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The relationship between cognitive decline and a genetic predictor of educational

attainment

Abstract

Genetic and environmental factors both make sulisiacontributions to the heterogeneity
in individuals’ levels of cognitive ability. Manytuslies have examined the relationship
between educational attainment and cognitive pentorce and its rate of change. Yet there
remains a gap in knowledge regarding whether tliecebf genetic predictors on individual
differences in cognition becomes more or less prentiover the life course. In this analysis
of over 5,000 older adults from the Health and Retient Study (HRS) in the U.S., we
measured the change in performance on global cmymitepisodic memory, attention &
concentration, and mental status over 14 years.wWinocurve models are used to evaluate

the association between a polygenic risk scoresthrcation (education PGSand cognitive

change. Using the most recent education PGS, vaetfiat individuals with higher scores
perform better across all measures of cognitioraiter life. Education PGS is associated
with a faster decline in episodic memory in old .agke relationships are robust even after
controlling for phenotypic educational attainmeahd are unlikely to be driven by mortality
bias. Future research should consider genetic effatien examining non-genetic factors in
cognitive decline. Our findings represent a needutmerstand the mechanisms between

genetic endowment of educational attainment andhitiwg decline from a biological angle.
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Cognitive competencies tend to decline with ageerpersonal variability in age-related
cognitive decline is not fully understood: while ng® people experience substantial
deterioration in cognitive function, others maintabetter cognitive status despite the
presence of considerable brain deterioration ($t@609). Cognitive decline threatens
independence and quality of life for older adultéllams & Kemper, 2010). With an ageing

population, both in the U.S. and worldwide, cogmtidecline is an emerging health and
social issue, especially since older individualse ancreasingly taking additional

responsibility for financial and medical decisiongnderstanding the predictors that
contribute to the variation in the trajectoriescofynitive ageing has important biological and
public health implications. It may not only providesight into the deterioration of cognitive
function, but also enable us to identify individualt high risk of rapid decline and the

development of personalised strategies for prevertf cognitive-skill related comorbidities.

Genetic, socioeconomic and behavioural risk fachirsmake substantial contributions to the
heterogeneity in individuals’ level of cognitive ibly. Twin and family-based studies
indicate that at least moderate proportion of theemnces in most domains of cognitive
ability is associated with genetic factors (Bouch& McGue, 2003; Rietveld et al., 2014).
Social scientists have shown that the relationblepveen education and cognition is in part
due to the causal effect of schooling. This retelop can also be due to genetic
confounding. Recent genome-wide association stu@®@&/AS) found that the genetic
components of general cognitive functions are aRouB80% heritable (Davies et al., 2016).
Higher educational attainment may allow individuédscope more effectively with age-
related brain deterioration, and thus perform Ipaitecognitive tasks in later life (Lenehan,
Summers, Saunders, Summers, & Vickers, 2015; Reéeweal., 2014; Scarmeas & Stern,

2004). Recent GWAS have discovered molecular gemassociations with education (Lee et

3
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al., 2018) and general cognition (Davies et al.180 The polygenic score of education
constructed by Lee et al. (2018) explains 11-13%hefvariance of educational attainment
and 7-10% of the variance of cognitive performarstgggesting that the phenotypes have
shared genetic basis (Marioni et al., 2014; Okl&geguchamp, Fontana, Lee, & Pers, 2016;
Rietveld et al., 2014). These findings suggest tmatmon genetic effects may account for

some of the observed association between eduaatiicognitive ability.

Genetic variants that promote educational attainmenthose that influence brain
development and neuron-to-neuron communication.ef@mple — may have an effect on
cognitive functioning throughout the life coursee@_et al., 2018). The magnitude of their
effects may also change with age. For exampleiqueuwesearch attempting to examine the
importance of genetic risks across the life couras shown that ageing magnifies genetic
effects on cognitive ability (Laukka et al., 2013; et al., 2013; Papenberg et al., 2014;
Papenberg, Lindenberger, & Backman, 2015). Thenale is that the association between
brain resources and cognitive ability is nonlineand that genetic variation is more
influential on performance differences during norrageing when the brain starts to lose
neurochemical and structural resources (Lindenlexgal., 2008). However, the majority of
previous studies suffers from shortcomings regardiesearch design and methodology,
including cross-sectional data sources (Li et 2013; Nagel, 2008), a small number of
assessed genetic variants (Bretsky, Guralnik, Lauklbert, & Seeman, 2003; Schiepers et
al., 2012), and focus on a narrow period of the tiburse (Moorman, Carr, & Greenfield,
2018). Therefore, it remains largely unknown hovectfthe trajectory of cognitive abilities

and its rate of change among older adults.

