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σ-FINITENESS OF ELLIPTIC MEASURES FOR QUASILINEAR

ELLIPTIC PDE IN SPACE

MURAT AKMAN, JOHN LEWIS, AND ANDREW VOGEL

Abstract. In this paper we study the Hausdorff dimension of a elliptic measure µf in
space associated to a positive weak solution to a certain quasilinear elliptic PDE in an
open subset and vanishing on a portion of the boundary of that open set. We show that
this measure is concentrated on a set of σ−finite n− 1 dimensional Hausdorff measure
for p > n and the same result holds for p = n with an assumption on the boundary.

We also construct an example of a domain in space for which the corresponding
measure has Hausdorff dimension ≤ n − 1 − δ for p ≥ n for some δ which depends on
various constants including p.

The first result generalizes the authors previous work in [3] when the PDE is the
p−Laplacian and the second result generalizes the well known theorem of Wolff in [24]
when p = 2 and n = 2.
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1. Introduction

In this paper we continue our study of the Hausdorff dimension of a measure associated
with a certain positive weak solution, u ≥ 0, to a PDE of p Laplace type. To introduce
the PDE and the measure, we fix p, 1 < p < ∞, and let f : Rn \ {0} → (0,∞) be a real
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valued function with the following properties,

a) f is homogeneous of degree p on R
n \ {0}.

That is, f(η) = |η|pf
(

η
|η|

)

> 0 when η ∈ R
n \ {0}.

b) Df = (fη1 , . . . , fηn) has continuous partial derivatives when η 6= 0.

c) f is uniformly convex on B(0, 1) \ B̄(0, 1/2).
That is, there exists c∗ ≥ 1 such that for η ∈ R

n, 1/2 < |η| < 1,

and all ξ ∈ R
n we have c−1

∗ |ξ|2 ≤
n
∑

j,k=1

∂2f
∂ηjηk

(η)ξjξk ≤ c∗|ξ|2.

(1.1)

Put f(0) = 0. We next give examples of such f .

Example 1.2. From a) in (1.1) it follows that f(η) = κ(η)|η|p when η ∈ R
n \ {0}, where

κ is homogeneous of degree 0. Using this fact one can show that if ǫ is sufficiently small,
then f(η) = |η|p(1 + ǫη1/|η|) satisfies (1.1). Such an f is not invariant under rotations.

From homogeneity of f and Euler’s formula we have for a.e η ∈ R
n that

〈Df(η), η〉 = pf(η) and η (D2f(η)) = (p− 1)Df(η)(1.3)

where D2f(η) = (fηjηk) is an n by n matrix and η, Df(η) are regarded as 1 × n row
matrices.

Let O be an open set in R
n and ẑ ∈ ∂O. Let u be a positive weak solution in O∩B(ẑ, ρ)

to the Euler-Lagrange equation

∆fu := ∇ · Df(∇u) =
n
∑

j,k=1

fηjηk(∇u)uxkxj
= 0(1.4)

in O ∩B(ẑ, ρ). That is, u ∈W 1,p(O ∩B(ẑ, ρ)) and
∫

〈Df(∇u),∇θ〉dx = 0 whenever θ ∈W 1,p
0 (O ∩B(ẑ, ρ))

where ∇θ(x) = ( ∂θ
∂x1

, . . . , ∂θ
∂xn

)(x) whenever these partials exist in the distributional sense.

We assume also that u has continuous zero boundary values on ∂O ∩ B(ẑ, ρ). We con-
tinuously extend u (denoted with u also) to all B(ẑ, ρ) by setting u ≡ 0 in B(ẑ, ρ) \ O.
It is well known from [11, Theorem 21.2] that there exists a positive locally finite Borel
measure µf on R

n associated with u. We call this measure as elliptic measure associated
with a positive weak solution of (1.4). This measure has support contained in ∂O∩B(ẑ, ρ)
with the property that

∫

〈Df(∇u),∇φ〉dx = −
∫

φdµf whenever φ ∈ C∞
0 (B(ẑ, ρ)).(1.5)

Existence of µf follows from the maximum principle, basic Caccioppoli inequalities for u
and the Riesz representation theorem for positive linear functional. Note that if ∂O and
f are smooth enough then from an integration by parts in (1.5) and homogeneity in (1.3)
we deduce that

dµf = p
f(∇u)
|∇u| dHn−1|∂O∩B(ẑ,ρ).

We next introduce the notion of the Hausdorff dimension of a measure. To this end, let λ
be a real valued, positive, and increasing function on (0,∞) with lim

r→0
λ(r) = 0. For fixed
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0 < δ and E ⊂ R
n, we define (δ, λ)−Hausdorff content of E in the usual way;

Hλ
δ (E) := inf

{

∑

i

λ(ri) where E ⊂
⋃

B(zi, ri), 0 < ri < δ, xi ∈ R
n

}

.(1.6)

Then the Hausdorff measure of E is defined by

Hλ(E) := lim
δ→0

Hλ
δ (E).

In case λ(r) = rα we write Hα for Hλ. The Hausdorff dimension of µf , denoted by
H− dim µf , is defined by

H− dim µf := inf {α : ∃Borel set E ⊂ ∂O with Hα(E) = 0 and µf (R
n \ E) = 0} .

Recall that µ is said to be absolutely continuous with respect to ν (if µ, ν, are positive
Borel measures) provided that µ(E) = 0 whenever E is a Borel set with ν(E) = 0.
Following standard notation, we write µ≪ ν. A set E is said to have σ−finite ν measure
if

E =

∞
⋃

i=1

Ei with ν(Ei) <∞ for i = 1, . . . ,∞.

We note that if f(η) = |η|2, then the Euler-Lagrange equation in (1.4) is the usual Laplace
equation. In this case, if u is the Green’s function for Laplace’s equation with pole at
some z0 ∈ Ω, then the measure corresponding to this harmonic function u as in (1.5) is
harmonic measure relative to z0 and will be denoted by ω.

The Hausdorff dimension of ω has been extensively studied in the last thirty five years
in planar domains. In particular, in [8], Carleson proved that H− dim ω = 1 when ∂Ω is
a snowflake and H − dim ω ≤ 1 for any self similar Cantor set. In [20], Makarov proved
that

Theorem A (Makarov). Let Ω be a simply connected domain in the plane and let λ(r) :=

r exp{A
√

log 1
r log log log

1
r}. Then

a) ω is concentrated on a set of σ−finite H1 measure,
b) ω ≪ Hλ provided that A is large enough.

We note that Theorem A implies H−dim ω = 1 when Ω is a simply connected domain.
For arbitrary domains in the plane, in [12], Jones and Wolff proved that H − dim ω ≤ 1
whenever Ω ⊂ R

2 and ω exists. In [23], Wolff improved this result by showing that ω is
concentrated on a set of σ−finite H1 measure(see also [5, 13, 22]).

The Hausdorff dimension of harmonic measure in higher dimensions is considerably
less understood than in the plane. When n ≥ 3, in [7], Bourgain proved that H −
dim ω ≤ n − τ , where τ > 0 depends only on the dimension n and the exact value of τ
remains unknown. On the other hand, in [24], Wolff constructed examples in R

3, we call
Wolff snowflakes, for which the corresponding harmonic measures could have Hausdorff
dimension either greater than 2 or less than 2. In [18], the second author, Verchota, and
the third author proved a conjecture of Wolff in the affirmative: it was shown that both
sides of a Wolff snowflake in R

n could have harmonic measures, say ω1, ω2, with either
min(H− dim ω1,H − dim ω2) > n− 1 or max(H − dim ω1,H − dim ω2) < n− 1.

If f(η) = |η|p in (1.4), then the resulting PDE is called the p−Laplace equation:

∇ ·
[

|∇u|p−2∇u
]

= 0.(1.7)



4 MURAT AKMAN, JOHN LEWIS, AND ANDREW VOGEL

In this case, a solution u to (1.7) is called a p−harmonic function and the corresponding
measure in (1.5) associated with u is called a p−harmonic measure and will be denoted
by µp.

The nonlinearity and degeneracy of the p−Laplace equation makes it difficult to study
the Hausdorff dimension of p−harmonic measure. The first result was obtained in [6],
when Bennewitz and the second author studied the Hausdorff dimension of a p−harmonic
measure, associated with a positive p−harmonic function u in N∩Ω ⊂ R

2 with continuous
boundary value 0 on ∂Ω. In that result ∂Ω is a quasicircle and N is an open neighborhood
of ∂Ω. It was shown that all such measures, µp, corresponding to u, Ω, p as above, have
the same Hausdorff dimension. Moreover,

H− dim µp ≥ 1 when 1 < p < 2 while H− dim µp ≤ 1 when p > 2.

After earlier studies in [6, 14, 16], the second author proved the following analogue of
Theorem A in the p−harmonic setting (see [15]);

Theorem B (Lewis). Assume that Ω ⊂ R
2 is a bounded simply connected domain and

N is a neighborhood of ∂Ω. Let u be a positive p-harmonic in Ω∩N with zero continuous
boundary values on ∂Ω. Let µp be the p−harmonic measure associated with u as described
above. Let λ(r) be as in Theorem A. Then

a) If 1 < p < 2, there exists A = A(p) ≥ 1, such that µp ≪ Hλ.
b) If 2 < p <∞, then µp is concentrated on a set of σ−finite H1 measure.

A key fact used in [6, 14, 15, 16] is that if ζ = u or ζ = uxi
, i = 1, 2, then ζ is a weak

solution to

Lζ =

2
∑

j,k=1

∂
∂xk

(

bjk
∂ζ

∂xj

)

= 0(1.8)

where
bjk = |∇u|p−4

[

(p− 2)uxj
uxk

+ δjk|∇u|2
]

.

Furthermore, if v = log |∇u| then Lv ≤ 0(Lv ≥ 0) when 1 < p ≤ 2(2 ≤ p < ∞).
Moreover, arguments in these papers also make heavy use of the fundamental inequality;

û(z)

d(z, ∂Ω)
≈ |∇û(z)| whenever z ∈ Ω \ B̄(z0, r0).(1.9)

where û is a certain “p−capacitary function” in Ω \ B̄(z0, r0) for some fixed z0 ∈ Ω and
r0 = d(z0.∂Ω)/2. The proof of (1.9) is highly nontrivial in a simply connected domain
when 1 < p 6= 2 <∞, and in fact is the main result proved by the second author, Nyström,
and Poggi-Corradini in [16, Theorem 1.5]. However if p = 2, (1.9) is an easy consequence
of the Koebe distortion estimates for a univalent function (use û = a Green’s function for
Ω). We also note that (1.9) can easily fail in arbitrary domains of Rn for n ≥ 2.

Tools developed for p-harmonic functions in a series of papers by the second author
and Nyström were used in [17] to obtain that µp is concentrated on a set of σ−finite Hn−1

measure when ∂Ω ⊂ R
n is sufficiently flat in the sense of Reifenberg, u > 0 is p harmonic

near ∂Ω and p ≥ n. It was also shown in the same paper that if p ≥ n then all examples
produced by Wolff’s method had H − dim µp < n − 1, while if p > 2, was near enough
2, then there existed a Wolff snowflake for which H − dim µp > n − 1. These examples
provided the current authors with the necessary intuition to state and prove the following
theorem in [3].

Theorem C (Akman, Lewis, Vogel). Let O ⊂ R
n be an open set and ẑ ∈ ∂O, ρ > 0. Let

u > 0 be p-harmonic in O∩B(ẑ, ρ) with continuous zero boundary values on ∂O∩B(ẑ, ρ),
and let µp be the p-harmonic measure associated with u. If p > n then µp is concentrated
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on a set of σ−finite Hn−1 measure. If p = n the same conclusion is valid provided
∂O ∩B(ẑ, ρ) is locally uniformly fat in the sense of n−capacity.

The definition of a locally uniformly fat set will be given in section 2. We remark that
Theorem C and the definition of H − dim µp imply that H − dim µp ≤ n − 1 for p ≥ n.
A key lemma proved in this paper states that if v = log |∇u|, then Lv ≥ 0, weakly on
{x : ∇u(x) 6= 0}, when p ≥ n. Here L is defined as in (1.8) with 2 replaced by n in
the summation. Using this fact, some basic estimates for p harmonic functions, and a
stopping stopping time argument as in [12, 23], we eventually arrived at Theorem C.

In [2], the authors studied the PDE (1.4), ∆fu = 0, and showed in R
2 that if u, f are

sufficiently smooth and ∇u(x) 6= 0, then both u, uxi
, i = 1, 2, satisfy

L̃ζ :=
2
∑

k,j=1

∂
∂xk

(

fηjηk(∇u)
∂ζ

∂xj

)

= 0.(1.10)

in an open neighborhood of x. Furthermore, if ṽ = log f(∇u) then pointwise in this

neighborhood L̃ṽ ≤ 0(L̃ṽ ≥ 0) when 1 < p ≤ 2(2 ≤ p <∞). In [1] it was shown by the first

author for general f as in 1.1 that L̃ṽ ≤ 0(L̃ṽ ≥ 0) weakly when 1 < p ≤ 2(2 ≤ p < ∞).
Using this fact and following the game plan of [6, 16], the first author proved in the same
paper that

Theorem D (Akman). Let Ω ⊂ R
2 be any bounded simply connected domain and let N

be a neighborhood of ∂Ω. Let u be a positive weak solution to (1.4) in Ω ∩ N with zero
continuous boundary values on ∂Ω. Let µf be the measure associated with u as described

above. Let λ̃(r) := r exp{A
√

log 1
r log log 1

r} for 0 < r < 10−6. Then

a) If 1 < p ≤ 2, there exists A = A(p, f) ≥ 1, such that µf ≪ Hλ̃.
b) If 2 ≤ p < ∞, there exists A = A(p, f) ≤ −1 such that µf is concentrated on a

set of σ−finite Hλ̃ measure.

Note that Theorem D implies

H− dim µf







≥ 1 when 1 < p < 2,
= 1 when p = 2,
≤ 1 when 2 < p <∞.

We also note that Theorem D is slightly weaker than Theorem A when f(η) = |η|2,
µf = ω, and Theorem B when f(η) = |η|p, 1 < p 6= 2 <∞, µf = µp.

In this paper, we focus on the Hausdorff dimension of µf , in the same setting as in
Theorem C. More specifically we prove

Theorem 1.11. Let O ⊂ R
n be an open set and ẑ ∈ ∂O, ρ > 0. Let f be as in (1.1).

