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Abstract

A Statistical learning approach concerns with understanding and modelling complex

datasets. Based on a given training data, its main aim is to build a model that maps

the relationship between a set of input features and a considered response in a predictive

way. Classification is the foremost task of such a learning process. It has applications en-

compassing many important fields in modern biology, including microarray data as well

as other functional genomic experiments.

Microarray technology allow measuring tens of thousands of genes (features) simulta-

neously. However, the expressions of these genes are usually observed in a small number,

tens to few hundreds, of tissue samples (observations). This common characteristic of high

dimensionality has a great impact on the learning processes, since most of genes are noisy,

redundant or non-relevant to the considered learning task.

Both the prediction accuracy and interpretability of a constructed model are believed

to be enhanced by performing the learning process based only on selected informative

features. Motivated by this notion, a novel statistical method, named Proportional Over-

lapping Scores (POS), is proposed for selecting features based on overlapping analysis

of gene expression data across different classes of a considered classification task. This

method results in a measure, called POS score, of a feature’s relevance to the learning task.

v



Abstract vi

POS is further extended to minimize the redundancy among the selected features.

The proposed approaches are validated on several publicly available gene expression

datasets using widely used classifiers to observe effects on their prediction accuracy. Selec-

tion stability is also examined to address the captured biological knowledge in the obtained

results. The experimental results of classification error rates computed using the Random

Forest, kNearest Neighbor and Support Vector Machine classifiers show that the proposals

achieve a better performance than widely used gene selection methods.
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Chapter 1

Introduction

1.1 Introduction

Statistical Learning refers to a set of approaches for constructing a predictive model based

on a given dataset. It encompasses many methods including Classification Trees (Breiman

1984), RandomForest (Breiman 2001), Boosting (Freund&Schapire 1997), kNearest Neigh-

bour (Cover & Hart 1967) and Support Vector Machines (Cortes & Vapnik 1995). The main

goal of statistical learning is to train a given set of data, training data, to model an effective

prediction rule that can be then used to predict unseen/new data.

The recent revolution in functional genomic technologies leads to generate vast amount

of data. Microarray, as well as other high-throughput functional genomic technologies,

provide effective tools for studying thousands of genes simultaneously. The challenge of

understanding these data has led to the development of new tools in statistical learning.

Classification is the foremost taskof statistical learningwithin thebiological domain (Fried-

man et al. 2001). For a particular classification task, microarray data are inherently noisy

1



1.1. Introduction 2

since most genes are irrelevant and uninformative to the given classes (phenotypes).

Both the prediction accuracy and interpretability of a constructed classifier could be

enhanced by performing the learning process based only on selected informative features.

One of the main aims of gene expression analysis is to identify genes that are expressed

differentially between various classes. The problem of identification of these discriminative

genes for their use in classification has been investigated in many studies (Chen et al. 2014,

Apiletti et al. 2012, Peng et al. 2005).

A major challenge is the problem of dimensionality; tens of thousands of genes’ expres-

sions are observed in a small number, tens to few hundreds, of observations. Given an

input of gene expression data along-with observations’ target classes, the problem of gene

selection is to find among the entire dimensional space a subspace of genes that best char-

acterizes the response target variable. Since the total number of subspaces with dimension

not higher than r is
r
∑

i=1

(P
i

)

, where P is the total number of genes, it is hard to search the

subspaces exhaustively.

Alternatively, various search schemes are proposed e.g., best individual genes (Su et al.

2003),Max-Relevance andMin-Redundancybased approaches (Peng et al. 2005), Iteratively

Sure Independent Screening (Fan et al. 2009) and MaskedPainter approach (Apiletti et al.

2012). Identification of discriminative genes can be based on different criteria including:

p-values of statistical tests e.g. t-test or Wilcoxon rank sum test (Lausen et al. 2004, Altman

et al. 1994); ranking genes using statistical impurity measures e.g. information gain, gini

index and max minority (Su et al. 2003).

Here, the overlap between gene expression measures for different classes is utilized.

The thesis provides a strategy that uses the information given by observations’ classes as
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well as expression data for detection of the differentially expressed genes between target

classes. The possibility of improving a classifier performance and prediction accuracy by

identifying discriminative genes that are relevant to the considered classification task is

investigated.

The thesis proposes a procedure that analyses the overlap between gene expression of

different classes, to identify the minimum set of genes which yield the best classification

accuracy on a training set whilst avoiding the effects of outliers. Based on this procedure, a

novel statistical method, named as Proportional Overlapping Scores (POS), is proposed for

selecting discriminative features for a considered classification task. This method results

in a measure, called POS score, of a feature’s relevance to the classification problem.

Several widely used classifier models: Random Forest; k Nearest neighbour; Support

Vector Machines, are used to evaluate the efficiency of the proposed approach in improv-

ing the learning process. POS method is validated on 12 publicly available gene expres-

sion datasets by comparison with five well-known gene selection techniques: Wilcoxon

RankSum (Wil-RS);MinimumRedundancyMaximumRelevance (mRMR);MaskedPainter

(MP); Iteratively Sure Independent Screening (ISIS). The experimental results of classifi-

cation error rates computed using the considered classifiers show that POS achieves a

better performance. The proposed approach with the conducted experiments have been

published in Mahmoud et al. (2014a).

The POS method is further extended to minimize the redundancy among the selected

features. A recursive strategy is proposed to assign a set of complementary informative

genes. The scheme exploits gene masks defined by POS to identify more integrated genes

in terms of their classification patterns. The proposed version, named POSr method, is
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published in Mahmoud et al. (2015)

The approaches proposed in this thesis are implemented in an R-package, called

‘propOverlap’, publicly available on CRAN (Mahmoud et al. 2014b).

1.2 Thesis Organization

Chapter 2 provides a background for statistical learning. It illustrates the difference be-

tween supervised and unsupervised learning and also discusses the basics of classification

and regression trees (CART) and ensemble learning schemes. Detailed explanation of sev-

eral classification models such as RandomForest, k Nearest Neighbour and Support Vector

Machine are also provided. Finally, some methods and metrics for evaluating a classifier

performance are described.

Chapter 3 illustrates different approaches for feature selection. Different categories of

feature selection methods are described. The chapter also introduces the general criterion

of gene expressions overlap for identifying discriminative genes.

Chapter 4 proposes a procedure for identifying the minimum subset of genes that pro-

vide the best classification accuracy on a set of given training data. The procedure provides

a definition of gene mask that measure the classification power of each gene in a consid-

ered binary classification problem. This chapter also presents a novel score, POS, for

measuring the overlapping degree between expressions of different classes. An algorithm

for detecting the minimum set of genes that correctly classify the maximum number of

observations avoiding outliers effect is also given. The research within this chapter has
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been published (Mahmoud et al. 2014a).

Chapter 5 proposes a novelmethod, named ‘POS’, for gene selection based on the defined

POS score along-with the minimum subset of genes. The chapter also shows the results of

misclassification error rates obtained by POS using Random Forest, k Nearest Neighbour

and Support Vector Machine classifiers. The results from POS are compared with the ones

yielded bywidely used gene selectionmethods such asWilcoxon Rank Sum (Wil-RS),Min-

imum Redundancy Maximum Relevance (mRMR), MaskedPainter (MP), Iteratively Sure

Independent Screening (ISIS). Scores of stability selections are provided for the proposed

approach and the compared methods. This work has been published in Mahmoud et al.

(2014a).

Chapter 6 proposes an extended version of POS method, named ‘POSr’, for minimizing

the selection redundancy using a recursive strategy to assign a set of complementary

discriminative genes. This chapter shows themisclassification error rates aswell as stability

scores for the proposed approach. The obtained results are compared with POS and other

gene selection methods. The research within this chapter has been published in Mahmoud

et al. (2015).

Chapter 7 summarises the conclusions of the thesis and suggests future directions in

which this research might be extended.
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1.3 PublishedWork
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propOverlap: Feature (gene) selection based on the Proportional Overlapping Scores.
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Chapter 2

Background for Statistical Learning

Statistical learning techniques are described as either supervised, semi-supervised or unsuper-

vised. The distinction results from how the learning process identifies its training data.

2.1 Supervised vs. Unsupervised Learning

In supervised learning, training data are usually presented as (X,Y) such that X ∈ ℜN×P is

a feature matrix in which N observations are reported each with P features (dimensions),

whilst Y ∈ ℜN is a vector of output labels (supervisors). Classification techniques (e.g.,

Classification and Regression Trees, Random Forest, k Nearest Neighbour and Support

Vector Machine, presented in Sections 2.2, 2.4, 2.5 and 2.6 respectively) provide important

representative examples of supervised learning.

Unsupervised learning defines the training data to contain only the feature matrix

X (i.e., N observations are presented each with P features without supervised output

labels Y). Clustering techniques (e.g., kmeans and hierarchical clustering) are the classical

7



2.2. Classification and Regression Trees (CART) 8

representative examples for unsupervised learning.

Semi-supervised learning falls betweenunsupervised learning and supervised learning.

It refers to a set of tasks and techniques that treat data with supervised output labels for

part of it.

2.2 Classification and Regression Trees (CART)

Classification and Regression Trees (CART) have been around since Breiman et al. (1984)

proposed a procedure for building trees to predict categorical and continuous response

variables for classification and regression problems respectively. Many refinements of

CARTapproachhave beendeveloped for enhancing its uses in variousfields (e.g., Chipman

et al. 1998, Loh 2002, Su et al. 2004). CART are considered a base classifier for most of the

ensemble learning methods which are discussed in Section 2.3. They are used in many

fields including statistics, applied mathematics and computer science, etc. Moreover, they

are usually linked to machine and statistical learning, and data mining.

The CART approach uses the training data to construct a binary decision tree which is

then used for predicting the class labels of new data (in case of classification problems) or

the real-values of the response (in case of regression). This is accomplished by recursively

splitting the feature space into two disjoint regions (e.g., two outcomes in the case of a

binary feature (for more details, see Section 2.2.1)).

For classification problems, a set of training data (X,Y) are given. Figure 2.1 illustrates

the structure of CART where Xil , l = 1, 2 are two features (predictors) and B
(

Xil

)

is a given

condition associated with Xil for splitting leaf nodes. The root node definitely contains the
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Figure 2.1: An example for the basic CART structure

full training data while each of the internal and leaf nodes contains a subset of the data

associated with its parent node. The whole structure of a classification tree is accomplished

via a recursive binary splitting procedure applied for each node. This procedure aims to

separate the trainingdata into reasonablypurer subsets in termsof their classesdistribution.

A stop condition is employed to terminate the splitting process.

Generally, an exponential number of distinct classification trees can be built from agiven

set of features. While some of them are more accurate than others, finding the optimal

tree is computationally infeasible for high dimensional datasets due to the exponential

size of the entire search space (Tan et al. 2007). Nevertheless, many algorithms have been

developed for building a reasonably accurate CART in a reasonable amount of time. These

algorithms usually grow a tree by making a series of locally optimum decisions about

which feature to use for partitioning the training data at each node.
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2.2.1 Best Split of Nodes

The CART algorithm provides a tool for determining a test condition B (Xi), associated

with feature Xi, that should be selected among different feature types in order to get the

best split for a given node.

For binary features, the test condition B (Xi) generates two potential outcomes by which

a two-way split is formed.

Nominal features having many values produce a test condition which can be expressed

either into multi-way split or a two-way split. For the former splitting way, each outcome

corresponds to one of the feature distinct values. For the latter way, splitting is accom-

plished by grouping the feature values into two non-empty disjointed subsets. Some

algorithms, such as CART, produce only two-way (binary) splits by considering all the

2m−1 − 1 ways of creating a binary partition of m feature values.

Similarly, ordinal features can produce multi-way or binary split providing that the

grouping process, if any, does not violate the order of the feature values.

Finally, for continuous features, the test condition B (Xi) can be expressed as a compar-

ison test with binary outcomes (Xi ≤ α Vs. Xi > α). Otherwise, it could be presented as a

range query with outcomes of the form αi < Xi ≤ αi+1, i = 1, . . . , m. One possible approach

is discretizing the continuous values into ordinal intervals. Afterwards, each new ordinal

value will be assigned to one outcome of a multi-way split. Also, adjacent intervals can be

grouped into binary outcomes as long as the order is preserved (Tan et al. 2007).

It is essential to define an objective measure for evaluating the goodness of each test

condition, and then identifying the best test condition. This goodness of a test condition is

estimated upon the impurity level of nodes, discussed in the following paragraph, before
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and after splitting using that condition. On this basis, the best is the one which leads to

lowest impurity of observations class distribution before and after splitting.

Measures for detecting the best split

Selection of the best split is based on the degree of impurity. An objective measure can be

defined for evaluating the goodness of the split by comparing the degree of impurity of

the parent with those of child nodes. The most widely used impurity measures (Friedman

et al. 2001), Gini Index, Entropy and Classification Error, are shown respectively in (2.1)-(2.3).

Gini Index (t) = 1 −
C

∑

c=1

θ2ct , (2.1)

Entropy (t) = −
∑

c∈ St
θct log2 θct , St = {c | θct , 0, c = 1, . . . ,C} , (2.2)

Classi f ication Error (t) = 1 −max
c
θct, (2.3)

whereθct denotes theproportionof observationsbelonging to class c amongall observations

at a given node t, and C is the number of classes. For Entropy measure, the summation

is only over the non-empty classes, (i.e., classes for which θct , 0). Impurity degree for a

node t can be computed using these measures. Smaller values represent more skewness

for the class distribution of given observations, thus more benefits for splitting purposes.

Figure 2.2 shows the values of these measures for binary classification situations (when

C = 2). In this case, θct represented by the x-axis in Figure 2.2, can refer to any of the two

classes since θ1t = 1 − θ2t.

Now, the goodness of a test condition at a node t can be evaluated by comparing

the impurity degree calculated using one of these impurity measures for the node before
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Figure 2.2: Impurity measures for binary classification problems

splitting, with impurity degrees of the resulted child nodes, after splitting. The best

condition is the one which leads to the largest difference between impurity degrees of

before and after splitting. The criterion used for determining goodness of a node split is

called “gain” and denoted by △ such that (Friedman et al. 2001):

△t = I (t) −
m

∑

β=1

ntβ

nt

. I
(

tβ
)

(2.4)

where I
(

tβ
)

is the computed impurity of the child node tβ, whereas ntβ refers to the

number of observations associated with it, while m represents the number of children

nodes (feature outcomes). Algorithms often choose a test condition that maximizes △ or

equivalently minimizes the weighted average impurity measures of the child nodes as I (t)

is the same for all test conditions at a given node t.



2.3. Supervised Ensemble Learning 13

2.3 Supervised Ensemble Learning

Ensemble learning was originally presented for supervised learning, specifically classifica-

tion problems, in 1965 (Nilsson 1965). The basic concept of supervised ensemble learning

is to train multiple base classifiers which are basically designed for the same task, then

combine their predictions into a single ensemble classifier. This classifier should perform

better than any member of base classifiers; otherwise, ensemble process doesn’t make

sense. In general, diverse weak base classifiers together can produce a strong ensemble

classifier if they are given an opportunity to operate within the same procedures. This

technique allows better performance, in terms of both generality and accuracy, than could

be achieved via any single base classifier. For classification tasks, many researchers have

demonstrated the outstanding performance of ensemble learning (Ho et al. 1994, Cho &

Kim 1995, Breiman 1996, Oza & Tumer 2001, Dietterichl 2002, Tumer & Oza 2003).

An ensemble procedure should address some fundamental issues such as: how to train

each of the single bases (learning algorithm); how to combine their predictions (combining

method); how to measure the diversity as a necessary but not sufficient condition of

ensemble learning efficiency (diversity). These fundamental arguments are discussed

sequentially in Sections 2.3.1 - 2.3.3.

2.3.1 Ensemble Learning Algorithms

Multiple base classifiers can be trained either individually in a parallel system or co-

ordinately in a sequential system. Two of the most common ensemble algorithms, Bagging

of classification trees and Boosting, are presented respectively in this section. Those two
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powerful algorithms give explicit examples for these different strategies of ensemblemeth-

ods.

Bagging algorithms

It is one of the simplest and well-known ensemble algorithms. Originally, Bootstrap

aggregation (bagging) was introduced in Breiman (1996) for supervised ensemble learning.

However afterwords, the idea has been extended for unsupervised learning. Fischer &

Buhmann (2003) developed uses of the bagging algorithm for some clustering tasks. In

addition, Dudoit & Fridlyand (2003) demonstrated the efficiency of using bagging for

improving the accuracy of clustering.

The main idea is based on building successive base learners. Each of them is con-

structed using a bootstrap sample of the considered dataset. Then, a majority vote is taken

for prediction. For instance, bagging of the classification trees is conducted by building

successive trees using bootstrap samples of the training dataset. Then, the majority vote

of predicted classes is taken for the output prediction of bagging. The ensemble learner is

then able to reduce the variance of the estimated prediction function (Friedman et al. 2001).

A summary of the bagging procedure for classification trees is shown in Algorithm 2.1.

Boosting algorithms

Like bagging, the boosting approach was firstly proposed for a supervised ensemble and

was originally designed for classification problems. Freund & Schapire (1997) introduced

an algorithm named Adaboost which inspired Boosting algorithms for improving per-

formance of classification (Schapire et al. 1998). Then, some recent studies (e.g. Pavlovic
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Algorithm 2.1 Bootstrap Aggregation (Bagging) for Classification Trees

Inputs: Set of training data (X, Y).
Output: Ensemble of classification trees {Tb}B1 .

1: for b = 1 to B do
2: draw a bootstrap sample sb of size N from the training dataset.
3: grow a classification tree Tb based on the bootstrapped sample sb.
4: end for
5: return Ensemble of trees, {Tb}B1 .

To make a prediction at a new observation xnew :

6: Let f̂b (xnew) be the class prediction of the bth classification tree.

7: return ŷnew = f̂ B
bag

(xnew) = majority vote
{

f̂b (xnew)
}B

1
.

2004, Frossyniotis et al. 2004, Saffari & Bischof 2007, Liu et al. 2007) have extended it into

unsupervised learning.

The main idea of boosting technique is that a powerful ensemble classifier can be

produced by integrating the outputs of various weak classifiers. From this perspective,

boosting bears a resemblance to bagging. However, we shall illustrate that the similarity

is at best superficial and that boosting is fundamentally different.

The basic idea is that each training individual observation is associatedwith an adapted

weight based onhow the observationwas classified in the previous iteration, initial weights

are usually set in a balanced setting at the first iteration. Observations with higher weight

values (more misclassified) are then more likely to be selecting for training data of the

next iteration, paying more attention to observations that are difficult to classify. By

sequentially constructing a linear combination of base classifiers which are fitted at each

iteration, boosting can concentrate more on ‘difficult’ individual observations and hence

provide an effective ensemble classifier for the considered classification problem.

To illustrate boosting, consider a C-classes classification problem, with the response

variable Y. Given a vector of predictors X, a classifier fb (X) predicts the class label, ŷ, where
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ŷ ∈ {1, . . . , C}. Then, the misclassification error rate of the classifier fb (X) can be shown as:

errb =
1

N

N
∑

j=1

I
(

y j , ŷ j

)

, (2.5)

where

I
(

y j , ŷ j

)

=



























1 i f
(

y j , ŷ j

)

0 Otherwise

,

such that N represents the number of observations in the training dataset, y j and ŷ j are

the observed and the predicted class respectively of the observation j, i = 1, . . . , N. A

weak classifier is the one whose error rate is slightly better than the random guessing.

The purpose of boosting is to sequentially fit a base classifier to adaptively versions of the

training dataset, then producing a sequence of classifiers fb (X) , b = 1, . . . , B which are

used for classification prediction (Hastie et al. 2009). Consequently, ensemble of these base

classifiers produces a final classifier f (X) whose prediction is a weighted majority vote of

the base classifiers prediction. Thus, prediction of f (X) for the input x j, the features value

of the jth observation, can be expressed as:

f̂ Bboost

(

x j

)

= argmax
c















B
∑

b=1

τb · I
(

f̂b
(

x j

)

= c
)















, c = 1, . . . , C. (2.6)

where,

I
(

f̂b
(

x j

)

= c
)

=



























1 i f jth observation is assigned to class c by classi f ier fb (X)

0 Otherwise

. (2.7)

Here, τ1, τ2, . . . , τB are computed according to the used boosting algorithm. They weight
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Algorithm 2.2 Boosting

Inputs: Set of training data (X, Y).
Output: Ensemble classifier f B

boost
(X).

1: Initialize weights of the observations such that w j =
1

N
, j = 1, . . . , N.

2: for b = 1 to B do
3: fit a classifier fb (X) to the training data sampled using the weights w j.

4: errb =

N
∑

j=1
w j I(y j , f̂b(x j))

N
∑

j=1
w j

5: based on errb, calculate τb bywhich the contribution of the classifier fb (X) isweighted.
6: Update w j based on the current status (misclassified or not) of the jth observation,

j = 1 . . . , N.
7: end for
8: return the final classifier, f B

boost
(X), by aggregating the base classifiers fb (X) associated

with their weights τb, b = 1, . . . , B.

To make a prediction at a new observation xnew :

9: return ŷnew = f̂ B
boost

(xnew) = argmax
c

(

B
∑

b=1

τb · I
(

f̂b (xnew) = c
)

)

, c = 1, . . . , C.

the contribution of each base classifier fb (X) and their effect is to give higher impact to the

more accurate classifiers in the sequence. Algorithm 2.2 shows the general procedure of

the boosting technique.

Different boosting algorithms modify the general procedure shown in Algorithm 2.2.