The objective of this study is thus to investigateether the polygenic score for educaion are

associated with later life cognitive functions acmignitive decline independently among
4
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middle-aged and older adults in the United Stads.measure cognition and its decline both
separately in the domains of episodic memory, atterand calculation, and mental status,
and as an index measuring general cognition. Wepabkaenic scores constructed for the
Health and Retirement Study (HRS) that summarisendividual’s cumulative genetic
predictor to educational attainment. The polygesmres for educational attainment
(hereafter, education PGS) are constructed by gdiia effect-size-weighted risk alleles
across the genome associated with education bas#tedhird and most recent educational
attainment GWAS consortium paper by Lee et al. 0Wvhich used data from 1.1 million
participants and identified 1,271 lead genetic ars. The education PGS correlats with
years of educatiof = 0.8; se = 0.03) with a predictive power of 1080ur HRS sample
(see supplementary material for more details). Tesearch tackles the following three
research questions: 1) How are the education P&®iased with level of cognitive function?
2) How does the effect of education PGS on indizidlifferences in cognition change with
age? 3) Does the relationship between genes, adeognition still hold after controlling for
other socioeconomic, behavioural and health fa2tdv®e use growth curve analysis across
the waves (1998-2014) of the HRS to gain a bettdetstanding of how genes and education

operate across the life course as people age.

Genetics Predictors of Educational Attainment and Cognitive Decline

Cognitive ability varies among individuals acrobs tife-span. Moreover, the within-person
sub-dimensions of cognitive decline at differentesa verbal, numerical and knowledge-
based abilities remain relatively stable in latee, liwhile other mental abilities such as
memory and processing speed start to deteriorate fiddle age or even earlier and at a
faster rate (Mustafa et al., 2012; Nisbett et 2012). Episodic memory — the ability to

encode and retrieve personally experienced evbatsotcurred at a specific place and time
5
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(Gabrieli, 1998) — is a type of fluid intelligentieat involves the ability to think and reason
abstractly. Evidence suggests that episodic memeryindependent of pre-existing
knowledge, learning and education, and is relativebre sensitive to genetic variability
(Smith et al., 2018), for example, the Apolipopmte (APOE). On the other hand, mental
status, attention and calculation are types of talysed intelligence, which is formed
through accumulating knowledge and experience. daple age and gain new knowledge
and understanding, crystallised intelligence tetwdgcrease first and decline more slowly
(Salthouse, 2012). As a channel to gain knowleages&ills, education is expected to have a

substantial effect on crystallised abilities.

Wedow et al. (2018) described two pathways (Fidyréarough which genes could influence
social and health outcomes. One pathway for thenettion between education PGS and
cognitive functions idiological pleiotropy(Pickrell et al., 2016). That is, genes contribigte

both educational attainment and cognition indepettgedue to underlying biological and

latent genetic mechanisms. For example, a persgeisetics may influence brain

development to affect non-cognitive self-contrahterpersonal skills, preferences and
behaviours leading to differences in both educaliattainment and cognition (Belsky et al.,
2016; Okbay et al., 2016). In addition, a persagdsication-increasing genotypes may be
associated with parental education-increasing ggest which can in turn select the
individuals into socially advantaged families tipomote both cognitive development and
educational attainment (Belsky et al., 2016, 2(K@&ng et al., 2018; Lee et al., 2018). This
explanation raises the issue that any observediatisn between educational attainment and

cognition may be spurious due to the omitted genetriable bias.

The second pathway for the association betweentigepeedictors for education and

cognitive status isnediated pleiotropyWell-established evidence suggests that educational
6
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level in early life affects the level of cognitiyeerformance in later life (Gatz et al., 2001;
Tucker-Drob, Johnson, & Jones, 2009; Van Dijk, \@erven, Van Boxtel, Van der Elst, &
Jolles, 2008; Zahodne et al., 2011). The potentigichanisms are improved cultural
competence and reasoning skills, a more effectse of brain function and cognitive
processing, and a healthier occupational enviromrmaed lifestyle (Andel, Vigen, Mack,
Clark, & Gatz, 2006; Chen, Anthony, & Crum, 199%aker, Bherer, Colcombe, Dong, &
Greenough, 2004). According to this explanatiomegethat are causally associated with

education affect cognitive performance throughrtiegliated path.

The first research question is therefore whethereths an association between education
PGS and the level of cognitive ability? Evaluatitigs relationship could aid our
understanding of the association between educatatteinment and cognitive status — to
what extent cognition is influenced by educaticstghinment via biological mechanisms and
unobservable confounders related to environmeatabfs. Drawing from recent advances in
GWAS and the theoretical relationship between efilucaand cognitive performance, we
hypothesise that education PGS is positively rdlatethe level of cognitive ability in old

age, independent of the phenotypic educationahatent (Hypothesis 1).

