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o-FINITENESS OF ELLIPTIC MEASURES FOR QUASILINEAR
ELLIPTIC PDE IN SPACE

MURAT AKMAN, JOHN LEWIS, AND ANDREW VOGEL

ABSTRACT. In this paper we study the Hausdorff dimension of a elliptic measure py in
space associated to a positive weak solution to a certain quasilinear elliptic PDE in an
open subset and vanishing on a portion of the boundary of that open set. We show that
this measure is concentrated on a set of c—finite n — 1 dimensional Hausdorff measure
for p > n and the same result holds for p = n with an assumption on the boundary.

We also construct an example of a domain in space for which the corresponding
measure has Hausdorfl dimension < n — 1 — § for p > n for some § which depends on
various constants including p.

The first result generalizes the authors previous work in [3] when the PDE is the
p—Laplacian and the second result generalizes the well known theorem of Wolff in [24]
when p =2 and n = 2.
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In this paper we continue our study of the Hausdorff dimension of a measure associated
with a certain positive weak solution, u > 0, to a PDE of p Laplace type. To introduce
the PDE and the measure, we fix p, 1 < p < oo, and let f : R™\ {0} — (0,00) be a real
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valued function with the following properties,

a) f is homogeneous of degree p on R™ \ {0}.
That is, f(n) = [P f (‘—Z|> > 0 when n € R™\ {0}.

b) Df = (fus-- - fn,) has continuous partial derivatives when 1 # 0.

¢) f is uniformly convex on B(0,1) \ B(0,1/2).
That is, there exists ¢, > 1 such that for n € R",1/2 < |n| < 1,

and all € € R" we have i [¢* < 3 2L (n)g;¢, < calef.
G k=1

Put f(0) = 0. We next give examples of such f.

Example 1.2. From a) in (1.1) it follows that f(n) = x(n)|n/” when n € R™\ {0}, where
K is homogeneous of degree 0. Using this fact one can show that if € is sufficiently small,
then f(n) = [n|P(1 + eni/|n|) satisfies (1.1). Such an f is not invariant under rotations.

From homogeneity of f and Euler’s formula we have for a.e n € R™ that

(1.3) (Df(n),n) =pf(n) and n(D*f(n)) = (p — 1)Df(n)

where D2 f(n) = (fnjm,) is an n by n matrix and 7, Df(n) are regarded as 1 x n row
matrices.

Let O be an open set in R” and 2 € 0. Let u be a positive weak solution in ONB(Z, p)
to the Euler-Lagrange equation

(1.4) Apu:=V -Df(Vu) = Y foum (V) ig,e, =0
J,k=1

in O N B(2,p). That is, u € WP(O N B(2,p)) and

/(Df(Vu), VO)dx = 0 whenever 0 € Wol’p(O N B(z,p))

where VO(x) = (;—fl, cey E)aw—i)(x) whenever these partials exist in the distributional sense.
We assume also that w has continuous zero boundary values on 0O N B(%, p). We con-
tinuously extend u (denoted with u also) to all B(Z,p) by setting u = 0 in B(2,p) \ O.
It is well known from [11, Theorem 21.2] that there exists a positive locally finite Borel
measure py on R™ associated with u. We call this measure as elliptic measure associated
with a positive weak solution of (1.4). This measure has support contained in 0ONB(z, p)

with the property that

(1.5) /(Df(Vu), Vo)de = —/qﬁd,uf whenever ¢ € C§°(B(Z, p)).

Existence of py follows from the maximum principle, basic Caccioppoli inequalities for u
and the Riesz representation theorem for positive linear functional. Note that if 9O and
f are smooth enough then from an integration by parts in (1.5) and homogeneity in (1.3)
we deduce that

Vu e
dpy = p%dﬂ oonB(z.p)-

We next introduce the notion of the Hausdorff dimension of a measure. To this end, let A
be a real valued, positive, and increasing function on (0, c0) with liH(l) A(r) = 0. For fixed
T—



o-FINITENESS OF ELLIPTIC MEASURES 3

0 < d and E C R", we define (0, \)— Hausdorff content of E in the usual way;
(1.6) HYNE) = inf {Z A(r;) where E C UB(zi,ri), 0<r <6, x; € R"} .

Then the Hausdorff measure of E is defined by
HNE) = lim H)E).
6—0

In case A(r) = r® we write H* for #*. The Hausdorff dimension of ff, denoted by
H — dim py, is defined by

H —dim gy :=inf {a : FBorel set £ C 00 with H*(F) = 0 and pu¢(R" \ E) = 0} .

Recall that p is said to be absolutely continuous with respect to v (if u,v, are positive
Borel measures) provided that u(E) = 0 whenever E is a Borel set with v(E) = 0.
Following standard notation, we write u < v. A set F is said to have o—finite v measure
if

o
E = UEiwithu(Ei) <oofori=1,...,00.
i=1
We note that if f(n) = |n|?, then the Euler-Lagrange equation in (1.4) is the usual Laplace
equation. In this case, if u is the Green’s function for Laplace’s equation with pole at
some zg € €, then the measure corresponding to this harmonic function u as in (1.5) is
harmonic measure relative to zy and will be denoted by w.

The Hausdorff dimension of w has been extensively studied in the last thirty five years
in planar domains. In particular, in [8], Carleson proved that H — dim w = 1 when 02 is
a snowflake and H — dim w < 1 for any self similar Cantor set. In [20], Makarov proved
that

Theorem A (Makarov). Let Q be a simply connected domain in the plane and let A(r) :=

r exp{A\/log % log log log %} Then

a) w is concentrated on a set of o—finite H' measure,
b) w < H provided that A is large enough.

We note that Theorem A implies H —dim w = 1 when 2 is a simply connected domain.
For arbitrary domains in the plane, in [12], Jones and Wolff proved that H — dim w < 1
whenever Q C R? and w exists. In [23], Wolff improved this result by showing that w is
concentrated on a set of o—finite H! measure(see also [5, 13, 22]).

The Hausdorff dimension of harmonic measure in higher dimensions is considerably
less understood than in the plane. When n > 3, in [7], Bourgain proved that H —
dim w < n — 7, where 7 > 0 depends only on the dimension n and the exact value of 7
remains unknown. On the other hand, in [24], Wolff constructed examples in R3, we call
Wolff snowflakes, for which the corresponding harmonic measures could have Hausdorff
dimension either greater than 2 or less than 2. In [18], the second author, Verchota, and
the third author proved a conjecture of Wolff in the affirmative: it was shown that both
sides of a Wolff snowflake in R™ could have harmonic measures, say w1, ws, with either
min(H — dim wy, H — dim wg) > n —1 or max(H — dim wy, H — dim wy) <n — 1.

If f(n) = |n|P in (1.4), then the resulting PDE is called the p— Laplace equation:

(1.7) V- [[VufP2va] = 0.
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In this case, a solution u to (1.7) is called a p—harmonic function and the corresponding
measure in (1.5) associated with u is called a p—harmonic measure and will be denoted
by fip.

The nonlinearity and degeneracy of the p—Laplace equation makes it difficult to study
the Hausdorff dimension of p—harmonic measure. The first result was obtained in [6],
when Bennewitz and the second author studied the Hausdorff dimension of a p—harmonic
measure, associated with a positive p—harmonic function v in NN§) ¢ R? with continuous
boundary value 0 on 9€). In that result 92 is a quasicircle and N is an open neighborhood
of 0€). It was shown that all such measures, p,, corresponding to u, 2, p as above, have
the same Hausdorff dimension. Moreover,

H —dim p, > 1 when 1 < p <2 while H — dim p, <1 when p > 2.

After earlier studies in [6, 14, 16], the second author proved the following analogue of
Theorem A in the p—harmonic setting (see [15]);

Theorem B (Lewis). Assume that Q C R? is a bounded simply connected domain and
N is a neighborhood of 0S). Let u be a positive p-harmonic in QNN with zero continuous
boundary values on 0. Let p, be the p—harmonic measure associated with v as described
above. Let A(r) be as in Theorem A. Then

a) If 1 < p < 2, there exists A = A(p) > 1, such that p, < H.
b) If 2 < p < oo, then pu, is concentrated on a set of o— finite H! measure.

A key fact used in [6, 14, 15, 16] is that if { = w or { = ug,, ¢ = 1,2, then ( is a weak

solution to
2
9 aC
1.8 L¢ = — | ba—>1]=0
(18) ¢ Z oxy, < ]kdx)
Jk=1
where
b, = |Vu[P~? [(p — 2)ue,; sy, + 5jk|Vu|2] .

Furthermore, if v = log|Vu| then Lv < 0(Lv > 0) when 1 < p < 2(2 < p < 0).
Moreover, arguments in these papers also make heavy use of the fundamental inequality;
(1.9) % ~ |Vi(z)| whenever z € Q\ B(zg, 7).
where 4 is a certain “p—capacitary function” in Q\ B(zo, 7o) for some fixed 29 € 2 and
ro = d(20.02)/2. The proof of (1.9) is highly nontrivial in a simply connected domain
when 1 < p # 2 < 00, and in fact is the main result proved by the second author, Nystrom,
and Poggi-Corradini in [16, Theorem 1.5]. However if p = 2, (1.9) is an easy consequence
of the Koebe distortion estimates for a univalent function (use & = a Green’s function for
2). We also note that (1.9) can easily fail in arbitrary domains of R™ for n > 2.

Tools developed for p-harmonic functions in a series of papers by the second author
and Nystrém were used in [17] to obtain that u, is concentrated on a set of o—finite H" !
measure when 9€) C R” is sufficiently flat in the sense of Reifenberg, u > 0 is p harmonic
near Jf2 and p > n. It was also shown in the same paper that if p > n then all examples
produced by Wolft’s method had H — dim pu, < n — 1, while if p > 2, was near enough
2, then there existed a Wolff snowflake for which H — dim p, > n — 1. These examples
provided the current authors with the necessary intuition to state and prove the following
theorem in [3].

Theorem C (Akman, Lewis, Vogel). Let O C R™ be an open set and 2 € 9O, p > 0. Let
u > 0 be p-harmonic in ONB(Z, p) with continuous zero boundary values on 0ONB(Z, p),
and let p, be the p-harmonic measure associated with u. If p > n then p, is concentrated
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on a set of o—finite H"~! measure. If p = n the same conclusion is valid provided
00 N B(Z%, p) is locally uniformly fat in the sense of n—capacity.

The definition of a locally uniformly fat set will be given in section 2. We remark that
Theorem C and the definition of H — dim p, imply that H — dim p, <n —1 for p > n.
A key lemma proved in this paper states that if v = log |Vul, then Lv > 0, weakly on
{z : Vu(xz) # 0}, when p > n. Here L is defined as in (1.8) with 2 replaced by n in
the summation. Using this fact, some basic estimates for p harmonic functions, and a
stopping stopping time argument as in [12, 23], we eventually arrived at Theorem C.

n [2], the authors studied the PDE (1.4), Aju = 0, and showed in R? that if u, f are
sufficiently smooth and Vu(x) # 0, then both u, u,,, i = 1,2, satisfy

2

(1.10) =S 2 (fW,k(Vu) C) — 0.

ox ;
k=1 "k T

in an open neighborhood of x. Furthermore, if & = log f(Vu) then pointwise in this
neighborhood Lo < 0(L# > 0) when 1 < p < 2(2 < p < o0). In[1]it was shown by the first
author for general f as in 1.1 that Lo < 0(Lo > 0) weakly when 1 < p < 2(2 < p < o0).

