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The relationship between cognitive decline and a genetic predictor of educational 1 

attainment  2 

Abstract 3 

Genetic and environmental factors both make substantial contributions to the heterogeneity 4 

in individuals’ levels of cognitive ability. Many studies have examined the relationship 5 

between educational attainment and cognitive performance and its rate of change. Yet there 6 

remains a gap in knowledge regarding whether the effect of genetic predictors on individual 7 

differences in cognition becomes more or less prominent over the life course. In this analysis 8 

of over 5,000 older adults from the Health and Retirement Study (HRS) in the U.S., we 9 

measured the change in performance on global cognition, episodic memory, attention & 10 

concentration, and mental status over 14 years. Growth curve models are used to evaluate 11 

the association between a polygenic risk score for education (education PGS）and cognitive 12 

change. Using the most recent education PGS, we find that individuals with higher scores 13 

perform better across all measures of cognition in later life. Education PGS is associated 14 

with a faster decline in episodic memory in old age. The relationships are robust even after 15 

controlling for phenotypic educational attainment, and are unlikely to be driven by mortality 16 

bias. Future research should consider genetic effects when examining non-genetic factors in 17 

cognitive decline. Our findings represent a need to understand the mechanisms between 18 

genetic endowment of educational attainment and cognitive decline from a biological angle. 19 
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Cognitive competencies tend to decline with age. Interpersonal variability in age-related 24 

cognitive decline is not fully understood: while some people experience substantial 25 

deterioration in cognitive function, others maintain better cognitive status despite the 26 

presence of considerable brain deterioration (Stern, 2009). Cognitive decline threatens 27 

independence and quality of life for older adults (Williams & Kemper, 2010). With an ageing 28 

population, both in the U.S. and worldwide, cognitive decline is an emerging health and 29 

social issue, especially since older individuals are increasingly taking additional 30 

responsibility for financial and medical decisions. Understanding the predictors that 31 

contribute to the variation in the trajectories of cognitive ageing has important biological and 32 

public health implications. It may not only provide insight into the deterioration of cognitive 33 

function, but also enable us to identify individuals at high risk of rapid decline and the 34 

development of personalised strategies for prevention of cognitive-skill related comorbidities. 35 

Genetic, socioeconomic and behavioural risk factors all make substantial contributions to the 36 

heterogeneity in individuals’ level of cognitive ability. Twin and family-based studies 37 

indicate that at least moderate proportion of the differences in most domains of cognitive 38 

ability is associated with genetic factors (Bouchard & McGue, 2003; Rietveld et al., 2014). 39 

Social scientists have shown that the relationship between education and cognition is in part 40 

due to the causal effect of schooling. This relationship can also be due to genetic 41 

confounding. Recent genome-wide association studies (GWAS) found that the genetic 42 

components of general cognitive functions are about 20-30% heritable (Davies et al., 2016). 43 

Higher educational attainment may allow individuals to cope more effectively with age-44 

related brain deterioration, and thus perform better on cognitive tasks in later life (Lenehan, 45 

Summers, Saunders, Summers, & Vickers, 2015; Rietveld et al., 2014; Scarmeas & Stern, 46 

2004). Recent GWAS have discovered molecular genetic associations with education (Lee et 47 
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al., 2018) and general cognition (Davies et al., 2018). The polygenic score of education 48 

constructed by Lee et al. (2018) explains 11-13% of the variance of educational attainment 49 

and 7-10% of the variance of cognitive performance, suggesting that the phenotypes have 50 

shared genetic basis (Marioni et al., 2014; Okbay, Beauchamp, Fontana, Lee, & Pers, 2016; 51 

Rietveld et al., 2014). These findings suggest that common genetic effects may account for 52 

some of the observed association between education and cognitive ability.  53 

Genetic variants that promote educational attainment – those that influence brain 54 

development and neuron-to-neuron communication, for example – may have an effect on 55 

cognitive functioning throughout the life course (Lee et al., 2018). The magnitude of their 56 

effects may also change with age. For example, previous research attempting to examine the 57 

importance of genetic risks across the life course has shown that ageing magnifies genetic 58 

effects on cognitive ability (Laukka et al., 2013; Li et al., 2013; Papenberg et al., 2014; 59 

Papenberg, Lindenberger, & Bäckman, 2015). The rationale is that the association between 60 

brain resources and cognitive ability is nonlinear, and that genetic variation is more 61 

influential on performance differences during normal ageing when the brain starts to lose 62 

neurochemical and structural resources (Lindenberger et al., 2008). However, the majority of 63 

previous studies suffers from shortcomings regarding research design and methodology, 64 

including cross-sectional data sources (Li et al., 2013; Nagel, 2008), a small number of 65 

assessed genetic variants (Bretsky, Guralnik, Launer, Albert, & Seeman, 2003; Schiepers et 66 

al., 2012), and focus on a narrow period of the life course (Moorman, Carr, & Greenfield, 67 