The relationship between genetics and cognitive aditchange is less straightforward and
more domain-specific. Since crystallised intelligens more dependent on education, we
speculate that genetics are more likely to affégeindion and concentration, and mental status
via mediated pleiotropy. Evidence on whether edanat level influences the trajectory of
age-related cognitive decline is inconsistent. €hexonsistent findings may be due to
methodological differences, such as sample chaisits, analytic strategies, type of
cognitive measures and decline, or selection antfoonding (Foverskov et al., 2018;

Gottesman et al., 2014).
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Some earlier studies linking education with cogeitthange in old age find that lower levels
of education are associated with a faster dectineerbal fluency, mental status and general
cognition (e.g. Albert et al., 1995; Jacqgmin-Gaddabrigoule, Commenges, & Dartigues,
1997; Lyketsos, Chen, & Anthony, 1999). These stsigiosit that individuals with a higher
level of education use brain networks or cognipaeadigms more efficiently or flexibly, and
would exhibit a smaller decline in cognitive furtirelative to those with a lower level of
education (Salthouse, Atkinson, & Berish, 2003).r&leecent studies cast doubts on whether
rates of cognitive decline vary by education iretdife. Many suggest that higher levels of
education do not attenuate the rate of decline pisoglic memory, working memory,
processing speed and verbal fluency (Glymour, Tiep& Dufouil, 2012; Gottesman et al.,
2014; Karlamangla et al., 2009; Zahodne et al. 120Dthers report that higher education is
associated with faster cognitive decline in at@mt& concentration. (Gottesman et al.,
2014; Zahodne, Stern, & Manly, 2015). A potentigplanation for the lack of positive
association between education and rate of cogniteatine is that education raises baseline
cognitive performance, which increases the timededeto decline to the pathological
threshold. People with higher level of educatiomsthecline at a similar rate to their lower-
educated counterparts, or even a faster rate ¥f thly on specific cognitive domains to
compensate for declines in other cognitive domdmsummary, recent evidence shows no
association on the phenotypic educational attainraed cognitive decline. Since declines in
crystallised domains are less sensitive to the adhal protective effect, we extend the
phenotypic perspective to genetic inquiry and hlgpsise that education PGS are not

associated with the rate of cognitive change istatlised domains (Hypothesis 2).

From a biological perspective, studies demonsiragnified genetic influence on different

types of cognition and the rate of cognitive dexlauring normal ageing (Tucker-Drob,

8
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Reynolds, Finkel, & Pedersen, 2014). Meta-analysiggests increased heritability for
episodic memory, working memory and spatial abilipm early to late adulthood (Reynolds
& Finkel, 2015). Theresource-modulation hypothesmoposed by Lindenberger et al.,
(2008) hypothesises that losses of structural asarathemical brain resources in non-
pathological ageing moderate the effects of comngemetic variations on cognitive
performance. The hypothesis assumes a non-lingastiélm linking brain resources to
cognitive abilities, and differences in geneticddcéor exert magnifying effects on cognitive
functions as brain resources reduce from high tdinme levels. Given that episodic memory
may be closer to the molecular effects of a geaa tlognitive reserve such as education, the
rate of change in episodic memory is expected tomoee sensitive to genetic effects
(Papenberg, Lindenberger, & Backman, 2015; Rasepas$sotiropoulos, & de Quervain,
2010). Older adults, therefore, may benefit mooenfipositive genetic endowment relative to
their younger counterparts. Therefore, we hyposieethat a higher level of education PGS

may be associated with a lower rate of declingisagic memory (Hypothesis 3).

Previous research has found evidence that supp@teesource-modulation hypothesis. For
example, APOE polymorphism is involved in lipid heostasis and injury repair in the brain
(Papenberg et al., 2015): carrying tideallele is a strong risk factor for acceleratedraotive
decline in ageing (Filippini et al., 2011; Liu dt,&2010; Zhang & Pierce, 2014). However,
the literature to date suffers from a few limitaso First, the majority of past research
focuses only on one or a handful of genetic vasiauch as the aforementioned APOE
(Bretsky et al., 2003; Schiepers et al., 2012)inbderived neurotrophic factor (Ghisletta et
al., 2014), catechol-O-methyltransferas (Papentstrgl., 2013) and kidney- and brain-
expressed protein (Muse et al., 2014). These s controversial as they tend to produce

results that are rarely replicable due to theikklaé power to detect plausible effects

9
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(Benjamin et al., 2012; Chabris et al., 2012). Sd¢@ large number of studies adopt a cross-
sectional design (Li et al., 2013; Nagel, 2008hditudinal studies are rare but necessary to
confirm the patterns observed in the cross-sedtidata (Papenberg et al., 2015). Third,
recent studies using the polygenic scores from G\Wt#fies and longitudinal data sets tend
to focus on cognitive development in young age (Mum et al., 2018), and at a narrow

period of the life course (Ritchie et al., 2019).