Let u > 0 be a weak solution to ∆fu = 0 (see 1.4) in O ∩ B(ẑ, ρ) with continuous zero
boundary values on ∂O∩B(ẑ, ρ), and let µf be the measure associated with u as in (1.5).
If p > n then µf is concentrated on a set of σ−finite Hn−1 measure. The same result holds
when p = n provided that ∂O∩B(ẑ, ρ) is locally uniformly fat in the sense of n−capacity.

Remark 1.12. Theorem 1.11 and the definition of the Hausdorff dimension of a measure
imply once again that H− dim µf ≤ n− 1 when p ≥ n.

We also construct for a given f some domains in R
n for which H − dim µf < n − 1

when p ≥ n. To give the construction, let 0 < α < β < 1/2 be fixed numbers and let S be
the cube in R

n with side length 1 and centered at 0. Let S′ be the cube with side length
a0 = 1/2 and centered at 0 and set C0 = S′. Let Q̃1,1, . . . , Q̃1,2n be the closed corner
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cubes of C0 of side length a0a1, α ≤ a1 ≤ β. Let C1 =
2n
⋃

i=1
Q̃1,i. Let {Q̃2,j}, j = 1, . . . , 22n,

be the closed corner cubes of each Q̃1,i, i = 1, . . . , 2n of side length a0a1a2, α ≤ a2 ≤ β.

Let C2 =
22n
⋃

j=1
Q̃2,j (see figure 1.1).

C0 C1 C2 C

Figure 1.1. The sets C0, C1, C2, C when n = 2.

Continuing recursively, at the m th step we get 2nm closed cubes, Q̃m,j, j = 1, . . . , 2nm,

of side length a0a1a2 . . . , am, α ≤ am ≤ β. Let Cm =
2nm
⋃

j=1
Q̃m,j. Then C is obtained as the

limit in the Hausdorff metric of Cm as m→ ∞.

Following an unpublished result of Jones and Wolff (see [10, Chapter IX, Theorem
2.1]), we prove

Theorem 1.13. Let S be the unit cube and C be the set constructed above. Let u∞ be a
positive weak solution to (1.4) for fixed p ≥ n in S \ C with boundary values 1 on ∂S and
0 on C. Let µ∞f be the measure associated with u∞ as in (1.5).

Then H− dim µ∞f ≤ n− 1− δ for some δ = δ(p, n, c∗, α, β, f) > 0.

Moreover, δ ≥ c−1(p− n) where c ≥ 1 can be chosen to depend only on n, α, β, and c∗
in (1.1) when p ∈ [n, n+ 1].

If f = gp where g is homogeneous of degree 1, uniformly convex, and has continuous
second partials, then δ can be chosen independent of p ∈ [n, n + 1], so depends only on
n, α, β, g.

In what follows, we state some regularity results for u in section 2. In section 3, we
show that log f(∇u) is a weak sub solution to L̃ when p ≥ n where L̃ is as in (1.10) with
2 replaced by n in the summation. In section 4 we prove more advanced regularity results
and essentially begin the proof of Theorem 1.11. In section 5, we prove a proposition and
finish the proof of Theorem 1.11. In section 6, we prove Theorem 1.13.

In general to prove Theorem 1.11 we follow the proof of Theorem C which in turn made
effective use of the proof scheme in [12, 23]. However the proof that log f(∇u) is a weak

sub solution to L̃ is more involved, and in fact somewhat surprising to us, than the corre-
sponding proof for f(∇u) = |∇u|p, since in this case we could use rotational invariance of
the p Laplace equation to considerably simplify the calculations. Also regularity results
for u,∇u, log f(∇u), require more care than in [3] due to the nearly endpoint structural
assumptions on f in (1.1).

Likewise to prove Theorem 1.13, we use the proof scheme in [10, chapter IX] only now
we have little control over the zeros of∇u. This lack of control forces us into an alternative
finess type argument which produces the ‘hodge podge’ of results on δ in Theorem 1.13,
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rather than what we hoped to prove, namely δ > a > 0 on [n, n+1] (provided c∗ in (1.1)
is constant for p ∈ [n, n+ 1]).

2. Notation and Preparatory Lemmas

Let x = (x1, . . . , xn) denote points in R
n and let E, ∂E, be the closure and boundary of

the set E ⊂ R
n. Let 〈·, ·〉 be the usual inner product in R

n and |x|2 = 〈x, x〉. Let d(E,F )
denote the distance between the sets E and F . Let B(x, r) be the open ball centered at
x with radius r > 0 in R

n and let dx denote Lebesque n−measure in R
n. Given O′ an

open set ⊂ R
n and q, 1 ≤ q ≤ ∞, let W 1,q(O′) denote equivalence classes of functions

h : Rn → R with distributional gradient ∇h = 〈hx1 , . . . , hxn〉, both of which are q th
power integrable on O′ with Sobolev norm

‖h‖q
W 1,q(O′)

=

∫

O′

(|h|q + |∇h|q)dx.

Let C∞
0 (O′) be the set of infinitely differentiable functions with compact support in O′

and let W 1,q
0 (O′) be the closure of C∞

0 (O′) in the norm of W 1,q(O′).

Let K ⊂ B(x, r) be a compact set and let A := {φ ∈ W 1,n
0 (B(x, 2r)) : φ ≡ 1 on K}.

We let

Cap(K,B(x, 2r)) := inf
φ∈A

∫

Rn

|∇φ|ndx.(2.1)

We say that a compact set K ⊂ R
n is locally (n, r0) uniformly fat or locally uniformly

(n, r0) thick provided there exists r0 and c such that whenever x ∈ K and 0 ≤ r ≤ r0,

Cap(K ∩B(x, r), B(x, 2r)) ≥ c > 0.

In the sequel, c will denote a positive constant ≥ 1 (not necessarily the same at
each occurrence), which may depend only on p, n, c∗ unless otherwise stated. In general,
c(a1, . . . , an) denotes a positive constant ≥ 1 which may depend only on p, n, c∗, a1, . . . , an
not necessarily the same at each occurrence. A ≈ B means that A/B is bounded above
and below by positive constants depending only on p, n, c∗.

In this section, we will always assume that 2 ≤ n ≤ p <∞, and r > 0. We also assume
that Õ is an open set in R

n and w ∈ ∂Õ.

We begin by stating some interior and boundary estimates for a positive weak solution
ũ to (1.4) in Õ ∩ B(w, 4r). If p = n, we assume ∂Õ ∩ B(w, 4r) is (n, r0) uniformly fat
as defined above using the capacity in (2.1). We assume that ũ has zero boundary value

on ∂Õ ∩ B(w, 4r) in the Sobolev sense and we extend ũ as above by putting ũ ≡ 0 on

B(w, 4r) \ Õ. Then as in (1.5) let µ̃f be the positive Borel measure corresponding to ũ.

References for the proofs of Lemmas 2.2-2.6 can be found in [3] where these lemmas
are stated for f(η) = |η|p, however they also hold for f as in (1.1). Let c∗ be as in (1.1).

Lemma 2.2. Let Õ, w, r, ũ, f, µ̃f be as above. Then there exists constant c = c(p, n, c∗)
such that

1

c
rp−n

∫

B(w, r
2
)

f(∇ũ)dx ≤ ess sup
B(w,r)

ũp ≤ c
1

rn

∫

B(w,2r)

ũpdx.
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If B(z, 2r′) ⊂ Õ ∩ B(w, 4r) for some r′ > 0 then there is a constant c = c(p, n, c∗) such
that

ess sup
B(z,r′)

ũ ≤ c ess inf
B(z,r′)

ũ.

Lemma 2.3. Let Õ, w, r, ũ, f be as in Lemma 2.2. Then there is α′ = α′(p, n, c∗) ∈ (0, 1)
and c = c(p, n, c∗), such that ũ has a Hölder continuous representative in B(w, 4r) (also
denoted ũ). If w̃, ŵ ∈ B(w, r) then

|ũ(w̃)− ũ(ŵ)| ≤ c

( |w̃ − ŵ|
r

)α′

ess sup
B(w,2r)

ũ .

Lemma 2.4. Let Õ, w, r, ũ, f, µ̃f be as in Lemma 2.2. Then there exists c = c(p, n, c∗) ≥ 1
such that

1
c r

p−nµ̃f (B(w, r2)) ≤ (ess sup
B(w,r)

ũ)p−1 ≤ c rp−nµ̃f (B(w, 2r)).

Remark 2.5. The left-hand side of the inequality in Lemma 2.4 is true for any open Õ and
p ≥ n. However, the right-hand side of this inequality requires uniform fatness when p = n
and that is the main reason why the uniform fatness assumption appears in Theorem 1.11.

Lemma 2.6. Let Õ, w, r, ũ, f be as in Lemma 2.2. Then ũ has a representative in
W 1,p(B(w, 4r)) with Hölder continuous derivatives in Õ ∩ B(w, 4r). In particular, there
exists α′′, 0 < α′′ < 1, and c ≥ 1, depending only on p, n, c∗, with

|∇ũ(x)−∇ũ(y)| ≤ c

( |x− y|
r̂

)α′′

ess sup
B(w̃,r̂)

|∇ũ| ≤ c

r̂

( |x− y|
r̂

)α′′

ess sup
B(w̃,r̂)

ũ.

whenever x, y ∈ B(w̃, r̂/2), and B(w̃, 4r̂) ⊂ Õ ∩B(w̃, 4r).

Moreover,
∫

B(w̃,r̂)

|∇ũ|p−2
n
∑

k,j=1

(ũxkxj
)2dx ≤ c

r̂2

∫

B(w̃,2r̂)

|∇ũ|pdx.

Lemma 2.7. Let Õ, w, r, ũ be as in Lemma 2.4. Suppose for some z ∈ R
n, t ≥ 100r, that

w ∈ ∂B(z, t) and

B(w, 4r) \ B̄(z, t) = B(w, 4r) ∩ Õ.
Then there exists α′′′ = α′′′(p, n, f) ∈ (0, 1) for which ũ|Õ∩B(w,3r) has a C1,α′′′ ∩ W 1,p

extension to the closure of B(w, 3r) \ B̄(z, t) (denoted ū). Moreover,
∫

Õ∩B(w,r/2)∩{|∇ū|>0}

|∇ū|p−2
n
∑

j,k=1

ū2xjxk
dx ≤ c

r2

∫

Õ∩B(w,2r)

|∇ū|p dx

and if y, ỹ ∈ Õ ∩B(w, r/2), then

1
c |∇ū(y)−∇ū(ỹ)| ≤

(

|y−ỹ|
r

)α′′′

maxÕ∩B̄(w,r) |∇ū| ≤ c
r

(

|y−ỹ|
r

)α′′′

maxÕ∩B(w,2r) ū.

Proof. Lieberman in [19] essentially proves the above lemma. A careful reading of his
paper gives the second estimate in this lemma as well as the fact that |∇ū| ≥ c−1 in
B(ζ, r/c) whenever ζ ∈ ∂B(z, t) ∩ B(w, 7r/2) where c ≥ 1 depends only on p, n, and
the structure constants for f. The first estimate then follows from Hölder continuity of
derivatives, the fact that derivatives of ū satisfy a uniformly elliptic PDE in divergence
form near ∂B(z, t) ∩B(w, 3r) (see (3.2)), and a Caccioppoli inequality. �
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3. Sub solution estimate

Let L̃ be defined as in (1.10) with 2 replaced by n in the summation. That is,

L̃ζ =

n
∑

k,j=1

∂
∂xk

(

fηjηk(∇ũ)
∂ζ

∂xj

)

.(3.1)

Let ṽ(x) = log f(∇ũ(x)) for x ∈ Õ ∩ B(w, 4r). In this section we first show that L̃ṽ ≥ 0

weakly in a domain Ω ⊂ Õ ∩ B(w, 4r) when p ≥ n and ∇ũ 6= 0 in Ω. To do so we note
that Lemma 2.6 implies ũ is locally in W 2,2(Ω) so (1.4) holds almost everywhere in Ω. It
follows that for l = 1, 2, . . . , n,

0 =

∫

Ω

〈Df(∇ũ),∇φxl
〉dx = −

∫

Ω

n
∑

k=1

∂(fηk(∇ũ))
∂xl

φxk
dx

= −
∫

Ω

n
∑

k,j=1

fηkηj (∇ũ)(ũxl
)xj
φxk

dx.

(3.2)

whenever φ ∈ C∞
0 (Ω) and non-negative. Therefore, ζ = ũxl

, l = 1, . . . , n, is a weak
solution to (3.1). From (1.3) we also have

∫

Ω

n
∑

k,j=1

fηjηk(∇ũ)ũxj
φxk

dx = (p − 1)

∫

Ω

n
∑

k=1

fηk(∇ũ)φxk
dx = 0.(3.3)

From (3.3) we deduce that ζ = ũ is also a weak solution to (3.1). Let bkj = fηkηj (∇ũ)
and observe that for almost every x ∈ Ω, where ∇ũ(x) 6= 0,

bkj ṽxj
=

bkj

f(∇ũ)
n
∑

m=1

fηm(∇ũ)ũxmxj
.(3.4)

Using (3.4) we find that

∫

Ω

n
∑

k,j=1

bkjṽxj
φxk

dx =

∫

Ω

n
∑

k,j=1

bkj

f(∇ũ)
n
∑

m=1

fηm(∇ũ)ũxmxj
φxk

dx

= −
∫

Ω

n
∑

m,k,j=1

∂
∂xk

(

fηm(∇ũ)
f(∇ũ)

)

bkjũxmxj
φdx

(3.5)

where to get the last line in (3.5) we have used

0 =

∫

Ω

n
∑

m,k,j=1

bkjũxmxj

∂
∂xk

(

fηm(∇ũ)
f(∇ũ) φ

)

dx.(3.6)

(3.6) is a consequence of (3.2) with m = l and φ replaced by
fηm (∇ũ)
f(∇ũ) φ as well as the fact

that
fηm(∇ũ)
f(∇ũ) ∈W 1,2

loc
(Ω).