Using this fact and following the game plan of [6, 16], the first author proved in the same
paper that

Theorem D (Akman). Let Q C R? be any bounded simply connected domain and let N
be a neighborhood of 02. Let u be a positive weak solution to (1.4) in QN N with zero
continuous boundary values on 0. Let jiy be the measure associated with u as described

above. Let \(r) :==r exp{A,/log % loglog 1} for 0 < r < 1075. Then

a) If 1 <p <2, there exists A= A(p, f) > 1, such that py < iy
b) If 2 < p < oo, there exists A = A(p, f) < —1 such that py is concentrated on a

set of o—finite H* measure.

Note that Theorem D implies

1 when1l<p<2,
1 when p=2,
<1 when 2 < p < oc0.

v

H —dim puy

We also note that Theorem D is slightly weaker than Theorem A when f(n) = |n|?,
p¢ = w, and Theorem B when f(n) = 9P, 1 <p #2 < o0, fif = pip.

In this paper, we focus on the Hausdorff dimension of pf, in the same setting as in
Theorem C. More specifically we prove

Theorem 1.11. Let O C R™ be an open set and 2 € 00, p > 0. Let f be as in (1.1).
Let u > 0 be a weak solution to Aju = 0 (see 1.4) in O N B(Z, p) with continuous zero
boundary values on 0O N B(Z, p), and let jiy be the measure associated with u as in (1.5).
If p > n then py is concentrated on a set of o— finite H" ! measure. The same result holds
when p = n provided that 00 N B(Z, p) is locally uniformly fat in the sense of n— capacity.

Remark 1.12. Theorem 1.11 and the definition of the Hausdorfl dimension of a measure
imply once again that H —dim puy < n —1 when p > n.

We also construct for a given f some domains in R™ for which H — dim py < n —1
when p > n. To give the construction, let 0 < a < 8 < 1/2 be fixed numbers and let S be
the cube in R™ with side length 1 and centered at 0. Let S’ be the cube with side length
ap = 1/2 and centered at 0 and set Cp = S’. Let Ql,l,...,Ql,Qn be the closed corner
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on

cubes of Cy of side length apai, « < a; <. Let C; = | QU Let {QQJ}, j=1,...,2°"
i=1
be the closed corner cubes of each Q14, @ = 1,...,2" of side length agajaz, a < ag < 5.
2271, 5
Let Co = |J Q2,5 (see figure 1.1).
j=1
[ [ 3 . %
(| (R > by
(| [ T o
(| (| * EOE
C() Cl CQ C

FiGure 1.1. The sets Cy,C1,Cs,C when n = 2.

2nm 2nm

closed cubes, @Qp, 5, j =1,...,
znm

of side length agajas ..., am, @ < a, < f. Let Cp, = |J Qm] Then C is obtained as the
j=1

Continuing recursively, at the m th step we get ,

limit in the Hausdorff metric of C,, as m — oo.

Following an unpublished result of Jones and Wolff (see [10, Chapter IX, Theorem
2.1]), we prove

Theorem 1.13. Let S be the unit cube and C be the set constructed above. Let u®™ be a
positive weak solution to (1.4) for fized p > n in S\ C with boundary values 1 on S and
0 on C. Let p3° be the measure associated with u> as in (1.5).

Then H — dim p%° <n-—1-9 for some 6 = d(p,n,cs,a, B, f) > 0.

Moreover, § > ¢~ (p —n) where ¢ > 1 can be chosen to depend only on n,a, 3, and c
in (1.1) when p € [n,n + 1].

If f = gP where g is homogeneous of degree 1, uniformly convex, and has continuous
second partials, then § can be chosen independent of p € [n,n + 1], so depends only on
n? a? 57 g'

In what follows, we state some regularity results for u in section 2. In section 3, we
show that log f(Vu) is a weak sub solution to L when p > n where L is as in (1.10) with
2 replaced by n in the summation. In section 4 we prove more advanced regularity results
and essentially begin the proof of Theorem 1.11. In section 5, we prove a proposition and
finish the proof of Theorem 1.11. In section 6, we prove Theorem 1.13.

In general to prove Theorem 1.11 we follow the proof of Theorem C which in turn made
effective use of the proof scheme in [12, 23]. However the proof that log f(Vu) is a weak
sub solution to L is more involved, and in fact somewhat surprising to us, than the corre-
sponding proof for f(Vu) = |Vu|P, since in this case we could use rotational invariance of
the p Laplace equation to considerably simplify the calculations. Also regularity results
for u, Vu,log f(Vu), require more care than in [3] due to the nearly endpoint structural
assumptions on f in (1.1).

Likewise to prove Theorem 1.13, we use the proof scheme in [10, chapter IX] only now
we have little control over the zeros of Vu. This lack of control forces us into an alternative
finess type argument which produces the ‘hodge podge’ of results on § in Theorem 1.13,
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rather than what we hoped to prove, namely 6 > a > 0 on [n,n + 1] (provided ¢, in (1.1)
is constant for p € [n,n + 1]).

2. NOTATION AND PREPARATORY LEMMAS

Let = (21, ..., x,) denote points in R” and let E, OF, be the closure and boundary of
the set £ C R™. Let (-,-) be the usual inner product in R and |z|? = (x, z). Let d(E, F)
denote the distance between the sets E and F. Let B(x,r) be the open ball centered at
x with radius r > 0 in R™ and let dz denote Lebesque n—measure in R". Given O’ an
open set C R™ and ¢,1 < ¢ < oo, let Wh4(O’) denote equivalence classes of functions
h : R" — R with distributional gradient Vh = (hy,,...,hs,), both of which are ¢ th
power integrable on O’ with Sobolev norm

Al aiony = [ i+ 117z
O/

Let C§°(O') be the set of infinitely differentiable functions with compact support in O’
and let Wol’q(O’) be the closure of C§°(0’) in the norm of W14(0’).

Let K C B(z,r) be a compact set and let A := {¢ € Wol’n(B(x,Qr)) :¢p=1on K}.
We let

(2.1) Cap(K, B(z,2r)) := inf /|V¢|”dx.
P
R”

We say that a compact set K C R" is locally (n,r9) uniformly fat or locally uniformly
(n,r9) thick provided there exists rg and ¢ such that whenever z € K and 0 < r < r,

Cap(K N B(z,7), B(x,2r)) > ¢ > 0.

In the sequel, ¢ will denote a positive constant > 1 (not necessarily the same at
each occurrence), which may depend only on p,n, ¢, unless otherwise stated. In general,
c(ay,...,ay,) denotes a positive constant > 1 which may depend only on p,n, ¢y, a1, ..., a,
not necessarily the same at each occurrence. A ~ B means that A/B is bounded above
and below by positive constants depending only on p, n, c,.

In this section, we will always assume that 2 <n < p < oo, and r > 0. We also assume
that O is an open set in R” and w € 8O.

We begin by stating some interior and boundary estimates for a positive weak solution
@ to (1.4) in O N B(w,4r). If p = n, we assume 9O N B(w,4r) is (n,7r) uniformly fat
as defined above using the capacity in (2.1). We assume that @ has zero boundary value
on 0 N B(w,4r) in the Sobolev sense and we extend @ as above by putting @ = 0 on
B(w,4r) \ O. Then as in (1.5) let fi; be the positive Borel measure corresponding to .

References for the proofs of Lemmas 2.2-2.6 can be found in [3] where these lemmas
are stated for f(n) = |n|P, however they also hold for f asin (1.1). Let ¢, be as in (1.1).

Lemma 2.2. Let O,w,r, 4, f, fiy be as above. Then there exists constant ¢ = c(p,n, cx)
such that

1
_Tp " / f(Va) dx<esssupup<c—n / aPda.
w,r r
B(w.3 Bl B(w,2r)
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If B(2,2r") € O N B(w,4r) for some r' > 0 then there is a constant ¢ = c(p,n,c.) such
that

esssup & < ¢ essinf .
B(z,r) B(z,r")

Lemma 2.3. Let O, w,r, 4, f be as in Lemma 2.2. Then there is o/ = o/ (p,n,¢,) € (0,1)
and ¢ = c(p,n, ci), such that @ has a Hélder continuous representative in B(w,4r) (also
denoted u). If w,w € B(w,r) then

~ ~ a,
() — ()] < ¢ <M> esssup i .
r B(w,2r)

Lemma 2.4. Let O, w,r,, f, fig be as in Lemma 2.2. Then there exists c = c¢(p,n,cy) > 1
such that
L1730 (B(w, 3)) < (esssup @)1 < er?~"ip(B(w, 2r)).
B(w,r)
Remark 2.5. The left-hand side of the inequality in Lemma 2.4 is true for any open O and

p > n. However, the right-hand side of this inequality requires uniform fatness when p = n
and that is the main reason why the uniform fatness assumption appears in Theorem 1.11.

Lemma 2.6. Let O,w,r, 4, f be as in Lemma 2.2. _Then @ has a representative in
WP (B(w,4r)) with Hélder continuous derivatives in O N B(w,4r). In particular, there
exists o, 0 < o” < 1, and ¢ > 1, depending only on p,n, cs, with

7

<

a// a//
|[Vi(x) — Va(y)| < c (]m — y‘) esssup |V < § <u> ess sup u.
B(,7) " B(,7)
whenever .,y € B(w,#/2), and B(w,47) € O N B(w,4r).
Moreover,

n

~p— ~ c ~
/ |Vir|P—2 Z (tgpa, ) dz < = / \Vii|Pda.
B(@,7) k=1 B(@,27)

Lemma 2.7. Let O, w,r, @ be as in Lemma 2.4. Suppose for some z € R™ ¢ > 100r, that
w € 0B(z,t) and

B(w,4r) \ B(z,t) = B(w,4r) N O.
Then there exists & = o (p,n, f) € (0,1) for which |5 p, 5, has a oL q e
extension to the closure of B(w,3r) \ B(z,t) (denoted u). Moreover,

PR c )
/ |Va|P—2 Z uijxkdxg p / |ValP dz
ONB(w,r/2)N{|Va| >0} Jk=1 ONB(w,2r)

and if y,ij € ON B(w,r/2), then

" "

Liva) - va@)| < (52)" maxgnpq, IVl < £ (52)7 maxgogn @

Proof. Lieberman in [19] essentially proves the above lemma. A careful reading of his
paper gives the second estimate in this lemma as well as the fact that |Va| > ¢! in
B(¢,r/c) whenever ¢ € 0B(z,t) N B(w,7r/2) where ¢ > 1 depends only on p,n, and
the structure constants for f. The first estimate then follows from Hoélder continuity of
derivatives, the fact that derivatives of @ satisfy a uniformly elliptic PDE in divergence
form near 0B(z,t) N B(w, 3r) (see (3.2)), and a Caccioppoli inequality. O
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3. SUB SOLUTION ESTIMATE

Let L be defined as in (1.10) with 2 replaced by n in the summation. That is,

n

. 9 aC
(3.1) L¢ = Z Ere <f71j77k(v )ax )
k,j=1
Let #(z) = log f(Vi(z)) for x € O N B(w,4r). In this section we first show that Lo > 0
weakly in a domain Q c O N B(w,4r) when p > n and Va # 0 in Q. To do so we note
that Lemma 2.6 implies @ is locally in W%2(£2) so (1.4) holds almost everywhere in €. It
follows that for [ =1,2,...,n,

o( fn, (V1))
0= [(Dr(V1). o) / Z Wul¥0) 0
(3.2) “
/Z Fon; (V) (U ) oy A
Q k=1
whenever ¢ € C§°(f2) and non-negative. Therefore, ( = t,, [ = 1,...,n, is a weak

solution to (3.1). From (1.3) we also have

(3.3) / Z T (V) iy, ¢y, dz = (p — 1) /ank (Vi)p,, dz = 0.

k,j=1

From (3.3) we deduce that ( = 4 is also a weak solution to (3.1). Let bg; = fy,, (V1)
and observe that for almost every x € €, where Va(z) # 0,

. by L
(3.4) brjlz; = Fva (V)i -

Using (3.4) we find that

[ 3 st o= [ 7 Z Fo (V)iiz 0,65,
Q

k,j=1 kj=1
(39 n e Fou (V)
/ 0 ( o (VT > .
=- — | Yfre= | bkjlaz,,; @dx
2 mok =1 axk (V ) J

where to get the last line in (3.5) we have used

(3.6) Q/mkz; lbk] xmmjaak (f’}"(L(VVUI;) ¢> dz.

