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Abstract: The impact of population variation in the analysis of regulatory interactions is
an underdeveloped area. MicroRNA target recognition occurs via pairwise complementarity.
Consequently, a number of computational prediction tools have been developed to identify
potential target sites that can be further validated experimentally. However, as microRNA target
predictions are done mostly considering a reference genome sequence, target sites showing variation
among populations are neglected. Here, we studied the variation at microRNA target sites in
human populations and quantified their impact in microRNA target prediction. We found that
African populations carry a significant number of potential microRNA target sites that are not
detectable in the current human reference genome sequence. Some of these targets are conserved
in primates and only lost in Out-of-Africa populations. Indeed, we identified experimentally
validated microRNA/transcript interactions that are not detected in standard microRNA target
prediction programs, yet they have segregating target alleles abundant in non-European populations.
In conclusion, we show that ignoring population diversity may leave out regulatory elements essential
to understand disease and gene expression, particularly neglecting populations of African origin.
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1. Introduction

The study of gene regulatory iterations is at the heart of biomedical research. Many disease-causing
mutations affect regulatory motifs that eventually lead to a miss-regulation of fine-tuned biological
processes. In the last years, microRNAs have emerged as an important type of regulatory molecules
involved in virtually all biological networks [1,2]. Both the deletion and overexpression of microRNAs
have been associated to human diseases (see for instance the compilation by [3]). Notably, the role of
microRNAs in cancer is a particularly active research field [4,5]. Unlike other regulatory molecules
(such as transcription factors or RNA binding proteins), the interaction between regulator and
target is mediated by pairwise nucleotide complementary [1]. Specifically, a microRNA is partially
complementary to motifs in RNA transcripts and, after binding, translational repression or even
RNA degradation mechanisms are triggered [1,6]. Indeed, changes at microRNA target sites are now
associated to major human diseases including cancer, neurodegeneration and metabolic disorders
(see [7,8] and references therein), among others. The study of microRNA target sites is becoming more
important as we start to understand the complexities behind microRNA regulatory networks.

From a computational point of view, the microRNA targeting mechanisms have a clear advantage:
targets can be predicted by scanning genomic sequences for potential complementary sites [9–11].
However, microRNA target prediction algorithms have, in general, high rates of false positives [12,13].
Consequently, most research on microRNA targets complements a computational sieve of potential
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target sites plus experimental validations, usually by luciferase assays or similar (e.g., [14]). Therefore,
the first step in microRNA target analysis is the prediction of binding sites from a primary sequence.
In biomedical research, this primary sequence is often, if not always, the human reference genome
sequence (currently hg38). However, a reference genome does not take into account existing variation
within human populations and, therefore, any inference from such a sequence may be biased.
Populations of African origin show a higher nucleotide diversity than other populations, probably
as a consequence of a recent origin of Eurasian populations from a small group of African migrants
(reviewed in [15]). There exist several projects aimed to account for all this nucleotide variability
in human populations (i.e., [16]). Nevertheless, microRNA target prediction programs rely on
reference genome sequences (as other regulatory interaction programs do), where this diversity is not
truly represented.

Variation at gene regulatory sites, particularly at transcription factor binding sites, has been
studied in the past (e.g., [17,18]). In microRNA target sites, some studies have shown that, as expected,
functional target sites are often conserved in populations [19,20]. On the other hand, the creation
of novel, potentially harmful, microRNA target sites, is selected against in populations [21,22].
In summary, the literature clearly shows evidence that nucleotide variation occurs at microRNA target
sites. The question is, how much of this variation is neglected in the human reference genome sequence,
and therefore not accounted for in standard microRNA target prediction programs? In other words,
what is the impact of nucleotide variation among humans in microRNA target prediction research?
This is the question we are tackling in this paper.

2. Results and Discussion

We compiled biallelic SNPs at predicted microRNA target sites (see Methods) for which one of the
alleles is a target site and the other is not a target site. These are the target/near-target pairs as defined
before [11,21]. Considering that populations of African origin host more variation, including ancestral
alleles, than other populations, we hypothesize that ancestral target sites that are not present in the
reference genome sequence were lost in Out-of-Africa populations. Thus, we first consider target sites
whose allele in the reference genome sequence is not a target, yet the ancestral allele was a target site.
The distribution of these alleles frequencies in five major groups (African, European, South Asian,
Native American and East Asian) indicates that non-African populations tend to have the non-target
allele whilst African populations show a wider variation, and a paucity of non-targets compared to
the other populations (Figure 1, top). Additionally, we consider target sites in the reference genome
sequence that were not ancestral to human populations and, as expected, we found that African
populations have lower frequencies of the target allele (Figure 1, bottom). These results suggest that
a significant loss and gain of microRNA target sites happened in Out-of-African populations.