In summary, our research studies how genetic viariariluence trajectories of cognitive
performance across the later lifespan. We overcdtimee aforementioned limitations by
measuring genetic predictors for education usirey ghlygenic score method among over

7,000 individuals aged 50 and above and tracked vgears.

Data and M ethods

Data

The Health and Retirement Study (HRS) began in E9@PRis a biennial, longitudinal survey
of a nationally-representative sample of individuahd their spouses aged 50 and above. In
2006 and 2008, the HRS collected genetic (saliemptes from approximately 84% of
participants undergoing face-to-face interviews,%0Z individuals). These DNA samples
were genotyped for about 2 million SNPs. This stadploits the longitudinal nature of the
HRS to explore cognitive performance trajectorigsoag older adults in the U.S. We use
eight waves of HRS data (from 1998 to 2012). Poe@ssed datasets included the user-

friendly RAND HRS data files (version P) and 19982 HRS Core Files.

10
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Sample

During the period 1998-2012, 8,652 respondents vgemeotyped. Growth curve models
typically require at least three waves of repeateshsures for each individual (Curran,
Obeidat, & Losardo, 2010), 2,699 (31.2%) resporgleviiose cognitive performance was
measured fewer than three times were removed. $imeastudy only focuses on age-related
cognitive decline, we have differentiated normalgrtive functioning from impaired
functioning. A composite score measuring memory aeatal status have been constructed
(ranging from 0O - 27). Respondents (n=36) witltars of less than seven exhibited signs of
dementia (Crimmins, Kim, Langa, & Weir, 2011) andres removed. Finally, for the main
analysis, only individuals from European and nosgdnic backgrounds were included. The
5,859 remaining respondents had at least threeitoagmterviews: 25% had four or fewer

interviews, 50% had six or more interviews, pron@B4,184 person-wave observations.

Dependent variables cognitive measures

In the HRS, assessment of cognitive function isdam a reduced version of the telephone
interview for the assessment of cognitive statuss(@ond, Tatemichi, & Hanzawa, 1994),
which was derived from the Mini-Mental State ExaMMSE) (Folstein, Folstein, &
McHugh, 1975). The assessment has been validatedst as a screening instrument for
cognitive performance. The same cognitive testeveeiministered during all the included
waves of data collection and were used to constoghitive trajectories for individuals on

each test (Herzog & Wallace, 1997).

Episodic memory (EM) was measured by immediate deldyed word recall. Respondents

were read a list of ten common words (e.g. hotel, water) and were then asked to recall as

11
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many of them as possible both immediately afterligtevas read and also several minutes
later. The score records the total number of wdnésrespondent correctly recalled at each

instance and ranges from 0 to 20.

Attention & calculation (A&C) was assessed with tkerial 7s subtraction test. The
respondents were asked to subtract 7 from 100 amtince subtracting 7 from each
subsequent number for a total of five trials. Theres record the correct number of trials
(ranging from 0-5). The serial 7s subtraction tassessed mixed abilities of attention,
calculation and working memory that maintains anahipulates information using short-

term memory.

Mental status (MS) was assessed by naming the daiseth, year and day of the week
(ranging from 0-4), backwards counting from 20 {0<bject naming (0-2), and naming the

current president and vice president of the U.3)(0-

Global cognition (GC) is a summary measure of tbgndive domains mentioned above
(ranging from 0-35). To provide comparability agoall measurements, we rescaled
individual and global cognitive variables into arrexted percentage score — based on

division by the maximum score and multiplication180.

The HRS includes other additional cognitive measwsech as Wechsler Adult Intelligence
Scale similarities, numeracy, quantitative reasgrand verbal fluency modules. We chose
not to include them in our analyses as they weateeasked of a small group of respondents

or only added to the survey waves recently (FisHagsan, Faul, Rodgers, & Weir, 2017).

12
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Independent variable — education PGS

The education PGS is based on the most recent GW#8ts excluding the HRS samples
(Lee et al., 2018), from which SNP effects on yedreducation are obtained. Higher scores
predict higher years of education and serve asatolis for a genetic predictor to educational
attainment. The education PGS was standardisethéofull sample so that effects can be
interpreted as &l SD change relative to the sample. The relatigndletween education

PGS, years of education and cognitive functionspeesented in Supplementary Material

Table S1.

The research method using genetic data may suften fpotential selection bias, as
respondents had to live until the 2006-2008 genotyperiod. Of the original 37,495
respondents, 28,136 (75%) lived until at least 20Déath of HRS participants prior to
genotype collection in 2006, 2008 and 2010 may eausrtality selection bias. If individuals
with lower level of education PGS and worse cognitiwere more likely to die, the
association we estimated on the sample could bowuonded (Domingue et al., 2017). To
alleviate the concern, we applied the inverse fribaweighting to account for mortality

selection in our main analyses.

