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REDUCIBLE SUBGROUPS OF EXCEPTIONAL ALGEBRAIC GROUPS

ALASTAIR J. LITTERICK AND ADAM R. THOMAS

ABSTRACT. Let GG be a simple algebraic group over an algebraically closed field. A closed subgroup
H of G is called G-completely reducible (G-cr) if, whenever H is contained in a parabolic subgroup P
of G, it is contained in a Levi factor of P. In this paper we complete the classification of connected G-
cr subgroups when G has exceptional type, by determining the Lo-irreducible connected reductive
subgroups for each simple classical factor Lo of a Levi subgroup of G. As an illustration, we
determine all reducible, G-cr semisimple subgroups when G has type F4 and various properties
thereof. This work complements results of Lawther, Liebeck, Seitz and Testerman, and is vital in
classifying non-G-cr reductive subgroups, a project being undertaken by the authors elsewhere.

1. INTRODUCTION

The subgroup structure of linear algebraic groups is a theory with applications throughout alge-
bra and beyond. When working over R or C, close connections with compact Lie groups give direct
applications in geometry and physics. Over local fields and global fields, important applications are
found in number theory, for instance in the Langlands program. Over finite fields and their alge-
braic closures, the subgroup structure has direct applications to the study of finite simple groups,
for instance the subgroup structure of exceptional simple algebraic groups has been heavily used
in understanding maximal subgroups of the corresponding finite groups of Lie type [I8], @] [8 [16].

Reductive subgroups of reductive groups are an important special instance of this problem. On
the one hand, a result of Borel and Tits [5] states that for a reductive group G, a connected
subgroup of G is either itself reductive, or contained ‘canonically’ in a proper parabolic subgroup of
G. Thus the problem reduces to understanding parabolic subgroups and reductive subgroups, for
instance a maximal connected subgroup of G is either parabolic or reductive. On the other hand,
understanding reductive subgroups is equivalent to understanding affine homogeneous spaces for
G, since for a closed subgroup H < G, the coset space G/H is an affine variety precisely when H°
is reductive [23].

Let G be a connected reductive algebraic group over an algebraically closed field. Following [25],
a closed subgroup H of G is said to be G-completely reducible (G-cr) if whenever H is contained
in a parabolic subgroup P of G, it is contained in a Levi factor of P, and non-G-cr otherwise.
Similarly, H is called G-irreducible or just irreducible if H is not contained in any proper parabolic
subgroup of GG, and reducible otherwise. The G-cr subgroups of G are precisely the L-irreducible
subgroups of L, as L ranges over the Levi subgroups of G [4, Corollary 3.5], allowing L = G to
account for G-irreducible subgroups.

In the present work we classify the Lg-irreducible connected subgroups as Ly varies over those
simple algebraic groups of classical type which occur as factors of Levi subgroups of a simple
algebraic group G of exceptional type. Together with work of the second author and many others

1, 13 14l 16, 28|, 27, 29, B30, BI], the results here effectively complete the classification of G-cr
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connected subgroups for simple G of exceptional type. In particular, the cited papers of the second
author determine all G-irreducible connected subgroups for G of exceptional type, and so it remains
for us to describe L-irreducible connected subgroups for L involving factors of classical type.

The information on completely reducible subgroups derived here is also vital in the complemen-
tary problem of understanding non-G-cr subgroups. A fruitful approach to this problem, taken for
instance in [28] [19, 20], is as follows. For each parabolic subgroup P of G, fix a Levi factor L of
P and take the (known) list of L-irreducible subgroups of L. For each such subgroup X, consider
the set of complements to the unipotent radical R, (P) in the semidirect product R,(P)X. As P,
L and X vary, these complements give rise to all non-G-cr subgroups of GG, modulo the subtle but
tractable problem of understanding the difference between ‘G-conjugacy’ and ‘P-conjugacy’.

By a ‘Levi subgroup of G’ we mean a Levi factor of a parabolic subgroup of G. To state our
main theorem, recall that for each G-cr subgroup X < G, there exists a subgroup L of G which is
minimal among Levi subgroups of GG containing X, and the conjugacy class of L in G is uniquely
determined by the class of X (cf. Proposition [G.1]).

Theorem 1.1. Let G be a simple algebraic group of exceptional type over an algebraically closed
field, let X be a G-completely reducible connected subgroup of G, and let L be minimal among Levi
subgroups of G containing X. Then the image of X under projection to each classical simple factor
of L is given by an embedding in Section [5.3

Remark 1.2. Irreducible subgroups of a simple algebraic group form a poset under inclusion, and
in Section we give this poset structure for each simple factor. The subgroups are given up
to conjugacy in the factor, except for type Dy where for space reasons we list subgroups up to
conjugacy in the full automorphism group of the factor. A Levi subgroup of type D7 occurs for
exceptional G only when G = FEjg, in which case G induces the full automorphism group of this
subgroup. In Section we describe how the conjugacy classes in the other factors fuse under
outer automorphisms.

Note that when L has a simple factor of exceptional type (including the case L = G), the image
of X in this exceptional group is irreducible, and therefore appears in existing work of the second
author [29], B30, BI]. Since we give the poset of irreducible subgroups in each classical simple factor of
each Levi subgroup of G, one can therefore construct the entire poset of G-cr connected subgroups
from Theorem [[T] and these references (see also Lemma [3.3). In particular, if the characteristic
of the underlying field is zero or sufficiently large then every connected reductive subgroup of G is
G-cr (cf. [4, Theorem 3.48]), and thus all reductive subgroups of G are known in this case.

We illustrate the above in Section[G] by constructing the poset of reducible G-completely reducible
subgroups when G has type F;. We also give a series of lemmas regarding G-completely reducible
subgroups, allowing us to derive much information on the subgroups which occur. The following
summarises this information.

Theorem 1.3. Let G = Fy(K), where K is algebraically closed of arbitrary characteristic, and let
X be a connected G-completely reducible subgroup of G. If X is neither G-irreducible nor a torus,
then the semisimple part of X is conjugate to precisely one of the subgroups listed in Table[38, each
of which is G-completely reducible.

For each semisimple subgroup X appearing in Table [38, we give the action of X on the adjoint
module L(G), the connected centraliser C(X)°, as well as whether X is separable in G and whether
(G, X) is a reductive pair (see Section [6.3 for more details and definitions).

In addition to its illustrative purpose, Theorem [[3] also corrects some omissions in [28], Corollary
5]; more details are given in Remark on page
2



2. NOTATION

We now present notation used throughout. Since this paper complements [31] we remain consis-
tent with the notation there, which we recall for the convenience of the reader.

Throughout, algebraic groups are affine and defined over an algebraically closed field K. We
define p to be the characteristic of K when this is positive, and set p = oo when K has characteristic
zero, so that expressions of the form ‘p > n’ and ‘p # n’ include the case that K has characteristic
zero. Subgroups are taken to be Zariski-closed, and representations are taken to be rational. Let
G be a simple algebraic group. We fix a maximal torus 7" of G and corresponding set of roots
®. Let T be a choice of positive roots, with corresponding simple roots IT = {ay,...,q;} and
fundamental dominant weights {1, ..., \;}. We use Bourbaki numbering [6l p. 250], and sometimes
use aias...a; to denote a weight a1 A1 + asAo + - -+ + a;\;. When no ambiguity is possible, we
write V + W for the direct sum of G-modules V and W, and V* denotes the dual module of
V. We denote by Vi(A) (or just A) the irreducible G-module of high weight A. Similarly, the
Weyl module and tilting module of high weight A will respectively be denoted W (A) and T'(X).
Given dominant weights pi1, po, . . ., in, we define T'(uy; p2; . . . ; fin) to be the tilting module with
the same composition factors as W(u1) + W(u2) + -+ + W(p), when this exists and is uniquely
determined. For example, when G is of type A; we use the notation 7'(6;2) for p > 5 only. In this
case T'(6;2) = 6+2 when p > 7 and T(6;2) = T'(6) when p = 5. We use L(G) to denote the adjoint
module for G. Let J = {aj,,®j,,...,a; } CII and define ®; = & NZJ. Then the standard Levi
subgroup corresponding to J is Lj, j,.;, = (T,Us : o € ®;). The notation A4,, denotes a subgroup
of G of type A, which is generated by long root subgroups of GG, and if ® admits multiple root
lengths then A, denotes a subgroup of type A, which is generated by short root subgroups. This
helps to distinguish between multiple subgroups of type A, which arise together. No ambiguity
arises when considering simple subgroups of other types, and so we do not use such notation in
these cases.

Now let G = G ... G, where each Gj is simple, and suppose K has prime characteristic p. Let
F be the standard Frobenius endomorphism of G acting on root groups U, = {us(c) | ¢ € K} by
F(uq(c)) = uq(c?), and let p : G — GL(V) be a representation. Then for a non-negative integer
r, V'l denotes the ‘twisted’ module afforded by the representation pl”! def poF".

We let (V4,...,V,,) denote the G-module V] ® - - - ® V,,,, where V; is a G;-module for each ¢, and

we often use 0 to denote the trivial module for G. Let My, ..., M} be G-modules and nq,...,n; be
positive integers. Then M /... /M, denotes a G-module having the same composition factors
as M{" + --- + M;"*. Furthermore, V. = M; | --- | M}, denotes a G-module with socle series

V=V12V,2D...2 Vi = {0}, with V;/V;41 = M; for i = 1,...,k. The following notation is
used in Section [Bl Suppose p; is a dominant weight for each G;. Then we define

@(N1§~'§Nn) d:CfO ’ ((VG1(N1)707"'70)+"'+(07---707VGn(Nn))) ’O

In other words, ©(u1;...;pu,) has a unique minimal submodule, which is trivial, and a unique
maximal submodule, with trivial quotient, and the quotient of the maximal submodule by the
minimal submodule is a direct sum of irreducible modules, one for each simple factor of G.

2.1. Diagonal subgroups. Many subgroups encountered here are diagonal, in the following sense.

If H is a simply-connected simple group, then a diagonal subgroup of H" = H x --- x H is defined

as the image of a morphism H — H", h — (¢1(h),...,¢n(h)), where each ¢; is a surjective

endomorphism of H. A general semisimple group Y is a central quotient of a direct product

H" x -+ x HI's, for simply-connected simple groups H;, and we define a diagonal subgroup to be
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the image of a morphism

HlX"'XHSM)H{”X"'XH?S—»K

where each 1;: H; — H;" gives a diagonal subgroup in the previous sense.

Thus to specify such a diagonal subgroup, we must specify a surjective homomorphism from
H; to each simple factor of H;", for each i. Since H; is isomorphic to each factor of H,", this is
equivalent to specifying a surjective endomorphism of H; for each factor. By [12] Section 1.15], such
an endomorphism has the form af F" for an inner automorphism «, a graph endomorphism 6 and a
power F" of a standard Frobenius endomorphism F'. Since we only distinguish diagonal subgroups
up to conjugacy, we can always take o to be trivial. Moreover a graph endomorphism induces an
endomorphism on the weight lattice, and unless H; is of type D,, (n > 4), the graph endomorphism
is determined up to inner automorphism by the image of the weight A1; this includes the exceptional
graph morphisms of By and F; when p = 2 and of Gy when p = 3, which respectively send A; to
2)\2, 2/\4 and 3)\2.

Our notation for diagonal subgroups is therefore as follows. When the simply-connected cover of
a semisimple group Y is H" for a single simply-connected group H, we denote a diagonal subgroup
X of Y by

X <Y via (,u[lrl], . ,,ugk]),

where the i-th endomorphism is 6; F", with ; a (possibly trivial) graph endomorphism sending A,
to p;, and F a standard Frobenius morphism. In Section [l the group Y is always clear and so we
drop ‘— Y’ from the notation there. If Y7Y5...Y; is a commuting product of groups of the form
Y above, then we concatenate the tuples (u[{ﬂ, .. ,ug’“}) to specify the diagonal subgroup, i.e. we
write

XiXo . Xo o ViV Yy via (),

Finally, if two or more of the Y; consist of factors of the same type, we must be careful to distinguish
where each factor of X; is sent. We do this with subscripts a, b, etc. For example, if we write

X =A% AL =Y via (1,107, 1, 11%)

then the subscript ‘a’ in the first two coordinates means that the first factor A; of X is a diagonal
subgroup of the first two factors A% of Y, via (1, 1] ), and the subscript ‘b’ indicates that the second
factor of X is a diagonal subgroup of the last two factors A% of Y, via (1, 1.

3. PRELIMINARIES

We now give a series of results used in the proof of Theorem [Tl In Section[B.Ilwe give a criterion
for identifying irreducible subgroups of simple algebraic groups of classical type. In Section
we enumerate the maximal connected subgroups of simple algebraic groups of types Ag and D7,
which are used in deriving the poset structure of subgroups in Section Bl The maximal connected
subgroups of other classical groups can be found in [31, Lemma 3.3].

3.1. Identifying Lo-irreducible subgroups. The following is central in our proof of Theorem
[[1] as it provides a method of identifying Lg-irreducible subgroups when L has classical type. The
result is essentially well-known, but is usually stated in the literature as a one-way implication, see
for example [I7, Lemma 2.2]. We therefore provide a proof for completeness.

Proposition 3.1. Let G be a simple algebraic group of classical type over the algebraically closed
field K, let V= Vg(A1), and let X be a subgroup of G. Then X is G-irreducible if and only if one
of the following holds:
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(i) G has type A,, and X acts irreducibly on V;
(ii) G has type By, C, or Dy and V| X = Vi L ... L Vi with the V; all non-degenerate,
irreducible and pairwise inequivalent as X -modules;
(iii) K has characteristic 2, G has type D,, and X fizes a non-singular vector v € V, such that
X is Gy-irreducible in the point stabiliser G, and does not lie in a subgroup D, _1 of G,.

Remark 3.2. In part (iii), the subgroup G, is simple of type B,,_1, and X lies in a subgroup D,,_;
of G,, if and only if the non-degenerate bilinear form on the G,-module (v)* / (v) is the polarisation
of an X-invariant quadratic form.

Proof. Tt is well-known that for G = SL(V), Sp(V) or SO(V), the parabolic subgroups of G
are respectively the stabilisers of flags of subspaces, flags of totally isotropic subspaces, and flags
of totally singular subspaces [22, Proposition 12.13]. Thus if (i) holds then X is G-irreducible.
Similarly, if (ii) holds then every X-invariant subspace of V' is a direct sum of some of the factors
V;i. Every such subspace being non-degenerate, it follows that X is G-irreducible.

Next, for a contradiction suppose that (iii) holds and X lies in a proper parabolic subgroup of
G. Then X stabilises a non-zero totally singular subspace W of V. Note that W N (v) = {0}
since v is non-singular, and so W N (v)* maps isomorphically onto its image in (v)* / (v). This
image is a totally isotropic subspace of (v)™ / (v), and since X is G,-irreducible we conclude that
W N (v)* = {0}. Since (v)" has codimension 1 in V, this implies that W has dimension at most 1,
hence exactly 1 as W is non-zero. So we may write W = (w) where (v,w) # 0. Now (W + (v))*
is an X-submodule contained with codimension 1 in <’U>J'. Suppose that for some ¢,d € K we have
(av+bw, cv+dw) = 0 for all a,b € K. Asw is singular, this expands to ac(v,v)+ (ad+be)(v,w) = 0.
Since (v, w) # 0, evaluating this at @ = 0 and any b # 0 shows that ¢ = 0. So the equation simplifies
to ad(v,w) = 0 for all a € K, showing that d = 0 also. Thus (W + (v))* N (W + (v)) = {0}, so
(W + (v))* is non-degenerate. This contradicts the assumption that X does not lie in a subgroup
of type D,,_1 in G, and we conclude that X is G-irreducible.

