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Abstract 

Document classification has been involved in a variety of applications, such as 

phishing and fraud detection, news categorisation, and information retrieval. This 

thesis aims to provide novel solutions to several important problems presented by 

document classification. First, an improved Principal Components Analysis (PCA), 

based on similarity and correlation criteria instead of covariance, is proposed, which 

aims to capture low-dimensional feature subset that facilitates improved performance 

in text classification. The experimental results have demonstrated the advantages and 

usefulness of the proposed method for text classification in high-dimensional feature 

space in terms of the number of features required to achieve the best classification 

accuracy. Second, two hybrid feature-subset selection methods are proposed based on 

the combination (via either union or intersection) of the results of both supervised (in 

one method) and unsupervised (in the other method) filter approaches prior to the use 

of a wrapper, leading to low-dimensional feature subset that can achieve both high 

classification accuracy and good interpretability, and spend less processing time than 

most current methods. The experimental results have demonstrated the effectiveness 

of the proposed methods for feature subset selection in high-dimensional feature 

space in terms of the number of selected features and the processing time spent to 

achieve the best classification accuracy. Third, a class-specific (supervised) pre-

trained approach based on a sparse autoencoder is proposed for acquiring low-

dimensional interesting structure of relevant features, which can be used for high-

performance document classification. The experimental results have demonstrated the 

merit of this proposed method for document classification in high-dimensional feature 
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space, in terms of the limited number of features required to achieve good 

classification accuracy. Finally, deep classifier structures associated with a stacked 

autoencoder (SAE) for higher-level feature extraction are investigated, aiming to 

overcome the difficulties experienced in training deep neural networks with limited 

training data in high-dimensional feature space, such as overfitting and 

vanishing/exploding gradients. This investigation has resulted in a three-stage 

learning algorithm for training deep neural networks. In comparison with support 

vector machines (SVMs) combined with SAE and Deep Multilayer Perceptron 

(DMLP) with random weight initialisation, the experimental results have shown the 

advantages and effectiveness of the proposed three-stage learning algorithm. 
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Chapter 1 

1 Introduction 

1.1 Motivation 

Data science has attracted widespread attention in academic and business circles in 

recent years, and many real-world problems associated with text data have been 

studied in the context of natural language processing (NLP). Examples of such 

problems include learning representation and text categorization for structured 

information extraction (Arras et al., 2017). Data mining or knowledge discovery has 

played a big role in data science, which can be described as the management, analysis, 

and extraction of useful information from and the use of the resources inherent in data 

(Roiger, 2017; Zins, 2007). Document representation can be defined as a process that 

extracts the terms used (words and phrases) from the text of documents and weights 

each term in order to indicate its importance within the document (Cobern & Loving, 

2001). The representation of a set of documents as a set of vectors in a common vector 

space is known as the vector space model (VSM) and is fundamental to scoring 

documents for document classification (Abdulhussain & Gan, 2016). Learning feature 

representation is a very important pre-processing step in pattern recognition in high-

dimensional feature space (Chandrasekaran et al., 2006; Lewis et al., 2004; Ng, 2011; 

Roiger, 2017). Text or document classification has been involved in a variety of 

applications such as phishing detection, news categorisation, and information retrieval. 

The main dilemma in text categorisation (TC) is how to reduce the potentially high 

feature dimensionality by looking for the best combination of features (feature 



  Chapter 1: Introduction 

2 

 

selection or dimensionality reduction) that can achieve high classification accuracy. 

The interpretability of the results of data mining is also an important issue and is 

relevant in many fields, such as social sciences and medicine (García et al., 2009; 

Schielzeth, 2010). The dimensionality reduction achieved by feature selection allows 

for significant improvements in the accuracy and interpretability of classifiers which 

are built for applications where the number of features is overwhelming compared to 

the number of obtainable training patterns (Martin-Smith et al., 2016). Many 

conventional methods aimed at dimensionality reduction can lead to highly accurate 

data classification results which, however, are often difficult to interpret. Recently, 

most state-of-the-art research on text classification has focused on introducing various 

machine learning methods, including deep learning, rather than on discussing specific 

features of text documents relevant to particular classification tasks (Abdulhussain & 

Gan, 2016; Sebastiani, 2002). The overfitting problem is one of the leading issues in 

machine learning, deep learning in particular (Goodfellow et al., 2016; Hawkins, 

2004). However, the solutions to the issues mentioned above have not fully answered 

the main challenges related to the various aspects of big data analysis and 

classification.  

1.2 Research Objectives 

This Ph.D. thesis focuses on data/text analysis, via data mining, machine learning and 

deep learning using supervised and unsupervised methods, in order to achieve 

dimensionality reduction and subsequently high-performance in terms of document 

classification accuracy, processing time consumed, and interpretability. There are four 

main objectives: first, to investigate new methods for feature extraction and 



  Chapter 1: Introduction 

3 

 

dimensionality reduction for text classification; second, to propose new methods for 

feature subset selection and interpretable representation learning; third, to explore a 

class-specific, supervised, pre-trained approach based on deep learning, which is 

intended to gain a low-dimensional but powerful structure of features with high 

performance for document classification; and fourth, to investigate deep classifier 

structures for higher-level feature extraction in order to overcome difficulties that have 

become apparent when training deep neural networks with limited training data in 

high-dimensional feature space, such as overfitting and vanishing/exploding gradients. 

1.3 Contributions 

Four major contributions have been made by this Ph.D. work and can be summarised 

as follows: 

• This research proposes an improved PCA (Principle Component Analysis) 

approach to feature extraction and dimensionality reduction. The experimental 

results show that the proposed methods improve the performance of document 

classification in terms of classification accuracy and the number of extracted 

features, as compared with the original PCA method. 

• Two new hybrid approaches for feature subset selection are proposed, which 

employ both supervised and unsupervised filters plus a wrapper method. The 

experimental results demonstrate the advantages of the proposed methods over 

individual filter and wrapper methods with the complete feature set (full-features 

without any selection or dimensionality reduction) in terms of classification 
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accuracy, the number of features required, processing time consumed, and 

interpretability.  

• A new way of pre-training a sparse autoencoder is introduced. This relates to a 

class specific sparse autoencoder which is pre-trained and learns effective features 

for document classification. The experimental results demonstrate that the 

proposed methods have advantages over the standard sparse autoencoder and full-

feature approaches in terms of performance as related to the number of required 

features. 

• Deep classifier structures used with a stacked autoencoder (SAE) for higher-level 

feature extraction are investigated; this approach aims to overcome the difficulties 

of training deep neural networks with limited training data in high-dimensional 

feature space, e.g., overfitting and vanishing/exploding gradients. A three-stage 

learning algorithm is proposed for training a deep multilayer perceptron (DMLP) 

as the classifier. The first stage consists of unsupervised learning using an SAE to 

obtain the initial weights for the feature extraction layers of the DMLP. In the 

second stage, error back-propagation is used to train the DMLP by fixing the 

weights obtained in the first stage into its feature extraction layers. In the third 

stage, all the weights of the DMLP obtained at the second stage are refined by 

error back-propagation. The experimental results demonstrate the advantages and 

effectiveness of the proposed methods. 

Some of the above contributions have been reported in peer-reviewed papers, which 

are listed in Appendix A. 
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1.4 Thesis Organization 

The remainder of this thesis is structured as follows. 

Chapter 2: The literature review presents the approaches that have been used for 

document representation, feature selection and dimensionality reduction, and 

classification, including machine learning and deep learning methods for document 

representation learning and classification. It also introduces evaluation methods and 

provides an example of applications and assessment of document classification. 

Chapter 3: This chapter explains the experimental design used in this thesis. It begins 

by illustrating the general steps of research methodology and the main tasks that need 

to be considered to answer the research question. It also describes the work packages, 

datasets, and experimental procedure. 

Chapter 4: It begins with a brief review of the methods used for feature extraction and 

dimensionality reduction and identifies the limitations of each of these methods. There 

follows an “experimental investigation,” leading to an improved PCA method based 

on calculating cosine similarities and correlations between pairs of features for text 

feature dimensionality reduction. 

Chapter 5: It begins with a brief review of the methods used for feature selection and 

identifies the limitations of each method. This chapter proposes two hybrid methods 

for feature subset selection, each consisting of two stages. The first stage selects 

feature subsets based on the union or intersection of features selected according to 

distance or similarity measures (unsupervised) and mutual information measures 

(supervised). The second stage employs a wrapper approach on the selected features to 
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further reduce the feature dimensionality. Also, this second stage addresses the 

accuracy-interpretability dilemma, which is an important issue in many fields of 

research where data mining is used and the methods for dimensionality reduction are 

unsatisfactory in terms of the interpretability of the features. 

Chapter 6: This chapter focuses on deep learning methods for learning feature 

representation and sheds some light on the limitations of each method. It then proposes 

a class-specific (supervised) pre-trained approach, which employs a sparse 

autoencoder algorithm to encode the features of entire training samples (unsupervised). 

After these processes, all the features yielded are merged into one vector. Classifier 

fusion is also investigated in this chapter. 

Chapter 7: This chapter proposes a three-stage learning algorithm for training DMLP 

with effective weight initialisations based on SAE, aiming to overcome the difficulties 

involved in training deep neural networks with limited training data in high-

dimensional feature space. Experiments were conducted to evaluate the performance of 

the proposed method on various datasets, as compared to the performance of existing 

methods. 

Finally, the overall contributions, findings, and limitations of this study plus suggested 

future work are detailed in Chapter 8.
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Chapter 2 

2 Literature Review 

2.1 Introduction 

There are many real-world systems that can produce and/or process massive amounts 

of data, such as social networks (Cambria, 2016; Scott, 2017), network intrusion 

detection systems (Bergholz et al., 2008; Almusallam, 2017; Alheeti et al., 2018), 

information retrieval software (Plansangket, 2017), speech recognition systems, and 

computer vision systems (Chandrasekaran et al., 2006; Raghupathi, 2014). This type of 

massive data is often called big data. One of the most popular definitions of big data 

was proposed by Gartner (2012) “Big data is high-volume, high-velocity, and high-

variety information assets that demand cost-effective, innovative forms of information 

processing for enhanced insight and decision-making.” (Walker, 2014; Gandomi & 

Haider, 2015). Research in knowledge discovery and data mining has seen rapid 

advances in recent years because of the vast amounts of data which are collected daily. 

Driving this research is the fact that the ability to analyse such data is a significant 

requirement. Data mining is the computational process of discovering patterns in large 

datasets; it involves approaches at the intersection of artificial intelligence (AI), 

machine learning (ML), statistics, and database systems (Liu, 2009; Russom, 2011; 

Han et al., 2011; Chen et al., 2014; Buczak & Guven, 2016; Roiger, 2017). There are 

many other terms which have a similar meaning to data mining, for instance 

knowledge mining from data, knowledge extraction, and data analysis (Han et al., 

2011). 
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There is a need to use big data across various research areas. We should take 

advantage of the massive datasets which are available and extract much informative 

data and valuable information from them. However, the data analysis and knowledge 

extraction processes involved with big data are very challenging in relation to most of 

the standard and even advanced data mining and machine learning tools which have 

been developed (Russom, 2011; Triguero et al., 2015). Also, the use of big data brings 

specific problems to the fore, such as low efficiency and overfitting in machine 

learning algorithms. It is clear that many of the features present in massive datasets can 

be uninformative, irrelevant or redundant (LaValle et al., 2011; Panday et al., 2018). 

Therefore, it is essential to tackle this over-load problem by employing feature 

extraction methods, feature selection methods, machine learning, and deep neural 

networks in order to obtain informative and effective features for tasks like document 

classification. 

This Ph.D. thesis aims to develop new methods for extracting effective features and 

relevant learning representations by employing machine learning methods including 

deep learning for document classification. Particularly, this study proposes a modified 

method for feature extraction and dimensionality reduction, two hybrid methods for 

the best combination of subset features (feature selection), and a supervised pre-

training approach employing a deep learning algorithm. In relation to the latter, it then 

uses an unsupervised deep learning method to encode the features from training 

samples. Finally, deep classifier structures based on stacked autoencoder (SAE) are 

proposed for higher-level feature extraction, aiming at overcoming the difficulties 

involved in training deep neural networks with limited training data in high-
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dimensional feature space. This chapter reviews related concepts and existing methods. 

Figure 2.1 illustrates a summary of the topics covered in the literature review chapter.  
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• Tokenization 

• Stop Word Removal 

 

• Semantic-based DR              (VSM) 

• TF 

• DF 

• TF-IDF 

• TP-CSDF 

Figure 2.1: Summary of the literature review. 
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2.2 Data Pre-processing (Document /Text Pre-processing) 

Data pre-processing is one of the crucial and time-consuming steps in natural language 

processing (NLP), knowledge discovery and data mining. This term refers to any 

process implemented on raw data as an initial data mining practice to transform the 

data into a numerical format that will be more easily and effectively processed by the 

next procedure (Jain & Yu, 1998; Todorovski & Džeroski, 2006; Arguello et al., 2008; 

LaValle et al., 2011; Babaie et al., 2017). For example, the pre-processing steps 

involved with the natural language processing of texts or documents include 

tokenisation, stop word removal, and stemming. Tokenization is an essential technique 

for most NLP tasks. This process splits a sentence or document into tokens; each token 

will represent a word or phrase (possibly related to the research area in question); some 

additional knowledge should be taken into consideration when tokenizing, for instance, 

the names of relevant entities. Also, some stop words such as “the” and “a” will be 

removed as these words do not provide any worthwhile information (Sun et al., 2017). 

The general steps for text or document pre-processing are shown in Figure 2.2. In our 

work we applied tokenization and stop word removal. 
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                                               Figure 2.2: Document pre-processing steps. 

2.3 Document Representation and Feature Extraction  

Document representation is a very important issue in document classification. Each 

document should be transformed into a machine-readable format to be classified. In 

general, there are two ways to extract features: manual and automatic. The former is 

very slow, particularly when the data size is massive. The latter is used for feature 

extraction through the application of various unsupervised and supervised approaches: 

such as the methods used in information retrieval (IR), text or data mining, image 

processing, and natural language processing (Solomatine et al., 2009).  

Single word representation is a very common grammatical unit in document 

representation techniques. There are two major types of document representation using 

single word: vector space model and graph-based model (Allahyari et al., 2017). 

A domain model is a conceptual model involving the concepts of significance to a 

certain domain as well as the relationships between these concepts (Peng and Choi, 

2005). Domain models have been employed and developed in many applications and 

transformed into many forms such as graph, semantic, and ontology. 
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This subsection reviews some models and feature extraction methods for document 

representation and their applications in detection of phishing e-mails and phishing 

websites (Jiang et al., 2018; Clark et al., 2012). 

 Vector Space Model (VSM) for Document 

Representation 

The vector space or bag-of-words model is one of the quickest and simplest document 

representation methods, in which the content of a document is organised as a vector in 

term space d(w1,….,wk), where k is the total number of terms (words or features) 

(George & Joseph, 2014). This method considers the input data to be an unstructured 

set of words (the ordering of the terms is ignored) and the frequency of each word as a 

critical datum (which can easily be used via machine learning for classification 

purposes). VSMs mostly work with supervised learning algorithms (Liu et al., 2016). 

There is much research focused on VSMs for pattern recognition, such as detecting 

phishing e-mails and websites (Ramanathan & Wechsler, 2012; Dobša, 2014; Harish et 

al., 2014; Mohammad et al., 2014; Plansangket & Gan, 2015b). However, if there are 

similar meanings within two different documents represented by different sets of 

words in each case, this method cannot take into account these similarities (Stephens et 

al., 2004). Also, spelling errors cause an incorrect frequency to be assigned to a word. 

Thus, it is helpful to perform pre-processing and error detection. Although new VSM 

methods as extensions to the original VSM (Thanh & Yamada, 2011), such as the 

Tolerant Rough Set Model (TRSM) and the Similarity Rough Set Model (SRSM), 

have been developed, this thesis employs bag-of-words for document representation 
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for the sake of easy comparison between the newly proposed methods and existing 

methods. 

2.3.1.1 Document Frequency (DF)  

Document frequency is a simple feature used in document representation and 

vocabulary reduction. It is based on counting the number of documents, in the training 

data, in which a term appears (Rogati & Yang, 2002). A predetermined low frequency 

threshold is applied to decide which terms are removed. It seems that this approach 

reduces the dimensionality of a feature set representing a document, and is effective if 

terms with lower frequencies turn out to be those which are irrelevant. However, it can 

be presumed to be an ineffective method if the remaining terms are not informative, 

particularly in information retrieval (IR). 

2.3.1.2 Term Frequency or Term Strength (TF or TS) 

Term frequency or term strength estimates the significance of a term based on how 

prevalent it is in a document. Wilbur & Sirotkin (1992) proposed and evaluated this 

measure for use in document representation and vocabulary reduction. Yang & Wilbur 

(1996) employed it for text categorisation. Guzella & Camin (2009) proposed to use 

this method for spam filtering, but their method was insufficient in terms of document 

representation because it depended on this single aspect of the features (term 

frequency) for spam filtering (Almomani et al., 2013).  

2.3.1.3 Term Frequency–Inverse Document Frequency (TF–IDF) 

This is a numerical statistical feature used in IR and text mining (Trstenjak et al., 

2014). Many studies have applied TF–IDF to extract features from websites and e-

mails for detecting phishing e-mails and websites (Stephens et al., 2004; Ramanathan 
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& Wechsler, 2012; Plansangket & Gan, 2015a; Cong et al. 2017). Equation 2.1 

clarifies how TF–IDF works. 
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 where 
jitfidf  is the TF–IDF score of term i in document j, 

jiTF  is the term frequency 

of term i in document j, N is the number of documents in the training document set, 

and iDF  is the number of documents in which term i appears in the training document 

set. Our use of this feature extraction method will be demonstrated in chapters 3, 4, 

and 5. 

2.3.1.4 Term Presence – Class-Specific Document Frequency (TP–CSDF) 

Term presence and class-specific document frequency is a new term weighting scheme 

proposed by Plansangket & Gan (2015a). The score 
jiCSDFTP−  of term i in 

document j is calculated as follows: 
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               (2.2)  

where TPji is term presence whose value is 1 if term i is in document j and 0 otherwise,  

𝐷𝐹𝑖𝑐𝑗
 is the document frequency of the term i based on the documents in the training 

document set and in the class that document j belongs to, 𝐷𝐹𝑖 is the document 

frequency of term i based on all the documents in the training document set, 𝑁𝑐𝑗
 is the 

number of documents in the training document set in the class that document j belongs 

to, and N  is the number of documents in the training document set. This feature 
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extraction method will be used in chapters 3 and 4 for developing feature selection and 

dimensionality reduction methods. 

2.3.1.5 The Dynamic Markov Chain (DMC) Approach 

The Dynamic Markov Chain approach was first proposed by Andrey Markov (Markov, 

2008). It is used for arithmetic compression and feature extraction, and it depends on 

information theory and the probability of the message (i.e., the receipt of the message) 

in relation to the class to which it belongs. (Andrew, 2000; Levin & Peres, 2017). 

Frank et al. (2000) proposed to use DMC for text categorisation across different 

domains. Also, it was used for improving phishing detection in relation to e-mails and 

websites (Andrew, 2000). This is a text-based method. It is based on the bag-of-words 

representation which determines the language-use of each class of messages. DMC has 

the advantage of reducing the amount of memory consumed for text categorisation 

because the next point depends only on the current point. The mathematical 

formulation of DMC is as follows: 
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        (2.3) 

where ),( MxH  is the Cross-Entropy (CE) between the message x and the model M

and ),|( 1

1 MbbP i

i

−  is the probability of encountering feature ib , depending on the 

previous features 11... −ibb . 

2.3.1.6 Supervised Term Weighting Methods 

The notion of term weights is borrowed from the IR field (Debole & Sebastiani, 2003; 

Lan et al., 2009; Deng et al., 2014). Text categorisation (TC) based on term weighting 

is usually implemented via supervised learning, which can use information included 

with the training documents with predefined categories (class labels) (Sergienko et al., 
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2014). Term weighting methods assign an appropriate weight to each term, which 

provide a natural way for feature selection as it is possible to ignore the terms with the 

lowest weights (Sergienko et al., 2017). The following are various supervised term 

weighting approaches. 

1) Term weighting using information theory functions or statistical metrics: This 

approach weighs terms by applying feature selection criteria, such as the Chi-statistic, 

information gain (IG), or gain ratio (GR). The above feature selection criteria are 

usually combined with term frequency (e.g., 
2.xtf  or igtf . ) to obtain term scores. The 

terms with higher scores are deemed to be able to contribute more to TC than the terms 

with lower scores (Debole & Sebastiani, 2003). 

 2) Term weighting via interaction with a text classifier: The idea of this approach is 

similar to that of the above. The text classifier discriminates positive test documents 

from negative ones by assigning different scores to the documents in the test data. 

Bergholz et al. (2010) applied an iterative approach which included a KNN text 

classifier at each step. The weights are slightly modified by the results of the text 

classifier, and then the accuracy is measured by employing another evaluation 

criterion. The limitation of this method is that it is too slow to be used, especially for 

large problems (Basnet et al., 2012). 

 Semantic-based Document Representation  

The main issue of the single word representation is the loss of semantic meaning of 

words. Therefore, a lot of recent research aims to solve this problem by exploiting 
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semantic features using knowledge-based approaches. For example, WordNet based 

similarity rough set model (WSSM) (Thanh et al., 2011). 

In recent years, acquisition of semantic information is necessary for proper 

understanding of natural language text. Semantic-based document representation has 

been investigated in information retrieval (Elhadad et al., 2017). If senses are used to 

represent a document, the relations between senses play a key role in capturing the 

ideas in the document. Peng & Choi (2005) proposed to automatically classify 

documents based on the meaning of words and the relationships between groups of 

concepts. Their classification algorithm builds on the word structures provided by 

WordNet that exploits the semantic hierarchy and they developed a corresponding 

semantic hierarchy classification system. 

Probabilistic Latent Semantic Analysis (PLSA) is a simple example of numerical 

means of semantic-based document representation. It relies on the discovery of topics 

from a collection of text documents. This method was proposed by Hofmann (1999) 

for document indexing based on the statistical latent class model. It has been applied in 

IR, natural language processing, and machine learning by text filtering (Aggarwal et 

al., 2013; Zhai, 2017). It contributes to many information retrieval applications by 

improving the representation of texts by representing each document via low-

dimensional latent topic vectors and summarisations of search results (Zhai, 2017). 

