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Abstract—Brain-machine interface (BMI) driven robot-assisted
neurorehabilitation intervention has demonstrated improvement
in upper-limb (UL) motor function, specifically, with post-stroke
hemiparetic patients. However, neurophysiological patterns re-
lated to such interventions are not well understood. This study
examined the longitudinal changes in band-limited resting-state
(RS) functional connectivity (FC) networks in association with
post-stroke UL functional recovery achieved by a multimodal
intervention involving motor attempt (MA) based BMI and
robotic hand-exoskeleton. Four adults were rehabilitated with
the intervention for a period lasting upto 6 weeks. RS magne-
toencephalography (MEG) signals, Action Research Arm Test
(ARAT), and grip strength (GS) measures were recorded at five
equispaced sessions over the intervention period. An average
post-interventional increase of 100.0% (p = 0.00028) and 88.0%
were attained for ARAT and GS, respectively. A cluster-based
statistical test involving correlation estimates between beta-band
(15−26 Hz) RS-MEG FCs and UL functional recovery provided
positively correlated sub-networks in both contralesional and
ipsilesional motor cortices. The fronto-parietal FC exhibited
hemispheric lateralisation wherein majority of the positively and
negatively correlated connections were found in contralesional
and ipsilesional hemispheres, respectively. Our findings are con-
sistent with the theory of bilateral motor cortical association with
UL recovery and predict novel FC patterns that can be important
for higher level cognitive functions.

Index Terms—Hand neurorehabilitation, Functional brain
networks, Magnetoencephalography, Motor attempt, Brain-
computer interface, Hand-exoskeleton.

I. INTRODUCTION

Recovery of movement related functions after stroke and
its assessment are highly crucial for restoring activities of
daily living (ADLs) of the patients. Majority of the stroke
survivors have upper-limb (UL) associated symptoms after
undergoing an acute stroke [1]. Many patients show some
degree of spontaneous (autonomous) recovery during initial
months following a stroke, however, this is generally inade-
quate particularly in terms of motor functions. The condition
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of the patients with null or incomplete recovery can be
improvised with several restorative therapy methods. These
methods mainly include: (i) dynamic splinting which helps
the stroke survivors to straighten their wrists and fingers (e.g.
physical therapy, constraint-induced movement therapy, gait
therapy) [2], [3], (ii) electrical muscle stimulation (EMS)
which helps in moving weak limb by using electric impulses
delivered directly to skin using electrodes [4], [5], (iii) device-
driven therapy which guides the users to execute repeated
movements (e.g. robotics, brain-computer interface (BCI)) [6]–
[9], (iv) transcranial magnetic stimulation (TMS) which uses
electromagnetic induction to induce weak currents and helps
in causing activity in specific parts of brain [10], [11], and
(v) mirror therapy: to make it appears as if stroke survivors
are moving their affected arm, however, they actually look
at the movement of their unaffected hand [12], [13]. These
days mental practice (MP) and physical practice (PP) are
two frequently used evidence-based clinical interventions to
enhance UL motor function purportedly to improve motor
movement, coordination, and balance following stroke [14],
[15].

Motor-imagery (MI) based BCI systems offer the
use of neuronal signals i.e. Electroencephalography
(EEG)/Magnetoencephalography (MEG) for UL rehabilitation
goals, by providing the end users with brain state-related
sensory feedback through various means such as functional
electrical stimulation, virtual reality environments, or robotic
systems. Taking this into consideration, BCI systems that
are applied for motor neuromodulation purposes are used
to induce activity-dependent plasticity by making the user
pay close attention to a task requiring the activation or
deactivation of specific brain areas [16]–[18]. Moreover,
recent advancements in the EEG/MEG-driven stroke
rehabilitation showed the significant efficacy of visual and
proprioceptive feedback and robotic UL exoskeletons along
with MI [19]–[22]. Furthermore, several other studies reported
on using BCI-driven exoskeletons in patients with post-stroke
UL paresis [23]–[26]. These studies involved various types of
end-effector based haptic and kinesthetic feedback systems to
improve the clinical parameters of post-stroke motor recovery
e.g. a haptic knob [21], MIT Manus [27], and a custom-
made orthotic device [26], [28], [29]. While an increasing
number of studies have shown significant alterations in
neural activations and functional connectivity networks
related to the mental imagery and attempted movements
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TABLE I
PARTICIPANT DETAILS: THE ID, AGE, SEX, AFFECTED HEMISHPERE, MINI-MENTAL STATE EXAMINATION (MMSE) SCORE, TIME SINCE STROKE,

BASELINE ARAT SCORE, BASELINE GS SCORE AND AFFECTED BRAIN LOCATION ARE SHOWN FOR EACH PARTICIPANT. *P05 HAD TO LEAVE THE
INTERVENTION AFTER INITIAL 2 WEEKS OF THE INTERVENTION.