Conversely, suppose X is G-irreducible and that neither (i) nor (iii) hold. If K has characteristic
2, G = D,, and X fixes a non-singular vector v on V', then since (iii) does not hold, X lies either in a
subgroup D,,_1 of GG, or in a parabolic subgroup of G,; each of these contradicts the hypothesis that
X is G-irreducible. So X does not fix any non-singular vector of V. Thus the bilinear form is non-
degenerate on each irreducible X-submodule, so each irreducible X-submodule has an orthogonal
complement, and V' | X is completely reducible. Let U be an irreducible X-submodule of V/,
and suppose that W C U™’ is an irreducible X-submodule with U = W. Since U and W are
irreducible, their X-invariant non-degenerate bilinear or quadratic forms are uniquely determined
up to a constant, hence there exists an isometric X-module isomorphism ¢ : U — W. For a scalar
A € K, consider the X-invariant subspace {u + A¢(u) : v € U}. Since U and W are orthogonal,
we have (u+ Ad(u),u’ + Ap(u')) = (1+ A?)(u,u’). In particular, taking A to be a square root of —1
in K, we obtain a totally isotropic submodule. This contradiction shows that U does not contain
any submodule isomorphic to U, and thus (ii) holds. O

Lemma 3.3. Let L be a Levi subgroup of G. Then a subgroup X of L is L-irreducible if and only
if the image of X under projection to each simple factor of L/Z(L) is irreducible.

Proof. This follows because the parabolic subgroups of L are precisely the products of Z(L) with
parabolic subgroups of the simple factors of L, cf. [4 Lemmas 2.11, 2.12]. O

3.2. Maximal subgroups of classical groups of low rank. Proposition Bl lets us identify

irreducible subgroups of classical groups. Since we are also interested in the poset of G-cr subgroups,

it will be of use for us to know which subgroups arising in Proposition B.I] are maximal among
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connected subgroups. This allows us to work recursively through chains of maximal connected
subgroups. For many groups of low rank, this information has been calculated in [31, Lemma 3.3];
we additionally require the maximal subgroups of simple algebraic groups of types Ag and D7. We
begin with a lemma on fusion of conjugacy classes under outer automorphisms.

Lemma 3.4. Let G be a group with a normal subgroup S of finite index, and let X be a subgroup
of S. Then the conjugacy class XC splits into |G : S| classes of subgroups of S if and only if
Ng(X) < S. In particular, if |G : S| is prime then S is transitive on XY if and only if X is
normalised by an element of G\ S, otherwise X splits into |G : S| classes of subgroups of S.

Proof. Consider the transitive action of G on the set X% /S of S-conjugacy classes of G-conjugates
of X. A point stabiliser is conjugate to SNg(X), and therefore | X¢/S| = |G : SNg(X)|, which
equals |G : S| if and only if Ng(X) < S. O

Our classification is based on [I5], which separates maximal subgroups of classical groups into
classes, of which we require the following. Write G = C1(V') to denote that G is one of the groups
SL(V), SO(V) or Sp(V).

Class C;: Subspace stabilisers. Here H € C; if H = Stabg(W) where W is either a non-
degenerate subspace of V' (V is given the zero form if G = SL(V)), or (G,p) = (SO(V),2) and W
is a non-singular subspace of dimension 1.

Class C4: Tensor product subgroups. Suppose that V = V; ® V5 with dimV; > 1 for each 1.

Then H € C4 if H = CI(V;) o Cl(V3), acting on V' by (g1,92)(v1 ® v9) e (g1v1) ® (gav2). The
subgroups occurring here have one of the following forms:

SL ® SL < SL, Sp® SO < Sp (p # 2),
Sp® Sp < SO, SO® S0 < SO (p #2).

The following is immediate from [I5, Theorem 1] (cf. also [31, Theorem 3.2]). Here a restricted
irreducible module is a module whose highest weight, when expressed as a sum of fundamental
dominant weights, has coefficients strictly less than p.

Lemma 3.5. Let G = Cl(V) be a classical simple algebraic group. Suppose that M is a reductive,
mazimal connected subgroup of G. Then one of the following holds:

(i) M belongs to Cy;
(ii) M belongs to Cy;
(iii) M is a simple algebraic group and V | M s irreducible and restricted.

Proposition 3.6. Let G be a classical simple algebraic group of type Ag or D7. Then Table[d gives
all G-conjugacy classes of reductive, maximal connected subgroups of G.

Proof. For G of type Ag, the class C; contains no G-irreducible subgroups, and the class Cy is
empty since the natural module is 7-dimensional. Thus a maximal subgroup M falls into case (iii)
of Lemma B3l The only simple algebraic groups with a 7-dimensional irreducible module are those
of type Ag, and of type Bz and G2 when p # 2. The module is then unique up to taking a Frobenius
twist, and so G contains a unique subgroup of each of these types up to conjugacy. Moreover a
subgroup of type Bs contains a subgroup of type Ga, and it follows that every subgroup of G of
type Go is contained in a subgroup of type Bs.

For G of type D, the G-irreducible subgroups in class C; are of type Bg, A1 Bs, A?Ds, ByBy,
AsDy and Bg, respectively corresponding to orthogonal decompositions of the 14-dimensional mod-
ule into spaces of dimension ¢ and 14 — i for i € {1,3,4,5,6,7} when p # 2. When p = 2, the
subgroups A1Bs5, BaB4 and Bg, each fix a non-singular vector, and are therefore contained in a
subgroup Bs.
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TABLE 1. Maximal connected subgroups of certain classical groups.

G Maximal subgroup M Vg(\) | M Comments
Aﬁ Bg (p 75 2) 100
D7 Bﬁ T(/\l,O)
A1Bs (p #2) (2,0) + (0, A1)
A2Ds (1,1,0) + (0,0, A1)
BuBy (p #2) (10,0) + (0, A1)
A3Dy (010,0) + (0, A1)
B2 (p#2) (100, 0) + (0, 100)
Cs (p #3) (2 classes) 010 classes permuted by graph aut.
Bs (p #2,5) (2 classes) 20 classes permuted by graph aut.
Ga (p > 5) (2 classes) 01 classes permuted by graph aut.

The prime decomposition 14 = 2 x 7, and the fact that there does not exist a non-degenerate
orthogonal module of dimension 2 or symplectic module of dimension 7, shows that the class Cy4
is empty. It remains to consider the subgroups in case (iii) of Lemma By [21] the restricted,
irreducible, 14-dimensional modules for a simple algebraic group are as follows: Vp,(20) (p # 2,5),
Vi, (01) (p # 3), Vay(101) (p = 2), VB,(010) (p = 2), Vi, (010) (p # 3), and Vi, (001) (p # 2).
Using [26, Lemma 79], it is straightforward to calculate that if p # 2, then all but the last of these
modules supports a non-degenerate quadratic form, and therefore gives rise to a subgroup of G
(the final module is symplectic). If p = 2 then inspecting [24], Table 1, pp. 282-283], in particular
numbers [V7, IVg and S7 there, shows that the relevant modules here still support a non-degenerate
quadratic form. Note that, since Vp, (010) is a direct summand of A?(V3,(100)), the representation
factors through the morphism B3 — ('3, so the image in Dy is a subgroup of type C3, and is thus
conjugate to the subgroup given by V¢, (010). When p = 2, a subgroup C35 contains a subgroup As
acting via V4,(101) and a subgroup Go acting via Vi, (01), and so these latter subgroups are not
maximal in G. Thus when p = 2 the only possible maximal subgroups as in part (iii) of Lemma
are of type C5. When p # 2, the possible subgroups (of type By, G2 and C3) do not contain
irreducible copies of one another, and so each gives rise to a maximal subgroup of G.

There is a unique subgroup class of each of these three types in GO14(K), and each has trivial
group of algebraic outer automorphisms. Thus if X is such a subgroup, then either Nqo,,(x) (X) <
SO14(K) or X centralises a non-trivial element of GO14(K) \ SO14(K). The latter does not occur,
since the centraliser of such an element is the stabiliser of an orthogonal decomposition of the
natural module, and X does not preserve such a decomposition. Thus by Lemma B4 X gives rise
to two classes of subgroups of SO14(K), hence to two classes of subgroups of G. O

4. PROOF OF THE MAIN THEOREM

In this section we describe the method used for proving Theorem [Tl i.e. for determining the
poset of Lg-irreducible connected subgroups of all classical simple factors Ly of a Levi subgroup
of an exceptional algebraic group G. It is very similar to the strategy described in [31) Section 4],
and employs a system of ID numbers for the different conjugacy classes of Lg-irreducible connected
subgroups. The method is identical for each factor Ly and so we describe the general method, and
give explicit details only for Ly of type As.

Fix the factor Lg. Firstly, we find all of the reductive, maximal connected subgroups of Ly,
given by Lemma and [31, Lemma 3.3]; these subgroups are automatically Lg-irreducible. Let
7



M be the first reductive, maximal connected subgroup listed. We now find the Lg-irreducible
maximal connected subgroups M; of M. To do this, we again find the reductive, maximal connected
subgroups of M, using [31, Lemma 3.3] for classical factors of M and [2, Corollary 12] for factors
of type Gs. Using Proposition Bl and Lemma B3] we check whether these maximal connected
subgroups are Lg-irreducible. We now repeat this process for each Lg-irreducible maximal connected
subgroup of M. Continuing in this manner yields all Lg-irreducible subgroups of Ly. However, we
must be careful to avoid repeats. Thus at each step, we check to see if each subgroup X arising has
been previously found. If not, we assign the subgroup a new unique ID number, and if it has been
found before, we use its existing ID number. To check for repeats we consider the action of X on
VLo(A1). This determines the Lo-class of X, unless perhaps if Ly has type D,,, when the image of
X is determined up to Aut(D,,)-conjugacy and we use Lemma [3:4] to decide how these split in L.
At this stage, we now know all of the connected overgroups of each Lg-irreducible subgroup, and
thus understand the poset structure of the irreducible connected subgroups of L.

The information obtained in this way is given in TablesPHI4l The notation used there is explained
in Section 2] and we explain how to read the tables at beginning of Section Bl In particular, when
an ID number is given in italics, it means the corresponding subgroup has appeared elsewhere in
the table.

To save space, we deviate from the above slightly when considering diagonal subgroups. Suppose
that X is an Lg-irreducible connected subgroup of the form A™B for some n > 2 with A and B
of different types. Then X has maximal diagonal subgroups of the form A" !B, and these have
subgroups of the form A" 2B, and so on. We list all such diagonal subgroups of X at once. This
significantly reduces the size of the tables, without missing any Lg-irreducible subgroups. The cost
is that some additional combinatorial work is required to recover the poset of overgroups of certain
diagonal subgroups. For readability, in some cases we move diagonal subgroups to a supplementary
table in Section [(.4]

There is a subtlety concerning the position of a subgroup in the poset of irreducible subgroups.
For instance, consider Ly = SOg, of type Dy. When p # 2 this contains a maximal subgroup
SO5S03. When p = 2 such a subgroup still exists and is SOg-irreducible, but is now contained
in SO7. Thus we use the same ID number n for both groups but write na when p # 2 and nb
when p = 2. This allows us to discuss both cases together. In the tables, if we first arrive at the
subgroup labelled nb, we postpone listing its subgroups until reaching the subgroup labelled na.
This generalises to any situation where ‘the same’ subgroup X occurs in different places in the
poset depending on p. In particular, whenever we use this notation the subgroups na and nb have
identical weights (with multiplicities) on Vi, (A1).

4.1. The irreducible subgroups of Ly = As. The reductive, maximal connected subgroups of
Ag are By and A? (p # 2), respectively acting on V = Vya,()\1) via 01 and (1,1). These are Lo-
irreducible by Proposition Bl The module (1,1) yields an irreducible A? subgroup of A3. When
p = 2 we will shortly find this subgroup inside By, and this explains why we write 2a for the ID
number of A? (p # 2) in Table Bl Next, we consider the reductive, maximal connected subgroups
of By = A3(#1). These are A2, A? (p = 2) and A; (p > 5) acting as (1,0) + (0,1), (1,1) and
3 on V, respectively. The former A% subgroup is not Lg-irreducible by Proposition B.1], since it
acts reducibly on V. The second A? subgroup is As-irreducible and given ID number 2b because
of the explanation above. The subgroup A; (p > 5) is also As-irreducible and given ID number
3. We now need to consider the As-irreducible connected subgroups of Az(#2b) = A2 (p = 2)
and As(#3) = A;. As discussed in Section [l for presentation reasons we postpone studying the
irreducible subgroups of A3(#2b) and instead consider the subgroups of As(#2a) and As(#2b)
together later. Since A; contains no proper reductive, maximal connected subgroups, there is
8



nothing more to list so we turn immediately to As(#2) = A? (this means the class of subgroups
acting via (1,1) with no restriction on the characteristic). The reductive, maximal connected
subgroups are diagonal A; subgroups. These are embedded via (1,115} (rs = 0). These then act
on V via 1" @ 155]. Therefore, they are As-irreducible if and only if r # s. Furthermore, there is
an element of Na,(A?) = (A4%).2 swapping the two A; factors. Therefore, up to As-conjugacy we
have the Lo-irreducible subgroups A; < A? via (1,1I") (r # 0). These we assign the ID number 4.

5. TABLES OF SUBGROUPS

We now present the embeddings referred to in Theorem [[LT] and begin by describing how to
read the tables. There is one table for each type of simple classical factor Ly of a Levi subgroup
of an exceptional algebraic group, except for Lg of type A; where no table is required. Since we
are considering only connected subgroups, there in no harm in replacing Ly by an isogenous group
(finite central extension or quotient), which we do without further comment.

5.1. Identification numbers. In order to discuss the poset of subgroups occurring, we assign
each class of subgroups an ID number. Each subgroup listed denotes either a unique Lg-conjugacy
class of subgroups, or an infinite collection of classes parametrised by some Frobenius twists. In
Table [[4lsubgroups are instead given up to Aut(D7)-conjugacy for space reasons. We write Lo(#n)
(or just n when Ly is clear) to refer to the class of Ly-irreducible subgroups with ID number a. We
set Lo(#0) to be Ly itself.

If Lo(#n) refers to a collection of classes depending on Frobenius twists with exponents 71, ..., 7%
and we wish to refer to a proper subset of these classes, we write Lo(#n{”’“"’"k}) to specify the
powers in the field twists.

Let us give an illustration. Consider the line As(#8) in Table [ giving diagonal subgroups
Ay — Ay Ay via (10 16)) (p # 2,75 = 0;7 # s). Then As(#8{79}) refers to the conjugacy classes
with s = 0 and the notation As(#811:0}) refers to the single conjugacy class A; < A A; via (10U, 1).

We sometimes use a shorthand for n{"7%}. The notation n{?} simply means that each r; is
equal to 0. The notation n{%} means rj =1 and r; = 0 for all 7 # j.

