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ABSTRACT

We show that aversion to risk and ambiguity leads to information inertia when investors

process public news about assets. Optimal portfolios do not always depend on news that

is worse than expected; hence, the equilibrium stock price does not reflect this bad news.

This informational inefficiency is more severe when there is more risk and ambiguity

but disappears when investors are risk neutral or the news is about idiosyncratic risk.

Information inertia leads to news momentum (e.g. after earnings announcements) and

is consistent with low trading activity of households. An ambiguity premium helps

explain the macro and earnings announcement premium.
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Fama’s efficient markets hypothesis ignited a lot of empirical and theoretical research on the

informational role of asset prices. More recent empirical evidence points to the importance

of this role since most of the expected excess return is earned around times when important

information is released—the macro and earnings announcements premium. During these

times, prices underreact to news, thus, failing to efficiently incorporate this information (Sa-

vor (2012)) and leading to news momentum; one of the oldest and most robust manifestations

of which is the post-earnings announcement drift or PEAD.

This paper provides a novel economic mechanism which, in the absence of transaction

costs, information processing costs, or any other market frictions, leads to optimal portfolios

that do not always react to new information and, hence, information is not always reflected

in the equilibrium stock price—a phenomenon we refer to as information inertia. The eco-

nomic mechanism that leads to information inertia relies on the trade-off between over- and

underestimating the informativeness of news that is difficult to link to future asset payoffs.

Ambiguity averse investors who learn from this news do not want to respond to it for fear

of overestimating its informativeness and, thus, underestimating the residual risk. On the

other hand, investors do not want to ignore news that predicts a drop in the future value of

an asset in this case fearing to underestimate its informativeness. We show that these two

effects exactly offset each other, leading to no reaction at all for a range of signals conveying

news that is worse than expected in the workhorse learning models in finance—joint normal

distribution of signal and asset values/returns combined with CARA/CRRA risk preferences

and the multiple prior preference model that exhibits aversion to ambiguity.1

1The multiple prior or “max-min” formulation of preferences is axiomatized in Gilboa and Schmeidler
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To be more concrete about the economic mechanism that leads to information inertia,

consider an investor who uses the dividend-price ratio to predict future excess stock market

returns. The investor does not know the correlation ρ between the excess return and the

predictor or signal and, thus, there is ambiguity about the economic significance β (which is

linear in ρ) and the explanatory power ρ2. Hence, this signal leads to ambiguity about the

posterior mean because investors do not know how much weight to put on it and it leads to

ambiguity about the residual variance because they do not know how much they can learn

from it. Being averse to this ambiguity, the investor considers a family of linear regression

models described by the interval [ρa, ρb] and evaluates the outcome of an investment deci-

sion under the model that yields the lowest expected utility, that is, the lowest conditional

Sharpe ratio of the asset since the investor has mean-variance preferences. There is a range

of signals conveying bad news for which the correlation that minimizes the Sharpe ratio

changes with the signal, that is, any decrease in the signal within this range increases the

worst case scenario correlation, thus lowering the posterior mean and the residual variance.

The resulting decrease in the asset’s Sharpe ratio is exactly offset by the decrease in the

asset’s volatility leaving the optimal stock market investment unchanged; hence, exhibiting

information inertia. This stock investment is identical to that of a standard expected utility

maximizer who thinks the signal is uninformative (ρ = 0), which is surprising, since we rule

out such signals (ρa > 0). The likelihood of investors not reacting to bad news about future

excess stock market returns (a dividend-price ratio that is lower than expected) is between

(1989) and it is a commonly used representation of decision-making under ambiguity in financial markets to

exploit qualitative differences from standard expected utility models as discussed in Epstein and Schneider

(2010).
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5% and 20% when we use confidence intervals to proxy for ambiguity as in Garlappi, Uppal,

and Wang (2007).

Information inertia in portfolio demand leads to equilibrium stock prices that fail to

incorporate some publicly available information. Specifically, there is a range of signals that

are worse than expected for which demand for the stock does not depend on the signal and,

thus, the stock price does not reflect this information in equilibrium. This informational

inefficiency is more severe when the volatility of cash flows and investors’ aversion to risk

and ambiguity is high but it disappears when investors are risk neutral or if the signal

is about the idiosyncratic component of an asset’s cash flow. Moreover, ambiguity averse

investors require an ex-ante premium for news about an asset’s cash flow which, in addition

to the premium for systemic risk, helps explain the high macro and earnings announcement

premium in the data. If we deviate from the workhorse models by considering (i) different

joint distributions of asset payoffs and signals, (ii) economies populated with ambiguity averse

and standard expected utility maximizers, and (iii) other preference models that allow for a

distinction between ambiguity and ambiguity aversion, then the trade-off between over- and

underestimating the informativeness of ambiguous news does not exactly offset. In this case

the resulting demand for the asset and its equilibrium price shows reaction to news that is

much lower than without ambiguity.

How does our information inertia result fit into the large literature on news momentum?

We have identified the new economic effect that learning under ambiguity about the link

between information and asset payoffs leads to underreaction to news. Hence, an econome-

trician regressing excess stock returns on news will estimate a positive coefficient concluding
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the existence of news momentum. While she would also conclude there is news momentum

in a model with expected utility maximizers who underestimate the informativeness of the

signal, our model gives additional testable predictions. Specifically, the slope coefficient is

higher and, thus, there is more news momentum if there is (i) more risk, (ii) more ambiguity,

and (iii) if the signal is more informative about the systematic rather than the idiosyncratic

cash flow component of the asset. We find support for all three predictions in the literature

that we discuss below.

While our results explain that stock market returns in the US and abroad tend to un-

derreact to macroeconomic news (Wang (2015)), they also shed new light on one of the

most robust instances of news momentum—earnings momentum. This is the tendency for a

stock’s risk-adjusted return to drift in the direction of an earnings news surprise for a certain

period of time for news in the form of an earnings announcement, which is the post-earnings

announcement drift or PEAD,2 or news in the form of revisions of analysts’ earnings fore-

casts, which is the post-earnings forecast revision drift or PFRD.3 Specifically, we show that

2The PEAD which is also called the standardized unexpected earnings (SUE) effect was initially proposed

by the information content study of Ball and Brown (1968) and verified by Foster, Olsen, and Shevlin (1984),

Bernard and Thomas (1989) and Bernard and Thomas (1990) who provide a comprehensive summary of

the early work on the PEAD. Comparable and often even stronger results have been reported for analyst

forecasts by Doyle, Lundholm, and Soliman (2006), Livnat and Mendenhall (2006), and DellaVigna and

Pollet (2009).

3Evidence on the existence of the PFRD dates back to Givoly and Lakonishok (1980) and Stickel (1991)

who focus largely on individual analyst revision while Chan, Jegadeesh, and Lakonishok (1996) confirm the

existence of the PFRD for revision of the consensus analyst forecast. More recent studies that offer new

insights into the PFRD are Gleason and Lee (2003), Zhang (2006), and Hui and Yeung (2013). For a recent

survey see Kothari, So, and Verdi (2016).

5



there is a positive drift for excess stock returns that prevails when we adjust excess stock

returns for market risk if the earnings news has a firm specific and systematic news compo-

nent. This prediction is supported by recent empirical studies in the accounting literature:

Hui and Yeung (2013) show that the PFRD is driven by under-reaction to industry-wide

earnings news and there is no drift for idiosyncratic news and Kovacs (2016) presents sim-

ilar evidence for the PEAD. Moreover, the positive drift is bigger if there is more risk and

ambiguity which is supported by many authors in the literature who use different proxies for

risk and ambiguity. Specifically, the PFRD is larger for stocks with lower analyst coverage

(Gleason and Lee (2003), Zhang (2006)), greater unexpected delay in processing analyst

forecast revisions (Akbas, Markov, Subasi, and Weisbrod (2018)), less well-known analysts

(Gleason and Lee (2003)), and lower firm age and size, or by greater analyst forecast dis-

persion, return volatility, and cash flow volatility (Zhang (2006)). Francis, Lafond, Olsson,

and Schipper (2007) find that the PEAD is greater for US stocks with lower earnings quality

while Hung, Li, and Wang (2014) find a greater PEAD for financial markets that have lower

financial reporting quality. Moreover, Hou, Peng, and Xiong (2009) show that PEAD profits

are greater for low volume stocks and during recessions, which are periods where ambiguity

and risk is higher.

We show that investors who anticipate news such as a macro announcement or an earn-

ings announcement require an uncertainty premium that consists of a risk and an ambiguity

premium to hold stocks. This uncertainty premium which is increasing in risk and ambigu-

ity helps explain the high average excess stock market returns observed in the data before a

macroeconomic news announcement about inflation and unemployment (Savor and Wilson
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(2013)) or interest rates (Savor and Wilson (2013), Lucca and Moench (2015)) and it helps

explain the high excess stock returns before an earnings announcement (Savor and Wilson

(2016)). Ai and Bansal (2018) show that deviations from expected utility—e.g. ambiguity

aversion—are even necessary to explain the announcement premium. Moreover, Zhou (2015)

documents the existence of an ambiguity premium for macroeconomics news and Liu, Chan,

and Faff (2018) show similar evidence for the earnings announcement premium.

Our results are also helpful in understanding why households follow simple portfolio

rules and do not trade as much as traditional models would predict even after accounting

for transaction or information processing costs.4 Specifically, we would expect to have less

trade in markets with more ambiguity averse traders since they always trade in response to

changes in the price but not always in response to news.5 While it is difficult to distinguish

trade due to price change from trade due to news, and thus provide direct evidence for

our mechanism in the data, the references below show lower trading activity for household

characteristics that are typically associated with more ambiguity aversion. Specifically, less

financially literate households (Bianchi and Tallon (2018)), less wealthy households (Calvet,

Campbell, and Sodini (2009)), and less educated households (Calvet, Campbell, and Sodini

(2009), and Bilias, Georgarakos, and Haliassos (2010)) show lower trading activity.

This paper complements recent work on optimal portfolios and equilibrium asset prices

4See Ameriks and Zeldes (2004), Bianchi and Tallon (2018), Bodie, Detemple, and Rindisbacher (2009),

Calvet, Campbell, and Sodini (2009), Campbell (2006), and Bilias, Georgarakos, and Haliassos (2010) and

the references therein for a review of the household portfolio choice literature.

5Ambiguity averse investors may trade a lot in response to changes in the price (Bianchi and Tallon

(2018)).
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when investors process public signals. Epstein and Schneider (2008) show that investors

react more to bad signals than to good signals when there is ambiguity about the precision

of these signals. Illeditsch (2011) shows that this ambiguity leads to risky portfolios that are

insensitive to changes in the stock price—a phenomenon referred to as portfolio inertia. We

are the first to show that ambiguity aversion leads to information inertia for risky portfolios

and equilibrium prices without relying on information processing costs or other market fric-

tions. Moreover, the economic mechanism that leads to information inertia is novel because

it does not occur at the kink in investors’ utility in contrast to the portfolio inertia results

in Illeditsch (2011).6

Our work is also related to a large literature that studies the informational efficiency of

prices when there is asymmetric information. For instance, prices do not fully reveal private

information in equilibrium, (i) if it is costly to acquire information (Grossman (1976) and

Grossman and Stiglitz (1976)), (ii) if there are noise traders (Grossman and Stiglitz (1980)),

(iii) if informed investors anticipate how their trades will impact prices (Kyle (1985) and

Back, Cao, and Willard (2000)), (iv) if there is ambiguity (Caskey (2009) and Condie and

Ganguli (2017)). What is striking in this paper is that a costless informative public signal

is not always incorporated in the price (the price is not a sufficient statistic for the signal)

when an investor is averse to ambiguity in the workhorse learning models in finance.

There is a growing literature in macroeconomics that imposes an exogenous constraint or

cost on the ability of investors to process information in order to explain why macroeconomic

6We are not aware of any work with multiple prior preferences that leads to qualitatively different results

than standard expected utility that are not due to the kink in utility.
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variables exhibit inertia (see Sims (2010) and the references therein). These ideas have also

been used in finance to explain information inertia of portfolios (Abel, Eberly, and Panageas

(2007)), excess correlation (Peng and Xiong (2006)), financial contagion (Mondria (2010) and

(Mondria and Quintana-Domeque 2013)), and portfolio under-diversification (Nieuwerburgh

and Veldkamp 2010), among others.7 In contrast, we derive low sensitivity of portfolios and

asset prices to news from a rational choice model with multiple prior utility without imposing

exogenous cost or constraints.