For instance, AdaBoostM1 algorithm, the most popular boosting algorithm (Freund &

Schapire 1997), defines τb and w j (lines 5 and 6 respectively in Algorithm 2.2) as follows:

τb = log
{

1 − errb
errb

}

,

w j ← w j · exp
[

τb · I
(

y j , f̂b
(

x j

))]

.

Boosting ensemble algorithm is constructed based on sequential iterations with perti-

nent feedback from the previous base classifier. This is different from parallel algorithm

strategies applied in Bagging and Random Forest (introduced in Sections 2.3.1 and 2.4
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respectively).

2.3.2 Ensemble Combining Methods

Whenever multiple base classifiers are constructed, the ensemble learning algorithms

should apply a convenient tool to combine their individual outputs into a single form

of ensemble classifier. There are a large number of methods for model combination. Linear

combiner, the product combiner, and majority voting combiner are the most commonly used

in practice and demonstrate good performance for a numerous applications of ensemble

learning (Brown 2009).

The linear combiner is for models whose response is a real-valued variable. It is used

for some supervised learning tasks such as regression and classification which produce

estimated class probabilities. For the latter case, the linear combiner can be formulated as

an ensemble probability estimate as follows:

p
(

ŷ|x) =
B

∑

b=1

τb · pb
(

ŷ|x) (2.8)

where pb
(

ŷ|x) is the probability estimate of class label y given the input data x using the

bth base classifier. While τb is the assigned weight of the bth classifier.

The product combiner is more suitable than linear under the assumption that the

class probability estimates pb
(

ŷ|x) , b = 1, . . . ,B are independent. It is the theoretically

optimal combination strategy under that assumption. This combiner can be formulated by

multiplying base classifiers’ probability estimates as follows:
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pb
(

ŷ|x) = 1

γ

B
∏

b=1

pb
(

ŷ|x) (2.9)

where γ is a constant functioning as a normalization factor to adjust p
(

ŷ|x) into a form

of a valid distribution (Brown 2009).

Both linear and product combiners are employed if and only if the base classifiers

produce real-valued outputs. When the base classifier instead estimates the class labels,

themajority voting combiner can be used. Using thismethod, the class labelwith themost

votes among all trained base classifiers is assigned as the ensemble prediction. Therefore,

the ensemble prediction output using majority vote combiner can be formulated as shown

in Boosting, (cf., (2.6)). When the weights of base classifiers are uniformly distributed (i.e.

τb = 1/B, ∀b), a simple majority voting combiner is employed as in Bagging, (cf., line 7 in

Algorithm 2.1).

2.3.3 Ensemble Diversity

An ensemble is performed by complementing a weak single classifier with other base

classifiers, which make errors on different observations, to enhance the diversity among

the combined classifiers. Diversity of the base classifiers is considered a necessary but not

sufficient condition for the success of the ensemble learning. The bases have to be diverse

and accurate in order to produce an optimal ensemble learning output.

Measurements of ensemble diversity could bedivided into twodistinct groups, pairwise

measures and non-pairwisemeasures. In the former group, the difference between a pair of

base classifiers is considered one at a time, the ensemble diversity measure is then obtained
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by averaging overall differences across all pairs (e.g., Double-fault measure (Giacinto & Roli

2001) and Disagreement measure (Skalak et al. 1996)). On the other hand, non-pairwise

measures consider all the base classifiers together (e.g., Entropy measure (Cunningham &

Carney 2000), Generalized Diversity (Partridge & Krzanowski 1997), Kohavi-Wolpert Variance

(Kohavi et al. 1996) andMeasure of Difficulty (Hansen & Salamon 1990)).

2.4 Random Forest

The Random Forest (RF) approach was developed by Breiman (2001) as an extension of

the Classification and Regression Trees (CART) technique presented in Section 2.2. The

Bagging algorithm, described in Section 2.3.1, is considered the basis of the RandomForest.

Since Bagging constructs each tree using a different bootstrap sample of the dataset, RF

has a similar procedure to Bagging with an additional layer of randomness. RF consists

of bagging of decision tree learners with a randomized selection of predictors at each

split. Unlike CART, each node is split using the best among a randomly chosen subset

of predictors. RF achieves a powerful performance compared to many other classifiers

including discriminant analysis, neural networks and support vector machines, and is

robust against over-fitting (Breiman 2001). The algorithm of RF modified fromHastie et al.

(2009) for classification problems is introduced in Algorithm 2.3.

The main idea of Bagging, shown in Section 2.3.1, is to average many noisy models in

order to reduce the variance of the final ensemble model. Trees are ideal candidates for

applying Bagging since they are famed as noisy models, thus they can benefit greatly from

the averaging process. Since each tree constructed using Bagging procedure is identically
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Algorithm 2.3 Random Forest for Classification

Inputs: Set of training data (X, Y).
Output: Random Forest classifier fRF (X).

1: for b = 1 to ntree do
2: draw a bootstrap sample, sb, of size N form the original dataset.
3: construct a random-forest tree Tb to the bootstrapped sample, sb, by recursively re-

peating the following steps for each terminal node, until reaching the stop condition,
which might be minimum node size nmin or the terminal node contains members of
only one class:

3a: select mtry predictors at random from the P predictors.
3b: choose the best split among those mtry predictors.
3c: split the node into two child nodes.
4: end for
5: return the ensemble of trees, {Tb}ntree

1
.

To make a prediction at a new observation xnew :

6: let f̂b (xnew) be the class prediction of the bth random-forest tree Tb.

7: return f̂RF (xnew) = majority vote
{

f̂b (xnew)
}ntree

1
.

distributed (i.d.), the expectation of their average is the same as the expectation of any

single tree of them. In other words, the bias of bagged trees is equivalent to the bias of

the individual trees. Hence, the only hope of improvement is via variance reduction. This

idea is in contrast to boosting, shown in Section 2.3.1, as the trees are sequentially grown

to repeatedly reduce the bias, and hence they are not i.d. trees (Hastie et al. 2009).

The variance of the average of ntree i.d. variables T1, . . . , Tntree with variance σ2 and

positive pairwise correlation ρ can be expressed as:

V
[

1

ntree

(

T1 + . . . + Tntree

)

]

=
1

ntree
2

[

ntree · σ2 + ntree (ntree − 1)ρσ2
]

=
1 − ρ
ntree

· σ2 + ρσ2 (2.10)

Hence, as ntree increases, the first term of (2.10) tends to disappear, but the second

remains. Therefore, the magnitude of the correlation between pairs of bagged trees can
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affect the benefits of averaging. A higher correlation between results in a higher variance

of the ensemble. The idea of RF (Algorithm 2.3) is to improve the performance by reducing

the variance of bagging through decreasing the correlation between the trees, without

increasing the variance of them too much. This idea can be achieved by selecting mtry

predictors randomly among all the P predictors at each split through tree-growing process.

This leads to the production of more diverse trees (see ensemble diversity in Section

2.3.3). Therefore, Bagging can be thought of as the special case of RF obtained when

mtry = P. Usually, mtry values are chosen as
√
P, which is the default setting in the R

package ‘randomForest’ (Liaw & Wiener 2002), but sometimes they are as low as 1.

When a bootstrap sample is drawn with replacement from the data, some observations

are not involved in this bootstrap sample. These are called ‘out-of-bag’ (OOB) observations

and can be used to give an internal estimate of the misclassification error rate. On average,

each observation would be OOB 36.8% of times, since each observation has the probability

(

1 − 1
N

)N
for being OOB observation of a particular bootstrap sample. As N tends to be

large, this probability tends to e−1 ≈ 0.368.

For computing this OOB error rate, each tree is used to predict the class for its OOB

observations. Therefore, for each observation, the error rate is estimated by averaging the

misclassification predictions produced by the trees for which this observation was out-of-

bag. An overall error rate (OOB error rate) can be estimated by averaging over all the

observations.

RF is not sensitive to the choice of any of its parameters. Therefore, the default choices

of ntree = 500, mtry =
√
P and nmin = 1 work well for most classification problems (Cutler &

Stevens 2006). Consequently, fine-tuning is not essentially required and its effect should
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be relatively small (Díaz-Uriarte & De Andres 2006). Moreover, Breiman (2001) shows that

adding more trees to an ensemble of the random forest does not lead to an over-fitting

problem.

In regression, the depth of the trees should be controlled by determining the minimum

number of observations in the leaf nodes. Hence, the parameter of minimum node size,

nmin, needs to be tuned. The default setting for regression problems is set to be 5 in the

‘randomForests’ R package (Liaw &Wiener 2002).

Merits of Random Forest

Many positive properties make RF an effective approach for classification tasks within

high-dimensional datasets in terms of the prediction accuracy. Some of these properties

are (Breiman 2001):

1. RF is considered one of the most accurate learning algorithms available for classifi-

cation problems throughout high-dimensional settings.

2. It can present the same level of highly accurate performance on large databases.

3. It is usually not very sensitive to training data outliers.

4. It provides estimates of feature importance in classification problems. This merit

has special influence when applying RF for datasets which contains large number of

features, such as microarray gene expression or proteomics data sets in which genes

or proteins are carrying various biological characteristics with different impact on the

predicted classes.
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5. High effective performance could be held even when dealing with thousands of

features, as the situation of gene expression microarray datasets.

6. If a large proportion of the data are missing, RF involve an effective method for

estimating these missing data and maintain the same level of accuracy.

7. RF provides proximities that can be used for clustering purposes.

8. It is very user-friendly in the sense that it has only three tuning parameters: the total

number of trees in the forest, the number of predictors within the random subset at

each node and the minimum node size which are represented by ntree, mtry and nmin

respectively.

2.5 k Nearest Neighbour

Another simple approach for classification problems is the k nearest neighbour (kNN) clas-

sifier. It is a non-parametric supervised learning algorithm which performs a lazy learning

strategy, where generalization beyond training data is deferred until a test observation is

required to be classified. It uses the training datasetwith a nearest neighbour rule to classify

an observation to a target class c. In kNN, a set of k training observations that are closest

to the test observation in the feature space are identified and then the test observation is

classified to the class of majority in these k nearest observations. If k = 1, then the test

observation is simply assigned to the class of its nearest neighbour. For finding nearest

neighbours of a test observation, a distance (similarity) metric is used (e.g., Euclidian dis-

tance). The key elements of kNN approach, upon which its performance mainly depends,
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Figure 2.3: k-nearest neighbour framework in a 2-dimensional feature space for ‘Leukaemia’ dataset. Blue
lines represent the Euclidian distances from the test observation, depicted by ‘?’ symbol, to all the training
observations belonging to two classes: AcuteMyeloid Leukemia (AML) shown in red dots; Acute Lymphoblast
Leukemia (ALL) shown in black dots. For k = 3, the nearest neighbours are identified within the dashed circle
and the test observation is assigned to ‘AML’ class as the majority of the nearest observations

are the distance metric and the chosen value of k (Ghosh et al. 2005).

The general framework of a kNN classifier in 2-dimensional setting is shown in Fig-

ure 2.3. From the ‘Leukaemia’ dataset (described inAppendixA.2), a subset of observations

whose gene expressions fall within a particular domain in respect with the considered fea-

ture space is shown in Figure 2.3. Two features (genes), ‘J03909_at’ and ‘M21005_at’, are

represented on the horizontal and vertical axes respectively. The patients that represent

the training observations belong to one of two types of Leukaemia, either Acute Myeloid

Leukemia (AML) or Lymphoblast Leukemia (ALL). The test observation, denoted by ‘?’

symbol, is classified to the class of themajority in their neighbourhood. Euclidian distances

for the test observation (point) are measured from all given training observations. Then its

k nearest neighbours are identified based on the lowest distance (k = 3 in Figure 2.3). The
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observation is assigned to the popular class in its neighbourhood which is ‘AML’.

General Rule of k Nearest Neighbour Classifier

According to the kNN rule, an unclassified (test) observation, xnew, is assigned to the class

label, ŷnew, of majority in its k nearest neighbours among the training dataset, where ŷnew = c

and c ∈ {1 , . . . , C}. Although classification is the primary application of kNN, it can be

also used for density estimation.

The k data points in the feature space lying within the neighbourhood of an observation

xnew are used to estimate the density function at xnew. The neighbourhood is identified

using a form of distance measure. A sphere (circle in two dimensional settings) centered

at xnew capturing the k training points of this neighbourhood, irrespective of their classes,

is drawn. The estimated density at xnew can be defined as:

p̂ (xnew) =
k

νN
, (2.11)

where ν denotes the volume (area) of the sphere (circle). When the density at xnew is high,

then k points can be quickly found as they are intuitively close to xnew. Hence, the volume

of the required sphere is small and then the obtained density, according to (2.11), is high.

On the other hand, when the density is low then the volume of the sphere required to

encompass k nearest neighbours is large which leads to obtain a low density from (2.11).

Therefore, the density is mainly influenced by ν which performs a similar role to the

bandwidth parameter in kernel density estimation.
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The estimated conditional density of xnew given a class c can be similarly defined as:

p̂
(

xnew
∣

∣

∣ ynew = c
)

=
kc
νNc
, (2.12)

where kc andNc denote number of observations from the cth class that are involved within

the sphere and the entire training data respectively, such that k =
C
∑

c=1

kc and N =
C
∑

c=1

Nc. The

estimator of class prior probability denoted by π̂ is given by:

π̂ = p̂
(

ynew = c
)

=
Nc

N
. (2.13)

Using Bayes rule, the posterior probability for class membership of the test observation

xnew can be expressed by combining (2.11)-(2.13) as follows:

p̂
(

ynew = c |xnew
)

=
p̂
(

xnew
∣

∣

∣ynew = c
)

· p̂ (

ynew = c
)

p̂ (xnew)
=

kc
νNc
· Nc

N

k
νN

=
kc
k
. (2.14)

The test observation is assigned to the class label c that has the largest fraction of the

observations belonging to c among the k nearest neighbours of the test observation (Bishop

et al. 2006).

2.6 Support Vector Machine

One of themost common classifiers is the Support VectorMachine (SVM). It is awell-known

supervised learning model in which training observations are used to recognize a pattern

that can predict the classes of new observations. An SVM model is a representation of a
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Figure 2.4: Support vector classifier in a 2-dimensional feature space for the ‘Leukaemia’ dataset with a two
linearly separable classes: Acute Myeloid Leukemia (AML) shown in red dots; Acute Lymphoblast Leukemia
(ALL) shown in black dots. The hyperplane (line, in 2-dimensional setting) of the decision boundary is the
solid line, while dashed lines bound the shaded maximal margin of width 2/‖w‖. The points highlighted by blue
circles that lie on the margin boundaries are called ‘support vectors’.

hyperplane that separates ‘optimally’ the feature space into two disjoint regions such that

training observations of separate classes are divided by this hyperplane into two groups

with a ‘margin’ that is as maximum as possible.

For situations of linearly separable classes as illustrated by Figure 2.4, the main goal is

to design a hyperplane

f (x) = wTx + b = 0 (2.15)

that classifies correctly all the training observations. A classification rule that associated

with this hyperplane can then be given by

fSVM (X) = sign
[

wTx + b
]

. (2.16)
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It can be shown that wTx j + b gives the signed distance from a point x j to the hyperplane

defined in (2.15). Since the classes are linearly separable, one can find a hyperplane f (x),

as shown in (2.15), such that y j . f
(

x j

)

> 0 ∀ j where y j ∈ {−1, 1}. Such a hyperplane is

not unique (Vapnik & Vapnik 1998). The best solution is the one that has the maximum

‘margin’ between the training observations from different classes, see Figure 2.4.

The Optimization Problem

For simplicity, the vector w is normalized so that

∣

∣

∣wTxsv + b
∣

∣

∣ = 1 (2.17)

where xsv is a support vector for the assigned hyperplane. Since,w is a perpendicular vector

on the hyperplane in (2.15), the Euclideandistance from thehyperplane to its support vector

is the projection of the vector xsv − x on w, where x can be any point on the hyperplane

wTx + b = 0. The margin is defined as the double of this distance. Therefore, the assigned

margin can be defined as

margin = 2 .

∣

∣

∣

∣

∣

w

‖w‖ . (xsv − x)

∣

∣

∣

∣

∣

,

=
2

‖w‖
∣

∣

∣

∣

wTxsv + b −
(

wTx + b
)

∣

∣

∣

∣

=
2

‖w‖ . (2.18)

The margin in (2.18) is obtained by applying the expressions shown in (2.15) and (2.17).

Now, the following optimization problem should be considered in order to assign a hyper-

plane with maximum margin for given training observations.
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minimize 1
2
wTw

subject to y j

(

wTx j + b
)

≥ 1, j = 1, . . . ,N , w ∈ RP, b ∈ R.
(2.19)

This problem is quadratic with linear inequality constraints. Therefore, it is a convex

optimization problem that can be solved by quadratic programming bymeans of Lagrange

multipliers (Vapnik & Vapnik 1998). The corresponding Lagrange (primal) function using

Karush-Kuhn-Tucker (KKT) approach (Boyd & Vandenberghe 2009) can be expressed as

L (w, b, α) =
1

2
wTw −

N
∑

j=1

α j
(

y j

(

wTx j + b
)

− 1
)

(2.20)

which is minimized with respect to w and b such that α j ≥ 0, where α represents the vector

of Lagrange multipliers, α ∈ RN. Setting the respective derivatives to zero results in

w =

N
∑

j=1

α jy jx j, (2.21)

N
∑

j=1

α jy j = 0. (2.22)

By substituting (2.21) and (2.22) into (2.20), the Lagrange (dual) objective function can be

given by

L (α) =

N
∑

j=1

α j −
1

2

N
∑

j=1

N
∑

l=1

α jαl y jyl x
T
j xl. (2.23)

The L (α) in (2.23) is maximized with respect to α subject to α j ≥ 0 and (2.22), j = 1, . . . ,N.

In addition to (2.21) and (2.22), the KKT conditions include the constraint

α j
(

y j

(

wTx j + b
)

− 1
)

= 0. (2.24)
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These constraints uniquely characterize the solution to the primal and dual problem. In

view of (2.17) and (2.24), it can be shown that α j > 0 for support vectors (i.e., for each xsv),

whereas α j = 0 for the other training observations.

SVM provides a procedure that can control its sensitivity to potential outliers when the

considered datasets are noisy. When the feature space has no linear separation between

observations from different classes, SVM introduces slack variables that allow the margin

to be violated. Such a margin is called “soft margin” (Vapnik & Vapnik 1998).

For non-linearly separable situations, SVM can perform classification efficiently by

transforming the original feature space, X, into another space Z, usually with higher di-

mensions, using a function called the ‘kernel’. The optimization problem can be expressed

in a way that only involves the input features via inner products. Therefore, transformed

feature vectors z j for the input feature vectors x j are considered and the corresponding

Lagrange dual function in (2.23) is expressed in the form

L (α) =

N
∑

j=1

α j −
1

2

N
∑

j=1

N
∑

l=1

α jαl y jyl z
T
j zl. (2.25)

where zT
j
zl is the transformed inner product using the kernel function K

(

x j , xl
)

. Hence,

the transformed space, Z, is not required at all, but we require only the kernel function

which produces the inner products in the transformed space, zT
j
zl. A valid kernel should

be symmetric positive semi-definite function (Friedman et al. 2001). Two common choices



2.7. Classifier Performance Evaluation via Cross Validation 32

for kernel function in the SVM literature are

Qth −Degree polynomial : K
(

x j , xl
)

=
(

1 + xTj xl
)Q
,

Radial basis : K
(

x j , xl
)

= exp
(

−γ
∥

∥

∥x j − xl
∥

∥

∥

2
)

.

(2.26)

2.7 Classifier Performance Evaluation via Cross Validation

A main task in a pattern recognition problem is the assessment of the model performance

and its generalization for new data. Ideally the accuracy of a classifier should be assessed

on an independent data, called the test dataset, while the classification rule is built on other

data, called the training dataset. However, in many real world problems (e.g., experiments

of microarray gene expressions), limited observations are available and both modelling

and assessment of the model are performed on these limited data. A classifier accuracy

calculated from the same training dataset leads to underestimate the true or generalized

error rate as the classifier is assessed on the same data that is used to fit it, and thereby

giving an optimistic measure for the error rate. Various approaches have been proposed

to deal with the problem of classification error estimation. The error of a classifier can

be expressed in terms of two factors, i.e. bias and variance (Kim 2009). One of the most

commonly and effectively used approaches is the cross validation technique.

Cross-Validation Method

The cross validation (C.V.) technique is the simplest method used for error estimation. It

copes with the problem of limiting availability of observations by using a portion of the

given dataset to fit the classification model, while the remaining part is used for testing the
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model. For instance in F-fold cross validation setting, the data is divided into F folds of

approximately the same size. Afterwards, F − 1 folds are used for fitting the model and

one fold is used for testing the model performance. The process is performed F times with

different fold at each time. The F estimates ofmisclassification error rates are then averaged

to obtain a single estimate for the classifier error. Small values of F result in highly biased

estimators. On the other hand, large values of F lead to more computationally expensive

estimators with a high variance. The special case of F = N, also known as leave one out

cross validation, implies one observation is used for testing and N − 1 observations are

used for building the classifier. This setting of C.V. gives an unbiased estimator with high

variance (Friedman et al. 2001).

2.8 Summary

A statistical learning approach can be used to model and understand complex datasets.

By mapping the relationship between a set of features and a considered response, it can

build a predictive model based on a given training data. Based on how the training data

is presented, the learning process is described as either supervised, when a set of features

along-with supervised output labels (response) are trained, or unsupervised, when the

training data contains only the feature matrix.