2018). Therefore, it remains largely unknown how affect the trajectory of cognitive abilities 68 

and its rate of change among older adults.  69 

The objective of this study is thus to investigate whether the polygenic score for educaion are 70 

associated with later life cognitive functions and cognitive decline independently among 71 
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middle-aged and older adults in the United States. We measure cognition and its decline both 72 

separately in the domains of episodic memory, attention and calculation, and mental status, 73 

and as an index measuring general cognition. We use polygenic scores constructed for the 74 

Health and Retirement Study (HRS) that summarise an individual’s cumulative genetic 75 

predictor to educational attainment. The polygenic scores for educational attainment 76 

(hereafter, education PGS) are constructed by adding the effect-size-weighted risk alleles 77 

across the genome associated with education based on the third and most recent educational 78 

attainment GWAS consortium paper by Lee et al. (2018), which used data from 1.1 million 79 

participants and identified 1,271 lead genetic variants. The education PGS correlats with 80 

years of education (β = 0.8; se = 0.03) with a predictive power of 10% in our HRS sample 81 

(see supplementary material for more details). This research tackles the following three 82 

research questions: 1) How are the education PGS associated with level of cognitive function? 83 

2) How does the effect of education PGS on individual differences in cognition change with 84 

age? 3) Does the relationship between genes, age, and cognition still hold after controlling for 85 

other socioeconomic, behavioural and health factors? We use growth curve analysis across 86 

the waves (1998-2014) of the HRS to gain a better understanding of how genes and education 87 

operate across the life course as people age.  88 

Genetics Predictors of Educational Attainment and Cognitive Decline  89 

Cognitive ability varies among individuals across the life-span. Moreover, the within-person 90 

sub-dimensions of cognitive decline at different rates: verbal, numerical and knowledge-91 

based abilities remain relatively stable in late life, while other mental abilities such as 92 

memory and processing speed start to deteriorate from middle age or even earlier and at a 93 

faster rate   (Mustafa et al., 2012; Nisbett et al., 2012). Episodic memory – the ability to 94 

encode and retrieve personally experienced events that occurred at a specific place and time 95 
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(Gabrieli, 1998) – is a type of fluid intelligence that involves the ability to think and reason 96 

abstractly. Evidence suggests that episodic memory is independent of pre-existing 97 

knowledge, learning and education, and is relatively more sensitive to genetic variability 98 

(Smith et al., 2018), for example, the Apolipoprotein E (APOE). On the other hand, mental 99 

status, attention and calculation are types of crystallised intelligence, which is formed 100 

through accumulating knowledge and experience. As people age and gain new knowledge 101 

and understanding, crystallised intelligence tends to increase first and decline more slowly 102 

(Salthouse, 2012). As a channel to gain knowledge and skills, education is expected to have a 103 

substantial effect on crystallised abilities. 104 

Wedow et al. (2018) described two pathways (Figure 1) through which genes could influence 105 

social and health outcomes. One pathway for the connection between education PGS and 106 

cognitive functions is biological pleiotropy (Pickrell et al., 2016). That is, genes contribute to 107 

both educational attainment and cognition independently due to underlying biological and 108 

latent genetic mechanisms.  For example, a person’s genetics may influence brain 109 

development to affect non-cognitive self-control, interpersonal skills, preferences and 110 

behaviours leading to differences in both educational attainment and cognition (Belsky et al., 111 

2016; Okbay et al., 2016). In addition, a person’s education-increasing genotypes may be 112 

associated with parental education-increasing genotypes, which can in turn select the 113 

individuals into socially advantaged families that promote both cognitive development and 114 

educational attainment (Belsky et al., 2016, 2018; Kong et al., 2018; Lee et al., 2018). This 115 

explanation raises the issue that any observed association between educational attainment and 116 

cognition may be spurious due to the omitted genetic variable bias.  117 

The second pathway for the association between genetic predictors for education and 118 

cognitive status is mediated pleiotropy. Well-established evidence suggests that educational 119 
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level in early life affects the level of cognitive performance in later life (Gatz et al., 2001; 120 

Tucker-Drob, Johnson, & Jones, 2009; Van Dijk, Van Gerven, Van Boxtel, Van der Elst, & 121 

Jolles, 2008; Zahodne et al., 2011). The potential mechanisms are improved cultural 122 

competence and reasoning skills, a more effective use of brain function and cognitive 123 

processing, and a healthier occupational environment and lifestyle (Andel, Vigen, Mack, 124 

Clark, & Gatz, 2006; Chen, Anthony, & Crum, 1999; Kramer, Bherer, Colcombe, Dong, & 125 

Greenough, 2004). According to this explanation, genes that are causally associated with 126 

education affect cognitive performance through the mediated path.  127 

The first research question is therefore whether there is an association between education 128 

PGS and the level of cognitive ability? Evaluating this relationship could aid our 129 

understanding of the association between educational attainment and cognitive status – to 130 

what extent cognition is influenced by educational attainment via biological mechanisms and 131 

unobservable confounders related to environmental factors. Drawing from recent advances in 132 