Participant Age Sex Affected MMSE Time since Baseline Baseline Most affected brain location
ID (years) Upper limb score stroke (months) ARAT GS (Kgs)

P01 56 M Left 30 28 6 11.7 Right middle cerebral artery
P02 69 F Right 28 24 29 13.7 Left frontal lobe

peri-ventricular and
basal gangalia region

P03 60 F Right 28.5 22 35 3 Left side of pons
P04 65 F Left 27 18 24 12 Thalamus
P05 58 M Right 28 17 26 13.3 Brainstem

Mean 61.6 21.8 28.3 24 10.7
(SD) (5.3) (4.5) (1.1) (10.9) (4.4)

of an impaired upper extremity (i.e. Motor attempt (MA))
with the use of neural signal driven-robotic devices [19],
[28], [30], [31], it still remains unclear whether and to what
extent the underlying neurophysiological mechanisms are
affected during a UL stroke rehabilitative intervention using
an MA-related EEG-driven hand-exoskeleton.

Nevertheless, there are three major limitations of the cur-
rently available functional connectivity-based studies imple-
mented for validation of the clinical efficacy of EEG-based
rehabilitative interventions. Firstly, the majority of these stud-
ies are focused on the reorganisation of brain networks during
the MI and execution task and thus, include the issue of
controlling for effort and performance when stroke patients
with varying motor deficits are under consideration [32], [33].
Secondly, the comparisons are drawn on the brain networks
between the pre- and post-intervention states, thus, failed to
observe the continuous change patterns in the brain networks
during the course of the rehabilitative intervention [19], [34].
Lastly and most importantly, none of the previous studies
attempted to examine brain network-based neurophysiological
changes for a multi-modal longitudinal rehabilitation inter-
vention involving the simultaneous implementation of MA,
BCI, visual and proprioceptive feedbacks, and robotic hand-
exoskeleton. Thus, there is a pressing need to examine the
brain functional networks that are correlated with the motor
recovery during a longitudinal multimodal post-stroke UL
rehabilitative intervention.

In this paper, we estimated the brain connectivity networks
using resting-state (RS) MEG signals acquired at five different
sessions in conjunction with a multi-modal rehabilitative ther-
apy provided with the simultaneous intervention of MA-based
BCI and robotic hand-exoskeleton over a period of upto 6
weeks. This study included five sessions of behavioural assess-
ment involving Action Research Arm Test (ARAT) and grip-
strength (GS) tests. Further, to assess the neural mechanisms
related to the stroke recovery obtained from BCI-driven robotic
hand-exoskeleton, the associations between the estimated brain
networks of the RS MEG data and the behavioural outcomes
are evaluated.

The remainder of this paper is organized as follows: Sec-
tion II provides the detailed description about the participants,
rehabilitative intervention, assessment of UL functional recov-

ery, and acquisition and connectivity analysis of RS MEG data.
Section III presents the outcomes of the UL functional re-
covery assessment, BCI performance in terms of classification
accuracies, and the RS MEG connectivity analysis. Section IV
discusses the outcomes, impact, and limitation of this study
along with possible future enhancements.

II. MATERIALS AND METHODS

A. Participants

Five stroke (ischemic) survivors (3 females, 2 males, age
61.6 ± 5.32 years (range 56−69 years)) who had persis-
tent coordination deficit of the UL were enrolled for an
uncontrolled clinical trial. The clinical trial is retrospectively
registered at the ISRCTN registry with the registration number
ISRCTN131390981. The mean time after stroke was 21.8
± 4.49 months (range 17−28 months). Table I provides
the demographic information of all the participants. Four
participants were first-time stroke victims. All participants
provided written informed consent for their participation and
this study was approved by the University Research Ethics
Committee of the Ulster University, Northern Ireland, UK.
All research procedures were carried out in accordance with
approved institutional guidelines and regulations. Inclusion
criteria were as follows: ischemic stroke resulting in UL
disability, time since stroke onset greater than 6 months, age
between 18−80 years (both inclusive), and no history of neu-
rological condition. Exclusion criteria were as follows: severe
deficits in cognition (Mini-Mental State Examination (MMSE)
score <21), claustrophobic, pregnant or breastfeeding, and
metal or active body implants. As one of the participants (i.e.
P05) had to leave the intervention after initial 2 weeks of the
intervention, the data of the participant is excluded from the
analysis.

B. Intervention

In this study, we have conducted a clinical trial comprising
of a rehabilitative intervention to four hemiparetic stroke
patients who underwent the same intervention for a period
of upto 6 weeks. The intervention consisted of two stages.

1http://www.isrctn.com/ISRCTN13139098
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Fig. 1. A detailed description of proposed EEG and MEG data acquisition paradigm. The upper section provides the description of the BMI paradigm. The
lower section presents the timings of BMI-based intervention, rehabilitation outcome assessment (i.e. ARAT and GS), and RS MEG data acquisition over the
total duration of the rehabilitative intervention (upto 6 weeks). ARAT, GS, and RS MEG were recorded at five different sessions (S01−S05).