Supervised ensemble learning trains multiple base models (classifiers) designed for

the same task by combining their predictions into a single ensemble classifier. CART

are considered base classifiers for most of the ensemble learning methods (e.g., Random

Forest). The CART approach constructs a binary decision tree by recursively splitting the
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feature space into two disjoint regions.

Three different classifiers are described in this chapter: Random Forest (RF); k Nearest

Neighbour (kNN); Support Vector Machine (SVM).

RF classifier is an ensemble of trees that are constructed using different bootstrap sam-

ples of the dataset. Unlike CART, each node is split using the best among a randomly

chosen subset of features.

kNN uses the training dataset with a nearest neighbour rule to classify an observation

to a target class c. A set of k training observations that are closest to the test observation

in the feature space are sorted out and then the test observation is classified to the class of

majority in these k nearest observations.

SVM uses the training observations to recognize a pattern that can predicts the classes

of new (unseen) data. An SVM model is a representation of a hyperplane that separates

‘optimally’ the feature space into two disjoint regions such that the training observations

of separate classes are divided by this hyperplane into two groups with a ‘margin’ that is

as maximum as possible.

Evaluation of a model’s performance can be accomplished by estimating its misclassifi-

cation error rate on a test dataset. One of the most common technique for error estimation

is the cross validation method. It uses a portion of the given dataset to fit the classification

model, whilst the remaining part is used for testing the model. It copes with the problem

of limiting availability of observations in most microarray gene expressions datasets.

The next chapter will describe various techniques for feature selection. Identification of

the relevant and informative features required for classification within functional genomic

experiments is also discussed.



Chapter 3

Feature Selection

3.1 Introduction

In statistical learning applications (e.g., classification), one might think that abundance of

features bring more discriminating power, thus facilitating the learning process. However,

it may cause problems in practice as irrelevant and redundant features result in increased

complexity of the model and then degrade its predictive power.

Hence, uninformative, irrelevant and redundant features should be removed from the

original feature set prior to utilizing a classifier in order to mitigate these problems. This

task is termed feature selection. It is a dimensionality reduction process in which the

original set of features, involving P features, is reduced to another set with r features where

r < P.

One of the most important applications is to identify the relevant and informative

features required for classificationwithin functional genomic experiments. The next section

presents a detailed discussion for this application.

35
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3.2 Gene Selection

Microarray technology, aswell as other high-throughput functional genomics experiments,

have become a fundamental tool for gene expression analysis in recent years. For a partic-

ular classification task, microarray data are inherently noisy since most genes are irrelevant

and uninformative to the given classes (phenotypes, e.g. different stages of a cancer dis-

ease) (Apiletti et al. 2007a). In addition, most supervised learning algorithms, discussed

in Chapters 2, are faced with the problem of selecting a relevant subset of genes upon

which to focus in order to achieve an effective performance. Consequently, dimensionality

reduction as a preprocessing technique is a fundamental task in microarray data mining.

It is the process of reducing the number of genes by identifying and removing as much of

redundant and irrelevant information yielded by gene expression profiles as possible.

Dimensionality reduction can be performed with regard to either feature selection or

feature extraction. The former yields a subset of the original features (in our context,

genes), whereas the later applies a transformation of the given feature space into a lower

dimensional space. From the biological point of view, it is more efficient to select real genes

than to create artificial features with uncertain biological meaning. Therefore, an effective

feature selection approach allows better interpreting for the biological relationship between

genes and the considered clinical outcome and then gaining more scientific understanding

of the given problem.

The aim of feature selection is to identify the most informative genes for a considered

model. The identification of discriminative genes for use in classification has been inves-

tigated in many studies (e.g. Chen et al. 2014, Dramiński et al. 2008, Marczyk et al. 2013,
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Tusher et al. 2001, Zou et al. 2013, Apiletti et al. 2007b, 2012, Peng et al. 2005, Su et al. 2003).

An assessment of maximally selected genes or prognostic factors, equivalently selected

by the minimum p-values approach, has been discussed in Lausen et al. (2004) and Alt-

man et al. (1994) using gene expression data from clinical cancer research. Their solution

was to use an appropriate multiple testing framework, but obtaining study or experiment

optimised cut-points for selected genes make comparison with other studies and results

difficult.

A major challenge is the problem of dimensionality; tens of thousands of genes’ expres-

sions are observed in a small number, tens to few hundreds, of observations. The problem

of gene selection is to find a subspace of genes that best characterizes the response target

variable (class labels in our context). Various alternative search schemes have been pro-

posed to handle the problem of feature selection, e.g. best individual genes (Su et al. 2003),

Max-Relevance andMin-Redundancy based approaches (Peng et al. 2005), Iteratively Sure

Independent Screening (Fan et al. 2009) and MaskedPainter approach (Apiletti et al. 2012).

Identification of discriminative genes can be based on different criteria including: p-values

of statistical tests e.g. t-test or Wilcoxon rank sum test (Lausen et al. 2004, Altman et al.

1994); ranking genes using statistical impurity measures e.g. information gain, gini index

and max minority (Su et al. 2003); analysis of overlapping expressions across different

classes (Apiletti et al. 2007b, 2012).

For high dimensional data, overfitting is a common statistical problem that occurs

when a model is excessively complex (i.e., having too many parameters relative to the

given number of observations). A model that has been overfit usually provides perfect

classification performance, with approximately zero error rate, on the training data, but this
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seemingly wonderful performance does not apply to new data. Thus, an overfitted model

has generally poor predictive power for newdata, as it describes the noise in the given data

rather than the underlying relationship. A way to improve prediction accuracy, as well

as interpretation of the biological relationship between genes and the considered clinical

outcomes, is to use a supervised classification based on expressions of discriminative

genes identified by an effective gene selection technique. This procedure of pre-selection of

informative genes helps in avoiding overfitting and building a faster model by providing

only the features that contribute most to the considered classification task. However, a

search for the subset of informative genes presents an additional layer of complexity in the

learning process (Saeys et al. 2007).

3.3 Methods of Gene Selection

One of the differences among various feature selection procedures is the way they perform

the search in the feature space. Three categories of feature selection methods can be

distinguished: wrapper, embedded and filter methods.

3.3.1 Wrapper Methods

Wrapper methods evaluate gene subsets using a predictive model which is run on the dataset

partitioned into training and testing sets. Each gene subset is used with a training dataset

to train the model, which is then tested on the test set. Calculating a model prediction

error from the test set gives a score for that gene subset. The gene subset with the highest

evaluation is selected as the final set on which to run a particular model. The wrapper
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methods are computationally expensive since they need a new model to be fitted for

each gene subset. Genetic algorithm based feature selection techniques are representative

examples for wrapper methods (Saeys et al. 2007).

3.3.2 Embedded Methods

Embedded methods perform feature selection search as part of the model construction pro-

cess. They are less computationally expensive than the wrapper methods. An example of

this category is a classification tree based classifier (Olshen&Stone 1984). Another common

representative example of this approach is the ‘Least Absolute Shrinkage and Selection Op-

erator’ (LASSO) method (Tibshirani 1996). It constructs a linear model which penalises the

regression coefficients, shrinking many of them to zero. Features with non-zero regression

coefficients are selected by the LASSO algorithm.

3.3.3 Filter Methods

Filter methods assess genes by calculating a relevant score for each gene. The low-relevant

genes are then removed. The selected genes may then be used to serve classification using

many types of classifiers. Gene selection filter-based methods can scale easily to high-

dimensional datasets since they are computationally simple and fast compared with the

other approaches.

There are two sub-categories of filter methods, univariate and multivariate. In classifi-

cation problems, univariate approaches are based on statistical measures which separately

consider each gene to detect differences between two classes (e.g., Wilcoxon rank-sum

method) or among three or more classes (e.g., Kruskal-Wallis test method). Ignoring de-
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pendencies among genes is a common disadvantage of these methods, which may lead to

worse performance when compared with other approaches. Multivariate approaches, in-

stead, incorporate gene dependencies within the feature selection process. The Minimum

RedundancyMaximum Relevance (Ding & Peng 2005) method and Fast Correlation Based

Feature Selection (Yu & Liu 2004) are two examples for multivariate procedures.

Various examples for filter-based approaches have been proposed for identification of

discriminative genes (e.g., Ding & Peng 2005, Talloen et al. 2007, Dramiński et al. 2008,

Ultsch et al. 2010, Lu et al. 2011, Marczyk et al. 2013). Filtering methods can introduce

a measure for assessing importance of genes (Ding & Peng 2005, Dramiński et al. 2008,

Ultsch et al. 2010, De Jay et al. 2013), present thresholds by which informative genes are

selected (Marczyk et al. 2013), or fit a statistical model to expression data in order to identify

the discriminative genes (Lu et al. 2011, Talloen et al. 2007).

A measure named ‘relative importance’, proposed by Dramiński et al. (2008), is used to

assess genes and to identify informative ones based on their contribution in classification

when large number of decision trees have been constructed. The contribution of a particular

gene to the relative importancemeasure isdefinedbyaweighted scale of the overall number

of splits made on that gene in all constructed trees. Dramiński et al. (2008) use decision

tree classifiers for measuring the genes’ relative importance, not for the aim of fitting

classification rules.

Ultsch et al. (2010) propose an algorithm, called ‘PUL’, in which the differentially ex-

pressedgenes are identifiedbasedon ameasure for retrieval informationnamedPUL-score.

Ding & Peng (2005) propose a framework, named ‘minimum redundancy maximum

relevance (mRMR)’ based on a series of intuitive measures of relevance, to the response
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target, and redundancy, between genes being selected.

De Jay et al. (2013) developed an R package, named ‘mRMRe’, by which an ensemble

version of mRMR has been implemented. It uses two different strategies to select multiple

gene sets, rather than a single set, in order to mitigate the potential effect of the low

sample-to-dimensionality ratio on the stability of the results.

Marczyk et al. (2013) propose an adaptive filter method based on the decomposition of

the probability density function of gene expression means or variances into a mixture of

Gaussian components. They determine thresholds to filter genes via tuning the proportion

between the pools sizes of removed and retained genes.

Lu et al. (2011) propose another criterion to identify the informative genes in which

principle component analysis has been used to explore the sources of variation in the

expression data and to filter out genes corresponding to components with less variation.

Talloen et al. (2007) use factor analysis models rather than principle component analysis

to identify informative genes. Several comparisons between algorithms of identifying

informative genes in microarray data are presented in Liu et al. (2013), Ultsch et al. (2010).

3.4 Gene Expressions Overlap

Analyzing the overlap between gene expression measures for different classes can be

another important criterion for identifying discriminative genes. This strategy utilities

the information given by observation classes as well as expression data for detection

of the differentially expressed genes between target classes. A classifier can then use

these selected genes to enhance its classification performance and prediction accuracy. A
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procedure specifically designed to select genes based on their overlapping degree across

different classes was recently proposed by Apiletti et al. (2007b). This procedure, named

Painter’s feature selectionmethod, proposes ameasure calculating an overlapping score for

each gene. For binary class situations, this score estimates the overlapping degree between

both classes taking into account only one factor i.e., length of the interval of overlapping

expressions. It has been defined to provide higher scores for longer overlapping intervals.

Genes are then ranked in ascending order according to their scores. This measure has

been extended by Apiletti et al. (2012) using another factor, i.e. the number of overlapped

observations, in the analysis. Apiletti et al. (2012) characterize each gene by means of

a gene mask that represents the capability of a gene to unambiguously assign training

observations to their correct classes. Characterization of genes using training observation

masks with their overlapping scores allow the detection of the minimum set of genes that

provides the best classification coverage on a training dataset. A final gene set is then

provided by combining the minimum gene subset with the top ranked genes according to

the overlapping score. Since gene masks, proposed by Apiletti et al. (2012), are defined

based on the range of the training expression intervals, a caveat of this technique is that

the construction of gene masks could be affected by outliers.

Since only a small number of the genes, among tens of thousands of potential candidates,

show relevance with the targeted disease, many studies address the problem of defining

which is the appropriate number of genes to select (Peng et al. 2005). While an excessively

conservative selected number of genesmay cause an information loss, an excessively liberal

number may increase the noise in the resulting dataset.

Chapter 4 proposes a statistical method that selects the minimum number of genes,
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based on expressions overlap, that provide the best classification accuracy for observations

in a given training dataset, avoiding the effects of expression outliers. The genes belonging

to thisminimum subset can be used as geneticmarkers for further biological investigations.

3.5 Summary

Microarray data aswell as other functional genomic experiments producemeasurements of

tens of thousands of genes (features) that are observed in a smaller number of observations,

tens to few hundreds. This characteristic of high dimensionality has a great impact on the

learning process since most of genes are noisy, redundant or irrelevant to the considered

classification problem. These features may result in an overfitting problem by increasing

complexity of the model and then degrading its predictive power.

A statistical learning process could be improved by removing the uninformative, irrel-

evant and redundant features from the original feature space prior to utilizing a classifier.

This task is termed feature selection.

Feature selection algorithms differ from each other in the way they perform the search

for the subset of informative genes in the feature space. Mainly, there are three categories

of feature selection algorithms which are wrapper, embedded, and filter methods.

The wrapper methods evaluate a subset of genes using a predictive model whose

prediction error gives a score for that gene subset. The embedded methods perform

feature selection search as part of the model construction process. Classification tree based

classifier is an example of the embedded feature selection approach where the feature

providing the best split for training observations is selected at each node. Whilst the filter



3.5. Summary 44

methods assess genes by calculating a relevant score for each gene. The low-relevant genes

are then removed.

The process of gene selection can enhance classifier performance, avoid overfitting, pro-

vide faster models and gain a deeper understanding and interpretation of the underlying

learning process.

The next chapter explains the identification of informative genes based on analysing the

overlap between expressions across two classes (phenotypes). The idea of selecting genes

based on this criterion, taking into account the proportions of overlapping observations,

is proposed. An algorithm for detecting the minimum subset of genes that provide the

maximum number of correctly classified observations in a training set is then introduced.



Chapter 4

Minimum Subset of Genes for Binary

Class Problems

4.1 Introduction

Biomedical researchers may be interested in identifying small sets of genes that could be

used as geneticmarkers for diagnostic purposes in clinical research. This typically involves

obtaining the smallest possible subset of genes that can still provide a good predictive

performance, whilst removing redundant ones (Díaz-Uriarte & De Andres 2006).

A procedure serving this goal is proposed in this chapter. It selects the minimum subset

of genes that yield the best classification accuracy on a training dataset avoiding the effects

of outliers. The procedure utilizes the interquartile range approach to robustly detect the

minimum subset of genes that maximizes the correct assignment of training observations

to their corresponding classes.

Microarray data are usually presented in the form of a gene expression matrix,X =
[

xi j
]

,

45
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such thatX ∈ ℜP×N and xi j is the observed expression value of gene i for observation (tissue

sample) j where i = 1, . . . , P and j = 1, . . . , N. Each observation is also characterized by

a target class label, y j, representing the phenotype of the tissue sample being studied. We

consider that Y ∈ ℜN be the vector of class labels such that its jth element, y j, has a single

value cwhich is either 1 or 2.

As discussed in Chapter 3, analyzing the overlap between expression intervals of a

gene for different classes can provide a classifier with an important aspect of a gene’s

characteristic. The idea is that a certain gene i can assign observations to class c because

their gene i expression interval in that class is not overlapping with gene i interval of the

other class. In otherwords, gene i has the ability to correctly classify observations for which

their gene i expressions fall within the expression interval of a single class. For instance,

Figure 4.1a presents expression values of gene i1 with 36 observations belonging to two

different classes. It is clear that gene i1 is relevant for discriminating observations between

the target classes, because their values are falling in non-overlapping ranges. Figure 4.1b,

on the other hand, shows expression values for another gene i2, which looks less useful for

distinguishing between these target classes, because their expression values have a highly

overlapping range.

This chapterproposes aprocedure that initially exploits the interquartile range approach

to robustly define genemasks that report the discriminative power of genes with a training

set of observations avoiding outlier effects. Ameasure named the proportional overlapping

score (POS) is defined to measure a gene relevance score that estimates the overlapping

degree between the expression intervals of both given classes taking into account three

factors: (1) length of overlapping region; (2) number of overlapped observations; (3) the
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proportion of a classes’ contribution to the overlapped observations. The latter factor is the

incentive for the name we gave to our measure. POS measure is assigned for each gene.
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Figure 4.1: An example for two different genes with different overlapping pattern. Expression values of two
different genes (i1, i2) each of which with 36 observations belonging to 2 classes, 18 observations for each
class: (a) expression values of gene i1, (b) expression values of gene i2.

Baralis et al. (2008) have proposed a method that is somewhat similar to our procedure

for detecting a minimum subset of genes from microarray data. The main differences are

that Baralis et al. (2008) use the whole expression range to define the intervals which are

employed for constructing gene masks, and then apply a set-covering approach to obtain

the minimum feature subset. The same technique is performed by Apiletti et al. (2012) to

get a minimum gene subset using a greedy approach rather than the set-covering.
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4.2 Definition of Core Intervals

For a certain gene i, by considering the expression values xi j with a class label c j for each

observation j, we can define two expression intervals, one for each class, for that gene. The

cth class interval for gene i can be defined in the form:

Ii, c =
[

ai, c , bi, c
]

, i = 1, . . . , P, c = 1, 2, (4.1)

such that:

ai, c = Q(i, c)

1
− 1.5 IQR(i, c), bi, c = Q(i, c)

3
+ 1.5 IQR(i, c), (4.2)

whereQ(i, c)

1
,Q(i, c)

3
and IQR(i, c) denote the first, third empirical quartiles, and the interquartile

range of gene i expression values for class c respectively. Figure 4.2 shows the potential

effect of expression outliers on extending the underlying intervals, if the range of training

expressions are considered instead. Based on the defined core intervals, we present the

following definitions:

Definition 4.1 Non-outlier observations set, Li, for gene i is defined as the set of observa-

tions whose expression values fall inside their own target classes core interval. This set can

be expressed as:

Li =
{

j : xi j ∈ Ii, c j , j = 1, · · · ,N
}

, (4.3)

where c j is the observed class label for observation j.

Definition 4.2 Total core interval, Ii, for gene i is given by the region between the global

minimum and global maximum boundaries of core intervals for both classes. It is defined
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as:

Ii = [ai, bi] , (4.4)

such that ai = min
{

ai,1, ai,2
}

, bi = max
{

bi,1, bi,2
}

, where ai, c, bi, c respectively represent the

minimum andmaximum boundaries of core interval, Ii, c, of gene iwith target class c = 1, 2,

see (4.1) and (4.2).

Definition 4.3 The overlap region, I(v)
i
, for gene i is defined as the interval yielded by the

intersection between core expression intervals of both target classes. It can be addressed

as:

I(v)
i
= Ii,1 ∩ Ii,2. (4.5)

Definition 4.4 Set of non-overlapping observations, V′
i
, for gene i is defined as the set

consisting of elements of Li, defined in Definition 4.1, whose expression values don’t fall

within the overlap interval I(v)
i
, defined in Definition 4.3. In this way, we can define this set

as:

V
′
i =

{

j : j ∈ Li ∧ xi j ∈ Ii,1 ⊖ Ii,2
}

. (4.6)

Definition 4.5 Set of overlapping observations, Vi, for gene i is the set containing the

observations whose expression values fall within the overlap interval I(v)
i
, defined in Defi-

nition 4.3. The overlapping observations set can be defined as:

Vi = Li −V′i , (4.7)

where V′
i
represents the non-overlapping observations set which is defined as shown in

Definition 4.4.
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The set of overlapping observations belonging to class c is represented by Vi, c and can

be defined as:

Vi, c =
{

j
∣

∣

∣ j ∈ Vi ∧ c j = c
}

, (4.8)

note that
2
∑

c=1

∣

∣

∣Vi, c

∣

∣

∣ = |Vi|. For convenience, 〈I〉 notation is used with interval I to represent

its length while |.| notation is used with set {.} to represent its size.

4.3 Gene Masks

For each gene, we define a mask based on its observed expression values and constructed

core intervals presented in Section 4.2. Gene i’smask reports the observations that gene i can

unambiguously assign to their correct target classes, i.e. the non-overlapping observations

set V′
i
. Thus, gene masks can represent the capability of genes to classify correctly each

observation, i.e. it represents a gene’s classification power. For a particular gene i, element

j of its mask is set to 1 if the corresponding expression value xi j belongs only to core

expression interval Ii,c j of the single class c j, i.e. if observation j is a member of the set V′
i
.

Otherwise, it is set to zero.

We define the gene masks matrixM =
[

mi j

]

in which the mask of gene i is presented by

Mi. (the ith row of M) such that gene mask element mi j is defined as:

mi j =



























1 i f j ∈ V′
i

0 otherwise

,
i = 1, . . . ,P

j = 1, . . . ,N

. (4.9)

Figure 4.2 shows the constructed core expression intervals Ii,1 and Ii,2 associated with a

particular gene i along-with its genemask. The genemask presented in this figure is sorted



4.4. The Proposed POS Measure 51

corresponding to the observations ordered by increasing expression values.

Figure 4.2: An example for core expression intervals of a gene with 18 and 14 observations belonging to class
1 and 2 respectively with its associated mask elements.

4.4 The Proposed POSMeasure

A novel overlapping score is developed to estimate the overlapping degree between dif-

ferent expression intervals. Figures 4.3a and 4.3b represent examples of 2 different genes,

i1 and i2, with the same length of overlap interval,
〈

I(v)
i1

〉

=
〈

I(v)
i2

〉

=
〈

I(v)
i

〉

, length of total core

interval,
〈

Ii1
〉

=
〈

Ii2
〉

= 〈Ii〉, and total number of overlapped observations,
∣

∣

∣Vi1

∣

∣

∣ =
∣

∣

∣Vi2

∣

∣

∣ = 12.