This method addresses the problem of single word representations. It also addresses 

the issues of synonymy and polysemy in phishing emails and websites detection. A 

great deal of research has aimed at overcoming these problems by exploiting semantic 
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features using knowledge-based approaches. PLSA is, however, vulnerable to 

overfitting. Equation 2.4 explains how it works. 

                                   ( ) ( ) ( ) ( )cwPdcPdPdwP
c

||, =  
               (2.4)  

where w represents words, d refers to documents, c is the topic, P(c | d) and P(c) are 

initialised to (1/d) and (1/d) respectively and P(w | c) is initialised randomly. 

 Graph-based Document Representation  

Graphs are one of the visualisation methods in text mining to measure the influence of 

terms in documents or texts, using the notion of centrality and other graph theoretical 

features.  A graph used for this purpose can be described as a pair G=(V,E). The 

elements of V are the nodes of the graph and the elements of E represent its edges 

(Mihalcea, 2004). A graph is represented visually by drawing a number of dots 

equivalent to the number of nodes and connecting each pair of dots by a line if they are 

connected by an edge (Valle & Ozturk, 2011). Such a graph can be used directly for 

document classification based on graph distance measures. Figure 2.3 shows an 

example of a typical graph document representation (Phukon, 2012). For machine 

learning based classifiers, it is easy, in principle, to convert graphs into vectors 

representing various graph measures. However, the computational complexity implied 

by this method is very high (Marko et al., 2008; Phukon, 2012). Nevertheless, a large 

number of published studies have applied this method (Mihalcea, 2004). Mihalcea & 

Tarau (2004) studied graph-based representations in their Text-Rank system, which is 

mainly used for text summarisation. There are various criteria which can be used to 

measure the centrality of terms in each sentence. These are based on degree, closeness, 
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betweenness, and eigenvector construction (Faust & Wasserman, 1992). After 

centrality values are computed, documents are represented as vectors (Freeman, 1979). 

Eberle and Holder (2007) proposed graph-based approaches for discovering 

abnormalities in domains consisting of unexpected relationship variations that 

resemble normal behaviour. They applied graph-based algorithms to intrusion 

detection datasets. They concluded that their method could discover the small 

differences between normal and abnormal graphs. However, their method could not 

recognise abnormalities in complex graphs. Rosiello et al. (2007) studied graph-based 

representation in order to implement their “DOMAntiPhish” system which was aimed 

at discriminating between malicious and benign web pages. The limitation of their 

work was that it is possible for attackers to use similar text and images to those 

presented by legitimate websites in order to create mimic websites; this makes it 

difficult to distinguish between malicious and benign websites. 

 
Figure 2.3: An example of standard graph document representation (Phukon, 2012). 

                                         

2.4 Feature Selection and Dimensionality Reduction 

In this 21st century, the number of samples or observations and the number of features 

available for data mining have increased significantly across many different 
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applications, such as text categorisation (Yang & Pedersen, 1997; Xing & Karp, 2001; 

Aldehim & Wang, 2017; Zheng et al., 2018), image retrieval (Rui et al., 1999; Xing & 

Karp, 2001; Liu & Motoda, 2007; Hira et al., 2015), speech recognition, computer 

vision, and intrusion detection (Almusallam, 2017). Using all the possible features 

which can be extracted from all the samples or observations is impractical and might 

not even be useful for enhancing the accuracy of classification. Therefore, by reducing 

the dimensionality of the input patterns, it is possible to limit computational 

complexity and remove irrelevant/redundant features that would make it more difficult 

to train the classifier; dimensionality reduction addresses the issues which are 

associated with high dimensionality (Gan et al., 2016). Meng et al. (2011a) proposed a 

two-stage feature selection algorithm for text categorisation. First, features are selected 

by using a novel feature selection method, named the feature contribution degree 

(FCD), which tends to construct a reductive feature vector space. Second, LSI (Latent 

semantic indexing) is applied to construct a new conceptual vector space on the basis 

of the reductive feature vector space, where LSI can greatly reduce the dimension and 

can discover the important associative relationship between terms. Then, the feature-

based method and the semantic-based method were combined to reduce the vector 

space. Feature selection is applied to reduce the number of featuress by removing 

irrelevant, noise-dominated or redundant features or by choosing a relevant subset of 

features (Kwak & Choi, 2002; Liu & Motoda, 2007; Nemati et al., 2009; Ortega et al., 

2016). An abstraction of the feature selection process as a four-step procedure is 

shown in Figure 2.4. There are three types of methods which are used for feature 

selection (Liu et al., 2002): filter methods, wrapper methods, and embedded methods. 

Filter methods are applied to select features independently of the classification 
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approach (Guyon & Elisseeff, 2003). Wrapper methods are based on performing 

classification with a specific classifier to rank possible feature combinations (Nemati et 

al., 2009; Gan et al., 2014). Embedded methods can be included within the 

classification procedure. Liu & Motoda (2007) applied feature selection methods in 

order to rank the features relevant to phishing detection. There are considerable studies 

that address various issues in feature selection, which are reviewed in the following 

subsections respectively. 

            
                  

Figure 2.4: Feature selection steps with validation (Dash & Liu, 1997) 

 

 Filter Approach 

Filter methods have been widely used for selecting a subset of features or for ranking 

the features of training data based on general characteristics, independently (without 

including any classification methods). The features with the lowest rankings are 

generally eliminated, and the filter method need be performed only once for a given 

task. Thus, filter methods can be easily scaled to very high-dimensional datasets, are 

computationally simple and fast, and are independent of the classification algorithm 

(Martin-Smith et al., 2016). 
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A common drawback of filter approaches is that they ignore the interaction with the 

classifier. This means that each feature is considered separately, thereby ignoring 

feature dependencies; this may lead to worse classification performance than other 

types of feature selection techniques (Saeys et al., 2007). One possible solution for 

overcoming this issue, of ignoring feature dependencies, is to use multivariate filter 

techniques, aiming at incorporating feature dependencies to some degree. 

 Search based methods (Aggarwal & Zhai, 2007) can be utilised to find the best subset 

of features for classification, which select features using evaluation criteria to measure 

the accuracy of the subset of features. Martin-Smith et al. (2016) proposed and 

evaluated a filter approach for evolutionary multi-objective feature selection for 

classification problems with a large number of features. This thesis applied various 

evaluation criteria in its filter approach, which are described further in chapter 5. The 

following is a summary of various evaluation criteria applied in supervised or 

unsupervised filter approaches.  

2.4.1.1 Information Gain (IG) and Mutual Information (MI) 

Information Gain is a measure based on the concept of entropy. It can be used to 

determine the similarities between subsets of any dataset and then assign the highest 

weight or ranking to the most significant features (Yang & Pedersen, 1997). For 

example, in e-mail and website phishing detection applications, the IG method has 

been applied for feature selection to find out how well a subset of features 

differentiates classes such as legitimate as opposed to phishing e-mails and websites 

(Chandrasekaran et al., 2006). However, this measure depends only on the probability 

distributions of random variables rather than on their values. 
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The information gain of a given feature X with respect to a class feature Y is the 

reduction in uncertainty about the value of Y when the value of X is known. The 

uncertainty about the value of Y is measured by entropy H(Y). The uncertainty about Y, 

when the value of X is known, is yielded by the conditional probability of Y, given X, 

H(Y|X). The information gain is defined as 

                              )|()(),( XYHYHXYI −=               (2.5)  

where Y and X are discrete variables that take values in { y1,…,yk } and { x1,…,xk }, the 

entropy of Y is yielded by: 

                                    
)(log)()( 2

1

i

k

i

i YPYPYH 
=

−=  
               (2.6) 

and the conditional entropy of Y, given X, is: 
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Alternatively, the information gain is defined by: 
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where ),( YXH  is the joint entropy of X  and Y : 
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When the predictive variable, X, is not discrete but continuous, the information gain of 

X with respect to class feature Y is computed by considering all possible binary 

features, X , that arise from X when we choose a threshold θ on X (Kalbhor et al., 

2013).θ  may take a value from any of the values of X. Then the information gain is 

simply: 
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 ),(maxarg),(  XYIxXYI =               (2.10) 

The information gain measure tends to select features which have a large number of 

values, which is the major drawback of this measure. (Altidor et al., 2011; Karegowda 

et al., 2010). 

Mutual information is also a measure based on probability theory and information 

theory. It determines the similarity between the pair of points p(x,y) (Tapia & Flores, 

2013). This method has been widely used for feature selection in relation to various 

purposes to reduce the dimensionality of features. Koller et al. (2007) proposed 

applying information theory to feature selection. The following equation clarifies how 

it works. 
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where MI refers to the similarity between two features, x and y, which is defined 

according to their joint probabilistic distribution p(x,y) and their marginal probabilities 

p(x) and p(y). It can be seen that information gain is a special case of mutual 

information. 

2.4.1.2 Minimum Redundancy and Maximum Relevance (mRMR) 

Minimum redundancy and maximum relevance is a maximal statistical dependency 

criterion based on MI. Peng et al. (2005) proposed this two-stage feature selection 

method for selecting a compact set of relevant features, and they applied it to a number 

of different datasets (handwritten digits, arrhythmia, NCI cancer cell lines and 

lymphoma).  
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Suppose m-1 features have already been selected from the available set of features X, 

forming a selected feature subset 1−mS . In order to select the next best feature, mRMR 

is calculated as follows (Peng et al., 2005): 
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where c represents class label, I(x , y) is the mutual information function defined in 

terms of the joint probability of x and y and their marginal probabilities, as follows: 
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By maximising the mRMR value, the method chooses the feature that has the 

maximum relevance to the class label and the minimum redundancy in relation to 

previously selected features. Gan et al. (2014) employed this method in their 

experiment testing their filter-dominating hybrid sequential forward floating search 

method for feature subset selection in high-dimensional space. This approach is 

adopted in chapter 5 for comparative studies. 

2.4.1.3 Pearson’s Correlation   

Pearson’s correlation is one of the more straightforward filtering methods. It exploits 

the inter-correlation of one feature with another in order to combine them into subsets 

of features. The goal is to improve classification performance and reduce the feature 

dimension. It evaluates the effectiveness of subsets by measuring the dependents of 

each feature according to the degree of redundancy between them (Basnet et al., 2012). 

Correlation is a linear criterion used to compute interconnection between nominal 

features. However, it does not depend on any particular data transformation. A 
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correlation coefficient is a number between -1 and 1 that refers to the strength of 

correlation (connection) between features (Guyon & Elisseeff, 2003). Xu et al. (2017) 

investigated mRMR based on Pearson’s correlation for semi-supervised feature 

selection. Chapter 4 also uses this criterion for developing an improved PCA method. 

The Pearson’s correlation, for measuring the strength of a linear association between 

two variables x and y, is defined as follows: 
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where x  is the mean of x , and y  is the mean of y. 

2.4.1.4 Chi-Square (X²- Statistic) 

Chi-square is a statistical test criterion used for comparing the distribution of a 

categorical variable in a sample with the distribution of a categorical variable in 

another sample (Yu & Liu, 2003). It is not just a metric but a statistical test, which, in 

this case, can be used to evaluate a value for the chi-squared statistic with respect to 

the class, using “feature x is independent of the class” as the null hypothesis. Thaseen 

& Kumar (2017) employed the chi-square as a feature selection criterion for intrusion 

detection. The following equation explains how it works: 
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             (2.15) 

where 2X  is the chi-square, O is the observed frequency of a feature in a category, and 

E  is the expected frequency of the feature in the corresponding category (which is the 

"degree of freedom"). 
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2.4.1.5 T-statistic 

The T-statistic is an effective feature selection method which is based on estimating 

whether the means of two groups are different from each other (Loo et al., 2005). This 

statistical measure has been used to calculate the strength of association between 

variables, which is often used to perform feature selection across many applications, 

such as gene selection (Jain et al., 2000; Bergholz et al., 2010). For each feature fj 

occurring in two different classes (Andrew, 2000), the mean +j , −j  and standard 

the deviation +j , −j  are calculated. The following equation illustrates how we can 

obtain the score of this feature )( jfT  (Loo et al., 2005). 
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where +n  and −n  are the number of samples labelled as + and - respectively. Features 

with the highest scores are selected as the most discriminatory features.  

2.4.1.6 Distance or Similarity/Dissimilarity Criteria for Feature Selection 

Distance or similarity/dissimilarity criteria are based on calculating the 

similarity/dissimilarity between every two pairs of features using measures such as the 

Euclidean (for dissimilarity measure) and the cosine (for similarity measure) distances. 

These measures are encountered in many different fields such as biology, chemistry, 

and computer science (Ester et al., 1996; Liu & Motoda, 2007; Hasan et al., 2010). 

However, these measures are easily affected by noise or outlier data. The following are 

four criteria based on the idea of similarity and dissimilarity. 
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• Davies-Bouldin Index (DBI): The Davies-Bouldin index measures the 

similarity between two classes/clusters by calculating the within-class scatters 

and the inter-class distances (Gan et al., 2014). 

• Fisher’s linear discriminant: Fisher’s criterion is applied for feature selection 

that projects high-dimensional data onto a line and then performs 

discrimination along this one-dimensional area. This criterion maximises the 

distance between the mean of the two different classes and minimises the 

variance within each class (Gu et al., 2012). 

• Dunn’s Index: Dunn’s index is a measure introduced by Dunn (1974) for 

evaluating clustering algorithms (Bolshakova & Azuaje, 2003). The method 

aims to find a well-discriminated, small variance between members belonging 

to the same cluster. 

• Cosine Similarity: Cosine similarity is a very common measure used for high-

dimensional feature spaces. For instance, in information retrieval and text 

mining each term is hypothetically assigned a different dimension and a 

document is characterised by a vector (Bag-of-words) where the value of each 

dimension corresponds to the number of times that a term appears in the 

document (Cha, 2007; Hasan et al., 2010). Cosine similarity then gives a useful 

measure of how similar two documents are in terms of their subject matter 

(Singhal, 2001). Cosine similarity is adopted in chapter 4 for developing an 

improved PCA method for dimensionality reduction. 

https://en.wikipedia.org/wiki/Information_retrieval
https://en.wikipedia.org/wiki/Text_mining
https://en.wikipedia.org/wiki/Text_mining
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 Wrapper Approach 

The wrapper approach is a technique in widespread use for feature selection and 

evaluation, in which a classifier is defined beforehand and the classification accuracy 

is used as the evaluation criteria for the subset (of features) which is created. This 

approach can guarantee higher accuracy than the filter approach as it selects features 

by looking for features suitable to the classifier (Kohavi & Sommerfield, 1995; Kohavi 

& John, 1997; Das, 2001; Saeys et al., 2007; Ma et al., 2017). However, it needs 

significant processing time to choose such features, and the features selected for the 

subset may not be generalised for other classification methods. 

 The wrapper approach starts from a given subset 𝐺0 which can be an empty set, a full 

subset, or any randomly selected subset. It then searches through the feature space 

using one of the search strategies suitable to this purpose. Subsequently, it evaluates 

each generated subset 𝐺𝑖 by applying a learning model to the data labelled with 𝐺𝑖 . If 

the performance of the learning model using 𝐺𝑖 becomes better, 𝐺𝑖 is considered to be 

the most recent best subset. For that reason, the wrapper approach then modifies 𝐺𝑖 by 

adding or removing features to or from 𝐺𝑖 (as dictated by the learning model) and the 

search iteration continues until a predefined stopping criterion is achieved (Kabir et al., 

2010). 

Basnet et al. (2012) proposed wrapper feature selection techniques to be used with 

various classification methods, such as naïve Bayes, logistic regression, and random 

forest. For testing, they used datasets of real phishing e-mails with 177 initial features. 

Khammassi & Krichen (2017) applied a wrapper approach based on a genetic 
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algorithm as a search strategy and logistic regression as a learning algorithm for 

network intrusion detection systems to select the best subset of features. 

 Hybrid Approach 

A hybrid approach is a combination of both wrapper and filter methods. The filter 

approach tends to have a bias towards features with low dimensions. On the other 

hand, in very high-dimensional applications, the wrapper approach is impractical 

because of the high computational expense (Sebban & Nock, 2002; Fazil & Abulaish, 

2018). Hybrid approach is promising to take the advantages of both filter and wrapper 

methods to reduce the redundant features efficiently without degrading the accuracy 

(Hu et al., 2015). However, the hybrid approach with single filter and single wrapper 

still has drawbacks, such as the selected features depend on the choice of a specific 

filter or wrapper. Thus, combining multiple filters and/or multiple wrappers is another 

way to identify potential and reliable features and also to improve the accuracy and 

robustness of the classification. Chapter 5 presents two hybrid approaches that 

combine wrapper and filter approaches (supervised and unsupervised) to gain high 

classification accuracy with low computational cost. 

 Embedded Approach 

The embedded approach is one of the feature selection approaches that consider 

relations between one input feature and the output and searches locally for features that 

can achieve better local discrimination (Li et al., 2017). It employs independent 

measures to choose the best subsets then applies a learning algorithm to select the final 
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best subset among the candidate best subsets. It interacts with machine learning at a 

lower computational cost than the wrapper approach (Kumar & Minz, 2014). 

 Search Strategies 

In feature selection a search algorithm is responsible for deriving potential feature 

subsets (Molina et al., 2002). Commonly used search strategies are summarised as 

follows. 

1. Exponential Search: Exponential search is an optimised search process that 

guarantees the best solution (Larsson et al., 2017). However, optimal search 

doesn’t need to visit all possible locations in the whole search space. Different 

heuristic functions can be applied to reduce the search space without tampering 

with the viability of the optimal search, such as branch and bound, and beam 

search (Doak, 1992; Molina et al., 2002). 

2. Sequential Search: Sequential search is based on choosing only one candidate 

among all successors. This can be achieved in an iterative manner and in a finite 

number of steps. The results tend to be satisfactory (Aldehim, 2017) but do not 

always represent an optimal feature subset. 

3. Genetic Algorithms: a genetic algorithm (GA) is a global heuristic search 

technique used to find exact or approximate solutions to optimisation problems. 

GA, as a search method for feature selection has been widely studied (Andrew, 

2000; Hao et al., 2003; Oskoei & Hu, 2006; Nemati et al., 2009). 

4. Random Search: Random search starts with a randomly selected subset. There 

are various ways to proceed from this to achieve an optimal subset, such as the 

Las Vegas algorithm (Kumar & Minz, 2014). 
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 Other Methods for Dimensionality Reduction 

High-dimensional features can be mapped into a lower-dimensional feature space. 

There are two kinds of dimensionality reduction methods: linear and non-linear. 

2.4.6.1 Linear Methods 

Principal component analysis (PCA), or Karhunen-Loeve expansion, is a very 

commonly used technique which transfers data linearly in such a way so as to highlight 

similarities and differences. It is used for feature extraction and dimensionality 

reduction (Cordero & Blain, 2007; Guyon et al., 2008; Liu et al., 2010; Aït-Sahalia & 

Xiu, 2017). The technique identifies the eigenvectors which match the largest 

eigenvalues of a covariance matrix. It does not depend on pre-labelled data for training 

purposes; thus, it is an unsupervised method. Gomez et al. (2012) employed PCA for 

e-mail classification based on the features of the text content. They proved by their 

experiments that PCA was able to produce good results and the performance of PCA 

was better than that of the popular VSM based techniques (Yu et al., 2009; Gbashi et 

al., 2014). However, PCA often lacks interpretability, which means that we cannot 

specify or understand in terms of features dealing with any particular subject because it 

combines such features together. In chapter 4, an improved PCA method is proposed 

and evaluated in comparison with the standard PCA.  

2.4.6.2 Nonlinear Methods 

Most of the non-linear methods used for dimensionality reduction are based on 

manifold learning theory. The main idea behind these methods is to build a weighted 

graph of the data points, which depends on neighbourhood relations. The data is 
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projected onto a lower dimension while keeping the relative relations among the graph 

nodes (Garrett et al., 2003). 

There are three main types of non-linear methods for dimensionality reduction 

(Schölkopf et al., 1998; Saxena et al., 2004; Lee & Verleysen, 2007; Van et al., 2009). 

1. Methods which attempt to preserve the local properties of the original data in the 

low-dimensional representation, for example, local linear embedding (LLE) and 

Laplacian Eigen-maps. 

2. Methods which attempt to preserve global properties, for example, Isomap, 

Kernel PCA and MDS (Multidimensional Scaling). 

3. Methods which perform a global alignment of a mixture of linear models, such as 

Manifold charting and LLC (Locally Linear Coordination). 

2.5 Conventional Methods for Pattern Classification 

Pattern classification is concerned with the method of making deductions from 

perceptual data, using a number of different tools from statistics, probability theory, 

computational geometry, signal processing and algorithm design (Raudys et al., 1991). 

The techniques which have emerged have been successfully applied to text 

categorisation (Lakshmi & Vijaya 2012), computer vision, and speech recognition 

(Bishop, 2006; Duda et al., 2012). For these purposes, a pattern is defined as a 

combination of features that is characteristic of an individual. In classification, a 

pattern is a pair of variables (x, y) (Juang & Katagiri, 1992) where x is a collection of 

samples or observations or features (feature vector) and y is the concept behind the 

samples (label). The quality of a feature vector is related to its ability to discriminate 
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between examples from different classes. Figure 2.5 a) demonstrates the distinction 

between good and poor features, and 2.5 b) illustrates feature properties (Duda et al., 

2012). Examples from the same class should have similar feature values, while 

examples from different classes should have different feature values. 

 
        Figure 2.5: a) the distinction between good and poor features, and b) feature 

properties (Bishop, 2006). 
 

 Linear Discriminant Analysis (LDA) 

Linear discriminative analysis (LDA) is a classification approach that projects high-

dimensional data onto a one-dimensional line and performs discrimination across this 

one-dimensional space (Belhumeur et al., 1997). LDA is very commonly used for face 

detection, document classification and phishing detection (Altman, 1992; Peng et al. 

2018). 

Consider a two-class problem in which there are 1N  points from class 
1C  and 

2N  

points from class 
2C , the mean vectors of the two classes are given by: 
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A method first put forward by Fisher was to maximise a function that provides a 

significant separation between the projected class means )2,1:( == kmwm k

T

k   while 

also giving a small variance within each class. The within-class variance of the 

transformed data )( xwy T=  from class kC  is therefore given by:  
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The Fisher criterion can be represented as the ratio of the between-class distance to the 

within-class variance:  
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Equation (2.19) can be re-written as: 
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where BS  is the between-class matrix and is given by: 
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)(wJ  is maximised when  
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 If we multiply both sides of equation (2.24) by 
1−

WS  we obtain: 
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           (2.24) 

The data points to be categorised are projected by w, and then a threshold that best 

separates the data is chosen from the analysis of the one-dimensional distribution.  