The first stage was the PP stage of 30 min immediately
followed by a MP stage of almost 46 min including the BCI
calibration time of around 16 min. This PP and MP based
neurorehabilitation protocol was inspired by our earlier works
on BCI based UL rehabilitation producing effective motor
recovery [35].

The PP stage was of 30 min duration during which a
home-grown hand-exoskeleton device provided repetitive fin-
ger grasping and extension exercise to the affected hand in
assist-as-needed mode. The assist-as-needed strategy was im-
plemented by a force threshold based switching between active
non-assist and passive assistance mode. The applied finger-
tip force by the participants was converted into exoskeleton
motion using an impedance model when the force is above a
certain threshold level (active non-assist mode). The controller
goes into a passive assistance mode providing full assistance to
complete the on-going finger grasping/extension action when
the applied force is below the threshold. The difficulty level
of the PP was adjusted by updating the impedance parameters
of the controller, according to the average force generation
ability of the participant in a session.

In the MP stage the participants were given a hybrid-BCI

based multimodal neurofeedback contingent to the simulta-
neous activations in the EEG and electromyography (EMG)
signal measured by a spectral bandpower correlation between
the two [36]. Fig. 1 depicts the timing and structural details
of MP stage of the intervention. In one particular session of
the MP, there were five runs of approximately 7 min 3 s each
consisting of 40 trials. Each trial starts with a 3 s rest period,
followed by the presentation of a cue to perform either a left or
right-hand grasp attempt. Although the cue remains for 2 s, the
participants were asked to perform the task until 5 s after the
presentation of the cue. Among the 5 runs, first 2 runs were for
calibrating the BCI system and the subsequent 3 runs were for
giving online neurofeedback based on the EEG-EMG pattern
classifier trained during the calibration stage. For the online
neurofeedback runs, visual and proprioceptive feedbacks were
provided through the screen and hand-exoskeleton, respec-
tively, during the last 3 s of the task period. The exoskeleton
was worn in the impaired hand of the participant, whereas the
other hand was placed on a softball on top of the table. During
the task period of the trials, the participants were asked either
to perform the grasp movement with the hand-exoskeleon with
impared hand or with softball with unimpaired hand and the
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subsequent visual feedback was provided in both cases. It is
to be noted that the participants had not gone for any kind of
physiotherapy (PT) or occupational therapy (OT) during the
course of the intervention.

C. Rehabilitation Outcome Measures

Each participant underwent the ARAT [37] and GS assess-
ment at five different times during the complete duration of
the intervention. The ARAT is a standardized ordinal scale
for the assessment of 4 basic UL movements i.e. primary
grasp (score range: 0−18), grip (score range: 0−12), pinch
(score range: 0−18), and gross movements of flexion and
extension at the elbow and shoulder (score range: 0−9). GS (in
Kg) was assessed using a hydraulic hand dynamometer which
gives accurate and repeatable GS readings. The hydraulic hand
dynamometer provides five different positions to accommodate
variable hand sizes and features a range of 0 to 200lb (90kg).
While GS is used to directly describe strength of the UL, it
may also indicate the level of overall upper extremity strength.
Participants were seated with the upper extremity in 0◦ of
shoulder flexion and 90◦ of elbow flexion. At each session, 3
measurements were taken, and the average value was used in
the analyses.

D. MEG Acquisition

All the participants were screened for any metallic foreign
substance e.g. jewellery, coins, keys or any other ferromag-
netic material before entering the magnetically shielded room.
The standard fiducial landmarks (left and right pre-auricular
points and Nasion), five head position indicator (HPI) coils
(placed over scalp), and the additional reference points over
the scalp were digitised (Fastrak Polhemus system) to store
information about the participant’s head position, orientation,
and shape. In addition, ocular and cardiac activities were
recorded with two sets of bipolar electro-oculogram (EOG)
electrodes (horizontal-EOG and vertical-EOG) and one set
of electrocardiogram (EKG) electrodes, respectively. Before
starting the data acquisition, the complete procedure and the
experimental paradigm were described to the participants.

Ten minutes of resting-state MEG data (i.e. five minutes
each for eyes-open and eyes-closed) were recorded with a 306-
channel (102 magnetometers and 204 planar gradiometers)
Elekta NeuromagTM system (Elekta Oy, Helsinki, Finland)
located at the Northern Ireland Functional Brain Mapping
(NIFBM) Facility of the Intelligent Systems Research Centre,
Ulster University. During the eyes-open experiment partici-
pants were instructed to remain relaxed but alert with their
eyes open and fixated on a red cross presented at the centre of
the screen. The fixation point was displayed on a Panasonic
projector with a screen resolution of 1024 × 768 and refresh
rate of 60 Hz. All recordings were made with participants
seating in upright position in the scanner.

The MEG signals were filtered at a bandwidth of 0.1−330
Hz (online) and sampled at the rate of 1 kHz during the
acquisition itself. Continuous head positioning was switched
on after 20 s of raw data recording and kept running for rest
of the acquisition period.