The paper proceeds as follows. In Section I, we introduce the information structure

and the preferences of investors. In Section II, we solve for optimal demand of ambiguity

averse investors and explain why risky and the risk-free portfolio do not always respond

to news. In Section III, we solve for the equilibrium prices of individual stocks and the

market portfolio and show that the equilibrium stock price fails to incorporate some publicly

available information which manifests itself in news momentum. In Section IV, we show the

robustness of our information inertia result. Section V concludes. All proofs are relegated

to the Appendix and more details are discussed in the Internet Appendix.

I. Information and Preferences

We present in this section a CARA-normal framework in which an ambiguity averse investor

in the sense of Gilboa and Schmeidler (1989) learns from an ambiguous signal about the

future value of an asset before she makes an investment decision.

7See Veldkamp (2011) and the reference therein for an overview of this literature.
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There are two dates 0 and 1. Investors can invest in a risk-free asset and a risky asset.

Let p denote the price of the risky asset, d̃ the future value or dividend of the risky asset,

and θ the number of shares invested in the risky asset. There is no consumption at date zero.

The risk-free asset is used as numeraire, so the risk-free rate is zero. The budget constraint

is therefore

w̃ = w0 +
(
d̃− p

)
θ, (1)

in which w0 denotes initial and w̃ future wealth.

A. Ambiguity Aversion — Multiple Priors

Suppose investors receive a signal s̃ about the future asset value d̃. Investors do not know

the model m that links the signal to the asset value, that is, they do not know the joint

distribution of d̃ and s̃. Moreover, they are averse to ambiguity or model uncertainty in the

sense of Gilboa and Schmeidler (1989) and, hence, they consider the set of modelsM when

making portfolio decisions. Specifically, the ambiguity averse investor chooses a portfolio θ

to maximize

U(θ) ≡ min
m∈M

Em

[
u
(
w0 +

(
d̃− p

)
θ
)
| s̃ = s

]
, (2)

where u(·) denotes the Bernoulli utility function of the investor and Em [·] the expectation

w.r.t. the belief generated by the model m. In the remainder of this paper we will refer to

ambiguity averse investors whose preferences under uncertainty are represented with multi-

ple priors/models as MEU investors and to ambiguity neutral investors whose preferences

under uncertainty are represented with a single prior/model as standard expected utility
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maximizers, in short, SEU. For MEU investors, the setM represents their beliefs about the

asset payoff and it is a measure of both the asset’s ambiguity and the investor’s ambiguity

aversion, that is, there is no distinction between ambiguity and ambiguity aversion in the

Gilboa and Schmeidler (1989) ambiguity model.8 To be consistent with models that allow for

a distinction between ambiguity and ambiguity aversion that we discuss in Robustness Sec-

tion IV, we refer to the size of the setM as the amount of ambiguity that an MEU investor

faces when contemplating an investment in an asset after receiving ambiguous information.

For both MEU and SEU investors, the curvature of the utility function u(·) determines the

investor’s risk aversion.

B. Normal Distributions and CARA-Expected Utility

We consider an information structure where the joint distribution of d̃ and s̃ is normal.9

Specifically,  d̃

s̃

 ∼ N


 d̄

s̄

 ,

 σ2
d ρσdσs

ρσdσs σ2
s


 . (3)

Hence, a model is described by five parameters, that is,m = (d̄, σd, s̄, σs, ρ), where the strictly

positive correlation parameter ρ links the normally distributed signal s̃ to the normally

distributed asset value d̃. Conditional on knowing the model m, the posterior distribution

8MEU or multiple prior preferences imply behavior that is consistent with the experimental evidence

in Ellsberg (1961) and more recent portfolio choice experiments discussed by Ahn, Choi, Gale, and Kariv

(2014) and Bossaerts, Ghirardato, Guarnaschelli, and Zame (2010).

9We discuss other distributions in Robustness Section IV.
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of the asset value d̃ is also normal:

d̃ | s̃ = s ∼ Nm

(
µ(s,m), σ2(m)

)
, (4)

where µ(s,m) = d̄+ ρσd/σs(s− s̄) denotes the conditional mean and σ(m) = σd
√

1− ρ2 the

conditional volatility of d̃ given s.

Suppose investors have CARA utility over future wealth w̃, that is, u(w̃) = −e−γw̃ with

γ > 0. A standard expected utility or SEU investor who considers the model m chooses a

portfolio θ to maximize

Ū(θ) ≡ Em

[
u
(
w0 +

(
d̃− p

)
θ
)
| s̃ = s

]
= u

(
CE(θ,m)

)
, (5)

where CE(θ,m) denotes her certainty equivalent:

CE(θ,m) = Em [w̃ | s̃ = s]− 1

2
γVarm [w̃ | s̃ = s] = w0 + (µ(s,m)− p) θ − 1

2
γθ2σ(m)2. (6)

Hence, SEU investors have mean-variance preferences over the asset value d̃ conditional on

observing the signal s̃.

C. CARA-Normal Model of Learning under Ambiguity

To determine the utility of an ambiguity averse investor given in equation (2) we need to

determine the set of posterior asset distributions, that is, we need to update the preferences of

12



an ambiguity averse investor. We consider the CARA-normal model described in the previous

section and follow Gilboa and Schmeidler (1993) to determine the family of posterior asset

distributions by applying Bayes rule to each model m ∈ M. Hence, the utility of an MEU

investor with CARA utility u(·) who holds θ shares of the risky asset is

U(θ) = min
m∈M

Em

[
u
(
w0 +

(
d̃− p

)
θ
)
| s̃ = s

]
= u (CE(θ)) , (7)

where CE(θ) denotes the certainty equivalent of the MEU investor. Specifically,

CE(θ) = min
m∈M

CE(θ,m). (8)

We focus on ambiguity about the link between information and asset values and, thus, we

assume that there is no ambiguity about the marginal distribution of the asset value d̃ and

the signal s̃. We also standardize the latter marginal, that is, s̄ = 0 and σs = 1. Ambiguity

about the correlation between the signal and the asset value is described by the interval

[ρa, ρb] with ρa > 0 and ρb < 1. Hence, an MEU investor chooses a portfolio θ to maximize

her certainty equivalent10

CE(θ) = min
ρ∈[ρa,ρb]

CE(θ, ρ) = w0 + min
ρ∈[ρa,ρb]

{
(µ(s, ρ)− p) θ − 1

2
γθ2σ(ρ)2

}
. (9)

Learning under ambiguity about the correlation ρ has two important implications for an

MEU investor with mean-variance preferences. First, ambiguity is not resolved due to learn-

10For a derivation of the certainty equivalent see Proposition 5 in the Appendix.
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ing and hence does not disappear.11 Second, learning from an ambiguous signal leads to

ambiguity not only about how much weight to put on the signal when predicting the future

asset value (µ(s, ρ)) but also to ambiguity about the amount of residual risk (σ(ρ)). In other

words, the worst case scenario correlation depends on the asset position θ and the signal

s and, thus, the worst-case correlation does not always lower posterior means and it does

not always increase residual variances. This is distinctly different from a model without

learning from an ambiguous signal where the worst case scenario means and variances are

chosen independently and thus always move in opposite direction. We discuss the effects of

ambiguous news on optimal portfolios in Section II and on equilibrium asset prices in Section

III.

II. Portfolio Choice

How do optimal portfolios react to ambiguous news? To answer this question we fix the

price p for the remainder of this section and determine the optimal portfolio for the risky

asset as a function of the signal.

BENCHMARK (SEU – Portfolio Choice): The optimal portfolio of an ambiguity neutral

investor with belief ρ and risk aversion γ who maximizes her utility given in equation (5)

11Epstein and Schneider (2007) provide thought experiments and a general framework for learning under

ambiguity and show that ambiguity does not disappear if there is ambiguity about the data generating

mechanism.
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after receiving the signal s is

θ̄(s, ρ) ≡
Eρ

[
d̃ | s̃ = s

]
− p

γVarρ

[
d̃ | s̃ = s

] =
µ(s, ρ)− p
γσ(ρ)2

. (10)

The posterior asset mean strictly increases in the signal and the residual variance is

unaffected by the signal. Hence, the optimal portfolio for an SEU investor always depends

on the signal except for the knife edge case of an uninformative signal, that is, ρ = 0. The

next theorem shows that this is no longer true for optimal portfolios of ambiguity averse

investors. These portfolios do not always depend on the signal even if there is no ambiguity

about the fact that the correlation between the signal and the future asset value is positive,

that is, ρa > 0.

THEOREM 1 (MEU – Portfolio Choice): The optimal portfolio of an ambiguity averse

investor with risk aversion γ who maximizes her utility given in equation (7) after receiving

the signal s is

θ(s) =



θ̄(s, ρa) s ≥ s1 ≡ −ρa max(λd, 0)− 1
ρa

min(λd, 0)

max
(
d̄−p
γσ2

d
, 0
)

s1 > s ≥ s2 ≡ −ρb max(λd, 0)− 1
ρb

min(λd, 0)

θ̄(s, ρb) s2 > s ≥ s3 ≡ − 1
ρb

max(λd, 0)− ρb min(λd, 0)

min
(
d̄−p
γσ2

d
, 0
)

s3 > s ≥ s4 ≡ − 1
ρa

max(λd, 0)− ρa min(λd, 0)

θ̄(s, ρa) s < s4.

(11)

Ambiguity is described by the interval [ρa, ρb] with ρa > 0 and λd = E[d̃]−p√
Var[d̃]

= d̄−p
σd

denotes

the unconditional Sharpe ratio of the risky asset.
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Suppose the unconditional risk premium of the asset is positive (d̄ − p > 0). Figure 1

shows that the optimal portfolio does not always depend on signals that convey news that

is worse than expected. Specifically, there is a range of bad signals for which an investor’s

long position in the risky asset does not depend on the signal and there is another range of

bad signals for which investors do not hold the risky asset.12 We briefly discuss the intuition

for information inertia of the risk-free portfolio next and then focus on the intuition for

information inertia of risky portfolios for the remainder of this section.

[Figure 1 about here.]

A. Information Inertia for the Risk-Free Portfolio

Why does the risk-free portfolio exhibit information inertia? To answer this question consider

first an SEU investor with belief ρ. This investor would buy the asset if the conditional risk

premium is positive (µ(s, ρ)− p > 0) and sell short the asset if the conditional risk premium

is negative (µ(s, ρ)− p < 0). There is only one signal realization (s = −λd/ρ) for which the

conditional risk premium is zero and, thus, an SEU investor would refrain from holding the

asset. In contrast, MEU investors buy the asset if there is no ambiguity that the conditional

risk premium is positive and sell short the asset if there is no ambiguity that the conditional

risk premium is negative. There is a range of bad signals (−λd
ρa

< s < −λd
ρb
) for which

the conditional risk premium is positive for some ρ and negative for others and, thus, the

12If the unconditional risk premium is negative, then there is a range of good news for which the risk-free

portfolio and a portfolio consisting of a short position in the asset exhibits information inertia.
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risk-free portfolio exhibits information inertia.13

B. Information Inertia for Risky Portfolios

The risk-free portfolio is the only portfolio that perfectly hedges against ambiguity by mak-

ing utility independent of the unknown parameter ρ. All other portfolios are exposed to

ambiguity. The next proposition shows that all these portfolios can be determined by evalu-

ating the optimal portfolio of an SEU investor at the belief ρ that minimizes her utility. Put

differently, an MEU investor behaves distinctly different from an SEU investor at a kink of

her utility which in this model only occurs at the risk-free portfolio.14 We focus on the case

where the unconditional risk premium and, thus, the unconditional Sharpe ratio is positive

(λd > 0) for the remainder of this section.

PROPOSITION 1 (MEU - Characterization of Optimal Portfolios): Let λd > 0 and ρ∗(s) =

argminρ∈[ρa,ρb] CE(θ(s), ρ). Then

θ(s) =


0 if − λd

ρa
≤ s ≤ −λd

ρb

θ̄(s, ρ∗(s)) otherwise.
(12)

An ambiguity averse investor with mean variance preferences holds portfolios with the

13This form of information inertia at the risk-free portfolio also arises in the models of Condie and Ganguli

(2011) and Illeditsch (2011).

14Illeditsch (2011) considers a model where kinks also occur away from certainty.
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highest possible Sharpe ratio that is robust to changes in the correlation ρ. Specifically, let

λ(s, ρ) =
µ(s, ρ)− p

σ(ρ)
=

λd + ρs√
1− ρ2

, (13)

denote the conditional Sharpe ratio when the correlation between the signal and the future

asset value is ρ. An MEU investor with a long position considers the belief ρ that minimizes

the conditional Sharpe ratio λ(s, ρ) and an MEU investor with a short position considers the

belief ρ that maximizes λ(s, ρ). Hence, prior knowledge of the optimal portfolio θ(s) (other

than its sign) is not required when computing the worst case scenario belief ρ∗(s) of an MEU

investor as the next proposition shows.