(3.6) is a consequence of (3.2) with m = [ and ¢ replaced by ! ZZ?év )tb as well as the fact

that ~
P ) € Wik

; i
= ( nm<w>> bt lane, 6o

e
Q/ (I' + I")¢dz

From (3.5) we have

/ Z bk]vx Op, do =

(3.7) o ma=l
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where (after taking the zj derivative of the term)

n
I = Z —f(éﬂ) bmlbkjﬁ$1$kﬁ$mxj7
(38) m,j,k,l=1 "
I — _m ‘%1 1 bkj fopm (V@) [ (V) Uiy, Uy -
m7j7 b =
To simplify computation in (3.8) we use matrix notation. If f = f(Va), f,, (Va) = by,
1 < k <mn, then we first observe by reordering the terms in (3.8) that
= 1
(I/ + I”)f == Z [bnlaxlxkbkjﬁmjmm - ? blﬁmlmk bkjﬁmja:mbm]-

m,j,k,l=1
Let A = (lig,2,;) and B = (b;;), then for almost every x € Q,

o 1 1 ~ <\t
-~ _VaBABAB(Vi
f(p—1)? V)

where we have used (1.3) to replace b;. We look at

( BABAB('  tr(( BABAB(Y)
¢B¢ tr(¢B(Y

Observe from (1.1) that B is positive definite symmetric, A is symmetric, and from (1.4)

that tr(AB) = tr(BA) = 0. Using these facts we see there exists S an orthogonal matrix

so that S'BS = By is diagonal. Let B/ = B;/2 be the obvious square root of each

component of By so that B/, B = B,;. With A; = S*AS, it follows that

(BABAB(' (SS'BSS'ASS'BSS'ASS'BSS! (!
¢B¢t (SStB SStict
_ (S Bi4A1BiA1 By St
(S By St

(3.9) (I'+ 1"V f = tr (BA)

If £ =(S #0, then
(BABAB(' ¢ BqA1BsABq&'  €B) B)AB)B)A B B¢
(B¢t £ Byt B §B, B¢t '

Set y =¢B), # 0, E = B,A; B/, and note that E is symmetric as Bjj, A1 = S'AS, and A
are symmetric;

( BABAB (! _ yBjAB)B,A\ B, yt _yLEE yt
(Bt yyt yyt
Now one can easily prove the following properties of trace;
(Z) tr(FGH) = E]G]kal = szE]G]k = tr(HFG),
(i) tr(P71GP) = tr(G)

whenever F,G, H are matrices. Here (ii) follows easily from property (i) whenever P is
an orthogonal matrix. From these properties (i)-(ii) we have

tr(E) = tr(B}A1B)) = tr(B,B,}A;) = tr(BgA;) = tr(S'BSS'AS) = tr(BA).
Therefore, we have tr(E) = tr(BA) = tr(AB) = 0. Similarly,
tr(E?) = tr((AB)?)
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Now diagonalize E using another orthogonal matrix S, so that S{ES; = E,; with the
ijth entries given by (Ey)i; = €;0;;. Then

tr(E) = tr(Ey) = Ze,—O
(3.10)
tr(E?) = tr(SES|S{ESy) = tr(Ej) = > _e;.

Moreover,
CBABAB Ct . ySlS{EslS{ESlS{yt
(B¢t yS1Sty!
so that with z = yS; # 0 we also have

n

2.2
(3.1) CBABAB(! 2Bzt 2 €%
) t - t Toon
(B¢ 2z S 22
i=1
Let k = z/|z| so that  is a unit vector, then (3.11) implies
(BABAB('
(3.12) 0< 1"~ TBC Ze

Without loss of generality assume that e? is the largest of the ei then considering all
possible unit vectors k in (3.12) we see that

( BABAB(!' s
3.13 ———— < sup e;k; = e7.
(319) ¢B¢! W; '

Combining (3.9), (3.10), (3.12), and (3.13) we have

p (BABAB(! >i€2—
p—1 (B¢

(3.14) (I' + I")f = tr(BA)* —

Now we can use (3.10) to get

n n n
(3.15) er = —(Z e;) and €2 = (Z e)?<(n—1)) €.
=2 =2 =2
Using (3.15) in (3.14) we have
1 P n P
316 I/ I// > 2 2 _ 2 — 2 _
(3.16) (" + )f_€1+n_1€1 p_1€1 A\ b1

Finally - is decreasing on t > 1 so that for p > n we see that (I’ +1"”)f > 0. Combining
(3.7) and (3.16) we deduce that

/Z b1js, b, dz = — /I’ + I"Y¢dz

Q kJ=l1 Q

(3.17) (nn —1)/]”351; oda

whenever ¢ € C°(Q) and non-negative. It follows from (3.17) that Lo > 0 weakly in Q
when p > n.

Let 4, denote the Kronecker delta in the following lemma.
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Lemma 3.18. Let O,w,r, 4, f be as in Lemma 2.2. Let —co < 0 < —1. Let L be defined
as in (3.1) and © = log f(Vi) when z € O N B(w,4r) and Vi(z) # 0. Let Tnjme = Ojk
when Viu(x) =0 for 1 < j, k <n. If v = max{log f(Va),0} then ( =" is locally a weak
sub solution to L = 0 in O N B(w, 47°).

Proof. From Lemma 2.6 we see that v’ is locally in WLQ(OHB(M, 4r)). Given 1, e9,e3 > 0,
small, define

g(z) = (max{v'(z) — 6 — 1,0} +£9)** — 52, 2 € O N B(w,4r).

It follows from (1.1) and Lv’ > 0 weakly at © € O N B(w,4r) when v'(z) # 6 (almost
everywhere), that

0<-— E : / fnjnk(va)((ﬁg)zjvzlckdm
j,kil A w.4r
(3.19) OnBlwAn

n

o Z / 9 njm (Vﬂ)gbxjvékdx-

Jk=1 ONB(w,4r)

IN

whenever ¢ € CSO(OHB (w,4r)) and non-negative. Using (3.19), the bounded convergence
theorem, and letting first ¢y — 0, then €5 — 0, and finally €3 — 0, we get Lemma 3.18 as
desired. 0]

4. ADVANCED REGULARITY RESULTS

In this section we begin the proof of Theorem 1.11 by proving three lemmas. To this
end, let O, f,u,2,p, g, p,n be as in Theorem 1.11.

Lemma 4.1. There exists a constant ¢ = ¢(p,n,c,) and a set Q C 0ON B(Z, p) such that
(00N B(2,p))\ Q) = 0.

Moreover, for every w € Q there exists arbitrarily small v = r(w), 0 < r < 10719, such
that

B(w, 100r) C B(,p) and pr(B(w,1007)) < cpf(B(w,r)).

Proof. 1t follows from Lemma 2.4 that uf(B(z,t)) > 0 whenever x € 9O and 90 N
B(xz,t) C 00 N B(%, p). We show for ¢ > 0 large enough that 1 r(©) = 0 where

B s )+ Timing LB 1000)
@.—{xeaOmB(’z’p)'hgonf np(B,) ~f°

Then the desired set @ in Lemma 4.1 will be the complement of O, i.e, @ = (900 N
B(z,p))\ ©. To show that ;1(©) = 0, we first see from the definition of © that for every
x € O there exists ty = to(z) with

(4.2) (¢/2)pup(B(x,t)) < py(B(x,100t)) for every t € (0,tp).
Then iterating (4.2) we obtain

o 1s(Bla.1)

lim OS] = 0 whenever z € ©
-,

provided c in (4.2) is large enough. It follows that ufle is absolutely continuous with
respect to H" ! measure. Since H"T(R") = 0 we conclude from our earlier remark that
Lemma 4.1 is true. U
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Next using translation and dilation invariance of (1.4), we work in a different domain.
To this end, let

weQCIONB(2p)
be fixed and let » = r(w) be a corresponding radius as in Lemma 4.1. We first set

uw(w + rx)

o' (z) = when w +rz € B(Z, p)

esssup u
B(w,10r)

and define
Q:={z: w+rzreONB(2p)}

We observe that ' is a weak solution to (1.4) in ' as (1.4) is invariant under translation
and dilation. Moreover, u' > 0 is continuous in B((, p/r) with /' = 0 on B((, p/r) \ ¥
provided that ¢ = (2 —w)/r. As in (1.5), there exists a finite Borel measure y/; on R”
with support in 9Q' N B((, p/r) associated with '

We also note that
rP—m

esssup u
B(w,10r)

whenever E is a Borel set and Z(E) := {w +rx: z € E}.

As (1.4) is invariant under translation and dilation without loss of generality we can
assume that w = 0, r = 1 with B(0,100) C B(2, p). From Lemmas 2.4 and 4.1, we obtain
for some ¢ = ¢(p,n,c,) > 1 and 2 < ¢ < 50 that

'“/f(E) - p—1 1 (E(E))

(4.3) ¢t < pp(B(0,1)) < esssupu’ < esssupu’ < cp(B(0,100)) < .
B(0,2) B(0,t)

By definition of ' and Holder continuity of u near 90, it is easily seen that there exists
some Z € 0B(0,10) with «/(2) = 1, and

(4.4) cl< d(z,0Q") for some c_ = c_(p,n,c,) > 1.

Let M be a large number where we allow M to vary but shall fix it to satisfy several
conditions after (5.8). After that we choose s = s(M) > 0 sufficiently small with 0 <
s << e M, Let 4,0 be given such that 0 < §' < min(6,107°) and choose M > 0 so large
that

(4.5) if 14 (B(z,t)) = Mt"~" for some t = t(z) < 1 thent < &

where z € 9’ N B(0,15). Existence of such M = M(&') > 1 follows from (4.3). Following
[23], we observe from (4.5) for each z € 9Q' N B(0,15) that there exists a largest ¢ with
s <t <1 such that either

(a) ps(B(z,t)) = Mttt > s
(4.6) or
(b) t =s.