Covariates

Educational attainment is measured in years of adut We control for gender and

population stratification for all analyses, as figguencies of certain genetic variants vary by
ancestral background. Ignoring genetic variatioe ¢tim ancestry may result in population
stratification bias when genetic effects are contted by ancestry. Standard practice in

accounting for population stratification using GWAS&ta is to include as covariates the first

13
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295

few principal components that capture most of tkaeefic variation due to ancestry. We
adjusted for population stratification using thestfiten principal components (Price,

Patterson, & Plenge, 2006).
Analytical strategy

Growth curve models were used to examine the iddali cognitive trajectories of the
respondents, which enabled us to study the effécgemetic predictor to educational
attainment on the level of cognitive ability ang itite of change. We fit a linear, age-related
decline random effect model and allow the age oefgtr and slope in the models to co-vary.
Separate growth curve models were estimated with eagnitive measure as a dependent
variable. Random effects included intercept andedin age, with the conventional

unstructured covariance. A general specificatiothefmodel is

Cognition;; = By + B X (Age; — Age) + P, X PGS; + 3 X PGS; X (Age; — Age) +p, *

Xij+ Bs x X;j = (Age; — Age) + p; + i * (Age; —Age) + ¢

where age is centred around the grand mean {égnition;; represents the cognitive score
for person i at age f, is the population mean of cognitive ability at and-mean age;
represents the linear fixed effect of agerepresents the effect of education PGS on the
cognitive ability,3; is the linear effect of education PGS on the ckarage of cognitive
skills, B, andfs are the effects of X — a vector including indivadicovariates — on initial
cognitive ability and the growth rate of changgando, are the random intercept and slope.

pijandy;; are intercept and age variance.

14
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Results

The rescaled cognitive scores represent the cotlpapercentage of correctly completed
tasks. MS tasks were relatively easier compare@Nband A&C tasks. Older adults on
average completed 80% and 70% of the A&C and M8 respectively, while EM has only
a mean score around 44, dragging GC towards 6dgTabThe mean trajectory in cognitive

change over age is presented in Figure 2.

[Insert Table 1]

[Insert Figure 2]

Higher genetic predictor for education is assocathteith better cognitive performance,

independent of education.

Figure 3 depicts the genetic effect sizes at agérafh the growth curve models on each
cognitive measure. For each outcome, we explorent@dels: a model with education PGS
as the only predictor, and one with education P@B aducation adjusted. Age, gender and

the first ten principal components are includedllrthe models.

[Insert Figure 3]

There is a clear pattern showing that education B@3ndependently positively correlated
with cognitive levels (Hypothesis 1). HRS resportdemith a higher education PGS higher
than their peers in cognitive tasks across all omegsat age 75. The effect size of one
standard deviation increase in education PGS omniiveg ability ranges from 1.9 to 5.7.

Estimates are statistically significant (p < 0.00$)nce education PGS and educational
attainment are correlated (3 = 0.31, p < 0.001¥urprisingly the effect sizes drop after

15
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339

education is controlled for, yet the effect sizemain highly significant. After taking years of
education into account, the effect size of educalGS on EM, A&C, MS and GC declines
by 60%, 40%, 40% and 50%, respectively. These tegnbicate that education PGS
influence cognitive performance both independendigd through an education-mediated

pathway.

The effect of genetics on cognitive decline varies age and by domains

The genetic influence on rate of decline is modebg intercepts and slopes of the growth
curve as functions of education PGS and covaridiggire 4 displays the predicted age-
specific cognitive scores based on the fixed effaaft education PG8vith and without
controlling for education). Education PGS is negdi associated with EM, and therefore a
faster rate of decline (3 = -0.04, p < 0.01). THeats indicate that higher education PGS
would lead to a faster rate of EM decline in ole.abdividuals with higher education PGS
scores higher on GC and EM at the late stage ofilmigge, but the genetic effect diminishes
with age. This result contradicts our hypothesim3hat the advantage of a higher education
PGS on GC and EM fades at old ages. For crystdliigelligence, in line with hypothesis 2,
higher education PGS does not change the rategpiitoge decline. Again, after controlling
for education, the association between educatio® R&d the rate of cognitive decline

weakens.

[Insert Figure 4]

For GC, we found that in the education-unadjustedieh) education PGS does not have a
significant effect on GC decline. Surprisingly, whboth education PGS and educational
attainment are included in the model, the effecedfication PGS becomes stronger and

significant at the 0.01 level. education PGS i®eaisded with a faster GC decline driven by
16
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EM. The GC results indicate a suppression effetivéen education PGS and educational
attainment that statistical removal of the educa®&S effect could increase the magnitude

of the relationship between years of educationcphitive decline.