GWAS and the theoretical relationship between education and cognitive performance, we 133 

hypothesise that education PGS is positively related to the level of cognitive ability in old 134 

age, independent of the phenotypic educational attainment (Hypothesis 1). 135 

The relationship between genetics and cognitive rate of change is less straightforward and 136 

more domain-specific. Since crystallised intelligence is more dependent on education, we 137 

speculate that genetics are more likely to affect attention and concentration, and mental status 138 

via mediated pleiotropy. Evidence on whether educational level influences the trajectory of 139 

age-related cognitive decline is inconsistent. These inconsistent findings may be due to 140 

methodological differences, such as sample characteristics, analytic strategies, type of 141 

cognitive measures and decline, or selection and confounding (Foverskov et al., 2018; 142 

Gottesman et al., 2014).  143 
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Some earlier studies linking education with cognitive change in old age find that lower levels 144 

of education are associated with a faster decline in verbal fluency, mental status and general 145 

cognition (e.g. Albert et al., 1995; Jacqmin-Gadda, Fabrigoule, Commenges, & Dartigues, 146 

1997; Lyketsos, Chen, & Anthony, 1999). These studies posit that individuals with a higher 147 

level of education use brain networks or cognitive paradigms more efficiently or flexibly, and 148 

would exhibit a smaller decline in cognitive function relative to those with a lower level of 149 

education (Salthouse, Atkinson, & Berish, 2003). More recent studies cast doubts on whether 150 

rates of cognitive decline vary by education in later life. Many suggest that higher levels of 151 

education do not attenuate the rate of decline in episodic memory, working memory, 152 

processing speed and verbal fluency (Glymour, Tzourio, & Dufouil, 2012; Gottesman et al., 153 

2014; Karlamangla et al., 2009; Zahodne et al., 2011). Others report that higher education is 154 

associated with faster cognitive decline in attention & concentration.  (Gottesman et al., 155 

2014; Zahodne, Stern, & Manly, 2015). A potential explanation for the lack of positive 156 

association between education and rate of cognitive decline is that education raises baseline 157 

cognitive performance, which increases the time needed to decline to the pathological 158 

threshold. People with higher level of education thus decline at a similar rate to their lower-159 

educated counterparts, or even a faster rate if they rely on specific cognitive domains to 160 

compensate for declines in other cognitive domains. In summary, recent evidence shows no 161 

association on the phenotypic educational attainment and cognitive decline. Since declines in 162 

crystallised domains are less sensitive to the educational protective effect, we extend the 163 

phenotypic perspective to genetic inquiry and hypothesise that education PGS are not 164 

associated with the rate of cognitive change in crystallised domains (Hypothesis 2).  165 

From a biological perspective, studies demonstrate magnified genetic influence on different 166 

types of cognition and the rate of cognitive decline during normal ageing (Tucker-Drob, 167 
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Reynolds, Finkel, & Pedersen, 2014). Meta-analysis suggests increased heritability for 168 

episodic memory, working memory and spatial ability from early to late adulthood (Reynolds 169 

& Finkel, 2015). The resource-modulation hypothesis proposed by Lindenberger et al., 170 

(2008) hypothesises that losses of structural and neurochemical brain resources in non-171 

pathological ageing moderate the effects of common genetic variations on cognitive 172 

performance. The hypothesis assumes a non-linear function linking brain resources to 173 

cognitive abilities, and differences in genetic predictor exert magnifying effects on cognitive 174 

functions as brain resources reduce from high to medium levels. Given that episodic memory 175 

may be closer to the molecular effects of a gene than cognitive reserve such as education, the 176 

rate of change in episodic memory is expected to be more sensitive to genetic effects 177 

(Papenberg, Lindenberger, & Bäckman, 2015; Rasch, Papassotiropoulos, & de Quervain, 178 

2010). Older adults, therefore, may benefit more from positive genetic endowment relative to 179 

their younger counterparts. Therefore, we hypothesise that a higher level of education PGS 180 

may be associated with a lower rate of decline in episodic memory (Hypothesis 3).  181 

Previous research has found evidence that supports the resource-modulation hypothesis. For 182 

example, APOE polymorphism is involved in lipid homeostasis and injury repair in the brain 183 

(Papenberg et al., 2015): carrying the ε4 allele is a strong risk factor for accelerated cognitive 184 

decline in ageing (Filippini et al., 2011; Liu et al., 2010; Zhang & Pierce, 2014). However, 185 

the literature to date suffers from a few limitations. First, the majority of past research 186 

focuses only on one or a handful of genetic variants such as the aforementioned APOE 187 

(Bretsky et al., 2003; Schiepers et al., 2012), brain-derived neurotrophic factor (Ghisletta et 188 

al., 2014), catechol-O-methyltransferas (Papenberg et al., 2013) and kidney- and brain-189 

expressed protein (Muse et al., 2014). These studies are controversial as they tend to produce 190 

results that are rarely replicable due to their lack of power to detect plausible effects 191 
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(Benjamin et al., 2012; Chabris et al., 2012). Second, a large number of studies adopt a cross-192 

sectional design (Li et al., 2013; Nagel, 2008); longitudinal studies are rare but necessary to 193 

confirm the patterns observed in the cross-sectional data (Papenberg et al., 2015). Third, 194 

recent studies using the polygenic scores from GWAS studies and longitudinal data sets tend 195 

to focus on cognitive development in young age (Moorman et al., 2018), and at a narrow 196 

period of the life course (Ritchie et al., 2019).  197 

In summary, our research studies how genetic variants influence trajectories of cognitive 198 

performance across the later lifespan. We overcome the aforementioned limitations by 199 

measuring genetic predictors for education using the polygenic score method among over 200 