To illustrate the impact of variation at target sites we selected SNPs with a very high degree of
population differentiation (Fst > 0.7; see Methods) that are not present in the human genome reference
sequence. We found 26 target sites with such a degree of variation across populations (Table 1) for highly
expressed microRNAs. Many of these target sites are lost in Out-of-Africa populations, suggesting that
losses rather than the gains of target sites are more likely to happen during differentiation between
populations (see discussion in [22]).
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Figure 1. Target allele frequencies at microRNA target sites where the target is ancestral and not in 
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sequence (bottom). Super-populations are African (AFR), Mixed American (AMR), East Asian (EAS), 
European (EUR) and South Asian (SAS). 
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miR-192-5p10 C12orf65 rs1533703 0.9980 0.7262 0.1490 0.7694 0.7945 0.7074 

a SNP names are dbSNP accession numbers. b Allele frequencies refer to the target allele frequency 
in each of the five super-population groups. Superscript in microRNA names indicates other mature 
sequences with the same target site: 1 miR-520c-5p, miR-519b-5p, miR-526a-5p, miR-519c-5p, 
miR-518f-5p, miR-523-5p, miR-518d-5p, miR-522-5p, miR-518e-5p; 2 let-7e-5p, let-7c-5p, let-7f-5p, 
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miR-23b-5p, miR-3158-3p; 8 miR-513c-3p; 9 miR-491-5p, miR-1296-5p; 10miR-215-5p. 

Figure 1. Target allele frequencies at microRNA target sites where the target is ancestral and not in the
reference genome sequence (top) or the target is derived and present in the reference genome sequence
(bottom). Super-populations are African (AFR), Mixed American (AMR), East Asian (EAS), European
(EUR) and South Asian (SAS).

Table 1. MicroRNA target sites, not in the reference genome sequence, with a very high differentiation
among human populations.

MicroRNA Gene SNP a EAS b AMR b AFR b EUR b SAS b Fst

miR-519a-5p 1 MTAP rs7868374 0.0079 0.0476 0.6838 0.0050 0.1176 0.8239
let-7a-5p 2 MTAP rs7875199 0.0536 0.0576 0.7958 0.0070 0.1288 0.7997

miR-337-3p 3 ATP1A1 rs1885802 0.0427 0.1268 0.8109 0.0338 0.0450 0.7914
miR-185-3p 4 SLC5A10 rs1624825 0.9970 0.5159 0.9667 0.2028 0.7495 0.7859
miR-1180-3p MYEF2 rs2470102 0.7530 0.3386 0.9251 0.0060 0.2720 0.7726

miR-151a-5p 5 SCN2B rs624328 0.9405 0.8905 0.2519 0.9513 0.9673 0.7674
miR-4732-5p AP5M1 rs1889720 0.9335 0.9107 0.1551 0.9433 0.9182 0.7637
miR-584-5p CYB5R4 rs6903739 0.0000 0.0749 0.7738 0.0477 0.0061 0.7514

miR-618 CYB5R4 rs9449733 1.0000 0.9251 0.2247 0.9523 0.9939 0.7397
miR-18a-3p ANKRD65 rs904589 0.1131 0.1945 0.8222 0.0964 0.1881 0.7332

miR-329-3p 6 CEP162 rs6901546 0.0139 0.1628 0.7670 0.0706 0.0900 0.7326
miR-150-5p 7 HM13 rs6059873 1.0000 0.8156 0.1725 0.8429 0.9622 0.7298

miR-513a-3p 8 TCERG1 rs3822506 0.7183 0.1167 0.0325 0.0915 0.2198 0.7224
miR-128-1-5p 9 BCL7C rs11864054 0.9117 0.5447 0.0242 0.3817 0.1595 0.7144
miR-192-5p 10 C12orf65 rs1533703 0.9980 0.7262 0.1490 0.7694 0.7945 0.7074