These figures demonstrate that performing the ordinary overlapping scores, proposed in

earlier studies (Apiletti et al. 2007b, 2012), result in the same value for both genes. But,

there is an element which differs in both examples and it may also affect the overlap degree

between classes. This element is the distribution of overlapping observations by classes.

Gene i1 has six overlapped observations from each class, whereas gene i2 has ten and two
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overlapping observations from class 1 and 2 respectively. By taking this status into account,

gene i2 should be reported to have less overlap degree compared to gene i1. I develop a

new score, called proportional overlapping score (POS), that estimates the overlapping de-

gree of a gene taking into account this element, i.e. proportion of each class’s overlapped

observations to the total number of overlapping observations.

POS for a gene i is defined as:

POSi = 4

〈

I(v)
i

〉

〈Ii〉
|Vi|
|Li|















2
∏

c=1

θc















, (4.10)

where θc is the proportion of class c observations among overlapping observations. Hence,

θc can be defined as:

θc =

∣

∣

∣Vi, c

∣

∣

∣

|Vi|
. (4.11)

According to (4.10), values of POS measure are 9
21
.

〈

I
(v)
i

〉

〈Ii〉 and 5
21
.

〈

I
(v)
i

〉

〈Ii〉 for genes i1 and i2 in

figures 4.3a and 4.3b respectively.

Larger overlapping intervals or higher numbers of overlapping observations results in

an increasing POS value. Furthermore, as proportions θ1 and θ2 get closer to each other,

the POS value increases. The most overlapping degree for a particular gene is achieved

when θ1 = θ2 = 0.5 while the other two factors are fixed. We include the multiplier “4”

in (4.10) to scale POS score to be within the closed interval [0, 1]. In this way, a lower score

denotes gene with higher discriminative power.
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Figure 4.3: Examples for expression values of 2 genes distinguishing between 2 classes: (a) gene i1 has
overlapping observations distributed as 1:1, (b) gene i2 has its overlapping observations distributed as 5:1 for
class1:class2.

4.5 Identifying the Minimum Subset of Genes

The information provided by the constructed gene masks, presented in Section 4.3, and

the POS scores, defined in Section 4.4, are analyzed to identify the minimum subset of

genes. This subset is designed to be the minimum one that correctly classify the maximum

number of observations in a given training set, avoiding the effects of expression outliers.

This procedure also allows disposing of redundant information e.g., genes with similar

expression profiles.

The procedure exploits the defined core intervals in (4.1) along-with the POSmeasure,

in (4.10), to select the minimum subset of genes that provides the maximum coverage of

the training observations. Let G be a set containing all genes (i.e., |G| = P). Also, letM.. (G)

be its aggregate mask which is defined as the logical disjunction (logic OR) between all

masks corresponding to genes that belong to the set. It can be expressed as:
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Algorithm 4.1 Greedy Search - Minimum set of genes

Inputs: M, M.. (G) and POS scores for all genes.
output: G∗.

1: k = 0 {Initialization}
2: G∗ = ∅
3: M.. (G

∗) = 0N
4: while M.. (G

∗) , M.. (G) do
5: k = k + 1

6: Sk = argmax
i ∈G

(

N
∑

j=1

I
(

mi j = 1
)

)

{Assign gene set whose masks have the max. bits of 1}

7: gk = argmin
i ∈ Sk

(POSi) {Select the candidate with the best score among the assigned set}

8: G∗ = G∗ + gk {Update the target set by adding the selected candidate}
9: for all i ∈ G do
10: M(k+1)

i.
= M(k)

i.
∧ !M.. (G

∗) {update gene masks such that the uncovered samples are only consid-

ered}
11: end for
12: end while
13: return G∗

M.. (G) = ∨
i∈G

Mi. = M1. ∨ . . . ∨ MP. (4.12)

The objective is to search for the minimum subset, denoted byG∗, for whichM.. (G
∗) equals

to the aggregate mask of the set of genes,M.. (G). In other words, the minimum set of genes

should satisfy the following statement:

argmin
G∗⊆G

(

|G∗|
∣

∣

∣

∣

∣

∣

(

M.. (G
∗) = ∨

i∈G∗
Mi. = M.. (G)

)

)

. (4.13)

A modified version of the greedy search approach used by Apiletti et al. (2012) is

applied. The pseudo code of our procedure is reported in Algorithm 4.1. Its inputs are the

matrix of gene masks,M; the aggregate mask of genes,M.. (G); and POS scores. It produces

the minimum set of genes, G∗, as output.
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At the initial step (k = 0), we letG∗ = ∅ andM.. (G
∗) = 0N (lines 2,3); whereM.. (G

∗) is the

aggregate mask of the set G∗, while 0N is a vector of zeros with the length N. Then, at each

iteration, k, the following steps are performed:

1. The gene(s) with the highest number of mask bits set to 1 is (are) chosen to form

the set Sk (line 6). This set could not be empty as long as the loop condition is still

satisfied, i.e. M.. (G
∗) , M.. (G). Under this condition, our selected genes don’t cover

the maximum number of observations that should be covered by the target gene set.

Note that the definition for gene masks allows M.. (G) to report in advance which

observations should be covered by the minimum subset of genes. Therefore, there

will be at least one gene mask which has at least one bit set to 1 if that condition is to

hold.

2. The gene with the lowest POS score among those genes in Sk, if it includes more than

one gene, is then selected (line 7). It is denoted by gk.

3. The set G∗ is updated by adding the selected gene gk (line 8).

4. All gene masks are updated by performing the logical conjunction (logic AND) with

negated aggregate mask of set G∗ (line 10). The negated mask !M..(G
∗) of the mask

M..(G
∗) is the one obtained by applying logical negation (logical complement) on

this mask. Consequently, the bits of ones corresponding to the classification of still

uncovered observations are only considered. Note that M(k)

i.
represents an updated

mask of gene i at the kth iteration, M(1)

i.
is the original gene i’s mask whose elements

are computed according to (4.9).

5. The procedure is iterated and ends when all updated gene masks have no 1 bits
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anymore, i.e. the selected genes cover the maximum number of observations. This

situation is accomplished iffM.. (G
∗) =M.. (G).

This procedure detects the minimum set of genes required to provide the best classifi-

cation coverage for a given training set. In addition, genes are descendingly ordered by

number of 1 bits within the minimum set G∗.

4.6 Summary

The idea of selecting genes based on analysing the overlap between their expressions across

two classes (phenotypes), taking into account the proportions of overlapping observations,

is considered. To this end, intervals of core gene expressions are defined. A gene mask

that allows reporting a gene’s predictive power avoiding the effects of outliers is robustly

constructed for eachgene. Anovel score, named theProportionalOverlappingScore (POS),

is then proposed by which a gene’s overlapping degree is estimated. The constructed gene

masks along-with the gene scores are utilized to assign the minimum subset of genes that

provide the maximum number of correctly classified observations in a training set.

The next chapter proposes a gene selection method, named POS, by combining the

minimum subset with the top ranked genes according to the POS measure to produce a

final gene selection. A novel measure for assigning each gene to its relative dominant class

(RDC) is also proposed.



Chapter 5

Proportional Overlapping Score Method

for Gene Selection

For a given classification problem, finding the optimal number of genes being selected

is a challenge. These is a trade-off between information loss, when selecting excessively

conservative number, and noise increase, when selecting an excessively liberal number.

The procedure presented in Chapter 4 addresses the identification of minimum subset

of genes that provide the maximum classification coverage for training dataset based on

analyzing overlap in expressions between different classes. The procedure stops the search

when the coverage of training observations is maximized. In this chapter, a filter feature

selection method, named ‘Proportional Overlapping Score’ (POS) method, based on the

procedure proposed inChapter 4 is presented. POS selects themost discriminative features

according to their expression overlapping degree. In addition, it allows users to select the

number of retrieved features and thus provides researchers with the possibility of studying

a large number of relevant genes for the target disease.

57
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The POS method is as follows:

• POS initially detects the minimum subset of genes that maximizes the correct assign-

ment of training observations to their corresponding classes avoiding the effects of

outliers. The approach presented in Chapter 4 is used for this purpose.

• A new filter-based technique which ranks genes according to their predictive power

in terms of the overlapping degree between classes is proposed. In this context, the

novel POSmeasure, defined in (4.10), is used.

• POS categorizes genes into the target class labels based on their relative dominant

classes. In this context, POS presents a novel measure, called ‘Relative Dominant

Class’ (RDC) measure, by which each gene is assigned to the class label that has the

highest proportion, relative to class sizes, of correctly assigned observations.

• The final gene selection is produced by extending the minimum subset of genes with

the topmost ranked genes according to the POS and RDCmeasures.

The performance of POS method is validated on various benchmarking microarray

datasets. The proposedmethod is comparedwith several widely used gene selectionmeth-

ods: Iteratively Sure Independent Screening (ISIS) (Fan et al. 2009); Wilcoxon rank-sum

approach; mRMR (Ding & Peng 2005); MaskedPainter (Apiletti et al. 2012). The classifica-

tion error rates of the RF (Breiman 2001), kNN (Cover & Hart 1967), and SVM (Cortes &

Vapnik 1995) classifiers, discussed in Sections 2.4 - 2.6 respectively, demonstrate that the

proposed approach achieves a better performance than the other compared methods.
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5.1 The Method

POS method exploits the POS measure, defined in (4.10), to rank features based on their

expression overlapping between classes, the higher ranked features are the oneswith lower

POS scores and hence are more informative for distinguishing between the considered

target classes. POS score alone can rank genes according to their overlapping degree,

without taking into account the class that hasmore correctly assigned observations by each

gene (the dominant class for that gene). Consequently, high-ranked genes may all have an

ability to only correctly classify observations belonging to the same class. Such a case is

more likely to happen in situations with unbalanced class-size distributions. As a result, a

biased selection could result. Assigning the dominant class on a relative basis, and taking

these assignments into account during the gene ranking process allows us to overcome this

problem.

5.1.1 Relative Dominant Class Assignments

Gene masks defined in Section 4.3 are used to assign each gene to its relative dominant

class (RDC). For a gene i, RDCi is defined as follows:

RDCi = argmax
c

























∑

j ∈Uc

I
(

mi j = 1
)

|Uc|

























, (5.1)

where Uc is the set of class c observations (i.e., Uc =
{

j
∣

∣

∣ c j = c
}

). Note that
∑

c
|Uc| = N,

while mi j is the jth mask element of gene i that is defined in (4.9). I
(

mi j = 1
)

represents an

indicator which sets to 1 if mi j = 1, otherwise it sets to zero.
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In this definition, the observations that belong to the setV′
i
, described in Definition 4.4,

are only considered for each class. These observations are the ones that could be unambigu-

ously assigned to their target classes by gene i. According to the genemask defined in (4.9),

they are the observations with 1 bits in their corresponding gene mask. The proportion of

the class’s observations to its total sample size is then evaluated. The class with the highest

proportion is the Relative Dominant Class of the considered gene. Ties are randomly dis-

tributed on both classes. Genes are assigned to their RDC in order to associate each gene

with the class it is more able to distinguish. As a result, the number of produced genes

could be balanced per class at the final selection process of the POS method when the RDC

is taken into account. The RDC can avoid misleading assignments due to unbalanced class

sizes distribution effects, because it detects the dominant class of a gene based on a relative

role.

5.1.2 Final Gene Selection

The gene ranking process is performed by considering both POS scores and RDC. Within

each Relative Dominant Class c (where c = 1, 2), all genes that have not been chosen in

the minimum set, G∗ detected by Algorithm 4.1, and whose RDC = c are sorted by an

increasing order of POS values. Thus, given two disjoint groups (one for each class) of

ranked genes, the topmost gene is selected from each group in a round-robin fashion to

compose the gene ranking list.

The minimum subset of genes, G∗, is extended by adding the top ν ranked genes in

the gene ranking list, where ν is the required number extending the minimum subset up

to the total number of requested genes, r, where r is an input of the POS method set by
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Figure 5.1: Building blocks of POS method.

the user. The resulting final set includes the minimum subset of genes regardless of their

POS values, because these genes allow the considered classifier to correctly classify the

maximum number of training observations.

Figure 5.1 shows the building blocks of the POS approach. The pseudo code of POS

method is reported in Algorithm 5.1.

5.1.3 Illustrative Example

To illustrate the steps of POS method, presented in Algorithm 5.1, consider the set of genes

represented in Figure 5.2(a). Each gene is associated with its constructed gene mask, its

proportional overlapping score (POS), and its relative dominant class (RDC). For instance,
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Algorithm 5.1 POS Method For Gene Selection

Inputs: X, Y and number of selected genes (r).
Output: Sequence of the selected genes T.

1: for all i ∈ G do
2: for c = 1 to 2 do
3: Calculate Ii,c as defined in (4.1).
4: end for
5: for j = 1 to N do
6: Compute mi j as defined in (4.9).
7: end for
8: Compute POSi as defined in (4.10) and (4.11).
9: Assign RDCi as defined in (5.1).
10: end for
11: LetM ∈ ℜP×N be the gene mask matrix, where M =

[

mi j

]

.

12: Obtain M.. (G) as defined in equation 4.12. {aggregate mask of genes}
13: Use the Greedy Search approach, presented in algorithm 4.1, with input set includes

M, M.. (G), and POSi, i = 1, . . . , P, to output the minimum subset of genes, G∗.
14: G = G −G∗. {exclude the minimum subset from the set of genes}
15: for c = 1 to 2 do
16: Let Gc =

〈

gck : gck ∈ G, RDCgck = c
〉

be a sequence of genes such that POSgck ≤
POSgc(k+1) , where gck denotes gene in the kth rank in sequence Gc. {define the sequence of
genes sorted by an increasing order of POS values within the RDC class c}

17: end for
Getting the Final Gene Ranking

18: if r ≤ |G∗| then
19: T is the set whose members are the first r genes in G∗.
20: else
21: T = G∗. {initially get the minimum set in our final gene ranking}

22: while
∣

∣

∣T
∣

∣

∣ < r do
23: ExtendT by one gene using round-robin fashion applying on the sequencesG1and

G2.
24: end while
25: end if
26: return T
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Figure 5.2: An example of the POS method: (a) genes with their masks, proportional overlapping scores,
and relative dominant classes; (b) minimum gene subset obtained by Algorithm 4.1, and gene list ranked by
POS and RDC; (c) final ranking, and selected genes at the end of the process.

gene g1 has a mask of [1110101], i.e. it classifies unambiguously all training observations

except the fourth and the sixth observations, a proportional overlapping score equals 0.41,

and its relative dominant class is 1. The first member of the minimum gene subset, selected

by the Algorithm 4.1, is g9, because it is characterized by the highest number of mask

elements set to 1 (the same as g1) and the lowest POS (see Algorithm 4.1: lines 6 and 7).

Genes with updated masks are considered to focus only on uncovered observations by

the selected gene, g9, (i.e., the third and forth observations). The best updated masks (i.e.,

g1, g2, and g8 which all have the same number of 1 bits) are then considered. Again, g8

is selected as the second member of the minimum gene subset because of its lowest POS

score. Eventually, the only gene with complementary mask having 1 bit, which is g2, is

selected to finalize the minimum subset. In this example, the minimum number of genes

is three. Figure 5.2(b) reports the chosen minimum subset.
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The remaining genes are categorized by relative dominant class (RDC) and sorted

according to POS in an ascending order within each category of RDC. The procedure of

gene ranking is accomplished by selecting the topmost gene from each category of RDC in

a round-robin fashion (e.g., g6 from the class 1 category, followed by g4 from class 2, then

g10 from class 1, etc.) as shown in Figure 5.2(b).

If I suppose that r = 5, then the two top ranked genes (i.e., g6 and g4) are added to the

selected minimum subset of genes (three genes). The final ranking and the final selection

are shown in Figure 5.2(c).

5.2 Results

For evaluating different feature selection methods, one can assess the accuracy of a clas-

sifier applied after the feature selection process. Thus, the classification is based only on

selected gene expressions. Such an assessment can verify the efficiency of identification of

discriminative genes. Jirapech-Umpai & Aitken (2005) have analyzed several gene selec-

tion methods available in Su et al. (2003) and have shown that the gene selection method

can have a significant impact on a classifier’s accuracy. Such a strategy has been applied

in many studies including Apiletti et al. (2012) and Peng et al. (2005).

In this section, an experiment is conducted using eleven gene expression datasets in

which the POS method is validated by comparison with five well-known gene selection

techniques. The performance is evaluated by obtaining the classification error rates from

three different classifiers: Random Forest; k Nearest Neighbor; Support Vector Machine.

Table 5.1 summarizes the characteristics of the datasets. The estimated classification
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error rate is based on the Random Forest classifier with the full set of features, without

pre-selection, using 50 repetitions of 10-fold cross validation.

Eight of the datasets are bi-class, while three, i.e. Srbct, GSE14333 and GSE27854, are

multi-classes. The two classes with topmost number of observations are only considered

for the Srbct data, while the remaining classes are ignored, since this thesis is interested

only in binary classification analysis. For the GSE14333 data, patients with colorectal

cancer of Duck stages A and B are combined in a single class representing non-invasive

tumors, against patients with stage C, which represents invasive tumors. Whereas for the

GSE27854 data, a class composed of colorectal cancer patients with tumor ‘Union Interna-

tionale Contre le Cancer’ (UICC) stages I and II is defined against another class involving

patients with III and IV stages. The sources of Microarray data are corrected, normalized

and summarized using ‘Frozen robust multiarray analysis’ (fRMA) method (McCall et al.

2010). All datasets are publicly available. The availability of the datasets are reported in

Appendix A.

Table 5.1: Description of used gene expression datasets

Dataset Genes Samples Class-sizes Est. Error Source

Leukaemia 7129 72 47/25 0.049 Golub et al. (1999a)

Breast 4948 78 34/44 0.369 Michiels et al. (2005)

Srbct 2308 54 29/25 0.0008 Statnikov et al. (2005)

Prostate 10509 102 52/50 0.088 Statnikov et al. (2005)

All 12625 128 95/33 0.000 Chiaretti et al. (2004)

Lung 12533 181 150/31 0.003 Gordon et al. (2002)

Carcinoma 7457 36 18/18 0.027 Notterman et al. (2001)

GSE24514 22215 49 34/15 0.0406 Alhopuro et al. (2012)

GSE4045 22215 37 29/8 0.2045 Laiho et al. (2007)

GSE14333 54675 229 138/91 0.4141 Jorissen et al. (2009)

GSE27854 54675 115 57/58 0.4884 Kikuchi et al. (2013)

Fifty repetitions of 10-fold cross validation analysis were performed for each combina-
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tion of dataset, feature selection algorithm, and a given number of selected genes, up to

50, with the considered classifiers. Random Forest is implemented using the R package

‘randomForest’ with its default parameters, i.e. ntree, mtry and nodesize are 500,
√
r and

1 respectively (Liaw & Wiener 2002). The R packages ‘class’ (Venables & Ripley 2002) and

‘e1071’ (Meyer et al. 2014) are used to perform the kNearest Neighbor and Support Vector

Machine classifiers respectively. The parameter k for kNN classifier is chosen to be
√
N

rounded to the nearest odd number, where N is the total number of observations (tissue

samples). For each experimental repetition, the split seed was changed while the same

folds and training datasets were kept for all feature selection methods. To avoid bias, gene

selection algorithms have been performed only on the training sets. For each fold, the best

subset of genes has been selected according to the Wilcoxon Rank Sum technique (Wil-RS),

Minimum Redundancy Maximum Relevance (mRMR) method, MaskedPainter (MP), It-

eratively Sure Independent Screening (ISIS), along-with the proposed method, POS. The

expressions of the selected genes as well as the class labels of the training observations

have then been used to construct the considered classifiers. The classification error rate on

the test set is separately reported for each classifier and the average error rate over all the

fifty repetitions is then computed. Due to limitations of the R package ‘mRMRe’ (De Jay

et al. 2013), mRMR selections could not be conducted for datasets havingmore than ‘46340’

features. Therefore, mRMR method is excluded from the analysis of the ‘GSE14333’ and

‘GSE27854’ datasets.

The compared feature selection methods are used commonly within the microarray

data analysis domain. Apiletti et al. (2012) demonstrate that the MaskedPainter method

has outperformed many widely used gene selection methods available in Su et al. (2003).
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The mRMR technique, proposed by Ding & Peng (2005), is intensively used in microarray

data analysis (e.g., De Jay et al. 2013, Ma et al. 2013). The ISIS feature selection method

exploits the principle of correlation rankingwith its ‘sure independence screening’ property

showed in Fan & Lv (2008) to select a set of features based on an iterative process. In our

experiment, the ISIS technique has been applied using the ‘SIS’ R package (Fan et al. 2014).

For a large enough input feature set, effective classifier algorithmsmayhavemore ability

to mitigate the potential effects of noisy and uninformative features by focusing more on

the informative ones. For instance, the Random Forest algorithm employs an embedded

feature selection procedure that results in less reliance on uninformative input features. In

other words, selecting a large number of features may allow a classifier to compensate for

potential feature selection shortcomings. For the purpose of comparing the effectiveness

of the considered feature selection techniques in improving the classification accuracy, the

experiment is designed to focus on small sets of selected features, up to 50 genes.