7,000 individuals aged 50 and above and tracked over 16 years.  201 

Data and Methods 202 

Data 203 

The Health and Retirement Study (HRS) began in 1992 and is a biennial, longitudinal survey 204 

of a nationally-representative sample of individuals and their spouses aged 50 and above. In 205 

2006 and 2008, the HRS collected genetic (saliva) samples from approximately 84% of 206 

participants undergoing face-to-face interviews (12,507 individuals). These DNA samples 207 

were genotyped for about 2 million SNPs. This study exploits the longitudinal nature of the 208 

HRS to explore cognitive performance trajectories among older adults in the U.S. We use 209 

eight waves of HRS data (from 1998 to 2012). Pre-processed datasets included the user-210 

friendly RAND HRS data files (version P) and 1998-2012 HRS Core Files.  211 
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Sample 212 

During the period 1998-2012, 8,652 respondents were genotyped. Growth curve models 213 

typically require at least three waves of repeated measures for each individual (Curran, 214 

Obeidat, & Losardo, 2010), 2,699 (31.2%) respondents whose cognitive performance was 215 

measured fewer than three times were removed. Since this study only focuses on age-related 216 

cognitive decline, we have differentiated normal cognitive functioning from impaired 217 

functioning. A composite score measuring memory and mental status have been constructed 218 

(ranging from 0 - 27). Respondents (n=36)  with a score of less than seven exhibited signs of 219 

dementia (Crimmins, Kim, Langa, & Weir, 2011) and were removed. Finally, for the main 220 

analysis, only individuals from European and non-Hispanic backgrounds were included. The 221 

5,859 remaining respondents had at least three cognitive interviews: 25% had four or fewer 222 

interviews, 50% had six or more interviews, providing 34,184 person-wave observations.  223 

Dependent variables – cognitive measures 224 

In the HRS, assessment of cognitive function is based on a reduced version of the telephone 225 

interview for the assessment of cognitive status (Desmond, Tatemichi, & Hanzawa, 1994), 226 

which was derived from the Mini-Mental State Exam (MMSE) (Folstein, Folstein, & 227 

McHugh, 1975). The assessment has been validated for use as a screening instrument for 228 

cognitive performance. The same cognitive tests were administered during all the included 229 

waves of data collection and were used to construct cognitive trajectories for individuals on 230 

each test (Herzog & Wallace, 1997).  231 

Episodic memory (EM) was measured by immediate and delayed word recall. Respondents 232 

were read a list of ten common words (e.g. hotel, sky, water) and were then asked to recall as 233 
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many of them as possible both immediately after the list was read and also several minutes 234 

later. The score records the total number of words the respondent correctly recalled at each 235 

instance and ranges from 0 to 20.  236 

Attention & calculation (A&C) was assessed with the serial 7s subtraction test. The 237 

respondents were asked to subtract 7 from 100 and continue subtracting 7 from each 238 

subsequent number for a total of five trials. The scores record the correct number of trials 239 

(ranging from 0-5). The serial 7s subtraction test assessed mixed abilities of attention, 240 

calculation and working memory that maintains and manipulates information using short-241 

term memory. 242 

Mental status (MS) was assessed by naming the date, month, year and day of the week 243 

(ranging from 0-4), backwards counting from 20 (0-2), object naming (0-2), and naming the 244 

current president and vice president of the U.S (0-2).  245 

Global cognition (GC) is a summary measure of the cognitive domains mentioned above 246 

(ranging from 0-35). To provide comparability across all measurements, we rescaled 247 

individual and global cognitive variables into a corrected percentage score – based on 248 

division by the maximum score and multiplication by 100.  249 

The HRS includes other additional cognitive measures such as Wechsler Adult Intelligence 250 

Scale similarities, numeracy, quantitative reasoning and verbal fluency modules. We chose 251 

not to include them in our analyses as they were either asked of a small group of respondents 252 

or only added to the survey waves recently (Fisher, Hassan, Faul, Rodgers, & Weir, 2017). 253 
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Independent variable – education PGS 254 

The education PGS is based on the most recent GWAS results excluding the HRS samples 255 

(Lee et al., 2018), from which SNP effects on years of education are obtained. Higher scores 256 

predict higher years of education and serve as indicators for a genetic predictor to educational 257 

attainment. The education PGS was standardised for the full sample so that effects can be 258 

interpreted as a ±1 SD change relative to the sample. The relationship between education 259 

PGS, years of education and cognitive functions are presented in Supplementary Material 260 