5.2. Reading the tables. Each table is divided into sections, separated by horizontal lines. We
first list the maximal Lg-irreducible connected subgroups, and in each subsequent section we list
the Lo-irreducible maximal connected subgroups contained in a (previously listed) subgroup, say
X, as well as all Lg-irreducible diagonal subgroups of X. The section heading gives the type and
ID number of X, as well as any restrictions on the characteristic p required for X to exist and be
Lg-irreducible. There is one more piece of information in the heading, which is the “M; =" for
i=0,1,... (where M is simply written as M). This is intended to make it easier for the reader
to follow the tables, and is explained below.

Other than section headings, the information given in a row depends on whether the subgroup
in question is a diagonal subgroup of its immediate overgroup X. If Y is a diagonal subgroup
of X, then the second column contains a statement “Y via ...” giving the embedding of Y into
X, as well as any restrictions on the characteristic or Frobenius twists in the embedding. If Y
is not diagonal then the second column gives the isomorphism type of Y and restrictions on the
characteristic, while the third gives the restriction Vi, | Y, where Vi, = V,(A1). For a diagonal
subgroup Y of X, it is straightforward to work out Vi, | Y from Vz, | X. Restrictions on p are
inherited by subgroups, so for example, if X exists and is Lg-irreducible only for p # 2, then we
write X (p # 2) in the heading and any subgroup Y of X implicitly inherits this restriction on p.
However, when we consider the subgroups of Y we explicitly repeat any inherited restriction on p.
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In Tables and [[4] for readability we have moved large collections of diagonal subgroups to
supplementary tables in Section [5.4l This is marked by an entry “See Table 2”7 where z is the
relevant table number.

We now explain how to determine the poset of Lg-irreducible connected subgroups using Tables
PHI4l Each table starts with the maximal Lg-irreducible connected subgroups, with their ID number
listed in the first column. A pair of horizontal lines indicates the end of this list. Next we write “In
M = H{Hy... (Lo(#n1))” where n; is the identification number for the first reductive, maximal
connected subgroup of type HyHs ..., as well as any restrictions on the characteristic p. We then list
the Lg-irreducible maximal connected subgroups of M, as well as any diagonal connected subgroups
of M (not just the maximal ones). Recall that we will not explicitly consider the proper subgroups
of any diagonal connected subgroups, as discussed in Section @ A horizontal line then indicates the
end of this list. The next row then gives a heading “In M; = X1 X5 ... (Lo(#n2))”, where X7 X5 ...
is the first Lg-irreducible maximal connected subgroup of M. The subscript in “M;” indicates that
we are now listing subgroups of a maximal connected subgroup of a maximal connected subgroup.
We then repeat the process, listing the Lg-irreducible maximal connected subgroups of M; and
all diagonal subgroups of M;. The next heading could be “In My = Y1Y5... (Lo(#n3))”, where
Y1Y, ... is a maximal connected subgroup of M; or it could be “In M; = Z1Z5... (Lo(#ns))”,
where Z1Z5 ... is the second maximal connected subgroup of M. This will depend on whether M;
has any proper Lg-irreducible connected subgroups. Once all Lg-irreducible connected subgroups
of M have been listed in this way, a pair of horizontal lines indicate the end of the subgroups
contained in the first reductive, maximal connected subgroup of G. The next heading will be “In
M = K1Ks... (Lyp(#n4))” and we repeat the process again for the second reductive, maximal
connected subgroup K1Ks... of Ly. We iterate this process until we have considered all of the
Lg-irreducible subgroups contained in all reductive, maximal connected subgroups.

To avoid redundancy, whenever some subgroup X occurs as a maximal connected subgroup of
two or more non-conjugate connected subgroups of Ly, in each occurrence of X after the first we
give the ID number in italics, and do not re-list the proper subgroups of X, nor do we repeat the
restriction Vi, | X.

There is another important scenario where we do not immediately list the subgroups contained
in X. In this case the ID number will be nb and the subgroup X is defined for all p & {k1, ..., k:},
but is only maximal in the subgroup currently being considered when the characteristic is some
particular prime [ ¢ {ky,...,k:}. At some point later in the table, X will be defined for all
p & {ki,...,ke} U{l} and given ID number na, with a single exception when X = D7(#218). In
this latter case, X is a maximal subgroup of D7(#183) when p = 2 (where it gets the label 218b)
but X is defined later in the table for all p when it occurs as a maximal subgroup of D7(#176) and
simply given ID number 218. When the subgroup with ID number na (or 218 in the exception)
occurs, we then consider the subgroups of X for all p & {k1,...,k;} together. There are instances
where the subgroup X occurs again in the table, in which case we simply write n regardless of any
characteristic restrictions.

5.3. Tables of embeddings for Theorem 1.7l

Table 2: Irreducible subgroups of Ly = As.

ID Subgroup X Vi, X
1 A (p#2) 2
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Table 3: Irreducible subgroups of Ly = As.

ID Subgroup X Vi, | X
1 By 01

2a_ At (p#£2) (11
In M = By (As(#1))

2b A2 (p=2) (1,1)

3 Ai(p=5) 3

In M = A} (As(#2))

4 Ay via (1,1 (r #£0)

Table 4: Irreducible subgroups of Ly = Ajy.

ID Subgroup X Vi, |1 X
I B (p#2) 10

In M = By (p#2) (As(#1))
2 Ai(p>5) 4

Table 5: Irreducible subgroups of Ly = As.

ID Subgroup X Vi, | X

1 Cs 100

2 A4, (1,10)

3a A (p#£2) 010

4 Ay (p#£2) 20

In M = C3 (A5(#1))

5 AA (p#2) (1,2)

3b As (p=2) 010

6 Go(p=2) 10

T A (p=T) 5

In My = A1A1 (p #2) (As(#5))
8 Ay via (17 1)) (rs = 0)
In M = A Ay (As(#2))

5 AA (p#2)
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Table 6: Irreducible subgroups of Ly = Ag.

ID Subgroup X Vi, | X

I B (p£2) 100

In M = Bs (p#2) (Ag(#1))
2 Gy 10

In My =Gy (p #2) (As(#2))
3 Ai(p>7) 6

Table 7: Irreducible subgroups of Ly = A7.

ID Subgroup X Vi, | X

1 C4 /\1
2a D4 (p 75 2) /\1
3 A4 (1,100)

In M =Cy (A7(#1))

da A3 (p#£2) (1,1,1)

5 Ai(p>11) 7

2b Dy (p=2) A1

In M; = A3 (p # 2) (A7 (#4))

6 A A via (1o, 107, 1,) (r #0)
7 Ay via (1,110 (0 <r < s)
In M = Dy (A7(#2))

8 Bs 001

9a A1By (p#2) (1,01)

10 Ay (p#3) 11

In M, = By (A7(#8))

9b A1By (p=2) (1,01)

In My = Ay By (A7(#9))

4b A3 (p=2) (1,1,1)

In M = A1 As (A7(#3))

Table 8: Irreducible subgroups of Ly = Cs.

ID Subgroup X Vi, |l X
A (1,0)+(0,1)
A (p=2) (L1

3a Ay (p>5) 3

In M = A7 (Ca(#1))

4 Ay via (1,10) (r £ 0)
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In M = A3 (p=2) (Ca(#2))
3b A via (1,10)
5 Ay via (1,10) (r > 1)

Table 9: Irreducible subgroups of Ly = Cs.

1D Subgroup X Vi, |l X

1 ACy (1,0) + (0, 10)

2 A (p#2) (2,1)

3 As (p=2) 010

4 Gy (p=2) 10

5 A (p=7) 5

In M = A;Cy (C5(#1))

6 A A2 (p=2) (1,0,0)+(0,1,1)
7 A1 Ay (p=5) (1,0)+(0,3)

8 A3 (1,0,0) + (0,1,0) + (0,0, 1)
In My = 4,47 (p = 2) (C3(#6))

9 A Ay via (10715 1) (rs = 0)

10 A Ay via (14,15, 11[:]) (r#0)
11 Ay via (107,16 118) (rs = 0y 5 < )
In My = A1 Ay (p >5) (C3(#7))

12 Al via (1[T]’ 1[5]) (TS = O)

In M1 = A? (CS(#S))

13 Ay Ay via (1,157 1,) (r £ 0)
14 Ay via (1,118 (0 <r <)
In M = A1 Ay (p #2) (C3(#2))

15 Ay via (1 160y (rs = 0;1r # )
1219 Ay via (1,1) (p > 5)

In M = Gs (p=2) (Cs(#4))

9o A Ay

Table 10: Irreducible subgroups of Ly = Bs.

1D Subgroup X Vi, |l X

la  A?A; (p#2) (1,1,0) +(0,0,2)

2 As 01040 (p # 2) or 010 (p = 2)
3 Gy 10

4 ByA; (p=2) (10,0)+ (0,2)

In M = A3A; (B3(#1))

5 A1 Ay via (1a, 187, 1,) (if p = 2 then r # 0)

6 A Ay via (117,15, 15 (rs = 0)

7 Ay via (17101 1) (0t = 0; 7 < s;if r = s then p # 2 and r < 1)
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In M = A; (B3(#2))
5100 A% (p#2)

In M = Ga (Ba(#3))
cle} A Ay

8 As (p=3) 11
9 A (p>T7) 6

In My = Ay (p = 3) (B3(#8))

7ok 4y

In M = Bgfil (p=2) (B3(#4))

lb A%Al (17170)+ (07072)

10 A3 (2,0,0) +(0,2,0) + (0,0,2)

In My = A} (p = 2) (Bs(#10))
11 A1A; via (1., 157, 1,) (r £ 0)
12 Ay via (1,10 16 (0 < 7 < s)

Table 11: Irreducible subgroups of Ly = Dj,.

1D Subgroup X Vi, |l X
A3 (1,1,0,0) + (0,0,1,1)
B3 T(A1;0)
Bs 001
4 Bs 001
5a A1Bs (p#2) (2,0)+ (0,10)
6a A1Bs (p#2) (1,01)
7a A1Bs (p#2) (1,01)
8a As (p#3) 11
In M = A% (Da(#1))
9 Ay A? via (1,, a ,1b, )
10 A1 A2 via (1,4, 15,1 a ,1e)
11 Ay A2 via (1a,1b,1c,1[”)
12 A Ay via (1071519 1) (rst = 0)
13 Ay Ay via (14,147, 1l[f], 1) (st = 0;r < s+t if r = 0 then t # 0)
14 A1 A; via (1a,1[81 1l [t]) (st =0;7 < s+t;if r =0 then ¢t #0)
15 A1 Ay via (1,4, 11[7817 1b ,1[T]) (st =0;7 < s+t;if r =0 then t #0)
16 Ay via (1,100 100 1) (if » = 0 then s < ¢; if s = 0 then 7 < t; if t = 0 then 7 < s)
In M = Bz (D4(#2))
9t A (p#2)
17 G T(10;0)
5b A1Bs (p=2) O(2;10)
In My = G2 (D4(#17))
1219 A4
8b Ay (p=3) 1140
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18 Ay 6+0

In M = By (D4(#3))

1119 A24, (p #£2)

17 Go

6b Ai1B; (p=2) (1,01)

In M = By (D4(#4))

1019 A3A (p#2)

17 G

7b A1By (p=2) (1,01)

In M = Ay By (Dy(#5))

9toy A A2

19 A1A; (p=5) (2,0)+(0,4)
20 At (p=2) ©(22;2)

In My = A1 Ay (p > 5) (Da(#19))
21 Ay via (107 10]) (rs = 0)

In M = A} (p =2) (Da(#20))
22 A1 Ay via (1,100 1,) (r #0)
23 Ay via (1,100 1)) (0 < r < )

In M = A; By (D4(#6))

1110y A, A3

24 AiAr (p>5) (1,3)
25 A3 (p=2) (1,1,1)

26 Ay via (17 161) (rs = 0)

In M; = A3 (p =2) (D4(#25))
27 AiA via (1,100, 1) (r #0)
28 Ay via (1,100 16) (0 < 7 < )

In M = Ay By (D4y(#7))

1010y A, 43

29 A1A; (p>5) (1,3)
30 A3 (p=2) (1,1,1)

In My = A1 Ay (p > 5) (Da(#29))
31 Ay via (107 101) (rs = 0)

In M1 = A‘;’ (p = 2) (D4(#30))
32 A Ay via (1o, 180 1,) (r £ 0)
33 Ay via (1,100 160 (0 < r < )

In M = Ay (D4y(#8))
2110 Ay (p>5)
1610} Ay (p=3)
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Table 12: Irreducible subgroups of Ly = Ds.

1D Subgroup X Vi, |l X

1 A2 A3 (1,1,0) + (0,0,010)

2a B3 (p#2)  (10,0) + (0,10)

3a A1B3 (p#2) (2,0)+ (0,100)

4 By T(A\1;0)

5 By (p#2) 02

6 By (p#2) 02

In M = A}A3 (Ds(#1))

7 A2B, (1,1,0) + (0,0,7(10;0))

8a A2A% (p#£2) (1,1,0,0) + (0,0,2,0) + (0,0,0,2)
9 Ay Az via (1,17,100)

In M1 A232 (D5(#7))

10 A2A; (p>5) (1,1,0)+ (0,0,4) +0
8b  A3AT (p=2) (1,1,0,0)+(0,0,0(2;2))
11 A1 By via (14,187,10) (r £ 0)

In My = A2A; (p > 5) (D5(#10))

12 A1 Ay via (1a, L[f], 1) (r #0)

13 AiAy via (17,15, 187) (rs = 0)
14 Ay via (107,161 1) (rt = 0;r < s)

In M, = A2 A2 (D5(#8))

15 A1 A2 via (la,l ,1p,1.) (if p =2 then r # 0)

16 Ay Ay Ay via (171,15 10) (rs = 0)

17 A24; via (1,, 1,1 c,1[’“]) (r #0)

18 Ay Ay via (1715 1 1) (rt =0;r <s;if r =s then p# 2 and r <t)

19 AL A via 1L],1b, [s] 1t)(rs—0 s <)

20 A Ay via (15,1071, 1[51) (if p = 2 then r # 0; 5 # 0)

21 A Aq via L[l], 1l[>t]v L[l], [u]) (rs =tu=0;r <t;if r =t then s <u)

22 Ay via (17 101 11 10 (rt = 0; r» < 53t < u; if 7 = s then p # 2 and 7 < t)

A/_\,_\,_\

In M = B3 (Ds(#2))

7 A2B,

23 AlBQ (p > 5) (4,
24 AiBs (p=2) @(
25 By via (10,100) (r
26 By via (10,02[7) (p =

)+

(0,10)
2:10)
#0)
—9)

0
2;

In My = A1 By (p > 5) (D5(#23))
10 A1A%
27 A? (4,0) +(0,4)

In My = A% (p > 5) (Ds(#27))
28 Ay via (1,107) (r £ 0)

In My = A?Bs (p = 2) (D5(#24))
8 A2A2
29 Al 0(2;2;2;2)
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30 A1 By via (14,187,10) (r £ 0)

In My = At (p = 2) (D5(#29))

31 A1 A2 via (1a,187 14, 10) (r #0)

32 Ay Ay via (15,1518 1) 0<r < s)
33 Ay Ay via (1, 1,[;“], 1y, 1l[f]) (rs £ 0;r < s)
34 Ay via (1,10 101) (0 < r < s < 1)
In M = A, Bs (D5(#3))

90t A Ay

8 ATAT (p#2)

35 A,Gy (2,0) 4 (0,10) (p # 2) or ©(2;10) (p = 2)
24 AiB; (p=2)

In My = A;Gy (Ds(#35))

16197 A A A

36 A1A; (p=3) (2,0)+ (0,11)

37 A1Ar (p>7) (2,0)+ (0,6)

In M, = A Ay (p = 3) (Ds(#36))

18103 A A

In Ma = A1 Ay (p > 7) (D5(#37))

38 Ay via (107 10]) (rs = 0)

In M = By (D5(#4))

90t A Az (p #2)

7 A2B, (p #2)

39 A2 (p#2)  (2,2)40

40 A (p>11) 840

2b B3 (p=2)  ©(10;10)

3b A1Bs (p=2) ©O(2;100)

In My = A} (p # 2) (Ds(#39))

41 Ay via (1,100) (r #£0)

In M = B; (p #2) (D5(#5))

9110} A?