Using the Besicovitch covering theorem (see [21]) we now obtain a covering { B(zy, tx) 12,
of Q' N B(0,15), where t; satisfies either (a) or (b) in (4.6). Then each point of
Un_, B(zg, ty) lies in at most ¢ = ¢(n) of {B(zk,t;)}N_,. Let G = Gy and B = By
be the set of all balls in this covering for which (a) and (b) in (4.6) hold respectively.
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Let c_ and Z, be as in (4.4) and set r; = (8¢c_)~!. Choosing ¢’ smaller (so M larger)
if necessary we may assume, thanks to (4.5), that

N

(4.7) | B(zx, 6tx) N B(2,6r1) = 0.
k=1

Also put

Q" =0 'nB(0,15) B(zp,t) and D = Q" \ B(Z,2r1).

Cz

Let u” be a positive weak solution to ( 4) in D with continuous boundary values,

, 0 when z € 99"
u'(x) = 9§ essinf o/ when z € OB(Z,2r).
B(z,2r1)
We extend u” continuously to B(0,15) (also denoted u”) by putting
. 0 when z € B(0,15) \ Q"
u' () =4 essinf v/ when z € B(Z,2r).
B(%,2r1)

We note that u” <’ on D so by the maximum principle for weak solutions to (1.4) we
have v” < in D. Also, 0D is locally (n,r() uniformly fat where r{, depends only on n
and rg in Theorem 1.11 when p = n. Next we prove

1
Lemma 4.8. For all x € D we have |Vu"| < cM?=1 where ¢ = c¢(p,n, cy).

Proof. Let x € D, and choose y € 9D such that |z — y| = d(x,0D) = d. We first prove
Lemma 4.8 when y € 0B(z, tx) and x € B(zy, 2t;). The same reasoning can be applied
when y € 0B(0,15) or y € 0B(z,2r1). To this end, let € > 0 be given and set

/ Flaie(n — ) da
where ¢ € C§°(B(0,1)) with
/¢dx = land ¢ (z) = inﬂ) <£> whenever z € R".
€ €

We note that f€ is no longer homogeneous but f€ is infinitely differentiable. Moreover,
whenever 7,£ € R we have

n 62 €
(4.9) et PP < Y 877]]:%( )éiék < cle+ P2l
J,k=1

where ¢ = ¢(p,n,c,) > 1. Let u be a weak solution to (1.4) in D with f replaced by f¢

and the same continuous boundary values as u”. Then (1.5) holds with f,u replaced by

fe,u”. Using (4.9), an analogue of Lemma 2.6, and Schauder type estimates we see that
"

u! is infinitely differentiable in Q" and that { = ug is a pointwise solution to L*¢ = 0

where

1

(4.10) o= (e + |Vu!|)p—2 Z nie (Vud )G -

Moreover, if we let
e—./\f\w—zk\2 _ B—Wtﬁ

(w) = e Nt _ o—aNE
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Then L*¢ > 0 in B(zk,2t) \ B(zk, tr) if N = N(p,n, c.) is sufficiently large. Thus if
®(w) = (esssup v )(1 — p(w))

B(zk,2tr)
then L*® < 0 in B(z,2t;) \ B(zg,tr) . Using this fact, the maximum principle for
solutions to (4.10), u” < 4/, and comparing boundary values, we conclude that v < ® in
B(zg, 2t) \ B2k, tx). Letting € — 0, we deduce from the usual variational type arguments
and an analogue of Lemma 2.6 for u” that subsequences of {u!}, {Vu!} converge pointwise
to v”,Vu” in D and uniformly on compact subsets of D. Hence

(4.11) u” < ®in B(zy, 2ty) \ B(zk, tr).
Using (4.11) and applying Lemma 2.6 to u” we see that
c c c?
(4.12) V" (z)] < = u"(z) < = ®&(z) < — esssup v
d d Uk B(zy,2t)
where d = d(x, D). Lemma 2.4 and (4.5)-(4.7) imply
(4.13) t,lgfp esssup (v )Pt <ctp " Wy (B(zk, 4ty)) < M.

Combining (4.12) and (4.13) we see that Lemma 4.8 holds for «” at points in D which
are also in |J B(zx, 2t) \ B(zk,tx). Similar arguments also give this inequality at points
near 0B(0,15) and 0B(Z,2r;). Thus there exists an open set W with 9D C W and
V| < eMY®=1) in W N D where ¢ = ¢(p,n,c,). Applying Lemma 3.18 to «”, then a
maximum principle for weak subsolutions to L defined as in (3.1), we see that Lemma 4.8
holds for every x € D. O

The proof of the next lemma is essentially the same as in [3, Lemma 8|. For complete-
ness we give the arguments here.

Lemma 4.14. The functions |Vu"|P~2 u for 1 < j,k <n are all integrable in D.

l‘l‘k|

Proof. Let A C 92" be the set of points where 9Q" is not smooth. Clearly H" (A) = 0.
If £ € 9D \ A, then & lies in exactly one of the finite number of spheres which contain
points of dD. Let d’(Z) denote the distance from & to the union of spheres not containing
Z but containing points of 9D. If d' = d'(Z) < s/100, then from Lemma 2.7 applied to
u” we see that each component of Vu” has a Holder continuous extension to B(&,3d’/4).
Also from Holder continuity, Lemmas 2.7 and 4.8 we see that

—Z / VP2l | da

7,k=1

DNB(&,%
1
2
N5 M e 2« 1"p—2 2
< @)y [ v P e
(4.15) dik=1 DNB(#, %)
2
=2 o P "
<e(d) 2 M220-D |[Vu"|P de
DNB(#,%)

< 62M (d/)(n—l)‘

To prove Lemma 4.14 we assume as we may that B(z;,t;) ¢ B(zy,t,) when v # [, since
otherwise we discard one of these balls. Also from a well known covering theorem we
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get a covering {B(y;, 35d'(y;))} of D \ A with the property that {B(y;, 155 (vi))} are
pairwise disjoint. From (4.15) we find that

3 / VPRl A < e MY (d (i)™
(4.16) brk DB (yi, 5 d' (y:)) i
< EMH" D).

Let d(z) denote d(x,dD). We choose a covering { B(zm, 3d(zm)} of D with {B(2m, 35d(zm)},
pairwise disjoint. We note that if x € D and y € 0D with |y —z| = d(z), then y € 0D\ A.
Indeed otherwise y would be on the boundary of at least two balls contained in the com-
plement of D and so by the no containment assumption above, would have to intersect
B(z,d(z)), which clearly is a contradiction. Also we assert that if d(z) < 1000s, then
d(z) < kd'(y) where k can depend on various quantities including the configuration of the
balls, { B(zx,t;)} but is independent of x € D with d(z) < 1000s. Indeed from the no con-
tainment assumption one deduces that otherwise there exists sequences (), (Ym), (Y}n)s
with z,,, € D,y € C1,y,, € Co, where Cy, Cy are spheres in {(9B(zj,rj)}{v with Cy # Co
and

’xm - ym’ = d(xm)a ‘ym - y:n’ = d/(ym) and

(4.17) / . /
as m—00, d(xy,)/d (Ym)—00, With T, Ym, ¥, —w € C1 N Cy C A.

From basic geometry we see that either (i)C; N Cy = w. or (i) C; N Cy is an n — 2
dimensional sphere. If (i) holds then Cy,Cy are tangent, so clearly for large m, d(x,,) <
ed' (Yrm)- If (4i) holds then considering the tangent planes to Cq,Cy through w we see for
large m that

d(x,) < cd(Zm, C1 N Cy) < Ad (Ym)
where ¢ is independent of m. In either case we have reached a contradiction to (4.17).
Hence our assertion is true.

From this analysis and our choice of covering of D we see that for a given B(2,, 2d(zy,))
with d(z.,,) < 1000s, there exists j = j(m) with B(um, 3d(zm)) C B(y;, x'd (y;)) for some
0 < K’ < co independent of m.

Let 55,1 =1,2,3, be disjoint sets of integers defined as follows.

m € 51 if d(zy,) > 1000s,
m € Sy ifm¢S)and A j with B(zy,, %d(xm)) C B(yj;, %d/(yj)),
m € S3 if m is not in either S; or Ss.

Let
K = Z / ‘vu//‘pfﬂu'm’jmk‘dx forl =1,2,3.
meS) DNB(#m,2d(zm))
Then
(1.18) [V e < K+ R

D
From Lemma 2.6 and the same argument as in (4.15) we see that
(4.19) K, <cM Z d(z,)" P < EMst
meSy

where we have used disjointness of our covering {B(zm, 35d(zm))}. Using disjointness of
these balls and (4.16) we get

K3 < cMH" 1 (0D).
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Finally if m € Sy then as discussed earlier there exists j = j(m) with d(z.,) = d'(y;),
where proportionality constants are independent of m, so B(2y,, 3d(zy,)) C Bly;, £'d (y;)).
From disjointness of { B (:Um, 20 d(z,))} and a volume type argument we deduce that each
j corresponds to at most k" integers m € S3 where x” is independent of j. Using this
fact, an argument as in (4.15), as well as disjointness of {B(y;, 165 (vi))}, we conclude
that there is a £ with 0 < & < oo, satisfying

(4.20) Ky < &M Y d(zy)" ' <&M _d(y)" <#MHHOD).
meSs J
Using (4.19)-(4.20) in (4.18) we find that Lemma 4.14 is valid. O

We next show that there exists ¢ = ¢(p, n, cx) > 1 such that
(4.21) ¢t < (09" N B(0,10)) < pf(09") < c.

To prove (4.21), it follows from Lemmas 2.2-2.4, (4.7), and the fact v'(2) = 1 that u” > 1/¢
on 0B(z,4r) for some ¢ = ¢(p,n,c,) > 1. Let [ denote the line from the origin through 2z
and let ¢; be the point on this line segment in 9B(Z,4r1) N B(O 10). Let {2 be the point

on the line segment from ¢; to the origin with d({s,9Q") = 20r1 while d(¢,0Q") > 207“1
at all other points on the line segment from ¢; to (3. Then from (4.4), Lemma 2.2, and
the above discussion we see that u”({2) > 1/c for some ¢ = d(p,n,c.) > 1. Also,

B((a, 3m1) C B(0,10). Let ¢ be the point in IQ" with |¢ — C2| = d((2,09"). Applying

Lemma 2.4 with w = C , 7 = 2d((2,00"), we deduce that the left hand inequality is valid.
The right hand inequality in this claim follows once again from Lemma 2.4 and u” < u/'.

Using Lemmas 4.8-4.14 and (4.21) we prove the following lemma.

Lemma 4.22. There exists ¢ = ¢(p,n, ci) such that

v "
/|lo F(Vu") |(v 1f,|)d%"1 < clog M.

Proof. Let
log™ t := max{logt,0} and log™ t := log™ (1/t) for t € (0, 0).