 The K-Nearest Neighbour (KNN) Method  

K-Nearest Neighbour method is a non-parametric method used for classification which 

is based on computing a distance (for example, the Euclidean distance) between the 

new data item and every example in the sample dataset (Huh & Kim, 2012; Trstenjak 

et al., 2014; Lin et al., 2014). The class label of the new item will depend on the label 

shared by the majority of the K nearest samples found. If K=1, the decision concerning 

class will be made based on a single (nearest) neighbour. K is usually set to an odd 

number so that the result can never be a tie. 

Huh and Kim (2012) used the KNN method for detecting domain name system (DNS) 

based phishing attacks and compared the performance of this method with the 

performance of the three other classifiers (Garera et al., 2007; Huh & Kim, 2012; Al-

Janabi et al., 2017). KNN has been employed for image classification and it provides 

an impartial and consistent measurement (Awty-Carroll, 2018). However, when large 

sets of observations must be processed, this can affect its performance. Also, it can be 
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sensitive to irrelevant features. To solve this problem, feature selection should be 

applied in order to reduce the number of features. 

2.6 Machine Learning Methods for Classification 

(Supervised Learning Methods) 

Machine learning from data is a very challenging task. To adequately solve the various 

problems involved, we need to combine many different types of algorithms. This 

section will review a number of different approaches to learning from data, with a 

particular emphasis on addressing classification problems. Supervised learning is one 

of the most influential methods used in artificial intelligence across a number of 

disciplines: such as email classification, text categorisation, and document retrieval 

(Lewis et al., 2004;  Rodrigues et al., 2017). Supervised learning can perform very well 

if a good feature representation is provided. The methodology is based on training 

using a set of labelled data representing a specific problem, for example, a set of 

emails labelled according to whether they are considered phishing attempts or not then 

evaluating the effectiveness of this training by providing unlabelled (as far as the 

software is concerned) data to the trained software (Peng et al., 2018). Supervised 

learning methods have been applied to natural language processing for topic 

classification and also for word embedding (Conneau et al., 2017). 

The general task of a classification method is to assign a class label to an object/data 

point based on previously known observations. Consider K training data points 

generated according to an unknown probability distribution P(x,y):

( ) ),(,......,, 11 KK yxyx  NR   1,1+− , where N is the dimension of the input data and 
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 1,1+−  are the class labels (a two-class problem). The classification method can be 

described by the following function in general: 

                                      1,1: +−→NRf  

   

              (2.25) 

A data point x  will be assigned to class +1 when 0)( xf  and to class -1 otherwise. 

The aim of the classifier is to partition feature space into class labelled decision 

regions by finding the optimal function )(xf , which can be learnt from training data. 

Borders between decision regions are called decision boundaries (Andrew, 2000), and 

the following expected error between the predicted and actual class labels is 

minimized: 

                                       = ),()),(( yxdPyxflfR  
            (2.26) 

 where l  denotes an appropriately selected loss function. The most common loss 

function is the square error (Müller et al., 2008; Müller, 2015): 

                                 ( )( ) ( )( )( )2(, yxfsignyxfl −=  
             (2.27)    

This lost function cannot be minimised directly as the underling distribution is 

unknown. Consequently, it is necessary to find an estimation of the optimal function, 

based on learning from training data. Let   be the set of parameters for f . The goal 

then is to find the optimal   that minimises the following loss function:  
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However, the problem with this approach is possible overfitting (Bishop, 2006). Figure 

2.6 provides example plots of training data sets of 10 points (blue circles); each plot 
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includes a sample of the input variable x  along with the corresponding target variable 

t. 

 
Figure 2.6: Overfitting problem associated with model complexity (Bishop, 2006). 

 

      

The green curve describes the function )2sin( x   which is used to generate the training 

data and the red curves show the results of fitting polynomials of various orders to it. 

Four examples are shown of the results of fitting polynomials with different values of 

=M (0, 1, 2, and 9) to the training dataset. The aim is to predict the value of t from the 

value of x , without prior knowledge of the green curve. The machine learning goal is 

to generalise the results it has achieved for new data points. Figure 2.6 shows that the 

higher-order model ( =M 9) can fit exactly the training dataset, but it may not 

generalise well to new data points. The overfitting problem can be mitigated by 

restricting the complexity of the model learned by adding a regularising term to 

penalise higher model complexity. However, this can raise the dilemma of model 

selection (Bishop, 2006). 
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This study employs supervised learning for document classification. There are four 

classifiers which are used in this research: support vector machine (SVM) (Smola & 

Schölkopf, 2004; Bishop, 2006; Vapnik, 2013), multilayer perceptron (MLP) (Bishop, 

2006), linear discriminant analysis (LDA) (Belhumeur et al.,1997; Altman, 1992), and 

K-Nearest Neighbour (KNN) method (Vapnik, 2013). 

  Support Vector Machines (SVMs) 

Support Vector Machines represent a prevalent method used for classification, and 

SVMs can process a considerable number of features (Smola & Schölkopf, 2004; 

Vapnik, 2013; Abu-Nimeh et al., 2007; Almomani et al., 2012; Khonji et al., 2013). A 

SVM attempts to find the optimal hyper-plane that has maximum separation margins. 

A margin is defined to be the smallest distance between the decision boundary and any 

of the sample points (Smola & Schölkopf, 2004; Vapnik, 2013). Figure 2.7 illustrates 

the concept of SVM. The margin is defined as the orthogonal distance between the 

decision boundary and the closest of the data points. Optimising the margin leads to a 

specific choice of decision boundary. The points lying on the boundaries are called 

support vectors. The two-class classification problem in relation to the SVM method 

can be represented as follows (Bishop, 2006): 

                                     ( ) ( ) bxwxy T +=               (2.29)  

where )(x  is a fixed feature-space nonlinear transformation and b is a bias. This 

transformation allows a nonlinear classification problem to be solved in a higher 

dimensional feature space using simple linear methods (Almomani et al., 2012; Smola 

& Schölkopf, 2004). 



  Chapter 2: Literature Review 

42 

 

SVM can be very effective for solving problems across a number of different 

disciplines. A linear SVM classifier was used for detecting and filtering phishing e-

mails (Basnet et al., 2008; Basnet et al., 2012; Peng et al., 2018). However, in cases 

where the data are not linearly separable in the feature space, SVM will not be able to 

generalise very well (Bishop, 2008). A new, extended version of SVM has been 

introduced to overcome this problem incorporating what is known as the soft margin 

extension. This extension of SVM introduces a slack variable i  that measures the 

degree of misclassification of data point ix . A non-zero value for i  allows ix  to not 

meet the margin requirement at a cost proportional to the value of i . The SVM 

method can be very time-consuming in terms of training the system using training 

data, and it is vulnerable to overfitting.  

 
                        Figure 2.7: Support vector machines (Almomani et al., 2012) 

 
 

2.6.2   Multilayer Perceptron (Feedforward Neural Networks) 

A multilayer perceptron (a feed-forward neural network) is a supervised learning 

model using multiple hidden layers. It consists of a set of nodes or neurons that are 

organised into layers, usually the input layer, the output layer, and hidden layers in 
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between as shown in Figure 2.8, (Haykin, 2001; Gurney, 2014; DeSousa, 2016). Feed-

forward networks are often trained using a back propagation learning scheme. Back 

propagation learning works by making modifications in weight values starting at the 

output layer and then moving backward through the hidden layers of the network 

(Gurney, 2014). The results from neural networks often lack interpretability since it is 

difficult for humans to interpret any symbolic meaning behind the learned weights 

(Abraham et al., 2018). The advantages of neural networks, however, include their 

high acceptance of noisy data, which often does not affect their ability to classify 

patterns on which they have not been trained. Mathematically, a node or neuron in the 

multilayer perceptron can be described as 

                                    ( )
jj netfO =              (2.30)  

 

                                      +=
i

jijij OWnet               (2.31)  

where 
jiW  is the weight of the connection from the thi  node to the thj  node, iO  is the 

output of the thi  node,  j is a bias with a similar function to a threshold, and the 

summation is over all the units feeding into node j. The activation function used is 

given by: 
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The term back propagation refers to an iterative training process in which an output 

error E is defined by: 
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where the summation is performed over all the output nodes, and tpj is the desired or 

target value of output Oj for a given input vector. The direction of steepest descent of 

error gradient in the parameter space is determined by the partial derivatives of E with 

respect to the weights and the bias in the network, i.e., 
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It can be proved that, 

                                     ( )( ) pjpjpjpjpj OOOt −−= 1              (2.36)  

The learning rule is given by 
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where t denotes a given instant in time, δpj is the error, and η is the learning parameter. 

Abu-Nimeh et al. (2007) compared six classifier techniques for phishing detection, 

including multilayer perceptron. Jameel & George (2013) applied a feed-forward 

neural network to some features which appear in the headers and HTML bodies of e-

mails in order to classify these e-mails into phish and ham e-mails (Fette et al., 2007; 

Zhang & Yuan, 2012). Sachan et al. (2018) applied netural networks to text 

classification. 
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Figure 2.8: Multilayer perceptron. 

 

2.7 Deep Neural Network Methods for Representation 

Learning 

In recent years, big data analysis via deep learning has attracted much attention across 

a number of different areas of research such as computer vision (Bradski & Kaehler, 

2008; Goodfellow et al., 2016; Girshick, 2017), speech recognition (Hinton et al., 

2012; Zhang et al., 2017a), social media analysis (Siemens et al., 2011; Zhang et al., 

2017b), fraud detection (Saxe et al., 2018), and medical informatics (Längkvist et al., 

2014). One of the main advantages of deep learning, which is due to the use of deep 

neural network structures, is that it can learn feature representations without using a 

separate feature extraction process (Jiang et al., 2017), although feature extraction is a 

very significant activity within the processing required for pattern recognition 

(Touretzky et al., 1996). Using deep NNs, this is achieved by feature detector units 

arranged in layers. Lower layers detect simple features and feed them into higher 

layers, which in turn detect more sophisticated features (Bengio et al., 2013a). 
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LeCun et al. (1998) proposed a gradient-based learning method which could be applied 

to the detection and classification of handwritten digits in the MNIST (Modified 

National Institute of Standards and Technology) digit image database, a large database 

of handwritten digits that is commonly used for training image processing systems. 

Deep learning was first investigated by Hinton (2006) and then his methods were 

improved by Ranzato et al. (2007) and Lee et al. (2009). Much research has focused 

on the MNIST database in relation to implementing a new representation learning 

algorithm, which would challenge the supremacy of SVMs that achieved an error rate 

of only 1.4% (Lang et al., 1990; Touretzky et al., 1996; Bengio et al., 2007). Speech 

recognition and image processing were early applications of deep neural networks, 

especially with respect to using them for sound recognition by the application of 

shared weights in a temporal dimension (Bengio, 2009; Ngiam et al., 2010; Bengio et 

al., 2011; Dahl et al., 2012; Deng et al., 2013; Zhang et al., 2017b). In 2011, two 

transfer learning challenges were mooted, which were intended to encourage the 

exploitation of common features of different learning tasks in order to help distribute 

statistical and other knowledge more widely. The first challenge was presented at an 

ICML conference (Bengio, 2012; Mesnil et al., 2012) and required the use of 

unsupervised layers. The second challenge was proposed by Goodfellow et al. (2012) 

and involved the learning of hierarchical models. In 2012, a new version of the 

Microsoft audio video indexing service system was released, which was based on deep 

learning (Lee et al., 2009; Seide et al., 2011). Glorot et al. (2011) proposed a deep 

learning system for natural language processing, which learns to extract a meaningful 

representation of each customer review in an unsupervised fashion. This method 
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successfully performed domain adaptation on a large industrial-strength dataset of 22 

domains. 

Lai et al. (2015) applied recurrent convolutional neural networks to text classification 

and employed a max-pooling layer which automatically judged what words play key 

roles in the text. The results showed that their proposed model outperformed the state-

of-the-art methods on four document-level datasets. 

Natural language processing applications have been developed, which have employed 

representation learning and deep neural networks. Hinton (1986) proposed a 

distributed representation for symbolic data. Neural net language models were 

developed by Bengio et al. (2003), based on the context of statistical modelling. The 

SENNA (http://ml.nec-labs.com/senna) system was developed by Collobert et al. 

(2011), which implements representations across all the tasks involved with language 

modelling: parts-of-speech, recognition tags, chunking, embedded words, and semantic 

and syntactic labelling. Google’s images search (Weston et al., 2010) learns word and 

image representations in combination. Google’s system has been extended to multi-

layer representations.  

Many text classification systems have adopted deep neural networks (Young et al., 

2017; Kowsari et al., 2017; Jiang et al., 2018). Deep learning has played a major role 

in phishing detection (Saxe et al., 2018; Nguyen et al., 2018; Le et al., 2018). Xu et al. 

(2018) employed deep neural networks for learning URL representations for malicious 

URL detection. 

Feature learning usually requires unsupervised learning. Learning systems which can 

achieve this include the restricted Boltzmann machines (RBMs) (Salakhutdinov & 



  Chapter 2: Literature Review 

48 

 

Hinton, 2009), sparse autoencoders (Lee, 2010, Abdulhussain & Gan, 2016), stacked 

autoencoders (SAE) (Zhou et al., 2015), de-noising autoencoders (Vincent et al., 2008; 

Vincent et al., 2010), and contractive autoencoders (Rifai et al., 2011). 

Currently, the main focus of research on deep learning is that the compositions of 

nonlinearities, for example, those in deep feed-forward or recurrent networks, can be 

susceptible to initialisation problems. Other significant issues in deep learning include 

problems of overfitting and vanishing/exploding gradients emerging during error back-

propagation due to the adoption of deep neural network structures such as deep 

multilayer perceptron (DMLP) (Geman et al., 1992; Glorot & Bengio, 2010). 

Many techniques have been proposed to solve these problems which occur when 

training deep neural networks. A greedy layer-wise unsupervised pre-training approach 

was the first that mitigated the initialisation dilemma (Hinton et al., 2006). The central 

idea of this is to enable a neural network to learn a hierarchy of features one layer at a 

time by employing unsupervised feature learning for each new transformation at each 

layer so that all the transformations can then be collected together. The set of layers 

can be combined in order to initialise a supervised deep neural network (Hinton et al., 

2006). 

Bengio et al. (2007) proposed to train a deep neural network via a sequence targeted at 

an auxiliary objective and then the “fine-tuning” of the entire network using standard 

optimisation methods, such as stochastic gradient descent. Martens (2010) showed that 

the truncated Newton method has the ability to train deep neural networks from certain 

random initialisation states, without pre-training. However, these methods were found 

to be inadequate in relation to resolving the known training challenges. It is evident 
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that most deep learning models cannot be used with just random initialisation (Martens 

& Sutskever, 2012; Mohamed et al., 2012). Effective weight initialisation or pre-

training has been widely explored for avoiding vanishing/exploding gradients 

(Aggarwal & Zhai, 2012; Basnet et al., 2012). Using a huge amount of training data 

can overcome overfitting, to some extent (Geman et al., 1992). However, in many 

applications, there is no large amount of training data available, or there is insufficient 

computer power available to handle huge amounts of training data. As a result, 

regularisation techniques, such as the sparse structure and dropout techniques, are 

extensively used for combatting overfitting (Aggarwal & Zhai, 2012; Basnet et al., 

2012). 

 Sparse Autoencoders 

An autoencoder is an unsupervised neural network trained by using back-propagation 

via a gradient descent algorithm, which learns a non-linear approximation of an 

identity function (Hinton & Salakhutdinov, 2006). The main idea of an autoencoder is 

to reconstruct its input through encoding and decoding so as to perform feature 

learning. Figure 2.9 illustrates a non-linear multilayer autoencoder network structure. 

There are many studies which have focused on learning feature representations that 

can reduce the dimensionality and improve the quality of text features (Saxe et al., 

2018; Shen et al., 2017). By using sparsity penalty term in the learning objectives, 

sparse autoencoders can learn sparse feature representations. 
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                                    Figure 2.9: Typical autoencoder 

 

 The Restricted Boltzmann Machine (RBM) 

A restricted Boltzmann machine has been applied to many machine learning domains, 

such as text, speech, motion data and images (Fatemi & Safayani, 2017). It was 

developed for the purpose of extracting highly discriminative low-dimensional features 

from high-dimensional raw data or complex data sets in an unsupervised manner by 

introducing hidden units (features) (Zhang et al., 2012; Cai et al., 2012). RBM consists 

of hidden and visible neurons (units), of which the visible units are used for input and 

the hidden units are used to model the data distribution (Bengio, 2009). It is restricted 

because the visible-visible and hidden-hidden connections are disallowed. Figure 2.10 

illustrates a standard RBM with two layers: v denotes the visible units and h denotes 

the hidden units. 
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Figure 2.10: The restricted Boltzmann machine (Cai et al., 2012). 

 

An RBM is able to model correlations of data by using fast learning algorithms such as 

Contrastive Divergence (CD) (Cai et al., 2012). The energy function )|,( hvE  of an 

RBM is defined as follows: 

                                     
)..(

2

1
)|,( . hcvbhWvhvE TTT ++=             ( 2.39) 

where v represents the visible units and h represents the hidden units, WcbW ),,,(

represents the weights connecting the visible and the hidden units, and  cb,  are the 

biases of the visible and hidden layers respectively. 

The partition function )(Z  is defined as follows: 

                                       −=
x

hvEZ )|,(exp)(              (2.40) 

        

The probability of the neurons’ output is as follows: 

                                 )|,(exp
)(

1
)|,( −


= hvE

Z
hvP            (2.41)  

The conditional probability of a visible unit is as follows:    

                                     ).()|1( hWbsigmhvp iii +==             (2.42)  
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The conditional probability of a hidden unit is as follows: 

                                     ).()|1( vWcsigmvhp jjj +==  (2.43) 

where sigm(x) is a sigmoid logistic function (1 + 𝑒𝑥𝑝 (−𝑥))−1. Wi is the ith row vector 

of weight matrix W, and Wj is the jth column vector of weight matrix W. 

 Deep Convolutional Neural Networks (DCNNs) 

Deep convolutional neural networks have attracted much attention in many research 

areas such as computer vision, speech recognition, and natural language processing. 

DCNNs are designed to process data that come in the form of multiple layers (Zhang et 

al., 2017c). DCNNs are basically several layers of convolutions with non-linear 

activation functions (Sainath et al., 2013; Jalali et al., 2015; Zhou et al., 2015; Chen et 

al., 2018). There are three main types of layers as illustrated in Figure 2.11, which are 

used to build ConvNet architectures: the convolutional layer, the pooling layer, and the 

fully-connected layer. 

 

Figure 2.11: Typical structure of DCNNs for image classification (Chen et al., 2014b). 
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2.8 Performance Evaluation of Machine Learning 

Approaches 

There are different types of criteria for performance evaluation, which are applied 

across different application areas such as information retrieval, document 

classification, and anti-phishing. 

• Confusion Matrix 

A confusion matrix is often used to describe the performance of a classification 

model on a test dataset for which the true values are known. As an example, Table 

2.1 shows the four classification possibilities of a phishing detection problem, 

which form a 2x2 confusion matrix (Khonji et al., 2013). 

Table 2.1: Confusion Matrix 

 

• True Positive (TP) is the number of correctly predicted positive cases (e.g., 

phishing attacks), and true positive rate (TPR) is the ratio of TP to the number 

of real positive cases.  

• False Positive (FP) is the number of incorrectly predicted positive cases, and 

false positive rate (FPR) is the ratio of FP to the number of real negative cases 

(e.g., benign web-sites/emails).  

• True Negative (TN) is the number of correctly predicted negative cases, and 

true negative rate (TNR) is the ratio of TN to the number of real negative cases. 

 Predicted Class 

Classified as C1 

Phishing 

Classified as C2 

Non-phishing 

Actual 

Class 

C1 (yes) TP FP 

C2 (no) FN TN 
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• False Negative (FN) is the number of incorrectly predicted negative cases, and 

false negative rate (FNR) is the ratio of FN to the number of real positive cases.  

• Precision (P) is the ratio of the number of correctly predicted positive cases to 

the number of all the predicted positive cases, i.e., 

                                     

FPTP

TP
P

+
=                (2.44)  

• Recall (R) is defined as 

                                     

FNTP

TP
R

+
=           (2.45)  

• F1 score is a measure based on both P and R, which is defined as 

                                     

RP

PR
F

+
=

2
1              (2.46)  

• Accuracy (ACC) is the ratio of the number of correctly predicted cases to the 

number of total cases, i.e., 

                                     

TNFNFPTP

TNTP
Accuracy

+++

+
=                 (2.47)  

 

2.9 Detection of Phishing Emails and Websites 

(Application of Document Classification) 

 Introduction 

Phishing is a kind of attack on users carried out entirely via electronic communication 

channels, such as e-mails or fake websites, through which the attackers attempt to 
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defraud users into divulging sensitive information, such as usernames and passwords 

associated with their bank accounts (Jain & Gupta, 2018; Abu-Nimeh et al., 2007). 

The term “phishing” was coined in 1996 when scammers attacked the accounts of 

America Online (AOL). Phishing detection has become a crucial issue since then 

(Jakobsson & Myers, 2006; Ma et al., 2009). 

The Anti-Phishing Working Group (APWG) (2017) tracks the number of unique 

phishing websites, the number of unique phishing e-mail reports, the number of brands 

targeted by phishing campaigns and the number of domain names used in attacks. 

Figure 2.12 shows these statistics for the first half of 2017. 

 

Figure 2.12 : Statistical highlights for the first half of 2017 (APWG, 2017). 

          

 Types of Phishing Attacks 

Several different types of phishing attacks have been identified. However, all of them 

aim at defrauding social media users in order to steal their personal information (such 

as usernames and passwords of bank accounts) and, of course, their money (Peng et 

al., 2018). Almomani et al. (2013) categorised phishing attacks into two categories: 

deceptive phishing and malware-based phishing. In this section, we categorise 
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phishing attacks into three types: phishing e-mails, fake websites, and malicious 

websites. 

Phishing e-mails generally contain warning messages with links to spoofed websites 

(Conti et al., 2018), which have been set up for the purpose of procuring the personal 

information of the user. Based on the receivers, phishing e-mails are divided into two 

kinds: clone phishing and spear phishing. In the first type, attackers procure 

information about their victims from legitimate e-mails, such as content and recipient 

addresses, and then they resend a deceptive e-mail with a spoof link that appears 

original (Gupta et al., 2017; McCrohan & Harvey, 2011). In the second type, the 

attackers select a specific group of users, for example, people from the same 

organisation or university, instead of randomly disseminating thousands of e-mails. 