3817 A (p>7)

In M = B; (p #2) (Ds5(#6))

2110} A?

3817 Ay (p>7)

In the following table, subgroups of Dg which are not centralised by a graph automorphism
can be distinguished by their actions on the two half-spin modules Vp,(A5) and Vp,(Ag).
consistency, in the following table we fix how the subgroups A1C5 = Dg(#6), A1C3 = Dg(#7) and

A2 A1 By = Dg(#12) act on these modules.

We take A1C5 = Dg(#6) to act on Vp, (As) with factors (W (3),0)/(1, W (010)) and therefore act
on Vp,(Ae) with factors (W (2),100)/(0, W (001)). Taking an image under a graph automorphism, it
follows that A;C5 = Dg(#7) acts on Vp, (A5) with factors (W (2),100)/(0, W (001)) and on Vp,(Xs)

with factors (W (3),0)/(1, W (010)).
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We also take A3 A1 By = Dg(#12) to act on Vp,(A5) with factors (1,0, W (2),0)/(1,0,0, W (10))/
(0,1,1,01) and on Vp,(Xe) with factors (1,0,1,01)/(0,1,W(2),0)/(0,1,0,W(10)). This also deter-
mines the action of the subgroups A?A;A; = Dg(#73) (p > 5) and A2A; Ay = Dg(#74) (p > 5).

Table 13: Irreducible subgroups of Ly = Ds.

1D Subgroup X Vie 4 X
A2D, (1,1,0) + (0,0, A1)
2 A2 (010, 0) + (0,010)
3a AiBy (p#2)  (2,0)+(0,\)
4a ByBs (p#2)  (10,0) + (0,100)
5 B; T'(A1;0)
6 A1Cs (1,100)
7 A0 (1,100)
In M = A3Dy (Dg(#1))
8 A§ (1,1,0,0,0,0) + (0,0,1,1,0,0) + (0,0,0,0,1,1)
9 A2Bj3 (1,1,0) + (0,0, T(100;0))
10 A2Bj3 (1,1,0) + (0,0,001)
11a A2A1By (p#2) (1,1,0,0)+(0,0,2,0) + (0,0,0,10)
12a A2A1By (p#2) (1,1,0,0) +(0,0,1,01)
13a A3 Ay (p #3) (1,1,0) + (0,0,11)

14 Ay Dy via (1,107 1))
In My = AS (Dg(#8))

See Table 13
In My = A1Bs (Dg(#9))
1510 AtA, (p#2)

39 A2G, (1,1,0) + (0,0, 7(10;0))
11b  AJABy (p=2) (1,1,0,0)+(0,0,0(2;10))
40 Ay Bs via (1,17,100) (r # 0)

In Mg = A%Gg (DG(#?)Q))

178 434,

13b A2A; (p=3)  (1,1,0)+(0,0,11) +0
41 A1Gy via (1,17,10) (r #0)

In M1 = A%B3 (DG(#lo))

161 AfA (p#2)

39 A2G,
12b A3A1By (p=2) (1,1,0,0)+(0,0,1,01)
42 Ay Bs via (171051 100) (rs = 0)

In My = A%Ale (Dg(#11))
15103 A%Al

43 A2A1 41 (p>5) (1,1,0,0) + (0,0,2,0) + (0,0,0,4)
44 A243 (p=2)  (1,1,0,0,0) + (0,0,0(2;2;2))

45 Ay A1 By via (14,17, 1,,10) (if p = 2 then r # 0)

46 A1 A By via (1571, 15 10) (rs = 0)
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47 A1 By via (17,1051 118, 10) (rt = 0;7 < s; if p = 2 then 7 < s)
In My = ATA1 Ay (p > 5) (De(#43))
See Table [IT]
In My = A2A3 (p = 2) (Dg(#44))
See Table I8
In M1 = A%AlBg (DG(#12))
1610y AtA,
73 A2A A (p>5) (1,1,0,0)+(0,0,1,3)
74 A243 (p=2)  (1,1,0,0,0)+ (0,0,1,1,1)
75 Ay Ay By via (15715 1b, 10) (rs = 0)
76 Ay Ay By via (117, 1b, 10) (rs = 0)
77 Ay Ay By via (14,11 ,1}75],10) (rs = 0)
78 Ay By via (171051 118 10) (rst = 0)
See Table 19
In M, = AJA? (p = 2) (De(#74))
See Table 200
In M1 = A%AQ (Dﬁ(#l?)))
5110 AfAr (p=5)
240000 AJA (p=3)
113 A1 Ay via (1,107,10) (if p = 3 then r # 0)

In M = A3 (Ds(#2))

114 By A (T(10;0),0) + (0,010)

115a  A3A3 (p#2)  (2,0,0) +(0,2,0) + (0,0,010)
116 Az via (100,100[") (r # 0)

117 Az via (100,001[7) (r £ 0)

In M1 = ngzlg (DG(#114))

118 A1 Az (p >5) (4,0) + (0,010) + 0

115b  A2A43 (p=2)  (©(2;2),0)+ (0,0,010)
4519 ByAY (p#2)

In Mg = A1A3 (p Z 5) (DG(#118))

4810F A, A2

451 AiBy (p#2)

119 Al (p#2) (2,0,0,0) + (0,2,0,0) + (0,0,2,0) + (0,0,0,2)
120 Ay Az via (1,107,100) (r # 0)

In My = A} (p # 2) (Ds(#119))

121 A1A2 via (14,157 15,1.) (r #0)

122 ALA; via (1,157,185 1,) 0 <r < s)

123 Ay Ay via (1,157 1,18 (rs £ 0)

124 Ay via (1,10 1810y (0 < r < s < 1)

In M = A1By (Ds(#3))

14{0}

Al Dy
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15 Ay (p#£2)

11 AL A3B, (p #2)

125 A1 A2 (p#2) (2,0,0) +(0,2,2)
126 A1Ay (p>11)  (2,0)+(0,8)

127 A2B3 (p=2) ©(2;2;100)

128 A1B? (p=2)  ©(2;10;10)

In My = A A? (p # 2) (Do(#125))

120 AyA; via (1018 1,) (s = 0)

130 Ay Ay via (14,1711 (rs = 0;0 # 9)
5510} A1Aq (p >5) via (14, 1p, 1p)

131 Ay via (11,16,119) (rs = 05 < 1)

In My = A1A; (p > 11) (Dg(#126))
132 Ay via (101, 16]) (rs = 0)

In My = AiB3 (p = 2) (Ds(#127))

115 A2 A
133 A2G, 0(2;2;10)
134 A3 By 0(2;2;2;10)

135 A1 B3 via (1,17,100) (r # 0)

In My = A{Gy (p = 2) (Ds(#133))
5910F  A2A4, 4,
136 A1G3 via (1,17,100) (r # 0)

In My = A$Bs (p = 2) (Ds(#134))

44 AAT

137 A3 0(2;2;2;2;2)

138 A1A1 By via (14,1571, 100) (r #0)
139 A1 By via (1,101,155 100) (0 < r < s)

In M3 = A} (p=2) (Ds(#137))

See Table 21
In My = Ay B3 (p =2) (Do(#128))
11 A1 A2By
134 A3B,

146 A1 Bs via (1,10, 100) (r #£0)
147 A1 Bs via (1,10,020)

In M = BQBg (Dg(#4))

9 2B,

148 A1Bs (p>5)  (4,0)+ (0,100)
2

127 AiBs (p=2)
114 By A3

1 By A{A: (p#2)

149 ByGo (10,0) + (0,10) (p # 2) or ©(10;10) (p = 2)

128 AB3 (p=2)

In My = A1Bs (p > 5) (Do (#148))
118 A Ay
43 A A2 A,
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150 A,Gs (4,0) + (0, 10)
In My = A1G2 (p > 5) (Ds(#150))
491 A A

151 AA (p>T7)  (4,0)+(0,6)
In M5 = A1 Ay (p>T7) (Dg(#151))

152 Ay via (107016]) (rs = 0)

In My = B2G2 (p = 2) (Des(#149))

39 A2G,

135 A2Gy (p=2)

4618 ByA A

In M = Bs (De(#5))

141%  ADy (p#2)

127 ABs (p#2)

114 BaAs (p #2)

153 A; (p>11) 1040

3b A1By (p=2) O(2; A1)

4b ByB3 (p=2) 0(10, 100)

In M = A,C; (Dg(#6))

7619 ALA By

154 AAA (p#£2) (1,2,1)

155  A1As (p=2)  (1,010)

156  AiGs (p=2)  (1,10)

157 A (p2T) (1,5)

In My = A1 A1 Ay (p # 2) (Ds(#154))
158 A Ay via (1,[1T], 15 ) (rs=0;r #s)
9112 A A via (1,4, 14, 1b)

159 A Ay via (L[l], 1y, 1k ) (rs=0;r#s)
12982 A1 A, via (1, 1b, o)

160 A1 A; via (14, 1[81) (rs =0;r#s)
9012} A A via (1a, lb, 1p)

161 Ay via (171051 11y (rst = 0; 7, s, ¢ distinct)
In My = A1Gy (p = 2) (Dg(#156))
1020953 A1 A Ay

In My = A1A1 (p>7) (De(#157))

162 Ay via (1106 (rs = 0,7 # 5)
15282 A via (1,1)

In M = A1C5 (Dg(#7))

718 A A By

154 A1 Ay (p#2)

163 A1As (p=2) (1,010)

164 A1Gy (p=2) (1,10)

165 A (p=7) (1,5

In My = A1G2 (p =2) (Dg(#164))
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10219} Ay Ay Ay

In My = A1 Ay (p>7) (Dg(#165))

166 Ay via (1, 100) (rs = 057 # 5)
15219) Ay via (1,1)

We remind the reader that in the following table, subgroups are listed up to Aut(Lg)-conjugacy.

Table 14: Irreducible subgroups of Ly = Dy.

1D Subgroup X Vie 4 X
A2Ds (1,1,0) 4+ (0,0, A1)
2 A3Dy (010,0) + (0, A1)
3 Bg T(\1;0)
4a B2 (p#2) (100,0) + (0, 100)
5a ByBy (p #2) (10,0) 4+ (0, A1)
6a AiBs (p#2)  (2,0)+(0,A\)
Ta Cs (p#£3) 010
8a By (p#2,5) 20
9a Ga (p>5) 01
In M = A3D;5 (D-(#1))
10 A} A3 1,1,0,0, O) (0, 0,1,1,0)+ (0,0,0,0,010)

(
12a A%A133 p#2) (1,1,0 0) (0, 0,2, 0) + (0,0,0,100)
132 A2B2 (p#£2)  (1,1,0,0)+ (0,0,10,0) + (0,0,0, 10)

(

14 A2Bsy (p #2) 1,1,0) + (0,0, 02)

15 A1 D5 via (1,107 )\p)

In M1 = A%A3 (D7(#10))

16 A1B, (1,1,0,0,0) + (0,0,1,1,0) + (0,0,0,0,7(10;0))

17a A1A2 (p#2) (1,1,0,0,0,0)+ (0,0,1,1,0,0) + (0,0,0,0,2,0) + (0,0,0,0,0,2)
See Table 22]
In M2 = A%BQ (D7(#16))

24 A%Al (p>5) (1,1,0,0,0) + (0,0,1,1,0) + (0,0,0,0,4) + 0
17h AiA2 (p=2)  (1,1,0,0,0,0)+ (0,0,1,1,0,0) + (0,0,0,0,0(2;2))
See Table 23]

In My = AtA; (p > 5) (Dr(#24))
See Table

In My = A} A2 (D7(#17))
See Table

In My = A?By (D7(#11))

1810 A3A, 45 (p #2)

16 AlB; (p #2)

85 A2A2 (p #£2) (1,1,0,0) + (0,0,2,2) + 0
86 A2A; (p>11)  (1,1,0)+(0,0,8)+0

12b A2A1B; (p=2) (1,1,0,0)+ (0,0,0(2;100))
13b A2BZ (p=2) (1,1,0,0) + (0,0,0(10; 10))
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87 Ay By via (1,17 1) (r # 0)
In My = ATAT (p # 2) (D7(#85))
See Table 26]
In My = AfA; (p > 11) (D7(#86))
96 Ay A; via (15,151,) (r £ 0)
97 A Ay via (17,1, 15 (rs = 0)
98 Ay via (17 16 1) (rt = 0;7 < 5)
In M1 = A%AlB3 (D7(#12))
1810y A3A, 45
17 ATAT (0 # 2)
9 J24, G (1,1,0,0) 4 (0,0,2,0) 4 (0,0,0,10) (p # 2)
or (1,1,0,0) 4 (0,0,0(2:10)) (p = 2)
100 A2A2B, (p=2) (1,1,0,0,0)+ (0,2,0(2;2;10))
101 Ay A1 Bs via (14,147, 1,,100) (if p = 2 then r # 0)
102 Ay Ay B via (157, 1,,15100) (rs = 0)
103 Ay Bg via (11711051 118.100) (rt = 0;7 < s; if r = 5 then 7 < t and p # 2)
In M2 = A%AlGQ (D7(#99))
4910y A24,A4,4,
104 A2A1 45 (p=3) (1,1,0,0) + (0,0,2,0) + (0,0,0,11)
105 A2A1 4, (p>7) (1100) (0,0,2,0) + (0,0,0,6)
106 A1A1G via (1, 1 11,, 10) (if p = 2 then r # 0)
107 AL A Gy via (171,157 10) (rs = 0)
108 A1Go via (171061 111 10) (rt = 0;7 < s;if r = s then r < t and p # 2)
52002k 424, 4,
109 Ay A As via (1,,157,1,,10)
110 Ay Ay Ay via (157 1,,1510) (rs = 0)
111 Ay Ay via (101101 111 10) (1t = 0;7 < s; if 7 = s then r < t)
In M = AT A Ar (p > 7) (D7(#105))
See Table 27
17 A2 A2 A2
122 A2 A% (1,1,0,0,0,0) + (0,0,0(2;2;2;2))
See Table 28
In My = A{A} (p = 2) (Dr(#122))
See Table 291
In My = ATB3 (D7(#13))
16 A} By
156 A2A,By (p>5) (1,1,0,0)+ (0,0,4,0) + (0,0,0,10)
100 A2A2B, (p = 2)
See Table B0
In Ma = A3 A1 By (p > 5) (D7(#156))
24 AtA,
162 AIAT (p=5)  (1,1,0,0) +(0,0,4,0) +(0,0,0,4)
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163 Ay A1 By via (1,147, 1,,10)
164 A1 Ay By via (117 1,,18 10) (rs = 0)
165 Ay By via (1171051 111.10) (rt = 0;7 < )