We further examined whether the effect of educaR@®6 could be mediated or confounded
by other covariates. We add social engagementkidgn smoking and health conditions
individually to the education-adjusted models. Aafifull model includes all the covariates.
Intercept results for education PGS and years ata&tibn are presented in Figure 5a. For
intercept, the effects of education PGS on cogmifperformance does not change after
adjusting for covariates across all measured cogrsiub-domains. For slope, only education
PGS robustly predicts a faster rate of EM declifigyre 5b). For general cognition, we
found that the effect of EA3 becomes insignificant the rate of decline after including

smoking and pre-existing health conditions.

[Insert Figure 5]

Sensitivity analyses

We conducted sensitivity analyses to evaluate thesistency of findings. Details are
presented in the supplementary materials. Firstxomine whether our results are driven by
mortality selection, we compared our main analysgh models unadjusted for inverse
probability weights. The results from unweightedd ameighted models are very similar.
Weighted models improve the model fit measured & and BIC. Further, we estimate our
models in four birth cohorts (before 1917, 19174,91927-1936, after 1937). However, the
association between education PGS and rate of ehangM loses its significance in every
cohort, but the sign remains negative. This maycatd a lack of power from the small

sample for each cohort, as the sample size ranges859 to 2,485. Therefore, even though
17
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weighted results reassure us that selection digpromtuce much bias, we cannot completely

rule out the competing explanation.

Second, the nature of the survey-based assessmerytsproduce measurement error in
cognitive domains. We plot the coefficient of véina (standard deviation/mean) as an
indicator of measurement error (see Supplementateial). It shows that the coefficient of
variation increases with age slightly and becona@tyfunstable after age 90. We excluded
the respondents age 90 and above and ran our magkals, and our conclusion holds after
removing the oldest old. In addition, since cogmitmeasures are the dependent variables,
any measurement error is not likely to bias themeged effect of education PGS but to
reduce the power of the statistical model. Ourifigd of lack of association hence should be

interpreted with caution.

Third, recent studies find that people with higaducation PGS are more likely to be born in
socially advantaged families (Belsky et al., 20Bélsky et al., 2018; Domingue et al., 2015).

Our results are robust after controlling for paa¢education as a measure of family origin.

Fourth, we control for the general cognition refapolygenic score based on Davies et al.
(2015). We examine whether education PGS influeogmitive performance via cognition-
related genetic mechanisms. The magnitudes of assnare slightly reduced, suggesting
that education PGS predict cognitive performanca @ecline independently of cognition-
linked genetics. The effect of education P@5each cognitive domain holds even after
controlling for covariates, suggesting that genefiiects are not completely mediated by

educational attainment and other mediators.

Finally, Keller (2014) has expressed scepticism tha positive findings from gene-

environment interaction studies in that potent@ifounders are not properly accounted for
18
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in the statistical models used to test GxE effelritsluding the potential confounders as
covariates alone in the models may not be sufficies this practice does not control for the
effects these variables might have on the gene@mwient interaction. To show that the
results in this study are robust after properlytaghing for confounders, we re-ran the GxE
models adding the covariate-by-environment (CxEYJ dhe covariate-by-gene (CxG)

interaction terms. The results are similar to tlemanalyses (see supplementary materials).

Discussion

In this study, we aim to explain the interpersoraiability in age-related cognitive decline

with education PGS. Existing research predominafdbuses on quantifying genetic and
environmental components of variance in cross-@eali cognitive data and has provided
evidence of genetic influences on cognitive abilDavies et al., 2016; Rietveld & Webbink,

2016). Yet, few researchers have examined longialdcognitive change and genetic
predictor. Genes are inherited pre-birth and renthen same over a lifespan, but genetic
effects on phenotypes can vary over age as a amai gene expression associated with
developmental timing or environmental circumstanflese, Gatz, Pedersen, & Prescott,
2016). Research to date has not offered informaiionhanges in the genetic contribution to

individual heterogeneity in cognitive performannenlder age.

Our main research question is whether education BGSsociated with higher initial level
and variation in cognitive abilities at the eadgges of older adulthood. We analysed data on
the trajectory of cognitive performance acrossehnglividual and one aggregate domains in
over 5,000 individuals interviewed longitudinallg part of the HRS. In line with previous
literature, we find that education PGS predictghbr initial level of cognitive performances
independent of observed years of education, pdredtaation, cognition-related PGS, and

other social factors. Our results on the cognitigeline are unlikely to be driven by selection
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bias. In terms of the rate of cognitive change, dffect of education PGS on episodic
memory diminishes over age. We observe no assogibgtween education PGS and the rate

of change in the attention & concentration and @lestatus.