The procedure for sending phishing e-mails has three components: Message Transfer 

Agents (MTA), Message Delivery Agents (MDA), and Mail User Agents (MUA). 

Figure 2.13 shows the procedure for sending phishing e-mails and how such emails are 

transferred across a computer network. 
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Figure 2.13: Procedure for sending phishing via e-mails (Almomani et al., 2013). 

 

In 2011, the clients of two well-known security companies, RSA and HB Gary, 

received spear phishing e-mails (Basnet et al. 2008; Zhang et al., 2007). This shows 

that phishing attacks threaten not just unsuspecting (naïve) users, but that even 

companies with technical expertise can fall prey to the danger of phishing. 

Fake websites are imitative e-commerce websites that resemble the websites of 

legitimate businesses, such as banks or other businesses. Such fake websites are 

designed by cybercriminals to misdirect the user to illegitimate websites or to a 

legitimate one, such as eBay, PayPal, or various banking services, which they can 

monitor by proxies in order to steal the customer’s money (Cordero & Blain, 2007). 

Figure 2.14 shows a sample of a fake PayPal website. 

Phisher 

Victim 
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Figure 2.14 : Fake PayPal website (Aggarwal et al., 2013). 

 

A malicious or malware website is a website which offers a downloadable file, 

intended to be attractive to the user, which contains malicious software (e.g., spyware 

or Trojans) (Antonakakiset al, 2018). Upon installation of the downloaded file, it can 

gather information about the person or organisation without their knowledge 

(Aggarwal et al., 2013). 

It is plausible to argue that there is an overlap between the above three phishing types. 

The phishing e-mails may contain a spoof link to fake or malicious websites. 

 Types of Features for Phishing Attacks Detection 

This thesis focuses on categorising the features of e-mails and websites, which are 

used to manipulate the victims, into two kinds: URL-based and content-based features. 

The former can be further divided into two sub-types: technical features related to the 

operation of search engines and URL structures which identify the URL, such as the 

domain name. Content-based features can also be divided into two sub-types: user-
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visible features (external), such as text features and the frequency of words, and user-

invisible features (internal), such as HTML and JavaScript code (Badadhe et al., 2014). 

Figure 2.15 shows the categorisation of the features found in phishing e-mails and 

websites. This research has looked in particular at the external features: both content-

based features and URL-based features. 

 

 

Figure 2.15: Types of features in phishing e-mails and websites. 

  

Machine learning methods have played a significant role in phishing detection and 

classification (Islam & Abawajy, 2013). Detecting phishing e-mails and websites has 

been formulated as a statistical pattern recognition task and machine learning is at the 

core of building phishing detection systems due to its efficiency and effectiveness for 

relatively simple systems.  

2.10 Summary 

This chapter has reviewed the state-of-the-art document representation and feature 

extraction methods, feature selection and dimensionality reduction methods, machine 

learning and deep learning approaches for document classification, and example 
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applications and assessment of document classification. Although the different 

techniques investigated do achieve high classification accuracy, they still suffer from 

some problems: 1) Lack the ability to generate effective features and in particular lack 

efficient feature selection and dimensionality reduction methods; 2) Lack 

interpretability. The weakness of current learning algorithms is that they are not good 

at extracting and organising discriminative information from data in an automatic 

manner. There are different types of metrics for document classification methods. The 

features used by most existing document classification methods are insufficient. We 

need to focus, in particular, on extracting informative features for document 

classification. It is very difficult to interpret the effectiveness of feature selection 

methods because in many applications datasets often have a large number of irrelevant 

and redundant features in high-dimensional space and not much knowledge about the 

large amount of features. In addition, the overfitting problem is one of the leading 

issues in machine learning and deep learning in particular. However, the available 

solutions to the above problems do not fully answer the main challenges related to the 

important aspects of big data analysis and classification. This thesis focuses on 

proposing and investigating effective methods for feature selection and document 

classification. The remaining chapters will attempt to provide answers to some of the 

main issues relating to feature extract and feature selection for document classification. 

In the next chapter, we will present a general explanation of the proposed methods for 

feature extraction and feature selection for document classification and will describe in 

detail the evaluation methods we used in this thesis to assess the performance of the 

proposed methods by measuring the classification performance.
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Chapter 3 

3 Methodology 

3.1 Introduction 

A review of the main topics was presented in the previous chapter, including the 

methods for document representation, feature extraction, and feature selection and 

dimensionality reduction, conventional and machine learning methods for 

classification, and deep neural networks for representation learning. 

The research methodology adopted in this thesis consists of three steps: 

• Problem analysis and investigation of potential methods: Based on the 

outcomes of problem analysis, theoretical approaches are investigated first, and 

then applicable algorithms and methods are developed and subsequently tested 

on multiple datasets. 

• Experimental testing: Improved or newly proposed approaches are tested on 

various datasets collected from various sources: such as emails datasets, 

technical websites features for fraud detection, and others. On each dataset 

experiments are repeated with different data splits for training, validation and 

testing respectively. 

• Results analysis: The experimental results are analysed using various statistical 

tests to assess whether the performance differences among the methods used 

are statistically significant. It is also exploited whether the results obtained are 

interpretable. 
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This chapter presents general steps of the research methodology for developing new 

methods for feature extraction, feature selection and dimensionality reduction. Work 

packages are presented in section 3.2 and the general experiment procedure adopted is 

described in section 3.3. 

3.2 Work Packages 

This Ph.D. thesis aims to develop new methods for extracting effective features and 

relevant learning representations by employing machine learning methods including 

deep learning for document classification, with a focus on text and document analytics.  

The first work package is to propose an improved PCA method based on the singular 

value decomposition of a matrix of cosine similarity or correlation between pairs of 

feature vectors. For initial feature extraction, four term weighting schemes are applied 

for document representation: term frequency (TF), term presence (TP), term frequency 

and inverse document frequency (TF-IDF), and term presence and class-specific 

document frequency (TP-CSDF). The proposed approach is evaluated by employing 

three well-known classifiers SVM, KNN and LDA to classify emails/documents/news-

items using the best number of principal components or features to achieve the highest 

performance in terms of classification accuracy and the minimum number of selected 

features. Experiments are conducted with performance evaluated by comparison of the 

proposed method with the standard PCA based on the singular value decomposition of 

covariance matrix. 

The second work package is to propose hybrid methods for feature subset selection, 

aiming to further reduce feature dimensionality and thus improve classification 
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accuracy and interpretability as well. The proposed methods use a two-stage process 

for selecting a subset of relevant features. The first stage selects feature subsets based 

on either the union or intersection of features selected according to distance or 

similarity measures (unsupervised approach) and mutual information measures 

(supervised approach). The second stage employs a wrapper approach on the features 

selected at the first stage. The proposed methods are evaluated by employing three 

well-known classifiers (SVM, KNN, and LDA) to classify emails/documents/news-

items. Performance comparison with individual filter approaches and full wrapper 

approach is carried out in terms of classification accuracy, the processing time 

consumed, and the number of selected features. 

The third work package is to develop a new scheme for employing sparse autoencoder 

to extract features, which uses a class-specific (supervised) pre-trained approach to 

learn extracting features for each class separately, which is evaluated by employing 

two well-known classifiers (SVM and LDA) in comparison with feature extraction 

based on unsupervised trained sparse autoencoder. 

The final work package is to explore deep classifier structures using SAE and MLP for 

higher-level feature extraction, leading to a three-stage learning algorithm that can 

overcome the difficulties encountered when training deep neural networks with limited 

training data in high-dimensional feature space. The performance of the proposed 

three-stage learning algorithm for DMLP is evaluated via comparisons with the 

performance of support vector machines combined with SAE and DMLP trained with 

random weight initialisation. 
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3.3 Experiment Procedure 

 Datasets 

Eight datasets are used in the experiments in this thesis. First, an emails_v1 dataset 

(http://snap.stanford.edu/data/) has 6,000 samples from two classes (3,000 ham/non-

phishing and 3,000 phishing) from different resources such as Cornel University and 

Enron Company. Second, an email_v2 dataset 

(https://www.kaggle.com/wcukierski/enron-email-datase) has 1,000 samples from two 

classes (500 ham/non-phishing and 500 phishing) from Cornel University and Kaggle 

competition website. Third, a document dataset consisting of 10 categories of the 

Reuters-21578 dataset 

(http://www.daviddlewis.com/resources/testcollection/reuters21578) has 1885 samples 

from 10 classes. Fourth, the 20 Newsgroup corpus dataset is a collection of 

approximately 20,000 newsgroup documents divided into 20 discussion groups 

(https://archive.ics.uci.edu/ ml/datasets/Twenty+Newsgroups). Because some news 

groups are very closely related to each other, seven relatively distinguishable 

categories were used in the experiments, producing a dataset named 20news_v1. Fifth, 

a document dataset consists of four relatively distinguishable categories from the 20 

Newsgroup corpus dataset, which is named 20news_v2. Sixth, a technical website 

features dataset (http://khonji.org/phishing_studies) has 4,230 samples from two 

classes (2,115 phishing and 2,115 non-phishing). Seventh, the Musk dataset 

(http://archive.ics.uci.edu/ml/datasets.html) has 6,598 samples from two classes (musk 

and non-musk). Eighth, a self-drive intrusion detection dataset has 10,000 samples 

https://www.kaggle.com/wcukierski/enron-email-datase
http://www.daviddlewis.com/
https://archive.ics.uci.edu/
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from two classes (5,000 malicious and 5,000 non-malicious). Table 3.1 summaries the 

general information about these datasets. 

Five of these datasets are text, which were pre-processed by tokenization, removing 

stop words, such as ‘the’, ‘for’, numbers and symbols, and stemming words such as 

‘attachment’ and ‘attached’, which help to produce a bag of words (BOW) as original 

features. After that, four term weighting schemes were applied to weight the words in 

the BOWs of the document datasets: term frequency (TF), term presence (TP), term 

frequency and inverse document frequency (TF-IDF), and term presence and class-

specific document frequency (TP-CSDF) (Plansangket & Gan, 2015a). The other three 

datasets (technical website features, Musk, and self-drive intrusion detection) are 

numerical, with feature values normalised in the experiments. 

                      Table 3.1: Description of the Datasets. 

No. Dataset No. of 

Samples 

No. of 

Classes 

No. of 

Features 

1 Emails_v1 6,000 2 1,014 

2 Emails_v2 1,000 2 465 

3 Reuters-21578  1,885 10 421 

4 20news_v1 20,000 7 100 

5 20news_v2 20,000 4 2,591 

6 Technical 

Website 

Features 

4,230 2 47 

7 Musk 6,598 2 166 

8 Self-drive 

Intrusion 

Detection 

(malicious 

dataset)  

10,000 2 80 



  Chapter 3: Methodology 

66 

 

 

 Splitting Data for Reliable Validation and Testing 

For each dataset, the experiment was repeated five times with different data partition 

obtained by shuffling with different random seeds for each run. The mean and standard 

deviation (Std.) of the experimental results were calculated to assess the consistency of 

the results. In each run, a dataset was partitioned into a training set and a testing set. 

Part of the training set was used as validation data for choosing the best parameter 

values for the various methods for comparison. The proposed approaches were applied 

to select the best number of discriminate features in the sense that the highest cross-

validation (5-folds) performance was achieved.  

 Algorithms for Classification 

There are many classifiers of different natures which can be used for supervised 

classification. Generally, the classification performance may be dependent on the types 

of classifiers used, under exactly the same conditions, subset of features, number of 

samples, and training procedure. To verify the consistency of the proposed feature 

selection methods, we have used four types of classifiers in our experiments: linear 

discriminant analysis (LDA) (Belhumeur et al.,1997; Altman, 1992), K-Nearest 

Neighbour (KNN) method (Vapnik, 2013), support vector machine (SVM) (Smola & 

Schölkopf, 2004; Bishop, 2006; Vapnik, 2013), and multilayer perceptron (MLP) 

(Bishop, 2006), as described in section 2.5.1, 2.5.2, 2.6.1, and 2.6.2. These four 

classifiers have been chosen because they represent three quite different approaches in 

machine learning and are commonly used in data mining practice. 
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 Criteria for Performance Evaluation 

There are different types of criteria for performance evaluation, as described in section 

2.8, which are applied across different application areas such as information retrieval, 

document classification, and anti-phishing. In this work, we used the classification 

accuracy, which is defined as the ratio of the number of correctly predicted cases to the 

number of total cases, i.e., 

                                     

TNFNFPTP

TNTP
Accuracy

+++

+
=  

               (3.1)  

   

   

 Statistical Significance Test 

Many studies adopt various statistical methods to assess whether the performance 

differences among the methods are statistically significant. The selection of the test 

should be based on statistical suitability and what we intend to assess. The statistical 

tests adopted in this research are as follows: 

T-test, which is parametric method to determine whether two sets of performance data 

are significantly different from each other. We used the T-test in chapters 4, 5, 6, and 7 

to compare the performances in terms of classification accuracy and number of 

selected features. 

Wilcoxon’s rank sum test, which is a non-parametric method to determine if two sets 

of data are significantly different from each other. We used the Wilcoxon’s rank sum 



  Chapter 3: Methodology 

68 

 

test in chapters 5, 6, and 7 to compare the classification performances in terms of 

classification accuracy and number of selected features.
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Chapter 4 

4 An Improved PCA Approach Based on 

Cosine Similarity and Correlation for Text 

Feature Dimensionality Reduction 

 

4.1 Introduction 

Text analysis refers to techniques that extract information from textual data such as 

that provided by social networks, emails, documents, and news media. These 

techniques include statistical analysis, computational linguistics, and machine learning. 

Social media has been a very recent target of text analysis of both structured and 

unstructured data such as those yielded by Facebook, Blogger, and Twitter (Gandomi 

& Haider, 2015). The number of samples or observations and the number of features 

available for data mining have increased significantly in different applications such as 

fraud detection and document retrieval (Almusallam, 2017). This could be problematic 

and may cause the computational complexity of machine learning approaches 

employed for text and document classification. Due to the possible existence of a large 

number of irrelevant and redundant terms in high-dimensional feature space, feature 

dimensionality reduction is a very important pre-processing step in text categorization 

and pattern recognition in high-dimensional feature space (Yu & Liu, 2003). In 

general, selecting an appropriate smaller subset of features can make the training of a 

classifier more robust (Gan et al., 2014). 
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There are many different criteria applied to filter-based feature selection and 

dimensionality reduction, such as distance or similarity/dissimilarity criteria (Cha, 

2007; Saeys et al., 2007). Principal component analysis (PCA) is a commonly used 

method for feature extraction and dimensionality reduction, which combines features 

by using orthogonal transformation to convert a set of samples of possibly correlated 

(similar) variables into a set of data of linearly uncorrelated variables (Gomez et al., 

2012; Tian  et al., 2010; Kim et al., 2002). It has been used in almost all scientific 

disciplines, for instance, Liu et al. (2010) employed PCA for content-based email 

classification. Kumar and Ravi (2017) adopted PCA for text classification. 

This thesis focuses on text and document analytics. This chapter proposes a PCA 

method based on the singular value decomposition of a matrix of cosine similarity or 

correlation between pairs of feature vectors. Experiments were conducted with 

performance evaluated by comparison of the proposed method with the standard PCA 

based on the singular value decomposition of covariance matrix. The remainder of the 

chapter is structured as follows: sections 4.2-4.5 describes the basic principles of PCA, 

correlation, cosine similarity, and the proposed approach. Section 4.6 presents 

experimental results and discussion. A summary of the work described in this chapter 

is drawn in Section 4.7. 

4.2 Principal Component Analysis 

The steps of the standard PCA algorithm based on the singular value decomposition of 

the covariance matrix are as follows (Yu et al., 2009; Gbashi et al., 2014). 
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• Organise training data in an m×n matrix X, where m is the number of samples and n 

is the number of variables or features in each sample. 

• Set the mean of each variable to zero, transferring matrix X to a mean removed 

matrix D 

• Compute an n×n matrix C, the covariance of matrix D 

• Compute eigenvalues and eigenvectors of C 

• Sort eigenvectors (i.e., principal components) in the descending order of eigenvalues. 

• Decide the number of top principal components, k, to keep using some criteria, 

forming an n×k projection matrix P, with each column vector being a kept principal 

component. 

• Compute the projected data by D×P. 

4.3 Cosine Similarity 

As discussed in section 2.4.1.6, cosine similarity is a measure of similarity between 

two non-zero vectors of an inner product space that measures the cosine of the angle 

between them (Singhal, 2001). The cosine of 0 is 1, and it is less than 1 for any other 

angle in the interval (0, 2π). Given two vectors of features, x={x1, x2, …, xn} and y={y1, 

y2, …, yn}, the cosine similarity is defined as follows (Cha, 2007; Hasan et al., 2010): 
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https://en.wikipedia.org/wiki/Measure_of_similarity
https://en.wikipedia.org/wiki/Inner_product_space
https://en.wikipedia.org/wiki/Cosine
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4.4 Pearson’s Correlation 

A correlation coefficient is a number between -1 and 1 that refers to the strength of 

correlation between features (Guyon & Elisseeff, 2003). The Pearson’s correlation for 

measuring the strength of a linear association between two variables is defined as 

follows: 
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              (4.2)  

where x  is the mean of x  and y  is the mean of y .  

4.5 Proposed Approach 

The proposed approach in this chapter employs the cosine similarity or correlation 

defined in (4.1) and (4.2) to compute the similarity or correlation between each pair of 

feature vectors in the training dataset, generating a correlation matrix or similarity 

matrix of the training data, which are used to replace the covariance matrix in the 

standard PCA algorithm. In the standard PCA, the k principal components 

corresponding to the k largest eigenvalues are selected to form the projection matrix. In 

our approach, the selected k principal components correspond to the k smallest 

eigenvalues. This can be explained by the fact that the smallest similarities or 

correlations between features mean the largest divergence between them. 

The number of principal components to keep or the number of features to select, i.e., 

the value of k, can be determined by the classification accuracy on a training dataset 

with k selected features and then validated with a test dataset. We obtain performance 



  Chapter 4: An Improved PCA 

73 

 

curves with accuracy against the number of kept principal components, i.e., the 

number of selected features. The value of k is chosen to correspond to the highest 

accuracy. Three well-known classifiers were used in this study. They are support 

vector machine (SVM) (Smola & Schölkopf, 2004; Vapnik, 2013), K-nearest 

neighbour (KNN) (the best value of K is chosen by cross-validation) (Altman, 1992), 

and linear discriminant analysis (LDA) (Belhumeur et al., 1997). 

4.6 Experimental Results 

 Datasets 

Eight datasets as described in Chapter 3 were used in the experiments (email_v1, 

email_v2, Reuters-21578, 20news_v1, 20news_v2, Musk, technical website features, 

and self-drive intrusion detection).  

 Experiment Procedure 

For each dataset, the experiment was repeated five times with different data partition 

obtained by shuffling with different random seeds for each run to assess the 

consistency of the results. The full description of the procedure is in section 3.3. 

 Results 

Classification accuracy, standard deviation and the corresponding number of 

required features: Tables 4.1-4.24 show the classification accuracy, standard deviation 

(Std.) and the corresponding number of required features by three PCA methods 

(PCA-Cov: covariance matrix based, PCA-Corr: correlation matrix based, and PCA-
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cos: cosine similarity matrix based). It is clear that the proposed PCA using the cosine 

similarity criterion achieved competitive accuracy with a smaller number of required 

features compared to the PCA based on covariance and correlation, across different 

datasets and different classifiers. 