a SNP names are dbSNP accession numbers. b Allele frequencies refer to the target allele frequency in each of
the five super-population groups. Superscript in microRNA names indicates other mature sequences with the
same target site: 1 miR-520c-5p, miR-519b-5p, miR-526a-5p, miR-519c-5p, miR-518f-5p, miR-523-5p, miR-518d-5p,
miR-522-5p, miR-518e-5p; 2 let-7e-5p, let-7c-5p, let-7f-5p, let-7d-5p, let-7b-5p, miR-98-5p, let-7i-5p, let-7g-5p,
miR-1294; 3 miR-202-5p; 4 miR-128-1-5p; 5 miR-561-5p, miR-3605-5p, miR-24-3p, miR-151b; 6 miR-362-3p;
7 miR-296-3p, miR-4446-3p, miR-23b-5p, miR-3158-3p; 8 miR-513c-3p; 9 miR-491-5p, miR-1296-5p; 10miR-215-5p.

We observed that MTAP have lost two target sites for two highly expressed microRNAs in
non-African populations. These two target sites were the ancestral form in human populations and
conserved as targets in other primates (Figure 2A). Genome-wide association studies have linked
variants at MTAP with the abundance of naevi (moles) and also with melanoma incidence [23,24],
although the association between MTAP and melanoma seems to be rather complex [23]. We speculate
that the loss of two target sites at MTAP transcripts could be associated with an elevated expression
of the gene in Out-of-Africa populations, perhaps by a relaxation on the selective pressures that
maintained the target sites under purifying selection in African populations, where light exposure is
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higher, and an overproduction of MTAP may be linked to a higher incidence of skin cancer. Under this
hypothesis, we expect the target allele frequency to be also negatively correlated with the latitude
of sampling of non-African human populations. We compiled sampling information for human
populations (see Methods) and build a linear model to predict the target allele frequency as a function
of the latitude. We observed that populations from higher latitudes have lower target allele frequencies
at both of the studied target sites (Figure 2B), although the statistical support was weak (rs7875199:
R2 (adjusted) = 0.18, p = 0.06; rs7868374: R2 (adjusted) = 0.14, p = 0.09). We would like to emphasize
that the association between latitude and MTAP target site allele frequencies is still speculative, but the
fact that other similar associations has been found at microRNA target sites (e.g., [25]) suggest that
other latitude depending microRNA function remain to be discovered.

Likewise, we found a similar pattern in two target sites at CYB5R4, a gene associated to
gene-environment interactions [26,27]. In particular, CYB5R4 has been associated to the risk of diabetes,
and variants at its 5′ region have been found to be specific of African populations [26]. The association
between population variants and disease-related genes such as MTAP and CYB5R4 remains highly
speculative, yet it is very suggestive. In any case, the identified target sites at MTAP and CYB5R4 are not
present in the human genome reference genome yet they are highly abundant in African populations
and conserved in primates, indicating that target prediction programs often neglect an important part
of human variability.
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miR-24-3p, a tumour-suppressor microRNA [28], has a polymorphic target site in Caspase 10 
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about 26% or African sampled alleles whilst it is not detected in most other populations. Indeed, 
neither TargetScan nor DIANA-microT [10] predict this interaction. This result further supports the 

Figure 2. MicroRNA target sites variation at transcript from the MTAP gene: (A) alignment of 3′UTR
fragments from 10 primate species, including human, and the location of the target sites and the
polymorphic nucleotides; (B) scatter-plot between the latitude (in absolute value) and the target allele
frequency for target sites for miR-519a-5p (red) and let-7a-5p (blue). Straight lines are fitted linear
models (see main text).

We identified microRNA/gene interactions that have been experimentally detected in
high-throughput experiments with a significant population differentiation (PFst < 0.05, see Methods)
that were not detected as targets in the reference genome sequence (Table 2). For instance, miR-24-3p,
a tumour-suppressor microRNA [28], has a polymorphic target site in Caspase 10 transcripts,
whose product is an component of the apoptotic machinery. This target site is present in about
26% or African sampled alleles whilst it is not detected in most other populations. Indeed, neither
TargetScan nor DIANA-microT [10] predict this interaction. This result further supports the view that
reference genome sequences used to predict microRNA target sites often ignore population variability
that may indicate functional diversity.