From (3.5) we have
∫

Ω

n
∑

k,j=1

bkjṽxj
φxk

dx = −
∫

Ω

n
∑

m,k,j=1

∂
∂xk

(

fηm(∇ũ)
f(∇ũ)

)

bkjũxmxj
φdx

= −
∫

Ω

(I ′ + I ′′)φdx

(3.7)
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where (after taking the xk derivative of the term)

I ′ =
n
∑

m,j,k,l=1

1
f(∇ũ) bmlbkjũxlxk

ũxmxj
,

I ′′ = − 1
f2(∇ũ)

n
∑

m,j,k,l=1

bkjfηm(∇ũ)fηl(∇ũ)ũxlxk
ũxmxj

.
(3.8)

To simplify computation in (3.8) we use matrix notation. If f = f(∇ũ), fηk(∇ũ) = bk,
1 ≤ k ≤ n, then we first observe by reordering the terms in (3.8) that

(I ′ + I ′′)f =

n
∑

m,j,k,l=1

[bnlũxlxk
bkjũxjxm − 1

f
blũxlxk

bkjũxjxmbm].

Let A = (ũxixj
) and B = (bij), then for almost every x ∈ Ω,

(I ′ + I ′′)f = tr (BA)2 − 1

f

1

(p− 1)2
∇ũBABAB(∇ũ)t(3.9)

where we have used (1.3) to replace bl. We look at

ζ BABAB ζt

ζ B ζt
=

tr(ζ BABAB ζt)

tr(ζ B ζt)
.

Observe from (1.1) that B is positive definite symmetric, A is symmetric, and from (1.4)
that tr(AB) = tr(BA) = 0. Using these facts we see there exists S an orthogonal matrix

so that StBS = Bd is diagonal. Let B′
d = B

1/2
d be the obvious square root of each

component of Bd so that B′
dB

′
d = Bd. With A1 = StAS, it follows that

ζ BABAB ζt

ζ B ζt
=
ζ SStBSStASStBSStASStBSSt ζt

ζ SStB SStζt

=
ζS BdA1BdA1Bd Stζt

ζS Bd Stζt
.

If ξ = ζS 6= 0, then

ζ BABAB ζt

ζ B ζt
=
ξ BdA1BdA1Bd ξ

t

ξ Bd ξt
=
ξB′

dB
′
dA1B

′
dB

′
dA1B

′
dB

′
dξ

t

ξB′
dB

′
dξ

t
.

Set y = ξB′
d 6= 0, E = B′

dA1B
′
d, and note that E is symmetric as B′

d, A1 = StAS, and A
are symmetric;

ζ BABAB ζt

ζ B ζt
=
y B′

dA1B
′
dB

′
dA1B

′
d y

t

y yt
=
y EE yt

y yt
.

Now one can easily prove the following properties of trace;

(i) tr(FGH) = FijGjkHki = HkiFijGjk = tr(HFG),

(ii) tr(P−1GP ) = tr(G)

whenever F,G,H are matrices. Here (ii) follows easily from property (i) whenever P is
an orthogonal matrix. From these properties (i)-(ii) we have

tr(E) = tr(B′
dA1B

′
d) = tr(B′

dB
′
dA1) = tr(BdA1) = tr(StBSStAS) = tr(BA).

Therefore, we have tr(E) = tr(BA) = tr(AB) = 0. Similarly,

tr(E2) = tr((AB)2)
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Now diagonalize E using another orthogonal matrix S1, so that St
1ES1 = Ed with the

ijth entries given by (Ed)ij = eiδij . Then

tr(E) = tr(Ed) =

n
∑

i=1

ei = 0,

tr(E2) = tr(St
1ES1St

1ES1) = tr(E2
d) =

n
∑

i=1

e2i .

(3.10)

Moreover,
ζ BABAB ζt

ζ B ζt
=
yS1St

1ES1St
1ES1St

1y
t

yS1St
1y

t

so that with z = yS1 6= 0 we also have

ζ BABAB ζt

ζ B ζt
=
zEdEdz

t

zzt
=

n
∑

i=1
e2i z

2
i

n
∑

i=1
z2i

.(3.11)

Let κ = z/|z| so that κ is a unit vector, then (3.11) implies

0 ≤ ζ BABAB ζt

ζ B ζt
=

n
∑

i=1

e2i κ
2
i .(3.12)

Without loss of generality assume that e21 is the largest of the e2k then considering all
possible unit vectors κ in (3.12) we see that

ζ BABAB ζt

ζ B ζt
≤ sup

|κ|=1

n
∑

i=1

e2iκ
2
i = e21.(3.13)

Combining (3.9), (3.10), (3.12), and (3.13) we have

(I ′ + I ′′)f = tr(BA)2 − p

p− 1

ζ BABAB ζt

ζ B ζt
≥

n
∑

i=1

e2i −
p

p− 1
e21.(3.14)

Now we can use (3.10) to get

e1 = −(
n
∑

i=2

ei) and e21 = (
n
∑

i=2

ei)
2 ≤ (n− 1)

n
∑

i=2

e2i .(3.15)

Using (3.15) in (3.14) we have

(I ′ + I ′′)f ≥ e21 +
1

n− 1
e21 −

p

p− 1
e21 = e21

(

n

n− 1
− p

p− 1

)

(3.16)

Finally t
t−1 is decreasing on t > 1 so that for p ≥ n we see that (I ′+I ′′)f ≥ 0. Combining

(3.7) and (3.16) we deduce that
∫

Ω

n
∑

k,j=1

bkj ṽxj
φxk

dx = −
∫

Ω

(I ′ + I ′′)φdx

≤ −
(

n

n− 1
− p

p− 1

)∫

Ω

e21(x)

f(∇ũ(x))φdx

≤ 0.

(3.17)

whenever φ ∈ C∞
0 (Ω) and non-negative. It follows from (3.17) that L̃ṽ ≥ 0 weakly in Ω

when p ≥ n.

Let δjk denote the Kronecker delta in the following lemma.
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Lemma 3.18. Let Õ, w, r, ũ, f be as in Lemma 2.2. Let −∞ < θ ≤ −1. Let L̃ be defined
as in (3.1) and ṽ = log f(∇ũ) when x ∈ Õ ∩ B(w, 4r) and ∇ũ(x) 6= 0. Let fηjηk = δjk
when ∇ũ(x) = 0 for 1 ≤ j, k ≤ n. If v′ = max{log f(∇ũ), θ} then ζ = v′ is locally a weak

sub solution to L̃ζ = 0 in Õ ∩B(w, 4r).

Proof. From Lemma 2.6 we see that v′ is locally inW 1,2(Õ∩B(w, 4r)). Given ε1, ε2, ε3 > 0,
small, define

g(x) := (max{v′(x)− θ − ε1, 0} + ε2)
ε3 − εε32 , x ∈ Õ ∩B(w, 4r).

It follows from (1.1) and L̃v′ ≥ 0 weakly at x ∈ Õ ∩ B(w, 4r) when v′(x) 6= θ (almost
everywhere), that

0 ≤ −
n
∑

j,k=1

∫

Õ∩B(w,4r)

fηjηk(∇ũ)(φg)xj
v′xk

dx

≤ −
n
∑

j,k=1

∫

Õ∩B(w,4r)

gfηjηk(∇ũ)φxj
v′xk

dx.

(3.19)

whenever φ ∈ C∞
0 (Õ∩B(w, 4r)) and non-negative. Using (3.19), the bounded convergence

theorem, and letting first ε1 → 0, then ε2 → 0, and finally ε3 → 0, we get Lemma 3.18 as
desired. �

4. Advanced Regularity Results

In this section we begin the proof of Theorem 1.11 by proving three lemmas. To this
end, let O, f, u, ẑ, ρ, µf , p, n be as in Theorem 1.11.

Lemma 4.1. There exists a constant c = c(p, n, c∗) and a set Q ⊂ ∂O∩B(ẑ, ρ) such that

µf ((∂O ∩B(ẑ, ρ)) \Q) = 0.

Moreover, for every w ∈ Q there exists arbitrarily small r = r(w), 0 < r ≤ 10−10, such
that

B(w, 100r) ⊂ B(ẑ, ρ) and µf (B(w, 100r)) ≤ c µf (B(w, r)).

Proof. It follows from Lemma 2.4 that µf (B(x, t)) > 0 whenever x ∈ ∂O and ∂O ∩
B(x, t) ⊂ ∂O ∩B(ẑ, ρ). We show for c > 0 large enough that µf (Θ) = 0 where

Θ :=

{

x ∈ ∂O ∩B(ẑ, ρ) : lim inf
t→0

µf (B(x, 100t))

µf (B(x, t))
≥ c

}

.

Then the desired set Q in Lemma 4.1 will be the complement of Θ, i.e, Q = (∂O ∩
B(ẑ, ρ)) \Θ. To show that µf (Θ) = 0, we first see from the definition of Θ that for every
x ∈ Θ there exists t0 = t0(x) with

(c/2)µf (B(x, t)) ≤ µf (B(x, 100t)) for every t ∈ (0, t0).(4.2)

Then iterating (4.2) we obtain

lim
t→0

µf (B(x, t))

tn+1
= 0 whenever x ∈ Θ

provided c in (4.2) is large enough. It follows that µf |Θ is absolutely continuous with
respect to Hn+1 measure. Since Hn+1(Rn) = 0 we conclude from our earlier remark that
Lemma 4.1 is true. �



σ-FINITENESS OF ELLIPTIC MEASURES 13

Next using translation and dilation invariance of (1.4), we work in a different domain.
To this end, let

w ∈ Q ⊂ ∂O ∩B(ẑ, ρ)

be fixed and let r = r(w) be a corresponding radius as in Lemma 4.1. We first set

u′(x) :=
u(w + rx)

ess sup
B(w,10r)

u
when w + rx ∈ B(ẑ, ρ)

and define

Ω′ := {x : w + rx ∈ O ∩B(ẑ, ρ)}.
We observe that u′ is a weak solution to (1.4) in Ω′ as (1.4) is invariant under translation
and dilation. Moreover, u′ > 0 is continuous in B(ζ, ρ/r) with u′ ≡ 0 on B(ζ, ρ/r) \ Ω′

provided that ζ = (ẑ − w)/r. As in (1.5), there exists a finite Borel measure µ′f on R
n

with support in ∂Ω′ ∩B(ζ, ρ/r) associated with u′.

We also note that

µ′f (E) =
rp−n

(

ess sup
B(w,10r)

u

)p−1 µf (Ξ(E))

whenever E is a Borel set and Ξ(E) := {w + rx : x ∈ E}.
As (1.4) is invariant under translation and dilation without loss of generality we can

assume that w = 0, r = 1 with B(0, 100) ⊂ B(ẑ, ρ). From Lemmas 2.4 and 4.1, we obtain
for some c = c(p, n, c∗) ≥ 1 and 2 ≤ t ≤ 50 that

c−1 ≤ µ′f (B(0, 1)) ≤ ess sup
B(0,2)

u′ ≤ ess sup
B(0,t)

u′ ≤ c µ′f (B(0, 100)) ≤ c2.(4.3)

By definition of u′ and Hölder continuity of u near ∂O, it is easily seen that there exists
some z̃ ∈ ∂B(0, 10) with u′(z̃) = 1, and

c−1
− ≤ d(z̃, ∂Ω′) for some c− = c−(p, n, c∗) ≥ 1.(4.4)

Let M be a large number where we allow M to vary but shall fix it to satisfy several
conditions after (5.8). After that we choose s = s(M) > 0 sufficiently small with 0 <
s << e−M . Let δ, δ′ be given such that 0 < δ′ < min(δ, 10−5) and choose M > 0 so large
that

if µ′f (B(z, t)) =Mtn−1 for some t = t(z) ≤ 1 then t ≤ δ′(4.5)

where z ∈ ∂Ω′∩B(0, 15). Existence of such M =M(δ′) ≥ 1 follows from (4.3). Following
[23], we observe from (4.5) for each z ∈ ∂Ω′ ∩ B(0, 15) that there exists a largest t with
s ≤ t ≤ 1 such that either

(a) µ′f (B(z, t)) =Mtn−1 , t > s

or
(b) t = s.

(4.6)

Using the Besicovitch covering theorem (see [21]) we now obtain a covering {B(zk, tk)}Nk=1

of ∂Ω′ ∩ B(0, 15), where tk satisfies either (a) or (b) in (4.6). Then each point of
⋃N

k=1B(zk, tk) lies in at most c = c(n) of {B(zk, tk)}Nk=1. Let G = GM and B = BM

be the set of all balls in this covering for which (a) and (b) in (4.6) hold respectively.
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Let c− and z̃, be as in (4.4) and set r1 = (8c−)
−1. Choosing δ′ smaller (so M larger)

if necessary we may assume, thanks to (4.5), that

N
⋃

k=1

B(zk, 6tk) ∩B(z̃, 6r1) = Ø.(4.7)

Also put

Ω′′ = Ω′ ∩B(0, 15) \
N
⋃

k=1

B(zk, tk) and D = Ω′′ \B(z̃, 2r1).

Let u′′ be a positive weak solution to (1.4) in D with continuous boundary values,

u′′(x) ≡
{

0 when x ∈ ∂Ω′′

ess inf
B(z̃,2r1)

u′ when x ∈ ∂B(z̃, 2r1).

We extend u′′ continuously to B(0, 15) (also denoted u′′) by putting

u′′(x) ≡
{

0 when x ∈ B(0, 15) \ Ω′′

ess inf
B(z̃,2r1)

u′ when x ∈ B(z̃, 2r1).

We note that u′′ ≤ u′ on ∂D so by the maximum principle for weak solutions to (1.4) we
have u′′ ≤ u′ in D. Also, ∂D is locally (n, r′0) uniformly fat where r′0 depends only on n
and r0 in Theorem 1.11 when p = n. Next we prove

Lemma 4.8. For all x ∈ D we have |∇u′′| ≤ cM
1

p−1 where c = c(p, n, c∗).

Proof. Let x ∈ D, and choose y ∈ ∂D such that |x − y| = d(x, ∂D) = d. We first prove
Lemma 4.8 when y ∈ ∂B(zk, tk) and x ∈ B(zk, 2tk). The same reasoning can be applied
when y ∈ ∂B(0, 15) or y ∈ ∂B(z, 2r1). To this end, let ǫ > 0 be given and set

f ǫ(η) :=

∫

Rn

f(x)ψǫ(η − x) dx

where ψ ∈ C∞
0 (B(0, 1)) with

∫

Rn

ψdx = 1 and ψǫ(x) =
1

ǫn
ψ
(x

ǫ

)

whenever x ∈ R
n.