E. MEG Analysis

Pre-processing and Independent Component Analysis:
During the rehabilitative intervention, a total of five sessions
of MEG datasets were recorded for each participant. As
several participants reported episodes of sleep during eyes-
closed paradigm, only RS eyes-open MEG data have been
included for further analysis. The recorded datasets were
visually examined for strong muscular movements, and then
processed for head movement correction wherein HPI signal-
based compensation was carried out using an inbuilt software
i.e. Maxfilter in the ELEKTA MEG system (Elekta Neuromag
Oy, version 2.2.15). The environmental interferences and con-
stant or periodic artefacts were corrected by applying the tem-
poral extension of signal-space separation (t-SSS) method with
default parameters and after exclusion of bad channels [38].
Further to this point, data processing was performed using the
FieldTrip toolbox [39] and Matlab 9.2 (64 bit version, R2017a,
Mathworks, Natick, USA).

The data were bandpass filtered over 1−145 Hz and notch
filtered at harmonics of 50 Hz (i.e. 50 and 100 Hz). Artefacts
related to squid jump, clip, and muscular movements were
identified and removed. The cleaned data were then decom-
posed into independent components (ICs) by means of the
FastICA algorithm [40] and ICs related to EOG and EKG were
identified using an in-house algorithm based on correlation and
coherence methods. Before running the IC decomposition, the
data were resampled to 500 Hz to reduce the computational
load. The remaining ICs were further categorized into brain
and non-brain ICs using their multiple characteristics (e.g.
fit with 1/f spectrum, flat spectrum quantification, and time
kurtosis) in time and frequency domains [41], [42]. The whole
process was repeated 20 times and the iteration with highest
number of brain ICs was selected for further analysis.

Source Localisation: The IC sensor maps were projected
onto the individual participants’ brain via a localization proce-
dure carried out by means of a linear inverse method. The T1-
weighted structural magnetic resonance images were obtained
from each participant’s health records after obtaining their
consent. Further, the structural MRI of the participants’ head
was co-registered to the MEG coordinates using the three
fiducial points and the scalp points acquired before the MEG
data acquisition. A single shell volume conduction model was
created based on the segmentation of the head tissues. The
structural data was further processed using FreeSurfer [43],
[44] and MNE suite [45] involving triagulation of the cortical
surfaces with dense meshes with ∼4,000 vertices in each
hemisphere. This allows for the definition of the source space,
that is, a regular 2D grid within the single shell head model,
sampled into 8126 voxels corresponding to a spacing of
approximately 8mm between adjacent source locations. A
geometrical registration of the MEG sensor array to a coordi-
nate system referred to the participants’ head was performed
by using functional landmarks (i.e. nasion and preauricular
points). The mc brain IC sensor maps were scaled to norm
one. An amplitude restoring factor αi, to be subsequently
used in the forward model of data formation, is defined such
as aci = αiãci, where ãci indicates the ith IC sensor-level
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Fig. 2. Schematic illustration of the signal analysis pipeline. From top left corner: Resting state MEG data were preprocessed and then, decomposed
to independent components (ICs) using FastICA. Further the IC classification was performed to obtain brain-related ICs. The topographies of brain ICs
and forward model created from the structural MRI were utilised for source localisation of the MEG data. Further, band-limited voxel-based functional
connectivity networks (FBNs) were generated and converted to ROI-based networks using AAL atlas. Next, cluster-based statistics was implemented to obtain
the recovery-correlated functional sub-networks.

map after scaling. Next, the scaled IC sensors maps were
projected onto the source space via a weighted minimum-norm
least squares (WMNLS) inverse method [46], [47]. Thus, the
brain IC source maps qi are obtained from the sensor maps as
follows:

qi =W−2LT (LW−2LT + λI)ãci (1)

where i runs over the subset of the mc brain ICs, W is a
diagonal weighting matrix of size [3k × 3k], the elements of
which are defined by Wkk = ||L||, L is the lead-field matrix
of size [n × 3k], I is the identity matrix of size [n × n],
and λ is a regularization parameter set on the basis of the
noise level [48]. In this analysis pipeline, the regularization
parameter was optimized separately for each IC. This is an
important difference with respect to WMNLS localization of
artifact-corrected recordings. After the localization step, mc

source maps in participants’ space were obtained. In addition,
an affine transformation has been applied to the source maps
for a coordinate transformation to an MNI stereotaxic space.
This allowed spatial comparison across participants.

Once the component topographies had been projected on to
the source space, the activity at each voxel and in each sample
in time was obtained as a linear combination of the component
time courses weighted by their related brain source map.

Functional Brain Network Estimation: For the estimation
of functional connectivity networks from the source localised
MEG data, we used an extension of the imaginary part
of coherence, namely the Multivariate Interaction Measure

(MIM) [49], [50], that maximizes the imaginary part of coher-
ence between a given reference voxel (seed, s) and any other
voxel (target, j). More specifically, the estimated MEG signal
at each brain voxel is a vector quantity that can be represented
through its components in a given reference system. MIM is
designed to maximize the imaginary part of coherence between
vector quantities. The mathematical details on MIM derivation
can be found in [49]. For the readers’ convenience, we briefly
review MIM definition in the following.