In My = AfA7 (p > 5) (D7(#162))
See Table 1]

In M, = A2By (p # 2) (D7(#14))
110} /:1%/1%

11519 424, (p > 5)

174 A1 By via (1,17 10)

In M = A3D, (D7(#2))

175 BsDy (T(10;0),0) + (0, A1)

176a  A2Ds (p#2)  (2,0,0)+(0,2,0) + (0,0, A1)
177 A3Bs (010,0) + (0,7(100;0))

178 A3Bs (010,0) + (0,001)

179a  A3A1Bs (p#2) (010,0,0)+ (0,2,0) + (0,0, 10)
180a  A3A1Bs (p#2) (010,0,0)+ (0,1,01)

10 Az A}

181a AzAy (p#3) (010,0) + (0,11)

In My = ByDy (D(#175))

182 A1Dy (p > 5) (4,0) + (0, A1) +0

176b  A2Ds (p=2)  (0(2;2),0) + (0,0, ;)

183 By B3 (T(10;0),0) + (0,001)

157 ByA1Bs (p # 2)

1848 BoAiBs (p#2) (10,0,0) + (0,1,01) +0
16 By A}

185 By Ay (p #3) (T'(10;0),0) + (0,11)

In My = A1 Dy (p > 5) (D7(#182))

186 A, Bs (4,0) + (0,001) + 0
16319 A A B,

187 A1 A By (4,0,0) + (0,1,01) +0
2/ A A}

188 A Ay (4,0) + (0,11) +0

In M3 = A1B3 (p > 5) (D7(#186))
s210F A 424,

In M3 = A1 A1 By (p = 5) (D7(#187))

189 A AL A (4,0,0) + (0,1,3) +0
3210y A A, A2

190 Ay By via (1171651 10) (rs = 0)

In M4 = AlAlAl (p Z 5) (D7(#189))
See Table

16912 A, A,

In M2 = B2B3 (D7(#183))
186 AiBs (p>5)
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218b  A?B3; (p=2)  (©(2;2),0)+ (0,0,001)
2610y ByA?A; (p #2)
184b  ByA1By (p=2) (0(10),0,0) + (0,1,01)
In My = Bo Ay By (D7 (#184))
187 A1 A1 By (p > 5)
220b  A?A1By (p=2) (©(2;2),0,0)+ (0,0,1,01)
2619} ByA A2
195 ByA1 Ay (p>5) (10,0,0) 4 (0,1,3) +0
196 BoA3 (p=2)  (©(10),0,0,0)+ (0,1,1,1)
197 By Ay via (1017 1,106y (rs = 0)
198 By Ay (p=2) via (101", 1,020 (rs = 0)
In My = ByA1 Ay (p 2 5) (D7(#195))
189 A AL A
199 By A via (10,117 15) (rs = 057 # s)
16519 By A, via (10,1,1)
In Mz = B2 A} (p = 2) (D7(#196))
200 A2 A3 (@( 2),0,0,0) 4 (0,0,1,1,1)
201 ByA1 Ay via (10,14, 157 1,) (r #£0)
202 By Ay via (10,1,1“,1[1) (0<r<s)
In My = ATA} (p = 2) (D7(#200))
See Table B3]
In My = Ba Ay (p # 3) (D7(#185))
188 A1 As (p>5)
221 A2Ay (p=2)
16512 By Ay (p > 5)
In M; = A3Dy (D7(#176))
10119 A2B3 (p #2)
018 A2B, (2,0,0) + (0,2,0) + (0,0,001) (p # 2)
or (©(2;2),0)+ (0,0,001) (p=2)
219 A3By (p#2)  (2,0,0,0)+(0,2,0,0) + (0,0,2,0) + (0,0,0,10)
220a  A2A1Bs (p#2) (2,0,0,0)+(0,2,0,0) + (0,0,1,01)
17 A2 A%
991 A4 (p43) (2,0,0) + (0,2,0) + (0,0,11) (p > 5)
or (©(2;2),0) + (0,0,11) (p = 2)
222 A1Dy via (1,10 X\p) (r £ 0)
In My = A2 B3 (D7 (#218))
48108 ATAT Ay (p #2)
10617 ARG (p #2)
220 A2A1By (p=2)
223 Ay Bs via (1,17,100) (r # 0)
In My = A}Bs (p # 2) (D7(#219))
4710 A3 A2
224 A3A; (p>5) (2 0,0,0) + (0,2,0,0) + (0,0,2,0) + (0,0,0,4)
225 Ay A1 By via (14,147, 1,,10) (r #0)
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226 A1 By via (1,17 161 10) (0 < r < s)
In M3 = AYA; (p > 5) (D7(#224))
See Table [34]
In My = A3 Ay By (D7(#220))
4810F  A24, A2
233 A2A1A; (p>5) (2,0,0,0)+(0,2,0,0) + (0,0,1,3)
200 A2A3 (p=2)
234 Ay A1 By via (14,157,1,,10) (r # 0)
235 A1 A1 By via (117 1,,18 10) (rs = 0)
236 A1 By via (117,10 118,10) (rt = 0;7 < )
In My = AfA1As (p > 5) (Dr7(#233))
See Table 35
In My = A3 Az (p # 3) (Dr(#£221))
228101 A24,
247 A1 Ay via (1,10710) (r #0)
In M, = A3Bsz (D7(#177))
10117 A3B; (p #2)
18100 A3A3A; (p#2)
248 A3Gy (010, 0) + (0,7(10;0))
179b  A3A1By (p=2) (010,0,0)+ (0,0(2;10))
In My = A3Gy (D7 (#248))
10639 A3Gy (p # 2)
2019 AzA A
181b  A3zA; (p=3) (010,0) + (0,11) + 0
In M, = A3B3 (D7(#178))
218 AiBs (p #2)
183 By B3
1910 A3A3A; (p#2)
248 A3Gy
180b  A3A;By (p=2) (010,0,0)+ (0,1,01)
In M; = A3 A, By (D7(#179))
219 A3By (p #2)
157890 B2 A, (p#2)
1810y AzA A3
249 A3A1 Ay (p>5) (010,0,0) + (0,2,0) + (0,0,4)
250 A3A} (p=2)  (010,0,0,0)+ (0,0(2;2;2))
In My = A3A1 Ay (p > 5) (D7(#249))
22/ A3 A,
16319Y  ByA A,
251 Az A via (100,107 101) (rs = 0)
In My = A3A% (p = 2) (D7(#250))
252 A3A1 Ay via (100, 14,157 1,) (r #0)
253 A3zA; via (100, 1,107, 1[51) 0<r<s)
In M, = A3A; By (D7(#180))
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220 ATAB; (p # 2)

184 BQAlBQ

19107 AgA A2

254 A3A1 A, (p>5) (010,0,0) + (0,1,3)
255 AsA3 (p=2)  (010,0,0,0)+ (0,1,1,1)

In My = A3 A1 A1 (p > 5) (Dr(#254))

233 AZALA (p#2)

195 By A1 Ay

256 Az Ay via (100,107 1) (rs = 0;7 # s)

In My = A3A3 (p = 2) (D7(#255))

196 ByA?

257 A3 Ay Ay via (100,14, 157 1,) (r #0)
258 AsA; via (100,1,107, 1) (0 <7 < 5)

In M1 = A3A2 (D7(#181))
221 A3A; (p>5)
109897 A3A, (p=13)

185 ByAs (p # 3)
25110 A3 A,

In M = Bs (D7(#3))

1510 A\Ds (p #2)

11 AiBy (p #2)

175 ByDy (p#2)

177 A3Bs (p#2)

259 Ay (p>13) 1240

4b B3 (p=2) ©(100; 100)
5b BBy (p=2)  O(10; A1)
6b ABs (p=2)  O(2\)

h Cs (p=3) 010 + 0

8b B; (p=15) 20 +0

In M = B (D7 (#4))

177 AsBs

12 AJA1Bs (p # 2)

260 G2Bs (10,0) + (0,100) (p # 2) or ©(10;100) (p = 2)

261 A1B2B3 (p=2) ©(2;10;100)
262 Bj via (100, 1000") (r # 0)

In My = G Bs (D7(#260))

10212} A, A1 By

263 AsBs (p=3)  (11,0) + (0,100)
264 ABs (p>7)  (6,0)+ (0,100)

248 Gy As
99 G2 A2 A,
265 G2 (10,0) + (0,10) (p # 2) or ©(10;10) (p = 2)

2) O(10;2;10)

266 GaA1By (p=
In My = AsB3 (p = 3) (D7(#263))
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1039 A, Bs

181 Ag Az

104 A A2 A,

267 AsGy (11,0) + (0, 10)
In My = AsG2 (p = 3) (D7(#267))

10812 A,Gs

11089 A, A, Ay

268 A3 (11,0) + (0,11)
In My = A3 (p = 3) (D7(#268))

111192} A A,

269 Ay via (10,1000) (r #£ 0)

In My = A1 B3 (p > 7) (D7(#264))

26 A A

105 A A3 A,

270 A1Gy (6,0) + (0,10)
In Mz = A1G2 (p > 7) (D7(#270))

11389 A A Ay

271 A2 (6,0) + (0,6)

In My = A2 (p > 7) (D7(#271))

272 Ay via (1,107) (r £ 0)

In M, = G3 (D7(#265))

10719 A1 A1Gy

270 AGa (p>7)

267 AsGy (p=3)

273 Go via (10,10[") (r #0)

274 Go (p = 3) via (10, 03["])

In My = G2A1Bs (p =2) (D7(#266))
12419} A A1 A B,

99 GoA, A2

275 G2 A3 0(10;2;2;2)
In Mz = G2 A} (p = 2) (D7(#275))
13219 A A, A3

276 GaAr A via (10,14, 157, 1,) (r #0)
277 GoA; via (10,1,17,16)) (0 < r < s)
In M; = A1 ByBs (p = 2) (D7(#261))

12 A A2B3

278 A3Bj 0(2;2;2;100)
179 A1 ByAs

266 A1 ByGo

279 A2B3 0(2;2;10;10)
In My = A3B3 (p = 2) (D7(#278))

250 A3 A3

275 A3G,

280 Al1Bs 0(2;2;2;2;10)

28



281 Ay A1 Bs via (1,147, 1,,100) (r # 0)
282 A1 Bs via (1,17, 15,100) (0 < 7 < s)

In My = A}Bs (p = 2) (D7(#280))

122 A} A2

283 Af 0(2;2;2;2;2;2)

284 A1 A2B, via (14,147, 1,, 1., 10) (r # 0)

285 Ay A1 By via (1,187, 15 1,,10) (0 < r < s)
286 A1 A1 By via (1, L[IT], 1p, 11[731, 10) (rs #0;7 < s)
287 Ay By via (1,17 1051 10 10) (0 <7 < s < 1)

In My = AS (p =2) (D7(#283))
See Table

In My = A3B3 (p = 2) (D7(#279))
100 A2A2B,

280 A%BQ

See Table B7]
In M = B2B4 (D7(#5))
11 A?B,

303 A1By (p > ) (4, O) + (0, /\1)
304 AQB4 (p = ) 9(2, 2; /\1)

175 BsDy
179 B2A1A3 (p }é 2)
13 By AIBy (p # 2)

305 ByAT (p#2)  (10,0,0) +(0,2,2)
306 ByA; (p>11)  (10,0) + (0,8)
261 BQAlBg (p = 2)

307 B (p=2) 6(10; 10; 10)
In My = A1By (p > 5) (D7(#303))
182 AD,

249 A1 A A

156 A1 A2By

308 A A2 (4,0,0) +(0,2,2)
309 A1A; (p>11)  (4,0) +(0,8)

In My = A1 AT (p > 5) (D7(#308))

310 Ay Ay via (1Y 1[31 1,)

311 Ay Ay via (1, 1, 1) (r £ 0)
16919 A1 A, via (14,15, 1b)

312 Ay via (1716 1) (rs = 0;5 < 1)

In My = Ay Ay (p > 11) (D7(#309))
313 Ay via (107, 10¢])

In My = ABy (p = 2) (D7(#304))
176 A2Dy

278 A3B; (p=2)

279 A2B3 (p=2)
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314 Ay By via (1,17 1) (r # 0)
In My = B2 A7 (p # 2) (D7(#305))
85 A242

308 A1 A2 (p >5)

315 Ba A,y via (10,1,171) (r £ 0)
16512} By Ay (p > 5) via (10,1,1)
In My = Bo Ay (p > 11) (D7(#306))

86 A2A,
309 Al Ay
In My = B3 (p = 2) (D7(#307))
13 A2B2
279 A2B?

316 B3 By via (104, 1047, 10) (r # 0)
317 By B, via (104, 02!:1, 10)

318 By via (10,100 1065]) (0 < r < s)
319 By via (107 10051 020 (¢t = 0;7 < s)
In M = A, Bs (D7(#6))

1519 A, D,

176 AiDs (p #2)

12 A1 A3Bs (p # 2)

179 A1 By A3 (p # 2)

320 A1A; (p>11)  (2,0) + (0,10)
304 AiBy (p=2)

261 AlBgB3 (p = 2)

In M1 = AlAl (D7(#320))

321 Ay via (17 161) (rs = 0)

In M = C3 (D7(#7))

19712 A\ B,

31012} A Ay (p >5)

9112 A A, (p=3)

322 As (p=2) 101
9b Gy (p=2) 01
21810 Ay (p>11)

In M = By (p#2) (D7(#8))

94 {0} A%

21810 Ay (p>11)
1930 A (p=5)

In M =G (p#3) (D7(#9))
2452 A1 Ay (p >5)
21515} A1 A (p=2)
22119 Ay (p>11)

5.4. Irreducible diagonal subgroups. In this section we give the tables of diagonal subgroups

referred to in Tables [I3] and [[4l The first column gives the ID number, as in the previous tables,
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and the second column gives the embedding of the diagonal subgroups. To describe the embeddings
we use a slightly modified notation, to shorten the tables. Specifically, we introduce a shorthand
for diagonal subgroups of A}Z, where Z has no simple factor of type A;. For example, instead of
writing A2By < A3 By via (L[f], 1,[15], 15, 10) we just write (a[T],a[S},b, 10); from any such vector it
is easy to recover the isomorphism type of the diagonal subgroup. Moreover, in Tables B0 and B7
the usual notation for diagonal subgroups is used but we again omit the isomorphism type of each
diagonal subgroup as they too can be easily recovered from the listed embedding.

Table gives the extra restrictions on the field twists for Dg(#38), a diagonal subgroup of
AS$ = Dg(#8). The restrictions are given in rows of the tables: the first column lists all permitted
equalities amongst the field twists; the second column lists any further requirements. So an ordered
set {r,...,w} is permitted if it satisfies the conditions in the first and second column of a row of the
table. We note that a set of field twists satisfies the conditions of at most one row. We emphasise
that an ordered set may be excluded either because it yields a Dr-reducible subgroup, or because
it yields a repeated diagonal subgroup.

5.4.1. Diagonal subgroups contained in Dg.

Table 15: Irreducible diagonal subgroups of A% = Dg(#8).