PROPOSITION 2 (MEU - Robust Sharpe Ratio): Let λd > 0. If s > −λd
ρb
, then θ̄(s, ρ) > 0

for all ρ ∈ [ρa, ρb] and

ρ∗(s) = argmin
ρ∈[ρa,ρb]

λ(s, ρ) =


ρa if s > −ρaλd

− s
λd

if −ρbλd < s ≤ −ρaλd

ρb if −λd
ρb
< s ≤ −ρbλd.

(14)

If s < −λd
ρa
, then θ̄(s, ρ) < 0 for all ρ ∈ [ρa, ρb] and ρ∗(s) = argmaxρ∈[ρa,ρb] λ(s, ρ) = ρa.

The robust conditional Sharpe ratio is plotted in the left graph of Figure 2 as a function

of the signal. To gain intuition suppose there is no ambiguity that the conditional Sharpe

ratio is positive (s > −λd
ρb

= −1.25) and, thus, the MEU investor has a long position in

the asset. If the signal conveys good news (s > 0), then an increase in the correlation ρ

always increases the conditional Sharpe ratio because a more informative signal raises the
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conditional mean and reduces the conditional volatility. Hence, the MEU investor behaves

like an SEU investor with belief ρa (blue dashed circle line in Figure 1). However, if the

signal conveys bad news (−λd
ρb
< s < 0), then an increase in the correlation ρ decreases the

conditional mean and volatility and, thus, the effects on the conditional Sharpe ratio are

unclear. For some bad news (−ρaλd = −0.5 ≤ s < 0), the volatility effect dominates and the

MEU investor behaves like an SEU investor with belief ρa (blue dashed circle line in Figure

1), whereas for other bad news (−λd
ρb

= −1.25 < s ≤ −ρbλd = −1) the mean effect dominates

and, thus, the MEU investor behaves like an SEU investor with belief ρb (red chain-dotted

square line in Figure 1).15 In both cases demand depends on the signal.

[Figure 2 about here.]

There is a range of bad signals (−ρbλd = −1 < s < −ρaλd = −0.5) for which neither

the conditional mean nor volatility dominates and the conditional Sharpe ratio is minimized

in the interior, that is, ∂λ(s,ρ)
∂ρ

= 0. In this case, small changes in the correlation change

both the mean and volatility but leave the Sharpe ratio unchanged. The worst-case scenario

for the conditional Sharpe ratio is the lower envelope given in the left graph of Figure 2.

The interior minimizer depends on the signal, that is, ρ∗ = − s
λd
, because a change in the

signal affects only the mean directly, and, thus, the correlation changes in order to have a

counterbalancing indirect effect on volatility. We know from Propositions 1 & 2 that in this

case the MEU investor behaves like an SEU investor with belief, ρ∗ = − s
λd
, but the resulting

15If s < −λd

ρa
= −2.5, then there is no ambiguity about the fact that the conditional Sharpe ratio is

negative and, thus, the MEU investor has a short position in the asset. In this case the worst case scenario

is always a low correlation.
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optimal portfolio does not depend on the signal and, hence, coincides with the portfolio of

an SEU investor who thinks the correlation between the signal and the asset is zero (green

dotted cross line in Figure 1).16

B.1. Local Information Inertia — The Intuition

Why are there risky portfolios that do not depend on the signal even though there is no

ambiguity about the fact that the signal is informative (ρa > 0)? To answer this question

suppose, s = −0.75, in which case the optimal portfolio of the MEU investor and an SEU

investor with belief, ρ̂ = (ρa + ρb)/2, coincide (black solid and purple dotted plus line in

Figure 1). An increase in the signal raises the Sharpe ratio perceived by the SEU and MEU

investor and, thus, makes the asset more attractive. The perceived risk for the SEU investor

does not change, so her demand for the asset increases (purple dotted plus line). However,

an increase in the signal also increases the risk perceived by the MEU investor because in

this case the correlation between the asset and the signal decreases and, thus, less risk is

resolved by the signal. The increase in the Sharpe ratio is exactly offset by the increase in

the volatility, so the MEU investor does not change her portfolio (black solid line). Formally,

d ln θ(s) = d lnλ (s, ρ∗(s))− d lnσ (ρ∗(s)) = 0, ∀s ∈ (−ρbλd,−ρaλd). (15)

The left and right graph of Figure 2 show the (log) of the conditional Sharpe ratio and

16Even though the demand of an SEU investor with belief ρ = 0 and an MEU investor is identical in the

critical signal region (−ρbλd,−ρaλd), the utility of the MEU investor is lower than the utility of the SEU

investor.
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volatility, respectively, when the signal conveys bad news. There is a range of signals for

which both the Sharpe ratio and volatility strictly increase in the signal. Specifically, the

Sharpe ratio increases with the signal at exactly the same rate as the volatility increases

with the signal and, hence, any change of the portfolio due to changes in the Sharpe ratio is

exactly offset by a change in risk.

B.2. Risk and Ambiguity Effects

How do changes in risk and ambiguity affect the unresponsiveness of risky portfolios to

information? To answer this question, let λd measure the amount of risk compensation and

∆ρ = ρb−ρa measure the level of ambiguity. Moreover, define with Π(λd,∆ρ) the probability

of investors exhibiting information inertia for risky asset positions conditional on bad news;

determined in the next proposition.

PROPOSITION 3 (Information Inertia – Risk and Ambiguity Effects): The size of the signal

region for which risky portfolios do not react to news is λd(ρb− ρa) = λd∆ρ. The probability

of investors exhibiting information inertia for risky asset positions conditional on bad news

is

Π(λd,∆ρ) = 2 (Φ (λdρb)− Φ (λdρa)) , (16)

where Φ(·) denotes the cumulative distribution function of a standard normal distributed ran-

dom variable. Moreover, we have the following two comparative static results: (i) ∂Π(∆ρ,·)
∂∆ρ

≥ 0

and (ii) there exists a Sharpe ratio λ̂d that uniquely maximizes Π(λd, ·) with Π(λd = 0, ·) = 0

and Π(λd =∞, ·) = 0. The inequality in part (i) is strict if λd > 0.
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There is more information inertia when investors exhibit more ambiguity and there is no

information inertia if investors are ambiguity neutral. The severity of information inertia is

non-monotonic in the ex-ante risk compensation for the asset and it disappears for small and

large λd because in both cases the MEU investor behaves like an SEU investor with belief

ρa.

B.3. Quantitative Importance of Information Inertia

We calibrate an asset return predictability model to determine the quantitative significance

of the information inertia results and to sharpen the predictions for the effects of changes

in risk for our information results. Suppose MEU investors have mean-variance preferences

over the stock market return in excess of the risk-free rate and the signal is a predictor of

the future excess stock market return; e.g. the dividend-price ratio. We use the size of the

confidence interval for the correlation ρ̂ = (ρa + ρb)/2 as a proxy for the level of ambiguity

∆ρ = ρb − ρa. This is standard in the literature (e.g. Garlappi, Uppal, and Wang (2007)).

Let â denote the significance level of the confidence interval for ρ̂ and T the size of the

data sample. The size of the interval strictly decreases in the significance level â and hence

α = 1− â can be interpreted as a measure for the ambiguity ∆ρ.

We consider T = 84 observations of excess returns and dividend-price ratios and three

different values for the point estimate of the correlation, that is, ρ̂ ∈ {30%, 40%, 50%}. These

estimates correspond to R2s in predictive regressions ranging from 0.09 to 0.25 which are

similar to the reported predictability results in Koijen and Nieuwerburgh (2011) who use 84

years of data. We focus on predictors for excess returns that are statistically significant to
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determine the probability of information inertia and, hence, ρa > 0.

Table I shows the probability of information inertia conditional on signals that convey

bad news for long stock positions. We consider five different values for the unconditional

Sharpe ratio, that is, λd ∈ {0.25, 0.3, 0.35, 0.4, 0.5} and ambiguity decreases from α = 0.99

to α = 0.75. Table I confirms the results of Proposition 3 that the likelihood of information

inertia strictly increases in ambiguity α and it shows that the likelihood of information

inertia strictly increases in the riskiness of the stock. Moreover, the table demonstrates that

information inertia is economically meaningful for reasonable levels of risk. For instance, if

α = 0.99, then the probability of risky portfolios being unresponsive to bad news is between

8% and 20%.

[Table I about here.]

III. Equilibrium Asset Prices

In this section, we discuss the effects of ambiguous information on asset prices in an exchange

economy with a representative agent.17 We have shown in the previous section that there is

a range of ambiguous signals that convey bad news for which a risk and ambiguity averse

investor does not change her long position in the asset. Hence, if this signal is about the future

value of the market portfolio, then the equilibrium price of the market portfolio does not

17We discuss an equilibrium model with multiple agents in the Internet Appendix.
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react to a range of signals that conveys bad news leading to informational inefficiencies.18 We

will provide a rigorous analysis of this claim below. However, this raises the question of how

ambiguous news about the market portfolio affect the price of an individual stock. Moreover,

it raises the question of whether ambiguous news about a firm are always incorporated in the

stock price. In order to address these questions we consider an asset pricing model with a

large number of assets and distinguish between ambiguous news about the market portfolio

and ambiguous news about a firm. We also interested in whether there is a premium for

investing in ambiguous news, so we derive ex-ante (before receiving news) and ex-post (after

receiving news) asset prices in equilibrium.

A. Two Period Model with Multiple Assets

Suppose there are three dates, 0, 1, and 2. There is representative investor (RI) with CARA

utility and aversion to ambiguity in the sense of Gilboa and Schmeidler (1989). The RI

consumes at date 2 and can invest in a risk-free one period bond in zero-net-supply and N

risky assets in positive-net-supply at date 1 after observing the signal and at date 0 before

observing the signal. For i = 1, . . . , N ; let d̃i denote the liquidating dividend, pi the date

1 or ex-post price, and pi0 the date 0 or ex-ante price of risky asset i. There is no interim

consumption and the risk-free one period bond is used as numeraire, so the one period

18There is also range of signal values for which investors do not hold the market portfolio or do not change

their short position in it. However, these demands do not clear the market.
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risk-free rate is always zero. The RI’s budget constraints are

w̃2 = w1 +
N∑
i=1

θi

(
d̃i − pi

)
and w̃1 = w0 +

N∑
i=1

θ0i (p̃i − p0i) , (17)

where θi and θ0i denote the number of shares invested in risky asset i at date 1 and 0,

respectively. At date 1, the RI receives an ambiguous signal s̃ that is either about the

market portfolio (discussed in Section B) or about a single asset (discussed in Section C).

We consider the learning model under ambiguity described in Section I and use the recur-

sive approach developed in Epstein and Schneider (2003) to ensure dynamic consistency.19

Specifically, the date 1 and date 0 value function of an ambiguity averse investor with initial

wealth w0 are

V1(w1, s) = max
(θ1,...,θN )∈RN

min
ρ∈[ρa,ρb]

Eρ [u (w̃2) | s̃ = s] , (18)

V0(w0) = max
(θ01,...,θ0N )∈RN

E [V1 (w̃1, s̃))] , (19)

respectively. The marginal distribution of the signal is known and, thus, at date 0 there is

no ambiguity about the distribution of the value function at date 1.

The liquidating dividend of risky asset i consists of an aggregate and a firm specific

component. Specifically, d̃i = βi d̃ + ε̃i, with normally distributed idiosyncratic risk, ε̃i ∼

N (0, vi). The supply of each asset is 1/N , the cash flow betas, βi, average to one, that

19Our approach is similar to Epstein and Schneider (2007) and Epstein and Schneider (2008) who also

consider dynamic models with learning under ambiguity. We refer to the Internet Appendix for a detailed

discussion.
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is, 1
N

∑N
i=1 βi = 1, and the idiosyncratic variances {vi}Ni=1 are uniformly bounded. Hence,

by the strong law of large numbers, adding up the dividends paid out by all firms leads to

the aggregate dividend d̃, that is, lim
N→∞

1
N

∑N
i=1 d̃i = d̃, almost surely. We present results for

the case of infinitely many firms (N = ∞) in this section. Moreover, in equilibrium the

RI consumes the liquidating aggregate dividend d̃, so idiosyncratic risk ε̃i is not part of the

market portfolio.

B. Ambiguous News about the Market Portfolio

Suppose the signal s̃ is about the aggregate dividend d̃ and does not tell us anything about

firm specific cash flows, that is, s̃ and ε̃i are independent for all i. The RI is averse to ambi-

guity about the correlation between s̃ and d̃ and hence entertains the interval of correlations

[ρa, ρb] when making optimal consumption and investment decisions. The information struc-

ture is discussed in detail in Section I and the ex-post and ex-ante value function of the

ambiguity averse RI are given in equations (18) and (19), respectively.