Tables 5.2 and 5.3 show the average classification error rates obtained byWil-RS,mRMR,

MP and POS with RF, kNN and SVM classifiers on Leukaemia and GSE24514 datasets

respectively. Each row provides the average classification error rate at a specific number

of selected genes, reported in the first column. The aggregate average error value and

the minimum error rate for each method with each classifier are provided in the last two

rows. Average error rates yielded on the Breast and Srbct datasets using RF, kNN, and

SVM classifiers are shown in Figure 5.3.
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Table 5.2: Average classification error rates yielded by Random Forest, k Nearest Neighbors and Support Vector Machine classifiers

on ‘Leukaemia’ dataset over all the 50 repetitions of 10-fold cross validation

RF kNN SVM
N.genes

Wil-RS mRMR MP POS Wil-RS mRMR MP POS Wil-RS mRMR MP POS

1 0.126 0.211 0.015 0.003 0.141 0.220 0.019 0.005 0.133 0.238 0.022 0.005
2 0.083 0.197 0.017 0.001 0.110 0.195 0.059 0.047 0.099 0.197 0.053 0.026
3 0.068 0.185 0.020 0.003 0.086 0.198 0.070 0.073 0.078 0.198 0.064 0.044
4 0.044 0.180 0.016 0.001 0.082 0.194 0.076 0.069 0.068 0.178 0.070 0.050
5 0.043 0.168 0.015 0.002 0.077 0.191 0.084 0.075 0.060 0.172 0.079 0.060
6 0.037 0.170 0.018 0.005 0.074 0.188 0.087 0.065 0.052 0.171 0.082 0.065
7 0.036 0.161 0.018 0.004 0.077 0.182 0.090 0.065 0.049 0.162 0.086 0.069
8 0.035 0.158 0.020 0.004 0.081 0.186 0.092 0.063 0.047 0.166 0.090 0.074
9 0.032 0.161 0.015 0.003 0.082 0.176 0.090 0.067 0.049 0.162 0.092 0.083
10 0.031 0.157 0.018 0.003 0.078 0.181 0.094 0.067 0.050 0.159 0.092 0.079
20 0.030 0.141 0.028 0.001 0.085 0.162 0.102 0.064 0.062 0.145 0.088 0.068
30 0.030 0.131 0.029 0.001 0.085 0.155 0.108 0.070 0.058 0.139 0.093 0.066
40 0.031 0.118 0.031 0.000 0.084 0.142 0.105 0.078 0.053 0.127 0.094 0.069
50 0.031 0.119 0.029 0.001 0.083 0.135 0.107 0.078 0.049 0.126 0.101 0.062

Avg. 0.041 0.157 0.021 0.002 0.087 0.179 0.085 0.063 0.065 0.167 0.079 0.059
Min. 0.030 0.118 0.015 0.000 0.074 0.135 0.019 0.005 0.047 0.126 0.022 0.005

Boldface numbers indicate the minimum average of classification error rates (the highest accuracy) achieved with the corresponding

classifier at each size of selected gene sets, reported in the first column.
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Table 5.3: Average classification error rates yielded by Random Forest, k Nearest Neighbors and Support Vector Machine classifiers

on ‘GSE24514’ dataset over all the 50 repetitions of 10-fold cross validation

RF kNN SVM
N.genes

Wil-RS mRMR MP POS Wil-RS mRMR MP POS Wil-RS mRMR MP POS

1 0.163 0.352 0.182 0.090 0.125 0.304 0.147 0.096 0.116 0.274 0.141 0.085
2 0.108 0.267 0.143 0.082 0.086 0.249 0.117 0.074 0.085 0.250 0.108 0.080
3 0.098 0.219 0.116 0.068 0.077 0.223 0.093 0.068 0.075 0.215 0.087 0.067
4 0.079 0.186 0.121 0.067 0.078 0.186 0.082 0.065 0.068 0.185 0.077 0.063
5 0.074 0.166 0.103 0.059 0.072 0.166 0.070 0.063 0.062 0.166 0.071 0.062
6 0.067 0.147 0.090 0.058 0.066 0.155 0.068 0.059 0.060 0.149 0.064 0.060
7 0.065 0.137 0.074 0.058 0.059 0.142 0.064 0.060 0.059 0.135 0.061 0.061
8 0.064 0.128 0.068 0.052 0.057 0.133 0.060 0.058 0.056 0.126 0.057 0.054
9 0.063 0.115 0.075 0.055 0.052 0.127 0.061 0.057 0.053 0.113 0.052 0.050
10 0.063 0.104 0.066 0.051 0.048 0.116 0.058 0.058 0.050 0.105 0.047 0.048
20 0.058 0.076 0.047 0.037 0.032 0.088 0.048 0.050 0.044 0.078 0.041 0.039
30 0.057 0.067 0.039 0.034 0.035 0.071 0.041 0.043 0.042 0.070 0.038 0.034
40 0.057 0.073 0.040 0.034 0.037 0.063 0.037 0.042 0.041 0.069 0.037 0.037
50 0.055 0.063 0.038 0.032 0.036 0.041 0.036 0.039 0.041 0.059 0.038 0.036

Avg. 0.077 0.150 0.086 0.055 0.061 0.147 0.070 0.059 0.061 0.142 0.066 0.055
Min. 0.055 0.063 0.038 0.032 0.032 0.041 0.036 0.039 0.041 0.059 0.037 0.034

Boldface numbers indicate the minimum average of classification error rates (the highest accuracy) achieved with the corresponding

classifier at each size of selected gene sets, reported in the first column.
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Figure 5.3: Average classification error rates for ‘Srbct’ and ‘Breast’ data based on 50 repetitions 10-fold CV
using ISIS, Wil-RS, mRMR, MP and POS methods.

The Proportional Overlapping Scores (POS) approach yields a good performance with

different classifiers on all datasets. For the Random Forest classifier, in particular on

Leukaemia, Breast, GSE24514 and GSE4045 datasets, the classification average error rates

on the test sets are less than all other feature selection techniques at all selected genes set

sizes. On the Srbct, All and Lung datasets, the POS method provides lower error rates

than all other methods on most set sizes. While, on the Prostate dataset, POS shows a

comparable performance with the best technique, MP. On the Carcinoma dataset, Wil-RS

technique has outperformed all methods for feature set sizes more than 20 genes, whereas

for smaller sets, the MP method was the best. More details of the RF classifier’s results are
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reported in Appendix B.1.

For the kNN classifier, POS provides a good classification performance. Its classification

average error rates are less than all other compared methods on Leukaemia and Breast

datasets for most selected set sizes, see Table 5.2 and Figure 5.3. A similar case has

been observed in the Lung dataset. On the GSE24514 dataset, Wil-RS technique has

outperformed all methods for set sizes that are more than eight, whereas for smaller sets,

the POS was the best. While, on Srbct and GSE4045 datasets, POS shows a comparable

and a worse performance respectively compared with the best techniques, MP andWil-RS

respectively. More details of the kNN classifier’s results are reported in Appendix B.2.

For the SVM classifier, POS provides a good classification performance on all used

datasets. In particular on Breast and Lung datasets, the classification average error rates on

the test sets are less than all other feature selection techniques at all selected genes set sizes,

see Figure 5.3 and Table B.18 in Appendix B.3. The performance of POS outperformed all

other comparedmethods on theGSE24514 and Srbct datasets for almost all feature set sizes,

see Table 5.3 and Figure 5.3. On Leukaemia and GSE4045 datasets, POS is outperformed

by other methods for set sizes more than five and 20 respectively. More details of the SVM

classifier’s results are reported in the Appendix B.3.

5.2.1 POSMethod Quality Performance

The improvement/deterioration in the classification accuracy is analyzed in order to inves-

tigate the quality performance of the proposal against the other techniques when the size

of the selected gene set varies. The log ratio between the misclassification error rates of

the candidate set selected by the best method of the compared techniques and the POS
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method is separately computed for each classifier on different set sizes up to 50 genes. At

each set size, the best method of the compared techniques is identified and the log ratio,

computed using natural logarithm, between its error rate and corresponding error rate of

the POSmethod is reported. Figure 5.4 shows the results for each classifier. Positive values

indicate improvements of a classification performance achieved by the POS method over

the second best technique. The panel on right bottom of Figure 5.4 shows the averages of

log ratios across all considered datasets for each classifier.
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Figure 5.4: Log ratios measure the improvement/deterioration achieved by the POS method over the best
compared method for three different classifiers; RF, kNN and SVM. The last panel shows the averages of log
ratios across all datasets for each classifier.

The POS approach provides improvements over the best method of the compared

techniques formost datasets with all classifiers (see RF, kNNand SVMpanels of Figure 5.4).
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On average across all datasets, POS achieves an improvement over the best compared

techniques at all set sizes for RF classifier by between 0.055 and 0.720, measured by the log

ratio of the error rates.

The highest improvement in RF classification performancemeasured by log ratio, 0.720,

is obtained at gene sets of size 20. For smaller sizes, the performance ratio decreases, but the

POS approach still provides the best accuracy (see Figure 5.4). For kNNandSVMclassifiers,

the averages of improvements across ‘Leukaemia’, ‘Breast’, ‘Srbct’, ‘Lung’, ‘GSE24514’,

‘GSE4045’, ‘GSE14333’ and ‘GSE27854’ have been depicted at different set sizes up to 50

genes.

The proposed approach achieves improvements for kNN classifier at set sizes not more

than 20 features. The highest improvement measured by log ratio, 0.150, is obtained at the

selected sets composed of a single gene.

For SVM classifier, improvements over the best method of the compared techniques are

achieved by the POS method at most set sizes. The highest improvement measured by the

log ratio of the error rates, 0.213, is observed at gene sets of size seven, see the right bottom

panel of Figure 5.4.

The best performing technique among the comparedmethods is not always the same for

neither all selected gene set sizes, all datasets nor all classifiers. Hence, the POS algorithm

keeps its better performance for large as well as small sets of selected genes with Random

Forest and Support Vector Machine classifiers on individual datasets. While it keeps

its best performance with k Nearest Neighbor classifier for only feature sets with small

sizes (specifically, not more than 20). Consequently, the POS feature selection approach

is more able to adapt to different pattern of data and to different classifiers than the other
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techniques, whose performance is more affected by varying the data characteristics and

the used classifier.

5.2.2 MinimumMisclassification Error

A method which is more able to minimize the dependency within its selected candidates

can reach a particular level of accuracy using a smaller set of genes. To highlight the

entire performances of the compared methods against the POS, a comparison between the

minimum error rates achieved by each method is performed. Each method obtains its

particular minimum at different size of selected gene set. Tables 5.4-5.6 summarize these

results for RF, kNN and SVM classifiers respectively. Each row shows the minimum error

rate (along-with its corresponding size, shown in brackets) obtained by all methods for a

specific dataset, reported in the first column. Since the ISIS method may result in selecting

sets with different sizes for each fold of the cross validation, the estimated error rate has

been reported along-with the average size of the selected feature sets, shown in brackets. In

addition, the error rates of the corresponding classifier with the full set of features, without

feature selection, are reported in the last column of Tables 5.4 - 5.6.

5.2.3 Stability Evaluation

An effective feature selection technique is expected to produce stable outcomes across

several sub-samples of the considered dataset. This property is particularly desirable for

biomarker selections within a diagnostic setting. A stable feature selection method should

yield a set of biological informative markers that are selected quite often, while it should

rarely or never select randomly chosen features.
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Table 5.4: The minimum error rates yielded by Random Forest classifier with feature selection

methods along-with the classification error without selection

Dataset ISIS Wil-RS mRMR MP POS Full set

Leukaemia 0.003 (1) 0.030 (20) 0.118 (40) 0.015 (9) 0.0002 (40) 0.049
Breast 0.407 (4) 0.371 (50) 0.407 (48) 0.354 (48) 0.308 (45) 0.369
Srbct 0.092 (2.63) 0.069 (24) 0.074 (46) 0.009 (32) 0.003 (48) 0.0008
Prostate 0.097 (4.18) 0.200 (50) 0.140 (50) 0.069 (50) 0.062 (50) 0.088
All 0.0004 (1.018) 0.143 (40) 0.011 (50) 0 (40) 0 (20) 0
Lung 0.022 (3.26) 0.040 (30) 0.016 (48) 0.008 (46) 0.007 (48) 0.003
Carcinoma 0.171 (1.29) 0.003 (41) 0.017 (44) 0.019 (5) 0.026 (20) 0.027
GSE24514 0.107 (1.96) 0.054 (47) 0.063 (50) 0.036 (48) 0.032 (24) 0.041
GSE4045 0.27 (1.47) 0.134 (24) 0.187 (37) 0.137 (21) 0.114 (27) 0.205
GSE14333 0.423 (9) 0.421 (10) - 0.438 (31) 0.437 (34) 0.414
GSE27854 0.448 (5) 0.401 (15) - 0.444 (49) 0.451 (6) 0.488

The numbers in brackets represent the size, average size for ISIS method, of the gene sets that

corresponding to the minimum error rate.

Table 5.5: Theminimumerror ratesyieldedby kNearestNeighbor classifierwith feature selection

methods along-with the classification error without selection

Dataset ISIS Wil-RS mRMR MP POS Full set

Leukaemia 0.064 (1) 0.074 (6) 0.135 (50) 0.019 (1) 0.005 (1) 0.109
Breast 0.385 (4) 0.405 (11) 0.404 (50) 0.346 (19) 0.332 (11) 0.405
Srbct 0.105 (2.63) 0.157 (3) 0.098 (48) 0.005 (26) 0.005 (22) 0.034
Lung 0.030 (3.26) 0.203 (12) 0.027 (49) 0.017 (17) 0.011 (12) 0.0005
GSE24514 0.074 (1.96) 0.032 (20) 0.041 (50) 0.036 (50) 0.039 (50) 0.041
GSE4045 0.239 (1.47) 0.066 (43) 0.207 (38) 0.137 (50) 0.142 (3) 0.103
GSE14333 0.425 (9) 0.420 (8) - 0.455 (23) 0.450 (34) 0.438
GSE27854 0.432 (5) 0.420 (3) - 0.454 (13) 0.420 (6) 0.464

The numbers in brackets represent the size, average size for ISIS method, of the gene sets that

corresponding to the minimum error rate.

The stability index proposed by Lausser et al. (2013) is used to measure the stability of

the compared method at different set sizes of features. Values of this stability score range

from 1/λ, where λ is the total number of used sub-samples for theworst unstable selections

to 1 for a fully stable selection. In our context, λ = 500 since fifty repetitions are used with

10-fold cross validation for the analysis, see section 5.2.

Table 5.7 and Figures 5.5 and 5.6 show the stability scores of different feature selection
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Table 5.6: The minimum error rates yielded by Support Vector Machine classifier with feature

selection methods along-with the classification error without selection

Dataset ISIS Wil-RS mRMR MP POS Full set

Leukaemia 0.018 (1) 0.047 (8) 0.126 (50) 0.022 (1) 0.005 (1) 0.131
Breast 0.409 (4) 0.401 (39) 0.407 (50) 0.359 (21) 0.313 (22) 0.438
Srbct 0.106 (2.63) 0.131 (50) 0.124 (49) 0.010 (21) 0.003 (8) 0.079
Lung 0.013 (3.26) 0.066 (50) 0.026 (50) 0.021 (19) 0.010 (47) 0.024
GSE24514 0.090 (1.96) 0.041 (40) 0.059 (50) 0.037 (40) 0.034 (30) 0.070
GSE4045 0.236 (1.47) 0.134 (24) 0.187 (37) 0.095 (47) 0.114 (29) 0.214
GSE14333 0.416 (9) 0.427 (9) - 0.412 (1) 0.431 (1) 0.407
GSE27854 0.434 (5) 0.431 (25) - 0.465 (13) 0.456 (8) 0.50

The numbers in brackets represent the size, average size for ISIS method, of the gene sets that

corresponding to the minimum error rate.

methods for the ‘Srbct’, ‘GSE27854’ and ‘GSE24514’ datasets respectively. Figure 5.5 shows

that the POSapproachprovidesmore stable feature selections thanWil-RS andMPmethods

atmost set sizes selected from ‘GSE27854’ dataset. For GSE24514 dataset, Figure 5.6 depicts

the stability scores of compared feature selection techniques at different set sizes. Unlike

the mRMR and the MP approaches, both the Wil-RS and the POS methods keep their

stability degree for different sizes of feature sets. The POS method provides a stability

degree close to the well established Wil-RS method. For the ‘Srbct’ data, the best stability

scores among the compared methods are yielded by POS at most set sizes, see Table 5.7.
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Table 5.7: Stability scores of the feature selection techniques over 50 repetitions of 10-fold cross

validation for ‘Srbct’ dataset

N. selected genes Wil-RS mRMR MP POS

5 0.789 0.097 0.815 0.760
10 0.804 0.198 0.788 0.844
15 0.804 0.302 0.853 0.911
20 0.857 0.405 0.898 0.908
25 0.883 0.506 0.871 0.872
30 0.896 0.579 0.871 0.870
35 0.868 0.640 0.852 0.859
40 0.858 0.705 0.833 0.847
45 0.862 0.754 0.812 0.835
50 0.873 0.803 0.800 0.820
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Figure 5.5: Stability scores at different sizes of features sets that selected by Wil-RS, MP and POS methods
on ‘GSE27854’ dataset.

A stable selection does not guarantee the relevancy of the selected features to the

considered response of the target class labels. Theprediction accuracyyieldedbya classifier

based on the selected features should also be highlighted in conjunction with stability. The
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Figure 5.6: Stability scores at different sizes of features sets that selected by Wil-RS, mRMR, MP and POS
methods on ‘GSE24514’ dataset.

relation between the accuracy and stability has been outlined by Figures 5.7 and 5.8 for

the ‘Lung’ and ‘GSE27854’ datasets respectively. The stability scores were combined with

corresponding error rates yielded by the three different classifiers: RF; kNN; SVM.Different

dots for the same feature selection method correspond to different set sizes of features.

With the greatest stability and lowest error rate, the best method is the one whose dots

are depicted in the upper-left corner of the plot. For all classifiers, POS method achieves

a good trade-off between accuracy and stability for ‘Lung’ data, see Figure 5.7. For the

‘GSE27854’ data with the kNN classifier, POS provides a better trade-off between accuracy

and stability than other compared methods. Whereas with the RF and SVM classifiers,

POS is outperformed by Wil-RS.
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Figure 5.7: The stability of the feature selection methods against the corresponding estimated error rates on
‘Lung’ dataset. The error rates have been measured by 50 repetations of 10-fold cross validation for three
different classifiers: Random Forest (RF); k Nearest Neighbor (kNN); Support Vector Machine (SVM).
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Figure 5.8: The stability of the feature selection methods against the corresponding estimated error rates on
‘GSE27854’ dataset. The error rates have been measured by 50 repetations of 10-fold cross validation for three
different classifiers: Random Forest (RF); k Nearest Neighbor (kNN); Support Vector Machine (SVM).
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5.3 Summary

A gene selection method, named POS, is proposed. A gene ranking process is performed

based on two measures, POS and RDC, for estimating the overlapping degree across

different classes and assigning each gene to its relative dominant class respectively. The

detected minimum subset of genes is then extended by adding the top ranked genes to

produce a final gene selection.

The POS is applied on eleven publicly available gene expression datasets with different

characteristics. Feature sets of different sizes, up to 50 genes, are selected using widely

used gene selection methods: Wilcoxon Rank Sum (Wil-RS); Minimum redundancy max-

imum relevance (mRMR); MaskedPainter (MP); Iteratively sure independence screening

(ISIS) along-with my proposal, POS. Then, the prediction models of three different classi-

fiers: Random Forest; k Nearest Neighbor; Support Vector Machine are constructed with

the selected features. The estimated classification error rates obtained by the considered

classifiers show that POS provides better performance.

The stability of the selections yielded by the compared feature selection methods using

the cross validation technique has been highlighted. Stability scores computed at different

set sizes of the selected features show that the proposed method has a stable performance

for different sizes of selected features. The analysed relationship between classification

accuracies yielded by three different classifiers and stability confirms that the POS method

can provide a good trade-off between stability and classification accuracy.

All procedures proposed in this chapter have been programmed into an R package

named ‘propOverlap’ (Mahmoud et al. 2014b). It is publicly available for download from
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the Comprehensive R Archive Network (CRAN) repository. Its reference manual is re-

ported in Appendix C.

The next chapter extends the POS method to minimize selection redundancy. The

extended version, named POSr, detects the minimum gene subset in a recursive way to

mitigate redundancy problem in the final gene selection.



Chapter 6

Minimizing Redundancy among Selected

Genes

The POSmethod, presented in Chapter 5, ranks genes based on their discriminative power

towards a considered response (e.g., particular target disease). Its final selection is pro-

vided by combining the minimum gene subset, obtained by the proposed procedure in

Algorithm 4.1, with the top ranked genes according to the estimated POS scores together

with the assignments of RDCmeasure (see (4.10) and (5.1)).

Feature selections produced by POS are robust against outliers, since gene masks are

defined based on the interquartile range of gene’s expressions. Results of the conducted

experiment, shown in Section 5.2, demonstrate that POS technique provides a good classi-

fication performance as well as selections stability.

The identification of the top ranked genes, based on the POS relevance score, treats

each gene separately from other genes. Such a procedure has linear time complexity with

respect to P, the total number of genes, but it may provide a classifier with redundant

83
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information, since two highly ranked genes may duplicate each other, with respect to their

classification role, though both are selected within the set of top ranked genes.

Selecting redundant features leads to increasing the complexity of a model without

providing further information for the considered classification problem. Minimizing re-

dundancy can enhance the accuracy as well as the interpretability of classifier’s results.

Moreover, selection stability might be improved by avoiding redundant features within

established various sub-samples.

In this chapter, an extended version of POS method, called POSr, is proposed by detect-

ing the minimum gene subset, as defined in Algorithm 4.1, in a recursive way to mitigate

redundancy problem in the final gene selection.