We note that f ǫ is no longer homogeneous but f ǫ is infinitely differentiable. Moreover,
whenever η, ξ ∈ R

n we have

c−1(ǫ+ |η|)p−2 |ξ|2 ≤
n
∑

j,k=1

∂2f ǫ

∂ηjηk
(η)ξjξk ≤ c(ǫ+ |η|)p−2|ξ|2(4.9)

where c = c(p, n, c∗) ≥ 1. Let u′′ǫ be a weak solution to (1.4) in D with f replaced by f ǫ

and the same continuous boundary values as u′′. Then (1.5) holds with f, u replaced by
f ǫ, u′′ǫ . Using (4.9), an analogue of Lemma 2.6, and Schauder type estimates we see that

u′′ǫ is infinitely differentiable in Ω′′ and that ζ = u
′′

ǫ is a pointwise solution to L⋆ζ = 0
where

L⋆ζ :=
1

(ǫ+ |∇u′′ǫ |)p−2

n
∑

j,k=1

f ǫηjηk(∇u
′′
ǫ )ζxjxk

.(4.10)

Moreover, if we let

φ̃(w) =
e−N|w−zk|

2 − e−4N t2
k

e−N t2
k − e−4N t2

k

.
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Then L⋆φ̃ ≥ 0 in B(zk, 2tk) \B(zk, tk) if N = N (p, n, c∗) is sufficiently large. Thus if

Φ(w) = ( ess sup
B(zk ,2tk)

u′ )(1 − φ̃(w))

then L⋆Φ ≤ 0 in B(zk, 2tk) \ B(zk, tk) . Using this fact, the maximum principle for
solutions to (4.10), u′′ ≤ u′, and comparing boundary values, we conclude that u′′ǫ ≤ Φ in
B(zk, 2tk)\B̄(zk, tk). Letting ǫ→ 0, we deduce from the usual variational type arguments
and an analogue of Lemma 2.6 for u′′ǫ that subsequences of {u′′ǫ }, {∇u′′ǫ } converge pointwise
to u′′,∇u′′ in D and uniformly on compact subsets of D. Hence

u′′ ≤ Φ in B(zk, 2tk) \ B̄(zk, tk).(4.11)

Using (4.11) and applying Lemma 2.6 to u′′ we see that

|∇u′′(x)| ≤ c

d
u′′(x) ≤ c

d
Φ(x) ≤ c2

tk
ess sup
B(zk ,2tk)

u′.(4.12)

where d = d(x,D). Lemma 2.4 and (4.5)-(4.7) imply

t1−p
k ess sup

B(zk ,2tk)
(u′)p−1 ≤ c t1−n

k µ′f (B(zk, 4tk)) ≤ c2M.(4.13)

Combining (4.12) and (4.13) we see that Lemma 4.8 holds for u′′ at points in D which
are also in

⋃

B(zk, 2tk) \ B̄(zk, tk). Similar arguments also give this inequality at points
near ∂B(0, 15) and ∂B(z̃, 2r1). Thus there exists an open set W with ∂D ⊂ W and

|∇u′′| ≤ cM1/(p−1) in W ∩D where c = c(p, n, c∗). Applying Lemma 3.18 to u′′, then a

maximum principle for weak subsolutions to L̃ defined as in (3.1), we see that Lemma 4.8
holds for every x ∈ D. �

The proof of the next lemma is essentially the same as in [3, Lemma 8]. For complete-
ness we give the arguments here.

Lemma 4.14. The functions |∇u′′|p−2 |u′′xjxk
| for 1 ≤ j, k ≤ n are all integrable in D.

Proof. Let Λ ⊂ ∂Ω′′ be the set of points where ∂Ω′′ is not smooth. Clearly Hn−1(Λ) = 0.
If x̂ ∈ ∂D \ Λ, then x̂ lies in exactly one of the finite number of spheres which contain
points of ∂D. Let d′(x̂) denote the distance from x̂ to the union of spheres not containing
x̂ but containing points of ∂D. If d′ = d′(x̂) < s/100, then from Lemma 2.7 applied to
u′′ we see that each component of ∇u′′ has a Hölder continuous extension to B(x̂, 3d′/4).
Also from Hölder continuity, Lemmas 2.7 and 4.8 we see that

1

c

n
∑

j,k=1

∫

D∩B(x̂, d
′

8
)

|∇u′′|p−2 |u′′xjxk
|dx

≤ (d′)
n
2M

p−2
2(p−1)

n
∑

j,k=1









∫

D∩B(x̂, d
′

8
)

|∇u′′|p−2 |u′′xjxk
|2 dx









1
2

≤ c(d′)
(n−2)

2 M
p−2

2(p−1)









∫

D∩B(x̂, d
′

2
)

|∇u′′|p dx









1
2

≤ c2M (d′)(n−1).

(4.15)

To prove Lemma 4.14 we assume as we may that B(zl, tl) 6⊂ B(zν , tν) when ν 6= l, since
otherwise we discard one of these balls. Also from a well known covering theorem we
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get a covering {B(yi,
1
20d

′(yi))} of ∂D \ Λ with the property that {B(yi,
1

100d
′(yi))} are

pairwise disjoint. From (4.15) we find that
∑

i,j,k

∫

D∩B(yi,
1
8
d′(yi))

|∇u′′|p−2|u′′xjxk
|dx ≤ cM

∑

i

(d′(yi))
n−1

≤ c2M Hn−1(∂D).

(4.16)

Let d(x) denote d(x, ∂D). We choose a covering {B(xm,
1
2d(xm)} ofD with {B(xm,

1
20d(xm)},

pairwise disjoint. We note that if x ∈ D and y ∈ ∂D with |y−x| = d(x), then y ∈ ∂D \Λ.
Indeed otherwise y would be on the boundary of at least two balls contained in the com-
plement of D and so by the no containment assumption above, would have to intersect
B(x, d(x)), which clearly is a contradiction. Also we assert that if d(x) ≤ 1000s, then
d(x) ≤ κd′(y) where κ can depend on various quantities including the configuration of the
balls, {B(zk, tk)} but is independent of x ∈ D with d(x) ≤ 1000s. Indeed from the no con-
tainment assumption one deduces that otherwise there exists sequences (xm), (ym), (y′m),
with xm ∈ D, ym ∈ C1, y

′
m ∈ C2, where C1, C2 are spheres in {∂B(zj , rj)}N1 with C1 6= C2

and

|xm − ym| = d(xm), |ym − y′m| = d′(ym) and

as m→∞, d(xm)/d′(ym)→∞, with xm, ym, y
′
m→w ∈ C1 ∩ C2 ⊂ Λ.

(4.17)

From basic geometry we see that either (i)C1 ∩ C2 = w. or (ii)C1 ∩ C2 is an n − 2
dimensional sphere. If (i) holds then C1, C2 are tangent, so clearly for large m, d(xm) ≤
cd′(ym). If (ii) holds then considering the tangent planes to C1, C2 through w we see for
large m that

d(xm) ≤ cd(xm, C1 ∩ C2) ≤ c2d′(ym)

where c is independent of m. In either case we have reached a contradiction to (4.17).
Hence our assertion is true.

From this analysis and our choice of covering ofD we see that for a given B(xm,
1
2d(xm))

with d(xm) < 1000s, there exists j = j(m) with B(xm,
1
2d(xm)) ⊂ B(yj, κ

′d′(yj)) for some
0 < κ′ <∞ independent of m.

Let Sl, l = 1, 2, 3, be disjoint sets of integers defined as follows.






m ∈ S1 if d(xm) ≥ 1000s,
m ∈ S2 if m 6∈ S1 and 6 ∃ j with B(xm,

1
2d(xm)) ⊂ B(yj,

1
8d

′(yj)),
m ∈ S3 if m is not in either S1 or S2.

Let

Kl =
∑

m∈Sl

∫

D∩B(xm, 1
2
d(xm))

|∇u′′|p−2|u′′xjxk
|dx for l = 1, 2, 3.

Then
∫

D

|∇u′′|p−2|u′′xjxk
|dx ≤ K1 + K2 + K3.(4.18)

From Lemma 2.6 and the same argument as in (4.15) we see that

K1 ≤ cM
∑

m∈S1

d(xm)n−1 ≤ c2Ms−1(4.19)

where we have used disjointness of our covering {B(xm,
1
20d(xm))}. Using disjointness of

these balls and (4.16) we get

K3 ≤ cMHn−1(∂D).
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Finally if m ∈ S2 then as discussed earlier there exists j = j(m) with d(xm) ≈ d′(yj),
where proportionality constants are independent ofm, soB(xm,

1
2d(xm)) ⊂ B(yj, κ

′d′(yj)).

From disjointness of {B(xm,
1
20d(xm))} and a volume type argument we deduce that each

j corresponds to at most κ′′ integers m ∈ S3 where κ′′ is independent of j. Using this
fact, an argument as in (4.15), as well as disjointness of {B(yi,

1
100d

′(yi))}, we conclude
that there is a κ̃ with 0 < κ̃ <∞, satisfying

K2 ≤ κ̃M
∑

m∈S2

d(xm)n−1 ≤ κ̃2M
∑

j

d′(yj)
n−1 ≤ κ̃3M Hn−1(∂D).(4.20)

Using (4.19)-(4.20) in (4.18) we find that Lemma 4.14 is valid. �

We next show that there exists c = c(p, n, c∗) ≥ 1 such that

c−1 ≤ µ′′f (∂Ω
′′ ∩B(0, 10)) ≤ µ′′f (∂Ω

′′) ≤ c.(4.21)

To prove (4.21), it follows from Lemmas 2.2-2.4, (4.7), and the fact u′(z̃) = 1 that u′′ ≥ 1/c
on ∂B(z̃, 4r1) for some c = c(p, n, c∗) ≥ 1. Let l denote the line from the origin through z̃
and let ζ1 be the point on this line segment in ∂B(z̃, 4r1) ∩B(0, 10). Let ζ2 be the point
on the line segment from ζ1 to the origin with d(ζ2, ∂Ω

′′) = 1
20r1 while d(ζ, ∂Ω′′) > 1

20r1
at all other points on the line segment from ζ1 to ζ2. Then from (4.4), Lemma 2.2, and
the above discussion we see that u′′(ζ2) ≥ 1/c′ for some c′ = c′(p, n, c∗) ≥ 1. Also,

B(ζ2,
1
2r1) ⊂ B(0, 10). Let ζ̂ be the point in ∂Ω′′ with |ζ̂ − ζ2| = d(ζ2, ∂Ω

′′). Applying

Lemma 2.4 with w = ζ̂ , r = 2d(ζ2, ∂Ω
′′), we deduce that the left hand inequality is valid.

The right hand inequality in this claim follows once again from Lemma 2.4 and u′′ ≤ u′.

Using Lemmas 4.8-4.14 and (4.21) we prove the following lemma.

Lemma 4.22. There exists c = c(p, n, c∗) such that
∫

∂D

| log f(∇u′′)|f(∇u
′′)

|∇u′′| dHn−1 ≤ c logM.

Proof. Let

log+ t := max{log t, 0} and log− t := log+(1/t) for t ∈ (0,∞).

We first give a proof of Lemma 4.22 for log+ f(∇u′′). To this end, we observe from Lemma
2.7 that

dµ′′f = p
f(∇u′′)
|∇u′′| dHn−1 > 0 on ∂Ω′′ \ Λ.(4.23)

It follows from Lemma 4.8, (4.21), (4.23), and Hn−1(Λ) = 0 that
∫

∂Ω′′

log+(f(∇u′′))f(∇u
′′)

|∇u′′| dHn−1 ≤ c logM µ′′f (∂Ω
′′) ≤ c2 logM.(4.24)

To prove Lemma 4.22 for log− f(∇u′′), fix ξ, −∞ < ξ < −1, and set v′′(x) = max(log f(∇u′′), ξ)
when x ∈ D \ Λ. Given small θ > 0 we set

Λ(θ) = {x ∈ D : d(x,Λ) ≤ θ} and D(θ) = D \ Λ(θ).(4.25)

Observe from Lemmas 4.8-4.14 and (4.21) that

L̃u′′(x) = ∇ ·
(

Df(∇u′′(x))
)

= 0
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exists pointwise for almost every x ∈ D(θ) and is integrable on D(θ). Put

I(θ) =

∫

D(θ)

n
∑

j,k=1

∂

∂xj

(

fηjηk(∇u′′)u′′xk

)

v′′ dx+

∫

D(θ)

n
∑

j,k=1

fηjηk(∇u′′)u′′xk

∂v′′

∂xj
dx

= I1(θ) + I2(θ)

(4.26)

From (4.25) and p − 1 homogeneity of derivatives of f we see that I1(θ) = 0. To handle
I2(θ) = I(θ), we first use a barrier argument as in Lemma 4.8, and then we use Lemma
2.7 to deduce that there exists some c = c(p, n, c∗) ≥ 1, such that

c−1 ≤ |∇u′′| ≤ c on B̄(z̃, 2r2) \B(z̃, 2r1) where r2 = (1 + c−1)r1.(4.27)

Let φ, 0 ≤ φ ≤ 1, be an infinitely differentiable function in R
n with φ ≡ 1 on R

n\B(z̃, 2r2),
|∇φ| ≤ c r−1

1 , and φ ≡ 0 on an open set containing B(z̃, 2r1). From (4.4) and the definition
of r1 we have |∇φ| ≤ c2. Rearranging I2(θ) and writing fηjηk for fηjηk(∇u′′) we have

I2(θ) =

∫

D(θ)

n
∑

j,k=1

fηjηk(φu
′′)xk

v′′xj
dx+

∫

D(θ)

n
∑

i,k=1

fηjηk((1− φ)u′′)xk
v′′xj

dx

= I21(θ) + I22(θ).

It follows from Lemmas 2.6-2.7, (4.27), and an argument similar to (4.15) that

|I22(θ)| ≤
∫

B(z̃,2r2)

n
∑

j,k=1

|fηjηk |(1− φ)|∇u′′| |v′′xj
|dx

+

∫

B(z̃,2r2)\B(z̃,2r1)

n
∑

j,k=1

|fηjηk ||∇φ|u′′ |v′′xj
|dx

≤ c,

(4.28)

where c is independent of θ. From (4.27) and Lemmas 2.6, 2.7, 4.8 and 4.14 we see that the
integrand in the integral defining I21(θ) is bounded by an integrable function independent
of θ. Using this fact and the Lebesgue dominated convergence theorem we find that

lim
θ→0

I21(θ) =

∫

D

n
∑

j,k=1

fηjηk(φu
′′)xk

v′′xj
dx =: I ′21.(4.29)

We claim that I ′21 ≤ 0. To verify this claim let u∗ = u∗(δ) = max(u′′ − δ, 0). Convoluting
φu∗ with an approximate identity and taking limits we see from Lemma 3.18 that

∫

D

n
∑

j,k=1

fηjηk(φu
∗)xk

v′′xj
dx ≤ 0.