BENCHMARK (SEU – Systematic News and Equilibrium Prices): Consider an economy

with infinitely many risky assets and an SEU-RI with risk aversion γ and belief ρ who

receives the signal s̃ about the aggregate dividend d̃. The ex-post and ex-ante price of the

market portfolio—defined as a claim on d̃—in equilibrium are p̄m(s) = µ (ρ, s) − γσ2 (ρ)

and p̄0,m = d̄ − γσ2
d, respectively. Moreover, the CAPM holds, and the ex-post and ex-ante

equilibrium price of each stock is p̄i(s) = βip̄m(s) and p̄0,i = βip̄0,m, respectively.

If the stock is exposed to aggregate risk, that is, βi 6= 0, then its equilibrium price is
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monotone in the signal and, hence, the price fully incorporates all available information

about aggregate cash flows. This is no longer true when investor are averse to ambiguity as

the next theorem shows.

THEOREM 2 (MEU – Systematic News and Equilibrium Prices): Consider an economy with

infinitely many risky assets and an MEU-RI with risk aversion γ who receives the signal s̃

about the aggregate dividend d̃. Ambiguity is described by the interval [ρa, ρb] with ρa > 0.

There is a unique equilibrium. The ex-post price of the market portfolio—defined as a claim

on the aggregate dividend d̃—is

pm(s) =


Eρa

[
d̃ | s̃ = s

]
− γVarρa

[
d̃ | s̃ = s

]
if s > −γσdρa

E
[
d̃
]
− γVar

[
d̃
]

if −γσdρb ≤ s ≤ −γσdρa

Eρb

[
d̃ | s̃ = s

]
− γVarρb

[
d̃ | s̃ = s

]
if s < −γσdρb.

(20)

The ex-ante price of the market portfolio is

p0,m = E
[
d̃
]
− γVar

[
d̃
]
− 1√

2π

σd(ρb − ρa)
1 + γσd√

2π
(ρb − ρa)

. (21)

Moreover, the CAPM holds and, thus, the ex-post and ex-ante price of each stock is pi(s) =

βipm(s) and p0,i = βip0,m, respectively.

Stocks do not fully incorporate all publicly available information about aggregate cash

flows. While good systematic news is always incorporated into the price for stocks that

are exposed to aggregate risk (β 6= 0), bad news is not.20 Hence, there is an informational

20Bad systematic news is good news for stocks with negative cash flow betas.
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inefficiency because the price is not a sufficient statistic for the signal. Moreover, investors

get compensated for risk and ambiguity when holding an asset that is exposed to ambigu-

ous systematic news (β 6= 0). We discuss the ambiguity premium and the informational

inefficiency below, and since each stock inherits the properties of the market portfolio (the

CAPM holds), we drop any asset specific subscripts and refer to p0 and p(s), more generally,

as the ex-ante and ex-post asset price, respectively.

B.1. Ex-Ante Stock Price and the Ambiguity Premium.

The uncertainty premium (UP) for the market portfolio, defined as the unconditional mean

of the aggregate dividend minus the ex-ante price of the market portfolio (given in equation

(21)), is

UP ≡ E
[
d̃
]
− p0 = γσ2

d +
1√
2π

σd(ρb − ρa)
1 + γσd√

2π
(ρb − ρa)

. (22)

The uncertainty premium strictly increases in risk aversion γ, the unconditional dividend

volatility σd, and the amount of ambiguity ∆ρ = ρb − ρa. Moreover, the UP can be decom-

posed in the unconditional risk premium, γσ2
d, and an ambiguity premium. The ambiguity

premium represents the additional compensation for an ambiguity averse investor and it

is the reason why the uncertainty premium strictly increases in the amount of ambiguity.

However, it strictly decreases in risk aversion and vanishes when risk aversion is sufficiently

high. While this seems counterintuitive at first glance, it directly follows from the fact that

a very risk averse investor is more worried about the posterior variance than the posterior

mean and, thus, she will always behave like an SEU investor with belief, ρa, after receiving

the signal. Hence, there is no ambiguity about how to react to the signal, so there is no am-
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biguity premium. Moreover, the ambiguity premium and the risk premium are, as expected,

strictly increasing in the ex-ante dividend volatility.

B.2. Ex-post Stock Price and Informational Inefficiencies

Figure 3 shows the equilibrium asset price as a function of the signal. There is a range of

signals that convey bad news for which the price does not depend on the signal. To gain

intuition consider a two standard deviation bad news surprise (s = −2). In this case the

equilibrium price is p = 75 when there is ambiguity aversion (MEU – black solid line) and

when there is no ambiguity aversion and the investor correctly estimates the informativeness

of the signal (SEU – dotted purple plus line). If the signal decreases, then the SEU represen-

tative investor requires a lower price as compensation for the lower posterior mean in order to

hold the market portfolio. In contrast to the SEU investor, the MEU representative investor

revises the worst case scenario belief about ρ upwards if the signal drops. The price does

not change because the lower posterior mean that would require a drop in the equilibrium

price is exactly offset by the lower risk premium that would require an increase in the price.

[Figure 3 about here.]

How do changes in risk and ambiguity affect the informational inefficiency of prices?

Similar to the effects of risk and ambiguity on the likelihood of information inertia for risky

portfolios, the probability of having an informationally inefficient stock price conditional on

bad news strictly increases in ambiguity ∆ρ but is non-monotonic in risk γσ2
d.
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B.3. Quantitative Importance of Informational Inefficiencies

The purpose of this subsection is twofold. First, we determine the quantitative significance

of the informational inefficiency result. Second, we sharpen the predictions of the effects

of changes in risk for the likelihood of obtaining an informational inefficiency. In order to

make quantitative assessments, we consider an ambiguity averse representative investor with

constant relative risk aversion (CRRA) and one risky asset—the market portfolio—which is

a claim on a log normally distributed dividend. Hence, dividend growth rates are normally

distributed and the signal is a predictor of the dividend growth rate; e.g. the dividend-price

ratio. In this case, there is also a range of signals for which the equilibrium price does not

react to news. The results are summarized in the next proposition.

PROPOSITION 4 (Informational Inefficiencies in a CRRA Ambiguity Model): Consider a

one-period model with one risky asset that is a claim on a log normally distributed liquidating

dividend ed̃ and an MEU-RI with CRRA coefficient γ who receives the signal s̃ about d̃.

Ambiguity about the joint-normal distribution of s̃ and d̃ is described by the interval [ρa, ρb]

with ρa > 0. Then the unique equilibrium price is

p(s) =


e−γσ

2
d(1−ρ2a)Eρa

[
ed̃ | s̃ = s

]
if s > −γσdρa

e−γσ
2
dE
[
ed̃
]

if −γσdρb ≤ s ≤ −γσdρa

e−γσ
2
d(1−ρ2b)Eρb

[
ed̃ | s̃ = s

]
if s < −γσdρb,

(23)

where σd denotes the volatility of dividend growth d̃. The size of the signal region for which

the equilibrium price does not react to news is γσd(ρb − ρa) = γσd∆ρ and the probability of
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an informational inefficiency conditional on bad news is

Πp(γσd,∆ρ) = 2 (Φ (−γρaσd)− Φ (−γρbσd)) , (24)

where Φ(·) denotes the cumulative distribution function of a standard normal distributed

variable. Moreover, we have the following two comparative static results: (i) ∂Πp(·,∆ρ)

∂∆ρ
≥ 0

and (ii) there exists a γ̂σd that maximizes Πp(γσd, ·) and Πp(γσd = 0, ·) = 0 and Πp(γσd =

∞, ·) = 0. If ∆ρ > 0 and γ > 0, then the inequality in part (i) is strict and the maximum in

part (ii) is unique.

The qualitative effects of risk and ambiguity on the equilibrium price in the CRRA-log

normal model are the same as in the CARA-normal model, so we focus on the quantita-

tive effects. Specifically, we consider T = 84 observations of dividend growth rates and

dividend-price ratios, as well, as three different values for the point estimate of the correla-

tion between the dividend growth rate and the dividend price ratio, that is, ρ̂ = (ρa+ρb)/2 ∈

{30%, 40%, 50%}. These estimates correspond to R2s in predictive regressions ranging from

0.09 to 0.25 which are similar to the reported predictability results in Koijen and Nieuwer-

burgh (2011) who use 84 years of data. We use α = 1− â to measure the level of ambiguity

∆ρ = ρb − ρa, where â denotes the significance level for the confidence interval of ρ̂.

Figure 4 shows the equilibrium stock price as a function of the signal (standardized

PD-ratio) for different values of the unconditional expected excess return, that is, γσ2
d ∈

{2.5%, 5%, 7.5%, 10%} when ρ̂2 = 16% and α = 0.99. There is a range of PD-ratios that

convey news that is worse than expected for which the equilibrium price does not react, so
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the price is not efficiently incorporating the information conveyed by the PD-ratio about

dividend growth into the equilibrium price. The size of the inaction region increases with

risk but at the same time the realizations of the PD-ratio for which there is no price reaction

become less likely with an increase in risk. Hence, the probability of having no price reaction

is not monotone in risk as shown in Proposition 4. Table 2 shows that the likelihood of

having no price reaction to bad news about dividends strictly increases for reasonable levels

of the unconditional asset risk premium. This likelihood is also increasing in ambiguity

α ∈ {0.9, 0.95, 0.99}. Moreover, Table 2 demonstrates that the probability of having an

equilibrium price that does not react to bad news is economically meaningful. For instance,

if α = 0.99 then this probability is between 7% and 33%.

[Figure 4 & Table II about here.]

C. Ambiguous News about a Firm

We consider the CARA-normal model and assume that investors receive ambiguous news

about a single asset and, thus, w.l.o.g. the signal s̃ is about the first asset with liquidating

dividend d̃1 = β1d̃ + ε̃1 and β1 > 0. The representative investor (RI) is averse to ambiguity

about the correlation between s̃ and d̃1, and, hence, entertains the interval of positive cor-

relations [ρa, ρb] when making optimal consumption and investment decisions. The signal is

informative about the aggregate dividend d̃ and the idiosyncratic cash flow component ε̃1

but it does not tell us anything about the idiosyncratic risk of all other assets and, thus, s̃

is independent of ε̃i, ∀i 6= 1. Moreover, the parameter ω = β1Cov(s̃,d̃)

Cov(s̃,d̃1)
measures how much
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of the positive correlation between the first asset’s dividend and the signal is due to the

systematic cash flow component and 1 − ω = Cov(s̃,ε̃1)

Cov(s̃,d̃1)
measures the amount that is due to

the idiosyncratic cash flow component.

BENCHMARK (SEU – News about a Stock and Equilibrium Prices): Consider an economy

with infinitely many risky assets and an SEU-RI with risk aversion γ and belief ρ who receives

the signal s̃ about the first asset’s dividend d̃1. The first asset has a positive cashflow beta,

that is, β1 > 0. The ex-post price of the first asset is

p̄1(s, ρ) = Eρ

[
d̃1 | s̃ = s

]
− γCovρ

[
d̃1, d̃ | s̃ = s

]
. (25)

The ex-post price of the market portfolio—defined as a claim on the aggregate dividend d̃—is

p̄m(s, ρ) = Eρ

[
d̃ | s̃ = s

]
− γVarρ

[
d̃ | s̃ = s

]
. (26)

The ex-post price of every other individual asset is p̄i(s, ρ) = βip̄m(s, ρ), ∀i 6= 1. The ex-ante

price of the market portfolio is p0,m = d̄ − γσ2
d. Moreover, the CAPM holds ex-ante for all

assets and, thus, p0,i = βip0,m, ∀i.

The information about the first asset is fully incorporated into its price because the

posterior mean strictly increases in the signal. If the signal is correlated with the aggregate

dividend, that is, ω > 0, then the posterior mean of the market portfolio strictly increases in

the signal and, thus, the information about the market portfolio is fully incorporated into its

price too. This is no longer true when investor are averse to ambiguity as the next theorem

shows.
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THEOREM 3 (MEU – News about a Stock and Equilibrium Prices): Consider an economy

with infinitely many risky assets and an MEU-RI with risk aversion γ who receives the signal

s̃ about the first asset’s dividend d̃1. Ambiguity is described by the interval [ρa, ρb] with ρa > 0

and the first asset has a positive cashflow beta, that is, β1 > 0. There is a unique equilibrium.