Given the vector Fourier transformed signals as a function of
frequency f at the seed and target voxels: Xs(f) and Xj(f),
respectively, and introducing the compact notation X(f) =
[XT

s (f)X
T
j (f)]

T , the cross-spectrum (C(f)) between the two
vectors Xs(f) and Xj(f), can be written in the block form:

C(f) = 〈X(f)X(f)∗〉 (2)

C(f) =

[
CR

ss(f) + JCI
ss(f) CR

sj(f) + JCI
sj(f)

CR
js(f) + JCI

js(f) CR
jj(f) + JCI

jj(f)

]
(3)

and MIM between s and j is thus defined as:

MIMsj = tr
(
(CR

ss)
−1CI

sj(C
R
jj)

−1(CI
sj)

T
)

(4)

In the above notation, tr indicates matrix trace, the T
subscript indicates matrix transpose, superscripts R and I
denote the real and the imaginary parts, the (·)−1 subscript
indicates matrix inverse, the ∗ subscript indicates matrix
conjugate transpose, and the capital J indicates the imaginary
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unit. A more detailed recapitulation of the method is also given
in Marzetti et al. (2013) [50].

In this work, cross-spectra were estimated with Fast Fourier
analysis after signal linear de-trending and Hanning window-
ing and were averaged using time epochs of 1.0 s duration
with 50% overlap leading to a frequency resolution of 1 Hz.
The number of averaged epochs is approximately 550 for
each dataset. The method, being based on the maximization
of imaginary coherence, largely overcomes the well-known
limitation to the study of functional connectivity by EEG/MEG
posed by signal mixing artifacts, i.e., any active source in the
brain contributes, in a weighted manner, to the signals mea-
sured at all sensors through volume spread (see Figure 2A in
[51]). This effect constitutes an especially severe confound for
estimates of brain interactions [52]–[55] and needs to be taken
into account by mapping MEG functional connectivity through
robust measures. Thus, voxel-wise whole brain networks in
various frequency bands i.e., delta (1−4 Hz), theta (4−8Hz),
alpha (8−15 Hz), beta-low (15−26 Hz), beta-high (26−35
Hz), gamma-low (34−49 Hz), gamma-mid (51−76 Hz) and
gamma-high (76−120 Hz) were obtained using MIM with the
reconstructed neuronal time-series. Furthermore, these voxel-
based networks were parcellated to ROI-based networks using
automated anatomical labelling (AAL) [56] atlas restricting
the further analysis to 78 cortical regions and 12 sub-cortical
brain regions. This process was implemented for all the MEG
sessions and each participant to generate respective FBNs.

F. Cluster-based Statistical Testing

For estimating the overall upper limb functional recovery,
we first estimated a composite recovery score by taking a
weighted mean of the GS measure and the total ARAT score
i.e. sum of the four components (primary grasp, grip, pinch,
and gross movements). Firstly, the respective weights for both
variables were calculated using following equations:

wATAS = 1− meanATAS

meanATAS +meanGS
(5)

wGS = 1− meanGS

meanATAS +meanGS
(6)

Secondly, the raw values of ATAS and GS were multiplied
with their respective weights and averaged to generate the
final composite score for each session. Next, given brain con-
nectivity data, we implemented cluster-based statistics which
is a two-step process, to estimate the sub-networks which
are (un)correlated with the composite recovery score. In the
first step, partial correlation coefficients between each edge
of the FBN and the composite recovery score were computed
using Spearman rank correlation coefficient since distribution
of the brain connectivity data is unknown and often does
not satisfy the normality condition. The second step of our
method performs cluster-based multiple comparison correction
for correlation coefficients computed in the previous step
for all network edges. The neighbouring connections with
strong correlation were first grouped together to form clusters
and their maximum sizes were calculated. This procedure is
repeated for randomly permuted assignments of composite

recovery score and finally significance levels of the identified
sub-networks are estimated from the null distribution of the
cluster sizes [57]. This method is independent of network
construction methods: either structural or functional network
can be used in association with any behavioural measures and
its efficacy has been proved by several previous studies [58],
[59].

It is worth noting that before implementation of the cluster-
based statistical analysis, the ROIs for two participant who had
right hemisphere lesions were flipped along the x-plane so that
all lesions are on the left hemisphere, thus, for all participants,
the left hemisphere is the ipsilesional hemisphere.

Fig. 3. The ARAT score recorded over the five sessions of the rehabilitative
intervention for the four participants.

Fig. 4. The grip-strength (in Kg) recorded over the five sessions of the
rehabilitative intervention for the four participants.