6.1 Recursive Minimum Sets for Minimizing Selection Re-

dundancy (POSr)

The POSr can be described as follows.

6.1.1 The Method

The gene mask, defined in Section 4.3, is a measure for classification power of a gene. It

reflects the capability of the gene to correctly classify each observation to its target class.

Genes with higher number of 1 bits in their masks are more informative for the considered

classification problem, see (4.9). When two genes classify in the same way the same

observations, then their masks should be identical. Genes with complementary masks, on

the other hand, can provide diverse information to the classifier model.
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In this chapter, an extended version of POS, called POSr, is proposed. It exploits gene

masks along-with POS measure, defined in (4.10), to identify minimum subsets of genes in

a recursive way in order to mitigate the potential redundancy in the final gene selection.

A minimum subset is identified according to Algorithm 4.1, i.e. it is designed to be the

minimum one that correctly classify the maximum number of observations in a given

training set, avoiding the effects of expression outliers.

LetGz be a set containing the remaining genes at the zth iteration, after removing genes

selected at the (z− 1)th iteration, such thatG1 is the full set of all genes (i.e., |G1| = P). Also,

let M.. (Gz) be its aggregate mask which is defined as shown in (4.12). It can be expressed

as follows:

M.. (Gz) = ∨
i∈Gz

Mi. (6.1)

At iteration z, the objective is to search among the set, Gz, for the minimum subset,

denoted by G∗z, using the procedures reported in Algorithm 4.1. In a similar way to (4.13),

the subset G∗z is defined as the minimum set whose aggregate mask, M..
(

G∗z
)

, equals to the

aggregate mask of the corresponding set of genes, M.. (Gz). In other words, the minimum

subset of genes should satisfy the following statement:

argmin
G∗z⊆Gz

(

∣

∣

∣G
∗
z

∣

∣

∣

∣

∣

∣

∣

∣

∣

(

M..
(

G
∗
z

)

= ∨
i∈G∗z

Mi. =M.. (Gz)

))

. (6.2)

This procedure is performed in a recursive way and ends when the required number of

genes, set by the user, are selected.

The pseudo code of our procedure, POSr, is reported in Algorithm 6.1. Its inputs are:

the matrix of gene masks, M; POS scores for all genes; number of genes to be selected, r. It
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produces the sequence of selected genes, T∗, as output.

Algorithm 6.1 POSr Method: Recursive Minimum Subsets

Inputs: M, POS scores and number of required genes (r).
Output: Sequence of the selected genes T∗.

1: z = 0 {Initialization}

2: T = ∅
3: while

∣

∣

∣T

∣

∣

∣ < r do

4: z = z + 1

5: k = 0 {Initialization of individual selection}

6: G∗z = ∅
7: M..

(

G∗z
)

= 0N

8: while M..
(

G∗z
)

,M.. (Gz) do

9: k = k + 1

10: Szk = argmax
i ∈Gz

(

N
∑

j=1
I
(

m(k)

i j
= 1

)

)

{Assign gene set whose masks have max. bits of 1}

11: gzk = argmin
i ∈ Szk

(POSi) {Select the candidate with the best score among the assigned set}

12: G∗z = G
∗
z + gzk {Update the target set by adding the selected candidate}

13: for all i ∈ Gz do

14: M(k+1)

i.
= M(k)

i.
∧ M′..

(

G∗z
)

{update gene masks such that the uncovered observations are only

considered}

15: end for

16: end while

17: T = T +G∗z
18: Gz+1 = Gz −G∗z
19: end while

20: T∗ is the sequence whose members are the first r genes in T

21: return T∗

At the initial step (z = 0), we let T = ∅ (line 2); where T is a set created to contain the

successively selected minimum subsets of genes. Then at each iteration, z, the following

steps are performed:

1. we let k = 0, G∗z = ∅ and M..
(

G∗z
)

= 0N (lines 5-7) to initialize individual selection

within the minimum subset G∗z, where M..
(

G∗z
)

is the aggregate mask of the set G∗z,
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see (6.1). Then at each sub-iteration, k, the procedure presented in Algorithm 4.1 is

performed via the following sub-steps:

(a) Among genes of the set Gz, the one(s) with the highest number of mask bits

assigned to 1 is (are) chosen to form the set Szk (line 10). This set will not be

empty as long as the loop condition is still satisfied, i.e. M..
(

G∗z
)

, M.. (Gz).

Under this condition, our selected genes don’t cover yet the maximum number

of observations that should be covered by our target gene subset of the zth

iteration, G∗z. Note that our definition for gene masks allows M.. (Gz) to report

in advance which observations should be covered by the minimum subset of

genes. Therefore, there will be at least one gene mask which has at least one bit

assigned to 1 if that condition is to hold.

(b) The gene with the lowest POS score among genes in Szk, if there are more than

one, is selected (line 11). It is denoted by gzk.

(c) The set G∗z is updated by adding the selected gene, gzk (line 12).

(d) All masks of genes in Gz are also updated by performing the logical conjunction

(logic AND) with the negated aggregate mask of set G∗z (line 14). The negated

maskM′..(G
∗
z) of themaskM..(G

∗
z) is the one obtained by applying logical negation

(logical complement) on this mask. Consequently, the bits of ones corresponding

to the classification of still uncovered observations are only considered. Note

that M(k)

i.
represents updated mask of gene i at the kth iteration such that M(1)

i.
is

its original gene mask whose elements are computed according to (4.9).

2. The sub-steps 1(a)-1(d) for detecting the target of minimum gene subset, G∗z, are
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successively iterated and end when all masks of genes in Gz have no 1 bits anymore,

i.e. the selected genes cover the maximum number of observations. This situation is

accomplished iffM..
(

G∗z
)

=M.. (Gz), (lines 8-16).

3. The set T is updated by adding the detected minimum subset of genes, G∗z (line 17).

4. Genes within the selected minimum subset, G∗z, are then removed from the set of

genes, Gz (line 18).

5. The procedure is successively iterated and ends when the size of the set T is greater

than or equal the number of required genes, r. Then, the target sequence of selected

genes, T∗, is produced by selecting the first r genes in T (lines 20, 21).

POSr approach combines recursively the detected minimum subsets of genes that pro-

vide the best classification coverage for a given training set. Selection of the minimum

subsets based on the updated gene masks allows POSr to minimize redundancy among

the final selection list. The method of POSr can be described briefly as follows:

• POSr utilizes the defined gene masks to robustly detect the minimum subset of genes

thatmaximizes the correct assignment of training observations to their corresponding

classes i.e., the minimum subset that can yield the best classification accuracy on a

training set avoiding the effects of outliers.

• Genes involved in the detected minimum subset are removed from the full set of

genes. The reduced gene set is then used to detect a new minimum subset of genes.

This procedure is performed recursively.

• The final rank is produced by combining the selected minimum subsets.
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Figure 6.1: An example of the POSr approach: (a) genes with their masks and proportional overlapping
scores; (b) the minimum gene subset, G∗

1
, obtained from iteration z = 1 in Algorithm 6.1, and the reduced

gene mask matrix; (c) the minimum gene subset, G∗
2
, and resulted genes at the end of the process.

6.1.2 Illustrative Example

To illustrate the POSr approach, reported in Algorithm 6.1, consider the set of genes

represented in Figure 6.1(a). Each gene is associated with its constructed gene mask and

its proportional overlapping score (POS). For instance, gene g1 has a mask of [1110101],

i.e. it classifies unambiguously all training observations except the forth and the sixth

observations, and a proportional overlapping score equals 0.41.

At the first iteration, z = 1, the mask matrix of the full gene set, G1, is used together

with the corresponding POS scores to identify the first minimum gene subset, G∗
1
, using

the procedure described in Algorithm 6.1: lines 5-16. The resulting subset includes g9, g8

and g2.

If five genes are required by the user for biological investigation regarding the two
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clinical classes 1 and 2 (hence, r = 5), then further iterations are required, since the size of

the selected subset,
∣

∣

∣G∗
1

∣

∣

∣ = 3, is less than r. The selected genes are then removed and the

reduced gene set, G2, is considered for the iteration z = 2, see Figure 6.1(b).

Again, the minimum gene subset, G∗2, is identified. According to Algorithm 6.1, its

members are g1 and g10. Then the sequence of genes resulting from combining the selected

minimum subsets,G∗
1
andG∗2, is produced as the final selection. It is shown in Figure 6.1(c).

6.2 Results

POSr method is validated by comparison with the well-known gene selection techniques:

the Wilcoxon Rank Sum (Wil-RS) technique; Minimum Redundancy Maximum Relevance

(mRMR) method; MaskedPainter (MP) approach; Iteratively Sure Independent Screening

(ISIS) along-with POSmethod. Theperformance is evaluatedby obtaining the classification

error rates from three different classifiers: Random Forest (RF); k Nearest Neighbor (kNN);

Support Vector Machine (SVM).

Fifty repetitions of 10-fold cross validation analysis were performed for each combina-

tion of considered dataset described in Table 5.1, feature selection algorithm, and a given

number of selected genes, up to 50, with the considered classifiers.

Tables 6.1 and 6.2 show the average classification error rates obtained byWil-RS,mRMR,

MP, POS and POSr with RF, kNN and SVM classifiers on Leukaemia and GSE4045 datasets

respectively. Each row provides the average classification error rate at a specific number

of selected genes (reported in the first column). The aggregate average error value and

the minimum error rate for each method with each classifier are provided in the last two
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rows. Average error rates yielded on the Breast and Srbct datasets using RF, kNN, and

SVM classifiers are shown in Figure 6.2.
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Figure 6.2: Average classification error rates for ‘Srbct’ and ‘Breast’ data based on 50 repetitions 10-fold CV
using ISIS, Wil-RS, mRMR, MP, POS and POSr methods.

The POSr approach yields a good performance with different classifiers on the consid-

ered datasets. For the Random Forest classifier, in particular on the Leukaemia, GSE4045,

Srbct, Lung and GSE24514 datasets, the classification average error rates on the test sets

are less than all other feature selection techniques, including the POS method, at most

genes set sizes. While, on the Breast dataset, POSr shows a comparable performance with

the best technique, POS. On the GSE14333 dataset, Wil-RS technique has outperformed

all methods. A detailed comparison of the minimum classification error rates obtained by
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Table 6.1: Average classification error rates yielded by Random Forest, k Nearest Neighbors and Support Vector Machine classifiers

on ‘Leukaemia’ dataset using 50 repetitions of 10-fold cross validation approach

RF kNN SVM
N.genes

Wil-RS mRMR MP POS POSr Wil-RS mRMR MP POS POSr Wil-RS mRMR MP POS POSr

1 0.126 0.211 0.015 0.003 0.003 0.141 0.220 0.019 0.005 0.003 0.133 0.238 0.022 0.005 0.005
2 0.083 0.197 0.017 0.001 0.006 0.110 0.195 0.059 0.047 0.017 0.099 0.197 0.053 0.026 0.039
3 0.068 0.185 0.020 0.003 0.007 0.086 0.198 0.070 0.073 0.031 0.078 0.198 0.064 0.044 0.032
4 0.044 0.180 0.016 0.001 0.001 0.082 0.194 0.076 0.069 0.039 0.068 0.178 0.070 0.050 0.030
5 0.043 0.168 0.015 0.002 0.003 0.077 0.191 0.084 0.075 0.035 0.060 0.172 0.079 0.060 0.026
6 0.037 0.170 0.018 0.005 0.001 0.074 0.188 0.087 0.065 0.031 0.052 0.171 0.082 0.065 0.028
7 0.036 0.161 0.018 0.004 0.001 0.077 0.182 0.090 0.065 0.026 0.049 0.162 0.086 0.069 0.023
8 0.035 0.158 0.020 0.004 0.000 0.081 0.186 0.092 0.063 0.021 0.047 0.166 0.090 0.074 0.014
9 0.032 0.161 0.015 0.003 0.000 0.082 0.176 0.090 0.067 0.023 0.049 0.162 0.092 0.083 0.016
10 0.031 0.157 0.018 0.003 0.000 0.078 0.181 0.094 0.067 0.026 0.050 0.159 0.092 0.079 0.018
20 0.030 0.141 0.028 0.001 0.000 0.085 0.162 0.102 0.064 0.031 0.062 0.145 0.088 0.068 0.026
30 0.030 0.131 0.029 0.001 0.000 0.085 0.155 0.108 0.070 0.038 0.058 0.139 0.093 0.066 0.024
40 0.031 0.118 0.031 0.000 0.000 0.084 0.142 0.105 0.078 0.040 0.053 0.127 0.094 0.069 0.025
50 0.031 0.119 0.029 0.001 0.000 0.083 0.135 0.107 0.078 0.041 0.049 0.126 0.101 0.062 0.022

Avg. 0.041 0.157 0.021 0.002 0.001 0.087 0.179 0.085 0.063 0.028 0.065 0.167 0.079 0.059 0.023
Min. 0.030 0.118 0.015 0.000 0.000 0.074 0.135 0.019 0.005 0.003 0.047 0.126 0.022 0.005 0.005

Boldface numbers indicate the minimum average of classification error rates (the highest accuracy) achieved with the corresponding

classifier at each size of selected gene sets, reported in the first column.
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Table 6.2: Average classification error rates yielded by Random Forest, k Nearest Neighbors and Support Vector Machine classifiers

on ‘GSE4045’ dataset using 50 repetitions of 10-fold cross validation approach

RF kNN SVM
N.genes

Wil-RS mRMR MP POS POSr Wil-RS mRMR MP POS POSr Wil-RS mRMR MP POS POSr

1 0.201 0.330 0.245 0.248 0.248 0.280 0.235 0.227 0.213 0.213 0.201 0.330 0.221 0.249 0.249
2 0.201 0.266 0.208 0.186 0.186 0.232 0.228 0.172 0.165 0.164 0.201 0.266 0.186 0.186 0.178
3 0.195 0.245 0.180 0.152 0.152 0.225 0.231 0.153 0.142 0.142 0.195 0.245 0.166 0.152 0.152
4 0.193 0.236 0.194 0.156 0.152 0.224 0.227 0.144 0.166 0.132 0.193 0.236 0.153 0.156 0.137
5 0.178 0.223 0.172 0.126 0.142 0.215 0.225 0.148 0.160 0.122 0.178 0.223 0.149 0.126 0.125
6 0.182 0.228 0.169 0.129 0.132 0.215 0.231 0.153 0.172 0.112 0.182 0.228 0.154 0.129 0.117
7 0.177 0.218 0.160 0.130 0.127 0.214 0.229 0.147 0.171 0.112 0.177 0.218 0.143 0.130 0.117
8 0.176 0.213 0.155 0.136 0.121 0.211 0.231 0.149 0.171 0.110 0.176 0.213 0.143 0.136 0.116
9 0.172 0.217 0.151 0.132 0.127 0.206 0.229 0.148 0.166 0.120 0.172 0.217 0.139 0.132 0.108
10 0.172 0.211 0.147 0.132 0.122 0.210 0.221 0.150 0.165 0.127 0.172 0.211 0.134 0.132 0.102
20 0.143 0.193 0.141 0.125 0.113 0.183 0.211 0.147 0.157 0.135 0.143 0.193 0.114 0.125 0.094
30 0.140 0.197 0.149 0.122 0.117 0.170 0.221 0.147 0.154 0.129 0.140 0.197 0.106 0.122 0.098
40 0.141 0.192 0.152 0.121 0.115 0.170 0.209 0.144 0.158 0.132 0.141 0.192 0.098 0.121 0.093
50 0.143 0.192 0.154 0.134 0.114 0.178 0.214 0.137 0.166 0.133 0.143 0.192 0.098 0.134 0.087

Avg. 0.172 0.226 0.170 0.145 0.141 0.210 0.224 0.155 0.166 0.135 0.172 0.226 0.143 0.145 0.127
Min. 0.140 0.192 0.141 0.121 0.113 0.170 0.209 0.137 0.142 0.110 0.140 0.192 0.098 0.121 0.087

Boldface numbers indicate the minimum average of classification error rates (the highest accuracy) achieved with the corresponding

classifier at each size of selected gene sets, reported in the first column.
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each gene selection method is reported in Table 6.3.

For the kNN classifier, POSr provides a good classification performance. On the

Leukaemia and GSE4045 datasets, its classification average error rates are less than all

other feature selection techniques at all selected genes set sizes, see Tables 6.1 and 6.2. On

the Breast and Lung datasets, POSr provides lower error rates than all other methods on

most set sizes. On the Srbct dataset, POS technique has outperformed all methods for

set sizes that are less than 25, whereas for larger sets, the MP method is the best. Wil-RS

method provides lower error rates that other approaches on the GSE14333 and GSE24514

datasets.

For the SVM classifier, POSr provides a good classification performance on all used

datasets. In particular on the Leukaemia and GSE4045 datasets, the classification average

error rates on the test sets are less than all other feature selection techniques at almost all

selected genes set sizes, see Tables 6.1 and 6.2. While, on the Breast dataset, POSr shows

a comparable performance with the best technique, POS, for feature set sizes less than 14

genes, whereas for larger sets, POSr outperformed all other compared methods. For the

Srbct data set, POSr outperformed all other compared methods for feature set sizes more

than 14, whereas it is outperformed by POS method for smaller feature sets. On the Lung

dataset, POSr provides the best performance for almost all feature set sizes.

A comparison between the minimum error rates achieved by each method highlights

the entire performances of the compared methods against the proposed approach, POSr.

Eachmethod obtains its particular minimum at different size of selected gene set. Table 6.3

summarizes these results for RF, kNN and SVM classifiers. Each row shows the minimum

error rate (associated with its corresponding feature set size, shown in brackets) obtained
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by all methods for a specific dataset, reported in the first column, using a specific classifier,

reported in the second column. In addition, the error rates of the corresponding classifier

with the full set of features, without feature selection, are reported in the last column.

Table 6.3 demonstrates that POSr approach provides the minimum error rates for most

of the used datasets. Due to limitations of the R package ‘mRMRe’ (De Jay et al. 2013),

mRMR selections could not be conducted for datasets having more than ‘46340’ features.

Therefore, mRMR method is excluded from the analysis of the ‘GSE14333’ dataset.

Table 6.3: Comparisonbetween theminimumerror rates yieldedby the feature selectionmethods

using RF, kNN and SVM classifiers.

Dataset Classifier Wil-RS mRMR MP POS POSr Full Set

Leukaemia
RF 0.030 (20) 0.118 (40) 0.015 (9) 0.0002 (40) 0.000 (9) 0.049
kNN 0.074 (6) 0.135 (50) 0.019 (1) 0.005 (1) 0.005 (1) 0.109
SVM 0.047 (8) 0.126 (50) 0.022 (1) 0.005 (1) 0.005 (1) 0.131

Lung
RF 0.040 (30) 0.016 (48) 0.008 (46) 0.007 (48) 0.006 (48) 0.003
kNN 0.203 (12) 0.027 (49) 0.017 (17) 0.011 (12) 0.002 (40) 0.0005
SVM 0.066 (50) 0.026 (50) 0.021 (19) 0.010 (47) 0.008 (38) 0.024

Breast
RF 0.371 (50) 0.407 (48) 0.354 (48) 0.308 (45) 0.317 (48) 0.369
kNN 0.405 (11) 0.404 (50) 0.346 (19) 0.332 (11) 0.328 (11) 0.405
SVM 0.401 (39) 0.407 (50) 0.359 (21) 0.313 (22) 0.303 (37) 0.438

Srbct
RF 0.069 (24) 0.074 (46) 0.009 (32) 0.003 (48) 0.002 (44) 0.0008
kNN 0.157 (3) 0.098 (48) 0.005 (26) 0.005 (22) 0.008 (32) 0.034
SVM 0.131 (50) 0.124 (49) 0.010 (21) 0.003 (8) 0.004 (47) 0.079

GSE4045
RF 0.134 (24) 0.187 (37) 0.137 (21) 0.114 (27) 0.105 (33) 0.205
kNN 0.166 (43) 0.207 (38) 0.137 (50) 0.142 (3) 0.112 (6) 0.103
SVM 0.134 (24) 0.187 (37) 0.095 (47) 0.114 (29) 0.085 (47) 0.214

GSE14333
RF 0.421 (10) - 0.438 (31) 0.437 (34) 0.442 (44) 0.414
kNN 0.420 (8) - 0.455 (23) 0.450 (34) 0.448 (47) 0.438
SVM 0.427 (9) - 0.412 (1) 0.431 (1) 0.431 (1) 0.407

GSE24514
RF 0.054 (47) 0.063 (50) 0.036 (48) 0.032 (24) 0.034 (26) 0.041
kNN 0.032 (20) 0.041 (50) 0.036 (50) 0.039 (50) 0.038 (49) 0.041
SVM 0.041 (40) 0.059 (50) 0.037 (40) 0.034 (30) 0.036 (43) 0.070

Boldface numbers indicate the lowest classification error rates (highest accuracy among com-
pared methods) achieved using the corresponding classifier. The numbers in brackets represent
the size of the gene sets that corresponding to the minimum error rate.

The stability index proposed by Lausser et al. (2013) is used to measure the stability of

the compared method at different set sizes of features. A similar evaluation for stability
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selections of the considered feature selection approaches is conducted in Section 5.2.3.

Figure 6.3 shows stability scores of the feature selection methods for the GSE24514

dataset at different set sizes of selected features. Unlike themRMR and theMP approaches,

all the Wil-RS, POS and POSr methods keep their stability degree for different sizes of

feature sets. The POSr method provides a stability degree comparable with POS and the

well established Wil-RS method.
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Figure 6.3: Stability scores at different sizes of features sets that selected by Wil-RS, MP and POS methods
on ‘GSE24514’ dataset.