The ex-post price of the first asset is

p1(s) =



p̄1(s, ρa) if s > ŝa ≡ −γ ω
β1
σ1ρa

β1

(
d̄− γσ2

d

)
if ŝb ≤ s ≤ ŝa

p̄1(s, ρb) if s < ŝb ≡ −γ ω
β1
σ1ρb,

(27)

where σ2
1 = β2

1σ
2
d + v1 denotes the unconditional variance of the first asset and p̄1(s, ·) is

given in equation (25). The ex-post price of the market portfolio—defined as a claim on the

aggregate dividend d̃—is

pm(s) =



p̄m(s, ρa) if s > ŝa

d̄− γσ2
d if ŝb ≤ s ≤ ŝa

p̄m(s, ρb) if s < ŝb,

(28)

where p̄m(s, ρ) is given in equation (26). The ex-post price for all other assets is pi(s) =
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βipm(s), ∀i 6= 1. The ex-ante price of the first asset and the market portfolio are

p0,1 = β1(d̄− γσ2
d)−

σ1(ρb − ρa)√
2π + γ ω

β1
σ1(ρb − ρa)

(29)

p0,m = d̄− γσ2
d −

ω
β1
σ1(ρb − ρa)

√
2π + γ ω

β1
σ1(ρb − ρa)

, (30)

respectively. For all other assets we have that p0,i = βip0,m, ∀i 6= 1.

If the signal about the first asset’s dividend is correlated with the aggregate dividend,

that is, ω > 0 then there is a range of signals for which the price of the market portfolio and

each individual asset with exposure to the market (βi 6= 0) does not react to news that is

worse than expected. Hence, there is informational inefficiency because equilibrium prices are

no longer sufficient statistics for the signal. The intuition for the price inaction regions when

investors process ambiguous news about an asset is the same as when the process ambiguous

news about the market portfolio. Specifically, any ambiguous signal that is correlated with

the aggregate dividend affects the utility of the MEU representative investor. If the signal

conveys news that is worse than expected, then the MEU-RI is worried about a high ρ that

would lead to a low posterior mean of the asset and a low ρ because that would lead to a

high residual variance. Hence, there is a range of signals for which the worst-case scenario

correlation depends on the signal, so the price of every asset exposed to the market does not

depend on the signal. The effects of an increase in the systematic component of the signal

measured by ω on the inaction region are similar to that of an increase in risk aversion γ,

that is, the size of the inaction region increases with ω but at the same time the critical

signal values ŝa and ŝb become less likely. Hence, the probability of having an informational
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inefficiency is not always monotone in the signal.21 Importantly, if ω = 0 and, thus, the

signal is about the idiosyncratic component of the asset, then the utility of the investor is

not affected by the signal, so there is no inaction region in equilibrium. Hence, as long as the

signal is correlated with the aggregate dividend there is a tradeoff between the affects of the

correlation on the posterior mean and the residual variance and therefore, the information

is not efficiently incorporated into equilibrium asset prices.

D. News Momentum

We show in this section that aversion to risk and ambiguity leads to news momentum when

investors process i) news about the stock market (e.g. macroeconomic news) and (ii) news

about a firm (e.g. earnings news). This news momentum is more severe if the signal is on

average more informative and if there is more risk and ambiguity. Moreover, it disappears

when the news is only about the idiosyncratic asset component. To determine the post-

news drift for qualitatively reasonable risk premia, we consider in Section D.1 the CRRA-log

normal model.

D.1. Macroeconomic News

Suppose the signal is about the market portfolio which is a claim on a liquidating aggregate

dividend; e.g macroeconomic news. Moreover, consider the CRRA-log normal ambiguous

21In contrast to risk aversion which is unbounded, the systematic component of the signal ω is bounded

by one and, thus, the probability of having an informational inefficiency does not go to zero with an increase

in ω.
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information model described in Section III.B.3 and denote with ρ̂ the correlation between

the log dividend growth rate, d̃, and the predictor, s̃, that generates the data. We simulate

a long time series of d̃, s̃, and equilibrium prices p(s̃) from our model (see Proposition 4)

and run the following regression:

d̃− ln (p(s̃)) = constant + slope× s̃+ noise. (31)

Figure 5 shows the slope of this regression as a function of the unconditional risk premium

of the asset for six economies that differ with respect to ambiguity measured by, α, and the

average informativeness of the signal measured by, ρ̂. We standardize the LHS to make the

slope coefficients comparable across economies.

[Figure 5 about here.]

The (log) of the equilibrium price is a strictly increasing linear function of the signal in

a SEU-RI economy and, thus, the equilibrium price is a sufficient statistic. If the SEU-RI

has the correct belief (black dotted line in Figure 5), that is, ρ = ρ̂, then the information is

correctly incorporated into the price and the slope coefficient is zero. On the other hand, if

the SEU-RI belief is different than that of the econometrician, then the information is fully

but incorrectly incorporated into the price and the slope coefficient is different from zero.

Specifically, it is negative if the SEU-RI overreacts to news and it is positive if the SEU-RI

underreacts to news. However, in both cases the slope coefficient would depend neither on

the risk in the economy nor the average informativeness of the signal.

If investors are averse to ambiguity, then the (log) of the equilibrium price is a piecewise

37



linear function of the signal that is constant for a range of bad signals. Hence, prices are

no longer sufficient statistics and, thus, they are not informationally efficient. Moreover,

this local information inertia—an extreme form of underreaction—and the underreaction to

good news leads to news momentum. The economic significance of the news momentum

regression—the slope—depends on risk, ambiguity, and the average informativeness of the

signal. Specifically, Figure 5 shows that the slope strictly increases in risk unless there is no

ambiguity (black dotted line). Moreover, the blue dashed, red chain-dotted, and green star

lines show that the slope increases in ambiguity, α, for fixed amount of risk and an average

signal informativeness of, ρ̂ = 0.4. Similarly, the black solid, green star, and purple plus lines

show that the slope increases in the average signal informativeness, ρ̂, for a fixed amount of

risk and ambiguity α = 0.99.

Why is there more news momentum when there is more risk, more ambiguity, or if the

signal is on average more informative? The reason is that the probability of the equilib-

rium price overreacting to news strictly decreases in risk γσd, ambiguity ∆ρ = ρb − ρa, and

the average signal informativeness ρ̂ = ρa+ρb
2

, because in all three cases the critical signal

value sb = −γσdρb and, thus, the probability of having signal realizations below it decreases.

Hence, the economic significance of news momentum increases in the average signal infor-

mativeness, risk, and ambiguity.

D.2. Earnings News

Suppose the signal is about a firm which is a claim on a liquidating dividend that consist of

an idiosyncratic component and a systematic component; e.g an earnings news surprise or
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a revision of an analyst’s forecast. The dividend exposure to the systematic component is

measured by the positive cash-flow beta β1. Moreover, consider the CARA-normal ambigu-

ous information model described in Section C and denote with ρ̂ the correlation between the

dividend, d̃1, and the signal, s̃, that generates the data. We simulate a long time series of

liquidating dividends d̃1 and d̃, signals s̃, and equilibrium prices p1(s̃) and pm(s̃) from our

model (see Theorem 3). If we run news momentum regressions similar to the previous section

for the stock and the market portfolio, then we get positive slope coefficients if the signal

is correlated with fundamentals, that is, if ω > 0. The results are similar to the previous

case, and, thus omitted. If ω = 0, then the slope is zero for the market portfolio because the

signal does not contain any information about aggregate fundamentals and it is zero for the

firm because investors do not care about the variance of idiosyncratic risk.

We have established in the previous section that ambiguous macroeconomic news lead

to news momentum which is more pronounced if there is more risk, ambiguity, and if the

average informativeness of the signal is higher. We get the same results for ambiguous news

about the earnings of a firm in the form of an earnings news surprise or a revision of analysts’

forecasts in this section. However, the empirical evidence for PEAD and PFRD is for risk-

adjusted returns and not returns in excess of the risk-free rate. Hence, to show that our

model also leads to PEAD and PFRD we run the following regression:

(
d̃1 − p1(s̃)

)
− β1

(
d̃m − pm(s̃)

)
= constant + slope× s̃+ noise. (32)

The right graph of Figure 5 shows the slope of this regression as a function of the uncon-
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ditional stock market risk premium for five economies that differ with respect to ω, which

measures how much we can learn from the signal about the systematic asset component.

We standardize the LHS to make the slope coefficients comparable across economies and use

the same parameter values as in the previous section. Moreover, we assume that 25% of the

variation in the dividend of the first asset is due to its market exposure and the cash flow

beta is, β1 = 1.5. The black solid line shows that there is no earnings momentum if the

signal is either only about the idiosyncratic component (ω = 0) or only about the systematic

component (ω = 1). The first result follows directly from the fact that there is neither news

momentum for excess stock returns nor for excess stock market returns. The second result

is at first glance surprising because there is news momentum for the stock and the market

portfolio if the signal is only about the aggregate dividend. The reason for the zero slope

is that in this case the CAPM holds for the stock and, thus, after adjusting for risk there

is no reaction to the signal at all, so there is no news momentum. If the signal contains

information about both the systematic and idiosyncratic component of the asset, then the

CAPM does not hold for the stock and, thus, there is news momentum. Hence, the slope

coefficient is non-monotonic in ω and it is zero for ω = 0 or ω = 1 as the black solid line,

the red dotted-square line, the blue dashed circle line, and the black chain dotted line in the

right graph of Figure 5 confirm.

IV. Robustness

Before we discuss the robustness of our information inertia results, we re-emphasize the

economic mechanism that leads to information inertia. Specifically, in our ambiguous in-
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formation model investors are ambiguous about the correlation between a signal and the

future value of an asset. Learning from this ambiguous signal leads to ambiguity about the

posterior mean because investors don’t know how much weight to put on the signal and it

leads to ambiguity about the residual variance because they do not know how much they

learn from observing the signal. Hence, models where investors are only ambiguous about

the mean or the variance are inconsistent with our learning model. Moreover, models where

investors choose the mean and variance independently to compute the worst case scenario are

also inconsistent with our learning model. For example, suppose an investor contemplates

a long position in the asset and receives a bad signal. Choosing the worst case scenario for

the mean leads to putting a lot of weight on the signal, but at the same time, this means a

low residual variance because investors learn a lot from this signal; thus being the best case

scenario for the variance.

Combining the insights from this learning model under ambiguity with the workhorse

learning models in Finance—joint normal distribution of signal and asset values/returns

combined with CARA/CRRA risk preferences and the multiple prior preference model that

exhibits aversion to ambiguity—leads to the stark results that there is a range of signal

values for which neither demand nor equilibrium price depend on the signal. Hence, there is

information inertia. The information inertia result is particularly surprising because there is

no ambiguity about the fact that the correlation is positive, that is, ρa > 0. In what follows,

we discuss deviations from the workhorse model that do not lead to information inertia but

instead lead to strong underreaction of the equilibrium asset price to a range of signals that

are worse than expected. This underreaction leads to news momentum as discussed in the
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previous section.

We consider three different model specifications all of which are discussed in detail in

the Internet Appendix: (i) an heterogenous agent economy with MEU and SEU investors,

(ii) a model in which the representative investor has preferences that allow for a distinction

between ambiguity and ambiguity aversion, that is, the GHTV model introduced in Gajdos,

Hayashi, Tallon, and Vergnaud (2008), and (iii) a model where the representative investor

has CRRA preferences and the dividend is either positive or negative skew log normally

distributed. The parameter α measures the fraction of MEU investors in part (i), it measures

the degree of ambiguity aversion in part (ii), and the size of the ambiguity interval in part

(iii). The left graph of Figure 6 shows the equilibrium price as a function of the signal in all

three case and the right graph of Figure 6 shows the slope of a regression of excess returns

on a constant and the signal. For comparison, we also show the equilibrium price and the

economic significance of news momentum for the CRRA-log normal model which is also used

to set the benchmark parameters in the CARA/normal model. The parameters in all other

models are calibrated to the equilibrium price function obtained in the CRRA-log normal

model. The blue-dashed circle line and black solid line verify that there is a range of signals

for which the equilibrium price does not react in the CRRA-log normal and the CARA-

normal model, respectively. Deviating from these two models does not lead to inaction but

to a lower reaction to news or a more severe informational inefficiency. Specifically, the

price in the CRRA-negative skew log-normal model is not a sufficient statistic for a bigger

range of signals than in the two benchmark models. The right graph of Figure 6 shows that

deviating from the CARA and CRRA models by considering (i) different joint distributions
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of asset payoffs and signals, (ii) economies populated with ambiguity averse and standard

expected utility maximizers, and (iii) preference models that allow for a distinction between

ambiguity and ambiguity aversion leads to similar slopes of the news momentum regressions.

Hence, the implications of our information inertia models for news momentum are robust.

[Figure 6 about here.]