We first give a proof of Lemma 4.22 for log™ f(Vu/”). To this end, we observe from Lemma
2.7 that

vu/l)
4.9 " _ f( n—1 AW
(4.23) dps =p Nl dH"™" > 0 on 00"\
It follows from Lemma 4.8, (4.21), (4.23), and H"1(A) = 0 that
"
(4.24) / log+(f(Vu”))f|(vvzfl|) dH" ! < clog M 1i/f(09") < *log M.
u
o0

To prove Lemma 4.22 for log™ f(Vu"), fix §, —00 < § < —1, and set v"(z) = max(log f(Vu"),§)
when z € D\ A. Given small § > 0 we set

(4.25) AO)={z e D:d(x,A) <0} and D(0) = D\ A(0).
Observe from Lemmas 4.8-4.14 and (4.21) that

Lu"(z) =V - (Df(Vd"(x))) =0
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exists pointwise for almost every z € D(f) and is integrable on D(f). Put

"9 - o’
10 = [ % 5 (G T) ot [ 3 5y (T, Soda
(4.26) Do) k=1 J Do) k=1

=1,(0) + I2(0)

From (4.25) and p — 1 homogeneity of derivatives of f we see that I;(6) = 0. To handle
I5(0) = I(0), we first use a barrier argument as in Lemma 4.8, and then we use Lemma
2.7 to deduce that there exists some ¢ = ¢(p,n,c,) > 1, such that

(4.27) ¢t <|Vu'| < con B(%,2r) \ B(2,2r) where ry = (1 + ¢ 1)ry

Let ¢, 0 < ¢ < 1, be an infinitely differentiable function in R” with ¢ = 1 on R™\ B(Z, 2r3),
V| < cryt,and ¢ = O on an open set containing B(Z,2r1). From (4.4) and the definition
of r1 we have |V¢| < ¢?. Rearranging I5(f) and writing f, ., for f, n, (Vu") we have

= [ ottt [ - o ol
Do) k=1 D(e) #k=1
= 121((9) + 122(0)
It follows from Lemmas 2.6-2.7, (4.27), and an argument similar to (4.15) that

n

[T22(0)] < | fme |(1 = @) V"] |7 |d

B(2,2T2) ‘Lk:l

4.28
(4.28) o S el IV [l e

B(2,2r2)\B(2,2r1) F=1
<gc,
where c is independent of 6. From (4.27) and Lemmas 2.6, 2.7, 4.8 and 4.14 we see that the

integrand in the integral defining I51(#) is bounded by an integrable function independent
of 8. Using this fact and the Lebesgue dominated convergence theorem we find that

(429) 151)1 121 / Z fnmk (JSUH mk m " Adr = 121

We claim that I}, < 0. To verify this claim let v* = v*(§) = max(u” — 4,0). Convoluting
¢u* with an approximate identity and taking limits we see from Lemma 3.18 that

/ Z fnmk (pu™)z, vg dr <0.

Moreover, once again from Lemmas 4.8 and 4.14, we observe that the above integrand
is dominated by an integrable function independent of §. From this fact, the above
inequality, and the Lebesgue dominated convergence theorem we get assertion I}; < 0.
Using (4.28), (4.29), and above claim we conclude that

4. Iim I(0) <
(4.30) lim 1(6) < c

On the other hand from [9, chapter 5] and (4.26) we see that integration by parts can be
used to get

I o / " Z fn]nku/l u_]d/]_ln 1 ( _ 1) / ,UI/anjujdanl
ap(g) k=1 ap@) =1
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where n is the outer unit normal to D(#). From Lemma 4.8, the dominated convergence
theorem, and the definition of D(f), we have

v fp 0/dH — v fp, W/dH" L as 6 — 0.
(4.31) n m
ODO)\OB(z,2r) =1 O\ A J

From (1.3), (4.30), and (4.31) we deduce

n "
v”anjnjd?-Lnfl ——p / o f(Vu') Ayt

. vul/
(432) BQN\A Jj=1 39"\/\ | |
<plp—-1)"'lim I(8) + ¢ < 2c.
0—0
vu/l

where we have also used the fact that n = and

[V

n
/ v"anjnjdH"_l <c=c(p,n,cs).
oB(,2r) 71
Letting £ — —oo in (4.32) and using the monotone convergence theorem we see that (4.32)

holds with v” replaced by log f(Vu”). Finally from (4.32) for log f(Vu”) and (4.24) we
conclude the validity of Lemma 4.22. O

5. PROOF OF THEOREM 1.11

In this section we first give a proposition which will be a consequence of lemmas we
obtained in section 4 and then we prove Theorem 1.11. To this end let O, f,u, 2, p, iy be
as in Theorem 1.11. Let w,r,@Q be as in Lemma 4.1 and let Abea positive non-decreasing

function on (0, 1] with lim AURE}
t—0t

Proposition 5.1. There is a compact set F' = F(w,r) C 00 N B(w, 20r) such that
7—[>‘(F) =0 and pp(B(w,1007)) < cpp(F).

Proof. We first note from Lemma 2.4 and the fact v” < u’ that for given j, 1 < j < N
(5.2) " Wi (B2, ) < ct; P cassup (WP~ < @47 1 (B(z5,4t)).
2j,2t;

where N is the constant defined after (4.6). For given A >> 1, we see from (4.6) that
{1,2,..., N} can be divided into disjoint subsets: the good set &, the bad set B, and the
ugly set 4 as follows,

&= {j:t; > s},

B:={j:tj =sand J](vvu“,i:l'zg) > M~ for some z € 9Q" N B(zj,s) \ A},

:={j:t; =sand j &€ B}

Let t; =t; when j € & and t; = 4s when j € B. We define

(5.3) E:=0n |J B(zt)).
jEBUB

We first show for some ¢ = ¢(p,n,c,) > 1 and given € > 0 that

(5.4) ”HQ(E) <eand ¢! < Wy (E)
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where ¢’ is as in (4.5) and ’H();‘, (E) is the Hausdorff content of E defined in (1.6). Propo-
sition 5.1 will essentially follow from (5.4). To show (5.4), observe that if

(5.5) x € U (2j,t;) then z lies in at most ¢ = ¢(n) of {B(z;,t})}.
JEBUDB

This observation can be proved using ¢; > 5,1 < j < N, a volume type argument, and
the fact that {B(z;,¢;)}Y is a Besicovitch covering of 9€' N B(0, 15).

We first consider j € 8. Using (4.12), (4.13), the definition of 98, and (5.5) we find for
some ¢ = ¢(p,n,c,) > 1 that

V" INl—n 1
(5.6) M4 < % < c(t; ) s (B(zj,t;)) whenever j € B.

Rearranging this inequality, summing over j € B, and using (5.5), we see that

Syt < emyy | | B(zith) | < (6)? M4
jEB jEB

provided ¢ = é(p, n, ¢) is large enough. Now since t;- = 4s for all j € B we may for given
A, M, e choose s > 0 so small that

A(4s) o«
(4s)"=1 = 2(¢)2MA

where we have used the definition of A. Using this choice of s in (5.6) we get

(5.7) A <

JEB

On the other hand, we may suppose & in (4.5) is so small that X(t;) < (t5)" for
1 <j < N. Then from (4.3), (4.6), and (5.5), we see that

(5.8) DA <D () < — Z"f (2,

jed jEeB jE@

Mlm

provided M = M{(e) is chosen large enough. Fix M satisfying all of the above re-
quirements. In view of (5.7), (5.8), and the definition of Hausdorff content we have

H?,(E) < e for E as in (5.3). This finishes the proof of the left hand inequality in (5.4).
To prove the right hand inequality in (5.4), we use (1.1), Lemma 4.22, and the definition
of 4l to obtain

p [ oY N U B(zj, t5) | < ul <{x € o0 : FVu) (@) < MA}>

= V(o)

5.9 ¢ fVU") e
(5.9) S(_l)m / | log f(V )’ V| dH !
"

SRS

<f

Choosing A = A(p,n, c,) large enough we have from Lemma 4.22 and (5.9),

(5.10)  pf | | B(0,10)nB(zty) | = p"(B(0,10)) — p" [ | Bz, ty) | >
JEBUDB jeu
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for some ¢(p, n,c,) > 1. Finally from (5.2)-(5.5) and (5.10),we get for some ¢ = ¢(p,n, c,) >
1 that

1 _ 1 _
5 < D wf(Blat) <= D0 Wi(Blz:1))) < uy(E).
JEBUB JEBUB

For j € & we have used the definition of ¢; so that
M}(B(Zj,lltj)) < M4n71t?_1 = 4n71,u,lf(B(Zj,tj)) = 4”71,U,If(B(Zj,t;-))

Thus (5.4) is valid. To finish the proof of Proposition 5.1, we note that we can choose
E,, relative to &' = € = 27™ for m = mqg, mg + 1, ... with

(5.11) H();‘/(Em) <2 and ¢! < Wy (Enm).

From (5.11) and measure theoretic arguments we see that if we set

E'= (U Em>

k=mgo \m=k
then it follows from regularity of ,u} that there exists a compact set ' C E’ satisfying

7—[)‘(F) =0and ¢! < 'y (F) where ¢ is as in (5.11). In view of these two estimates we
conclude that the proof of Proposition 5.1 is now complete U

We next give an easy consequence of Lemma 4.1 and Propositions 5.1. Let @ be as in
Lemma 4.1 and let A be as in Proposition 5.1. We first prove that there exists a Borel set

Q1 C Q with
(5.12) (00 N B(2,p)\ Q1) =0 and HN(Q1) = 0.

To prove (5.12) we first observe that if ;1 (00 N B(Z, p)) < oo then it follows from Lemma
4.1, Proposition 5.1, a Vitali type covering argument, and induction that there exists

compact sets {F}} such that F; C Q, F N F; = @ for k # [ and ps(Fy) > 0 with

m
p(Q\ U F) <dpp(Fng), m=1,2,...
1=1

for some ¢ = ¢/(p,n, c.) > 1. Moreover H*(Fj) = 0 for all [. Then it follows from measure
theoretic arguments that Q1 = ;2 I7 has the desired properties in (5.12). In case
pf(00 N B(2,p)) = oo, we can write O N B(Z, p) as a union of countable Borel sets with
finite 1y measure and apply the same argument in each set. Therefore we conclude that
there exists a Borel set @ in @ satisfying (5.12).

We now prove Theorem 1.11. To this end, we let
B(x,t
P:=3xe€dO0ONDB(zp): limsupw >0p.
t—0 tn—1
We first show that

(5.13) 1 (00 N B(2,p) \ P) = 0.

From Lemma 4.1 we have p1r(00 N B(2,p) \ Q) = 0. Therefore, it suffices to prove (5.13)
with @ replacing 0O N B(Z, p). To do this we argue by contradiction and thus assume
pf(Q\ P) > 0. Then, by Egoroff’s theorem there exists a compact set K C @ \ P with

py(B(z,t))

PO = 0 uniformly for xz € K.

(5.14) pg(K) > 0and }gr(l]
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Set ap = 1 and choose oy, € (0,1),k =1,2,..., such that

py(B(z,t))

<2 % forallz € K.
n—1

a
apr1 < — and  sup
2 0<t§0{k

Define Ao(t) on (0,1] in the following way: put Ag(0) = 0,
5\0(0%) = 2_k(ak)"_1 for k=0,1,...,
and define Ag(t) when ¢ € [y 41, o] in such a way that

Xo(t)
tn—l

is linear for ¢ € [ayy1, ] whenever k = 0,1,....

Clearly,

Xo(t)
tn—l

—0ast— 0.