Results across a range of cognitive domains sugbastthe education PGS is related to
significantly higher cognitive functions. Even afteontrolling for observed years of
education, the relationship between education-#ssac genetic variants and cognitive
ability persists. The magnitude of the genetic @ffeize decreases in education adjusted
models. These results are consistent with the seglérom Okbay et al. (2016), Rietveld et
al. (2013), and Rietveld et al. (2014), which sigjgehat there is an education PGS influence
on cognitive ability via both biological pleiotropgnd mediated pleiotropy. The genetic
variants are associated with a particular neurstratter pathway involved in synaptic
plasticity, which is the main cellular mechanism fearning and memory (Rietveld et al.,

2014).

The analyses of cognitive trajectories caused lsgnabageing showed that education PGS is
related to the rate of cognitive decline, but tifeat is only on episodic memory — a type of
fluid intelligence — and driving the same effect global cognition. Performances in global
cognition and episodic memory are better in growjk higher education PGS for those
under 85 years old; this difference is completdtgraiated over the age of 90 due to faster
cognitive decline in the high education PGS grotipe findings on cognitive decline are in
agreement with recent studies showing that geeéfiects vary in cognition with age (Lee et
al., 2016). However, the results contradict recamtdidate gene analyses, which supports the
resource-modulation hypothesis (Laukka et al., 2018t al., 2013; Papenberg et al., 2014).
Candidate genes research focusing on a small ammfulgenetic variants may find a

magnifying effect during the ageing process viayvepecific biological channels (for
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example, APOE influences memory through low-den§jgpropotion cholesterol, high-
density lipopropotion cholesterol, and tryglycesféTaylor et al., 2011). Such an effect is
age-specific. Taylor et al. (2011) report a lackas$ociation between APOE and cognitive
function in children. Belsky et al. (2016) adoppalygenic score approach using growth
curve modelling and finds that children with highglygenic scores performed better on
cognitive tests and exhibited a faster pace of tiwgndevelopment during childhood. Their
result, along with our findings, may suggest théiiaation PGS are more important during
younger age, helping individuals to achieve higkducation levels, but the protective effect
diminishes on episodic memory during the ageingcgse. Note that our analyses only
examine episodic memory as fluid intelligence duddta availability. Future research needs
to test more cognitive functions in order to gehisearesults to other types of fluid
intelligence. Future research should also test itvgnchange across a longer life span that
covers childhood, younger and middle adulthood t¢o domprehensively infer the

heterogeneity of genetic influence on the cognitregectory.

For global cognition, when we model education P@& educational attainment separately,
both education PGS and education do not have degtedn the rate of cognitive decline.
When education PGS and years of education arelyjamtluded in the model, education
PGS and years of education both become statistisahificant with opposite but more
substantial magnitudes of effects. This finding icates that the education PGS and
phenotype confound each other via a suppressiecteffailure to take genetic predictor into
account may underestimate the protective effeanfy@ars of education, and the adverse

effect of genes for education.

Our study suffers from three main limitations. Eithe variability in genetic effect may be

due to ceiling and floor effects inherent in coy@tmeasures that narrow the potential range
21



458 of decline. Mental status as a crystallised irgeltice tends to start declining at a later age
459 compared to fluid intelligence and is most pronashim older adults with pathological brain
460 damages (Albert, 1995). The finding that older &dulith lower level of genetic predictor to
461 educational attainment experience a more rapid itegndecline (compared to a more
462 gradual decline for those with higher education PG&ild be due to ceiling effects in the
463 measurement that limit the variability of change Weell-educated older adults with higher
464 initial scores. People with higher education PG® tlnjoy higher cognition for their entire
465 adult life. More sensitive measures that cover tgregariability in cognitive function might
466 provide more accurate estimates in future reseaB@nsitivity analyses excluding the
467 individuals who score the lowest 5% in each measetaned similar results, suggesting

468 floor effects do not compromise the analysis.

469 Second, although the polygenic score approachpersr to the traditional candidate genes
470 approach in many ways as mentioned above, it isvitbbut limitation. The polygenic socre
471 is based on mostly homogeneous groups of non-Hisgzaucasian older adults in the U.S.
472  Our findings may not extend to individuals of otledhhnic or cultural backgrounds, or later-
473  born cohorts. Furthermore, the education PGS wexiskains only a small proportion of Lee
474 et al’s (2018) estimated genetic influence on ataonal attainment (Supplementary
475 Material). The genetic discoveries on education P@&S not account for gene-gene
476 interactions or gene-environment interactions. Thasy lead to measurement error in the
477 score. Our estimates may be thus biased toward(@endey et al., 2016), which provides a
478 potential explanation for the lack of associaticgtween education PGS and the rate of

479 change in crystallised intelligence.