III. RESULTS

A. Assessment of Rehabilitation Outcome Measures

The total ARAT score and the GS (in kg) are measured
five times during the intervention at regular intervals and their
values over the five sessions and for all four participants are
presented in Fig. 3 and Fig. 4, respectively. A steady increase
in the ARAT score is observed for all the participants and the
improvement is in range of 21 for P04 to 26 for P01. In a
similar manner, GSs of all the participants are also improved
over the course of intervention, however, in contrast to ARAT
score, the incremental changes are highly variable. For P03,
there is a high percentage increase in the GS (approximately
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Fig. 5. The average ARAT and GS scores across four participants recorded
before and after the rehabilitative intervention i.e. pre-intervention (red color)
and post-intervention (green color). The error bar represents the standard error
mean. Two-tailed, paired student t-test is implemented between pre- and post-
intervention scores. n.s.- not significant.

600.0%) whereas the GS is comparatively less improved
(approximately 30.0%) for P01. The GS improvement is in
range of 1.7 Kg for P01 to 17 Kg for P03. Fig. 5 presents
the average ARAT and GS scores across the four partici-
pants recorded before and after the rehabilitative intervention
i.e. pre-intervention (red color) and post-intervention (green
color). The error bar represents the standard error mean.
Across all the participants, there is a mean change of 23.5
(100.0%) and 8.9 (88.0%) with respect to the mean score of
23.5 and 10.1 recorded at pre-intervention session for ARAT
and GS, respectively. The student t-test (paired, two-tailed)
is implemented to estimate the statistical significance for the
change in pre- and post-intervention values of both parameters.
The test provided statistically significant difference in the
ARAT score only (p = 0.00028). Nevertheless, both measures
showed improvements greater than the minimal clinically im-
portant difference (MCID). The MCID values for grip strength
were reported as 5.0 and 6.2 kg and for ARAT as 12 and
17 points for the impaired dominant and nondominant upper-
limb, respectively [60]. The total ARAT score and the GS
(in kg) are measured five times during the intervention at
regular intervals and their values over the five sessions and
for all four participants are presented in Fig. 3 and Fig. 4,
respectively. A steady increase in the ARAT score is observed
for all the participants and the improvement is in range of 21
for P04 to 26 for P01. In a similar manner, GSs of all the
participants are also improved over the course of intervention,
however, in contrast to ARAT score, the incremental changes
are highly variable. For P03, there is a high percentage
increase in the GS (approximately 600.0%) whereas the GS
is comparatively less improvised (approximately 30.0%) for
P01. The GS improvement is in range of 1.7 Kg for P01 to
17 Kg for P03. Fig. 5 presents the average ARAT and GS
scores across the four participants recorded before and after
the rehabilitative intervention i.e. pre-intervention (red color)
and post-intervention (green color). The error bar represents

the standard error mean. Across all the participants, there is a
mean change of 23.5 (100.0%) and 8.9 (88.0%) with respect to
the mean score of 23.5 and 10.1 recorded at pre-intervention
session for ARAT and GS, respectively. The student t-test
(paired, two-tailed) is implemented to estimate the statistical
significance for the change in pre- and post-intervention values
of both parameters. The test provided statistically significant
difference in the ARAT score only (p = 0.00028). Never-
theless, both measures showed improvements greater than the
minimal clinically important difference (MCID). The MCID
values for grip strength were reported as 5.0 and 6.2 kg and
for ARAT as 12 and 17 points for the impaired dominant and
nondominant upper-limb, respectively [60].

TABLE II
THE MEAN NODE STRENGTHS OF ALL THE SIGNIFICANTLY CORRELATED

AAL ATLAS BASED ROIS AND THEIR MNI COORDINATES.

AAL ROI MNI Coordinates Mean Node Strength
X Y Z (x 10−3)

PreCG-L -39 -6 51 4.26
PreCG-R 41 -8 52 3.51
SFGdor-L -18 35 42 1.61
SFGdor-R 22 31 44 -4.46
ORBsup-L -17 47 -13 -1.09
ORBsup-R 18 48 -14 -3.29

MFG-L -33 33 35 2.73
MFG-R 38 33 34 -1.13

ORBmid-L -31 50 -10 -1.48
ORBmid-R 33 53 -11 -0.52
IFGoperc-L -48 13 19 1.35
IFGoperc-R 50 15 21 -1.02
IFGtriang-L -46 30 14 1.65
IFGtriang-R 50 30 14 -2.75

ROL-R 53 -6 15 -2.09
SMA-L -5 5 61 4.15
SMA-R 9 0 62 5.28
OLF-L -8 15 -11 -1.44

SFGmed-L -5 49 31 -0.5
SFGmed-R 9 51 30 -4.35

ORBsupmed-R 8 52 -7 -1.39
INS-R 39 6 2 -1.42
ACG-L -4 35 14 0.96
ACG-R 8 37 16 -0.23
DCG-R 8 -9 40 -0.29
PCG-R 7 -42 22 -0.31
PHG-R 25 -15 -20 -1.5
LING-R 16 -67 -4 -1.27
SOG-L -17 -84 28 0.28
SOG-R 24 -81 31 -1.56
MOG-L -32 -81 16 -0.34
MOG-R 37 -80 19 -4.52
FFG-L -31 -40 -20 -0.26
FFG-R 34 -39 -20 -2.81