Moreover, we observe that
Ao(2t) < 271N (t) for 0 < t < 1/2,
(5.15) s (B, 1)

= < 2'7% whenever op+1 <t < apandzx € K.
Ao(t)

Let @1 be as in (5.12) relative to Xo. Then for a given positive integer m it follows from
(5.12) that there is a covering {B(xj,7;)} of K N Q1 with

r < oz7m for all 7 and ZS\O(T]') <L
J

We may assume that there is an x; € KN B(xj,r;) for each j since otherwise we discard
B(zj,7j). Then from (5.15) we find that

lu'f(K N Ql) < Z,Uaf(B(.%';,QTJ)) < 217m25\0(27"j) < gn+2—m.
J j

Since m is arbitrary, we have p¢(K NQ1) = 0. Using this equality and (5.12) we find that
pr(K) = pr(Q\ Q1) + (K NQ1) =0 and so we have reached a contradiction in (5.14).
Hence, pf(Q \ P) =0 and (5.13) holds.

We next show that the set P has o— finite #"~! measure. To this end, once again we
may assume (00 N B(Z,p)) < oo. Let m be an arbitrarily fixed positive integer and

define
B(z,t 1
P, =qxeP: limsupM>— .
t—0 =1 m

Given § > 0 we choose a Besicovitch covering {B(y;,7i)} of Py, with
Yi € Py, 13 < 5, B(y;,r;) C B(%,p), and rf_l <m pg(B(ys,ri))-
It follows that
(5.16) Zrinfl < mz,uf(B(xi,m)) < ecmus(00 N B(2,p)) < oc.
i i

Letting & — 0 and using the definition of H" ! measure we conclude from (5.16) that
H"Y(P,) < oo. As m is arbitrary we conclude that P has o—finite H" ! measure.
In view of this observation, (5.13) and Lemma 4.1, the proof of Theorem 1.11 is now
complete. O
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6. PROOF OF THEOREM 1.13

This section is dedicated to the proof of Theorem 1.13. Before giving a proof we recall
our setting from section 1; let

= {Q,w; k=1,..., andj = 1,...,2’?”}
denote the set of cubes defined in section 1 and let C be the corresponding Cantor set.
Also as in section 1 let S be the cube in R™ with side length 1 centered at the origin. and
let u*° be the positive weak solution to
Apu™ =V -Df(Vu™)=0in S\ C
with continuous boundary values 1 on dS and 0 on C. Let ,u?o be the measure associated
with 4 as in (1.5). For ease of notation, we write u,u for ,u?o,uoo. Next let a, 8 be the

constants as in section 1 and S(QM) = apa1as...a < 2~ +1) denote the side length of

Qk,j where o < a; < 8 < 1/2 for every i = 1,2,.... Let ¢, be the constant as in (1.1).
Let Q €T for some k with k& > 10° and j = 1,...,2"". We first show that
(6.1) 1(100Q) < emax uP~t < 2u(Q) for some ¢ = ¢(p,n, ¢y, o, B)
02Q

where once again ¢, is as in (1.1). To prove (6.1) note from the geometry of C that there
exists a smallest Q' € I' with ) )

100Q C (1+0)Q'
where 0 = ﬁ min(a, 1/2 — 8). Covering Q' N C by balls of radius ~ s(Q) and applying
Lemma 2.4 in each ball we deduce that
(6.2) 1(100Q) < w(Q') < ¢ max_ uP~!

0(1+6)Q’

where ¢ = ¢(p,n,c.,a, ). Using Harnack’s inequality, basic geometry and once again
Lemma 2.4 we also see that

(6.3) (s(@)"? max_wuP' <E(s(Q)"F max_uP! < Ep(Q)

a(1+6)Q’ 9(1+0)Q
where ¢ has the same dependence as ¢. Combining (6.2) and (6.3) we obtain (6.1). From

Holder continuity of 1 — u near S, Harnack’s inequality, and Lemma 2.4 we also find
that

(6.4) u(C) =1

where proportionality constants depend only on p,n, cs, «, 8. Analogous to Proposition
5.1 we prove

Proposition 6.5. Let Q € T be a given cube. Then there exists & > 0 with the same
dependence as 6 in Theorem 1.13, ¢ = ¢(p,n, cy, 0, B) > 1, and a compact set F C C N Q
with

H = (F) = 0 and (@) < eu(F).

Proof. We shall only show that the conclusion of Proposition 6.5 is valid with Q replaced
by Qo = the closed cube with side length 1/2 and center at 0 (denoted Cy in section
1). The general version of Proposition 6.5 is proved in a similar way, as one sees from
using (6.1) and arguing as in the construction of «' in (4.3), With this understanding, we
simplify the proof of Proposition 6.5 further by noting that if A\(r) = 1= 0 < < 1,
then from measure theoretic type arguments it suffices to show for given ¢,7 > 0, that
there exists ¢’, ¢ as above and a compact set F' C C with

(6.6) HNF) < eand pu(F) > 1/c.
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To prove (6.6) and in view of the proof of Theorem 1.11 we shall need some more notation:
Let {B(z;, %)}{Vl , 1 € 0Qo, be a Besicovitch covering of 0Qy and set

3 M 9
Qo := Qo U (U B(xy, 1—0))
=1

where 6 = ﬁ min(a, 1/2 — 3) as earlier (see figure 6.1).

. - T o .-.Q I. e o o o o o ® 4
. H [ -:’-' °
st 4 i R

" = &

° : °

° °

° °

° 4
5 - ° g °
.. i ::. . |
) - : o
.':J S 8y = °
o s . ] . .w... '°l

Qo Qo

FIGURE 6.1. The cubes Qg and Q.

If Q is a cube with center z let 7Q = {z = 2z + 2vs(Q)y : y € Qo }. We write Q for 1Q.
From our constructions we have for k =1,2,...,

Qryj C Qry C (1460/2)Qr,
(6.7) (1+0)Qr; N (1+0)Qpy =D for j # 5 and
either Qk,J C Qk’,j’ or de N Qk’,j’ = @, when k > kl.

Let A be a finite disjoint covering of C by cubes in I and let A be the collection of all
Qr,; with Q ; € A.

Remark 6.8. Note that cubes Qk,j € A are closed cubes whereas the cubes Qrj; € A\ are
open. Moreover, figure 6.2 tells us (as an example) that Qi1 ; ¢ A and Qi ;, ¢ A. On

the other hand, Qk,jl e A and QkH_le € A and therefore by definition of A, Qrj €A
and Q]H_le €A

Let @ be the positive weak solution to

A=V -Df(Va)=0in Q=B0,n)\ | Q
QeA

with boundary values 1 on 0B(0,n) and 0 on 9Q for every Q € A. Extend @ to B(0,n)
by putting @ = 0 on every @ € A. Let i be the measure associated with @ as in (1.5). Let
7 = log f(V@) and define L as in Lemma 3.18 relative to @. Recall from this lemma that
max(7,7) is a weak sub solution to L whenever i € (—o0, 00). Then Lo = v weakly, where
v is a locally finite positive Borel measure on Q N {z : |Va| > 0}. In case p = 2,n = 2,
we shall see that v is a locally finite atomic measure on ().

Next we state a key lemma.
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(1+ 0/2%'

/ | \

Qk+1,j1

FIGURE 6.2. The cubes Qk_le, Qle’ Qk+17j1’ de'l, and Qk+1,j1'

Lemma 6.9. Letﬁ,ﬁ,ia,@ v, bNe as above aNnd suppose Qe f\f&. There exists co, c3,C4 >
10°, such that if Q' C Q, Q' € A, and c25(Q") < 5(Q), then

C4

/ udv > ¢ (@) where O = {w €(14+0)Q: d(x,09) > S(Q)}
O

and Q € A is the cube associated with Q € A. Here ¢y, ¢4 depend only on p,n,cy, o, 3,
and can be chosen independent of p € [n,n + 1] provided c, in (1.1) is constant on this
interval. Also cgl >(p— n)cgl, where c5 has the same dependence as cs.

Moreover, if f = gP, where g is as in Theorem 1.13, then cgl can be chosen to depend
only on n,g,cy,, 3, when p € [n,n + 1].

Proof. Let & be the minimum of @ on d(1 + 6)Q and let
G={zx: a(x) <&2}N(1+6)Q.

We note that .

d(0G,00) > ¢ 's(Q) and € > ¢! max u

(1+9)Q

thanks to Harnack’s inequality and Holder continuity of # near 02 (Lemmas 2.2 and
2.3). From this note and our hyphothesis, we deduce that if ¢ is large enough, then a
component of G, say G, contains two disjoint cubes, (1+60)Q1, (1+6)Q2, with Q1,Q2 € T
and

() 1s(Qs) < 5(Q) < s(Q;) fori = 1,2,
where c’NhaS the same dependence as ¢z in Lemma 6.9. Let {; be the minimum of @ on
I(14+0)Q1UI(1+60)Q2. Then from our construction, the maximum principle for solutions
to (1.4), and once again Harnack’s inequality - Holder continuity of u near 0f), we see
that G’ contains at least two components of G; = {z : u(x) < &/2}. Moreover,

(6.10) d(0G1,00) > ¢ 's(Q) and £ > ¢! max_ .
(1+0)Q
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Let to, £&1/2 <ty < £/2, be the largest ¢ for which there are at least two components of
{z: u(x) <t} contained in G'. Then there exists & € G' N {x : u(z) = to} such that &
lies on the boundary of two different components of {x : @(z) < tp} in G'. Also,
(6.11) u(&) = to, V() =0, d(i,0Q) > c5's(Q), and tg > 5! max_a,

(1+9)Q

where ¢g > 1 has the same dependence as ¢4 in Lemma 6.9. Indeed observe from Lemma
2.6 that u has Holder continuous derivatives in an open neighborhood of z. So if V() # 0
we easily obtain a contradiction to the definition of ¢y, using the implicit function theorem
and the definition of a component. From this contradiction we conclude that Vu(z) = 0.
Existence of ¢ depending on p,n, ¢, a, B follows from (6.10) which in turn was proved
using Lemmas 2.3 and 2.2. Also it is easily checked from references providing proofs of
these lemmas (see section 2) that constants may be chosen to depend only on n, «, 8 when
p € [n,n + 1] provided ¢, in (1.1) is chosen independent of p in this interval.

For z,tp as in (6.11) we now choose
z € 0Q\ 0B(0,n) with d(z,00Q \ 0B(0,n)) = |z — Z|.

Let z; be the first point on this line segment starting from & with @(z1) = (1/2)tg. Let
[Z, z1] denote the line segment from % to z;. Then

(1/2)ty < / |Va|dH!
[ivzl}
so there exists zo on [Z, 21| and ¢7 = ¢7(p, n, cx, a, B) with
(6.12) (1/2)tg < |Via(z2)||& — 21| while d(22,09) > ¢ 's(Q)

where the last inequality follows from our choice of z;, basic geometry, and Lemma 2.3.
From (6.11), (6.12), we find p such that

p=p(p,n,c,a,f) > ¢ s(Q) with B(#, p), B(z2,p) C Q.

Let € denote the convex hull of B(#,p/2) and B(z2, p/2). Then from Harnack’s inequal-
ity, Lemma 2.6, a Poincare type inequality, and (6.11), (6.12), we have

L(Q) P max ! < s(Q)" Pl

(1+9)Q
< c/ a|Va|P~? |Vo|* da
(6.13) 'N{|Val>0}
n
§c2/ a|ValP— u? , dx.
on{|val>0} ”Z::I H

Using Lemma 2.4 and (6.13), it follows that

(6.14) Q) < c/ alvaP~t " a,, de.
'n{|Va|>0} =

Next we revisit the proof of Lemma 3.18 in order to estimate v.