Moreover, once again from Lemmas 4.8 and 4.14, we observe that the above integrand
is dominated by an integrable function independent of δ. From this fact, the above
inequality, and the Lebesgue dominated convergence theorem we get assertion I ′21 ≤ 0.
Using (4.28), (4.29), and above claim we conclude that

lim
θ→0

I(θ) ≤ c.(4.30)

On the other hand from [9, chapter 5] and (4.26) we see that integration by parts can be
used to get

I(θ) =

∫

∂D(θ)

v′′
n
∑

j,k=1

fηjηku
′′
xk
n
jdHn−1 = (p − 1)

∫

∂D(θ)

v′′
n
∑

j=1

fηjn
jdHn−1
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where n is the outer unit normal to ∂D(θ). From Lemma 4.8, the dominated convergence
theorem, and the definition of D(θ), we have

∫

∂D(θ)\∂B(z̃,2r1)

v′′
n
∑

j=1

fηj n
jdHn−1 →

∫

∂Ω′′\Λ

v′′
n
∑

j

fηj n
jdHn−1 as θ → 0.(4.31)

From (1.3), (4.30), and (4.31) we deduce
∫

∂Ω′′\Λ

v′′
n
∑

j=1

fηjn
jdHn−1 = −p

∫

∂Ω′′\Λ

v′′
f(∇u′′)
|∇u′′| dHn−1

≤ p(p− 1)−1 lim
θ→0

I(θ) + c ≤ 2c.

(4.32)

where we have also used the fact that n = − ∇u′′

|∇u′′| and
∣

∣

∣

∣

∣

∣

∣

∫

∂B(z̃,2r1)

v′′
n
∑

j=1

fηjn
jdHn−1

∣

∣

∣

∣

∣

∣

∣

≤ c = c(p, n, c∗).

Letting ξ → −∞ in (4.32) and using the monotone convergence theorem we see that (4.32)
holds with v′′ replaced by log f(∇u′′). Finally from (4.32) for log f(∇u′′) and (4.24) we
conclude the validity of Lemma 4.22. �

5. Proof of Theorem 1.11

In this section we first give a proposition which will be a consequence of lemmas we
obtained in section 4 and then we prove Theorem 1.11. To this end let O, f, u, ẑ, ρ, µf be

as in Theorem 1.11. Let w, r,Q be as in Lemma 4.1 and let λ̂ be a positive non-decreasing

function on (0, 1] with lim
t→0

λ̂(t)
tn−1 = 0.

Proposition 5.1. There is a compact set F = F (w, r) ⊂ ∂O ∩B(w, 20r) such that

Hλ̂(F ) = 0 and µf (B(w, 100r)) ≤ cµf (F ).

Proof. We first note from Lemma 2.4 and the fact u′′ ≤ u′ that for given j, 1 ≤ j ≤ N

t1−n
j µ′′f (B(zj , tj)) ≤ c t1−p

j ess sup
B(zj ,2tj)

(u′)p−1 ≤ c2 t1−n
j µ′f (B(zj , 4tj)).(5.2)

where N is the constant defined after (4.6). For given A >> 1, we see from (4.6) that
{1, 2, . . . , N} can be divided into disjoint subsets: the good set G, the bad set B, and the
ugly set U as follows,







G := {j : tj > s},
B := {j : tj = s and f(∇u′′)(x)

|∇u′′|(x) ≥M−A for some x ∈ ∂Ω′′ ∩ ∂B(zj , s) \ Λ},
U := {j : tj = s and j 6∈ B}.

Let t′j = tj when j ∈ G and t′j = 4s when j ∈ B. We define

E := ∂Ω′ ∩
⋃

j∈G∪B

B(zj, t
′
j).(5.3)

We first show for some c = c(p, n, c∗) ≥ 1 and given ǫ > 0 that

Hλ̂
δ′(E) ≤ ǫ and c−1 ≤ µ′f (E)(5.4)
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where δ′ is as in (4.5) and Hλ̂
δ′(E) is the Hausdorff content of E defined in (1.6). Propo-

sition 5.1 will essentially follow from (5.4). To show (5.4), observe that if

x ∈
⋃

j∈G∪B

B(zj , t
′
j) then x lies in at most c = c(n) of {B(zj , t

′
j)}.(5.5)

This observation can be proved using tj ≥ s, 1 ≤ j ≤ N, a volume type argument, and
the fact that {B(zj , tj)}N1 is a Besicovitch covering of ∂Ω′ ∩ B̄(0, 15).

We first consider j ∈ B. Using (4.12), (4.13), the definition of B, and (5.5) we find for
some c = c(p, n, c∗) ≥ 1 that

M−A ≤ f(∇u′′)(x)
|∇u′′(x)| ≤ c(t′j)

1−nµ′f (B(zj , t
′
j)) whenever j ∈ B.(5.6)

Rearranging this inequality, summing over j ∈ B, and using (5.5), we see that

∑

j∈B

(t′j)
n−1 ≤ c̃MAµ′f





⋃

j∈B

B(zj , t
′
j)



 ≤ (c̃)2MA

provided c̃ = c̃(p, n, c∗) is large enough. Now since t′j = 4s for all j ∈ B we may for given
A,M, ǫ choose s > 0 so small that

λ̂(4s)

(4s)n−1
≤ ǫ

2(c̃)2MA

where we have used the definition of λ̂. Using this choice of s in (5.6) we get
∑

j∈B

λ̂(t′j) ≤ ǫ

2
.(5.7)

On the other hand, we may suppose δ′ in (4.5) is so small that λ̂(t′j) ≤ (t′j)
n−1 for

1 ≤ j ≤ N. Then from (4.3), (4.6), and (5.5), we see that

∑

j∈G

λ̂(t′j) ≤
∑

j∈G

(t′j)
n−1 ≤ 1

M

∑

j∈G

µ′f (B(zj , tj)) ≤
ǫ

2
(5.8)

provided M = M(ǫ) is chosen large enough. Fix M satisfying all of the above re-
quirements. In view of (5.7), (5.8), and the definition of Hausdorff content we have

Hλ̂
δ′(E) ≤ ǫ for E as in (5.3). This finishes the proof of the left hand inequality in (5.4).

To prove the right hand inequality in (5.4), we use (1.1), Lemma 4.22, and the definition
of U to obtain

µ′′f



∂Ω′ ∩
⋃

j∈U

B̄(zj , tj)



 ≤ µ′′f

({

x ∈ ∂Ω′′ :
f(∇u′′)(x)
|∇u′′(x)| ≤M−A

})

≤ c

(p− 1)A logM

∫

∂Ω′′

| log f(∇u′′)| f(∇u
′′)

|∇u′′| dHn−1

≤ c′

A
.

(5.9)

Choosing A = A(p, n, c∗) large enough we have from Lemma 4.22 and (5.9),

µ′′f





⋃

j∈G∪B

B(0, 10) ∩B(zj , tj)



 ≥ µ′′(B(0, 10)) − µ′′





⋃

j∈U

B̄(zj , tj)



 ≥ 1

c
(5.10)
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for some c(p, n, c∗) ≥ 1. Finally from (5.2)-(5.5) and (5.10),we get for some c = c(p, n, c∗) ≥
1 that

1

c3
≤ 1

c2

∑

j∈G∪B

µ′′f (B̄(zj , tj)) ≤
1

c

∑

j∈G∪B

µ′f (B̄(zj , t
′
j)) ≤ µ′f (E).

For j ∈ G we have used the definition of tj so that

µ′f (B(zj , 4tj)) < M4n−1tn−1
j = 4n−1µ′f (B(zj , tj)) = 4n−1µ′f (B(zj , t

′
j))

Thus (5.4) is valid. To finish the proof of Proposition 5.1, we note that we can choose
Em relative to δ′ = ǫ = 2−m for m = m0,m0 + 1, . . . with

Hλ̂
δ′(Em) ≤ 2−m and c−1 ≤ µ′f (Em).(5.11)

From (5.11) and measure theoretic arguments we see that if we set

E′ =
⋂

k=m0

(

⋃

m=k

Em

)

then it follows from regularity of µ′f that there exists a compact set F ⊂ E′ satisfying

Hλ̂(F ) = 0 and c−1 ≤ µ′f (F ) where c is as in (5.11). In view of these two estimates we
conclude that the proof of Proposition 5.1 is now complete �

We next give an easy consequence of Lemma 4.1 and Propositions 5.1. Let Q be as in
Lemma 4.1 and let λ̂ be as in Proposition 5.1. We first prove that there exists a Borel set
Q1 ⊂ Q with

µf (∂O ∩B(ẑ, ρ) \Q1) = 0 and Hλ̂(Q1) = 0.(5.12)

To prove (5.12) we first observe that if µf (∂O∩B(ẑ, ρ)) <∞ then it follows from Lemma
4.1, Proposition 5.1, a Vitali type covering argument, and induction that there exists
compact sets {Fl} such that Fl ⊂ Q, Fk ∩ Fl = Ø for k 6= l and µf (F1) > 0 with

µf (Q \
m
⋃

l=1

Fl) ≤ c′µf (Fm+1), m = 1, 2, . . .

for some c′ = c′(p, n, c∗) ≥ 1. Moreover Hλ̂(Fl) = 0 for all l. Then it follows from measure
theoretic arguments that Q1 =

⋃∞
l=1 Fl has the desired properties in (5.12). In case

µf (∂O ∩B(ẑ, ρ)) = ∞, we can write ∂O ∩B(ẑ, ρ) as a union of countable Borel sets with
finite µf measure and apply the same argument in each set. Therefore we conclude that
there exists a Borel set Q1 in Q satisfying (5.12).

We now prove Theorem 1.11. To this end, we let

P :=

{

x ∈ ∂O ∩B(ẑ, ρ) : lim sup
t→0

µf (B(x, t))

tn−1
> 0

}

.

We first show that

µf (∂O ∩B(ẑ, ρ) \ P ) = 0.(5.13)

From Lemma 4.1 we have µf (∂O ∩B(ẑ, ρ) \Q) = 0. Therefore, it suffices to prove (5.13)
with Q replacing ∂O ∩ B(ẑ, ρ). To do this we argue by contradiction and thus assume
µf (Q \ P ) > 0. Then, by Egoroff’s theorem there exists a compact set K ⊂ Q \ P with

µf (K) > 0 and lim
t→0

µf (B(x, t))

tn−1
= 0 uniformly for x ∈ K.(5.14)
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Set α0 = 1 and choose αk ∈ (0, 1), k = 1, 2, . . . , such that

αk+1 <
αk

2
and sup

0<t≤αk

µf (B(x, t))

tn−1
≤ 2−2k for all x ∈ K.

Define λ̂0(t) on (0, 1] in the following way: put λ̂0(0) = 0,

λ̂0(αk) = 2−k(αk)
n−1 for k = 0, 1, . . . ,

and define λ̂0(t) when t ∈ [αk+1, αk] in such a way that

λ̂0(t)

tn−1
is linear for t ∈ [αk+1, αk] whenever k = 0, 1, . . . .

Clearly,

λ̂0(t)

tn−1
→ 0 as t→ 0.

Moreover, we observe that

λ̂0(2t) ≤ 2n+1λ̂0(t) for 0 < t < 1/2,

µf (B(x, t))

λ̂0(t)
≤ 21−k whenever αk+1 ≤ t ≤ αk and x ∈ K.

(5.15)

Let Q1 be as in (5.12) relative to λ̂0. Then for a given positive integer m it follows from
(5.12) that there is a covering {B(xj, rj)} of K ∩Q1 with

rj ≤
αm

2
for all j and

∑

j

λ̂0(rj) ≤ 1.

We may assume that there is an x′j ∈ K ∩B(xj , rj) for each j since otherwise we discard

B(xj, rj). Then from (5.15) we find that

µf (K ∩Q1) ≤
∑

j

µf (B(x′j , 2rj)) ≤ 21−m
∑

j

λ̂0(2rj) ≤ 2n+2−m.

Since m is arbitrary, we have µf (K ∩Q1) = 0. Using this equality and (5.12) we find that
µf (K) = µf (Q \Q1) + µf (K ∩Q1) = 0 and so we have reached a contradiction in (5.14).
Hence, µf (Q \ P ) = 0 and (5.13) holds.

We next show that the set P has σ− finite Hn−1 measure. To this end, once again we
may assume µf (∂O ∩ B(ẑ, ρ)) < ∞. Let m be an arbitrarily fixed positive integer and
define

Pm :=

{

x ∈ P : lim sup
t→0

µf (B(x, t))

tn−1
>

1

m

}

.

Given δ̂ > 0 we choose a Besicovitch covering {B(yi, ri)} of Pm with

yi ∈ Pm, ri ≤ δ̂, B(yi, ri) ⊂ B(ẑ, ρ), and rn−1
i < mµf (B(yi, ri)).

It follows that
∑

i

rn−1
i < m

∑

i

µf (B(xi, ri)) ≤ cmµf (∂O ∩B(ẑ, ρ)) <∞.(5.16)

Letting δ̂ → 0 and using the definition of Hn−1 measure we conclude from (5.16) that
Hn−1(Pm) < ∞. As m is arbitrary we conclude that P has σ−finite Hn−1 measure.
In view of this observation, (5.13) and Lemma 4.1, the proof of Theorem 1.11 is now
complete. ✷



σ-FINITENESS OF ELLIPTIC MEASURES 23

6. Proof of Theorem 1.13

This section is dedicated to the proof of Theorem 1.13. Before giving a proof we recall
our setting from section 1; let

Γ̃ =
{

Q̃k,j; k = 1, . . . , and j = 1, . . . , 2kn
}

denote the set of cubes defined in section 1 and let C be the corresponding Cantor set.
Also as in section 1 let S be the cube in R

n with side length 1 centered at the origin. and
let u∞ be the positive weak solution to

∆fu
∞ = ∇ · Df(∇u∞) = 0 in S \ C

with continuous boundary values 1 on ∂S and 0 on C. Let µ∞f be the measure associated

with u∞ as in (1.5). For ease of notation, we write µ, u for µ∞f , u
∞. Next let α, β be the

constants as in section 1 and s(Q̃k,j) = a0a1a2 . . . ak < 2−(k+1) denote the side length of

Q̃k,j where α ≤ ai ≤ β < 1/2 for every i = 1, 2, . . .. Let c∗ be the constant as in (1.1).