Table S1.  261 

The research method using genetic data may suffer from potential selection bias, as 262 

respondents had to live until the 2006-2008 genotyping period. Of the original 37,495 263 

respondents, 28,136 (75%) lived until at least 2006. Death of HRS participants prior to 264 

genotype collection in 2006, 2008 and 2010 may cause mortality selection bias. If individuals 265 

with lower level of education PGS and worse cognition were more likely to die, the 266 

association we estimated on the sample could be confounded (Domingue et al., 2017). To 267 

alleviate the concern, we applied the inverse probability weighting to account for mortality 268 

selection in our main analyses. 269 

Covariates 270 

Educational attainment is measured in years of education. We control for gender and 271 

population stratification for all analyses, as the frequencies of certain genetic variants vary by 272 

ancestral background. Ignoring genetic variation due to ancestry may result in population 273 

stratification bias when genetic effects are confounded by ancestry. Standard practice in 274 

accounting for population stratification using GWAS data is to include as covariates the first 275 
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few principal components that capture most of the genetic variation due to ancestry. We 276 

adjusted for population stratification using the first ten principal components (Price, 277 

Patterson, & Plenge, 2006).  278 

Analytical strategy 279 

Growth curve models were used to examine the individual cognitive trajectories of the 280 

respondents, which enabled us to study the effect of genetic predictor to educational 281 

attainment on the level of cognitive ability and its rate of change. We fit a linear, age-related 282 

decline random effect model and allow the age intercept and slope in the models to co-vary. 283 

Separate growth curve models were estimated with each cognitive measure as a dependent 284 

variable. Random effects included intercept and linear age, with the conventional 285 

unstructured covariance. A general specification of the model is 286 

����������� = 
� + 
 ×	(���� − ���) + 	
� × ���� + 
� × ���� × (���� − ���)	+
� ∗287 

��� +	
� ∗ ��� ∗ (���� − ���)	+	��� +		��� ∗ 	(���� − ���) + � 	         288 

where age is centred around the grand mean (75), ����������� represents the cognitive score 289 

for person i at age j, 
� is the population mean of cognitive ability at the grand-mean age, 
 290 

represents the linear fixed effect of age, 
� represents the effect of education PGS on the 291 

cognitive ability, 
� is the linear effect of education PGS on the change rate of cognitive 292 

skills,  
�	and 
� are the effects of X – a vector including individual covariates – on initial 293 

cognitive ability and the growth rate of change. "and "� are the random intercept and slope. 294 

���and ��� are intercept and age variance. 295 
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Results 296 

The rescaled cognitive scores represent the comparable percentage of correctly completed 297 

tasks. MS tasks were relatively easier compared to EM and A&C tasks. Older adults on 298 

average completed 80% and 70% of the A&C and MS tests respectively, while EM has only 299 

a mean score around 44, dragging GC towards 60 (Table 1). The mean trajectory in cognitive 300 

change over age is presented in Figure 2.  301 

[Insert Table 1] 302 

[Insert Figure 2] 303 

Higher genetic predictor for education is associated with better cognitive performance, 304 

independent of education. 305 

Figure 3 depicts the genetic effect sizes at age 75 from the growth curve models on each 306 

cognitive measure. For each outcome, we explore two models: a model with education PGS 307 

as the only predictor, and one with education PGS with education adjusted. Age, gender and 308 

the first ten principal components are included in all the models.  309 

[Insert Figure 3] 310 

There is a clear pattern showing that education PGS are independently positively correlated 311 

with cognitive levels (Hypothesis 1). HRS respondents with a higher education PGS higher 312 

than their peers in cognitive tasks across all measures at age 75. The effect size of one 313 

standard deviation increase in education PGS on cognitive ability ranges from 1.9 to 5.7. 314 

Estimates are statistically significant (p < 0.001). Since education PGS and educational 315 

attainment are correlated (ß = 0.31, p < 0.001), unsurprisingly the effect sizes drop after 316 
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education is controlled for, yet the effect sizes remain highly significant. After taking years of 317 

education into account, the effect size of education PGS on EM, A&C, MS and GC declines 318 

by 60%, 40%, 40% and 50%, respectively. These results indicate that education PGS 319 

influence cognitive performance both independently, and through an education-mediated 320 

pathway.  321 

The effect of genetics on cognitive decline varies over age and by domains 322 

The genetic influence on rate of decline is modelled by intercepts and slopes of the growth 323 

curve as functions of education PGS and covariates. Figure 4 displays the predicted age-324 

specific cognitive scores based on the fixed effects of education PGS (with and without 325 

controlling for education). Education PGS is negatively associated with EM, and therefore a 326 

faster rate of decline (ß = -0.04, p < 0.01). The effects indicate that higher education PGS 327 

would lead to a faster rate of EM decline in old age. Individuals with higher education PGS 328 

scores higher on GC and EM at the late stage of middle age, but the genetic effect diminishes 329 

with age. This result contradicts our hypothesis 3, in that the advantage of a higher education 330 