PoCG-L -42 -23 49 5.15
PoCG-R 41 -25 53 5.5
SPG-L -23 -60 59 0.49
SPG-R 26 -59 62 -2.82
IPL-L -43 -46 47 1.45
IPL-R 46 -46 50 -1.51

SMG-R 58 -32 34 -0.43
ANG-L -44 -61 36 -0.52
ANG-R 46 -60 39 -0.19
STG-R 58 -22 7 -4.25
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Participant P01 Participant P02

Participant P03 Participant P04

Fig. 6. Functional connectivity clusters correlated positively (Red) and negatively (Blue) with the UL functional recovery index for all four participants in
beta-low (15−26 Hz) frequency band. Left = Ipsilesional hemisphere. The nomenclature of the AAL atlas brain regions and their list of abbreviations are
provided in Table S1 of the supplementary document.

B. MEG Connectivity Analysis

The cluster-based statistical analysis provided significant
functional connectivity sub-networks for alpha (8−15 Hz),
beta-low (15−26 Hz), beta-high (26−35 Hz) frequency bands;
however, these sub-networks are stable (i.e. presence of any
positively/negatively correlated cluster over all the four partic-
ipants) only for beta-low (15−26 Hz) band. Thus, the further
results are presented for beta-low band, unless stated other-
wise. Fig. 6 presents the positively and negatively correlated
(with respect to UL functional recovery index) functional
connectivity clusters for all four participants on a template
brain. The black dots represent the ROIs based on the AAL
atlas. For all the participants, the intra-hemispherical FC
values in motor cortical regions involving precentral gyrus
(i.e. primary motor area (M1)), postcentral gyrus (i.e. primary
somatosensory cortex (S1)) and supplementary motor area
(SMA) within both ipsilesional and contralesional hemispheres
increase with UL functional recovery. However, this pattern
exhibits inter-subject variability i.e. the positively correlated

FCNs are denser in case of P01, P02, and P04 as compared
to P03 (see Fig. 6). The cluster-based analysis also showed
hemispherical laterlisation wherein the ipsilesional hemisphere
possesses larger number of positively correlated clusters while
contralesional hemisphere exhibits a contrasting characteris-
tics. Moreover, this lateralization is more prominent within
the anterior-posterior (i.e. Fronto-parietal) network involving
superior frontal gyrus (SFG), inferior frontal gyrus (IFG),
superior prietal gyrus (SPG), superior occipital gyrus (SOG),
and medial occipital gyrus (MOG). The inter-hemispherical
FC analysis showed a stable pattern of positively correlated
connections within the motor cortical regions whereas the
inter-hemispheric negative cluster is variable across the par-
ticipant. For each participant, change in the values of FCs is
estimated as follows:

MIM i
diff =MIM i

post −MIM i
pre (7)

where MIM i
pre and MIM i

post are FC values for ith ROI of
pre- and post-intervention session. Furthermore, node strength
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Average MIMdiff

MFG.L

PreCG.L

PoCG.L

SMA.L
SMA.R

PreCG.R

PoCG.R

SFGmed.R
ORBsup.R

SFGdor.R IFGtriang.R

STG.R

MOG.R

Fig. 7. The average node strengths (over the participants) for all significantly correlated (both positive and negative) ROIs estimated from the difference
between the brain functional connectivity values of the pre-intervention and the post-intervention MEG scans. The nomenclature of the AAL atlas brain regions
and their list of abbreviations are provided in Table S1 of the supplementary document. L: Left; R: Right; Ipsilesional hemisphere = Left

of all the significantly correlated ROIs were estimated by
adding their associated FC values (one-to-all). Fig. 7 presents
the average node strengths (across four participants) of all
the significantly correlated ROIs. Thus, the group analysis
showed increase in node strengths in the motor cortex region
and decrease in the node strengths in the frontal, parietal and
occipital areas of the contralesional hemisphere.

Table II provides the MNI coordinates and the average (over
the four participants) node strengths of all the significantly
correlated AAL Atlas based ROIs. The ROIs in the motor
cortex area (i.e. precentral gyrus, postcentral gyrus and SMA)
contribute largely to the increase in the information flow
within the sub-network associated with the UL functional
recovery. Likewise, frontal gyrus (SFGdor-L, MFG-L) and
Inferior parietal lobule in the affected hemisphere also exhibit
a similar pattern. On the contrary, brain regions in the frontal
(SFGdor-R, ORBsup.R, IFGtriang-R, SFGmed-R), temporal
(STG-R), and parieto-occipital (MOG-R, SPG-R) areas of
the unaffected hemisphere provided major contribution to the
reduction in FC strengths.