             

            Table 4.1: Performance of SVM on email-v1 dataset.             
Methods TF 

 

TP TF-IDF TP-CSDF 

Av. Std. F Av. Std. F Av. Std. F Av. Std. F 

Full features 88.6% 3.8 1014 90.6% 3.01 1014 90.6% 3.2 1014 83.9% 3.1 1014 

PCA-Cov 87.5% 2.3 30 90.7% 0.7 10 88.4%% 1.1 29 86.3% 2.3   36 

 PCA-Corr 88.7% 1.1 32 91.4%  0.2 9 91.6% 0.6 18 84.4% 0.6   20 

PCA-Cos 90.5% 0.9 19 92.5%  0.1 7 91.4% 0.5 24 85.9% 0.7    18 

     

             Table 4.2: Performance of SVM on reuters-21578 dataset.   
Methods TF 

 

TP TF-IDF TP-CSDF 

Av. Std. F Av. Std. F Av. Std. F Av. Std. F 

Full features 81.5% 2.2   421 80.5% 0.013  421 80.5% 0.121 421 81.7% 3.47  421 

PCA-Cov 80.3% 1.03 47 79.6% 0.009 46 80.2%% 0.021 39 80.7% 2.25   38 

 PCA-Corr 80.2%  1.01 37 79.7%  0.012 43 80.7% 0.009 35 80.8% 1.07   20 

PCA-Cos 81.5% 0.93 18 81.5% 0.007 35 81.8% 0.008 30 81.6% 0.24   19 

 

             Table 4.3: Performance of SVM on 20news_v1 dataset.             
Methods TF 

 

TP TF-IDF TP-CSDF 

Av. Std. F Av. Std. F Av. Std. F Av. Std. F 

Full features 60.6% 3.05 100 72.4% 2.57 100 72.3% 0.145 100 73.5% 4.46 100 

PCA-Cov 61.8% 1.17 50 73.3% 2.19  29 73.3% 0.035 44 73.7% 2.48 32 

PCA-Corr 65.3% 0.87 26 73.8% 1.64  22 73.5% 0.024 40 74.1% 1.28 28 

PCA-Cos 67.9% 0.69 17 74.9% 1.35  21 73.9% 0.013 35 74.8% 1.17 24 
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             Table 4.4: Performance of SVM on email_v2 dataset. 
Methods TF 

 

TP TF-IDF TP-CSDF 

Av. Std. F Av. Std. F Av. Std. F Av. Std. F 

Full features 92.7% 2.06 465 83.4% 2.06 465 90.3% 2.59 465 90.5% 3.46 465 

PCA-Cov 95.8% 1.37 57 88.3% 1.95  59 91.3% 2.13 42 92.7% 1.18 40 

PCA-Corr 96.3% 0.92 53 89.5% 1.36  32 92.5% 1.46 23 92.1% 0.86 33 

PCA-Cos 97.8% 0.73 31 90.6% 1.04  30 93.9% 1.29 17 94.6% 0.79 28 

 

             Table 4.5: Performance of SVM on 20news_v2 dataset.                    
Methods TF 

 

TP TF-IDF TP-CSDF 

Av. Std. F Av. Std. F Av. Std. F Av. Std. F 

Full 

features 

74.7% 2.52 2592 71.9% 3.13  2592 74.7% 0.422 2592 72.9% 2.97 2591 

PCA-Cov 79.3% 1.08 78 75.6% 0.94   65 82.6% 0.020 83 76.7% 1.48 54 

PCA-Corr 80.4% 1.83 67 77.3% 1.06   58 84.7% 0.013 32 78.6% 1.16 28 

PCA-Cos 82.4% 1.06 52 79.4% 0.35   45 86.3% 0.012 21 79.4% 0.92 17 

 

            Table 4.6: Performance of SVM on technical website features dataset. 
Methods F 

 

NF 

Av. Std. F Av. Std. F 

Full features 82.1% 0.331 47 84.9% 0.230 47 

PCA-Cov 84.1% 0.009 35 83.6% 0.007 29 

PCA-Corr 86.4% 0.007 23 86.8%  0.006 26 

PCA-Cos 88.1% 0.006 21 89.7%  0.005 19 

 

          Table 4.7: Performance of SVM on musk dataset.             
Methods F 

 

NF 

Av. Std. F  Av. Std. F 

Full features 84.4% 0.132 166 85.7% 0.232 166 

PCA-Cov 88.2% 0.021 56 87.6% 0.009 48 

PCA-Corr 89.4% 0.012 35 88.6%  0.008 37 

PCA-Cos 93.7% 0.021 29 93.9%  0.001 24 

          

           Table 4.8: Performance of SVM on the malicious dataset.              
Methods F 

 

NF 

Av. Std. F  Av. Std. F 

Full features 91.3% 2.54 80 92.8% 2.16    80 

PCA-Cov 92.8% 1.76 42 93.7% 1.19 43 

PCA-Corr 94.3% 1.18 35 94.2%  0.39 38 

PCA-Cos 97.6% 0.76 27 97.8%  0.2 25 
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             Table 4.9: Performance of LDA on email_v1 dataset.                       
  Methods TF 

 

TP TF-IDF TP-CSDF 

Av. Std. F Av. Std. F Av. Std. F Av. Std. F 

Full features 82.4% 0.138 1014 85.7% 0.236 1014 85.6% 0.137 1014 85.6% 0.235 1014 

PCA-Cov 87.1% 0.023 12 90.7% 0.005 10 88.3%% 0.013 29 86.3% 0.037   42 
 PCA-Corr 90.4% 0.009 10 91.3%  0.0035 9 90.3% 0.004 12 87.5% 0.005   27 

PCA-Cos 91.5% 0.007 9 92.5%  0.0028 7 90.4% 0.003 10 88.1% 0.001    20 

 

             Table 4.10: Performance of LDA on reuters-21578 dataset.                
  Methods TF 

 

TP TF-IDF TP-CSDF 

Av. Std. F  Av. Std. F Av. Std. F Av. Std. F 

Full features 71.4% 0.126 421 74.7% 0.211  421 78.5% 0.113 421 80.7% 0.234  421 

PCA-Cov 70.3% 0.011 42 71.6% 0.010 48 72.2%% 0.025 42 74.7% 0.026   40 
 PCA-Corr 71.2%  0.015 34 75.7%  0.026 43 73.7% 0.010 38 75.5% 0.021   24 

PCA-Cos 72.5% 0.012 29 76.5% 0.009 35 75.4% 0.006 36 77.1% 0.003    22 

 

              Table 4.11: Performance of LDA on 20news_v1 dataset.                     
Methods TF 

 

TP TF-IDF TP-CSDF 

Av. Std. F Av. Std. F Av. Std. F Av. Std. F 

Full features 61.6% 3.54 100 71.4% 3.53 100 72.3% 4.50 100 73.5% 4.48 100 

PCA-Cov 62.8% 1.23 53 72.3% 2.12  39 73.3% 3.58 44 73.7% 2.43 38 

PCA-Corr 66.3% 1.07 23 73.5% 1.65  46 73.5% 2.45 40 76.1% 1.23 18 

PCA-Cos 66.9% 0.92 21 73.6% 1.32  29 73.9% 1.30 35 76.8% 1.19 16 

 

              Table 4.12: Performance of LDA on email_v2 dataset. 
Methods TF 

 

TP TF-IDF TP-CSDF 

Av. Std. F  Av. Std. F Av. Std. F Av. Std. F 

Full features 85.6% 2.01 465 83.4% 2.51 465 79.3% 2.41 465 80.5% 3.40 465 

PCA-Cov 92.8% 1.32 57 90.3% 2.04  59 83.3% 2.26 49 81.7% 1.32 68 

PCA-Corr 93.3% 0.93 53 91.5% 1.34  42 84.5% 1.63 43 82.1% 0.91 38 

PCA-Cos 95.8% 0.72 31 92.6% 1.19  36 86.9% 1.47 32 84.8% 0.73 31 

 

              Table 4.13: Performance of LDA on 20news_v2 dataset. 
Methods TF 

 

TP TF-IDF TP-CSDF 

Av. Std. F  Av. Std. F Av. Std. F Av. Std. F 

Full features 64.7% 3.08 2591 68.9% 3.80  2591 64.7% 3.26 2591 70.9% 2.91 2591 

PCA-Cov 80.3% 2.21 58 87.6% 1.16   45 82.7% 2.16 83 83.7% 1.72 25 

PCA-Corr 81.6% 1.93 27 87.3% 1.63   38 84.6% 1.62 32 84.6% 1.23 12 

PCA-Cos 84.5% 1.19 22 89.4% 0.71   35 87.3% 1.51 21 86.4% 1.08 11 
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             Table 4.14: Performance of LDA on technical website features dataset.  
Methods F 

 

NF 

Av. Std. F  Av. Std. F 

Full features 82.1% 3.81 47 87.7% 3.42 47 

PCA-Cov 91.1% 0.23 20 92.6% 0.61 16 

PCA-Corr 94.4% 0.65 11 95.6%  0.45 10 

PCA-Cos 95.1% 2.01 9 96.4%  0.18 8 

 

               Table 4.15: Performance of LDA on musk dataset. 
Methods F 

 

NF 

Av. Std. F Av. Std. F 

Full features 82.4% 3.81 166 83.7% 3.41 166 

PCA-Cov 89.2% 2.23 41 90.6% 0.61 46 

PCA-Corr 93.4% 1.67 32 92.6%  0.42 39 

PCA-Cos 94.7% 2.60 19 93.9%  0.21 28 

 

             Table 4.16: Performance of LDA on the malicious dataset. 
Methods F 

 

NF 

Av. Std. F Av. Std. F 

Full features 92.4% 3.91 80 93.6% 3.51   80 

PCA-Cov 93.4% 2.12 43 95.2% 1.60 43 

PCA-Corr 95.3% 1.62 34 96.1%  0.42 33 

PCA-Cos 96.9% 2.61 20 96.8%  0.13 22 

 

            Table 4.17: Performance of KNN on email-v1 dataset. 
Methods TF 

 

TP TF-IDF TP-CSDF 

Av. Std. F Av. Std. F Av. Std. F Av. Std. F 

Full features 80.4% 3.61 1014 86.7% 2.31 1014 83.6% 3.71 1014 84.8% 3.51 

A 

1014 

PCA-Cov 87.1% 1.21 58 90.3% 0.72 33 86.3%% 1.13 29 82.8% 1.34    44 

 PCA-Corr 90.4% 0.80 29 91.7%  0.32 26 88.3% 0.63 12 82.6% 0.41    27 

PCA-Cos 91.5% 0.60 16 92.6%  0.24 6 89.9% 0.21 10 83.5% 0.23    24 

 

             Table 4.18: Performance of KNN on reuters-21578 dataset. 
Methods TF 

 

TP TF-IDF TP-CSDF 

Av. Std. F Av. Std. F Av. Std. F Av. Std. F 

Full features 70.6% 3.21 421 70.6% 3.12  421 78.5% 3.33 421 73.6% 3.71  421 

PCA-Cov 71.6% 2.24 48 71.6% 2.04 48 76.2%% 2.54 42 74.8% 1.62   35 

 PCA-Corr 71.4%  1.32 38 72.7%  1.61 43 78.7% 1.09 38 75.5% 0.73   21 

PCA-Cos 71.8% 1.25 34 74.5% 0.92 32 79.4% 0.61 36 79.1% 0.37   26 
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             Table 4.19: Performance of KNN on 20news_v1 dataset. 
Methods TF 

 

TP TF-IDF TP-CSDF 

Av. Std. F  Av. Std. F Av. Std. F Av. Std. F 

Full features 65.6% 2.81 100 70.4% 2.51 100 70.3% 3.51 100 72.5% 4.00 100 

PCA-Cov 66.8% 1.14 38 70.3% 2.03  30 73.3% 2.23 34 72.7% 2.19 37 

PCA-Corr 67.3% 0.92 24 71.5% 1.63  26 74.5% 2.03 30 75.1% 1.18 20 

PCA-Cos 67.9% 0.73 20 71.6% 1.37  23 74.9% 1.25 19 75.8% 1.07 22 

 

              Table 4.20: Performance of KNN on email_v2 dataset. 
Methods TF 

 

TP TF-IDF TP-CSDF 

Av. Std. F  Av. Std. F Av. Std. F Av. Std. F 

Full features 88.4% 2.01 465 89.6% 2.04 465 83.8% 2.21 465 85.8% 3.19 465 

PCA-Cov 95.6% 1.35 57 92.7% 1.81  52 93.5% 2.08 67 91.7% 1.06 63 

PCA-Corr 96.1% 1.09 53 94.9% 1.26  42 94.4% 1.37 48 95.1% 0.23 46 

PCA-Cos 97.2% 0.91 31 95.3% 1.07  33 96.1% 1.15 21 96.8% 0.48 32 

 

             Table 4.21: Performance of KNN on 20news_v2 dataset. 
Methods TF 

 

TP TF-IDF TP-CSDF 

Av. Std. F Av. Std. F Av. Std. F Av. Std. F 

Full features 63.7% 3.04 2591 68.4% 3.41  2591 62.8% 3.23 2591 70.6% 2.91 2591 

PCA-Cov 73.7% 2.19 67 72.6% 1.92   65 72.9% 2.18 93 73.4% 1.73 121 

PCA-Corr 74.9% 1.81 43 73.3% 1.32   58 74.7% 1.63 38 74.6% 1.21 52 

PCA-Cos 76.6% 1.28 33 73.6% 1.43   45 77.3% 1.54 86 76.4% 0.92 31 

 

              Table 4.22: Performance of KNN on technical website features dataset. 
Methods F 

 

NF 

Av. Std. F Av. Std. F 

Full features 82.4% 3.62 47 82.9% 3.42 47 

PCA-Cov 91.5% 1.33 51 92.6% 1.66 36 

PCA-Corr 93.5% 0.52 41 93.6%  0.45 27 

PCA-Cos 94.9% 0.31 29 96.4%  0.11 18 

 

              Table 4.23: Performance of KNN on musk dataset. 
Methods F 

 

NF 

Av. Std. F Av. Std. F 

Full features 83.3% 3.23 166 82.7% 3.14 166 

PCA-Cov 91.2% 2.14 51 91.7% 1.92 46 

PCA-Corr 94.4% 1.23 32 92.7%  0.63 36 

PCA-Cos 95.8% 0.91 23 94.9%  0.37 31 
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                     Table 4.24: Performance of KNN on the malicious dataset. 
Methods F 

 

NF 

Av. Std. F Av. Std. F 

Full features 91.3% 3.22 80 92.8% 3.14    80 

PCA-Cov 92.8% 2.07 42 91.7% 1.45 40 

PCA-Corr 94.3% 1.37 31 95.2%  0.65 31 

PCA-Cos 95.6% 2.24 26 96.8%  0.16 23 

 

                

Statistical Test and P-values: In order to assess whether the performance differences 

among the methods are statistically significant, we applied Wilcoxon’s rank sum test, 

which is a non-parametric method to determine if two sets of data are significantly 

different from each other, to compare PCA-cov against PCA-corr, PCA-cov against 

PCA-cos, and PCA-cos against PCA-corr in terms of classification accuracy and the 

number of selected features. Table 4.25 shows the P-values for these pair comparisons, 

which demonstrate that, in terms of the number of required features to achieve the best 

classification performance, PCA-cos and PCA-corr significantly outperformed PCA-

cov, and PCA-cos outperformed PCA-corr but not in a significant manner. In addition, 

PCA-cos achieved higher accuracy than PCA-cov, but not significantly. 

                                  Table 4.25: Statistical test results. 

 Accuracy (p-value) Number of required 

features (p-value) 

PCA-Cov vs. PCA-Cos P = 0.0549 P = 7.2471e-04 

PCA-Cov vs. PCA-Corr P = 0.05271 P = 1.6434e-06 

PCA-Cosvs. PCA-Corr P = 0.4715 P = 0.1432 

                                       

4.7 Summary 

Feature dimensionality reduction is a very crucial pre-processing step in document 

classification in high-dimensional feature space. Standard PCA based on the singular 

value decomposition of covariance matrix is a very common method for feature 
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extraction and dimensionality reduction. This chapter has presented an experimental 

investigation to improve the performance of standard PCA method by using cosine 

similarity matrix and correlation matrix to replace covariance matrix in PCA for 

feature dimensionality reduction. It was tested in a phishing email detection 

application and document classification using six other datasets. Preliminary 

experimental results have demonstrated the advantages of the proposed method over 

the standard PCA in terms of the number of required features. Further tests in other 

applications would be conducted in future investigations. 

As mentioned above, PCA-Cov, PCA-Cos, and PCA-Corr methods combine original 

data into new features which are difficult to interpret. This can be regarded as a 

drawback with need for interpretability in different disciplines. Some different 

approaches would be trying to find the minimal number of features with capability to 

interpret. The next chapter proposes two hybrid approaches to feature subset selection 

for document classification in high-dimensional feature space.
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Chapter 5 

5 Hybrid Approaches to Feature Subset 

Selection for Document Classification in 

High-Dimensional Feature Space 

5.1 Introduction 

The previous chapter presented an improved PCA approach to feature extraction and 

dimensionality reduction, which lacks interpretability. Interpretability in data mining is 

an important issue in many fields such as social sciences and medicine (Katuwal & 

Chen, 2016; Doshi-Velez, & Kim, 2017). Many traditional methods for dimensionality 

reduction can achieve high accuracy in data classification, but their results are usually 

difficult to interpret (Zhou & Gan, 2008). As discussed in section 2.4, feature subset 

selection finds a subset of features with high predictive power. In general, there are 

three methods for performance evaluation of potential feature subsets: filter approach, 

wrapper approach, and embedded approach. Wrapper methods can be impractical 

when the number of features available for selection and the number of observation 

points are too large, whilst the computational cost of filter methods is much less than 

wrapper methods for large feature datasets. However, wrapper methods are usually 

more accurate than filter methods (Zhen et al., 2016; Dhote et al., 2015; Nam & Quoc, 

2015; Tang et al., 2014; Gan et al., 2014; Guyon & Elisseeff, 2003; Dash & Liu, 

1997). Embedded approach searches locally for features that allow better local 

discrimination. It uses independent criteria to decide on the best subsets for given 

cardinality, in which learning algorithms are usually used to select the final best 



  Chapter 5: Hybrid Approaches 

82 

 

subset. Embedded approach interacts with learning algorithms at a lower 

computational cost than the wrapper approach (Dash & Liu, 1997; Guyon & Elisseeff, 

2003; Cha, 2007). 

As discussed in section 2.4.1, there are many different criteria applied to filter-based 

feature selection and dimensionality reduction, such as distance or 

similarity/dissimilarity criteria (Cha, 2007; Saeys et al., 2007), information theory 

measures, and statistics measures. Distance or similarity/dissimilarity criteria have 

been applied for feature selection in many application areas, such as pattern 

recognition, information retrieval and detection of phishing emails and websites (Saeys 

et al., 2007). However, these measures are easily affected by noise or outlier data. 

Information theory measures have been widely used for feature selection, such as 

information gain (IG) (Chandrasekaran et al., 2006; Gomez et al., 2012) and maximum 

relevance and minimum redundancy (mRMR) (Peng et al., 2005). Recently, ensemble 

feature selection approach (Wang et al., 2012; Fahad et al., 2014; Aldehim, 2015) has 

received much attention, which is commonly used for combining multiple models or 

methods to form a single effective method. Hybrid approach is employed to take the 

advantages of the strengths of both filter and wrapper methods to further reduce the 

irrelevant features without degrading the accuracy. Zheng et al. (2018) proposed a 

hybrid filter-wrapper feature subset selection algorithm called the Maximum Spearman 

Minimum Covariance Cuckoo Search (MSMCCS). This method combines the 

efficiency of filters with the greater accuracy of wrappers. Fazil & Abulaish (2018) 

proposed a hybrid approach for automated detection of spammers in Twitter. 
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This chapter proposes two hybrid methods for feature subset selection, consisting of 

two stages to select a relevant subset of features. The first stage selects feature subsets 

based on the union or intersection of features selected according to distance or 

similarity measures (unsupervised) and mutual information measures (supervised). The 

second stage employs a wrapper approach on the selected features to further reduce the 

feature dimensionality and hopefully improve classification accuracy as well. 

Experiments were conducted with the performance of the proposed methods evaluated 

by comparison with the individual filter approaches and the full wrapper approach. 

5.2 Feature Selection Approaches 

 Filter Approaches 

A filter method selects a subset of features or ranks features based on general 

characteristics of the features, independently without including any classification 

methods (Zhen et al., 2016; Quoc, 2015; Dhote et al., 2015; Gan et al., 2014; Dash & 

Liu, 1997). There are two main types of filter-based feature selection: unsupervised 

and supervised. Unsupervised methods select features according to distance or 

similarity/dissimilarity between features whilst supervised methods select features 

according to their correlation or relevance with class labels. 

1) Unsupervised Filter Approaches 

Given two vectors of features, x={x1, x2, …, xn} and y={y1, y2, …, yn}, where n is the 

number of observations, various evaluation criteria for feature selection can be defined 

without using the corresponding class information, such as those defined below. 
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• Euclidean Distance (Yang & Pedersen, 1997). 
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• Hamming Distance (Kalbhor et al., 2013). 
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• City Block Distance (Piramuthu, 2004). 
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• Hausdorff  Distance (Aggarwal & Zhai, 2012). 
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2) Supervised Filter Approaches 

When class information is available, various evaluation criteria for feature selection 

can be defined based on information theory. The two criteria adopted in this 

experiment are information gain and Minimum Redundancy and Maximum Relevance 

(mRMR), which has been described in detail in Section 2.4. 

 Wrapper Approaches 

Wrapper approach is a very common technique for feature subset selection, in which 

classifiers usually built up via machine learning are used for the evaluation of potential 

feature subsets, aiming to improve the classification performance (Gan et al., 2014; 

Karegowda et al., 2010; Saeys et al., 2007). However, it can be unrealistic when the 
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number of features available for selection and the number of sample points are too 

large, especially when the classifier training is computationally expensive (Martin-

Smith et al., 2016). As discussed in section 2.4.2, this approach suffers from 

overfitting as well. 

5.3 Hybrid Approaches to Feature Subset Selection 

Using a specific classifier, the wrapper approach compares cross-validation 

classification accuracies obtained with the potential feature subsets. Wrapper-based 

feature selection is vulnerable to overfitting due to its comprehensive search of the 

feature space and evaluation by a classifier constructed by machine learning. Hence, 

seeking reliable features using the wrapper method is sometimes impossible for 

datasets with a large feature space. In order to take the advantage of this highly 

accurate method and also to reduce its computational cost, hybrid approaches 

combining the advantages of the filter approach and the wrapper approach have been 

developed in recent years with different motivations and different search methods (Gan 

et al., 2014). The hybrid strategy is adopted in the two methods proposed in this 

chapter, which consists of two stages. In the first stage, union and intersection among 

features selected by six filter methods are constructed to reduce unrelated and 

redundant features before the application of the costly wrapper method. The second 

stage further reduces the feature space considerably by using the wrapper method. 

As one of the baseline methods for comparison, the wrapper approach can be applied 

to the original full feature dataset. Figure 5.1 illustrates how the wrapper approach 

works. Three well-known classifiers with different structures and classification 
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mechanisms are used in this study: support vector machine (SVM) (Smola & 

Schölkopf, 2004; Vapnik, 2000), linear discriminant analysis (LDA) (Belhumeur et al., 

1997) and K-nearest neighbour (KNN) (Altman, 1992). 

 

                                  Figure 5.1: Wrapper approach 

 

 

1) The Proposed Hybrid Approach 1 

The first hybrid approach proposed in this chapter employs four (unsupervised) 

distance or similarity measures, i.e., Euclidean, Hamming, City Block, and Hausdorff, 

defined in (5.1), (5.2), (5.3) and (5.4) respectively, to compute the similarity between 

each pair of feature vectors in the training dataset, generating four different similarity 

matrixes of the training data, which are used to select m most useful features. For each 

criterion, the best value of m is chosen by cross-validation. The union of the four 

subsets of the selected features generates a combined feature subset called C1 at this 

first stage. In the second stage, the wrapper approach is applied to C1 to find the best 

feature subset H1. For comparison purposes, both C1 and H1 will be evaluated on test 

datasets. Figure 5.2 illustrates how this approach works. 

2) The Proposed Hybrid Approach 2  

        Full Features (Data set) 

Wrapper 

  Full-Wrapper (feature subset) 
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The second hybrid approach proposed in this chapter employs six filter (unsupervised 

and supervised) criteria. Four (unsupervised) distance or similarity measures, i.e., 

Euclidean, Hamming, City Block, and Hausdorff, defined in (5.1), (5.2), (5.3), and 

(5.4) respectively, compute the similarity between each pair of feature vectors in the 

training dataset, generating four different similarity matrixes of the training data, 

which are used to select m most useful features. Two (supervised) mutual information 

based criteria IG and mRMR, defined in section 2.4.1.1 and 2.4.1.2 respectively, select 

a compact set of relevant features from the training dataset, generating two different 

matrixes of the training dataset, which are used to select m most useful features. For 

each criterion, the best value of m is chosen by cross-validation. The union of the two 

subset results, which are generated from the intersection of the four sets of features 

selected by unsupervised filters and the intersection of the two sets of features selected 

by supervised filters, forms a combined feature subset called C2 at this first stage. In 

the second stage, the wrapper approach is applied to C2 to find an optimal feature 

subset H2. For comparison purposes, both C2 and H2 will be evaluated on test 

datasets. Figure 5.3 illustrates how this approach works. 
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Figure 5.2: The proposed hybrid approach 1 

 

 
Figure 5.3: The proposed hybrid approach 2 
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5.4 Experimental Results 

 Datasets 

Seven datasets were used in the experiments (email_v1, email_v2, Reuters-21578, 

20news_v2, Musk, technical website features, and self-drive intrusion detection). The 

full descriptions of these datasets are presented in chapter 3.  