The prediction accuracy yielded by RF, kNN and SVM classifiers are also highlighted

in conjunction with stability. Figure 6.4 outlines the relation between the classification

accuracy and selection stability for the ‘Lung’ dataset. The stability scores were combined
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with their corresponding error rates yielded by the three different classifiers: RF; kNN;

SVM. Different dots for the same feature selection method represent different set sizes

of selected features. For all classifiers, POSr method achieves a good trade-off between

accuracy and stability. With the kNN classifier, POSr provides a better trade-off between

accuracy and stability than other compared methods. Whereas with the RF and SVM

classifiers, POSr is outperformed by POS method.
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Figure 6.4: The stability of the feature selection methods against the corresponding estimated error rates on
‘Lung’ dataset. The error rates have been measured by 50 repetitions of 10-fold cross validation technique for
three different classifiers: Random Forest (RF); k Nearest Neighbor (kNN); Support Vector Machine (SVM).



6.3. Summary 98

6.3 Summary

Genes selected according to a uni-variate relevance score, which treats each gene sepa-

rately, could have a rich redundancy degree among the resulted selections. To handle this

situation, the POS technique is further extended to minimize the potential redundancy

among the selected genes.

A scheme forminimizing selection redundancy isproposed. It uses a recursive approach

to assign a set of complementary discriminative genes. The proposed scheme, named

POSr, exploits the gene masks defined by POS to identify more integrated genes in terms

of their classification patterns. POSr detects minimum subsets of genes in a successive

way. The final selection is then produced by combining these subsets in order to reduce

the redundancy among selected genes.

The experimental results of the classification error rates show that the POSr provides

an effective approach in enhancing the prediction classification performance using less

number of features, by minimizing selection redundancy. The POSr technique produces

stable selections for different sizes of selected gene sets.

The next chapter concludes the overall thesis and discusses future plans.



Chapter 7

Conclusions and Future Plans

7.1 Conclusions

A statistical learning approach can be used to model and understand complex datasets.

By mapping the relationship between a set of features and a considered response, it can

build a predictive model based on a given training data. Both the prediction accuracy

and interpretability of the constructed model can be improved by performing the learning

process based only on selected relevant features to the considered response.

The foremost task of statistical learning is the classification which has applications

encompassing many important fields in modern biology, including analysis of microarray

data as well as other functional genomic experiments. Measurements of tens of thousands

of genes (features) are observed simultaneously for each observation (tissue sample). This

characteristic of high dimensionality has a great effect on the learning process from gene

expression microarray data since most of genes are noisy, redundant or non-relevant to

the considered learning task. In addition, the limited number of observations, tens to few
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hundreds, compared to the number of features provides another challenge for the learning

task.

The idea of selecting genes based on analysing the overlap between their expressions

across two classes (phenotypes), taking into account the proportions of overlapping ob-

servations, is considered in this thesis. To this end, intervals of core gene expressions are

defined. A gene mask that allows reporting a gene’s predictive power avoiding the effects

of outliers is robustly constructed for each gene. A novel score, named the Proportional

Overlapping Score (POS), is then proposed by which a gene’s overlapping degree is es-

timated. The constructed gene masks along-with the gene scores are utilized to assign

the minimum subset of genes that provide the maximum number of correctly classified

observations in a training set. This minimum subset of genes is then combined with the

top ranked genes according to the POS to produce a final gene selection.

Genes selected according to a uni-variate relevance score, which treats each gene sep-

arately, could have a rich redundancy degree among the resulted selections, because the

set of the top ranked genes may include redundant features. To handle this situation, the

idea is further extended to minimize the potential redundancy among the selected genes.

A scheme for minimizing selection redundancy is proposed. It extends the Proportional

Overlapping Score (POS) technique by using a recursive approach to assign a set of com-

plementary discriminative genes. The proposed scheme, named POSr, exploits the gene

masks defined by POS to identify more integrated genes in terms of their classification

patterns. POSr detects minimum subsets of genes in a successive way. The final selection

is then produced by combining these subsets in order to reduce the redundancy among

selected genes.



7.1. Conclusions 101

The proposed procedures, POS and its extended version POSr, are applied on eleven

publicly available gene expression datasets with different characteristics. Feature sets

of different sizes, up to 50 genes, are selected using widely used gene selection meth-

ods: Wilcoxon Rank Sum (Wil-RS); Minimum redundancy maximum relevance (mRMR);

MaskedPainter (MP); Iteratively sure independence screening (ISIS) along-with our pro-

posal. The prediction models of three different classifiers: Random Forest; k Nearest

Neighbor; Support Vector Machine are constructed with the selected features. The esti-

mated classification error rates obtained by the considered classifiers using 50 repetitions

of 10-fold cross validation technique are used for evaluating the performance of POS and

POSr.

For the Random Forest classifier, POS and POSr performed better than the compared

feature selection methods on the ‘Leukaemia’, ‘Breast’, ‘GSE24514’ and ‘GSE4045’ datasets

at all gene set sizes that have been investigated. For the ‘Lung’, ‘All’ and ‘Srbct’ datasets,

POS outperformed all other methods at: small (i.e., less than 7); moderate and large (i.e.,

> 2); large (i.e., > 5) sets of genes respectively. On average, POS improves the compared

techniques by between 5% and 51% of the misclassification error rates achieved by their

candidates. POSr provides the minimum error rates among all compared methods for the

‘Leukaemia’, ‘Lung’, ‘Srbct’ and ‘GSE4045’ datasets.

For the kNearestNeighbor classifier, POSoutperformedall othermethodson ‘Leukaemia’,

‘Breast’, ‘Lung’ and ‘GSE27854’. While it shows a comparable performance to the Masked-

Painter method on the ‘Srbct’. On average across all considered datasets, POS approach

improves the best performance of the compared methods by up to 20% of the misclassi-

fication error rates achieved using their selections at small set sizes less than 20 features.
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POSr provides theminimum error rates among the comparedmethods on the ‘Leukaemia’,

‘Lung’, ‘Breast’ and ‘GSE4045’ datasets.

For the Support Vector Machine classifier, POS and POSr outperformed all other meth-

ods on ‘Leukaemia’, ‘Breast’, ‘Srbct’, ‘Lung’, ‘GSE4045’ and ‘GSE24514’ datasets. Whereas

the MaskedPainter provides the minimum error rates on the ‘GSE14333’ dataset whilst the

Wilcoxon Rank Sum is the best method for ‘GSE27854’ data. On average across all consid-

ered datasets, POS and POSr approaches improves the best performance of the compared

methods by up to 26% of the misclassification error rates achieved using their selections at

different set sizes.

POS is an effective feature selection approach for identifying discriminative genes in

respect of a considered classification problem. Experimental results demonstrate that it

achieves the best performance, compared with the other feature selection methods, with

the three different classifiers. POSr is an effective approach in enhancing the prediction

classification performance of the considered classifier models using less number of fea-

tures, by minimizing selection redundancy, compared to the other studied gene selection

methods.

The stability of the selections yielded by the compared feature selection methods using

the cross validation technique has been highlighted. Stability scores computed at differ-

ent set sizes of the selected features show that the proposed approaches have a stable

performance for different sizes of selected features. The analysed relationship between

classification accuracies yielded by the three different classifiers and stability confirms that

the proposal can provide a good trade-off between stability and classification accuracy.

All procedures described in this thesis have been programmed into an Rpackage named
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‘propOverlap’. It is publicly available for download from the Comprehensive R Archive

Network (CRAN) repository (Mahmoud et al. 2014b). The reference manual is reported in

Appendix C.

7.2 Future Plans

There are many ideas that are briefly discussed here and will provide directions for future

research.

• This work focuses on analysing the overlapping between gene expressions for bi-

nary classification problems. One can investigate the possibility of extending POS

approach to handle multi-class situations.

• Constructing a framework for POS in which mutual information between genes are

considered in the final gene set might be another useful direction. Such a frame-

work could be effective in selecting the discriminative genes with a lower degree of

dependency.

• The defined score POSmeasures the overlapping degree by themeans of a uni-variate

basis. It treats independently each gene. One of the future plans is to examine the

possibility of measuring the overlap between expressions of different classes using a

multivariate approach

• All the work presented in this thesis is related to feature selection procedures within

functional genomic experiments and their effects in enhancing statistical learning.

Applying the proposal on datasets from different domains as well as different kinds
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of features can also be another direction.

• The defined genemasks characterize genes according to their role in the classification

problem. Clustering genes based on their masks can be one of the future plans. The

idea may be then extended for applications of other statistical learning tasks.



Appendix A

Availability of Supporting Data

The datasets supporting the results of this thesis are publicly available on various database

sources. These datasets are briefly described in the following sections.

A.1 The Lung Dataset

Lung Cancer Classification between malignant pleural mesothelioma (MPM) and adeno-

carcinoma (ADCA) of the lung. There are 181 observations (tissue samples), 31 MPM and

150 ADCA. Each observation is described by 12533 features (genes). The dataset can be

downloaded from [http://cilab.ujn.edu.cn/datasets.htm].

A.2 The Leukaemia Dataset

It was taken from a collection of leukaemia patient samples reported byGolub et al. (1999b).

This dataset often serves as benchmark for microarray analysis methods. It contains mea-

surements corresponding to Acute Lymphoblast Leukaemia (ALL) and Acute Myeloid
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Leukaemia (AML) samples from bone marrow and peripheral blood. It consisted of 72 ob-

servations: 25 samples of AML; 47 samples ofALL. Each observation ismeasured over 7129

features (genes). Thedataset canbedownloaded from[http://cilab.ujn.edu.cn/datasets.htm].

A.3 The Srbct Dataset

The small, round blue cell tumors (SRBCTs) of childhood, which include NeuroBlastoma

(NB), RhabdoMyoSarcoma (RMS), Non-Hodgkin Lymphoma (NHL) and the EWing family

of tumors (EWS) are so named because of their similar appearance on routine histology.

The dataset consists of 83 observations, 29, 25, 11 and 18 observations of NB, RMS, NHL

and EWS respectively described by 2308 genes. Since this thesis considers only binary

classification problems, the two classes with the topmost number of observations, i.e. NB

andRMS, are only considered for the analysis. Thedataset is available in [http://www.gems-

system.org/].

A.4 The Prostate Dataset

Microarray gene expressions of 102 patients, 52 patients with prostate tumors and 50

normal patients, are reported. The dataset includes 10509 genes. It can be downloaded

from [http://www.gems-system.org/].
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A.5 The Carcinoma Dataset

The dataset contains measurements of expression levels in colon adenocarcinomas for 18

patients. Expression levels of the same RNAs were also measured in 18 normal colon

tissues. It observes 7457 genes for the considered 36 colon tissues. The dataset is available

in [http://genomics-pubs.princeton.edu/oncology/].

A.6 The Colon Dataset

The data contains expression measurements for 62 colon tissues (40 tumors and 22 nor-

mal samples) observed over 2000 genes. It is available in the [Bioconductor] repository,

[http://www.bioconductor.org/] from the R package ‘ColonCA’.

A.7 The All Dataset

The dataset consists of microarrays from 128 different individuals with Acute Lymphoblas-

tic Leukaemia (ALL). It classifies patients into two classes based on the type and stage of

the disease: 95 observations from B-cell ALL; 33 observations from T-cell ALL. Measure-

ments of 12625 genes are reported. The dataset is available in the [Bioconductor] repository,

[http://www.bioconductor.org/] from the R package ‘ALL’.

A.8 The Breast Dataset

Gene expression data from breast cancer study are reported in this dataset. It includes 4948

genesmeasured in 78 patients: 34 with Distant Metastases (DM); 44 without distant Metas-
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tases (NODM). It is available in the [Bioconductor] repository, [http://www.bioconductor.org/]

from the R package ‘cancerdata’.

A.9 The GSE24514 Dataset

Expression profiling of 34 MicroSatellite Instability (MSI) colorectal cancers and 15 normal

colonic mucosas was performed using Affymetrix Human Genome U133A Array (HG-

U133A). It is available in the [GeneExpressionOmnibus (GEO)] repository [http://www.ncbi.nlm.nih.gov

id’s:GSE24514].

A.10 The GSE4045 Dataset

The dataset includes gene expressions of 37 colorectal cancer (CRC) tumors: 29 serrated

CRC; 8 conventional CRC. The study was performed using Affymetrix Human Genome

U133A Array (HG-U133A). It is available in the [Gene Expression Omnibus (GEO)] repos-

itory [http://www.ncbi.nlm.nih.gov/geo/][accession id’s:GSE4045].

A.11 The GSE14333 Dataset

The mRNA from 290 primary colorectal tumour samples were extracted and hybridized to

Affymetrix Human Genome U133 Plus 2.0 Array (HG-U133 Plus 2). The dataset contains

44, 94, 91 and 61 observations with colorectal cancer of tumor Duck stages A, B, C and

D respectively. Patients with stages A and B are combined in a single class representing

non-invasive tumors, against patients with stage C, which represents invasive tumors.
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While, stage D is excluded from the analysis. The data is available in the [Gene Expression

Omnibus (GEO)] repository [http://www.ncbi.nlm.nih.gov/geo/][accession id’s:GSE14333].

A.12 The GSE27854 Dataset

Expression profiles in 115 patients with colorectal cancer tumors were invistigated using an

AffymetrixHumanGenomeU133 Plus 2.0 Array (HG-U133 Plus 2). The data consists of 16,

41, 35 and 23 observations of tumor ‘Union Internationale Contre le Cancer’ (UICC) stages I,

II, III and IV respectively. A class composedof patientswith stages I and II is defined against

another class involvingpatientswith III and IVstages. It is available in the [GeneExpression

Omnibus (GEO)] repository [http://www.ncbi.nlm.nih.gov/geo/][accession id’s:GSE27854].



Appendix B

Classification Error Rates

B.1 Classification Error Rates Obtained by Random Forest

Using different feature selection methods

Average classification error rates yielded by the Random Forest classifier using Wilcoxon

rank sum (Wil-RS), Minimum redundancy maximum relevance (mRMR), MaskedPainter

(MP) and proportional overlapping scores (POS) feature selection techniques on ‘Breast’,

‘Srbct’, ‘Prostate’, ‘All’, ‘Lung’, ‘Carcinoma’, ‘GSE4045’, ‘GSE14333’ and ‘GSE27854’ datasets

over 50 repetitions of 10-fold cross validation are presented in nine tables, a table for each

dataset. Each row provides the average classification error rate at a specific number of

selected genes (reported in the first column).
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Table B.1: ‘Breast’ dataset

N.genes Wil-RS mRMR MP POS

2 0.437 0.483 0.499 0.333

3 0.439 0.475 0.474 0.330

4 0.433 0.471 0.463 0.349

5 0.428 0.474 0.453 0.342

6 0.422 0.462 0.443 0.350

7 0.421 0.458 0.436 0.340

8 0.426 0.458 0.433 0.336

9 0.418 0.459 0.432 0.331

10 0.417 0.459 0.425 0.338

20 0.396 0.448 0.374 0.331

30 0.375 0.442 0.367 0.318

40 0.384 0.425 0.365 0.317

50 0.371 0.407 0.357 0.310

Table B.2: ‘Srbct’ dataset

N.genes Wil-RS mRMR MP POS

2 0.083 0.414 0.046 0.085

3 0.095 0.369 0.013 0.064

4 0.103 0.335 0.029 0.041

5 0.081 0.315 0.026 0.028

6 0.079 0.281 0.026 0.025

7 0.088 0.272 0.028 0.022

8 0.091 0.246 0.026 0.018

9 0.092 0.229 0.027 0.022

10 0.097 0.222 0.026 0.022

20 0.085 0.153 0.012 0.006

30 0.077 0.097 0.011 0.006

40 0.081 0.095 0.012 0.006

50 0.090 0.077 0.014 0.006
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Table B.3: ‘Prostate’ dataset

N.genes Wil-RS mRMR MP POS

2 0.435 0.415 0.117 0.117

3 0.481 0.390 0.098 0.083

4 0.470 0.366 0.097 0.088

5 0.452 0.345 0.092 0.086

6 0.433 0.324 0.089 0.091

7 0.432 0.313 0.087 0.088

8 0.433 0.294 0.090 0.092

9 0.445 0.274 0.088 0.092

10 0.440 0.265 0.085 0.088

20 0.218 0.192 0.070 0.071

30 0.215 0.157 0.071 0.068

40 0.216 0.158 0.071 0.065

50 0.200 0.140 0.069 0.062

Table B.4: ‘All’ dataset

N.genes Wil-RS mRMR MP POS

2 0.314 0.315 0.020 0.027

3 0.295 0.287 0.012 0.011

4 0.284 0.284 0.016 0.010

5 0.269 0.269 0.010 0.005

6 0.262 0.261 0.007 0.005

7 0.262 0.250 0.006 0.006

8 0.260 0.239 0.005 0.002

9 0.272 0.236 0.006 0.005

10 0.274 0.229 0.005 0.005

20 0.246 0.114 0.002 0.000

30 0.225 0.036 0.001 0.000

40 0.143 0.024 0.000 0.000

50 0.152 0.011 0.000 0.000
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Table B.5: ‘Lung’ dataset

N.genes Wil-RS mRMR MP POS

2 0.202 0.144 0.043 0.034

3 0.179 0.120 0.032 0.029

4 0.155 0.106 0.033 0.026

5 0.135 0.092 0.026 0.019

6 0.126 0.079 0.021 0.015

7 0.103 0.071 0.014 0.016

8 0.085 0.067 0.013 0.013

9 0.081 0.062 0.013 0.015

10 0.081 0.059 0.013 0.014

20 0.068 0.044 0.010 0.013

30 0.040 0.041 0.009 0.009

40 0.047 0.031 0.008 0.008

50 0.048 0.016 0.008 0.007

Table B.6: ‘Carcinoma’ dataset

N.genes Wil-RS mRMR MP POS

2 0.472 0.347 0.038 0.073

3 0.508 0.280 0.025 0.056

4 0.290 0.243 0.022 0.063

5 0.270 0.221 0.019 0.049

6 0.120 0.199 0.022 0.056

7 0.114 0.182 0.023 0.049

8 0.097 0.157 0.025 0.036

9 0.095 0.140 0.026 0.038

10 0.081 0.131 0.023 0.035

20 0.028 0.065 0.027 0.026

30 0.011 0.039 0.025 0.027

40 0.004 0.023 0.026 0.027

50 0.004 0.021 0.027 0.029
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Table B.7: ‘GSE4045’ dataset

N.genes Wil-RS mRMR MP POS

2 0.201 0.266 0.208 0.186

3 0.195 0.245 0.180 0.152

4 0.193 0.236 0.194 0.156

5 0.178 0.223 0.172 0.126

6 0.182 0.228 0.169 0.129

7 0.177 0.218 0.160 0.130

8 0.176 0.213 0.155 0.136

9 0.172 0.217 0.151 0.132

10 0.172 0.211 0.147 0.132

20 0.143 0.193 0.141 0.125

30 0.140 0.197 0.149 0.122

40 0.141 0.192 0.152 0.121

50 0.143 0.192 0.154 0.134

Table B.8: ‘GSE14333’ dataset

N.genes Wil-RS MP POS

2 0.454 0.491 0.474

3 0.440 0.485 0.481

4 0.439 0.490 0.476

5 0.435 0.483 0.478

6 0.428 0.475 0.474

7 0.426 0.472 0.474

8 0.424 0.472 0.475

9 0.423 0.471 0.475

10 0.421 0.471 0.474

20 0.438 0.460 0.461

30 0.449 0.438 0.445

40 0.453 0.445 0.441

50 0.452 0.442 0.445
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Table B.9: ‘GSE27854’ dataset

N.genes Wil-RS MP POS

2 0.446 0.475 0.465

3 0.431 0.467 0.467

4 0.420 0.466 0.465

5 0.418 0.462 0.452

6 0.408 0.457 0.451

7 0.410 0.459 0.452

8 0.407 0.459 0.462

9 0.405 0.448 0.459

10 0.409 0.450 0.463

20 0.405 0.456 0.473

30 0.414 0.451 0.471

40 0.408 0.450 0.472

50 0.416 0.444 0.484
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B.2 Classification Error Rates Obtained by kNearest Neigh-

bor Using different feature selection methods

Average classification error rates yieldedby the kNearestNeighbor classifierusingWilcoxon

rank sum (Wil-RS), Minimum redundancy maximum relevance (mRMR), MaskedPainter

(MP) and proportional overlapping scores (POS) feature selection techniques on ‘Breast’,

‘Srbct’, ‘Lung’, ‘GSE4045’, ‘GSE14333’ and ‘GSE27854’ datasets over 50 repetitions of 10-

fold cross validation are presented in six tables, a table for each dataset. Each row provides

the average classification error rate at a specific number of selected genes (reported in the

first column).