ID Diagonal embedding
15
16 (
17 (
18 (
19 (
20
21 (
22 (
23 (
24 (aa[T]a[S]a bc)( =0 then s <t;if s =0 then r < ¢;if t =0 then r < s)
(
(
(
(
(
(
(
(
(

o
=
o
w
&
=
o
Q,
S—
—~
3
3
I
\_O
3
IN
Vo)
S—

~— —

s
(r < s;if r =0 then s #0)
al”l alsl b, e, b[t],d) (rs =0)

)( < s+t;if r =0 then ¢t #0)

T

25 calsl altl b al®l c) (rst =05t < u);
26 (al"l, als] ot plul, b[] ¢) (rst =wuv =0)
27

28
29
30
31
32

all, alt bcc[“]) st =0; if w =0 then r < s)

(r

a' ba[S]b 4 ¢) (rst = 0; if u =0 then 7 < s)

all b, alsl, pl ca[t]) (rst = 0; if w = 0 then r < s)
)

e
I
alrl,
I
I

a,a[T]bb et ey (tu = 0;r < s;if 7 = 0 then s # 0 and t < u; if s = 0 then t < u)
L Hbc[“]b ey (rs = uv = 0;t < wu+w;if t = 0 then v # 0)
am bl gl ool plu vl (rs = tu = vw = 0)
[,

T

al®! a”,a[“],a[”,b) (rv =0;r <min{s,t,u}; if r = s then t < w; if r =t then s < w; if r =u

33 a
then s<t)

34 (a,al, al*) o™ b, b)Y (if 4 =0 then 7 # 0 and s < t; if r = 0 then s < t; if s = 0 then r < t; if t =0
then r < s)

35 (am,a[s] b, al", b)) (rstu = 0; if v =0 then t < )

36 (al” altl o) il plvl) (rt = wvw = 0;r < 5 if r = s then v < w)

37 (a, b[t] a[T] b[ ul a[S] L0l (tuv = 0;7 < s;if r = 0 then ¢ < w; if 7 = s then u < v; if s = 0 then ¢ < v)
38 (al”! a[“] al’l all) (rstuvw = 0 and see Table )
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Table 16: Conditions on field twists for Dg(#38).

Equalities among r,...,w Further requirements on r,...,w
none r <min{s,t}; t < min{u,v,w}; s <u
r=s t < min{u,v}; v <w

r=t s<u

r=s=t v<w

r=t=wv s<u<w

r=t=w s<u<w

r=s;t=v u < w

r=t;s=v none

r=s=t=wv u < w

r=s=t;u="v none

r=t;s=v;u=w none

Table 17: Irreducible diagonal subgroups of A2A4; Ay = Dg(#43) (p > 5).

ID Diagonal embedding 1D Diagonal embedding

48 (a,al b, c) 53 (al” a[S] b ay (rt = 0;7r < s)

49 (alb,all ¢) (rs = 0) 54 (al” sl all) (rst = 0)

50 (al)b, ¢ all) (rs = 0) 55 (a a[r] blsl olt) (st = 0)

51 (a,b,cl, clsly (rs = 0) 56 (al” b[t] a[s] o) (rs = tu = 0)
52 (al alsl alh ) (rt = 0;r < s;if r = s then r < t) 57 (al"),al¥, all al¥) (rtu = 0;r < s;

1f7°:sthenr<t)

Table 18: Irreducible diagonal subgroups of A2 A3 = Dg

(#44) (p = 2).

ID Diagonal embedding

58 (aa[]bcd)(r;éO)

59 (al” ,¢,d) (rs =0)

60 (abcc”d)(;ré())

61 (all al*! a[t] b,c) (rt =0;r < s)

62 (al"l a[t],c) (rs =0;s <t)

63 (a, b ¢, c[T] s (0<r <)

64 (a,al", b, bl ¢) (rs #0)

65 (al, b[t] a[s] bl e) (rs =tu=0;r < t;ifr =t
66 (al") b,al*)l ¢, cl) (rs =0 #1t)

67 (all,a [5] a[t] a[“] b)) (rt =05r < sjt < w)

68 (al,b, a[“]) (rs=0;s<t<wu)

69 (al"l,a [SJ a[tl bl (rt = 0 # uyr < s)

70 (all) bl alsl ol by (rs = uv = 0;5 < 1)

71 (aa[T]bb[S]b ) (r#0;0<s<t)

72 (al" als), el al¥l alll) (rt = 050 < 55t < u < w)

then s < u)
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Table 19: Irreducible diagonal subgroups of A2A4;A; = Dg(#73) (p > 5).

ID Diagonal embedding 1D Diagonal embedding

79 (am [s]b,¢) (rs = 0) 86 (al” a[s] b a) (rst = 0)

80 (al” dﬂ)(s—m 87 (al” ,all) (rst = 0;5 # )

81 (al"! bcas)(rs—O) 88 (a ,b[T] bls] b[t]) (rst =0;s #t)

82 (a,bl" bl ¢) (rs = 0) 89 (all, alsl, bl by (rs = tu = 0;t # u)
83 (a,bl" ¢, b)) (rs = 0) 90 (all, b1 alsl b)) (rs = tu = 0)

84 (a,b,cl clsly (rs = 0;7 #5) 91 (al] b8 b1 als)) (rs = tu = 0)

85 (al"l, all altl b) (rst = 0) 92 (al alsl, alt al™) (rstu = 0;t # u)

Table 20: Irreducible diagonal subgroups of A2A3 = Dg(#74) (p = 2).

1D Diagonal embedding 1D Diagonal embedding

93 (al al¥l b, c,d) (rs =0;r # s) 103 (al” ce,c) (rs=04#1)

94 (a[T] b a[] c,d) (rs =0) 104 (a b[T] bl e, ety (rs =0 # )

95 (a,bl" 1% ¢, d) (rs = 0) 105 (al" a[s] a[t] all b) (rst = 0;7 # s;t < u)
96 (abcc )( #0) 106 (al”] a”,a[u]) (rs=0;s<t<u)

97 (al"l al® alM b, c) (rst = 0;r # s) 107 (a, b[’”] blsl ol vy (rs = 055 < t < w)

98 (a[T] b a[S] a[t] ,¢) (rs =055 < t) 108 (al™, a[S] a[t] b, bWy (rst = 057 # s;u #0)
99 (a, b[S] b ,¢) (rs =058 <t) 109 (al™) bl alsl ol plPly (rs = uv = 0;5 < t)
100 (a,b,c,cl ) 0<r<s) 110 (all) o1 bl ] alsh) (rs = tu = 0;u < v)
101 (al als b[t] ,¢) (rs=0;r #s;t#0) 111 (am,a[s] b, b[] b[“]) (rs =0;r #50<t<u)
102 (all ol alsl bl ) (rs = tu = 0) 112 (al) alsl, al al¥l al’l) (rst = 057 # 55t < u < v)

Table 21: Irreducible diagonal subgroups of A} = Dg(#137) (p = 2).

ID Diagonal embedding ID Diagonal embedding

140 (a,al"b, e, d) (r #0) 143 (a,al,al*) alb) (0 <7 <s<t)

141 (a,al",al*) b c) (0 <7 < s) 144 (a,al al*l b, 01) (0 < r < 53t #0)

142 (a,al™b,00) ¢) (rs # 0;r < s5) 145 (a,al al®,a® al") (0 <r < s <t <)

5.4.2. Diagonal subgroups contained in D7.

Table 22: Irreducible diagonal subgroups of AfAs = D7(#10).

ID Diagonal embedding

18 (a,al’, b ¢,100)

19 (a b al”l, ¢, 100)

20 (al” aM ,all b,100) (rt = 057 < s)

21 (a, a[T] b,bl¥1,100) (r < s; if 7 = 0 then s # 0)

22 mbMa Mmum(g:mr§s+uﬁr:ommt¢m

23 (a,al", al*l ! 100) (s < t;if 7 = 0 then s < t; if s = 0 then r < t)
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Table 23: Irreducible diagonal subgroups of A{Bs = D7(#16).

1D Diagonal embedding

25 (a,al, b, c,10) (r # 0)

26 (a,b, a[] ¢, 10)

27 (al al¥l, all b, 10) (rt = 0;7 < )

28 (a,al”l b b[s] ,10) (rs £ 0;r < s)

29 (a,bl, HﬂmM$:Ow§s+uﬁr20mwt¢m
30 (a,al™ al*l al¥ 10) (r # 0;5 < t; if s = 0 then 7 < t)

Table 24: Irreducible diagonal subgroups of A}A; = D7(#24) (p > 5).

1D Diagonal embedding

31 (a,al™ b,c,d) (r #0)

32 (a b,all, ¢, d)

33 (alb,c,d,al*l) (rs = 0)

34 (al" al*l alt b, c) (rt = 0;r < s)

35 (al", al¥, ¢, d aly (rt = 0;7r < 5)

36 (a[’”] b al*l e,y (rt = 0;r < s)

37 (a,al b b[S] ,¢) (rs #0;r <s)

38 (a,all bl ¢, b)) (r # 0; st = 0)

39 (a,bl b[t],c) (st =0;7 < s+t;if r =0 then t # 0)
40 (a[’”] b[t] alsl ¢, bl") (rs = tu = 0)

41 (a,al™ alsl al b) (r #0;s < t;if s = 0 then r < t)

42 (al) a[S] a[t] b,al™) (rtu = 0;r < s)

43 (a, al” b[t] ) (r £ 05 su =055 < t)

44 (a,b bl b[“] (stu = 0; if r = 0 then s < t)

45 (al" b[t] b W alsl) (rs = tu = 0;u < v)

46 (al™ al®, a[t] a[ U al’ly (ro = 0;r < 83t <uyr <ty if r =t then s < u)

Table 25: Trreducible diagonal subgroups of AfA?

= Dr(#17).

ID Diagonal embedding

47 (aa[]bcde) (if p =2 then r # 0)

48 (aba , ¢ d,e)

49 (al b, c,d,al*) d) (rs = 0)

50 (a,bcdee”)( #0)

51 (ala bcd) (rt =0;r <s;if p=2 then r < s)
52 (am,a bca ,d) (rt =0;r <s;if r =s then r <t and p # 2)
53 (a0, a[] c,all d) (rt = 0;7 < s)

54 (al b, e d,al*l alt)) (rs = 0;5 < t)

55 (a,al” b, bl ¢, d) (r < s;5+# 0; if p=2 then r # 0)

56 (a,al"l, b)) cb[t] d) (if p =2 then r # 0)

57 (a,a[T]bcdds)( # 0; if p = 2 then r # 0)

58 (a,blsl al™ bl e d) (st = 0;7 < s+ t;if r =0 then t # 0)
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59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
7
78
79

80
81
82

83

84

) (rs =tu=0;r <t;if r =¢ then s < u)
u) (rs =tu = 0;r < t; if r =t then s < u)
(s <t;if r =0 then p #2 and s < t; if s = 0 then r < ¢; if s = ¢ then p # 2)

tu=0;7 <s;if r =s then r <wu and p # 2)
=0;r <s;t <w;ifr=sthen r <t and p#2)

(all, b1 als] e, bl d) (rs = tu = 0)
(a,b,al" ¢, d, d[S]) s#0)
(all b1 ¢, d, al*], bl
(all,b, ¥ d, als], ¢l
(a,al” a[s] a” b c) <
(a[rha[ sl o) (r
(al"l al*l b, ¢, alt a[“]) (rt
(al b, gl c, a[t} alil) (
(al"), als 7
(am,a[s],a b c, c[“]) (
(al, al*), b, bl gft o (
(al"), als), plu] o
(am,b[uga[sJ b[v] a[t] 0
(al"), bl gls) ¢, glt) plo))
(al"), bla b1, ¢, als, glt)
(al]

(

(a, alr], pls), c[
(a, b4, alr), bu
(a b[s] a[T] ol

rt=0;r < st <wu)

rt =0#u;r <s;if p=2then r <s)
rt =0;7 <s;if r = s then r <t,u# 0 and p # 2; if u = 0 then p # 2)
(rt =uv=0;r <s;if r =s then r <t and p # 2)
(rt =uv=0;r <s;if r =5 then u < v)
(rst =uv =0)
(rs=uv=0;s <t)
al™l b, e, el als] a[t]) (rs =0;s < t;if p=2 then u # 0)
a,al™ b, blsl, cc[ ]) (r<s;su#0;ifp=2r+#0)
[t cll) (uv = 0;8 < w; if s = u then t < v; if p = 2 then 7 # 0)
H)(t—()yéu r<s-+t;if r=0 then ¢t # 0)
I ey (st = uwv = 0; if 7 = 0 then s < u; if 7 = 0 and s = u then t < )

(al” }a[“] a[v] ) (ro=0;r < s5r <t <w;if r=sthenr <o, t<wandp#2;if r =1¢ then
s<u 1ft—uthenp7§ 2)

(al” all b, al™l al’l) (rtu = 0;7 < s;u < v; if 7 = s then r < w and p # 2)

(al] altl vl b[”] N (1t = v = 057 < s;0 < w; if p =2 then r < s)

(al] bl bl altl plvl) (rt = ww = 0;7 < s;u < wvyr <wpif r = s then r < t, u < v and p # 2; if
U thenu<wandp7é2 if r = wu then s < v; 1fr—uands-vthent<w)

(
s:vthent<w)
(al”

a altl gl al’l alvl) (ro = 0;r < 537 <t <wjv < w;if r = s then r < v, t <uand p# 2; if

r—tthens<u,lft—uthent<vandp7é2)

all, ol als] bl blvl) (rt = 037 < s;7 < u; if 7 = s then w < v; if 7 = u then s < v; if r = u and

Table 26: Irreducible diagonal subgroups of A2A42 = D7 (#85) (p # 2).

ID Diagonal embedding

ID Diagonal embedding

88 (a a[r] b,c) (r #0)
89 (all b, all ¢) (rs = 0)
90 (a b ¢, c[T]) (r #0)

91 (al”

92
93
94

alb) (rt =07 < s) 95

(@, b, ol

(
(a”
(a”

aly (rs = 0;s < t)

a, a[T] b, b[S]) (rs #£0)

a

bt alsl bl (rs = tu = 0;r < t;if r =t then s < u)

a[S] all ol (rt = 0;7 < st < )

Table 27: Irreducible diagonal subgroups of A2A4;A; = D7(#105) (p > 7).

ID Diagonal embedding

ID Diagonal embedding

112 (a,al™ b, c)
113 (al)b,als) ¢) (rs =
114 (al, b, ¢, al)y (rs

0)

=0)
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117 (all, all b, alt) (rst = 0)
118 (al)b,als) ) (rst = 0)
119 (a,al, bl bty (st = 0)



115 (a,b,cl, clsly (rs = 0) 120 (al!) b1 alsl pl¥)y (rs = tu = 0)
116 (all al*l altl b) (rt = 0;7 < s;if r = s then r < t) 121 (al”), al*),al¥ al¥) (rtu = 0;r < s;
if r = s then r < 1)

Table 28: Irreducible diagonal subgroups of A2A2By = D7(#100) (p = 2).