6.1. The case p > n > 2. In this case from (3.8)-(3.9) we see for n > 2 and p > n that
if Vu(z) # 0, then

(6.15) L = h weakly

where

11 _ _
2 = sVaBABAB(Va)' |

h=fYI'+1") = f[tr(BA) AT
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and A = (Ug,a,), B = (fy,5,) are n X n matrices. If p > n we see from (3.10) and (3.16)
that

1 1 N p—n
6.16 tr(BA)? — ————VuaBABAB(Va)t > tr(AB)?.
(6.16) BA = e Va2 e -y
Moreover,
N 2 —12p—4 —2
(6.17) ¢tr(AB)? > |ValP~* Y al
i,j=1

for some ¢ > 1 depending only on p,n,a, 3, and ¢, in (1.1), as follows from positive
definiteness and p — 2 homogeneity of B as well as symmetry of A. Combining (6.15)-
(6.17) we conclude for almost every = with Vu(z) # 0 that
n
(6.18) h>ctp—n)vap™ Y @,
ij=1

where ¢ > 1 depends only on p,n,a, 3, and ¢, in (1.1). Combining (6.18), (6.15), and
(6.14) we get

(6.19) (p—n)u(Q) < E/Q'm{|v>0} udv < E/Oudu

where ¢ = é(p,n, c«, a, 8) and this constant can be chosen independent of p on [n,n + 1].
From the definition of Q" and (6.19) we see that the first part of Lemma 6.9 is true when
p>n.

To handle values of p near n, n > 3, we need to examine the case when h = 0 (so
p=mn) in (6.15). Indeed, from (3.10) - (3.16) we see for p = n that

fh=|tr(E? -

where E = B/A1B), y = VuaSB)), Ay = §'AS, By = 8'BS, and B; = B)B). Also S
is an orthogonal matrix and B, a diagonal matrix as in section 3. If g(y) = 0,y # 0,
and F # 0, then since F is symmetric, it follows from basic matrix theory that y is an
eigenvector of E, so yE = Vy for some V # 0. Thus,

(VuSB))B,A Bl = V(VuSB)

so since S, B, are invertible it follows that at « we have VaBA = VVu. If we rewrite
this in terms of f and u we get

(6.20) (n—=1)Vf(Vu(x)) = VVu(x)

where we have used the n — 1 homogeneity of Df. On the other hand at almost every x
where E' = 0 we have

(6.21) A = (lg,2;) = 0 since By and S are invertible.

Assume that either (6.20) or (6.21) hold almost everywhere in B(w,r) C § for some
we Qand r > 0. If Blw,r) N{x: u(x) =t} # O, we assert that

(6.22) f(Va) is constant on each component of B(w,r) N {x : u(x) =t}.
To prove this assertion let 2’ € B(w,r) and suppose that Vi(z') # 0. Then
+1iy, (') > n~ ! Vi(a')| for some 1 <4 < n.

Assume for example that i = n so that 4., (z') > |Va|(z')/n. Consider the mapping,
U(zy,...,2n) = (21,...,8(x1,...,2y,)). From the inverse function theorem and Lemma
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2.6 we see that in a neighborhood of W(z'), ¥ has a C1*" inverse ® and f(Vi(x)) is in
WhH2(B(2', p)) for some small p > 0. We claim that

(6.23) H = f(Va)o® e WY(B(¥(z),p')) for small o' > 0.

Here H is considered as a function of z1,...,z,_1,u. One can prove (6.23) for example
by, (a) approximating f(Va) in the WH2(B(a/, p)) norm by a sequence, (q;) of C*°(R™)
functions, (b) using the chain rule and change of variables theorem to show that H; =
gj o ® € WL2(B(¥(a'),p')) with norms bounded by a constant independent of j, (c)
showing that H;—H in the norm of W12(B(¥(z), p')).

From (6.23) and well known properties of Sobolev functions it follows that H is “abso-
lutely continuous on most lines”. Therefore, in our situation, if 2 = (U (2),...,¥,_1(2)),
then for almost every t with |t — ¥, (2")| < p/2 it is true that in a neighborhood of Z, we
have H(-,t) € W12 as a function of z1,...,z,_1. Let

é; = (0,...,0,1,0,...,0, —ﬂxi/ﬂxn(xl,...,xn,l,t))

denote the vector with 1 in the 7 th position and —ug, /Uy, (1,...,2n_1,t), in the n th
position, for 1 <i < n — 1,. Then from either (6.20) or (6.21) we have for #"~! almost
every (x1,...,Zp—1) in a neighborhood of Z that

0OH
(6.24) (,t)=Vf(Vau)-é =0.

6%
Transferring this information to f(Va) we see first for almost every ¢ that f(Va) is
constant on {z : u(xz) =t} N B(2’, p/2). Second from continuity of f(Vu) and @, we then
conclude this statement for every t. Finally, the definition of a component and continuity
of f(Va), u imply assertion (6.22).

Armed with (6.22) we can show for G’,ty, as in (6.11) and & as in (6.10) that if O’ is
an open set in € containing K = {z € G’ : £;/2 < @(z) < to} then

(6.25) v(0') > 0.

Indeed otherwise, by our construction, n homogeneity of f, (6.11), and (6.22) we have
Vi = 0 on 0G' N{z : u(x) = to} which easily leads to a contradiction by a barrier
argument. In fact, if

B(y,#) ¢ KN{u < to} with § € dB(y,7) N {z : a(x) =t}

then from the Hopf maximum principle |Va(y)| > 0. From this contradiction we conclude
that (6.25) is valid when p =n > 3.

6.2. The case n = p = 2. In this case we note from (1.1) and the computation in Lemma
3.18 that Lo = 0 weakly on {z : Vi(z) # 0} and L is uniformly elliptic where

S &0 9

Lv = — —

k;1 O, o axj)

as in section 1. To analyze this case let & € Q be any point with Vu(z) = 0. We
temporarily use complex notation and write i, = (1/2)(ty, — itiz,) where i = v/—1. We
note that 4, is a k—quasiregular mapping of Q, where k = k(p, n, c.) (see [4, 16.4.3] for this
fact and more on quasiregular mappings in the plane). From properties of quasiregular
mappings we see that the zeros of u, in 2 are isolated. Next we note from the factorization
theorem for quasiregular mappings (see [4, Corollary 5.5.4]) that @, = tos where t is
analytic in §(€2), 5 is a quasiconformal mapping of R?, and 5(#) = 0. From local properties
of analytic functions, and R? quasiconformal mappings, as well as (1.1), it follows that
there exists 7 > 0 such that B(z,87) C 2 and if 0 < p < 27, then

(6.26) 0 < cZHf(Va(e)) < f(Valy)) < e f(Va(z))
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whenever x,y € B(%,2p) \ B(#,p/4). Here c. > 1 may depend on various quantities
but is independent of p . Using (6.26), standard Caccioppoli type estimates for linear
divergence form PDE, and Holder’s inequality we find that

2
¢! </ ) \Vv\dx) < p2/ |Vo|2dx
B(#,0)\B(&.p/2) B(#,0)\B(%,p/2)

27
(6.27) |7 — 0(z + (p,0))]2dz

<c

/B<x 2p\B(2,0/4)
< *p?

where again ¢ > 1 is a positive constant independent of p. Putting p = 277 in (6.27) and
summing over [ = —1,0,..., we find that

(6.28) / Voldz < ¢*F < oo.
B(#,27)

In view of (6.26)-(6.28) we can now use a more or less standard argument to show that
if 0 < x € C§°(B(z,2r)) then

81) ox
6.29 —dz = — T
(6.29) L kZ o (V) 5 Sz = —a ()

for some @ > 0. For completeness we give the proof of (6.29) here. To do this let o €
C§°(B(z,2r)) with 0 =1 on B(Z,7). If ¢ € C>®(B(z,2r) \ B(Z, p/2)) we first show that
for H! almost every p with 0 < p < 7,

ov 0
(6.30) / Z Sy (V 3;} gik)dm = / Z Sy (V fk pdH!

B(&2M\B(z,p) ™= 0B(z.p) FI=1

where £ = (§1,&2) denotes the inward unit normal to dB(zZ, p). To verify (6.30) for small
6>0,let ip € Cw([p §,00)) with ¥ = 1 on [p,0). Put ¢(z) = ¢(|z — &|), 2 € R2, and
replace ¢o by #ho on the left hand side of (6.30). Then the resulting integral is now
zero since Lo = 0 weakly in B(&,27) \ {#}. Using this fact, the Lebesgue differentation
theorem, letting §—0, and doing some arithmetic, we eventually obtain (6.30). Next from
(6.27) and a weak type estimate we see there exists p’ with p/2 < p’ < p such that

(6.31) / Vol dH! < ¢
9B(%,0')

where ¢ is independent of p. Using (6.28), (6.30), and (6.31), we find for a sequence (p;)
with lim;—s o = 0 and 0 < x € C3°(B(z, 2r)) that

(6.32)

81) olxo) , . (% d(xo)
kzl fnknj 31‘ D de = lli>nolo / Zl fmmg a%.] Oy dz
7 B(z, 2f>\é(fc o) I

= [ Z F (V) i X!

0B(a,py) FI=1

B(&,2F)
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for some real a. Now (6.29) follows from (6.32) and the observation that yo can be
replaced in (6.32) by x since x(1 — o) has compact support in B(Z,27) \ {#} and Lt =0
weakly in B(#,2r) \ {#}. Finally to show & > 0 we note that (6.30) remains true if ¢ is
replaced by v, as follows from approximating v in the W2(B(%,27)) \ B(%,p/2)) norm
by smooth functions and taking limits using Lemma 2.6. Doing this we deduce from the
left hand integral in (6.30) that

v 0(vo) -1 2
>
/ E fnkm 63: 2, dz > ¢ / |Vo|*dx

B(&,27)\B(&,p) ©I=" B(&,7)\B(#,01)

e / IV5|[3]|Volda
B(3,27)\B(&,7)

where ¢ depends only on p,n,c., a, 3. Moreover from the right hand integral in this
inequality and (6.26) we find that

2
_ ou P
> f,]wj(Vu)%jgkvd’Hl = (& + (p1,0)) / Z s (V gk dH' + T,
0B(a.pr) M= 0B(a.p) M7=
where |T}| < ¢ and ¢ is independent of [. If @ = 0 in (6.32), then from the above estimates
it follows easily that v € WH2(B(%,7)). However then linear elliptic PDE theory yields

that o is bounded in B(&,7/2), which is a contradiction. Thus a # 0. Using this fact and
comparing the above inequalities we see that

e s 1
4o = Jim 7(6 + (.0) [ > hy(V S
oB(#,p) FI=1
Since
(2 + (p1,0)) > —o0 asl — oo

it follows that necessarily @ > 0. From (6.29) we see that Lo may be regarded weakly as an
atomic measure on {2 when p = 2,n = 2 and hence (6.25) is also valid when n = 2,p = 2.

We now are in a position to finish the proof of Lemma 6.9 when p = n and for a general
f, as well as when f = gP,p € [n,n + 1], and ¢ is as in Theorem 1.13. We consider first
the case when f = gP, as the compactness argument in either case is essentially the same.