As this work is a computational evaluation of potential microRNA target sites, we have not
validated any of the targets. However, we wanted to explore whether experimentally validated
polymorphic target sites showed some population differentiation. Hence, we explored the 111 variants
tested by PASSPORT-seq [29] of which 59 were listed in our database. The distribution of Fst values
shows population differentiation for some targets (Figure 3). For instance, eight target sites (over 13%
of the total) had an associated Fst value of 0.3 or more.
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Table 2. Target sites identified in high-throughput experiments with high population differentiation.

MicroRNA Gene SNP a EAS b AMR b AFR b EUR b SAS b Fst

miR-1307-3p VSTM4 rs4240499 0.2361 0.4971 0.9017 0.3976 0.5031 0.5352
miR-512-3p EIF2B2 rs4556 0.8393 0.6441 0.1884 0.5388 0.5194 0.4327
miR-197-3p DBT rs6701655 0.9296 0.8905 0.4168 0.8648 0.8978 0.4186
miR-17-5p MRPS10 rs3199638 0.7937 0.6369 0.2148 0.6372 0.7679 0.3946
miR-326 SLC27A4 rs7048106 0.3185 0.2176 0.7617 0.2386 0.3476 0.3782

miR-24-3p CASP10 rs13432040 0.000 0.0259 0.2587 0.000 0.000 0.2943
miR-342-3p LRPAP1 rs3468 0.5089 0.2507 0.1611 0.3489 0.2669 0.238

a SNP names are dbSNP accession numbers. b Allele frequencies refer to the target allele frequency in each of the
five super-population groups.
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Figure 3. Fst values for polymorphic microRNA target sites experimentally evaluated with
PASSPORT-seq (see main text).

Last, we investigated polymorphic target sites identified by the popular software TargetScan.
We downloaded the whole conserved and non-conserved target datasets and identified polymorphic
target sites also present in our database PopTargs. We compared the target allele frequencies between
populations and concluded that, for both conserved and nonconserved targets, the target allele was
more common in European than in African populations (Table 3). Indeed, for nonconserved targets,
the differences are larger.

Table 3. Wilcoxon signed-rank (paired) test between African and European target allele frequencies in
TargetScan predicted microRNA target sites.

TargetScan Dataset Sample Size (pairs) p Shift Median 1 Shift 95% CI2

conserved 9245 <2.2 × 10−16 7.976 × 10−4 (7.833–7.878) 10−4

nonconserved 1041868 <2.2 × 10−16 1.174 × 10−3 (1.151–1.210) 10−3

1 Estimated shift median for the difference: European minus African target allele frequency. 2 Confidence Interval.

In conclusion, here, we showed that the study of variation in human populations reveals the
presence of microRNA target sites that are not detected with current methodological frameworks.
We suggest that variation at target sites must be taken into account in biomedical studies as some
populations (mostly of African origin) may be neglected. Further research is needed to quantify the
impact of population variation in the function of microRNA target sites.



Non-coding RNA 2019, 5, 42 6 of 8

3. Methods

Polymorphic sites at predicted microRNA target sites were retrieved from the PopTargs database
(version 2; Hatlen, Helmy and Marco, under review; https://poptargs.essex.ac.uk). Only target
sites for highly expressed microRNAs were considered. Population frequencies, Fst values and
ancestral alleles were also retrieved in PopTargs, as provided in [30]. We only consider segregating
alleles with a frequency between 0.01 and 0.99. Sequence alignment of primate sequences was
extracted using the UCSC table browser [31]. The geographical location (latitude) of the genome
samples sequenced in the 1000 genomes project was obtained from the sample descriptions at https:
//www.coriell.org/1/NHGRI/Collections/1000-Genomes-Collections/1000-Genomes-Project. When the
specific location was ambiguous, we used the location of the capital city of the country of origin.
For multiple collection points we computed the centroid middle point. Recently migrated populations
were discarded (CHD, CEU, ASW, ACB, GIH, STU and ITU as described at IGSR: The International
Genome Sample Resource (http://www.internationalgenome.org/category/population/)) were discarded
from the analysis in Figure 2B. We extracted microRNA targets from the miRTarBase database [32],
which were detected only in high-throughput experiments (PAR-CLIP and/or HITS-CLIP).
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