Let Q̃ ∈ Γ̃ for some k with k ≥ 105 and j = 1, . . . , 2kn. We first show that

µ(100Q̃) ≤ cmax
∂2Q̃

up−1 ≤ c2µ(Q̃) for some c = c(p, n, c∗, α, β)(6.1)

where once again c∗ is as in (1.1). To prove (6.1) note from the geometry of C that there

exists a smallest Q̃′ ∈ Γ̃ with
100Q̃ ⊂ (1 + θ)Q̃′

where θ = 1
100n min(α, 1/2 − β). Covering Q̃′ ∩ C by balls of radius ≈ s(Q̃) and applying

Lemma 2.4 in each ball we deduce that

µ(100Q̃) ≤ µ(Q̃′) ≤ c max
∂(1+θ)Q̃′

up−1(6.2)

where c = c(p, n, c∗, α, β). Using Harnack’s inequality, basic geometry and once again
Lemma 2.4 we also see that

(s(Q̃))n−p max
∂(1+θ)Q̃′

up−1 ≤ c̃(s(Q̃))n−p max
∂(1+θ)Q̃

up−1 ≤ c̃2µ(Q̃)(6.3)

where c̃ has the same dependence as c. Combining (6.2) and (6.3) we obtain (6.1). From
Hölder continuity of 1 − u near ∂S, Harnack’s inequality, and Lemma 2.4 we also find
that

µ(C) ≈ 1(6.4)

where proportionality constants depend only on p, n, c∗, α, β. Analogous to Proposition
5.1 we prove

Proposition 6.5. Let Q̃ ∈ Γ̃ be a given cube. Then there exists δ′ > 0 with the same
dependence as δ in Theorem 1.13, c = c(p, n, c∗, α, β) ≥ 1, and a compact set F ⊂ C ∩ Q̃
with

Hn−1−δ′(F ) = 0 and µ(Q̃) ≤ cµ(F ).

Proof. We shall only show that the conclusion of Proposition 6.5 is valid with Q̃ replaced
by Q̃0 = the closed cube with side length 1/2 and center at 0 (denoted C0 in section
1). The general version of Proposition 6.5 is proved in a similar way, as one sees from
using (6.1) and arguing as in the construction of u′ in (4.3), With this understanding, we

simplify the proof of Proposition 6.5 further by noting that if λ(r) = rn−1−δ′ , 0 < r ≤ 1,
then from measure theoretic type arguments it suffices to show for given ǫ, τ > 0, that
there exists δ′, c as above and a compact set F ⊂ C with

Hλ
τ (F ) ≤ ǫ and µ(F ) ≥ 1/c.(6.6)
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To prove (6.6) and in view of the proof of Theorem 1.11 we shall need some more notation:

Let {B(xl,
θ
10)}

N1
1 , xl ∈ ∂Q̃0, be a Besicovitch covering of ∂Q̃0 and set

Q0 := Q̃0 ∪
(

N1
⋃

l=1

B(xl,
θ

10
)

)

where θ = 1
100n min(α, 1/2 − β) as earlier (see figure 6.1).

Q̃0
Q0

Figure 6.1. The cubes Q̃0 and Q0.

If Q̃ is a cube with center z let γQ = {x = z + 2γs(Q̃)y : y ∈ Q0}. We write Q for 1Q.
From our constructions we have for k = 1, 2, . . . ,

Q̃k,j ⊂ Qk,j ⊂ (1 + θ/2)Q̃k,j

(1 + θ)Q̃k,j ∩ (1 + θ)Q̃k,j′ = Ø for j 6= j′ and

either Q̃k,j ⊂ Q̃k′,j′ or Q̃k,j ∩ Q̃k′,j′ = Ø, when k > k′.

(6.7)

Let Λ̃ be a finite disjoint covering of C by cubes in Γ̃ and let Λ be the collection of all
Qk,j with Q̃k,j ∈ Λ̃.

Remark 6.8. Note that cubes Q̃k,j ∈ Λ̃ are closed cubes whereas the cubes Qk,j ∈ Λ are

open. Moreover, figure 6.2 tells us (as an example) that Q̃k−1,j /∈ Λ̃ and Q̃k,j2 /∈ Λ̃. On

the other hand, Q̃k,j1 ∈ Λ̃ and Q̃k+1,j1 ∈ Λ̃ and therefore by definition of Λ, Qk,j1 ∈ Λ
and Qk+1,j1 ∈ Λ.

Let ū be the positive weak solution to

∆f ū = ∇ · Df(∇ū) = 0 in Ω = B(0, n) \
⋃

Q∈Λ

Q̄

with boundary values 1 on ∂B(0, n) and 0 on ∂Q for every Q ∈ Λ. Extend ū to B(0, n)
by putting ū = 0 on every Q ∈ Λ. Let µ̄ be the measure associated with ū as in (1.5). Let

v̄ = log f(∇ū) and define L̃ as in Lemma 3.18 relative to ū. Recall from this lemma that

max(v̄, η) is a weak sub solution to L̃ whenever η ∈ (−∞,∞). Then L̃v̄ = ν weakly, where
ν is a locally finite positive Borel measure on Ω ∩ {x : |∇ū| > 0}. In case p = 2, n = 2,
we shall see that ν is a locally finite atomic measure on Ω.

Next we state a key lemma.
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Q̃k−1,j

Q̃k,j1

Q̃k,j2 Q̃k,j3

Q̃k,j4

(1 + θ/2)Q̃k,j1

Qk,j1

(1 + θ/2)Q̃k+1,j1

Qk+1,j1 Qk+1,j1

Figure 6.2. The cubes Q̃k−1,j1, Q̃k,j1, Q̃k+1,j1 , Qk,j1 , and Qk+1,j1.

Lemma 6.9. Let Ω, ū, µ̄, v̄, ν, be as above and suppose Q̃ ∈ Γ̃ \ Λ̃. There exists c2, c3, c4 ≥
105, such that if Q̃′ ⊂ Q̃, Q̃′ ∈ Λ̃, and c2s(Q̃

′) ≤ s(Q̃), then
∫

O
ūdν ≥ c−1

3 µ̄(Q̄) where O =

{

x ∈ (1 + θ)Q̃ : d(x, ∂Ω) ≥ s(Q̃)

c4

}

and Q ∈ Λ is the cube associated with Q̃ ∈ Λ̃. Here c2, c4 depend only on p, n, c∗, α, β,
and can be chosen independent of p ∈ [n, n + 1] provided c∗ in (1.1) is constant on this
interval. Also c−1

3 ≥ (p− n)c−1
5 , where c5 has the same dependence as c2.

Moreover, if f = gp, where g is as in Theorem 1.13, then c−1
3 can be chosen to depend

only on n, g, c∗, α, β, when p ∈ [n, n+ 1].

Proof. Let ξ be the minimum of ū on ∂(1 + θ)Q̃ and let

G = {x : ū(x) < ξ/2} ∩ (1 + θ)Q̃.

We note that

d(∂G, ∂Ω) ≥ c−1s(Q̃) and ξ ≥ c−1 max
(1+θ)Q̃

ū

thanks to Harnack’s inequality and Hölder continuity of ū near ∂Ω (Lemmas 2.2 and
2.3). From this note and our hyphothesis, we deduce that if c2 is large enough, then a

component of G, say G′, contains two disjoint cubes, (1+θ)Q̃1, (1+θ)Q̃2, with Q̃1, Q̃2 ∈ Γ̃
and

(c′)−1s(Q̃i) ≤ s(Q̃) ≤ c′s(Q̃i) for i = 1, 2,

where c′ has the same dependence as c2 in Lemma 6.9. Let ξ1 be the minimum of ū on
∂(1+θ)Q̃1∪∂(1+θ)Q̃2. Then from our construction, the maximum principle for solutions
to (1.4), and once again Harnack’s inequality - Hölder continuity of ū near ∂Ω, we see
that G′ contains at least two components of G1 = {x : ū(x) < ξ1/2}. Moreover,

d(∂G1, ∂Ω) ≥ c−1s(Q̃) and ξ1 ≥ c−1 max
(1+θ)Q̃

ū.(6.10)
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Let t0, ξ1/2 ≤ t0 < ξ/2, be the largest t for which there are at least two components of
{x : ū(x) < t} contained in G′. Then there exists x̂ ∈ G′ ∩ {x : ū(x) = t0} such that x̂
lies on the boundary of two different components of {x : ū(x) < t0} in G′. Also,

ū(x̂) = t0, ∇ū(x̂) = 0, d(x̂, ∂Ω) ≥ c−1
6 s(Q̃), and t0 ≥ c−1

6 max
(1+θ)Q̃

ū,(6.11)

where c6 ≥ 1 has the same dependence as c4 in Lemma 6.9. Indeed observe from Lemma
2.6 that ū has Hölder continuous derivatives in an open neighborhood of x̂. So if∇ū(x̂) 6= 0
we easily obtain a contradiction to the definition of t0, using the implicit function theorem
and the definition of a component. From this contradiction we conclude that ∇ū(x̂) = 0.
Existence of c6 depending on p, n, c∗, α, β follows from (6.10) which in turn was proved
using Lemmas 2.3 and 2.2. Also it is easily checked from references providing proofs of
these lemmas (see section 2) that constants may be chosen to depend only on n, α, β when
p ∈ [n, n+ 1] provided c∗ in (1.1) is chosen independent of p in this interval.

For x̂, t0 as in (6.11) we now choose

z ∈ ∂Ω \ ∂B(0, n) with d(x̂, ∂Ω \ ∂B(0, n)) = |z − x̂|.
Let z1 be the first point on this line segment starting from x̂ with ū(z1) = (1/2)t0. Let
[x̂, z1] denote the line segment from x̂ to z1. Then

(1/2)t0 ≤
∫

[x̂,z1]
|∇ū|dH1

so there exists z2 on [x̂, z1] and c7 = c7(p, n, c∗, α, β) with

(1/2)t0 ≤ |∇ū(z2)||x̂− z1| while d(z2, ∂Ω) ≥ c−1
7 s(Q̃)(6.12)

where the last inequality follows from our choice of z1, basic geometry, and Lemma 2.3.
From (6.11), (6.12), we find ρ such that

ρ = ρ(p, n, c∗, α, β) ≥ c−1s(Q̃) with B(x̂, ρ), B(z2, ρ) ⊂ Ω.

Let Ω′ denote the convex hull of B(x̂, ρ/2) and B(z2, ρ/2). Then from Harnack’s inequal-
ity, Lemma 2.6, a Poincare type inequality, and (6.11), (6.12), we have

c−1s(Q̃)n−p( max
(1+θ)Q̃

ū)p−1 ≤ s(Q̃)n−pū(z2)
p−1

≤ c

∫

Ω′∩{|∇ū|>0}
ū|∇ū|p−2 |∇v̄|2 dx

≤ c2
∫

Ω′∩{|∇ū|>0}
ū|∇ū|p−4

n
∑

i,j=1

ū2xixj
dx.

(6.13)

Using Lemma 2.4 and (6.13), it follows that

µ̄(Q̄) ≤ c

∫

Ω′∩{|∇ū|>0}
ū|∇ū|p−4

n
∑

i,j=1

ū2xixj
dx.(6.14)

Next we revisit the proof of Lemma 3.18 in order to estimate ν.

6.1. The case p ≥ n > 2. In this case from (3.8)-(3.9) we see for n > 2 and p ≥ n that
if ∇ū(x) 6= 0, then

L̃v̄ = h weakly(6.15)

where

h = f−1(I ′ + I ′′) = f−1 [ tr(BA)2 − 1

f

1

(p− 1)2
∇ūBABAB(∇ū)t ]
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and A = (ūxixj
), B = (fηiηj ) are n × n matrices. If p > n we see from (3.10) and (3.16)

that

tr(BA)2 − 1

f

1

(p− 1)2
∇ūBABAB(∇ũ)t ≥ p− n

n(n− 1)(p − 1)
tr(AB)2.(6.16)

Moreover,

ĉ tr(AB)2 ≥ |∇ū|2p−4
n
∑

i,j=1

ū2xixj
(6.17)

for some ĉ ≥ 1 depending only on p, n, α, β, and c∗ in (1.1), as follows from positive
definiteness and p − 2 homogeneity of B as well as symmetry of A. Combining (6.15)-
(6.17) we conclude for almost every x with ∇ū(x) 6= 0 that

h ≥ c−1(p− n)|∇ū|p−4
n
∑

i,j=1

ū2xi,xj
(6.18)

where c ≥ 1 depends only on p, n, α, β, and c∗ in (1.1). Combining (6.18), (6.15), and
(6.14) we get

(p − n)µ̄(Q̄) ≤ c̃

∫

Ω′∩{|∇ū|>0}
ū dν ≤ c̃

∫

O
ūdν(6.19)

where c̃ = c̃(p, n, c∗, α, β) and this constant can be chosen independent of p on [n, n+ 1].
From the definition of Ω′ and (6.19) we see that the first part of Lemma 6.9 is true when
p > n.

To handle values of p near n, n ≥ 3, we need to examine the case when h = 0 (so
p = n) in (6.15). Indeed, from (3.10) - (3.16) we see for p = n that

fh =

[

tr (E2)− n

n− 1

yE2yt

yyt

]

= g(y) ≥ 0,

where E = B′
dA1B

′
d, y = ∇ūSB′

d, A1 = StAS, Bd = StBS, and Bd = B′
dB

′
d. Also S

is an orthogonal matrix and Bd a diagonal matrix as in section 3. If g(y) = 0, y 6= 0,
and E 6= 0, then since E is symmetric, it follows from basic matrix theory that y is an
eigenvector of E, so yE = Vy for some V 6= 0. Thus,

(∇ūSB′
d)B

′
dA1B

′
d = V(∇ūSB′

d)

so since S, B′
d are invertible it follows that at x we have ∇ūBA = V∇ū. If we rewrite

this in terms of f and ū we get

(n− 1)∇f(∇ū(x)) = V∇ū(x)(6.20)

where we have used the n− 1 homogeneity of Df . On the other hand at almost every x
where E = 0 we have

A = (ūxixj
) = 0 since B′

d and S are invertible.(6.21)

Assume that either (6.20) or (6.21) hold almost everywhere in B(w, r) ⊂ Ω for some
w ∈ Ω and r > 0. If B(w, r) ∩ {x : ū(x) = t} 6= Ø, we assert that

f(∇ū) is constant on each component of B(w, r) ∩ {x : ū(x) = t} .(6.22)

To prove this assertion let x′ ∈ B(w, r) and suppose that ∇ū(x′) 6= 0. Then

±ūxi
(x′) ≥ n−1|∇ū(x′)| for some 1 ≤ i ≤ n.