Table B.10: ‘Breast’ dataset

N.genes Wil-RS mRMR MP POS

1 0.425 0.486 0.510 0.417

2 0.463 0.474 0.480 0.368

3 0.471 0.465 0.468 0.360

4 0.457 0.452 0.447 0.356

5 0.467 0.456 0.434 0.360

6 0.470 0.453 0.432 0.348

7 0.470 0.450 0.418 0.351

8 0.454 0.449 0.415 0.342

9 0.451 0.441 0.417 0.340

10 0.441 0.439 0.406 0.337

20 0.430 0.423 0.348 0.340

30 0.438 0.431 0.354 0.341

40 0.417 0.413 0.359 0.362

50 0.438 0.404 0.354 0.377
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Table B.11: ‘Srbct’ dataset

N.genes Wil-RS mRMR MP POS

1 0.422 0.452 0.064 0.135

2 0.180 0.435 0.094 0.098

3 0.157 0.398 0.054 0.063

4 0.185 0.376 0.043 0.050

5 0.189 0.361 0.043 0.051

6 0.252 0.345 0.042 0.046

7 0.299 0.332 0.040 0.044

8 0.364 0.321 0.041 0.040

9 0.394 0.308 0.041 0.040

10 0.424 0.308 0.041 0.037

20 0.367 0.265 0.018 0.007

30 0.383 0.246 0.005 0.008

40 0.477 0.192 0.008 0.009

50 0.460 0.099 0.011 0.009

Table B.12: ‘Lung’ dataset

N.genes Wil-RS mRMR MP POS

1 0.430 0.162 0.062 0.033

2 0.426 0.139 0.051 0.035

3 0.416 0.125 0.041 0.034

4 0.370 0.112 0.039 0.024

5 0.335 0.105 0.035 0.021

6 0.301 0.095 0.033 0.019

7 0.290 0.087 0.031 0.017

8 0.281 0.081 0.028 0.015

9 0.257 0.080 0.027 0.013

10 0.234 0.078 0.024 0.012

20 0.239 0.064 0.017 0.018

30 0.239 0.065 0.020 0.022

40 0.217 0.057 0.023 0.025

50 0.213 0.028 0.026 0.021
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Table B.13: ‘GSE4045’ dataset

N.genes Wil-RS mRMR MP POS

1 0.180 0.235 0.227 0.213

2 0.132 0.228 0.172 0.165

3 0.125 0.231 0.153 0.142

4 0.124 0.227 0.144 0.166

5 0.115 0.225 0.148 0.160

6 0.115 0.231 0.153 0.172

7 0.114 0.229 0.147 0.171

8 0.111 0.231 0.149 0.171

9 0.106 0.229 0.148 0.166

10 0.110 0.221 0.150 0.165

20 0.083 0.211 0.147 0.157

30 0.070 0.221 0.147 0.154

40 0.070 0.209 0.144 0.158

50 0.078 0.214 0.137 0.166

Table B.14: ‘GSE14333’ dataset

N.genes Wil-RS MP POS

1 0.469 0.472 0.472

2 0.443 0.480 0.476

3 0.434 0.488 0.474

4 0.431 0.488 0.478

5 0.429 0.489 0.482

6 0.422 0.487 0.483

7 0.419 0.483 0.483

8 0.419 0.480 0.482

9 0.420 0.475 0.482

10 0.423 0.476 0.483

20 0.443 0.459 0.470

30 0.454 0.468 0.456

40 0.453 0.482 0.456

50 0.453 0.497 0.456



B.2. Classification Error Rates Obtained by kNearest Neighbor 119

Table B.15: ‘GSE27854’ dataset

N.genes Wil-RS MP POS

1 0.432 0.491 0.492

2 0.427 0.463 0.483

3 0.420 0.460 0.472

4 0.426 0.463 0.463

5 0.434 0.459 0.439

6 0.431 0.460 0.436

7 0.437 0.467 0.431

8 0.436 0.469 0.431

9 0.441 0.463 0.428

10 0.442 0.464 0.428

20 0.453 0.480 0.431

30 0.449 0.476 0.425

40 0.454 0.474 0.432

50 0.456 0.475 0.437
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B.3 Classification Error Rates Obtained by Support Vector

Machine Using different feature selection methods

Average classification error rates yielded by the Support Vector Machine classifier us-

ing Wilcoxon rank sum (Wil-RS), Minimum redundancy maximum relevance (mRMR),

MaskedPainter (MP) and proportional overlapping scores (POS) feature selection tech-

niques on ‘Breast’, ‘Srbct’, ‘Lung’, ‘GSE4045’, ‘GSE14333’ and ‘GSE27854’ datasets over 50

repetitions of 10-fold cross validation are presented in six tables, a table for each dataset.

Each row provides the average classification error rate at a specific number of selected

genes (reported in the first column).

Table B.16: ‘Breast’ dataset

N.genes Wil-RS mRMR MP POS

1 0.417 0.481 0.488 0.398

2 0.422 0.470 0.458 0.324

3 0.432 0.466 0.445 0.359

4 0.485 0.454 0.432 0.338

5 0.489 0.461 0.424 0.339

6 0.497 0.457 0.415 0.334

7 0.496 0.456 0.410 0.343

8 0.486 0.447 0.407 0.342

9 0.480 0.446 0.404 0.332

10 0.468 0.444 0.405 0.328

20 0.426 0.443 0.363 0.321

30 0.401 0.440 0.366 0.321

40 0.413 0.426 0.365 0.324

50 0.411 0.407 0.361 0.329
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Table B.17: ‘Srbct’ dataset

N.genes Wil-RS mRMR MP POS

1 0.421 0.454 0.068 0.134

2 0.176 0.419 0.041 0.099

3 0.174 0.397 0.014 0.060

4 0.152 0.361 0.017 0.029

5 0.143 0.343 0.012 0.018

6 0.149 0.311 0.011 0.006

7 0.150 0.303 0.015 0.003

8 0.165 0.286 0.015 0.003

9 0.184 0.268 0.016 0.004

10 0.180 0.266 0.017 0.004

20 0.177 0.213 0.011 0.018

30 0.152 0.161 0.023 0.022

40 0.162 0.147 0.025 0.019

50 0.131 0.126 0.029 0.018

Table B.18: ‘Lung’ dataset

N.genes Wil-RS mRMR MP POS

1 0.173 0.153 0.065 0.040

2 0.175 0.133 0.054 0.040

3 0.155 0.122 0.048 0.032

4 0.144 0.110 0.041 0.025

5 0.136 0.100 0.034 0.020

6 0.133 0.090 0.030 0.020

7 0.116 0.084 0.027 0.018

8 0.103 0.080 0.026 0.018

9 0.102 0.074 0.026 0.017

10 0.103 0.072 0.024 0.018

20 0.081 0.049 0.022 0.015

30 0.073 0.050 0.022 0.013

40 0.080 0.043 0.023 0.012

50 0.066 0.026 0.024 0.011
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Table B.19: ‘GSE4045’ dataset

N.genes Wil-RS mRMR MP POS

1 0.201 0.330 0.221 0.249

2 0.201 0.266 0.186 0.186

3 0.195 0.245 0.166 0.152

4 0.193 0.236 0.153 0.156

5 0.178 0.223 0.149 0.126

6 0.182 0.228 0.154 0.129

7 0.177 0.218 0.143 0.130

8 0.176 0.213 0.143 0.136

9 0.172 0.217 0.139 0.132

10 0.172 0.211 0.134 0.132

20 0.143 0.193 0.114 0.125

30 0.140 0.197 0.106 0.122

40 0.141 0.192 0.098 0.121

50 0.143 0.192 0.098 0.134

Table B.20: ‘GSE14333’ dataset

N.genes Wil-RS MP POS

1 0.447 0.412 0.431

2 0.453 0.447 0.455

3 0.440 0.463 0.461

4 0.437 0.465 0.464

5 0.431 0.465 0.471

6 0.429 0.461 0.471

7 0.430 0.454 0.475

8 0.427 0.452 0.474

9 0.427 0.451 0.475

10 0.431 0.454 0.470

20 0.460 0.440 0.472

30 0.468 0.432 0.460

40 0.472 0.423 0.463

50 0.468 0.423 0.462



B.3. Classification Error Rates Obtained by Support Vector Machine 123

Table B.21: ‘GSE27854’ dataset

N.genes Wil-RS MP POS

1 0.435 0.465 0.494

2 0.458 0.483 0.480

3 0.447 0.479 0.470

4 0.443 0.477 0.479

5 0.445 0.485 0.466

6 0.440 0.476 0.470

7 0.443 0.477 0.459

8 0.443 0.483 0.456

9 0.438 0.477 0.459

10 0.445 0.475 0.464

20 0.436 0.477 0.468

30 0.440 0.482 0.466

40 0.434 0.475 0.472

50 0.439 0.472 0.475
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Package ‘propOverlap’
February 20, 2015

Type Package

Title Feature (gene) selection based on the Proportional Overlapping
Scores

Version 1.0

Date 2014-09-15

Author
Osama Mahmoud, Andrew Harrison, Aris Perperoglou, Asma Gul, Zardad Khan, Berthold Lausen

Maintainer Osama Mahmoud <ofamah@essex.ac.uk>

Description A package for selecting the most relevant features (genes) in the high-dimensional bi-
nary classification problems. The discriminative features are identified using analyzing the over-
lap between the expression values across both classes. The package includes functions for mea-
suring the proportional overlapping score for each gene avoiding the outliers ef-
fect. The used measure for the overlap is the one defined in the ``Proportional Overlap-
ping Score (POS)'' technique for feature selection. A gene mask which represents a gene's classi-
fication power can also be produced for each gene (feature). The set size of the se-
lected genes might be set by the user. The minimum set of genes that correctly classify the maxi-
mum number of the given tissue samples (observations) can be also produced.

Depends R (>= 2.10), Biobase

LazyLoad yes

License GPL (>= 2)

Repository CRAN

NeedsCompilation no

Date/Publication 2014-09-15 17:06:03
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propOverlap-package Feature (gene) selection based on the Proportional Overlapping
Scores.

Description

A package for selecting the most relevant features (genes) in the high-dimensional binary classifi-
cation problems. The discriminative features are identified using analyzing the overlap between the
expression values across both classes. The package includes functions for measuring the propor-
tional overlapping score for each gene avoiding the outliers effect. The used measure of the overlap
is the one defined in the “Proportional Overlapping Score (POS)” technique for feature selection,
see ‘References’ section below. A gene mask which represents a gene’s classification power can
also be produced for each gene (feature). The set size of the selected genes might be set by the user.
The minimum set of genes that correctly classify the maximum number of the given tissue samples
(observations) can be also produced.

Details

Package: propOverlap
Type: Package
Version: 1.0
Date: 2014-09-15
License: GPL (>= 2)

Author(s)

Osama Mahmoud, Andrew Harrison, Aris Perperoglou, Asma Gul, Zardad Khan, Berthold Lausen
Maintainer: Osama Mahmoud <ofamah@essex.ac.uk>

References

Mahmoud O., Harrison A., Perperoglou A., Gul A., Khan Z., Metodiev M. and Lausen B. (2014)
A feature selection method for classification within functional genomics experiments based on the
proportional overlapping score. BMC Bioinformatics, 2014, 15:274
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CI.emprical Computing the Core Intervals for Both Classes.

Description

CI.emprical is used to compute the core interval boundaries for each class.

Usage

CI.emprical(ES, Y)

Arguments

ES gene (feature) matrix: P, number of genes, by N, number of samples(observations).

Y a vector of length N for samples’ class label.

Value

CI.emprical returns an object of class “data.frame” which has P rows and 4 columns. The first
two columns represent a1, the minimum boundary of the first class, and b1, the maximum boundary
of the first class, respectively. Whereas, the last two columns represent a2, the minimum boundary
of the second class, and b2, the maximum boundary of the second class, respectively.

Author(s)

Osama Mahmoud <ofamah@essex.ac.uk>

References

Mahmoud O., Harrison A., Perperoglou A., Gul A., Khan Z., Metodiev M. and Lausen B. (2014)
A feature selection method for classification within functional genomics experiments based on the
proportional overlapping score. BMC Bioinformatics, 2014, 15:274.

Examples

data(lung)
GenesExpression <- lung[1:12533,] #define the features matrix
Class <- lung[12534,] #define the observations' class labels
CoreIntervals <- CI.emprical(GenesExpression, Class)
CoreIntervals[1:10,] #show classes' core interval for the first 10 features
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GMask Producing Gene Masks.

Description

GMask produces the masks of features (genes). Each gene mask reports the samples that can unam-
biguously be assigned to their correct target classes by this gene.

Usage

GMask(ES, Core, Y)

Arguments

ES gene (feature) matrix: P, number of genes, by N, number of samples(observations).

Core a data.frame of the core interval boundaries for both classes. It should have
the same number of rows as ES and 4 columns (the minimum and the maximum
of the first class’s core interval followed by the minimum and the maximum of
the second class’s core interval). See the returned value of the CI.emprical.

Y a vector of length N for samples’ class label.

Details

GMask gives the gene masks that can represent the capability of genes to correctly classify each
sample. Such a mask represents a gene’s classification power. Each element of a mask is set either
to 1 or 0 based on whether the corresponding sample (observation) could be unambiguously assign
to its correct target class by the considered gene or not respectively.

Value

It returns a P by N matrix with elements of zeros and ones.

Author(s)

Osama Mahmoud <ofamah@essex.ac.uk>

References

Mahmoud O., Harrison A., Perperoglou A., Gul A., Khan Z., Metodiev M. and Lausen B. (2014)
A feature selection method for classification within functional genomics experiments based on the
proportional overlapping score. BMC Bioinformatics, 2014, 15:274.

See Also

CI.emprical for the core interval boundaries.
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Examples

data(leukaemia)
GenesExpression <- leukaemia[1:7129,] #define the features matrix
Class <- leukaemia[7130,] #define the observations' class labels
Gene.Masks <- GMask(GenesExpression, CI.emprical(GenesExpression, Class), Class)
Gene.Masks[1:100,] #show the masks of the first 100 features

leukaemia Leukaemia data set.

Description

The leukemia dataset was taken from a collection of leukemia patient samples reported by Golub et.
al., (1999). This dataset often serves as a benchmark for microarray analysis methods. It contains
gene expressions corresponding to acute lymphoblast leukemia (ALL) and acute myeloid leukemia
(AML) samples from bone marrow and peripheral blood. The dataset consisted of 72 samples: 49
samples of ALL; 23 samples of AML. Each sample is measured over 7,129 genes.

Usage

data(leukaemia)

Format

A matrix with 7130 rows (7129 rows show the gene expressions while the last row reports the
corresponding sample’s class label), and 72 columns represent the samples. The samples class’s
label coded as follows:

1 acute lymphoblast leukemia sample (ALL).

2 acute myeloid leukemia sample (AML).

Source

http://cilab.ujn.edu.cn/datasets.htm

References

Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Down-
ing JR, Caligiuri MA, Bloomfield CD, Lander ES. (1999) Molecular classification of cancer: class
discovery and class prediction by gene expression monitoring. Science: 286 (5439), 531-537.

Examples

data(leukaemia)
str(leukaemia)

http://cilab.ujn.edu.cn/datasets.htm
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lung Lung cancer data set.

Description

Gene expression data for lung cancer classification between two classes: adenocarcinoma (ADCA);
malignant pleural mesothe-lioma (MPM). The lung data set contains 181 tissue samples (150 ADCA
and 31 MPM). Each sample is described by 12533 genes.

Usage

data(lung)

Format

A matrix with 12534 rows (12533 rows show the gene expressions for 181 tissue samples, reported
in columns, while the last row reports the corresponding sample’s class label). The samples class’s
label coded as follows:

1 adenocarcinoma sample (ADCA).

2 malignant pleural mesothe-lioma sample (MPM).

Source

http://cilab.ujn.edu.cn/datasets.htm

References

Gordon GJ, Jensen RV, Hsiao L-L, Gullans SR, Blumenstock JE, Ramaswamy S, Richards WG,
Sugarbaker DJ, Bueno R. (2002) Translation of microarray data into clinically relevant cancer
diagnostic tests using gene expression ratios in lung cancer and mesothelioma. Cancer research:
62(17), 4963-4967.

Examples

data(lung)
str(lung)

http://cilab.ujn.edu.cn/datasets.htm
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POS Calculating the proportional Overlapping Scores.

Description

POS computes the proportional overlapping scores of the given genes (features). This score measures
the overlap degree between gene expression values across various classes. It produces a value lies in
the interval [0,1]. A lower score denotes gene with higher discriminative power for the considered
classification problem.

Usage

POS(ES, Core, Y)

Arguments

ES gene (feature) matrix: P, number of genes, by N, number of samples(observations).

Core a data.frame of the core interval boundaries for both classes. It should have
the same number of rows as ES and 4 columns (the minimum and the maximum
of the first class’s core interval followed by the minimum and the maximum of
the second class’s core interval). See the returned value of the CI.emprical.

Y a vector of length N for samples’ class label.

Details

For each gene, POS computes a measure that estimates the overlapping degree between the expres-
sion intervals of different classes. For estimating the overlap, POS measure takes into account three
factors: the length of the overlapping region; number of the overlapped samples (observations); the
proportion of each class’s overlapped samples to the total number of overlapping samples.

Value

It returns a vector of length P for ‘POS’ measures of all genes (features).

Author(s)

Osama Mahmoud <ofamah@essex.ac.uk>

References

Mahmoud O., Harrison A., Perperoglou A., Gul A., Khan Z., Metodiev M. and Lausen B. (2014)
A feature selection method for classification within functional genomics experiments based on the
proportional overlapping score. BMC Bioinformatics, 2014, 15:274.

See Also

CI.emprical for the core interval boundaries and GMask for the gene masks.
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Examples

data(leukaemia)
Score <- POS(leukaemia[1:7129,], CI.emprical(leukaemia[1:7129,],
leukaemia[7130,]), leukaemia[7130,])
Score[1:5] #show the proportional overlapping scores for the first 5 features
summary(Score) #show the the summary of the scores of all features.

RDC Assiging the Relative Dominant Class.

Description

RDC associates genes (features) with the class which it is more able to distingish. For each gene, a
class that has the highest proportion, relative to classes’ size, of correctly assigned samples (obser-
vations) is reported as the relative dominant class for the considered gene.

Usage

RDC(GMask, Y)

Arguments

GMask gene (feature) mask matrix: P, number of genes, by N, number of samples(observations)
with elements of zeros and ones. See the returned value of the GMask.

Y a vector of length N for samples’ class label.

Value

RDC returns a vector of length P. Each element’s value is either 1 or 2 indicating which class label is
reported as the relative dominant class for the corresponding gene (feature).

Author(s)

Osama Mahmoud <ofamah@essex.ac.uk>

References

Mahmoud O., Harrison A., Perperoglou A., Gul A., Khan Z., Metodiev M. and Lausen B. (2014)
A feature selection method for classification within functional genomics experiments based on the
proportional overlapping score. BMC Bioinformatics, 2014, 15:274.

See Also

GMask for gene (feature) mask matrix.
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Examples

data(lung)
Class <- lung[12534,] #define the observations' class labels
Gene.Masks <- GMask(lung[1:12533,], CI.emprical(lung[1:12533,], Class), Class)
RelativeDC <- RDC(Gene.Masks, Class)
RelativeDC[1:10] #show the relative dominant classes for the first 10 features
table(RelativeDC) #show the number of assignments for each class

Sel.Features Gene (Feature) Selection.

Description

Sel.Feature selects the most discriminative genes (features) among the given ones.

Usage

Sel.Features(ES, Y, K = "Min", Verbose = FALSE)

Arguments

ES gene (feature) matrix: P, number of genes, by N, number of samples (observa-
tions).

Y a vector of length N for samples’ class label.

K the number of genes to be selected. The default is to give the minimum subset of
genes that correctly classify the maximum number of the given tissue samples
(observations). Alternatively, K should be a positive integer.

Verbose logical. If TRUE, more information about the selected genes are returned.

Details

Sel.Feature selects the most relevant genes (features) in the high-dimensional binary classifica-
tion problems. The discriminative genes are identified using analyzing the overlap between the
expression values across both classes. The “POS” technique has been applied to produce the se-
lected set of genes. A proportional overlapping score measures the overlapping degree avoiding the
outliers effect for each gene. Each gene is described by a robust mask that represents its discrimina-
tive power. The constructed masks along with the gene scores are exploited to produce the selected
subset of genes.

Value

If K is specified as ‘Min’ (the default), a list containing the following components is returned:

Features A matrix of the indices of selected genes with their POS measures. See POS.

Covered.Obs A vector showing the indices of the observations that have been covered by the
returned minimum subset of genes.
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If K is specified as a positive integer, a list containing the following components is returned:

features A vector of the indices of the selected genes.

nMin.Features The number of genes included in the minimum subset.

Measures Available only when Verbose is TRUE. It is an object with class “data.frame”
which contains 3 columns: the indices of the selected genes; the POS measures
of the selected genes (see POS); the status that reports on which basis a gene is
selected (“Min.Set”: the gene is a member of the selected minimum subset, 1:
the gene has a low POS score and its relative dominant class is the first class or
2: the gene has a low POS score and its relative dominant class is the second
class), see RDC.

Note

Verbose is only needed when K is specified. If K is set to “Min” (default), all information are
automatically returned.

Author(s)

Osama Mahmoud <ofamah@essex.ac.uk>

References

Mahmoud O., Harrison A., Perperoglou A., Gul A., Khan Z., Metodiev M. and Lausen B. (2014)
A feature selection method for classification within functional genomics experiments based on the
proportional overlapping score. BMC Bioinformatics, 2014, 15:274.

See Also

POS for calculating the proportional overlapping scores and RDC for assigning the relative dominant
class.

Examples

data(leukaemia)
GenesExpression <- leukaemia[1:7129,] #define the features matrix
Class <- leukaemia[7130,] #define the observations' class labels
## select the minimum subset of features
Selection <- Sel.Features(GenesExpression, Class)
attributes(Selection)
(Candidates <- Selection$Features) #return the selected features
(Covered.observations <- Selection$Covered.Obs) #return the covered observations by the selection
## select a specific number of features
Selection.k <- Sel.Features(GenesExpression, Class, K=10, Verbose=TRUE)
Selection.k$Features
Selection.k$nMin.Features #return the size of the minimum subset of genes
Selection.k$Measures #return the selected features' information
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