ID Diagonal embedding

123 (a aH b c, 10) (r #0)

124 (al” ,¢,10) (rs =0)

125 (a b c, cM ,10) (r #£0)

126 (al” a[sl a[tl b,10) (rt = 0;7 < s)

127 (al”! [ 1,10) (rs = 0;5 < t)

128 (a, aH b, b[S] ,10) (rs #0)

129 (all blf alsl bl 10) (rs = tu = 0;r < t; if 7 =t then s < u)
130 (all all, alt al™ 10) (rt = 057 < 5t < )

Table 29: Irreducible diagonal subgroups of A2A% = D (#122) (p = 2).

ID Diagonal embedding

131 bcde)(r;«éO)

132 a[T] b,al*l ¢c,d,e) (rs =0)

133 (a,b,c,cl"l d,e) (r #0)

134 (al al*, a[t] b,c,d) (rt = 0;1 < s)

135 (all, b, al® a[t] e,d) (rs=0;s<t)

136 abcc c[s]d)(0<r<s)

137 10, b[sl c,d) (rs #0)

138 a[r] b[t] alsl ol e d) (rs = tu = 0;7 < t; if 7 = t then s < u)
139 (all b, alsl ¢ el d) (rs = 0;t #0)

140 (a,b,c,cl"] dds)(rs;«éo;rgs)

141 (al, al*l, a[t] all byc) (rt = 0;r < s;t < u)
142 (all, b, al* a[t] a[“] ,0) (rs=0;s <t<wu)

(a,
(
(
(
(
(
(a,
(
(
(
(
(
143 (a,b,c,cl"l clsl ey (0 <r < s < t)
(
(
(
(a,
(a
(
(
(
(
(a,
(a
(

[
[

144 (al"l, alsl, a[t] b,ole ) (rt =0 # w;r < s)
145 (al b, a[s] ah ol ) (rs = uv =055 < t)
146 (al", b als a[t] e,y (rs =0 #u;s < t)
147 bb[slb[ o) (r#0;0<s<t)

148
149
150
151
152
153
154
155

[T] b, al*l ¢, c[t],c[u]) (rs =0;0 <t <)
all alsl, a[t] ald al’l b) (rt = 0;r < s;t < u <)
al’l b, als a[t] a[“] ,al’l) (rs =0;5 <t <u<w)
all alsl, a[t] b, bl b)) (1t = 0;7 < s)
al’l, b[u] alsl alh Il plvly (rs = uv = 0;5 < t;v < w)

10, b[S] c,ct) (rst #0;5 < t)

[T] b[t] alsl ol e M) (rs = tu =0 # v;r < t;if r =t then s < )

al’l alsl, gt glv ] cal’l al®l) (rt =050 < st <u < v <w)
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Table 30: Irreducible diagonal subgroups of A?B% = D (#13).

ID Diagonal embedding ID Diagonal embedding
157 (1a, 147,10, 10 ) (if p=2 then r #0) 160 (14,157,105, 10}7) (s # 0; if p = 2 then r # 0)
158 (1, 1y, 10.,10Y7) (7 £ 0) 161 (14,157,105, 0217 (r #£0)

159 (14, 13, 10, 027

Table 31: Irreducible diagonal subgroups of A242 = D7 (#162) (p > 5).

ID Diagonal embedding ID Diagonal embedding

166 (a a[r] b, c) 170 (al” b a[s] ally (rs =0;s < t)

167 (all,b,all ¢) (rs = 0) 171 (a, ) (s #0)

168 (a b ¢, c[T]) (r #0) 172 (a[T] b[t] al*l, bWy (rs = tu = 0;r < t; if r = ¢ then s < u)
169 (al” al b)) (rt = 0;r < 5) 173 (al),als) ol al)) (rt = 0;7 < 53t < u)

Table 32: Irreducible diagonal subgroups of A; Ay Ay = D7(#189) (p > 5).

ID Diagonal embedding ID Diagonal embedding
191 (al’l,al¥), ) (rs = 0) 16912} (a,b,b)
192 (all) b, al*l) (rs =0) 194 (al"l, als), altl) (rst = 0;5 #1)

193 (a, blrl, b[s]) (rs =0;7r#s)

Table 33: Irreducible diagonal subgroups of A?A3 = D7(#200) (p = 2).

1D Diagonal embedding
203 (a, bcd)(r;«éO)
204 (a[’”] b,al*l ¢c,d) (rs = 0)
205 (a,b,c,cll d) (r #0)
206 (all alsl, a[t] bc) (rt=0;7 <s)
207 (al"b,al® altl c) (rs = 0;5 < t)
208 (a, b c,clml ey (0 < r < s)
209 (a,al™ b b[SJ,c) (rs #0)
210 (a[T] b[t] al*lol ¢) (rs = tu = 0;r < t; if r =t then s < u)
(
(
(
(
(
(
(

211 (all)b,al® [t]) (rs=0%#t)

212 (al") al®, a[t] all b) (rt = 0;7 < 85t < )
213 (al"l, b, al® a[t] a[u])
214 (al"], als!, a[t] b b[u])
215 (al™, b[“] alsl alh b)) (rs = uv = 0;5 < 1)

216 (a, bb[S]b)(;«éOO<s<t)

217 a[r] a[s] all al ol (rt = 0;7 < 83t < u < v)

(rs=0;s<t<wu)
(rt=0#ur <s)
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Table 34: Irreducible diagonal subgroups of A3A; = D7(#224) (p > 5).

1D Diagonal embedding ID Diagonal embedding

227 (a,al,b,c) (1 #0) 230 (all,all, b, a[t]) (rt =0;r <s)

228 (a[T],b,c,a[ ) (rs =0) 231 (a,al’, b[ Lol (r # 0 = st)

229 (a,al” al¥lb) (0 <r<s) 232 (al },a[s],a[t],a[“]) (ru=0;7 < s <t)

Table 35: Irreducible diagonal subgroups of A?A; A; = D7(#233) (p > 5).

ID Diagonal embedding

237 (a, ) (r#0) 242 (al") a[S] b all) (rt = 0;7 < s)

238 (a[T] b al’l ¢) (rs =0) 243 (al”! altly (rst = 0;s #t)

239 (al", b, c, a[s]) (rs=0) 244 (a, a[r] bl bl (r £ 0 = st;s # 1)

240 (a,b,cl™ sy (rs =057 #£5) 245 (al”] b[t] a[s] o) (s = tu = 0)

22810} (a,b,¢,c) 246 (al" al®l ol al™) (rtu = 0;r < s;t # u)
241 (al") al®! altl b)) (rt = 0;7 < 5)

Table 36: Irreducible diagonal subgroups of A} = D7(#283) (p = 2).

1D Diagonal embedding

288 (a,al™l b c,d,e) (1 #0) 294 (a,al al*l al ol b) (0 <r<s<t<u)

289 (a, am a[ s] b e,d) (0<r<s) 295 (a,al™ alsl al b b)) (0 < r < s < t;u#0)

290 (a,all)b ,d) (rs £ 051 < s) 296 (a,al,alsl, b, 0l by (0<r <50 <t<ujr<t;
291 (a,al™, a[s] a[t] bye) (0<r<s<t) if r =t then s < w)

292 (a,am,a[s] b b ) (0<r<s;t#0) 297 (a,all als) ol ol al)) (0<r<s<t<u<nw)
293 (a,all )b sy (rst #£0;r < 5 < t)

Table 37: Irreducible diagonal subgroups of A? B3 = D7(#279) (p = 2).

ID Diagonal embedding

298 (1,,117,10,,104) (r #£0) 301 (1,157,105, 100 (rs # 0)
209 (14,1310, 108 (r £0) 302 (14,157,105, 020y (r £ 0)
300 (14,15, 10,, 020

6. APPLYING THE MAIN THEOREM

We now describe how Theorem [I1] allows one to classify all connected G-cr subgroups, and
illustrate with the case G = Fy(K), in arbitrary characteristic. In this section we present a series
of additional lemmas which allow one to derive properties of the G-cr subgroups arising. The
subgroups themselves, and various properties thereof, are given in Table

6.1. G-conjugacy vs. L-conjugacy. Once we know the L’-irreducible subgroups for each possible
Levi subgroup L of our reductive algebraic group G, it remains to consider how the various classes
of subgroups fuse in G. This is achieved in the following result.

Proposition 6.1. Let X and Y be G-cr subgroups of G, and let L and L* be Levi subgroups of G
which are minimal among those containing X and Y respectively. Suppose further that X and Y
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are G-conjugate. Then L and L* are also G-conjugate; moreover if L* = L then X and Y are in
fact Ng(L)-conjugate.

Proof. Take g € G such that Y = X9 Then Z(L)° and (Z(L*)°)¢ ' are both maximal tori of
Ce:(X)°, so there exists ¢ € Cq(X)° such that (Z(L*)°)9 ' = (Z(L)°)¢. Thus L* = Ca(Z(L*)°) =
Ca(Z(L)°)®9 = L, proving the first statement. Now assume L* = L, and write n = ¢g. Then
L"=Lson &€ Ng(L), and X" = X% = X9 =Y, proving the second statement. O

In light of the above result, it is desirable to understand how the classes of subgroups of simple
Levi factors Lg fuse under graph automorphisms of Ljy. We consider only the case that Ly has
type A, or D, (n > 1), since the exceptional graph morphism of By (p = 2) is not a variety
automorphism. For Lg of type A,, we refer to the well-known fact that an irreducible module for
a connected reductive algebraic group is either self-dual, or equivalent to its dual under an outer
automorphism. It follows that every irreducible reductive subgroup of Lg is normalised by an outer
automorphism of Ly, hence by Lemma [3.4] distinct Lg-conjugacy classes of such subgroups are not
fused by an outer automorphism.

It remains to consider Lg of type D,. Now, D7 only occurs as a Levi factor in Fg, and its
normaliser then contains an element inducing a graph automorphism, and the irreducible subgroups
in Table [[3] are already given up to Aut(D7)-conjugacy. This leaves Ly of type D4, D5 and Dg. In
these cases, the tables present the irreducible subgroups up to Lg-conjugacy, and we describe how
these subgroup classes fuse under graph automorphisms. Firstly, for types D5 and Dg the notation
‘l ~ m’ indicates that D, (#!) is Aut(D,,)-conjugate to D, (#m). For type Dg, the notation ‘I :
condition’ for the subgroup D, (#!) indicates that D, (#l) is a collection of diagonal subgroups
and the ‘condition’ is an extra constraint that is placed on the corresponding field twists to obtain
the representatives of Aut(D,,)-classes of subgroups. For type D4 we are interested in the fusion
of classes under both an involutory graph automorphism and under the full outer automorphism
group S3. We present this using brackets, for instance, 3 ~ 4(~ 2) indicates that the two Bj classes
with ID numbers 3 and 4 are fused by an involutory graph automorphism, and that the three Bs
classes with ID numbers 2,3 and 4 are fused under the full outer automorphism group.

Dy: 3~4(~2);6~T7(~5);10~11(~9);12: r < s (s<t); 14 ~ 15 (~ 13); 16: s <t
(r <s); 24 ~29 (~19); 25 ~ 30 (~ 20); 26 ~ 31 (~ 21); 27 ~ 32 (~ 22); 28 ~ 33 (~ 23).

Ds: 5~6

Dg: 6 ~ 7,18 ~19; 21: r <s;23: r <t,if r =t then s < w; 25: r <s;26: r <s;27: r < s
28 ~29:30: t <w;3l: r<s;32: r <t<w,if r =t then s <w, if t = v then u < w; 33: t < u; 34:
s <t;35: r<s;36: v<w;37: ift=0then r <w, if t=0and r = u then s < v; 38: in Table [I0l
remove line 6 and add the following to the further requirements column: v < w to lines 1 and 3,
u < wtoline 8, r < s<wutoline 11; 42: r < s; 75: r < s5; 76 ~ 77; 78: r < s;79: 7 < 57 80 ~ 82;
81 ~83; 85: r <s;86: r<s5;87T~88;89: r<s;90~91;92: r <s;93: r<s;94~95;97: r <s;
98 ~ 99; 101: r < s; 102: » <t and if r = ¢ then s < u; 103 ~ 104; 105: r < s; 106 ~ 107; 108:
r < s; 109 ~ 110; 111: r < 55 112: r < s; 116 ~ 117; 155 ~ 163; 156 ~ 164; 157 ~ 165; 158 ~ 160;
159: r < s; 162 ~ 166.

6.2. Normaliser Structure. Let X be a G-cr subgroup of G. The following result gives us a
method for calculating the structure of Ng(X). In particular, one need only inspect the parabolic
subgroups of G which are minimal subject to containing X, and the normaliser of a Levi subgroup
which is minimal subject to containing X. By Proposition there is a unique such Levi subgroup
up to conjugacy, and there are finitely many such parabolic subgroups to consider, corresponding
to the different standard parabolic subgroups having conjugate Levi factors.
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Proposition 6.2. Let X be a G-cr subgroup of G.
(i) If L is minimal among Levi subgroups of G containing X, then
Na(X) = Ca(X)*(Ne(L) N Ne(X)).

(ii) There exists a parabolic subgroup P, with Levi decomposition P = QL, such that P is
minimal among parabolic subgroups containing X and Cq(X)° = (Co(X), Cger (X), Z(L)°),
where Q°P is the unipotent radical of the parabolic subgroup opposite to P.

Proof. (i) Taking Y = X in the proof of Proposition B.I] we see that if g € Ng(X) then g = ¢ 'n
for some ¢ € C(X)° and some n € Ng(L) N Ng(X).

(ii) Let U be a maximal unipotent subgroup of C(X)°. Then there is a parabolic subgroup P

of G which contains U X, such that U < @) def R, (P). Since X is G-cr, there exists a Levi subgroup

L of P containing X, and moreover we can assume that X is L-irreducible, otherwise there is a
smaller parabolic subgroup of G containing both U X and the unipotent radical of a proper parabolic
subgroup of L normalised by X. Then U < Cg(X), and thus U = Cg(X) by maximality of U.
Since X is L-irreducible, Z(L)° is a maximal torus of C(X)°. Therefore UZ(L)°, which contains
a maximal torus of Cz(X)°® and a maximal unipotent subgroup of C(X)°, is a Borel subgroup of
Cg(X)°. For the same reason, Cgor(X)Z(L)° is also a Borel subgroup of C(X)°, and is clearly
opposite to Co(X)Z(L)°. Thus Cq(X)° is generated by Cq(X)Z(L)° and Cger(X)Z(L)°, which
gives the desired result. U

6.3. Action on G-modules, separability and reductive pairs. Given a reductive subgroup X
of G, it is of interest to know how X acts on various G-modules, particularly the Lie algebra L(G)
and the non-trivial G-module(s) of minimal dimension. Such information allows one, for instance,
to study the conjugacy classes of G meeting X. Additionally, recall that X is called separable in G
if dim Cg(X) = dim Cp,)(X); equivalently, the scheme-theoretic centraliser of X in G is smooth.
Once the normaliser structure and action of X on L(G) are known, one can see directly whether this
equality holds. Recall also that (G, X) is a reductive pair if L(X) is an X-module direct summand
of L(G). Both of these properties are closely related to complete reducibility, cf. [4, Theorem 3.35].