480 Despite its limitations, this study provides aneggml contribution to existing knowledge on

481 the variability of cognitive decline by geneticauiQesults are consistent with recent research
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showing that education and cognitive ability areejecally correlated (Belsky et al., 2016;
Belsky et al., 2018; Wedow et al., 2018). We pdevevidence that the causal link between
educational attainment and cognitive abilities ubject to genetic confounding. Genetic
effects on cognition are not fully mediated by eation and independent genetic influences
may exist in the relationship between education eoghitive decline. The associations
between a genetic predictor to educational attamiraed cognitive decline that have been
identified are especially relevant because thep belclarify the contributions of observed
education and genes to cognitive ageing. Futurarel should also consider genetic effects
when investigating non-genetic factors in cognitdexline. Controlling for genetic effects
can avoid omitted variable bias when estimatingrenmental factors. The finding that the
genetic effect on cognitive decline for episodicnmoey decreases with age represents a need
to understand the mechanisms between genetic eneloiwof educational attainment and

cognitive decline from a biological angle.
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Table 1. Summary Statistics for All Variables in the Analysis: HRS 1998 to 2012 (N = 34,184)

Variables Mean (SD) or Percentage
Outcomes: Cognitive Functions (rescaled)

Episodic Memory (EM) 48.40 (16.67)
Attention and Concentration (A&C) 75.92 (29.61)
Mental Status (MS) 88.24 (13.34)
General Cognition (GC) 65.47 (12.69)
Exposure:

Education PGS (Unstandardized) -0.23 (0.14)
Age 74.59 (6.99)
Gender (female) 57.56%
Years of Education (Unstandardized) 12.96 (2.52)
Social engagement

Low 85.52%

Moderate 12.47%

High 2.01%
Current Smoker 8.31%
Drinking

Non-Drinker 64.28%

Moderate-Drinker 34.85%

Heavy-Drinker 0.84%
Chronic Conditions

No Condition 33.48%

1-2 Conditions 57.74%

More than 3 Conditions 8.78%




Figure 1. Pleiotropy types and mechanisms between gene, education and cognition.

Neuro-
network

efficiency

Occupation

Brain

Self-control

development

Mediated Pleiotropy

Personality

Preference

Rearing
environment

Life-style

A 4

Figure 2. Box plots of the cognitive abilities over age groups (with outliers).
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Figure 3. Association between education-linked polygenic score and level of cognitive
abilities (n=5,859, N=34,184)
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Note: The barplot shows the magnitude of the effect of a 1 SD increase in polygenic score on
per centage correctness cognitive performance at age 75. Error bars indicate 95% confidence
intervals. Dark navy bars show the effect sizes for the base models that education-linked
polygenic scoreisthe only predictor. Blue barsindicate the effect sizes for the education
adjusted models. Both polygenic score and years of education are standardised. Gender and
ten principal components are adjusted in all models. For details, see supplementary

materials.



Figure 4. Association between education-linked polygenic score and the rate of changein
cognitive decline (n=5,859, N=34,184).
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Note: The margin plots show the effect of a 1 SD increase in polygenic score on the rate of
change in cognitive decline with age. The y-axes represent the percentage of correctnessin
the completed tasks for the domains. The shaded areas show 95% confidence intervals. Blue
lines show the trajectories for the base models that education-linked polygenic scoreisthe
only predictor. Orange lines indicate the trajectories for the education adjusted models. Both
polygenic score and years of education are standardised. Gender and ten principal
components are adjusted in all models. For details, see supplementary materials.



Figure 5. Intercept and slope results from the growth curve models on cognitive outcomes,
controlling for covariates (n=5,859, N=34,184).

a). Intercept results for four cognitive outcomes.
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Note: The barplot shows the magnitude of the effect of a 1 SD increase in polygenic score on
per centage correctness cognitive performance at age 75. Error bars indicate 95% confidence
intervals. Dark navy, navy, blue, medium blue, and light blue bars show the effect sizes for
social integration, drinking, smoking, health condition, and all covariates adjusted models.
Both polygenic score and years of education are standardised. Gender and ten principal
components are adjusted in all models. For details, see supplementary materials.

b). Slope result for Episodic Memory, all covariates adjusted.
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Note: The margin plots show the effect of a 1 SD increase in polygenic score on the rate of
change in EM with age. The y-axes represent the percentage of correctness in the completed
tasks for EM. The areas between the dashed lines show 95% confidence intervals. Both
polygenic score and years of education are standardised. Gender and ten principal
components are adjusted. For details, see supplementary materials.
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Older adults with higher scores perform better across all measures of cognition.
The relationship is robust after controlling for phenotypic educational attainment.
The genetic effect on episodic memory diminishes with age.

Future research should consider genetic effects when examining cognitive decline.