PGS on GC and EM fades at old ages. For crystallised intelligence, in line with hypothesis 2, 331 

higher education PGS does not change the rate of cognitive decline. Again, after controlling 332 

for education, the association between education PGS and the rate of cognitive decline 333 

weakens.  334 

[Insert Figure 4] 335 

For GC, we found that in the education-unadjusted model, education PGS does not have a 336 

significant effect on GC decline. Surprisingly, when both education PGS and educational 337 

attainment are included in the model, the effect of education PGS becomes stronger and 338 

significant at the 0.01 level. education PGS is associated with a faster GC decline driven by 339 
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EM. The GC results indicate a suppression effect between education PGS and educational 340 

attainment that statistical removal of the education PGS effect could increase the magnitude 341 

of the relationship between years of education and cognitive decline. 342 

We further examined whether the effect of education PGS could be mediated or confounded 343 

by other covariates. We add social engagement, drinking, smoking and health conditions 344 

individually to the education-adjusted models. A final full model includes all the covariates. 345 

Intercept results for education PGS and years of education are presented in Figure 5a. For 346 

intercept, the effects of education PGS on cognitive performance does not change after 347 

adjusting for covariates across all measured cognitive sub-domains. For slope, only education 348 

PGS robustly predicts a faster rate of EM decline (Figure 5b). For general cognition, we 349 

found that the effect of EA3 becomes insignificant on the rate of decline after including 350 

smoking and pre-existing health conditions.  351 

[Insert Figure 5] 352 

Sensitivity analyses 353 

We conducted sensitivity analyses to evaluate the consistency of findings. Details are 354 

presented in the supplementary materials. First, to examine whether our results are driven by 355 

mortality selection, we compared our main analyses with models unadjusted for inverse 356 

probability weights. The results from unweighted and weighted models are very similar. 357 

Weighted models improve the model fit measured by AIC and BIC. Further, we estimate our 358 

models in four birth cohorts (before 1917, 1917-1926, 1927-1936, after 1937). However, the 359 

association between education PGS and rate of change in EM loses its significance in every 360 

cohort, but the sign remains negative. This may indicate a lack of power from the small 361 

sample for each cohort, as the sample size ranges from 859 to 2,485. Therefore, even though 362 
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weighted results reassure us that selection did not produce much bias, we cannot completely 363 

rule out the competing explanation.  364 

Second, the nature of the survey-based assessments may produce measurement error in 365 

cognitive domains. We plot the coefficient of variation (standard deviation/mean) as an 366 

indicator of measurement error (see Supplementary Material). It shows that the coefficient of 367 

variation increases with age slightly and becomes fairly unstable after age 90. We excluded 368 

the respondents age 90 and above and ran our models again, and our conclusion holds after 369 

removing the oldest old. In addition, since cognitive measures are the dependent variables, 370 

any measurement error is not likely to bias the estimated effect of education PGS but to 371 

reduce the power of the statistical model. Our findings of lack of association hence should be 372 

interpreted with caution.  373 

Third, recent studies find that people with higher education PGS are more likely to be born in 374 

socially advantaged families (Belsky et al., 2016; Belsky et al., 2018; Domingue et al., 2015). 375 

Our results are robust after controlling for parental education as a measure of family origin.  376 

Fourth, we control for the general cognition related polygenic score based on Davies et al. 377 

(2015). We examine whether education PGS influence cognitive performance via cognition-378 

related genetic mechanisms. The magnitudes of estimates are slightly reduced, suggesting 379 

that education PGS predict cognitive performance and decline independently of cognition-380 

linked genetics. The effect of education PGS on each cognitive domain holds even after 381 

controlling for covariates, suggesting that genetic effects are not completely mediated by 382 

educational attainment and other mediators.  383 

Finally, Keller (2014) has expressed scepticism on the positive findings from gene-384 

environment interaction studies in that potential confounders are not properly accounted for 385 
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in the statistical models used to test G×E effects. Including the potential confounders as 386 

covariates alone in the models may not be sufficient, as this practice does not control for the 387 

effects these variables might have on the gene-environment interaction. To show that the 388 

results in this study are robust after properly controlling for confounders, we re-ran the G×E 389 

models adding the covariate-by-environment (C×E) and the covariate-by-gene (C×G) 390 

interaction terms. The results are similar to the main analyses (see supplementary materials).  391 

Discussion 392 

In this study, we aim to explain the interpersonal variability in age-related cognitive decline 393 

with education PGS. Existing research predominantly focuses on quantifying genetic and 394 

environmental components of variance in cross-sectional cognitive data and has provided 395 

evidence of genetic influences on cognitive ability (Davies et al., 2016; Rietveld & Webbink, 396 

2016). Yet, few researchers have examined longitudinal cognitive change and genetic 397 

predictor. Genes are inherited pre-birth and remain the same over a lifespan, but genetic 398 

effects on phenotypes can vary over age as a function of gene expression associated with 399 

developmental timing or environmental circumstances (Lee, Gatz, Pedersen, & Prescott, 400 