The next lemma is useful in determining the action of X on L(G). Specifically, one first considers
the action of L, where L is minimal among Levi subgroups of G containing X, and then considers
the action of X on each L-module arising. We briefly recall some material from [3]. For a subset
I of simple roots of G, each root 8 of G can be written uniquely as 87 + S where 5; and [ are
respectively a linear combination of the simple roots in I and the simple roots not in /. The shape
of B (with respect to I) is defined to be . For a fixed shape S, we denote by Vg the sum of
all root subspaces of L(G) corresponding to roots of shape S. Since each root subgroup of G is
isomorphic as a T-module to its Lie algebra, this definition of Vg is compatible with that given in

[3, p. 553].
Lemma 6.3. Let G be a reductive algebraic group and let L be a Levi subgroup of G.

(i) If V is a tilting module for G then it is tilting for L and for L';
(ii) Suppose L = Ly is a standard Levi subgroup, corresponding to some subset I of the simple
roots of G. Then as L-modules, we have a direct sum decomposition

L(G) L L=L(L)& P Vs,
the right-hand sum taken over non-zero shapes S.
Proof. (i) is [10, Proposition 1.2(ii), Lemma 1.4(i)]. (ii) L is generated by some maximal torus 7’

of G together with those root subgroups corresponding to roots of shape zero (i.e. the roots in the
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span of I). Similarly L(L) is generated by L(7') and the root subspaces corresponding to roots
of shape zero. Hence as vector spaces, the given direct sum holds. Since T preserves each root
subspace, and since a root subgroup of L acting on a root vector of non-zero shape S can only
produce sums of other root vectors of shape S, it follows that each Vg in the given direct sum is
an L-submodule of L(G) (cf. [7, p. 64] for the action of root elements on root spaces). O

Importantly, the modules Vg arising in [3] have a very limited range of possible high weights,
which can be explicitly determined using [3, Theorem 2 and Remark 1]. For G of exceptional type,
the weights occurring are given in [I4, Lemma 3.1]. In most cases, these modules lie in the tensor
algebra of the natural modules for the simple classical factors of L.

6.4. Subgroups of F;. We now classify the G-completely reducible semisimple subgroups of G =
Fy(K). For each such subgroup X, we also give the X-module structure of L(G), as well as the

connected centraliser C° Cq(X)°. Using these, we also determine whether X is a separable
subgroup of G (‘Sep’), and whether (G, X) is a reductive pair (‘RP’). More precisely, in the two
rightmost columns of Table 38 below either we write ‘Yes’ or ‘No’ to indicate whether the subgroup
is separable or forms a reductive pair with GG, or we write conditions on the characteristic and field
twists to indicate that the subgroup is separable (or forms a reductive pair with G) precisely when
these conditions hold.

Our process for classifying subgroups is as follows. For each Levi subgroup L, and each simple
factor Lo of L, the image in Ly of an L-irreducible subgroup X of L is Lg-conjugate to one of the
subgroups in Section Bl Thus each simple factor of X either is contained in a simple factor of L,
or is a diagonal subgroup of a product of two or more such factors.

Let us illustrate with the case Lq34, of type A1As. Then X projects surjectively to the first
factor, and its image in the second factor is either A, itself or an irreducible subgroup of type A;
(given by As(#1) in Table[2). Thus one of the following holds:

e X = L'. We denote this with the ID Lys4(#0);

e p # 2and X = AjA;, where the second factor is the subgroup As(#1) in Table @2l We
denote this by Lig4(#0; #1);

e p#2 X = A, and X is embedded diagonally in the subgroup Lj34(#0; #1) above. Such
an embedding is determined by a pair of Frobenius twists, and we therefore denote this by
Ly34(#0", #1%), where r and s are the powers of p giving the twists. In such a situation we
implicitly take rs = 0.

Next, the stated composition factors of X = Ljg4(#0) = L}5, on L(G) follow from Lemma
and the calculation of the high weights of L on the modules Vg. When p # 2, L(G) is tilting, and we
obtain the direct sum decomposition stated. When p = 2, we consider instead the tilting modules
Te(Ag) = Ay (irreducible of dimension 26) and T(A1) = Ag | A1 | Ay. Each of these restricts to X
as a tilting module. Thus, using for instance Doty’s software [I1] for computing the structure of
Weyl modules, we deduce that

T(\) X = (1,T(20)) + (1,7(02)) + (0,11)?
+(0,7(20)) + (0,7(02)) + (T(2),0) + (1,0)*,
Ay 4 X =(1,01) + (1,10) + (0,01) + (0,10) + (0,11),
where we have T'(2) = 0 | 2 | 0 for A;, and T7(20) = 01 | 20 | 01 for Ay. Therefore L(G), a
52-dimensional submodule of T'(\1) with A4 as a submodule, has structure
L(G) L X = (1,W(20)) + (0, W(20)) + (0,11)

+ (1, W(02)) + (0, W(02)) + (T(2),0) + (1,0)?
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as in the table. For the other possibilities for X, we need only compute the restriction of the modules
for Lj5,, which are tensor products of modules for X, to deduce the given module structure.

Finally, each possible subgroup X above clearly centralises the 1-dimensional torus Z(Lis4).
Since the centraliser of a G-cr subgroup is G-cr [4, Corollary 3.17] and thus reductive, we deduce
that C(X)° is either a 1-dimensional torus (‘7}’) or a simple subgroup of type A;. Using Propo-
sition [6.2] we need to consider the action of X on the unipotent radical @ of the (unique) standard
parabolic subgroup having L34 as a Levi factor. We find that the proper subgroups of L), (and
only these) centralise a vector of Q). Specifically, the module Vg, where S consists of roots having
ag-coefficient equal to 2, is an irreducible high weight module (0,20) for L}5,, and thus restricts
to the diagonal subgroup Li34(#0; #1) as the symmetric square S?(2) = 4 + 0. The 1-dimensional
trivial submodule here gives rise to a 1-dimensional X-invariant subgroup, hence dim Cg(X)° > 2,
and so Cg(X)° is simple of type Aj. This gives all the information for these subgroups in Table

Remark 6.4. The following semisimple reducible G-cr subgroups were omitted in [28, Table 4.1]:
Lioa(#1;#0), Luga(#107; 400)), Lya4(#0; #1), Liga(#00); #160), Ligg(#5), Lios(#6), Lias(#7)
when p = 2, Lio3(#11), L123(#12), Lo3a(#9), Loga(#10), Loga(#11), Loga(#13), Loza(#14),
Loss(#15) when p > 3, Log(#3) when p = 2, Log(#5), and Lss(#1) when p > 3.

Table 38: Reducible, G-cr subgroups of G = F4(K)

X ID Conditions LG) I X c° Sep RP
Bz Li23(#0) p#2 010 + 1002 + 001% + 0 T Yes Yes
p=2 ((010 + 0)[100|0) + W (100)2 + 0012 A Yes No
03 L234(#0) P # 2 200 + 0012 + 03 1211 Yes Yes
p=2 (0/200[(010 + 0)) + W(001)? + 0? Ay Yes No
As  Lias3(#2) T(101;0) + 100% 4 0102 + 0012 + 02 Ay Yes p#2
Losa(#3) p= ((020 + 0)101) + ((200 4 002)[010)2 + 0% A, Yes No
A1By  Lios(#4) p= (0](0,02)[((2,10) + 0?)[((2,0) + A Yes No
(0,10))[0)+(((2,0)+(0,10))[0)*+(1,01)
L234(#1) P }é 2 (2, O) + (O, 02) + (O, 01)2 + (1, 01) + 1211 Yes Yes
(1,10)% + 03
p=2 (0](0, o2)|0|((o 10) + (2,0))[0%) + Ay No No
(0,01)2 + (1,01) + (1, W(10))? + 02
A1Az L124(#0) p#2 (2,0) +(0,7(11;0)) + (0,10) + (0,01) + T3 Yes p#3
(1,10) 4 (1,01) + (2, 10) +(2,01) + (1,0)?
p=2 (T(2),0) + (0,11) 4 (0,10) + (0,01) + Ty Yes No
(1,10) 4 (1,01) + (W(2),10) +
(W(2),01) + (1,0)*
L134(#0) p#2 (1,20) + (1,02) + (0,20) + (0,02) + Ty Yes p#3
(0,7(11;0)) + (2,0) + (1,0)?
p=2 (1,W(20)) + (0,W(20)) + (0,11) + Ty Yes No
(1, W(02)) + (0,W(02)) + (T(2),0) +
(1,0)?
A3 Li23(#1) p#2 (1,1,2)+(1,1,0)24(0,1,1)3+(1,0,1)*+ Ty Yes  Yes
(2,0,0) +(0,2,0) + (0,0,2)> + 0
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p=2 A ew @) 1)+l 12+ 1k 124+ A No No
(1 @ 1151,0)2 + (02[((21"),0) + (2], 0) +
(0,2))[0%) + (W(2)l, 0)>
Lios(#11) p=2 (((2")2) + (2 ® 2l 0) + (2,2) + A Yes No
0%)[((2,0)+ (21"}, 0)+(0, 2))[0) +(((2,0) +
(2l",0) + (0, 2))|0)2 + (1 @1 1)?
Losa(#2) p>5 (4,2)+(4,1)24+(2,0)+(0,3)%2+(0,2)+0% A; Yes  Yes
p= (T'(4),2) + (2,0) + ((0,1)]((4, 1) Ay Yes No
(0,3))[(0,1))% + 0
Losa(#7) p>5 (2,0) + (0,7(652)) + (0,3)2 + (1,3) + A4 Yes p#5
(1,4)* + 03
Losa(#9) p=2, (02 + (281 2)[ (2!, 0) + (21, 0) + Ay No No
r# s, s+1 (0,2))]0%) + (111, 1)2 + (1T @ 16 1) +
(1 @261, 0) + (117, 2))[ (17, 0))* + 0°
p=2r=s (04(2,2)[((2,0)+(2,0))]0)+(0, T'(2 ) N+ A No  No
(1L, 1)?+(T'(2), D+(3,0)*+(1, W(2))*+0*
p=2, (0% +(2,2)/((4,0) +(2,0) +(0,2))[0%) + Ay No No
r=s+1 (1,1)% 4+ (3,1) + (((T( )[1],0)+
(2,2))[(2,0))* + 0
Loz (#10) p=2 ((0% 4 (0,2 ® 2["1))|((2,0) + (0,2) + Ay No No
(0,201))]02)+(0,1 @ 1124 (1,1 @ 1071)+
(((1,2) + (1,2I)](1,0))* +0?
Lo3a(#13) p#2 (2,0) + (20) + (0,2) + (1@ 1M 12+ A4 Yes  Yes
(1, 1)+ (1 1) + 1@ 170) + (1,0)2 +
(117,0)2 + (0,1)% + 0°
p=2 (01((2,0) + (2",0) + (0,2)[0*) + 1® A4 No No
112+ (1, 1) + (1 1) + (1@ 10, 0) +
(1,0)2 + (11"1,0)% 4 (0,1)2 + 0?
Ay Ll(#O) T(2, 0) + 114 4020 Cs Yes p#2
L3 (#0) p#2 27+ 18 4015 As Yes  Yes
p=2 T(2)+ W (2)¢ +18 + 0 Bs Yes No
Lia(#1) pF#2 T(4;0) + 23 + 07 Ay Yes  Yes
Lsa(#1) p#£2 T(4;0)" +2+07 Gs Yes  Yes
Lis(#0U; #06)) p £ 2, r #£ 5 ol (263 4 (1t 4 (abhr - (1M ATy Yes  Yes
12 4 (1l @ 2[s1)2 4 0%
p#E2,r=5 20+ 18 +7(3;1)2 + 06 A1A7 Yes  Yes
p=2, T 1) + A ew@)k)2 4+ A4 Yes No
r#s,s5+1 (12 4 (1) 4+ (10 @ 112 +
(W(2)l)? + 02
p=2, T©2)+T@2)MW + (04022 +1* +2*+ A4,  Yes No
r=s+1 32+ W(2)2 +0?
p=2,r=s 32+ T2)+W(2)% + 119 + 02 Ay Yes No
Los(#3) p>5 T(6;2) +4* + 3% 4+ 06 A2 Yes p#5
p=2 ((0246)[(2+4)[0)+ ((2+4)[0)*+3*+0° By Yes No
Los(#4) p#2 2+20 + (1@ 1) 4 14 4 (14 + 010 By Yes  Yes
p=2 (0](2I" +2)[0?) + (1 @ 1I)> + 14 + Bs No No

(14 0°
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Las(#5)

p=2

Ligg(#0U7; #10hyp +£ 2,

r#s,s+1
pF2,r=:s
p=3,
r=s+1
p =5,
r=s+1

Liog (#1071 #0050y £ 2, 1 +£ 5

L3 (#7)

Li23(#9)
L1o3 (#12)

L34 (#5)
Losy (#1 1)

p#2,r=s
p#2,

r, s,t distinct
p#2,
r=s<t
p#2,
r=t<s
p# 2,
r<s=t
p=2,

r, s,t distinct

p=2,
r<s=t

p =2,
r=t<s
p=>T

p=2

p=>7
p=2,1#
s,t,s+ 1,641
p=2,r=s,
t>2
p=2,r=s,
t=1

p=2,
r=s+1,t>2
p=2,r=t+1
p=2,
r=t=1

((02+(272“ N2+ 2)]0) + (2 +
T)IO)“ + (@1t 4 0°

(107 @ T(4;0)1)% + (T (4; 0)1)% + 2 4
2kl + (“V

T(5;3;1)2 +12+224+7T(4;0)3
1M1 @20y + 1)1 + 7(4;0)% +
2 + 20 4 (1012
(4® 102 4 (11)* 24 201 43 4 03

(4;0)s] + (261)3 4 201 4 (107 @ 20s1)2 4
2lrl & 2 S]) (1[r])2

(4;0)3 + 20+ T(3;1)2 +12

1 @ 115 @ 201) 4 2] 4 2ls] 4 (2[1)3 4

1M 1ls ) (1[S]®1[t]) (1[T]®1[t])2+0
2@2M) +2¢ + @) + 1@ 10)* + 0%

(T(3;1) @ 101) 426 4 205 4 (1 111)* 4 03
2+ (20 + (10T(3; 1)) + (1@ 1)) 403

"l w16l & W(Q)[t]) (1[r] ® 1[5])2 +
o124 e 12 4 (w(2)th)? +
02| (2] 4 2[s] 4 2[8102)

@36 + (1@ 161)5 + (T (2)l)3 +

(2 4 260)]0) + (W (2)[])?

1)) + (1 @ 161)5 + 7(2)? + (0] (2 +
0) + W (2)?

;2) 4 6° + 07
[]®2H)+(2®2W)+(2®2[Sl)+
(2 + 20 4 261)]0) 4 (2 + 207 +

10)2 + (1 @ 117 @ 1])2
T(10 2) +6+17(9;3)%+ 03
(02 + (214 @ 21))| (20 +- 21 + 2111)|02) +
16s] @ 1112 (H®1[]®1H)
(1H®2[S]) (1[1”]@2 ))|1 ) + 02
0+ (2@2M1))[(2+21)]0) + T(2) + (1©
124 (T(2)@11) +3%+ ((10211)[1)2+0?
+6)|(2+4)[0) + T(2) + 3 + T(4) +
W(5)? + 0
+@2e@2M)[2+4+2M0%) +(1®
+ (3@ 1) + (0j4/(0+ (2 ®

10102+ (1 ﬂ)+(0l4ml((2®
1) 4 0)211)2 +02

(04 (2@ 4)[(2+4)|0) +T(2)M +32 +
(T(2)M @ 1)+ (2®4)% + ((0/14]0[2)> + 02
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