Assume for example that i = n so that ūxn(x
′) ≥ |∇ū|(x′)/n. Consider the mapping,

Ψ(x1, . . . , xn) = (x1, . . . , ū(x1, ..., xn)). From the inverse function theorem and Lemma
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2.6 we see that in a neighborhood of Ψ(x′),Ψ has a C1,α′′

inverse Φ and f(∇ū(x)) is in
W 1,2(B(x′, ρ)) for some small ρ > 0. We claim that

H = f(∇ū) ◦ Φ ∈W 1,2(B(Ψ(x′), ρ′)) for small ρ′ > 0.(6.23)

Here H is considered as a function of x1, . . . , xn−1, ū. One can prove (6.23) for example
by, (a) approximating f(∇ū) in the W 1,2(B(x′, ρ)) norm by a sequence, (qj) of C

∞(Rn)
functions, (b) using the chain rule and change of variables theorem to show that Hj =
qj ◦ Φ ∈ W 1,2(B(Ψ(x′), ρ′)) with norms bounded by a constant independent of j, (c)
showing that Hj→H in the norm of W 1,2(B(Ψ(x′), ρ′)).

From (6.23) and well known properties of Sobolev functions it follows that H is “abso-
lutely continuous on most lines”. Therefore, in our situation, if ẑ = (Ψ1(x

′), . . . ,Ψn−1(x
′)),

then for almost every t with |t−Ψn(x
′)| < ρ′/2 it is true that in a neighborhood of ẑ, we

have H(·, t) ∈W 1,2 as a function of x1, . . . , xn−1. Let

êi = (0, . . . , 0, 1, 0, . . . , 0,−ūxi
/ūxn(x1, . . . , xn−1, t))

denote the vector with 1 in the i th position and −ūxi
/ūxn(x1, . . . , xn−1, t), in the n th

position, for 1 ≤ i ≤ n − 1,. Then from either (6.20) or (6.21) we have for Hn−1 almost
every (x1, . . . , xn−1) in a neighborhood of ẑ that

∂H

∂xi
(·, t) = ∇f(∇ū) · êi = 0.(6.24)

Transferring this information to f(∇ū) we see first for almost every t that f(∇ū) is
constant on {x : ū(x) = t} ∩B(x′, ρ/2). Second from continuity of f(∇ū) and ū, we then
conclude this statement for every t. Finally, the definition of a component and continuity
of f(∇ū), ū imply assertion (6.22).

Armed with (6.22) we can show for G′, t0, as in (6.11) and ξ1 as in (6.10) that if O′ is

an open set in Ω containing K̂ = {x ∈ G′ : ξ1/2 ≤ ū(x) ≤ t0} then

ν(O′) > 0.(6.25)

Indeed otherwise, by our construction, n homogeneity of f , (6.11), and (6.22) we have
∇ū = 0 on ∂G′ ∩ {x : ū(x) = t0} which easily leads to a contradiction by a barrier
argument. In fact, if

B(y, r̂) ⊂ K̂ ∩ {u < t0} with ŷ ∈ ∂B(y, r̂) ∩ {x : ū(x) = t0}
then from the Hopf maximum principle |∇ū(ŷ)| > 0. From this contradiction we conclude
that (6.25) is valid when p = n ≥ 3.

6.2. The case n = p = 2. In this case we note from (1.1) and the computation in Lemma

3.18 that L̃v̄ = 0 weakly on {x : ∇ū(x) 6= 0} and L̃ is uniformly elliptic where

L̃v̄ =

2
∑

k,j=1

∂

∂xk
(fηkηj

∂v̄

∂xj
)

as in section 1. To analyze this case let x̂ ∈ Ω be any point with ∇ū(x̂) = 0. We
temporarily use complex notation and write ūz = (1/2)(ūx1 − iūx2) where i =

√
−1. We

note that ūz is a k−quasiregular mapping of Ω, where k = k(p, n, c∗) (see [4, 16.4.3] for this
fact and more on quasiregular mappings in the plane). From properties of quasiregular
mappings we see that the zeros of uz in Ω are isolated. Next we note from the factorization
theorem for quasiregular mappings (see [4, Corollary 5.5.4]) that ūz = t ◦ s where t is
analytic in s(Ω), s is a quasiconformal mapping of R2, and s(x̂) = 0. From local properties
of analytic functions, and R

2 quasiconformal mappings, as well as (1.1), it follows that
there exists r̃ > 0 such that B(x̂, 8r̃) ⊂ Ω and if 0 < ρ ≤ 2r̃, then

0 < c−1
− f(∇ū(x)) ≤ f(∇ū(y)) ≤ c−f(∇ū(x))(6.26)
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whenever x, y ∈ B(x̂, 2ρ) \ B̄(x̂, ρ/4). Here c− ≥ 1 may depend on various quantities
but is independent of ρ . Using (6.26), standard Caccioppoli type estimates for linear
divergence form PDE, and Hölder’s inequality we find that

c−1

(

∫

B(x̂,ρ)\B̄(x̂,ρ/2)
|∇v̄|dx

)2

≤ ρ2
∫

B(x̂,ρ)\B̄(x̂,ρ/2)
|∇v̄|2dx

≤ c

∫

B(x̂,2ρ)\B̄(x̂,ρ/4)
|v̄ − v̄(x̂+ (ρ, 0))|2dx

≤ c2ρ2

(6.27)

where again c ≥ 1 is a positive constant independent of ρ. Putting ρ = 2−lr̃ in (6.27) and
summing over l = −1, 0, . . . , we find that

∫

B(x̂,2r̃)
|∇v̄|dx < c∗r̃ <∞.(6.28)

In view of (6.26)-(6.28) we can now use a more or less standard argument to show that
if 0 ≤ χ ∈ C∞

0 (B(x̂, 2r̃)) then

∫

B(x̂,2r̃)

2
∑

k,j=1

fηkηj (∇ū)
∂v̄

∂xj

∂χ

∂xk
dx = −â χ(x̂)(6.29)

for some â > 0. For completeness we give the proof of (6.29) here. To do this let σ ∈
C∞
0 (B(x̂, 2r̃)) with σ = 1 on B̄(x̂, r̃). If φ ∈ C∞(B(x̂, 2r̃) \ B̄(x̂, ρ/2)) we first show that

for H1 almost every ρ with 0 < ρ < r̃,
∫

B(x̂,2r̃)\B̄(x̂,ρ)

2
∑

k,j=1

fηkηj (∇ū)
∂v̄

∂xj

∂(φσ)

∂xk
dx =

∫

∂B(x̂,ρ)

2
∑

k,j=1

fηkηj (∇ū)
∂v̄

∂xj
ξk φdH1(6.30)

where ξ = (ξ1, ξ2) denotes the inward unit normal to ∂B(x̂, ρ). To verify (6.30) for small

δ̂ > 0, let ψ ∈ C∞
0 ([ρ− δ̂,∞)) with ψ ≡ 1 on [ρ,∞). Put ψ̂(x) = ψ(|x − x̂|), x ∈ R

2, and

replace φσ by φψ̂σ on the left hand side of (6.30). Then the resulting integral is now

zero since L̃v̄ = 0 weakly in B(x̂, 2r̃) \ {x̂}. Using this fact, the Lebesgue differentation

theorem, letting δ̂→0, and doing some arithmetic, we eventually obtain (6.30). Next from
(6.27) and a weak type estimate we see there exists ρ′ with ρ/2 ≤ ρ′ ≤ ρ such that

∫

∂B(x̂,ρ′)
|∇v̄|dH1 ≤ c′(6.31)

where c′ is independent of ρ. Using (6.28), (6.30), and (6.31), we find for a sequence (ρl)
with liml→∞ ρl = 0 and 0 ≤ χ ∈ C∞

0 (B(x̂, 2r̃)) that

∫

B(x̂,2r̃)

2
∑

k,j=1

fηkηj (∇ū)
∂v̄

∂xj

∂(χσ)

∂xk
dx = lim

l→∞

∫

B(x̂,2r̃)\B̄(x̂,ρl)

2
∑

k,j=1

fηkηj (∇ū)
∂v̄

∂xj

∂(χσ)

∂xk
dx

= lim
l→∞

∫

∂B(x̂,ρl)

2
∑

k,j=1

fηkηj (∇ū)
∂v̄

∂xj
ξk χdH1

= χ(x̂) lim
l→∞

∫

∂B(x̂,ρl)

2
∑

k,j=1

fηkηj (∇ū)
∂v̄

∂xj
ξk dH1

= −χ(x̂)â

(6.32)
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for some real â. Now (6.29) follows from (6.32) and the observation that χσ can be

replaced in (6.32) by χ since χ(1− σ) has compact support in B(x̂, 2r̃) \ {x̂} and L̃v̄ = 0
weakly in B(x̂, 2r̃) \ {x̂}. Finally to show â > 0 we note that (6.30) remains true if φ is
replaced by v̄, as follows from approximating v̄ in the W 1,2(B(x̂, 2r̃)) \ B̄(x̂, ρ/2)) norm
by smooth functions and taking limits using Lemma 2.6. Doing this we deduce from the
left hand integral in (6.30) that

∫

B(x̂,2r̃)\B̄(x̂,ρl)

2
∑

k,j=1

fηkηj (∇ū)
∂v̄

∂xj

∂(v̄σ)

∂xk
dx ≥ c−1

∫

B(x̂,r̃)\B̄(x̂,ρl)

|∇v̄|2dx

− c

∫

B(x̂,2r̃)\B(x̂,r̃)

|∇v̄||v̄||∇σ|dx

where c depends only on p, n, c∗, α, β. Moreover from the right hand integral in this
inequality and (6.26) we find that

∫

∂B(x̂,ρl)

2
∑

k,j=1

fηkηj (∇ū)
∂v̄

∂xj
ξk v̄dH1 = v̄(x̂+ (ρl, 0))

∫

∂B(x̂,ρl)

2
∑

k,j=1

fηkηj (∇ū)
∂v̄

∂xj
ξk dH1 + Tl

where |Tl| ≤ c̄ and c̄ is independent of l. If â = 0 in (6.32), then from the above estimates
it follows easily that v̄ ∈ W 1,2(B(x̂, r̃)). However then linear elliptic PDE theory yields
that v̄ is bounded in B(x̂, r̃/2), which is a contradiction. Thus â 6= 0. Using this fact and
comparing the above inequalities we see that

+∞ = lim
l→∞

v̄(x̂+ (ρl, 0))

∫

∂B(x̂,ρl)

2
∑

k,j=1

fηkηj (∇ū)
∂v̄

∂xj
ξk dH1.

Since
v̄(x̂+ (ρl, 0)) → −∞ as l → ∞

it follows that necessarily â > 0. From (6.29) we see that L̃v̄ may be regarded weakly as an
atomic measure on Ω when p = 2, n = 2 and hence (6.25) is also valid when n = 2, p = 2.

We now are in a position to finish the proof of Lemma 6.9 when p = n and for a general
f, as well as when f = gp, p ∈ [n, n + 1], and g is as in Theorem 1.13. We consider first
the case when f = gp, as the compactness argument in either case is essentially the same.

We shall need some more notation. For fixed α, β, let

Γ̃m = {Q̃(m)}, m = 1, 2, . . . ,

be collections of cubes with side lengths defined as in section 1 with a1, a2, ..., replaced by

a
(m)
1 , a

(m)
2 , . . . , where 0 < α ≤ a

(m)
k < β, for k,m = 1, . . . . Let Cm denote the correspond-

ing Cantor set and suppose Λ̃m is a finite covering of Cm by disjoint cubes in Γ̃m. Define
Q(m) relative to Q̃(m) in the same way that Q0 below (6.6) is defined relative to Q̃0 and
set

Λm := {Q(m) : Q̃(m) ∈ Λ̃m} and Ωm := B(0, n) \
⋃

Qm∈Λm

Q̄(m).

Suppose (pm) is a sequence of points in [n, n + 1] with limm→∞ pm = p̂. Let fm = gpm

and let ūm be the weak solution to (1.4) relative to fm on Ωm with continuous boundary
values, 1 on ∂B(0, n) and 0 on ∂Q(m) for every Q(m) ∈ Λm. Extend ūm to B(0, n) by

putting ūm = 0 on Q(m) for every Q(m) ∈ Λm. Let µ̄m be the measure associated with ūm
as in (1.5) and let v̄m = log fm(∇ūm). Finally define L̃mv̄m = νm, weakly as in Lemma
3.18 relative to ūm, fm, on {x : ∇um(x) 6= 0} when n ≥ 3 and on Ωm when n = p = 2
(see (6.29)).
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From (6.25) and (6.19) we see that if Lemma 6.9 is false for c4 sufficiently large and

n ≥ 3, then there exists Q̃(m) ∈ Γ̃m with

0 <

∫

Om∩{|∇ūm|>0}
ūmdνm = bmµm(Q̄(m))(6.33)

where

Om =

{

x ∈ (1 + θ)Q̃(m) : d(x, ∂Ωm) ≥ s(Q̃(m))

c4

}

and 0 < bm → 0 as m→ ∞.

Let zm denote the center of Q̃(m) and let Ω̂m = {y : zm + s(Q̃m)y ∈ Ωm}. Put

ûm(y) =
ūm(zm + s(Q̃m)y)

max
2Q̃(m)

ūm
whenever y ∈ Ω̂m.