 Experiment Procedure 

The full descriptions of the experiment procedure are in section 3.3 

The proposed approaches were applied to select the best number of discriminate 

features in the sense that the highest cross-validation (5-folds) performance was 

achieved, and they were evaluated by employing classifiers LDA, SVM, and KNN 

with the selected features on the test datasets. 

 Results 

Classification accuracy and the corresponding number of required features: Figures 

5.4–5.9 show the mean (over TF, TP, TF-IDF and TP-CSDF) of the classification 

accuracy, standard deviation on the testing datasets and the mean of the corresponding 

number of required features using LDA, SVM, and KNN (the best value of K is chosen 

by cross-validation) respectively, by comparing among six filter approaches, the 

combined filter approaches, the proposed hybrid approaches, and the full wrapper 

approach. It can be seen that the two proposed hybrid approaches achieved competitive 

accuracy with a significantly smaller number of required features compared to the full 

wrapper approach. 
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Computational time: Figures 5.10–5.12 demonstrate the mean of the time spent (in 

seconds) by various feature selection methods. As expected, the two proposed hybrid 

methods spent much less time than the full wrapper approach. 

Interpretability of the selected features: Table 5.1 shows the top five candidate 

features of the emails dataset, from each of the selected feature subsets H1, H2, and 

Full-Wrapper. As a matter of common sense, it seems that the top ten terms selected by 

the two proposed hybrid approaches are more relevant to phishing, such as ‘attached’ 

and ‘click’. Similar interpretability of the selected features was also observed on the 

news topics datasets. It seems that the terms (features) selected by using the hybrid 

approaches are more interpretable than those by the full wrapper approach. 

Statistical significance test: In order to assess whether the performance differences 

among the methods are statistically significant, we applied T-test, a parametric 

method, and Wilcoxon’s rank-sum test, a non-parametric method, to determine 

whether two sets of performance data are significantly different from each other. The 

statistical tests were conducted to compare H1 against C1, H1 against C2, H2 against 

C1, H2 against C2, H1 against Full-Wrapper, H2 against Full-Wrapper, and H1 against 

H2, in terms of classification accuracy, time consumed, and the number of selected 

features, respectively. Tables 5.2 and 5.3 show the P-values for these pair comparisons, 

which demonstrate that H1 and H2 significantly outperformed C1 and C2 in terms of 

classification accuracy and number of selected features, and H1 and H2 outperformed 

Full-Wrapper in terms of time consumed and number of selected features. In addition, 

H1 and H2 sometimes achieved higher accuracy than Full-Wrapper, but the difference 

is not significant. Finally, H1 consumed significantly less time than H2.  
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The stability of the selected features is desirable in practical feature selection 

applications, which has not been investigated yet in this chapter. It is also desirable to 

compare with more other hybrid feature selection methods, such as those proposed in 

Gan et al. (2014) and Aldehim (2015), to further evaluate the proposed methods. These 

would be considered in our future work in this line of research. 

 

 Figure 5.4: Accuracy and standard deviation of LDA with selected feature subsets on 

the seven datasets. 
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 Figure 5.5: Accuracy and standard deviation of SVM with selected feature subsets on 

the seven datasets. 

 

 

Figure 5.6: Accuracy and standard deviation of KNN with selected feature subsets on 

the seven datasets. 
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Figure 5.7: Number of selected features for LDA on the seven datasets. 
 

 

 Figure 5.8: Number of selected features for SVM on the seven datasets. 
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Figure 5.9: Number of selected features for KNN on the seven datasets 
 

 

Figure 5.10: Time spent using LDA on the seven datasets. 
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Figure 5.11: Time spent using SVM on the seven datasets. 
 

 

Figure 5.12: Time spent using KNN on the seven datasets. 

 

  

                    Table 5.1: Top five terms selected from the emails dataset 

H1 H2 Full-Wrapper  

attached Online 

 

Shop 

Bank Update 

 

Original 

Online Attached Effective 

 

Click Deal 

 

Resources 

 

www Link 

 

Company 

 

 

                      

1

10

100

1000

10000

100000

1000000

10000000

emails_v1 20news reuters musk

emails_v2 technical malicious

1
10

100
1000

10000
100000

1000000
10000000

100000000

emials_v1 20news reuters musk

emails_v2 technical malicious



  Chapter 5: Hybrid Approaches 

96 

 

               Table 5.2: Statistical test results (t-test) 
Method pair Accuracy 

(p-value) 

No.of required 

features (p-value) 

Time consumed 

(p-value) 
 H1 vs C1 P = 0.0783 P = 2.3298e-06 P = 0.5421 

 H1 vs C2 P = 0.0423 P = 7.162e-05 P = 0.164 

 H2 vs C1 P = 0.0258 P = 3.7452e-06 P = 0.2746 

 H2 vs C2 P = 0.0364 P = 7.8182e-05 P = 0.3567 

 H1 vs Full P = 0.345 P = 4.3362e-07 P = 4.2516e-07 

 H2 vs Full P = 0.4765 P = 6.4249e-05 P = 3.1142e-07 

 H1 vs H2 P = 0.6385 P = 0.2423 P =0.0050 

                     

 

                   Table 5.3: Statistical test results (rank-sum) 
Method pair Accuracy 

(p-value) 

No. of required 

features (p-value) 

Time Consumed 

     (p-value) 

 H1 vs C1 P = 0.0034 P = 2.4321e-05 P = 0.6121 

 H1 vs C2 P = 0.0043 P = 2.2456e-05 P = 0.3151 

 H2 vs C1 P = 0.0307 P = 2.3287e-04 P = 0.5621 

 H2 vs C2 P = 0.0347 P = 3.2567e-04 P = 0.3421 

 H1 vs Full P = 0.314 P = 3.3546e-06 P = 2.3467e-04 

 H2 vs Full P = 0.4123 P = 4.3567e-04 P = 2.1361e-04 

 H1 vs H2 P = 0.3566 P = 0.2135 P = 0.0031 

 
                                         

5.5 Summary and Discussion 

Several hybrid feature subset selection methods have been developed in recent years, 

with different motivations and different search methods. This chapter proposes two 

hybrid approaches to feature subset selection based on the combination of 

unsupervised and supervised filter approaches and the wrapper approach for document 

classification in high-dimensional feature space. They were tested on seven datasets 

from different resources and with different properties. Preliminary experimental results 

have demonstrated the advantages of the proposed methods over individual filter 

approaches and the full wrapper approach in terms of classification accuracy, the 

number of required features, consumed time, and interpretability. Furthermore, the first 

hybrid approach H1 is better than the second approach H2 in terms of time consumed. 
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We observed that SVM is vulnerable to overfitting with the wrapper approach working 

on full features. This can be illustrated by the fact that the non-linear classification 

method with the wrapper method is not sufficient, particularly with complicated data 

space. 

In the next two chapters we will focus on the role of deep learning in automatic feature 

learning in big data domain and propose a new approach for representation learning 

and dimensionality reduction for document classification to achieve high performance 

and mitigate the problems that we observed during our study on deep learning, such as 

overfitting and vanishing/exploding gradients. 
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Chapter 6 

6 Class-Specific Pre-Trained Sparse 

Autoencoders for Learning Effective 

Features for Document Classification 

 

6.1 Introduction 

Big data analysis through deep learning has attracted much attention in recent years 

(Nigam et al., 2011; Najafabadi et al., 2015; Xiao et al., 2018). Representation learning 

is a very important processing step in pattern recognition in high-dimensional feature 

space (Ng, 2011; Salakhutdinov & Hinton, 2009; Chandrasekaran et al., 2006). 

Supervised learning is one of the most influential approaches to artificial intelligence 

in different scientific disciplines such as email classification, text categorization, and 

information retrieval. It can do very well if a good feature representation is given (Liu 

et al., 2016; Najafabadi et al., 2015; Ng, 2011). 

Unsupervised learning is usually required for feature learning, such as feature learning 

using the restricted Boltzmann machine (RBM) (Salakhutdinov & Hinton, 2009), 

sparse autoencoder (Lee et al., 2010, Abdulhussain and Gan, 2016), stacked 

autoencoder (SAE) (Gehring et al., 2013, Zhou et al., 2015), and hierarchical 

convolutional sparse autoencoder (Han et al., 2017). 

PCA is a very conventional approach for feature extraction and dimensionality 

reduction (Martínez et al., 2001), which combines features by using orthogonal 

transformation (Liu et al., 2010; Yu et al., 2009). It has been used in almost all 
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scientific disciplines. However, it is a linear transformation approach. That means it 

cannot be applied in the layers of deep network structure because the compositions of 

linear transformations produce another linear transformation (Ng, 2011; Salakhutdinov 

and Hinton, 2009). An autoencoder is a symmetrical neural network that is employed 

to learn the features of a dataset and conduct dimensionality reduction in an 

unsupervised manner. A non-linear autoencoder transformation approach can discover 

more complex multi-model structure in the data (Lee et al., 2010; Zhang et al., 2015). 

Many studies applied sparse autoencoder for intrusion detection (Deng et al., 2010; 

Javaid et al., 2016; Meng et al., 2017b). 

In this chapter, we propose a class-specific (supervised) pre-trained approach by 

employing sparse autoencoder algorithm (unsupervised) to learn features by encoding 

training samples from each class respectively. The features learnt for different classes 

are merged later into a whole feature vector. Experiments were conducted with 

performance evaluated by comparison with unsupervised training sparse autoencoder. 

6.2 Sparse Autoencoder 

An autoencoder is an unsupervised neural network trained by using back propagation 

via gradient descend algorithms, which learns a non-linear approximation of an 

identity function as described in section 2.6.1 (Abdulhussain & Gan, 2016;  Zhang et 

al., 2015; Ng, 2011). A sparse autoencoder can be obtained by using sparse 

regularisation in its learning objective function. An autoencoder may have three or 

more hidden layers, but for simplicity, an autoencoder with just a single hidden layer is 

described in detail as follows. 
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The connection weights and bias parameters can be denoted as 

] ; ; ;[ 2121 bbWvectorisedWvectorisedw = , where NKRW 1
is the encoding 

weight matrix and KNRW 2
 is the decoding weight matrix, KRb 1

 is the encoding 

bias vector, and NRb 2  is the decoding bias vector. 

For a training dataset, let the output matrix of the autoencoder be ],...,,[ 21 moooO = ; 

this is intended to be the reconstruction of the input matrix ],...,,[ 21 mxxxX = , where 

Ni Ro   and Ni Rx   are the output vector and input vector of the autoencoder 

respectively, and m is the number of training samples. Correspondingly, let the hidden 

output matrix be ],..., ,[ 21 mhhhH = , where Ki Rh   is the hidden output vector of the 

autoencoder to be used as a feature vector for feature learning tasks.  

For the ith sample, the hidden output vector is defined as 

                                     ( )11 bxWgh ii +=  
            (6.1) 

And the output is defined by 

                         ( )22 bhWgo ii +=   
        (6.2) 

 

where g(x) is a sigmoid logistic function (1 + 𝑒𝑥𝑝 (−𝑥))−1. 

For a sparse autoencoder, the learning objective function is defined as follows: 

                                     ( ) −
==

++=
K

j

j

m

i

ppKL
ii

m WoxWsparseJ
1

2

1

2

ˆ||
22

1)(            (6.3) 

where p is the sparsity parameter, and jp̂  is the average output of the jth hidden node, 

averaged over all the samples, i.e.: 
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𝜆 is the coefficient for L2 regularisation (weight decay), and 𝛽 is the coefficient for 

sparsity control, which is defined by the Kullback-Leibler divergence: 
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The learning rule for updating the weight vector w  (containing W1, W2, b1 and b2) is 

error back-propagation based on gradient descent, i.e., wgradw −=  . The error 

gradients with respect to W1, W2, b1 and b2 are derived as follows respectively. 
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22 /))(( WmHXOgradW T +−=  

   (6.8)  

 mIXOgradb /)(2 −=  
  (6.9) 

where g(H)]-[1g(H).(H)g' =  is the derivative of the sigmoid logistic function, 

TI ]1,...,1,1[= is a vector of size m and (.*) represents element-wise multiplication 

6.3 Proposed Approach 

The proposed approach trains a sparse autoencoder for each class separately, aiming to 

discover interesting structure of data. This offers the opportunity to learn the effective 

features of each class separately. Figure 6.1 illustrates how it works, in which each 
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sub-encoder is applied to generate k2 features from each class, with k2 equal to K (the 

number of total features) divided by the number of classes. The features from all 

classes will be combined to form the input feature vector for pattern classification. 

Two well-known classifiers were used in this study. They are linear discriminant 

analysis (LDA) (Gomez et al., 2012), and support vector machine (SVM) (Smola and 

Schölkopf, 2004; Vapnik, 2013). 

 

Figure 6.1: Class-specific pre-trained sparse autoencoder network. 
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6.4 Experimental Results 

 Datasets 

Six datasets were used in the experiments (email_v1, email_v2, Reuters-21578, 

20news_v2, Musk, and technical website features). The full descriptions of these 

datasets are presented in chapter 3. 

 Experiment Procedure 

The full descriptions of the experiment procedure are presented in section 3.3. The 

proposed approach was used to extract higher-level features or reduce the feature 

dimensionality and was evaluated by employing classifiers LDA and SVM. For 

applying the proposed approach, the training set was further divided into an estimation 

set and a validation set, and cross-validation (5-folds) was adopted for training the 

autoencoders and classifiers and determining the hyper-parameters such as p, , , K 

(number of hidden layers and nodes). 

 Results 

Classification accuracy, standard deviation and the corresponding number of 

required features:  Tables 6.1-6.12 show the classification accuracy and standard 

deviation of LDA and SVM with the specified number of features (100 and 50) 

achieved by five methods (Full-features, sparse autoencoder (SAE-100, SAE-50), and 

class-specific pre-trained sparse autoencoder (CSPT_SAE-100 and CSPT_SAE-50). 

Figures 6.2 and 6.3 show the comparison of the performance among the methods on 

six datasets. It can be seen that the proposed CSPT_SAE achieved higher test 
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classification accuracy with the same number of required features than SAE and Full-

features. 

                                 Table 6.1: Performance of LDA on email_v1 dataset.                     

Methods  Train  CV  Test 

Av. Std. F Av. Std. F Av. Std. F 

Full features  86.9% 2.68 1014 85.6% 1.47 1014 85.7% 1.95 1014 

SAE  89.7% 1.78 100 89.9% 1.56 100 88.6% 0.77 100 

89.2% 1.69 50 89.9% 0.97 50 87.4% 1.08 50 

CSPT_SAE  91.7% 0.85 100 92.7% 0.85 100 90.9% 0.94 100 

92.9% 0.64 50 92.9% 0.64 50 91.9% 0.73 50 

 

                      Table 6.2: Performance of SVM on email_v1 dataset.                             

Methods  Train  CV  Test 

Av. Std. F Av. Std. F Av. Std. F 

Full features  96.9% 2.28 1014 90.6% 1.47 1014 89.7% 1.65 1014 

SAE  88.8% 1.98 100 87.9% 1.56 100 87.6% 0.97 100 

87.9% 1.29 50 89.8% 0.97 50 88.4% 1.68 50 

CSPT_SAE  93.7% 0.65 100 91.6% 0.85 100 90.2% 0.74 100 

93.9% 0.84 50 91.8% 0.94 50 90.9% 0.89 50 

 

                     Table 6.3: Performance of LDA on email_v2 dataset.                      

Methods  Train  CV  Test 

Av. Std. F Av. Std. F Av. Std. F 

Full features  95.9% 2.35 465 85.6% 1.47 465 85.7% 1.95 465 

SAE  91.2% 1.36 100 89.9% 1.56 100 88.6% 0.77 100 

89.3% 1.57 50 89.9% 0.97 50 87.4% 1.08 50 

CSPT_SAE  96.9% 0.57 100 92.7% 0.85 100 91.5% 0.94 100 

93.8% 0.54 50 92.9% 0.64 50 91.7% 0.73 50 

 

                     Table 6.4: Performance of SVM on email_v2 dataset. 

Methods  Train  CV  Test 

Av. Std. F Av. Std. F Av. Std. F 

Full features  96.9% 1.86 465 93.6% 1.67 465 90.4% 1.65 465 

SAE  94.6% 2.08 100 93.9% 1.26 100 89.6% 0.87 100 

90.5% 1.38 50 89.9% 0.87 50 89.4% 1.08 50 

CSPT_SAE  97.9% 0.65 100 95.7% 0.75 100 94.9% 0.74 100 

96.6% 0.54 50 93.9% 0.54 50 93.5% 0.53 50 
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                     Table 6.5: Performance of LDA on 20news_v2 dataset. 

Methods  Train  CV  Test 

Av. Std. F Av. Std. F Av. Std. F 

Full features  84.9% 1.16 2591 79.6% 1.87 2591 70.4% 1.25 2591 

SAE  84.6% 3.73 100 79.8% 1.66 100 71.6% 0.77 100 

85.5% 2.25 50 72.7% 0.97 50 70.4% 1.03 50 

CSPT_SAE  86.9% 0.75 100 77.8% 0.85 100 75.8% 0.74 100 

85.8% 0.64 50 76.9% 0.64 50 76.5% 0.53 50 

 

                      Table 6.6: Performance of SVM on 20news_v2 dataset.                                                       

Methods  Train  CV  Test 

Av. Std. F Av. Std. F Av. Std. F 

Full features  89.5% 1.34 2591 81.6% 2.87 2591 79.4% 1.35 2591 

SAE  85.6% 3.63 100 76.8% 1.26 100 77.6% 0.97 100 

84.5% 2.45 50 73.5% 1.87 50 70.4% 1.53 50 

CSPT_SAE  86.4% 0.95 100 77.9% 1.55 100 79.8% 0.94 100 

84.7% 0.54 50 76.3% 0.84 50 78.5% 0.83 50 

 

                      Table 6.7: Performance of LDA on Reuters-21578 dataset. 

Methods  Train  CV  Test 

Av. Std. F Av. Std. F Av. Std. F 

Full features  83.9% 4.34 421 83.6% 4.06 421 80.7% 4.75 421 

SAE  80.7% 1.24 100 82.8% 3.56 100 82.1% 2.77 100 

81.2% 1.67 50 81.7% 1.76 50 81.4% 3.08 50 

CSPT_SAE  81.7% 1.16 100 81.2% 2.87 100 80.8% 2.94 100 

82.9% 1.87 50 82.6% 2.45 50 81.7% 2.73 50 

 

                      Table 6.8: Performance of SVM on Reuters-21578 dataset. 

Methods  Train  CV  Test 

Av. Std. F Av. Std. F Av. Std. F 

Full features  87.7% 5.34 421 85.6% 4.36 421 80.7% 3.55 421 

SAE  89.6% 2.24 100 85.8% 3.86 100 85.1% 1.57 100 

88.2% 1.57 50 84.7% 2.76 50 84.4% 1.06 50 

CSPT_SAE  90.7% 1.46 100 88.2% 2.87 100 87.8% 1.44 100 

89.9% 1.67 50 86.8% 2.45 50 88.7% 1.36 50 
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                      Table 6.9: Performance of LDA on musk dataset. 

Methods  Train  CV  Test 

Av. Std. F Av. Std. F Av. Std. F 

Full features  85.8% 2.02 166 85.6% 3.56 166 81.4% 3.85 166 

SAE  95.7% 1.45 100 88.8% 2.78 100 88.6% 2.87 100 

92.2% 2.03 50 86.5% 1.98 50 87.7% 2.08 50 

CSPT_SAE  95.7% 0.34 100 94.6% 0.89 100 93.1% 1.25 100 

92.9% 0.45 50 93.5% 0.24 50 92.7% 1.63 50 

 

                     Table 6.10: Performance of SVM on musk dataset. 

Methods  Train  CV  Test 

Av. Std. F Av. Std. F Av. Std. F 

Full features  91.8% 5.07 166 89.6% 1.56 166 88.6% 2.65 166 

SAE  90.7% 2.25 100 89.8% 2.78 100 88.7% 2.38 100 

90.2% 2.62 50 90.5% 2.98 50 85.6% 3.28 50 

CSPT_SAE  91.7% 1.34 100 90.6% 0.89 100 89.1% 1.35 100 

91.1% 1.15 50 90.5% 1.34 50 88.7% 1.43 50 

 

                               Table 6.11: Performance of LDA on the malicious dataset. 

Methods  Train  CV  Test 

Av. Std. F Av. Std. F Av. Std. F 

Full features  95.8% 2.18 80 93.8% 1.56 80 92.6% 2.45 80 

SAE  97.7% 2.13 60 94.7% 1.78 60 93.8% 2.08 60 

96.5% 2.02 50 93.6% 1.08 50 92.6% 2.01 50 

CSPT_SAE  98.9% 1.34 60 95.3% 0.89 60 94.4% 1.53 60 

97.2% 1.13 50 94.7% 0.34 50 93.6% 1.23 50 

  

                     Table 6.12: Performance of SVM on the malicious dataset. 

Methods  Train  CV  Test 

Av. Std. F Av. Std. F Av. Std. F 

Full features  93.8% 2.77 80 91.6% 2.56 80 91.6% 2.65 80 

SAE  94.7% 2.05 60 93.8% 2.78 60 92.7% 2.38 60 

93.2% 2.02 50 93.5% 1.98 50 93.7% 1.28 50 

CSPT_SAE  96.7% 0.34 60 95.7% 0.89 60 94.1% 0.35 60 

95.1% 0.15 50 93.6% 0.64 50 93.5% 0.43 50 
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Figure 6.2: Comparison of five methods on six datasets in terms of LDA accuracy. 

 

 

 

     Figure 6.3: Comparison of five methods on six datasets in terms of SVM Accuracy. 
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accuracy on test dataset. Tables 6.13 and 6.14 show the P-values for these pair 

comparisons, which demonstrate that, in terms of the achieved best classification 

performance, CSPT-SAE significantly outperformed SAE and Full-features as well. 

                                 Table 6.13: Statistical test results (t-test).            

