω; lim
r→0

µ(B(z, r)

λ(r)
= 0

}

.(124)

Then µ(K) = µ(∂Ω) where

K =

{

z ∈ ∂Ω; lim sup
r→0

µ(B(z, r)

λ(r)
> 0

}

and it will follow easily that K has σ-finite Hλ measure.
Let r0 be sufficiently small. We can argue as in [LNP, Proof of Lemma 2.4] to

find {ri < r0/100, zi ∈ K ′} such that

B(zi, 10ri) are disjoint balls,

{B(zi, 100ri)} is a covering for K ′,

µ(B(zi, 100ri)) ≤ cµ(B(zi, ri)) for every i, and

µ(B(zi, 100ri)) ≤ λ(ri) for every i.

(125)

where the constant is independent of zi and ri for i = 1, . . .. Let I ′ be the set of
all indexes i for which r3i ≤ µ(B(zi, 100ri)) and let I ′′ be the indexes where this
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inequality does not hold. By (125) we see that

µ(K ′) ≤ µ

(

⋃

i∈I′

B(zi, 100ri)

)

+ µ

(

⋃

i∈I′

B(zi, 100ri)

)

+ µ

(

⋃

i∈I′′

B(zi, 100ri)

)

≤ µ

(

⋃

i∈I′

B(zi, 100ri)

)

+
∑

i∈I′′

r3i ≤ µ

(

⋃

i∈I′

B(zi, 100ri)

)

+ c′r0H
2(Ω).

(126)

When i ∈ I ′ we can repeat the argument for 1 < p ≤ 2 to get (122). Finally, using
(113) and (122) in (126) we see that

µ(K ′)− c′r0H
2(Ω) ≤ µ

(

⋃

i∈I′

B(zi, 100ri)

)

≤ c
∑

i∈I′

µ (B(zi, 10ri))

≤ c
∑

m=m0

ˆ

B(2−m)

f(∇u)
|∇u| dH1 ≤ c2

∑

m=m0

m−2 ≤ c3

m0

.

(127)

Hence 2−m0β = crβ
2

0 . Since r0 can be arbitrarily small, we can let r0 → 0 from which
we conclude that µ(K ′) = 0.

It remains to show that µ(K) = µ(∂Ω) and K has σ-finite Hλ measure. To this
end let Ki, for a positive integer i, be the set of points in K with the property that

Ki =

{

z ∈ ∂Ω; lim sup
r→0

µ(B(z, r)

λ(r)
≥ 1

i

}

.

From a covering argument it follows that

Hλ(Ki) ≤ c iµ(Ki)

from which we can conclude that Ki has σ-finite Hλ measure. Since
⋃

iKi = K, we
conclude that K has σ-finite Hλ measure. which finishes the proof for 2 ≤ p <∞.

The proof of Theorem 17 is now complete. �
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