2016). Research to date has not offered information on changes in the genetic contribution to 401 

individual heterogeneity in cognitive performance in older age. 402 

Our main research question is whether education PGS is associated with higher initial level 403 

and variation in cognitive abilities at the early stages of older adulthood. We analysed data on 404 

the trajectory of cognitive performance across three individual and one aggregate domains in 405 

over 5,000 individuals interviewed longitudinally as part of the HRS. In line with previous 406 

literature, we find that education PGS predict a higher initial level of cognitive performances 407 

independent of observed years of education, parental education, cognition-related PGS, and 408 

other social factors. Our results on the cognitive decline are unlikely to be driven by selection 409 
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bias. In terms of the rate of cognitive change, the effect of education PGS on episodic 410 

memory diminishes over age. We observe no association between education PGS and the rate 411 

of change in the attention & concentration and mental status.  412 

Results across a range of cognitive domains suggest that the education PGS is related to 413 

significantly higher cognitive functions. Even after controlling for observed years of 414 

education, the relationship between education-associated genetic variants and cognitive 415 

ability persists. The magnitude of the genetic effect size decreases in education adjusted 416 

models. These results are consistent with the evidence from Okbay et al. (2016), Rietveld et 417 

al. (2013), and Rietveld et al. (2014), which suggests that there is an education PGS influence 418 

on cognitive ability via both biological pleiotropy and mediated pleiotropy. The genetic 419 

variants are associated with a particular neurotransmitter pathway involved in synaptic 420 

plasticity, which is the main cellular mechanism for learning and memory (Rietveld et al., 421 

2014).  422 

The analyses of cognitive trajectories caused by normal ageing showed that education PGS is 423 

related to the rate of cognitive decline, but the effect is only on episodic memory – a type of 424 

fluid intelligence – and driving the same effect on global cognition. Performances in global 425 

cognition and episodic memory are better in groups with higher education PGS for those 426 

under 85 years old; this difference is completely attenuated over the age of 90 due to faster 427 

cognitive decline in the high education PGS group. The findings on cognitive decline are in 428 

agreement with recent studies showing that genetic effects vary in cognition with age (Lee et 429 

al., 2016). However, the results contradict recent candidate gene analyses, which supports the 430 

resource-modulation hypothesis (Laukka et al., 2013; Li et al., 2013; Papenberg et al., 2014). 431 

Candidate genes research focusing on a small amount of genetic variants may find a 432 

magnifying effect during the ageing process via very specific biological channels (for 433 
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example, APOE influences memory through low-density lipopropotion cholesterol, high-434 

density lipopropotion cholesterol, and tryglycerides) (Taylor et al., 2011). Such an effect is 435 

age-specific. Taylor et al. (2011) report a lack of association between APOE and cognitive 436 

function in children. Belsky et al. (2016) adopt a polygenic score approach using growth 437 

curve modelling and finds that children with higher polygenic scores performed better on 438 

cognitive tests and exhibited a faster pace of cognitive development during childhood. Their 439 

result, along with our findings, may suggest that education PGS are more important during 440 

younger age, helping individuals to achieve higher education levels, but the protective effect 441 

diminishes on episodic memory during the ageing process. Note that our analyses only 442 

examine episodic memory as fluid intelligence due to data availability. Future research needs 443 

to test more cognitive functions in order to generalise results to other types of fluid 444 

intelligence. Future research should also test cognitive change across a longer life span that 445 

covers childhood, younger and middle adulthood to to comprehensively infer the 446 

heterogeneity of genetic influence on the cognitive trajectory.  447 

For global cognition, when we model education PGS and educational attainment separately, 448 

both education PGS and education do not have any effect on the rate of cognitive decline. 449 

When education PGS and years of education are jointly included in the model, education 450 

PGS and years of education both become statistically significant with opposite but more 451 

substantial magnitudes of effects. This finding indicates that the education PGS and 452 

phenotype confound each other via a suppression effect. Failure to take genetic predictor into 453 

account may underestimate the protective effect from years of education, and the adverse 454 

effect of genes for education.  455 

Our study suffers from three main limitations. First, the variability in genetic effect may be 456 

due to ceiling and floor effects inherent in cognitive measures that narrow the potential range 457 
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of decline. Mental status as a crystallised intelligence tends to start declining at a later age 458 

compared to fluid intelligence and is most pronounced in older adults with pathological brain 459 

damages (Albert, 1995). The finding that older adults with lower level of genetic predictor to 460 

educational attainment experience a more rapid cognitive decline (compared to a more 461 

gradual decline for those with higher education PGS) could be due to ceiling effects in the 462 

measurement that limit the variability of change for well-educated older adults with higher 463 

initial scores. People with higher education PGS thus enjoy higher cognition for their entire 464 

adult life. More sensitive measures that cover greater variability in cognitive function might 465 

provide more accurate estimates in future research. Sensitivity analyses excluding the 466 

individuals who score the lowest 5% in each measure retained similar results, suggesting 467 

floor effects do not compromise the analysis.  468 

Second, although the polygenic score approach is superior to the traditional candidate genes 469 

approach in many ways as mentioned above, it is not without limitation. The polygenic socre 470 

is based on mostly homogeneous groups of non-Hispanic Caucasian older adults in the U.S. 471 

Our findings may not extend to individuals of other ethnic or cultural backgrounds, or later-472 

born cohorts. Furthermore, the education PGS we use explains only a small proportion of Lee 473 

et al.’s (2018) estimated genetic influence on educational attainment (Supplementary 474 