Methods for comparison p-value 

CSPT-SAE vs. SAE 6.0471e-10 

CSPT-SAE vs. Full-features 0.0024 

                                

                                 Table 6.14: Statistical test results (Rank-Sum). 

Methods for comparison p-value 

CSPT-SAE vs. SAE 0.0265 

CSPT-SAE vs. Full-features 0.0102 

                                   

6.5 Summary and Discussion 

Sparse autoencoder is a deep learning method used for learning feature representation. 

This chapter proposes using sparse autoencoder algorithm for learning feature 

representation in a supervised manner, which promises to focus on the effective 

features of each class. This approach was used to extract higher-level features or 

reduce the feature dimensionality and was evaluated by employing classifiers LDA and 

SVM to classify emails/documents/news and numerical data as well. For applying the 

proposed approach, cross-validation was adopted for training the autoencoders and 

classifiers and determining the hyper-parameters such as p, , , K (number of hidden 

layers and nodes). It was tested in a phishing email detection application and other 

document classification tasks using six datasets. This thesis presents preliminary 

experimental results which have demonstrated the advantages of the proposed method 

over the standard SAE and Full-features in terms of the classification performance 
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with the same number of required features. Further tests in other applications would be 

conducted in future investigations. Next chapter presents a three-stage learning 

approach for deep multilayer perceptron with effective weight initialisation based on 

stacked autoencoder. 
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Chapter 7 

7 Deep Classifier Structures with Autoencoder 

for Higher-level Feature Extraction 

 

7.1 Introduction 

Deep learning for feature extraction has attracted much attention in different areas such 

as computer vision, speech recognition, social media analysis, fraud detection, and 

medical informatics (Ravì et al., 2017; Shen et al., 2017; LeCun et al., 2015; 

Najafabadi et al., 2015; Chen & Lin, 2014; Hinton et al., 2012; Krizhevsky et al., 

2012; Hinton & Salakhutdinov, 2006). One of the main advantages of deep learning 

due to the use of deep neural network structures is that it can learn feature 

representation, without separate feature extraction process that is a very significant 

processing step in pattern recognition (Jiang et al., 2018; Bengio, 2013a; Bengio et al., 

2013b). 

Unsupervised learning is usually required for feature learning such as feature learning 

using the restricted Boltzmann machine (RBM) (Salakhutdinov & Hinton, 2009), 

sparse autoencoder (Lee, 2010, Abdulhussain & Gan, 2016), stacked autoencoder 

(Gehring et al. 2013, Zhou et al., 2015), denoising autoencoder (Vincent et al., 2008, 

Vincent et al., 2010), and contractive autoencoder (Rifai et al., 2011). For 

classification tasks, supervised learning is more desirable using support vector 

machines or feedforward neural networks as classifiers. How to effectively combine 
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supervised learning with unsupervised learning is a critical issue to the success of deep 

learning for traditional pattern classification (Glorot & Bengio, 2011). 

Other major issues in deep learning include the overfitting problem and 

vanishing/exploding gradients during error back-propagation due to adopting deep 

neural network structures such as deep multilayer perceptron (DMLP) (Geman et al., 

1992; Glorot and Bengio, 2010b; Ravì et al., 2017). Many techniques have been 

proposed to solve the problems in training deep neural networks. Hinton et al. (2006) 

introduced the idea of greedy layer-wise pre-training. Bengio et al. (2007) proposed to 

train the layers of a deep neural network in a sequence using an auxiliary objective and 

then “fine-tune” the entire network with standard optimization methods such as 

stochastic gradient descent. Martens (2010) showed that truncated-Newton method has 

the ability to train deep neural networks from certain random initialisation without pre-

training; however, it is still inadequate to resolve the challenges in training deep neural 

networks. It is obvious that most deep learning models are incapable with random 

initialisation (Martens, 2010; Chapelle & Erhan, 2011; Mohamed et al., 2012; Glorot 

& Bengio, 2010b). Sutskever et al. (2013) found that both the initialization and the 

momentum are crucial since poorly initialized networks cannot be trained with 

momentum and well-initialized networks perform markedly worse when the 

momentum is absent or poorly tuned.  

Effective weight initialisation or pre-training has been widely explored for avoiding 

vanishing/exploding gradients (Yam & Chow, 2000; Fernández-Redondo & 

Hernandez-Espinosa, 2001; Sutskever et al., 2013; Sodhi et al., 2014; DeSousa, 2016). 

Yam & Chow (2000) concluded that with the best initial weights determined, the 
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initial error is substantially smaller, and the number of iterations required to achieve 

the error criterion is significantly reduced. 

Using a huge amount of training data can overcome overfitting to some extent (Geman 

et al., 1992). However, in many applications, there is no large amount of training data 

available or there is insufficient computer power to handle huge amount of training, 

and regularisation techniques such as sparse structure and dropout technique are 

widely used for combatting overfitting (Shu & Fyshe, 2013; Srivastava et al., 2014; 

Zhang et al., 2015). 

This chapter investigates deep classifier structures with stacked autoencoder, aiming to 

overcome difficulties in training deep neural networks with limited training data in 

high-dimensional feature space. Experiments were conducted with the performance of 

the proposed method evaluated by comparison with existing methods on six datasets. 

7.2 Stacked Autoencoder 

An autoencoder is an unsupervised neural network trained by using stochastic gradient 

descent algorithms, which learns a non-linear approximation of an identity function 

(Shen et al., 2017; Shu & Fyshe, 2013; Zhang et al., 2015; Yang et al., 2017). 
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  Figure 7.1: Multilayer autoencoder. 

 

 

Figure 7.1 illustrates a non-linear multilayer autoencoder network, which can be 

implemented by stacking two autoencoders, each with one hidden layer. A stacked 

autoencoder may have three or more hidden layers, but for simplicity, an autoencoder 

with just a single hidden layer is described in detail in chapter 6. 

7.3 Deep Multilayer Perceptron (DMLP) 

A deep multilayer perceptron is a supervised feedforward neural network with multiple 

hidden layers. For simplicity, Figure 7.2 illustrates a DMLP with 2 hidden layers only 

(There are usually more than 2 hidden layers). A deep multilayers perceptron is 

described in detail in section 2.6.2. 
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Figure 7.2: Deep multilayer perceptron (DMLP). 
                                

 

7.4 Proposed Approach 

Training deep neural networks usually needs a huge amount of training data, especially 

in high-dimensional input space. Otherwise, overfitting would be a serious problem 

due to the high complexity of the neural network model. However, in many 

applications the required huge amount of training data may be unavailable or the 

computer power available is insufficient to handle a huge amount of training data. 

With deep neural network training, there may also be local minimum and 

vanishing/exploding gradient problems without proper weight initialisation. A three-

stage learning algorithm for DMLP with effective weight initialisation based on 

stacked autoencoder is proposed in this chapter to combat these problems, which 

consists of the following three stages: 

1) At the first stage, unsupervised learning is adopted to train a stacked autoencoder 

with random initial weights to obtain the initial weights of the feature extraction layers 

of the DMLP. The autoencoder consists of N input units, an encoder with two layers of 
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K1 and K2 neurons in each hidden layer respectively, a symmetric decoder, and N 

output units. Figure 7.3 illustrates how it works. 

2) At the second stage, error back-propagation is employed to pre-train the DMLP by 

fixing the weights obtained at the first stage for its feature extraction layers (W1 and 

W2). The weights of higher hidden layers and output layer for feature classification 

(W3, W4 and W5) are trained with random initial weights. Figure 7.4 illustrates how it 

works. 

3) At the third stage, all the weights of the DMLP obtained at the second stage are 

refined by error back-propagation, without random weight initialisation. Figure 7.5 

illustrates how it works. 

In our experiment, the pre-trained DMLP at the second stage, denoted as M1, and the 

refined DMLP obtained at the third stage, denoted as M2, are compared on several 

datasets. They are also compared with the DMLP trained using random initial weights 

for all layers, which is denoted as M3, and SVM with the output of the SAE encoder as 

input, which is denoted as M4. 
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Figure 7.3: Training stacked autoencoder (SAE). 

 

 

 

Figure 7.4: Pre-training DMLP with fixed W1 and W2 from SAE. 
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Figure 7.5: Refined-training of the DMLP with initial weights from the pre-trained 

DMLP. 

 

7.5 Experimental Results and Discussion 

 Datasets 

Six datasets were used in the experiments (email_v1, email_v2, Reuters-21578, 

20news_v2, Musk, and technical website features). The full descriptions of these 

datasets are given in chapter 3.  

 Experiment Procedure 

Each dataset was partitioned into a training set and a testing set. The training set was 

further partitioned into estimation set and validation set for cross-validation (5-folds) 

to determine the best or appropriate network structure and hyper-parameter values (, 

, p). The proposed method was evaluated with different number of hidden layers and 
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different number of hidden neurons by cross-validation, and each testing set was only 

used once to evaluate the performance of the proposed method with the network 

structure trained using the hyper-parameter values chosen by the cross-validation. For 

each dataset, the experiment was repeated five times in order to assess the consistency 

of the results, with different data partition obtained by shuffling the data using 

different 

random seeds for each run as described in chapter 3. 

The methods for comparison were named as Mi-jHL, where i=1, 2, 3, or 4 representing 

one of the four methods described in Section 7.4 and j=1, 2, 3, or 4 representing the 

number of hidden layers. As a typical DMLP with 4 hidden layers, the numbers of 

hidden neurons in the first stage are K1 and K2 respectively, and the numbers of 

hidden neurons in the second or third stage are K1, K2, K3, and K4 respectively. For 

training the stacked autoencoder, 8 sets of hyper-parameters (, , p) were validated, 

as shown in Table 7.1, which are around the suggested default values. 

                   Table 7.1: Hyper-parameters for training the SAE. 
Hyper-

Parameters HP1 HP2 HP3 HP4 HP5 HP6 HP7 HP8 

L2W () 0.001 0.001 0.001 0.001 0.001 0.01 0.1 0.5 

Sp. Re.  () 2 4 1.6 0.5 0 0 0 0 

Sp. Pr.   (p) 0.0005 0.005 0.05 0.5 1 1 1 1 

 

 Results 

 Classification Accuracy: Tables 7.2-7.7 show the cross-validation classification 

accuracies of the four methods with different hyper-parameter values, different number 

of hidden layers (M1-4HL, M1-3HL, M1-2HL, M2-4HL, M2-3HL, M2-2HL, M3-4HL 
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and M3-1HL, M4) and different number of hidden neurons (K1 K2 K3 K4), on the six 

datasets respectively. Tables 7.8-7.13 show the corresponding training and testing 

accuracies and standard deviation of the methods with the appropriate network 

structure trained using the hyper parameter values chosen by the cross-validation. 

Figure 7.6 compares the four methods (M1, M2, M3 and M4) in terms of average 

training and testing accuracy. It can be seen from Figure 7.6 that the proposed three-

stage learning approach, M2-jHL, achieved the highest accuracy, which can be proved 

statistically significantly better than other methods evaluated in the experiment. Also, 

it can be seen that the proposed method (M2) has much smaller difference between 

testing accuracy and training accuracy than methods M1, M3, and M4, which can be 

regarded as evidence of less serious overfitting in the proposed method. It can be 

concluded that the DMLP with effective weight initialisation can achieve significantly 

much better performance than the standard MLP, and it is evident that the three-stage 

learning algorithm for DMLP can reduce overfitting. 
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       Table 7.2: Cross validation accuracy on email_v1 dataset. 
           Hyper-Param. 

 

Methods\ 

Network Structure 

HP 1 HP 2 HP 3 HP 4 HP 5 HP 6 HP 7 HP 8 Ave 

Acc. 

Max 

Acc. 

C
r
o

ss
-V

a
li

d
. 
A

c
c
. 

(7
5

0
 -

2
5

-2
0

-1
0

-5
-2

) 

M1-4HL 88.9 68.9 86.4 88.9 88.7 88.9 87.1 88.4 85.7 88.9 

M1-3HL   87.2 68.4 85.1 86.1 86.1 87.5 87.2 87.1 84.4 87.5 

M1-2HL 87.1 68.1 86.8 86.0 86.0 87.1 87.1 87.0 84.5 87.1 

M2-4HL 90.2 87.9 89.3 90.7 88.5 90.2 88.9 88.5 89.2 90.7 

M2-3HL  89.2 86.2 88.3 88.4 88.4 89.2 87.2 88.1 88.3 89.2 

M2-2HL  89.1 86.3 88.9 87.3 88.1 89.1 88.1 88.1 88.1 89.1 

M3-4HL  87.9 88.0 

M3-1HL   87.1 87.8 

SVM,20F M4 56.5 55.9 57.2 49.8 88.9 54.7 57.2 54.8 59.3 88.9 

C
r
o

ss
 -

V
a

li
d

. 
A

c
c
. 

(7
5

0
-5

0
-2

5
-1

5
-1

0
-

2
) 

M1-4HL 89.7 78.1 87.4 89.2 89.4 91.6 84.1 89.0 87.3 91.6 

M1-3HL  89.4 80.4 86.2 83.6 91.2 89.8 83.5 88.4 86.6 91.2 

M1-2HL 88.7 79.3 86.8 91.5 88.6 89.5 84.0 92.4 87.1 91.5 

M2-4HL 91.0 92.8 87.5 92.6 91.7 90.5 90.9 90.2 91.1 92.8 

M2-3H 91.2 90.3 87.3 90.1 91.6 89.1 88.2 90.2 89.7 91.9 

M2-2HL  89.8 88.3 90.1 90.9 88.8 88.9 89.4 90.0 89.5 90.6 

M3-4HL  88.1 88.8 

M3-1HL   87.5 87.9 

SVM,25F M4 53.5 77.5 88.9 61.3 48.7 79.9 56.5 48.6 64.3 88.9 

C
r
o

ss
 -

V
a

li
d

. 
A

c
c
. 

(7
5

0
-7

5
-3

5
-3

0
-2

0
-

2
) 

M1-4HL 88.5 86.2 85.6 87.9 88.1 88.4 88.9 89.2 87.8 89.2 

M1-3HL 87.8 86.8 84.3 87.1 88.0 87.7 87.6 88.8 87.2 88.8 

M1-2HL 87.2 85.3 85.3 86.2 87.2 87.3 87.2 88.3 86.7 88.3 

M2-4HL 88.9 89.9 87.3 88.9 89.2 89.3 90.2 90.2 89.2 90.2 

M2-3HL 87.4 89.2 86.6 87.3 89.1 89.2 89.1 89.3 88.4 89.3 

M2-2HL 88.3 87.1 87.1 87.1 88.2 89.2 89.2 89.2 88.1 89.2 

M3-4HL  86.7 88.3 

M3-1HL  86.1 87.1 

SVM,35F M4 72.6 54.7 52.8 84.5 68.1 55.7 53.9 63.6 63.2 84.5 

 

       Table 7.3: Cross validation accuracy on email_v2 dataset. 
         Hyper-Param. 

 

Methods\ 

Network Structure 

HP 1 HP 2 HP 3 HP 4 HP 5 HP 6 HP 7 HP 8 Ave 

Acc. 

Max 

Acc. 

C
r
o

ss
-V

a
li

d
. 
A

c
c
. 

(4
6

5
 -

2
0

-1
5

-1
0

-5
-2

) 

M1-4HL 85.7 87.7 86.9 87.1 89.1 87.6 88.2 89.3 87.7 89.3 

M1-3HL 87.9 85.4 86.1 86.3 88.3 88.2 87.7 88.5 87.3 88.5 

M1-2HL 83.8 86.3 85.8 85.4 87.8 88.1 87.3 87.6 86.5 88.1 

M2-4HL 91.5 88.9 87.8 90.2 89.3 91.2 89.2 89.2 89.6 91.5 

M2-3HL 87.9 87.6 85.6 87.3 88.8 89.8 88.9 89.4 88.1 89.9 

M2-2HL 86.0 87.9 84.9 84.3 88.0 88.2 88.3 89.1 87.0 89.1 

M3-4HL  86.5 87.2. 

M3-1HL  86.1 87.0 

SVM,15F M4 59.9 57.6 58.2 59.5 88.7 59.7 69.2 64.4 64.6 88.7 

C
r
o

ss
 -

V
a

li
d

. 
A

c
c
. 

(4
6

5
-4

5
-2

0
-1

0
-5

-2
) 

M1-4HL 90.1 88.8 90.7 93.5 91.4 89.9 85.6 89.6 89.9 93.5 

M1-3HL 88.3 87.3 89.4 88.8 92.5 89.8 83.5 89.9 88.6 92.5 

M1-2HL 86.9 88.5 90.8 87.4 89.7 88.9 85.1 88.7 88.2 90.8 

M2-4HL 90.9 89.8 88.7 92.3 93.5 91.9 92.7 94.4 91.7 94.4 

M2-3HL 89.3 93.9 90.6 91.0 92.5 89.1 88.1 90.2 90.5 93.9 

M2-2HL 86.9 88.6 91.7 87.1 87.2 87.4 88.9 90.1 88.4 91.7 

M3-4HL   88.9 89.1 

M3-1HL  87.8 87.8 

SVM,20F M4 53.6 77.2 89.9 64.4 48.7 78.9 56.3 49.8 64.8 89.9 

C
r
o

ss
 -

V
a

li
d

. 
A

c
c
. 

(4
6

5
-6

5
-3

0
-2

5
-1

5
-

2
) 

M1-4HL 86.8 84.8 85.6 88.2 85.2 86.4 83.9 82.2 85.3 88.2 

M1-3HL 84.9 83.2 84.5 85.4 84.0 83.7 87.6 86.8 85.0 87.6 

M1-2HL 85.6 82.1 83.2 83.3 89.2 83.3 87.2 88.3 85.2 89.2 

M2-4HL 87.8 87.7 86.8 89.0 88.2 90.3 91.2 89.2 88.7 91.2 

M2-3HL 86.4 91.7 86.2 84.3 88.1 89.5 89.1 88.6 87.9 91.7 

M2-2HL 87.8 88.9 84.6 86.1 87.2 89.5 89.0 86..2 87.5 89.5 

M3-4HL  85.9 86.1 

M3-1HL  85.3 85.8 

SVM,30F M4 76.1 55.1 59.3 69.1 84.9 59.1 54.6 76.1 66.7 84.9 
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        Table 7.4: Cross validation accuracy on Reuters-21578 dataset. 
      Hyper-Param. 

 

Methods\ 

Network Structure 

HP 1 HP 2 HP 3 HP 4 HP 5 HP 6 HP 7 HP 8 Ave 

Acc. 

Max 

Acc. 
C

r
o

ss
-V

a
li

d
. 
A

c
c
. 

(4
2

1
-3

5
-2

5
-2

0
-1

5
-1

0
) M1-4HL 78.2 75.5 69.4 76.9 67.2 78.5 69.3 62.5 72.1 78.5 

M1-3HL   76.5 71.3 67.3 76.3 66.1 67.5 77.2 61.9 70.5 77.2 

M1-2HL 76.2 70.1 64.6 74.5 60.3 69.9 68.5 76.9 70.1 76.9 

M2-4HL 77.1 78.5 75.7 77.9 71.5 77.8 77.2 76.5 76.5 78.5 

M2-3HL  74.7 76.2 73.7 77.2 70.9 79.3 76.4 77.4 75.7 79.3 

M2-2HL  73.8 73.6 71.8 75.8 70.1 77.4 76.3 76.2 74.3 77.4 

M3-4HL  68.7 77.1 

M3-1HL   68.9 75.8 

SVM,25F M4 61.2 62.8 62.9 64.8 64.7 68.8 69.3 76.1 66.3 76.1 

C
r
o

ss
 -

V
a

li
d

. 
A

c
c
. 

(4
2

1
-4

0
-3

5
-2

5
-2

0
-

1
0

) 

M1-4HL 75.2 84.7 85.9 89.9 83.4 77.9 73.0 70.6 80.0 89.9  

M1-3HL  73.9 82.3 82.0 83.7 79.2 74.1 82.8 76.9 79.3 83.7 

M1-2HL 72.7 83.2 81.4 82.5 74.3 74.0 73.0 72.1 76.6 83.2 

M2-4HL 85.3 83.8 86.9 86.1 86.9 85.7 85.9 90.3 86.3 90.3 

M2-3H 82.9 82.3 81.6 84.8 83.6 86.9 83.5 83.9 83.6 86.9 

M2-2HL  82.1 82.1 80.0 83.9 83.1 85.2 86.3 83.2 83.6 86.3 

M3-4HL  81.2 82.4 

M3-1HL   80.3 82.2 

SVM,35F M4 79.4 76.7 76.1 75.1 78.2 78.6 81.3 79.4 78.1 81.3 

C
r
o

ss
 -

V
a

li
d

. 
A

c
c
. 

(4
2

1
-6

5
-5

5
-4

5
-3

0
-

1
0

) 

M1-4HL 79.5 67.2 77.4 76.8 60.4 70.7 69.1 69.2 71.2 79.5 

M1-3HL 76.8 65.6 76.7 74.1 60.2 73.9 76.7 67.8 71.4 76.8 

M1-2HL 74.6 64.9 67.5 75.7 60.1 70.4 69.9 66.3 68.6 76.7 

M2-4HL 78.3 77.3 78.2 78.2 77.1 75.4 79.5 73.9 77.2 79.5 

M2-3HL 76.8 75.2 77.8 77.1 76.3 76.6 78.9 73.5 76.5 78.9 

M2-2HL 75.8 73.9 76.8 74.6 73.3 76.7 76.8 72.2 75.0 76.8 

M3-4HL  68.6 74.3 

M3-1HL  66.8 73.9 

SVM,55F M4 67.5 62.2 61.4 68.4 62.7 68.6 70.3 66.1 65.9 70.3 

 

        Table 7.5: Cross validation accuracy on musk dataset 
      Hyper-Param. 

 

Methods\ 

Network Structure 

HP 1 HP 2 HP 3 HP 4 HP 5 HP 6 HP 7 HP 8 Ave 

Acc. 

Max 

Acc. 

C
r
o

ss
-V

a
li

d
. 
A

c
c
. 