Using translation and dilation invariance of (1.1) we see that ûm is a weak solution to

(1.4) in Ω̂m. Let µ̂m denote the measure corresponding to ûm with f and u replaced by fm
and ûm. Then from Lemma 2.4 and Harnack’s inequality we find from estimates similar
to those in (6.1) that

c−1 ≤ µ̂m(S) ≤ max
1000S

ûm ≤ cµ̂m(2000S) ≤ c2(6.34)

where c ≥ 1 is independent of fm, pm ∈ [n, n + 1] for fixed c∗ in (1.1). Once again we
emphasize that this independence follows from the fact that the constants in Lemmas
2.2-2.6 can be chosen independent of these quantities. Let v̂m = log fm(∇ûm). Then v̂m
is a weak sub solution to L̂m in the interior of 1000S ∩ {x : ∇ûm 6= 0} where L̂m is
defined as in Lemma 3.18 relative to ûm, fm. Let ν̂m be the corresponding measure. From
(6.33)-(6.34) we deduce that if Ôm = {y : zm + s(Q̃m)y ∈ Om}, then

∫

Ôm

ûmdν̂m → 0 as m→ ∞.(6.35)

Using (6.34), Lemmas 2.2-2.6, the fact that d(·, ∂Ω̂′
m) is Lipschitz, and Ascoli’s theorem

we see there exists sub sequences, (Ω̂′
m) of (Ω̂m) such that Ω̂′

m ∩ B(0, R) converges to

Ω̂ ∩B(0, R) for each R > 0 in the Hausdorff distance metric and (û′m) of (ûm) with (û′m)
converging uniformly to û in the interior of 1000S. We also can choose the sub sequence
so that ∇û′m converges uniformly to ∇û on compact subsets of Ω̂. Using these facts it is

easily seen that û is a weak solution to (1.4) with f̂ = gp̂ in the interior of 1000S ∩ Ω̂ and

û is continuous in the interior of 1000S with û = 0 on ∂Ω̂ ∩ 1000S. Let µ̂ be the measure
corresponding to û and let ν̂ be the measure corresponding to v̂. Then for n ≥ 3 we
may also assume that L̂′

mv̂
′
m = ν̂ ′m converges weakly to L̂v̂ = ν as measures on compact

subsets in the interior of S∩{x : ∇û(x) 6= 0}. Indeed from the definition of fm and uniform
convergence of (∇û′m) we see that (fm)ηkηj (∇û′m), 1 ≤ k, j ≤ n, converges uniformly on
compact subsets in the interior of S ∩ {x : ∇û(x) 6= 0}. Also from Lemma 2.6 we deduce
that for large m, v̂′m is uniformly bounded in W 1,2 on an open set with compact closure
in S ∩ {x : ∇û(x) 6= 0}. Using these facts and well known theorems on weak convergence
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in W 1,2 we see that if n ≥ 3, then a sub sequence of (v̂′m) (also denoted (v̂′m)) yields,

− lim
m→∞

∫

φdν̂ ′m = lim
m→∞

∫ n
∑

j,k=1

(fm)ηkηj (∇û′m)(v̂′m)xj
φxk

dx

=

∫ n
∑

j,k=1

f̂ηkηj (∇û)v̂xj
φxk

dx

= −
∫

φdν̂

(6.36)

whenever φ is infinitely differentiable with compact support in 1000S∩Ω̂∩{x : ∇û(x) 6= 0}.
If n = 2 we claim that ν̂ ′m converges weakly to ν̂ on compact subsets in the interior of

1000S ∩ Ω̂. To see this we note from the discussion preceding (6.26) that there exists tm
analytic in sm(Ω̂′

m) and sm quasiconformal in R
2 with (u′m)z = tm ◦ sm in Ω̂′

m. From
normal family type arguments for R

2 quasiconformal mappings and analytic functions
we see that there exist subsequences of (tm), (sm) (also denoted (tm), (sm) ) with (sm)
converging to s a quasiconformal mapping of R2, uniformly on compact subsets of R2,
and tm converging uniformly to t analytic, uniformly on compact subsets in the interior
of s(1000S ∩ Ω̂). Using these facts and the argument principle for analytic functions we
conclude that the constants in (6.26) - (6.28) can be chosen independent of m. From this
conclusion, uniform convergence of (∇û′m) and simple estimates in (6.29) we obtain (6.36)

for φ infinitely differentiable with compact support in 1000S ∩ Ω̂. Let

Ô =
{

x ∈ (1 + θ)S : d(x, ∂Ω̂) > c−1
4

}

.

Then from (6.36) and (6.35) we have

ν̂(Ô) = 0.(6.37)

On the other hand, we can essentially repeat the argument from (6.11)-(6.32) since the
same constants in Lemmas 2.2-2.6 as earlier can also be used for û. Moreover, since
1000S ∩ Ω̂m converges in the Hausdorff distance sense to 1000S ∩ Ω̂ the Harnack chains
used to obtain the analogue of (6.25) can all be chosen in Ω̂m for m large enough. A

more cut to the chase type argument is to observe that if x̂m, t
(m)
0 , G′

m denote the sets

in (6.11), and ξm1 is as in (6.10) relative to û′m in (1 + θ)S ∩ Ω̂′
m, then these sequences

converge pointwise and in the Hausdorff distance sense to x̂′, t̂0, ξ̂1, Ĝ
′ ⊂ (1+θ)S.Moreover

(6.10),(6.11) are now valid for û in this symbology. Repeating the argument leading to
(6.19) we see that in order to avoid a contradiction to (6.37) we must have p̂ = n. Now
repeating the argument from (6.18) to (6.32) we also rule out the case p̂ = n and so for

c2, c4 large enough, obtain ν̂(Ô) > 0, a contradiction to (6.37). The proof of Lemma 6.9
is now complete when f = gp. For a general f it follows from (6.19) that we need only
consider the case p = n. If p = n, we again argue by contradiction and use a compactness
argument similar to the above to get a contradiction. We omit the details. �

Following [10, Chapter IX, Theorem 2.1], we continue the proof of Proposition 6.5

by repeating the stopping time argument in Theorem 1.11 only with cubes in Γ̃ rather
than balls. First let M >> 1 be so large that if Q̃ ∈ Γ̃ and µ(Q̃) ≥ Ms(Q̃)n−1, then

s(Q̃) ≤ min(τ, 10−5). This choice is possible as we see from (6.4). Let s << τ and choose

a covering Λ̃M = BM ∪ GM of C by cubes in Γ̃, according to the following recipe. Either
x ∈ C lies in a cube in

GM :=
{

Q̃ ∈ Γ̃ : s(Q̃) > s, µ(Q̃) ≥Ms(Q̃)n−1, and Q̃ is maximal
}
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or no such cube exists and x lies in a cube in

BM := {Q̃ ∈ Γ̃ : s(Q̃) ≤ s and Q̃ is maximal}.
Note that BM ∪ GM is a disjoint covering of C. As earlier let ΛM = {Q : Q̃ ∈ Λ̃M} and
define ū as below (6.7) relative to ΛM . Then ū is a solution to (1.4) in Ω = B(0, n) \
∪Q∈ΛM

Q̄ and continuous in B(0, n) with ū = 0 on ∪Q∈ΛM
Q̄ while ū = 1 on ∂B(0, n). Let

µ̄ be the measure associated with ū as in (1.5). From the maximum principle for solutions

to (1.4) we see that ū ≤ u in S and as in (6.1) and (6.4) that for Q̃ ∈ Λ̃M ,

s(Q̃)1−nµ̄(Q̄) ≤ c s(Q̃)1−p max
(1+θ)Q̃

up−1 ≤ c2 s(Q̃)1−n µ(2Q̃)

µ̄(B(0, n)) ≈ 1.
(6.38)

where Q ∈ ΛM corresponds to Q̃ ∈ Λ̃M . Let

E :=
{

Q̃ ∈ Γ̃ \ Λ̃M for which there exists Q̃′ ∈ Λ̃M with Q̃′ ⊂ Q̃ and c2 s(Q̃
′) ≤ s(Q̃)

}

.

For c2, c4 as in Lemma 6.9 and Q̃ ∈ E we also define

O := O(Q̃) =

{

x ∈ (1 + θ)Q̃ with d(x, ∂Ω) ≥ s(Q̃)

c4

}

.

We note that each point in
⋃

Q̃∈E

O(Q̃) lies in at most N̂ of the Q̃ ∈ E

where N̂ has the same dependence as c4. Using this observation and Lemma 6.4 it follows
for n ≥ 3 that

∑

Q̃∈E

µ̄(Q̄) ≤ c̆

∫

Ω∩{x:∇ū6=0}

ūdν ≤ 2c̆

∫

Ω∩{x:|∇ū|>δ′′}

ūdν.(6.39)

provided δ′′ > 0 is small enough.

If p = 2 = n the integral on the right hand side of (6.39) is taken over Ω. In general c̆
depends on p, n, α, β, c∗ but in view of Lemma 6.4 we have 1 ≤ c̆ ≤ c(p − n)−1, where c
can be chosen to depend only on n, α, β, c∗ when p ∈ [n, n+ 1] while if f = gp then c̆ can
be chosen to depend only on n, α, β, c∗ when p ∈ [n, n+ 1].

We now essentially repeat the argument leading to Lemma 4.22. Choose η ∈ (−∞,∞)
so small that if |ξ| ≤ δ′′ then log f(ξ) ≤ η. Using (6.39) and arguing as (4.26)-(4.32) we
obtain for n ≥ 3 and v′ = max(v̄, η) that

∑

Q̃∈E

µ̄(Q̄) ≤ 2c̆

∫

Ω∩{x:|∇ū|>δ′′}

ūdν̄ ≤ −
∫

Ω

n
∑

k,j=1

fηkηj (∇ū)v′xj
ūxk

dx ≤ cc̆ logM.(6.40)

To estimate the left hand side of (6.40), given Q̃′ ∈ Λ̃M , we let σ(Q̃′) be the number of

cubes Q̃ ∈ E with Q̃′ ⊂ Q̃ and c2s(Q̃
′) ≤ s(Q̃). From our construction we see for τ small

enough that

σ(Q̃′) ≥ −c−1 log(s(Q̃′))(6.41)

From (6.40) and (6.41) we get

−
∑

Q̃′∈Λ̃M

log(s(Q̃′))µ̄(Q̄′) ≤ c
∑

Q̃∈E

µ̄(Q̄) ≤ c2c̆ logM(6.42)



34 MURAT AKMAN, JOHN LEWIS, AND ANDREW VOGEL

where c ≥ 1 in (6.40), (6.41), and (6.42) has the same dependence as c2 in Lemma 6.9.
From (6.38) and (6.42) we see that if c is large enough with

Λ̃1 := {Q̃ ∈ Λ̃M : s(Q̃) ≤M−c3c̆} and Λ1 := {Q : Q̃ ∈ Λ̃1}
then

∑

Q∈Λ1

µ̄(Q̄) ≤ (1/2)µ̃(B(0, n)).(6.43)

Finally choosing s << min(M−c3c̆, τ), we see that BM ⊂ Λ̃1. Let

F := C ∩





⋃

Q̃∈Λ̃M\Λ̃1

Q̃



 .

Then from (6.1), (6.38), and (6.43) we deduce for c having the same dependence as in
(6.40)-(6.43) that

c−1 ≤ µ̄





⋃

Q∈ΛM\Λ1

Q̄



 ≤ cµ(F ).(6.44)

Moreover, if δ′ = 1
2c̆c3

, where c is as in the definition of Λ̃1, then since Λ̃M \ Λ̃1 ⊂ GM , we
have

∑

Q̃∈Λ̃M\Λ1

s(Q̃)n−1−δ′ ≤ cM−1/2
∑

Q̃∈Λ̃M\Λ1

µ(Q̃) ≤M−1/4 ≤ ǫ(6.45)

provided M ≥M0 is large enough. In view of our earlier calculations we conclude that δ′

has the same dependence as in (6.6). Moreover if f = gp, g as in Theorem 1.13, then M0

can be chosen independent of p in [n, n + 1]. It follows from (6.44) and (6.45) that (6.6)
is true. From our earlier remarks we conclude that Proposition 6.5 holds which finishes
proof of Theorem 1.13. �

Acknowledgment

The authors would like to thank Matthew Badger reading an earlier version of this
manuscript and for his suggestions. The first and second authors were partially supported
by NSF DMS-0900291 and by the Institut Mittag-Leffler (Djursholm, Sweden). Both
authors would like to thank the staff at the institute for their gracious hospitality. The
first author has also been supported in part by ICMAT Severo Ochoa project SEV- 2011-
0087. He acknowledges that the research leading to these results has received funding
from the European Research Council under the European Union’s Seventh Framework
Programme (FP7/2007-2013)/ ERC agreement no. 615112 HAPDEGMT.

References

[1] Murat Akman, On the dimension of a certain borel measure in the plane, Ann. Acad. Sci. Fenn.
Math. 39 (2014), no. 1, 187–209. MR 3186813 (Cited on page 5.)

[2] Murat Akman, John Lewis, and Andrew Vogel, On the logarithm of the minimizing integrand for cer-

tain variational problems in two dimensions, Anal. Math. Phys. 2 (2012), no. 1, 79–88. MR 2891742
(Cited on page 5.)

[3] Murat Akman, John Lewis, and Andrew Vogel, Hausdorff dimension and σ−finiteness of p−harmonic

measures in space when p ≥ n, Nonlinear Analysis: Theory, Methods & Applications, 129 (2015),
198–216. (Cited on pages 1, 4, 6, 7, and 15.)

[4] Kari Astala, Tadeusz Iwaniec, and Gaven Martin, Elliptic partial differential equations and quasicon-

formal mappings in the plane, Princeton Mathematical Series, vol. 48, Princeton University Press,
Princeton, NJ, 2009. MR 2472875 (2010j:30040) (Cited on page 28.)



σ-FINITENESS OF ELLIPTIC MEASURES 35

[5] Athanassios Batakis, Harmonic measure of some Cantor type sets, Ann. Acad. Sci. Fenn. Math. 21
(1996), no. 2, 255–270. MR 1404086 (97f:31002) (Cited on page 3.)

[6] Björn Bennewitz and John Lewis, On the dimension of p-harmonic measure, Ann. Acad. Sci. Fenn.
Math. 30 (2005), no. 2, 459–505. (Cited on pages 4 and 5.)

[7] Jean Bourgain, On the Hausdorff dimension of harmonic measure in higher dimension, Invent. Math.
87 (1987), no. 3, 477–483. MR 874032 (88b:31004) (Cited on page 3.)

[8] Lennart Carleson, On the support of harmonic measure for sets of Cantor type, Ann. Acad. Sci. Fenn.
Ser. A I Math. 10 (1985), 113–123. MR 802473 (87b:31002) (Cited on page 3.)

[9] Lawrence C. Evans and Ronald F. Gariepy, Measure theory and fine properties of functions, Studies
in Advanced Mathematics, CRC Press, Boca Raton, FL, 1992. MR 1158660 (93f:28001) (Cited on
page 18.)

[10] John B. Garnett and Donald E. Marshall, Harmonic measure, New Mathematical Monographs, vol. 2,
Cambridge University Press, Cambridge, 2008. MR 2450237 (2009k:31001) (Cited on pages 6 and 32.)
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