Material). The genetic discoveries on education PGS do not account for gene-gene 475 

interactions or gene-environment interactions. This may lead to measurement error in the 476 

score. Our estimates may be thus biased toward zero (Conley et al., 2016), which provides a 477 

potential explanation for the lack of association between education PGS and the rate of 478 

change in crystallised intelligence.  479 

Despite its limitations, this study provides an essential contribution to existing knowledge on 480 

the variability of cognitive decline by genetics. Our results are consistent with recent research 481 
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showing that education and cognitive ability are genetically correlated (Belsky et al., 2016; 482 

Belsky et al., 2018; Wedow et al., 2018).  We provide evidence that the causal link between 483 

educational attainment and cognitive abilities is subject to genetic confounding. Genetic 484 

effects on cognition are not fully mediated by education and independent genetic influences 485 

may exist in the relationship between education and cognitive decline.  The associations 486 

between a genetic predictor to educational attainment and cognitive decline that have been 487 

identified are especially relevant because they help to clarify the contributions of observed 488 

education and genes to cognitive ageing. Future research should also consider genetic effects 489 

when investigating non-genetic factors in cognitive decline. Controlling for genetic effects 490 

can avoid omitted variable bias when estimating environmental factors. The finding that the 491 

genetic effect on cognitive decline for episodic memory decreases with age represents a need 492 

to understand the mechanisms between genetic endowment of educational attainment and 493 

cognitive decline from a biological angle. 494 
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Table 1. Summary Statistics for All Variables in the Analysis: HRS 1998 to 2012 (N = 34,184) 

 

 

Variables Mean (SD) or Percentage 

Outcomes: Cognitive Functions (rescaled)  
Episodic Memory (EM) 48.40 (16.67) 

Attention and Concentration (A&C) 75.92 (29.61)  

Mental Status (MS) 88.24 (13.34) 
General Cognition (GC) 65.47 (12.69) 

Exposure:  

Education PGS (Unstandardized) -0.23 (0.14) 

Age 74.59 (6.99) 
Gender (female) 57.56% 
Years of  Education (Unstandardized) 12.96 (2.52) 

Social engagement  
Low 85.52% 

Moderate 12.47% 

High 2.01% 

Current Smoker 8.31% 

Drinking  

Non-Drinker 64.28% 

Moderate-Drinker 34.85% 

Heavy-Drinker 0.84% 

Chronic Conditions  

No Condition 33.48% 

1-2 Conditions 57.74% 

More than 3 Conditions 8.78% 



Figure 1. Pleiotropy types and mechanisms between gene, education and cognition.  

 
 
Figure 2. Box plots of the cognitive abilities over age groups (with outliers). 

 
 
 



Figure 3. Association between education-linked polygenic score and level of cognitive 
abilities (n=5,859, N=34,184)

 
Note: The barplot shows the magnitude of the effect of a 1 SD increase in polygenic score on 
percentage correctness cognitive performance at age 75. Error bars indicate 95% confidence 
intervals. Dark navy bars show the effect sizes for the base models that education-linked 
polygenic score is the only predictor.  Blue bars indicate the effect sizes for the education 
adjusted models. Both polygenic score and years of education are standardised. Gender and 
ten principal components are adjusted in all models. For details, see supplementary 
materials.  



Figure 4. Association between education-linked polygenic score and the rate of change in 
cognitive decline (n=5,859, N=34,184).  

 
Note: The margin plots show the effect of a 1 SD increase in polygenic score on the rate of 
change in cognitive decline with age. The y-axes represent the percentage of correctness in 
the completed tasks for the domains. The shaded areas show 95% confidence intervals. Blue 
lines show the trajectories for the base models that education-linked polygenic score is the 
only predictor. Orange lines indicate the trajectories for the education adjusted models. Both 
polygenic score and years of education are standardised. Gender and ten principal 
components are adjusted in all models. For details, see supplementary materials.   



Figure 5. Intercept and slope results from the growth curve models on cognitive outcomes, 
controlling for covariates (n=5,859, N=34,184).  
 
a). Intercept results for four cognitive outcomes.  

 
Note: The barplot shows the magnitude of the effect of a 1 SD increase in polygenic score on 
percentage correctness cognitive performance at age 75. Error bars indicate 95% confidence 
intervals. Dark navy, navy, blue, medium blue, and light blue bars show the effect sizes for 
social integration, drinking, smoking, health condition, and all covariates adjusted models.  
Both polygenic score and years of education are standardised. Gender and ten principal 
components are adjusted in all models. For details, see supplementary materials. 
 
b). Slope result for Episodic Memory, all covariates adjusted. 
 



 
 
Note: The margin plots show the effect of a 1 SD increase in polygenic score on the rate of 
change in EM with age. The y-axes represent the percentage of correctness in the completed 
tasks for EM. The areas between the dashed lines show 95% confidence intervals. Both 
polygenic score and years of education are standardised. Gender and ten principal 
components are adjusted. For details, see supplementary materials.   



 



• Older adults with higher scores perform better across all measures of cognition. 

• The relationship is robust after controlling for phenotypic educational attainment. 

• The genetic effect on episodic memory diminishes with age. 

• Future research should consider genetic effects when examining cognitive decline. 