(1
6

6
-8

-6
-4

-3
-2

) 

M1-4HL 82.2 77.5 79.4 88.3 77.0 86.1 96.1 77.1 83.0 96.1 

M1-3HL   77.2 74.2 76.5 77.1 75.2 78.7 78.1 77.4 76.9 78.7 

M1-2HL 79.3 74.1 75.5 75.6 75.1 78.5 78.0 77.0 76.8 79.3 

M2-4HL 96.6 83.2 77.0 93.4 65.9 66.1 82.9 81.1 80.6 96.6 

M2-3HL  95.1 76.9 76.3 82.2 77.0 89.9 79.5 78.3 81.6 95.1 

M2-2HL  88.5 69.9 78.3 80.2 67.8 78.9 77.8 78.1 77.3 88.5 

M3-4HL  72.8 77.4 

M3-1HL   72.3 77.2 

SVM,6F M4 66.8 75.2 75.6 73.8 73.6 74.9 74.7 74.6 73.6 75.6 

C
r
o

ss
 -

V
a

li
d

. 
A

c
c
. 

(1
6

6
-1

0
-7

-5
-3

-2
) 

M1-4HL 88.8 85.2 87.8 88.1 75.1 77.5 93.8 79.9 84.5 93.8 

M1-3HL  81.5 83.2 91.1 84.2 77.7 67.5 75.3 93.9 81.8 93.9 

M1-2HL 80.4 82.4 77.0 76.3 76.7 93.2 75.2 75.2 79.5 93.2 

M2-4HL 99.2 99.6 99.8 99.2 83.0 76.7 98.9 79.7 92.0 99.8 

M2-3H 97.5 88.2 87.9 92.1 67.7 94.6 76.4 76.3 85.0 97.5 

M2-2HL  83.1 87.5 94.7 89.8 67.2 75.2 76.2 80.1 81.7 94.7 

M3-4HL  76.8 81.9 

M3-1HL   76.1 80.8 

SVM,7F M4 75.5 73.8 59.5 73.1 74.6 75.2 73.7 62.9 71.0 75.5 

C
r
o

ss
 -

V
a

li
d

. 
A

c
c
. 

(1
6

6
-1

5
-1

0
-8

-6
-2

) 

M1-4HL 92.6 80.2 79.5 92.4 77.7 77.8 92.1 80.8 84.1 92.6 

M1-3HL 78.5 79.2 91.8 79.6 78.3 79.5 78.2 77.5 80.3 91.8 

M1-2HL 77.8 77.3 78.3 76.8 77.1 87.9 78.1 77.4 78.8 87.9 

M2-4HL 96.2 82.8 88.2 90.1 77.1 76.4 82.9 81.5 84.4 96.2 

M2-3HL 86.6 80.3 74.8 83.2 77.4 84.3 82.6 85.9 81.8 86.6 

M2-2HL 84.7 79.4 72.6 83.1 85.4 75.4 82.4 81.2 80.5 85.4 

M3-4HL  77.3 80.1 

M3-1HL  76.9 78.3 

SVM,10F M4 75.6 59.7 71.8 71.7 75.8 75.6 62.1 73.8 70.7 75.8 
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        Table 7.6: Cross validation accuracy on 20news_v2 dataset. 

      Hyper-Param. 

 

Methods\ 

Network Structure 

HP 1 HP 2 HP 3 HP 4 HP 5 HP 6 HP 7 HP 8 Ave 

Acc. 

Max 

Acc. 
C

r
o

ss
-V

a
li

d
. 
A

c
c
. 

(2
0

0
0

-5
0

-3
5

-2
5

-2
0

-4
) M1-4HL 67.8 67.4 65.2 67.9 66.2 62.4 72.5 73.5 67.6 73.5 

M1-3HL   66.2 66.8 66.7 64.1 66.4 60.3 61.5 62.7 64.4 66.8 

M1-2HL 64.7 65.3 65.7 63.3 65.5 66.8 69.5 67.3 66.0 69.5 

M2-4HL 77.8 79.2 77.4 79.3 79.7 77.5 72.4 73.8 77.1 79.7 

M2-3HL  76.4 78.6 75. 75.1 78.2 70.4 70.6 72.1 74.5 78.6 

M2-2HL  73.8 78.4 73.6 74.3 77.2 70.1 70.3 72.5 73.7 78.4 

M3-4HL  68.8 73.1 

M3-1HL   66.2 70.3 

SVM,35F M4 57.9 61.8 65.7 64.1 62.2 70.1 67.9 67.5 64.6 70.1 

C
r
o

ss
 -

V
a

li
d

. 
A

c
c
. 

(2
0

0
0

-1
0

0
-7

5
-5

0
-

2
5

-4
) 

M1-4HL 85.3 85.4 82.1 83.1 84.5 87.9 81.4 82.5 84.0 87.9 

M1-3HL  83.8 84.8 86.6 79.0 84.1 80.3 81.5 82.3 82.8 86.6 

M1-2HL 83.2 84.2 84.7 83.7 85.2 76.9 79.5 77.7 81.8 85.2 

M2-4HL 87.6 88.9 89.0 88.1 90.4 78.9 82.4 83.5 86.1 90.4 

M2-3H 84.4 85.6 89.8 86.2 88.9 80.4 80.4 82.2 84.7 89.8 

M2-2HL  83.7 89.1 84.1 84.3 86.1 80.1 80.3 82.1 84.7 89.1 

M3-4HL  78.3 80.9 

M3-1HL   74.1 80.3 

SVM,75F M4 78.1 77.4 78.8 78.1 72.4 73.9 78.5 75.6 76.6 78.8 
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M1-4HL 73.4 76.8 79.8 79.1 79.3 74.2 75.6 72.9 76.3 79.8 

M1-3HL 74.6 75.6 75.7 76.4 74.6 70.7 72.7 71.9 74.0 76.4 

M1-2HL 70.1 74.7 74.6 73.6 72.6 76.7 79.8 72.2 74.2 79.8 

M2-4HL 77.5 78.8 79.9 78.5 79.9 73.2 73.4 74.6 76.9 79..9 

M2-3HL 76.2 77.9 78.2 76.3 77.1 70.2 72.3 71.7 74.9 78.2 

M2-2HL 74.2 76.8 77.2 76.7 77.2 70.1 70.3 72.5 74.3 77.2 

M3-4HL  70.9 75.9 

M3-1HL  70.2 74.6 

SVM,125F M4 67.6 66.7 68.3 69.6 76.8 72.8 73.6 73.8 71.1 76.8 

 

       Table 7.7: Cross validation accuracy on technical website features dataset. 
      Hyper-Param. 
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M1-4HL 67.2 69.7 67.6 68.5 64.0 50.3 62.9 62.7 64.1 69.7 

M1-3HL   68.6 66.7 66.7 65.8 63.8 55.3 60.3 62.5 63.7 68.6 

M1-2HL 62.7 64.8 65.8 63.3 63.5 66.9 62.5 62.2 63.9 66.9 

M2-4HL 96.9 95.2 87.8 92.1 97.0 96.7 96.8 96.8 94.9 97.0 

M2-3HL  95.7 94.7 86.1 88.9 96.2 92.1 93.3 94.2 92.6 96.2 

M2-2HL  88.9 88.2 88.9 87.6 89.1 89.1 92.3 89.5 89.2 92.3 

M3-4HL  60.7 65.8 

M3-1HL   60.9 65.3 

SVM,6F M4 54.4 56.1 58.5 56.1 58.4 61.3 61.7 56.8 57.9 61.7 
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M1-4HL 67.0 77.8 78.5 73.3 66.0 59.9 90.5 62.8 71.9 90.5 

M1-3HL  64.6 70.9 72.4 72.9 65.8 85.4 66.9 61.8 70.0 85.4 

M1-2HL 81.9 65.2 74.2 63.2 65.3 58.7 66.3 61.5 67.0 81.9 

M2-4HL 99.4 99.7 99.3 98.6 99.1 99.4 99.6 99.0 99.2 99.7 

M2-3H 99.3 98.9 98.5 97.2 97.8 98.2 98.8 98.3 98.3 99.3 

M2-2HL  98.9 98.7 98.2 97.0 97.9 86.4 97.5 99.1 96.7 99.1 

M3-4HL  77.2 82.3 

M3-1HL   76.5 80.4 

SVM,8F M4 57.7 60.2 62.1 58.9 77.9 61.2 61.3 60.9 62.5 77.9 
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M1-4HL 69.7 68.4 67.5 69.5 66.0 59.9 90.5 62.8 69.2 90.5 

M1-3HL 67.8 67.6 66.8 68.2 85.9 59.8 67.9 60.3 68.0 85.9 

M1-2HL 65.4 66.3 62.7 65.6 65.3 75.9 70.9 61.5 66.7 75.9 

M2-4HL 71.4 98.1 96.4 98.4 99.4 84.3 99.3 99.1 93.3 99.4 

M2-3HL 94.8 96.7 97.4 96.3 98.3 80.9 76.8 56.1 87.1 98.3 

M2-2HL 86.8 97.3 95.8 95.2 78.1 80.7 67.6 86.5 86.0 97.3 

M3-4HL  65.3 72.4 

M3-1HL  65.1 70.6 

SVM,15F M4 58.1 59.7 59.7 52.3 58.3 57.2 57.8 59.8 57.8 59.8 
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                        Table 7.8: Performance comparison on email_v1 dataset. 
Methods Network Structure/ 

Hyper-Parameters 

Training Acc. 

 

Testing Acc. 

Av. Acc. Std. Av. Acc. Std. 

M1-4HL 750-50-25-10-5-2 / HP 6 89.5% 1.43 83.3% 1.47 

M1-3HL 750-50-25-10-2 / HP 5 90.5% 0.81 82.7% 0.59 

M1-2HL 750-50-25-2  / HP 4 91.5% 1.39 80.3% 1.74 

M2-4HL 750-50-25-10-5-2  / HP 2 92.9% 0.29 89.9% 0.28 

M2-3HL 750-50-25-10-2  / HP 5 92.1% 0.36 88.2% 0.45 

M2-2HL 750-50-25-2   / HP 4 92.9% 0.52 86.7% 0.42 

M3-4HL 750-50-25-10-5-2            91.7% 1.52 81.7% 1.47 

M3-1HL 750-50-2              89.6% 1.49 80.9% 1.52 

M4 SVM,25 features 87.1% 1.07 77.7% 1.63 

                      

 
                        Table 7.9: Performance comparison on email_v2 dataset. 

Methods Network Structure/ 

Hyper-Parameters 

Training Acc. 

 

Testing Acc. 

Av. Acc. Std. Av. Acc. Std. 

M1-4HL 465-45-20-10-5-2/ HP 4 93.2% 1.46 86.2% 1.16 

M1-3HL 465-45-20-10-2 / HP 5 93.1% 1.78 85.1% 0.96 

M1-2HL 465-45-20-2/ HP 3 93.0% 1.95 84.3% 1.02 

M2-4HL 465-45-20-10-5-2  / HP 8 96.5% 0.17 93.7% 0.09 

M2-3HL 465-45-20-10-2 / HP 2 96.1% 0.44 93.6% 0.38 

M2-2HL 465-45-20-2 / HP 3 94.9% 0.87 91.2% 0.84 

M3-4HL 465-45-20-10-5-2             93.1% 1.25 85.1% 1.46 

M3-1HL 465-45-2 91.1% 1.32 84.7% 1.34 

M4 SVM, 20 features 87.5% 1.43 82.7% 1.57 

 

                                            Table 7.10: Performance comparison on Reuters-21578 dataset. 
Methods Network Structure/ 

Hyper-Parameters 

Training Acc. 

 

Testing Acc. 

Av. Acc. Std. Av. Acc. Std. 

M1-4HL 421-40-35-25-20-10/HP 4 93.9% 4.92 79.1% 4.89 

M1-3HL 421-40-35-25-10/ HP 4 84.3% 2.84 75.5% 3.67 

M1-2HL 421-40-35-10/ HP 2 83.9% 2.86 75.1% 3.52 

M2-4HL 421-40-35-25-20-10/ HP 8 88.3% 1.71 86.2% 0.56 

M2-3HL 421-40-35-25-10/ HP 6 85.3% 1.85 85.2% 0.65 

M2-2HL 421-40-35-10/ HP 7 85.2% 1.78 84.1% 0.95 

M3-4HL 421-40-35-25-20-10 83.9% 2.03 74.8% 2.76 

M3-1HL 421-40-10 83.4% 2.34 74.4% 2.03 

M4 SVM, 25 features 83.1% 2.98 71.4% 2.56 

                                       

  

                                       Table 7.11: Performance comparison on musk dataset. 
Methods Network Structure/ 

Hyper-Parameters 

Training Acc. 

 

Testing Acc. 

Av. Acc. Std. Av. Acc. Std. 

M1-4HL 166-10-7-5-3-2/ HP 5 94.8% 2.99 82.1% 2.18 

M1-3HL 166-10-7-5-2/ HP 8 94.7% 3.21 81.8% 2.78 

M1-2HL 166-10-7-2/ HP 6 92.2% 3.32 81.1% 2.82 

M2-4HL 166-10-7-5-3-2/ HP 7 96.2% 0.24 90.2% 0.17 

M2-3HL 166-10-7-5-3-2/ HP 6 96.8% 0.26 87.5% 0.21 

M2-2HL 166-10-7-5-3-2/ HP 3 94.3% 0.32 86.6% 0.25 

M3-4HL 166-10-7-5-3-2 97.5% 2.17 83.6% 1.25 

M3-1HL 166-10-7-5-3-2 96.2% 2.28 80.6% 1.34 

M4 SVM, 7 features 90.1% 3.59 77.2% 1.15 
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                        Table 7.12: Performance comparison on 20news_v2 dataset. 
Methods Network Structure/ 

Hyper-Parameters 

Training Acc. 

 

Testing Acc. 

Av. Acc. Std. Av. Acc. Std. 

M1-4HL 2000-100-75-50-25-4/ HP6 87.1% 2.54 81.8% 2.67 

M1-3HL 2000-100-75-50-4 / HP 3 86.9% 2.76 81.3% 2.35 

M1-2HL 2000-100-75-4 / HP 5 85.9% 2.88 80.3% 2.63 

M2-4HL 2000-100-75-50-25-4/ HP 5 94.4% 1.42 93.2% 1.36 

M2-3HL 2000-100-75-50-4 / HP 3 89.8% 1.56 89.1% 1.53 

M2-2HL 2000-100-75-4 / HP 2 89.1% 1.24 86.4% 1.23 

M3-4HL 2000-100-75-50-25-4   86.4% 2.05 81.6% 2.85 

M3-1HL 2000-25-4 86.7% 2.56 80.3% 2.65 

M4 SVM, 75 83.1% 3.21 78.4% 3.71 

                                        

                      Table 7.13: Performance comparison on technical website features 

dataset. 
Methods Network Structure/ 

Hyper-Parameters 

Training Acc. 

 

Testing Acc. 

Av. Acc. Std. Av. Acc. Std. 

M1-4HL 47-15-8-7-5-2/ HP 7 92.8% 4.30 67.6% 5.82 

M1-3HL 47-15-8-7-2/ HP 6 92.3% 4.29 65.6% 5.27 

M1-2HL 47-15-8-2 / HP 1 92.1% 4.32 64.9% 5.25 

M2-4HL 47-15-8-7-5-2/ HP 2 99.7% 0.13 96.8% 0.41 

M2-3HL 47-15-8-7-2/ HP 1 97.3% 0.16 95.9% 0.46 

M2-2HL 47-15-8-2/ HP 8 97.9% 0.18 94.7% 0.47 

M3-4HL 47-15-8-7-5-2     98.6% 3.42 61.5% 4.41 

M3-1HL 47-15-2 97.4% 4.36 61.5% 4.54 

M4 SVM, 8 features 85.9% 4.40 61.1% 4.62 

 

 

Figure 7.6: Comparison of four methods in terms of average training and testing 

accuracy. 
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Statistical Significance Test: In order to assess whether the performance differences 

among the methods are statistically significant, we applied T-test and the Wilcoxon’s 

rank-sum test to determine whether two sets of accuracy data are significantly different 

from each other. The statistical tests were conducted on five paired methods (M2 vs 

M1, M2 vs M3, M2 vs M4, M1 vs M3, and M1 vs M4) in terms of testing 

classification accuracy. Tables 7.14 and 7.15 show the p-values from these tests, which 

demonstrate that, in terms of classification performance, M2 significantly 

outperformed M1, M3 and M4, and M1 significantly outperformed M3 and M4. 

            Table 7.14: Statistical test results (t-test). 
Methods for comparison p-value 

M2 vs. M1 2.7431e-08 

M2 vs. M3 2.8853e-06 

M2 vs. M4 2.0631e-08 

M1 vs. M3 0.0026 

M1 vs. M4 0.0012 

                                            

 

                                           Table 7.15: Statistical test results (rank-sum). 
Methods for comparison p-value 

M2 vs. M1 0.0037 

M2 vs. M3 0.0046 

M2 vs. M4  0.0025 

M1 vs. M3 0.0452 

M1 vs. M4 0.0132 

                                                      

7.6 Summary and Discussion 

Representation learning is very crucial step to extract useful information when building 

classifiers. This chapter investigates deep classifier structures with autoencoder for 

higher-level feature extraction.  The proposed approach was tested on six datasets and 

evaluated by comparison with existing methods. 
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 The three-stage learning approach for deep multilayer perceptron with effective 

weight initialisation based on stacked autoencoder can combat potential overfitting and 

vanishing/exploding gradient problems in deep learning with limited training data.  

It is evident from the experimental results that the deep multilayer perceptron trained 

using the proposed algorithm significantly outperformed the standard multilayer 

perceptron and its combination with stacked autoencoder as well. The experimental 

results have demonstrated the advantages of the proposed method. Further tests in 

other applications would be conducted in future investigations. 
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Chapter 8 

8 Conclusion and Future Work 

8.1 Summary of Contributions 

In this chapter, we summarise how the work for this thesis has achieved the research 

objectives set up in Section 1.2. 

First, an improved PCA method has been proposed for improving the performance of 

feature dimensionality deduction for text categorisation. This proposed method is 

based on cosine similarity and correlations between pairs of feature vectors. For initial 

feature extraction, four term weighting schemes were applied to the document datasets: 

term frequency (TF), term presence (TP), term frequency and inverse document 

frequency (TF-IDF), and term presence and class-specific document frequency (TP-

CSDF). Experiments were conducted in order to evaluate the performance of the 

proposed method, which was based on correlation (via a correlation matrix) and cosine 

similarity, against that of a standard PCA which used covariance. Then, the proposed 

approach was evaluated by employing three well-known classifiers SVM, KNN and 

LDA to classify emails/documents/news-items using the best number of principal 

components or features that were found to achieve the highest performance. It is 

evident that the proposed PCA using the cosine similarity criterion achieved 

competitive accuracy with a smaller number of required features compared to the PCA 

based on covariance and correlation, across different datasets and different classifiers. 

Second, two hybrid methods for feature subset selection have been proposed, aiming to 

further reduce feature dimensionality and thus improve classification accuracy and 
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interpretability as well. Both methods use a two-stage process for selecting a subset of 

relevant features. The first stage selects feature subsets based on either the union or the 

intersection of features selected according to distance or similarity measures 

(unsupervised approach) and mutual information measures (supervised approach). The 

second stage employs a wrapper approach on the selected features at the first stage. 

Experiments were conducted and the performance of the proposed methods was 

evaluated via comparisons with the performance of individual filter approaches and the 

full wrapper approach. It has been demonstrated that the proposed methods have 

advantages over individual filter approaches and the full wrapper approach in terms of 

classification accuracy, the number of required features, consumed time, and 

interpretability. Furthermore, the first hybrid approach H1 is better than the second 

approach H2 in terms of time consumed. 

Third, a new scheme was proposed for employing sparse autoencoder to extract 

features, which uses a class-specific (supervised) pre-trained approach to learn 

extracting features for each class separately. The performance of this method was 

evaluated via comparisons with the performance of an unsupervised-training sparse 

autoencoder. It has been demonstrated that the proposed method is advantageous over 

the standard SAE and Full-features in terms of the classification performance with the 

same number of required features. 

Finally, deep classifier structures using SAE and MLP for higher-level feature 

extraction have been investigated, leading to a three-stage learning algorithm that can 

overcome the difficulties encountered when training deep neural networks with limited 

training data in high-dimensional feature space. The performance of the proposed 
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three-stage learning algorithm for DMLP was evaluated via comparisons with the 

performance of support vector machines combined with SAEs and DMLP trained with 

random weight initialisation. The experimental results demonstrated the advantages 

and effectiveness of the proposed method. 

To sum up, the work for this Ph.D. thesis has resulted in new methods for 

dimensionality reduction, feature extraction and selection, and training of deep neural 

networks with evident performance improvement. 

8.2 Future Work 

The methods and solutions presented in this thesis raise some issues which may well 

be worthy of further investigation. This section discusses some of these issues. 

1) In this work, we employed vector space model or bag-of-words for document 

representation. There are two major drawbacks with the bag-of-words. First, it 

counts word occurrences but neglects the fact that a word may have different 

meanings in different documents or even in the same document.  Second, in some 

cases related documents may not share the same keywords, which means that two 

related documents may not be classified as belonging to the same class. Future 

work should focus on employing other methods for document representation such 

as semantic-based or graph-based models. 

2) In this work, we employed traditional classification accuracy measures for 

evaluation. Some machine learning methods can achieve relatively high 

classification accuracy, but nevertheless their false positive rates and false negative 

rates are too high to be acceptable, especially when they are to be used for online 
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applications. For example, phishing detection methods should achieve low false 

negative and false positive rates. More work should be conducted in order to 

overcome this limitation. 

3) This research proposed two hybrid methods which combine both supervised and 

unsupervised filter approaches with a wrapper approach for best feature subset 

selection. It may be worthwhile to use a greater variety of filters and a number of 

different wrappers. 

4) This research used a number of different document datasets, such as phishing 

emails, websites technical features and 20newsgroup datasets, with different 

numbers of samples and features. Also, the document datasets chosen entailed the 

use of both binary-class and multi-class classifications. However, the approaches 

proposed here might be capable of being extended to work with other kinds of 

dataset such as those involved with image processing. 

5) This research investigated deep learning algorithms, such as sparse autoencoder 

and stacked autoencoder algorithms, for learning feature representation, and it also 

investigated a deep multilayer perceptron for classification. The goal was to obtain 

effective low-dimensional features which can achieve high classification accuracy 

and overcome the difficulties often encountered in training deep neural networks 

with limited training data in high-dimensional feature space: overfitting and 

vanishing/exploding gradients. Future work should focus on employing other deep 

learning approaches to address these issues (overfitting and vanishing/exploding 

gradients). 
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6) Imbalanced data problem: one major technical challenge for document 

classification is the problem of imbalanced data. Throughout the thesis this was 

always a major challenge for most datasets. I have not proposed a real solution for 

this problem but depended on simple solutions like down-sampling the majority 

class. More investigation is necessary in this area. 
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