We shall need some more notation. For fixed «, 5, let

L ={QM™Y, m=1,2,...,
be collections of cubes with side lengths defined as in section 1 with aq, a9, ..., replaced by
agm), agm),. , where 0 < o < ak ) < 8, for k,m =1,.... Let C,, denote the correspond-
ing Cantor set and suppose A, is a finite covering of Cm by disjoint cubes in I',,. Define
Q™ relative to QU™ in the same way that Qg below (6.6) is defined relative to Qo and
set
A = {Q™ : Q™ € A,,} and Q,, := B(0,n) \ U QM.
QmMeAR

Suppose (pn,) is a sequence of points in [n,n + 1] with lim,, 0o pp, = p. Let f,, = gP™
and let 4,, be the weak solution to (1.4) relative to f,, on €, with continuous boundary
values, 1 on dB(0,n) and 0 on Q™ for every Q™ € A,,. Extend @, to B(0,n) by
putting @, = 0 on Q™) for every QM e A,,. Let [m be the measure associated with @,
as in (1.5) and let @, = log fy(Viiy,). Finally define Ly, 0y = vy, weakly as in Lemma
3.18 relative to U, fim, on {x : Vuy,(z) # 0} when n > 3 and on Q,, when n = p = 2
(see (6.29)).
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From (6.25) and (6.19) we see that if Lemma 6.9 is false for ¢4 sufficiently large and
n > 3, then there exists Q™ e T, with
(6.33) 0< / U vy = b o (QU)
OmM{|Viim|>0}

where

_ (@)

C4

Om:{x€(1+9)Q(m): d(z, 0Q,) } and 0 < by, — 0 as m — oo.

Let z, denote the center of QU™ and let Q, = {y : zm + $(Q™)y € QU }. Put

() = 2t L)

2Q(m)

whenever y € Q.

Using translation and dilation invariance of (1.1) we see that 4,, is a weak solution to
(1.4) in Q. Let [im denote the measure corresponding to i, with f and u replaced by fi,
and 4U,,. Then from Lemma 2.4 and Harnack’s inequality we find from estimates similar
to those in (6.1) that

(6.34) < im(S) < max iy, < i (20008) < c

where ¢ > 1 is independent of f,,,p, € [n,n + 1] for fixed ¢, in (1.1). Once again we
emphasize that this independence follows from the fact that the constants in Lemmas
2.2-2.6 can be chosen independent of these quantities. Let 0y, = log fin (V). Then 0y,
is a weak sub solution to L,, in the interior of 1000S N {x : Vi, # 0} where L, is
defined as in Lemma 3.18 relative to t,,, fm. Let 0, be the corresponding measure. From
(6.33)-(6.34) we deduce that if O, = {y : zm + 5(Qm)y € O}, then

(6.35) / U A0y, — 0 as m — oo.

Using (6.34), Lemmas 2.2-2.6, the fact that d(-,d,) is Lipschitz, and Ascoli’s theorem
we see there exists sub sequences, (€) of (€,,) such that N B(0,R) converges to
QN B(0,R) for each R > 0 in the Hausdorff distance metric and (i/,) of (i) with (/)
converging uniformly to @ in the interior of 1000S. We also can choose the sub sequence
so that V4, converges uniformly to Vi on compact subsets of Q. Using these facts it is
easily seen that 4 is a weak solution to (1.4) with f = ¢” in the interior of 1000S N Q) and
@ is continuous in the interior of 10008 with @ = 0 on QN 1000S. Let i be the measure
corresponding to @ and let © be the measure corresponding to ©. Then for n > 3 we
may also assume that lAL'mﬁ,'n = 1], converges weakly to L = v as measures on compact
subsets in the interior of SN{z : Vi(z) # 0}. Indeed from the definition of f,,, and uniform
convergence of (Vi) we see that (fm)nn; (Viy,),1 < k,j < n, converges uniformly on
compact subsets in the interior of S N {z : Vi(x) # 0}. Also from Lemma 2.6 we deduce
that for large m, 9/, is uniformly bounded in W12 on an open set with compact closure
in SN{x: Vi(z) # 0}. Using these facts and well known theorems on weak convergence
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in Wh? we see that if n > 3, then a sub sequence of (?/,,) (also denoted (7)) yields,

— lim ¢diy, = lim /Z(fm)nknj(va;n)(@;n)l‘j(ﬁxkdm

m—0o0 m—00 -
Jik=1

(6.36) _ / Zn: Fren, (V)0 o A

J,k=1

:—/gbdﬁ

whenever ¢ is infinitely differentiable with compact support in 1000SNQN{z : V() # 0}.
If n = 2 we claim that 7/, converges weakly to © on compact subsets in the interior of
10008 N €2. To see this we note from the discussion preceding (6.26) that there exists t,,
analytic in s,,,(€,,) and s, quasiconformal in R? with (u/,). = t,, 0 8, in €. From
normal family type arguments for R? quasiconformal mappings and analytic functions
we see that there exist subsequences of (t,,), (sm) (also denoted (), (Sm) ) with (s.,)
converging to s a quasiconformal mapping of R?, uniformly on compact subsets of R?,
and t,, converging uniformly to ¢ analytic, uniformly on compact subsets in the interior
of 5(1000S N Q). Using these facts and the argument principle for analytic functions we
conclude that the constants in (6.26) - (6.28) can be chosen independent of m. From this
conclusion, uniform convergence of (Vi),,) and simple estimates in (6.29) we obtain (6.36)
for ¢ infinitely differentiable with compact support in 10005 N Q. Let

0= {x e(1+0)S: dz,00) > ch}.

Then from (6.36) and (6.35) we have

(6.37) 2(0) = 0.

On the other hand, we can essentially repeat the argument from (6.11)-(6.32) since the
same constants in Lemmas 2.2-2.6 as earlier can also be used for 4. Moreover, since
10008 N €2y, converges in the Hausdorfl distance sense to 10005 M €2 the Harnack chains
used to obtain the analogue of (6.25) can all be chosen in €, for m large enough. A

more cut to the chase type argument is to observe that if @m,t(()m), G, denote the sets

in (6.11), and £}" is as in (6.10) relative to @/, in (1 4+ 6)S N €Y, then these sequences
converge pointwise and in the Hausdorff distance sense to &/, to, él, G c (1460)S. Moreover
(6.10),(6.11) are now valid for @ in this symbology. Repeating the argument leading to
(6.19) we see that in order to avoid a contradiction to (6.37) we must have p = n. Now
repeating the argument from (6.18) to (6.32) we also rule out the case p = n and so for
ca2, ¢4 large enough, obtain ﬁ(O) > 0, a contradiction to (6.37). The proof of Lemma 6.9
is now complete when f = ¢gP. For a general f it follows from (6.19) that we need only
consider the case p = n. If p = n, we again argue by contradiction and use a compactness
argument similar to the above to get a contradiction. We omit the details. U

Following [10, Chapter IX, Theorem 2.1], we continue the proof of Proposition 6.5
by repeating the stopping time argument in Theorem 1.11 only with cubes in ' rather
than balls. First let M >> 1 be so large that if Q € T and u(Q) > Ms(Q)"!, then
5(Q) < min(r,10~°). This choice is possible as we see from (6.4). Let s << 7 and choose

a covering Ay = By U G of C by cubes in T, according to the following recipe. Either
x € C lies in a cube in

Gy = {Q el: s(Q)>s, u(Q) > Ms(Q)" !, and Q is maximal}
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or no such cube exists and z lies in a cube in
By :={QeT: s(Q)<sandQ is maximal}.

Note that By U Gy is a disjoint covering of C. As earlier let Ay = {Q : Q e AM} and
define @ as below (6.7) relative to Aps. Then @ is a solution to (1.4) in Q = B(0,n) \
Ugen,, @ and continuous in B(0,n) with @ = 0 on Ugep,,@ while 4 = 1 on dB(0,n). Let
i be the measure associated with @ as in (1.5). From the maximum principle for solutions
to (1.4) we see that @ < u in S and as in (6.1) and (6.4) that for Q € Ay,

SO Q) < ¢5(0)1? max_ wP ! < 2 5(G) " u(2G)
(6.38) (1+6)Q
A(B(0,m)) ~ 1.
where Q € Ay corresponds to Q € Ayy. Let
£ = {Q el \ Ay for which there exists Q' € Ay with Q' € Q and ¢y S(Q') < S(Q)} .

For ¢s, ¢4 as in Lemma 6.9 and Q € € we also define

0:=0(Q) = {m € (14 6)Q with d(z,0Q) > 5(Q) } .

C4
We note that each point in

U O(Q) lies in at most N of the Q € £

Qee
where N has the same dependence as c4. Using this observation and Lemma 6.4 it follows
for n > 3 that

(6.39) > Q) < / ady < 2¢ / adv.
Qee QN{z:Vu#£0} QN{z:|Va|>6"}
provided ¢” > 0 is small enough.

If p = 2 = n the integral on the right hand side of (6.39) is taken over ). In general ¢
depends on p,n,a, 3,c, but in view of Lemma 6.4 we have 1 < & < ¢(p — n)~!, where ¢
can be chosen to depend only on n, a, 8, ¢, when p € [n,n+ 1] while if f = gP then ¢ can
be chosen to depend only on n,a, 8, ¢, when p € [n,n + 1].

We now essentially repeat the argument leading to Lemma 4.22. Choose ) € (—o0, 00)
so small that if |£] < §” then log f(£) < 7. Using (6.39) and arguing as (4.26)-(4.32) we
obtain for n > 3 and v' = max(v, ) that

(6.40) Z Q) < 2¢ / ado < — /Q Z Fon; (V)0 i, dz < célog M.
Qet QN{a:|Val>6"} kg=1
To estimate the left hand side of (6.40), given Q' € Ay, we let o(Q’) be the number of

cubes Q € € with Q' c Q and czs(Q’ ) < S(Q) From our construction we see for 7 small
enough that

(6.41) o(Q) > —clog(s(Q))
From (6.40) and (6.41) we get
(6.42) - ~Z log(s(@)N)a(Q) < ¢ aQ) < *élog M
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where ¢ > 1 in (6.40), (6.41), and (6.42) has the same dependence as ¢z in Lemma 6.9.
From (6.38) and (6.42) we see that if ¢ is large enough with

A ={Qehy:s(Q) <M “Yand A ={Q:Q €A}
then

(6.43) > Q) < (1/2)i(B(0,n)).

QeM

Finally choosing s << min(M*CSé7 7), we see that By C Ay. Let

F:=Cn U Q
Qeln\ Ay
Then from (6.1), (6.38), and (6.43) we deduce for ¢ having the same dependence as in
(6.40)-(6.43) that

(6.44) T U Q| <cu(F).
QeAr\A1
Moreover, if §' = 25103, where ¢ is as in the definition of /~Xl, then since INXM \1~X1 C Gy, we
have
(6.45) Z S(Q)n—l—é/ < eM—1/2 Z ,U(Q) < ML/A4 <e
Qe \A1 Qe \A

provided M > Mj is large enough. In view of our earlier calculations we conclude that ¢’
has the same dependence as in (6.6). Moreover if f = ¢gP, g as in Theorem 1.13, then M
can be chosen independent of p in [n,n + 1]. It follows from (6.44) and (6.45) that (6.6)
is true. From our earlier remarks we conclude that Proposition 6.5 holds which finishes
proof of Theorem 1.13. O
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