IV. DISCUSSION AND CONCLUSION

Assessment of functional recovery of upper extremities
after stroke is highly crucial for restoring ADLs of the
patients. Moreover, this assessment can not only validate
the effectiveness of the rehabilitative intervention but may
contribute to the development of better intervention designs.
This study presented a functional connectivity-based neuro-
physiological assessment of a multi-modal longitudinal (upto
6 weeks long) rehabilitative intervention involving the si-
multaneous implementation of MA, BCI, visual as well as
proprioceptive feedback, and robotic hand-exoskeleton. The
whole-brain functional connectivity networks using RS MEG
data and two different UL functional recovery measures (i.e.

ARAT and GS) were acquired for five different sessions
over the complete intervention period. Furthermore, a cluster-
based statistical analysis was implemented to discover the
positively and negatively correlated sub-networks wherein
Spearman rank correlation coefficients were estimated between
the band-limited whole-brain RS MEG FC networks and the
UL functional recovery index. This analysis yielded several
major outcomes.

The behavioural assessment of the functional recovery
showed gradual improvement in the ARAT and GS scores
for all the four participants. A statistically significant increase
in the overall ARAT score is obtained with the intervention,
while improvements are well over the MCID for both mea-
sures. Although, our previous work based on MI-BCI showed
inconsistent improvement (over the participants) in both ARAT
and GS measures [35], a more stable improvement in this
current study may be explained by the major advancement
of involving a combination of several rehabilitative modalities
together.

The MEG connectivity analysis and the cluster-based sta-
tistical testing have given several distinct patterns of brain
functional connectome. The motor network involving precen-
tral gyrus (i.e. M1), postcentral gyrus (i.e. S1), and SMA
brain regions became stronger with UL functional recovery.
Both M1 and S1 have been directly associated with motor
learning and post-stroke functional recovery whereas SMA
is known to play a crucial role in gait control and motor
coordination [19], [61], [62]. A strengthened association of
these three systems namely, the M1, S1, and the SMA in
a functional network could be beneficial for motor recovery
because it might constitute an adapted functional network
for processing. Moreover, this pattern emerged in both ip-
silesional and contralesional hemispheres of the brain, thus,
depicting a bilateral hemispheric effect of the neuroreha-
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bilitation intervention. The association of ipsilesional and/or
contralesional hemispheres with UL functional recovery is
still unclear with inconsistent findings reported elsewhere [34],
[63], [64]. However, the bimanual implementation of MP and
PP during the rehabilitative intervention may result in the
bilateral hemispheric effect in this study. It is worth noting
that this pattern exhibits inter-subject variability wherein even
with significantly higher increase in GS values, participant P03
showed fewer positively correlated connections in the FCN
cluster. This inter-subject variability may be a result of differ-
ences in terms of legion location and size, post-stroke lifestyle,
initial upper-limb functional capacity (Baseline ARAT and GS
values) and psychological factors such as motivation. Future
studies involving larger sample size may consider exploring
various factors related to inter-subject variability in relation
to UL functional recovery among stroke patients. If possible,
these studies can be aimed to establish a reliable criterion
to distinguish responders from non-responders of FC based
changes.

Interestingly, we have observed a lateralized reorganisation
of a fronto-parietal network wherein the ipsilesional and the
contralesional hemispheres showed enhanced and reduced con-
nectivity strengths, respectively. Fronto-parietal connectivity
is known to be involved in top-down attentional control and
visuospatial processing [65]. Recently, its association with
mobility has been established through a randomized controlled
trial involving aerobic exercise [66]. However, the hemi-
spheric lateralization showed specificity of the intervention
effect on the FP network. As the intervention involves MA
and robotics-guided physical movements, its effect may not
only involve physical recovery but also cognitive functional
recovery. However, further studies must be undertaken for in-
depth assessment of the phenomena.

There are several limitations to be considered while consid-
ering the outcomes of this study. First, as the study involves
the implementation of several rehabilitative modalities simul-
taneously, it is difficult to associate various outcomes with
different modalities individually. Second, this study involved
neurophysiological assessment of the intervention with stroke
participants only and lacks the involvement of healthy indi-
viduals as a control group. Nevertheless, as the findings are
based on the correlations estimated among the data of multiple
sessions recorded over the intervention period, their scientific
relevance is still sustained. Third, these findings must be
verified with large sample size and larger intervention duration
for further establishment of these neurophysiological patterns
as biomarkers for the BMI-driven post-stroke UL functional
recovery. Fourth, the trends within FCNs in association with
subgroups of ARAT i.e. grip, grasp, pinch, and gross move-
ment can be explored for further analysis. However, as the
primary aim of this study is to capture the FCNs associated
with overall upper limb functional recovery, we believe that
considering the total ARAT score is more intuitive way of
achieving this target. Moreover, to see the patterns for each
subgroup, we have to treat the other subgroups as covariates
which in turn require a bigger sample size. As one of the
main constraints of our study is small sample size (discussed
in previous point) i.e. five sessions only, analysing subgroup

level association of upper limb functional recovery with FCNs
may not be feasible with this dataset.
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