V. Conclusion

We introduce in this paper a novel economic mechanism which, in the absence of transaction

costs, information processing costs, or any other market frictions, leads to optimal portfolios

that do not always react to public information and, hence, this information is not reflected

in the equilibrium stock price—a phenomenon we refer to as information inertia. The eco-

nomic mechanism that leads to information inertia relies on the trade-off between over- and

underestimating the informativeness of news that ambiguity averse investors face when pro-

cessing it. Information inertia for optimal portfolios and equilibrium asset prices is a local

phenomenon that occurs for news that is worse than expected in the workhorse learning

models in Finance—joint normal distribution of signal and asset values/returns combined

with CARA/CRRA risk preferences and the multiple prior preference model that exhibits

aversion to ambiguity. If we deviate from these models by considering (i) different joint

distributions of asset payoffs and signals, (ii) economies populated with ambiguity averse

and standard expected utility maximizers, and (iii) other preference models that allow for a

distinction between ambiguity and ambiguity aversion, then there is no information inertia
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but the demand for the asset and its equilibrium price shows reaction to news that is much

lower than without ambiguity.

Our new economic mechanism helps explain why households follow simple portfolio rules

and do not trade as much as traditional models would predict even after accounting for

transaction or information processing costs. Moreover, it sheds new light on one of the most

robust instances of underreaction to news, that is, the post-earnings announcement drift

(PEAD) and the post-forecast revision drift (PFRD). Specifically, we show that the slope

(drift) when regressing risk-adjusted returns on a constant and a signal strictly increases

in risk and ambiguity. Moreover, it vanishes if the news is only about the idiosyncratic

component of the asset. We find support for all three predictions in the literature. Our

ambiguity model provides additional predictions that, as far as we know, have not been tested

yet. For instance, the post-news drift is bigger if the news is on average more informative

and it varies depending on (i) risk, (ii) ambiguity, (iii) and the average informativeness if

one conditions on the size of the negative news surprise.
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Appendix. Proofs

We first determine the certainty equivalent of the MEU investor in Proposition 5 before we

prove Proposition 1, Proposition 2, and Theorem 1.

PROPOSITION 5 (Preferences): Let θ̂a ≡ −s/(γρaσd) and θ̂b ≡ −s/(γρbσd). The certainty

equivalent of an investor with risk aversion γ and ambiguity described by [ρa, ρb] who has the

received signal s is

CE(θ) =



Eρa [w̃ | s̃ = s]− 1
2γVarρa [w̃ | s̃ = s] if θ ≤ min

(
θ̂a, 0

)
or θ > max

(
θ̂a, 0

)
E [w̃]− 1

2γVar [w̃]− s2

2γ if min
(
θ̂a, 0

)
< θ ≤ min

(
θ̂b, 0

)
Eρb [w̃ | s̃ = s]− 1

2γVarρb [w̃ | s̃ = s] if min
(
θ̂b, 0

)
< θ ≤ max

(
θ̂b, 0

)
E [w̃]− 1

2γVar [w̃]− s2

2γ if max
(
θ̂b, 0

)
< θ ≤ max

(
θ̂a, 0

)
.

(A1)

The certainty equivalent CE(θ) is a continuous and strictly concave function of the stock

demand θ. Moreover, it is continuously differentiable except for the portfolio θ = 0 if s 6= 0.

Proof of Proposition 5. The certainty equivalent CE(θ) of the ambiguity averse MEU in-

vestor satisfies

CE(θ) = min
ρ∈[ρa,ρb]

CE(θ, ρ).

Note that

∂CE(θ, ρ)

∂ρ
= θσds+ γθ2σ2

dρ.

Consider three cases, (i) s = 0, (ii) s > 0, and (iii) s < 0. Case (i): s = 0 ⇔ θ̂a = θ̂b = 0.

Then ∂CE(θ,ρ)
∂ρ

> 0 for all ρ ∈ [ρa, ρb]. Thus the minimum of CE(θ, ρ) is attained at ρa and
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hence,

CE(θ) = min
ρ∈[ρa,ρb]

CE(θ, ρ) = CE(θ, ρa) for all θ ∈ ρ.

CE(θ, ρa) is continuously differentiable and strictly concave in θ for all θ ∈ R and thus so is

CE(θ). Case (ii): s > 0⇔ θ̂a < θ̂b < 0. Suppose θ < θ̂a < 0 or θ > 0. Then ∂CE(θ,ρ)
∂ρ

> 0 for

all ρ ∈ [ρa, ρb]. Thus, the minimum of CE(θ, ρ) is attained at ρa. Suppose θ̂b < θ < 0. Then

∂CE(θ,ρ)
∂ρ

< 0 for all ρ ∈ [ρa, ρb]. Thus, the minimum of CE(θ, ρ) is attained at ρb. Suppose

θ̂a ≤ θ ≤ θ̂b. Then, since ∂2CE(θ,ρ)
∂ρ2

> 0, the minimum is attained when ∂CE(θ,ρ)
∂ρ

= 0, i.e.

ρ∗(θ) ≡ argmin
ρ∈[ρa,ρb]

CE(θ, ρ) = −s
γσdθ

. Note that ρ∗ ∈ [ρa, ρb] when θ̂a ≤ θ ≤ θ̂b < 0 and that

CE(θ, ρ∗) = E[w̃]− 1

2
γVar[w̃]− s2

2γ
= CE(θ, 0)− s2

2γ
.

Using the above, we get

CE(θ) =



CE(θ, ρa) if θ ≤ θ̂a or 0 < θ

CE(θ, 0)− s2

2γ
if θ̂a < θ ≤ θ̂b

CE(θ, ρb) if θ̂b < θ ≤ 0

as desired. CE(θ) is continuous for all θ ∈ R and ρ ∈ [ρa, ρb] and CE(0, ρa) = CE(0, ρb).

CE(θ, ρ) is continuously differentiable for all θ ∈ R and ρ ∈ [ρa, ρb] and the ∂2CE(θ,ρ)
∂θ2

≤ 0 for

all θ ∈ R and ρ ∈ [ρa, ρb]. Thus, for any θ 6= 0 there is an open neighborhood for such CE(θ)

is continuously differentiable and ∂2CE(θ)
∂θ2

exists and is non-positive. To verify concavity and

non-differentiability of CE(θ) at θ = 0, we calculate the left derivative CE′−(θ) and the right
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derivative CE′+(θ) at θ = 0.

CE′−(0) ≡ lim
θ↑0

∂CE(θ)

∂θ
= d̄+ ρbσds− p

CE′+(0) ≡ lim
θ↓0

∂CE(θ)

∂θ
= d̄+ ρaσds− p

Thus, CE′−(0) > CE′+(0), so CE(θ) is strictly concave for all θ ∈ R, not differentiable at

θ = 0, and continuously differentiable at all θ 6= 0. Case (iii): s < 0 ⇔ θ̂ > θ̂b > 0. Using

reasoning similar to that for the above case, we get

CE(θ) =



CE(θ, ρa) if θ ≤ 0 or θ̂a < θ

CE(θ, ρb) if 0 < θ ≤ θ̂b

CE(θ, 0)− s2

2γ
if θ̂b < θ ≤ θ̂a

and that CE(θ) is continuous and strictly concave in θ ∈ R. Moreover, CE(θ) is continuously

differentiable at all θ 6= 0. Finally, combining the above cases provides the desired expression

and properties for CE(θ).

Proof of Proposition 1. If we find a demand that maximizes the MEU’s certainty equiva-

lent, then we know it is the unique optimal demand because the MEU’s certainty equiva-

lent is a continuous and strictly concave function of demand. Suppose λd > 0 and con-

sider five different cases for the signal: (i) s ≤ s4 ≡ −λd
ρa
, (ii) s4 < s ≤ s3 ≡ −λd

ρb
,

(iii) s3 < s ≤ s2 ≡ −ρbλd, (iv) s2 < s ≤ s1 ≡ −ρaλd, and (v) s > s1. The condition

s ≤ s4 implies that θ̄(s, ρa) = λd+ρas
γσd(1−ρ2a)

≤ 0. Hence, CE(θ̄(s, ρa)) = CE(θ̄(s, ρa), ρa), and
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the correlation that minimizes CE(θ̄(s, ρ) is ρa. Moreover, θ(s) = θ̄(s, ρa) is the optimal

demand. The condition s3 < s ≤ s2 implies that 0 < θ̄(s, ρb) = λd+ρbs
γσd(1−ρ2b)

≤ θ̂b = − s
γρbσd

.

Hence, CE(θ̄(s, ρb)) = CE(θ̄(s, ρb), ρb), and the correlation that minimizes CE(θ̄(s, ρ) is ρb.

Moreover, θ(s) = θ̄(s, ρb). The condition s2 < s ≤ s1 implies that θ̂b = − s
γρbσd

< λd
γσd
≤

θ̂a = − s
γρaσd

. Hence, CE(θ̄(s, 0)) = CE(θ̄(s, ρ∗), ρ∗), and the correlation that minimizes

CE(θ̄(s, ρ) is ρ∗. Moreover, θ(s) = θ̄(s, 0). The condition s > s1 implies that θ̄(s, ρa) =

λd+ρas
γσd(1−ρ2a)

> θ̂a = − s
γρaσd

. Hence, CE(θ̄(s, ρa)) = CE(θ̄(s, ρa), ρa), and the correlation that

minimizes CE(θ̄(s, ρ)) is ρa. Moreover, θ(s) = θ̄(s, ρa) is the optimal demand. Putting

these four cases together leads to θ(s) = θ̄(s, ρ∗(s)) with ρ∗(s) = argminρ∈[ρa,ρb] CE(θ(s), ρ).

The condition s4 < s ≤ s3 implies that θ̄(s, ρb) ≤ 0 < θ̄(s, ρa). In this case, choosing

θ(s) > 0 does not satisfy CE(θ(s), ρ)∀ρ ∈ [ρa, ρb]. Similarly, choosing θ(s) < 0 does not

satisfy CE(θ(s), ρ)∀ρ ∈ [ρa, ρb]. Hence, θ(s) = 0 and the MEU’s certainty equivalent does

not depend on ρ.

Proof of Proposition 2. Let s > −λd
ρb
. Then, s > −λd

ρ
for all ρ ∈ [ρa, ρb] since −λd

ρ
is

increasing in ρ. From this it follows that for all ρ ∈ [ρa, ρb], d̄+ρσds−p
σ(ρ)

= λ(s, ρ) > 0 and

hence θ(s, ρ) = λ(s,ρ)
γσ(ρ)

> 0. Moreover, d2

dρ2
λ(s, ρ) > 0 for all ρ ∈ [ρa, ρb], so λ(s, ρ) is strictly

convex in ρ. Letting ρ′ denote the unique minimizer of λ(s, ρ) over [ρa, ρb], the first-order

(Kuhn-Tucker) condition for the constrained minimization yields

0 ≤ s+ λdρ
′

(1− ρ′2)

with equality holding if ρa < ρ′ < ρb. This yields the result that ρ∗(s) is the unique minimizer

54



of λ(s, ρ) over [ρa, ρb]. An analogous argument shows that if s < −λd
ρa
, then for all ρ ∈ [ρa, ρb],

λ(s, ρ) < 0 and hence θ(s, ρ) < 0. Moreover, in this case, d2

dρ2
λ(s, ρ) < 0 for all ρ ∈ [ρa, ρb], so

λ(s, ρ) is strictly concave in ρ and the first order condition yields the result that ρ∗(s) = ρa

is the unique maximizer of λ(s, ρ) over [ρa, ρb].

Proof of Theorem 1. If λd > 0, then optimal demand θ(s) is given in equation (12) of Propo-

sition 1. Plugging in for ρ∗(s) given in equation (14) of Proposition 2 leads to optimal demand

given in equation (11) of Theorem 1. The proof for the case λd ≤ 0 is similar to the case of

λd > 0 and, thus, to save space we provide it in the Internet Appendix.

Proof of Proposition 3. The expression for MEU investor optimal portfolio given in equation

(11) yields that MEU investors are long the stock, but demand does not react to bad news,

that is, θ(s) = θ(s, 0) > 0 if and only if λd > 0 and s1 > s ≥ s2, where s1 = −ρaλd and

s2 = −ρbλd. Hence, the size of the signal region for which risky portfolios do not react to

news is (ρb − ρa)λd. Moreover, s̃ ∼ N(0, 1), so it follows that the probability of investors

exhibiting information inertia for a risky asset position conditional on s̃ ≤ 0 (bad news) is as

given in (16). Clearly, limλd→∞Π(λd, ·, ·) = Π(λd = 0, ·, ·) = 0. Moreover, this probability is

a concave function of λd with dΠ(λd,·,·)
dλd

= (φ(λdρb)ρb − φ(λdρa)ρa). Hence, Π(λd, ·, ·) is maxi-

mized at λ̂d =
√

2 ln(ρa/ρb)

ρ2a−ρ2b
. Moreover, we have that dΠ(·,∆ρ,cot)

d∆ρ
= 2λd (φ(λdρb) + φ(λdρb)) ≥ 0,

with strict inequality if λd > 0,∆ρ > 0.

Proof of Theorem 2. We determine equilibrium asset prices by backward induction using the
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ex-post stochastic discount factor (SDF)

Md̃(s) =
u′
(
d̃
)

Eρ∗(s)

[
u′
(
d̃
)
| s̃ = s

] , where, u′(d) = γe−γd,

and ρ∗(s) minimizes utility from consuming the aggregate dividend d̃ in equilibrium,

ρ∗(s) = argmin
ρ∈[ρa,ρb]

Eρ

[
u
(
d̃
)
| s̃ = s

]
=



ρa if s > −γσdρa ≡ sa

− s
γσd

if sb ≤ s ≤ sa

ρb if s < sb = −γσdρb.

The ex-post price of the market portfolio is

pm (s) = Eρ∗(s)

[
d̃ Md̃(s) | s

]
= p̄m (ρa, s > sa) + p̄m (0, sb ≤ s ≤ sa) + p̄m (ρb, s < sb) .

The marginal value of wealth is

V ′ (s) = u′
(
µ (s, ρ∗(s))− 1

2
γσ2 (ρ∗(s))

)
= u′

(
µa(s)−

1

2
γσ2

a

)
1{s>sa}

+ u′
(
µb(s)−

1

2
γσ2

b

)
1{s<sb} + u′

(
d̄− 1

2
γσ2

d −
1

2

s2

γ

)
1{sb≤s≤sa}.

Ex-ante there is no ambiguity about the distribution for s̃ and thus the SDF is

Ms̃ =
V ′ (s̃)

E [V ′ (s̃)]
=

u′
(
µ (s, ρ∗(s))− 1

2
γσ2 (ρ∗(s))

)
u′
(
d̄− 1

2
γσ2

d

) (
1 + γσd√

2π
(ρb − ρa)

) .
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The ex-ante market portfolio price is therefore

p0,m = E [pm (s) Ms̃] = d̄− γσ2
d −

1√
2π

σd(ρb − ρa)
1 + γσd√

2π
(ρb − ρa)

.

The ex-post and ex-ante equilibrium price of stock i is

pi (s) = E
[
d̃iMd̃(s) | s̃ = s

]
= E

[(
βid̃+ ε̃i

)
Md̃(s) | s̃ = s

]
= βipm(s)

p0,i = E [pi (s) Ms̃] = βi E [pm (s) Ms̃] = βip0,m,

respectively, and, thus, the CAPM holds.

Proof of Proposition 4. We determine the equilibrium asset price of the market portfolio in

an economy with an MEU representative investor with CRRA risk preferences who receives

an ambiguous signal about the dividend growth rate d̃. Ambiguity about the joint-normal

distribution of s̃ and d̃ is given by the interval [ρa, ρb]. Moreover, for any ρ ∈ [ρa, ρb] the

residual variance of the dividend growth is σ2
d(1−ρ2) and the posterior mean of the aggregate

dividend, ed̃, is ed̄+ρσds. The ex-post stochastic discount factor (SDF) is

Md̃(s) =
u′
(
ed̃
)

Eρ∗(s)

[
u′
(
ed̃
)
| s̃ = s

] , where, u′(w) = w−γ, γ > 0,
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and ρ∗(s) minimizes utility from consuming the aggregate dividend ed̃ in equilibrium,

ρ∗(s) = argmin
ρ∈[ρa,ρb]

Eρ

[
u
(
ed̃
)
| s̃ = s

]
=



ρa if s > −γσdρa

− s
γσd

if − γσdρb ≤ s ≤ −γσdρa

ρb if s < −γσdρb.

The ex-post price of the market portfolio is

p(s) = e−γσ
2
d(1−(ρ∗(s))2)Eρ∗(s)

[
ed̃ | s̃ = s

]
.

Hence, plugging in for ρ∗(s) lead to the expression in (23) for the equilibrium price. Moreover,

the equilibrium price does not depend on news because

p(s) = e−γσ
2
dE
[
ed̃
]

∀ s ∈ [−γσdρb,−γσdρa].

Hence, the size of the signal region for which the stock price does not react to news is

γσd(ρb − ρa). Moreover, s̃ ∼ N(0, 1), so the probability of the equilibrium price exhibiting

information inertia conditional on s̃ ≤ 0 is as given in (24). To prove the first comparative

static results we show that the first derivative of Πp w.r.t. ∆ρ is strictly positive if ∆ρ > 0

and it vanishes if ∆ρ = 0. Specifically, ∂Πp(·,·,∆ρ)

∂∆ρ
= 2γσd [φ(−γσdρa) + φ(−γσdρb)] ≥ 0.

To prove the second comparative static result, we compute the first and second derivative

of Πp w.r.t. γσd. Specifically, ∂Πp(γσd,·,·)
∂γσd

= 2 (φ(−γσdρb)ρb − φ(−γσdρa)ρa) and d2Π(γσd,·,·)
d(γσd)2

=

2γσd (φ(−γσdρa)ρ3
a − φ(−γσdρb)ρ3

b). If γσd > 0, then the second derivative is always negative
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and, the first derivative vanishes if γ̂σd =

√
1
2

ln
(

2 ln (ρa/ρb)

(ρ2a−ρ2b)

)
. The probability Πp is zero if

γσd = 0 because in this case there is no inaction region and it is zero if γσd approaches

infinity because limx→−∞Φ(x) = 0. Hence, γ̂σd is the unique maximizer of Πp.

Proof of Theorem 3. The proof proceeds similarly to that of Theorem 2 and is provided in

the Internet Appendix for completeness.

Table I
Information Inertia of Optimal Portfolios.

This table shows the probability of information inertia for risky long positions conditional
on a bad news surprise for different ambiguity (α), explanatory power of the PD-ratio (ρ̂2),
and unconditional Sharpe ratios (λd). The size of the data sample is fixed at T = 84. The
PD-ratio is always statistically significant because the confidence interval that represents
ambiguity never contains zero and, thus, ρa > 0 for all α ∈ {0.75, 0.9, 0.95, 0.99}.

Sharpe Ratio (λd) Sharpe Ratio (λd)
0.25 0.30 0.35 0.40 0.50 0.25 0.30 0.35 0.40 0.50

ρ̂2 (α = 0.99) (α = 0.95)
9% 10.15% 12.16% 14.16% 16.15% 20.09% 7.79% 9.34% 10.87% 12.40% 15.43%
16% 9.40% 11.26% 13.09% 14.91% 18.49% 7.20% 8.62% 10.03% 11.42% 14.17%
25% 8.43% 10.08% 11.71% 13.32% 16.45% 6.44% 7.70% 8.94% 10.17% 12.57%
ρ̂2 (α = 0.90) (α = 0.75)
9% 6.56% 7.86% 9.16% 10.45% 13.00% 4.61% 5.52% 6.43% 7.34% 9.14%
16% 6.06% 7.25% 8.44% 9.61% 11.93% 4.25% 5.09% 5.92% 6.74% 8.37%
25% 5.41% 6.47% 7.52% 8.55% 10.56% 3.79% 4.53% 5.26% 5.99% 7.40%
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Figure 1. Information Inertia for the Risk-free and Risky Portfolio. The graph shows
the optimal asset demand as a function of the signal for an MEU investor (black solid line), for an
SEU investor who underestimates the informativeness of the signal (ρa, blue dashed circle line), for
an SEU investor who correctly estimates the informativeness of the signal (ρ̂, purple dotted plus
line), for an SEU investor who overestimates the informativeness of the signal (ρb, red chain-dotted
square line), and for an SEU investor who does not receive the signal (green dotted cross line).
There is a range of signals for which a risky and the risk-free portfolio do not react to signals that
convey news that is worse than expected. The parameters are d̄ = 100, p = 95, σ2

d = 20, ρaσd = 2,
ρ̂σd = 3, ρbσd = 4, and γ = 1.
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Figure 2. Information Inertia for the Risky Portfolio – the Mechanism. The left graph
shows the investors’ perceived (log of the) conditional Sharpe ratio and the right graph shows the
investors’ perceived (log of the) conditional volatility as a function of the signal. The blue dashed
circle line represents an SEU investor who underestimates the informativeness of the signal (ρa), the
dotted purple lines represent SEU investors with different beliefs ρ ∈ (ρa, ρb), the red chain-dotted
square line represents an SEU investor who overestimates the informativeness of the signal (ρb), and
the black solid line represents the MEU investor. There is a range of signals for which the Sharpe
rate and the volatility change at the same rate leading to no change in the demand for the asset and
thus local information inertia for risky portfolios. The parameters are d̄ = 100, p = 95, σ2

d = 20,
ρaσd = 2, ρbσd = 4, and γ = 1.
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Figure 3. Informational Inefficiency. The graph shows the equilibrium price of the market
portfolio as a function of a signal about the future aggregate dividend. The blue dashed circle
line represents an economy with an SEU-RI who underestimates the informativeness of the signal,
the dotted purple plus line represents an economy with a SEU-RI who correctly estimates the
informativeness of the signal, the red chain-dotted square line represents an economy with an SEU-
RI who overestimates the informativeness of the signal, and the black solid line represents an
economy with an MEU-RI. There is a range of signals for which the equilibrium price does not react
(black solid line) to changes in the signal leading to an informational inefficiency. The parameters
are d̄ = 100, σd = 5, ρa = 0.2, ρ̂ = (ρa + ρb)/2 = 0.4, ρb = 0.6, and γ = 1.
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Ambiguity Model with CRRA Preferences

2.5%
5%
7.5%
10%

Table 2: Information Inertia of Equilibrium Price

This table shows the probability of informational inefficiency conditional on a bad
news surprise for different ambiguity aversion (↵), explanatory power of the excess
return predictability regressions (⇢̂2), and unconditional risk premium (��2

d). The
size of the data sample is fixed at T = 84.

Risk Premium (��2
d) Risk Premium (��2

d)
3% 4% 5% 7.5% 10% 3% 4% 5% 7.5% 10%

⇢̂2 (↵ = 0.99) (↵ = 0.95)
9% 12.17% 16.17% 20.12% 29.73% 38.81% 9.34% 12.41% 15.45% 22.83% 29.82%
16% 11.27% 14.94% 18.54% 27.14% 34.99% 8.62% 11.44% 14.19% 20.77% 26.76%
25% 10.10% 13.35% 16.51% 23.88% 30.27% 7.70% 10.19% 12.59% 18.20% 23.03%
⇢̂2 (↵ = 0.90) (↵ = 0.75)
9% 7.86% 10.45% 13.01% 19.23% 25.13% 5.52% 7.34% 9.14% 13.51% 17.66%
16% 7.25% 9.62% 11.94% 17.47% 22.51 % 5.09% 6.75% 8.37% 12.25% 15.78%
25% 6.47% 8.56% 10.58% 15.28% 19.32% 4.53% 5.99% 7.41% 10.69% 13.51%

Table 3: Information Inertia of Equilibrium Price

This table shows the probability of informational inefficiency conditional on
a bad news surprise for different ambiguity aversion (↵), explanatory power
of the excess return predictability regressions (⇢̂2), and unconditional risk
premium (��2

d). The size of the data sample is fixed at T = 84.

Risk Premium (��2
d)

2.5% 5% 7.5% 10%
⇢̂2 (↵ = 0.99)
9% 8.47% 16.81% 24.92% 32.68%
16% 7.85% 15.52% 22.83% 29.64%
25% 7.04% 13.85% 20.19% 25.87%
⇢̂2 (↵ = 0.95)
9% 6.50% 12.91% 19.15% 25.15%
16% 6.01% 11.89% 17.50% 22.75%
25% 5.38% 10.58% 15.43% 19.78%
⇢̂2 (↵ = 0.90)
9% 5.47% 10.88% 16.14% 21.20%
16% 5.06% 10.00% 14.73% 19.15%
25% 4.52% 8.89% 12.97% 16.64%
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27Figure 4. Informational Inefficiency – Quantitative Importance. The figure shows the
equilibrium price as a function of a signal with an average informativeness about dividend growth
of ρ̂2 = 16% and ambiguity α = 0.99. The unconditional risk premium is ranging from 2.5% to 10%.
There is a range of PD-ratios for which the equilibrium price does not depend on the PD-ratio, so
the dividend information conveyed by the PD-ratio is not efficiently incorporated into the price.
The table shows the probability of obtaining an informational inefficiency conditional on a bad news
surprise for different ambiguity (α), average informativeness (ρ̂2), and unconditional risk premiums
(γσ2

d). The severity of this informational inefficiency increases in ambiguity and risk. The economy
consists of an ambiguity averse RI with CRRA utility and the expected rate of dividend growth
is 2% and the dividend growth volatility is 12%. The PD-ratio is always statistically significant
because the confidence interval that represents ambiguity never contains zero, so ρa > 0 for all
α ∈ {0.9, 0.95, 0.99}.
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Figure 5. News Momentum. Both graphs show the slope of a news momentum regression
as a function of the stock market risk premium. The left graph shows that excess stock market
returns underreact to news about the market portfolio (e.g. macroeconomic news) and the resulting
positive slope coefficient increases in the stock market risk premium measured by γσ2

d, ambiguity
measured by, α, and the average informativeness of the signal measured by, ρ̂. The right graph
shows that risk adjusted stock returns underreact to news about a firm (e.g. earnings news) and
the resulting positive slope coefficient increases in the stock market risk premium measured by γσ2

d

and is non-monotonic in ω which measures how much of the positive correlation between the firm’s
dividend and the signal is due to the systematic cash flow component. The cash flow beta of the
asset shown in the right graph is β1 = 1.5 and the market explains 25% of the variation in the assets
return. Similar to the left graph, the slope on the right graph would also increase in ambiguity and
the average informativeness of the signal.
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Figure 6. Robustness. The left graph shows the equilibrium price as a function of the signal and
the right graph shows the slope coefficients from a regression of excess returns on a constant and
the signal. The blue-dashed circle line and black solid line verify that there is a range of signals for
which the equilibrium price does not react in the CRRA/log-normal and the CARA/normal model,
respectively. Deviating from these models by considering (i) different joint distributions of asset
payoffs and signals, (ii) economies populated with ambiguity averse and standard expected utility
maximizers, and (iii) other preference models that allow for a distinction between ambiguity and
ambiguity aversion leads to low sensitivity to news instead of information inertia. The economic
significance of the news momentum drift is of similar magnitude in all cases.
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We present proofs and details not included in the main paper in the following order.

(i) In Section I, we provide details for the optimal demand of an MEU investor. Specif-

ically, we state and prove a result of independent interest (Theorem IA.1) which de-

termines the MEU optimal demand as a function of price. We also provide a proof for

the case of a negative Sharpe ratio in Theorem 1 (main paper), which is analogous to

the case of a positive Sharpe ratio and, thus, was omitted from the main paper to save

space.

(ii) In Section II, we discuss the recursive approach developed in Epstein and Schneider

(2003) to ensure dynamic consistency of our two-period learning model under ambiguity

that we use in Section III (main paper) to derive equilibrium asset prices before and

after receiving a signal about future asset payo�s.

(iii) In Section III, we determine the price of the market portfolio in equilibrium when the

economy is populated by investors who all receive the same signal about fundamentals

but di�er with respect to risk aversion and ambiguity. In this case, there does not exist

a representative investor. Moreover, we also prove the existence of a representative

investor if investors have di�erent risk aversion but the same ambiguity.

(iv) In Section IV, we provide the proof for Theorem 3 (main paper) where we derive

equilibrium asset prices when an investor receives ambiguous news about the future

payo� of a �rm. This model is more general because it allows the signal to be correlated

with the systematic and idiosyncratic component of an asset but the proof is similar

to that of Theorem 2 (main paper), and hence was omitted to save space.
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(v) In Section V we discuss the implications on portfolio choice and equilibrium prices of

two leading models that distinguish between ambiguity and ambiguity aversion � (i)

the non-smooth Gajdos, Hayashi, Tallon, and Vergnaud (2008) model (Section A) and

the smooth Klibano�, Marinacci, and Mukerji (2005) model (Section B).

(vi) In Section VI, we discuss the skew normal distribution, which is used in the Section

IV (Robustness) of the main paper to demonstrate the robustness of our main results.
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I. Optimal Demand

We �rst state and prove a result (Theorem IA.1) showing the MEU optimal portfolio as a

function of price and then provide a proof for Theorem 1 (main paper) which covers all three

cases of a positive, negative, and zero Sharpe ratio.

THEOREM IA.1 (Optimal Demand). Optimal demand at price p for an investor with

risk aversion γ and ambiguity described by [ρa, ρb], who has recieved signal s is

θ(s, p) =



θ(s, ρa, p) p ≤ p1(s) ≡ µ(s, ρa)− γσ2(ρa) max
(
θ̂a, 0

)
max

(
θ(s, 0, p), 0

)
p1(s) < p ≤ p2(s) ≡ µ(s, ρb)− γσ2(ρb) max

(
θ̂b, 0

)
θ(s, ρb, p) p2(s) < p ≤ p3(s) ≡ µ(s, ρb)− γσ2(ρb) min

(
θ̂b, 0

)
min

(
θ(s, 0, p), 0

)
p3(s) < p ≤ p4(s) ≡ µ(s, ρa)− γσ2(ρa) min

(
θ̂a, 0

)
θ(s, ρa, p) p > p4(s),

(IA.1)

where µ(s, ρ) = d̄+ ρσds and σ2(ρ) ≡ σ2
d(1− ρ2).

Proof of Theorem IA.1. Consider three cases: (i) s = 0, (ii) s > 0, and s < 0. For exposi-

tional clarity, we make the dependence on p and s explicit.

(i) s = 0 ⇔ θ̂a = θ̂b = 0, so it follows from Proposition 5 (main paper) that θ(s, p) =

θ(s, ρa, p) for all p ∈ R.

(ii) s > 0⇔ θ̂a < θ̂b < 0. Consider �ve sub-cases: (a) p ≤ p1 = µ(s, ρa), (b) p1 < p ≤ p2 =

µ(s, ρb), (c) p2 < p ≤ p3 = µ(s, ρb)− γσ2(ρb)θ̂b, (d) p3 < p ≤ p4 = µ(s, ρa)− γσ2(ρa)θ̂a,

and (e) p4 < p.
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(ii)(a) Suppose p ≤ p1. We show that θ(s, p) = θ(s, ρa, p). First, note that

θ(s, ρa, p) =
µ(s, ρa)− p
γσ2(ρa)

≥ µ(s, ρa)− p1

γσ2(ρa)
= 0. (IA.2)

Moreover, for any θ > 0, CE(θ) = CE(θ, ρa) from Proposition 5 (main paper)

Thus, since CE(θ) is strictly concave, θ(s, ρa, p) is the local and global maximizer

of CE(θ) for all p ≤ p1.

(ii)(b) Suppose p1 < p ≤ p2. We show that θ(s, p) = 0. First, note that since ρaσd > 0,

θ(s, 0, p) =
d̄− p
γσ2

d

<
d̄− p1

γσ2
d

≤ µ(s, ρa)− p1

γσ2
d

= 0. (IA.3)

Since CE(θ) is strictly concave, it su�ces to show that θ = 0 is a local maximizer.

Given Proposition 5 (main paper) there exists ε > 0 such that

CE(θ) =


CE(θ, ρb) if − ε < θ ≤ 0

CE(θ, ρa) if 0 ≤ θ < ε.

(IA.4)

For −ε < θ ≤ 0,

CE(0)− CE(θ, ρb) = θ
(
p− d̄− ρbσds

)
+

1

2
γ(σ2

d(1− ρ2
b)) ≥ 0 (IA.5)

when p ≤ p2.
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For 0 ≤ θ < ε,

CE(0)− CE(θ, ρa) = θ
(
p− d̄− ρaσds

)
+

1

2
γ(σ2

d(1− ρ2
a)) ≥ 0 (IA.6)

when p1 ≤ p. Combining the above, shows that θ = 0 is a local and hence global

maximizer of CE(θ) for p1 < p ≤ p2.

(ii)(c) Suppose p2 < p ≤ p3. We show that θ(s, p) = θ(s, ρb, p). First, note that

θ(s, ρb, p) =
µ(s, ρb)− p
γσ2(ρb)

<
µ(s, ρb)− p2

γσ2(ρb)
= 0 (IA.7)

when p2 < p and that

θ(s, ρb, p) =
µ(s, ρb)− p
γσ2(ρb)

≥ µ(s, ρb)− p3

γσ2(ρb)
= θ̂b (IA.8)

when p ≤ p3.

From Proposition 5 (main paper) , CE(θ) = CE(θ, ρb) when θ̂b < θ ≤ 0. Thus,

given strict concavity of CE(θ), θ(s, ρb, p) is a local and hence global maximizer

of CE(θ) when p2 < p ≤ p3.

(ii)(d) Suppose p3 < p ≤ p4. We show that θ(s, p) = θ(s, 0, p). First, note that since

ρaσd > 0,

θ(s, 0, p) =
d̄− p
γσ2

d

<
d̄− p3

γσ2
d

<
d̄− p2

γσ2
d

≤ 0. (IA.9)

Also, p3 = µ(s, ρb) − γσ2(ρb)θ̂b = d̄ − γσ2
dθ̂b and p4 = µ(s, ρa) − γσ2(ρa)θ̂a =
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d̄− γσ2
dθ̂a. Hence,

θ̂a ≤ θ(s, 0) < θ̂b (IA.10)

when p3 < p ≤ p4.

From Proposition 5 (main paper) , CE(θ) = CE(θ, 0)− s2

2γ
when θ̂a < θ ≤ θ̂b < 0.

Thus, since CE(θ) is strictly concave, θ(s, 0, p) is the local and global maximizer

of CE(θ) for p3 < p ≤ p4.

(ii)(e) Suppose p4 < p. We show that θ(s, p) = θ(s, ρa, p). First, note that

θ(s, ρa, p) =
µ(s, ρa)− p
γσ2(ρa)

<
µ(s, ρa)− p4

γσ2(ρa)
≤ θ̂a = 0. (IA.11)

Moreover, for any θ < θ̂a, CE(θ) = CE(θ, ρa) from Proposition 5 (main paper)

Thus, since CE(θ) is concave, θ(s, ρa, p) is the local and global maximizer of CE(θ)

for all p > p4.

Using the above, we get

θ(s, p) =



θ(s, ρa, p) if p ≤ p1

0 if p1 < p ≤ p2

θ(s, ρb, p) if p2 < p ≤ p3

θ(s, 0, p) if p3 < p ≤ p4

θ(s, ρa, p) if p4 < p.

(IA.12)

as desired.

7



(iii) When s < 0 ⇔ θ̂a > θ̂b > 0, then it follows from Proposition 5 (main paper) that

p1 = µ(s, ρa)−γσ2(ρa)θ̂a, p2 = µ(s, ρb)−γσ2(ρb)θ̂b, p3 = µ(s, ρb), and (d) p4 = µ(s, ρa).

Thus, using similar reasoning as above, we get

θ(s, p) =



θ(s, ρa, p) if p ≤ p1

θ(s, 0, p) if p1 < p ≤ p2

θ(s, ρb, p) if p2 < p ≤ p3

0 if p3 < p ≤ p4

θ(s, ρa, p) if p4 < p.

(IA.13)

as desired.

Combining the three cases above provides the desired expression for θ(s, p).

Proof of Theorem 1 (main paper). Consider three cases: (i) λ = 0, (ii) λ > 0, and (iii)

λ < 0 and the expression for demand in Theorem IA.1. We omit the dependence on p for

expositional ease.

(i) Suppose λ = 0. Then s1 = s2 = s3 = s4 = 0 and from Theorem IA.1, θ(s) = θ(s, ρa) if

p ≤ p1 ⇔ s ≥ 0 and if p > p4 ⇔ s < 0.

(ii) λ > 0. Then s1 = −ρaλ > s2 = −ρbλ > s3 = − λ
ρb
> s4 = − λ

ρa
.
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Then from Theorem IA.1 the following holds.

θ(s) =



θ(s, ρa) if p ≤ p1 ⇔ s ≥ s1

θ(s, 0) if p1 < p ≤ p2 ⇔ s1 > s ≥ s2

θ(s, ρb) if p2 < p ≤ p3 ⇔ s2 > s ≥ s3

0 if p3 < p ≤ p4 ⇔ s4 ≤ s < s3

θ(s, ρa) if p > p4 ⇔ s < s4.

(IA.14)

(iii) λ < 0. Then s1 = − λ
ρa
> s2 = − λ

ρb
> s3 = −ρbλ > s4 = −ρaλ.

Then from Theorem IA.1 the following holds.

θ(s) =



θ(s, ρa) if p ≤ p1 ⇔ s ≥ s1

0 if p1 < p ≤ p2 ⇔ s1 > s ≥ s2

θ(s, ρb) if p2 < p ≤ p3 ⇔ s2 > s ≥ s3

θ(s, 0) if p3 < p ≤ p4 ⇔ s4 ≤ s < s3

θ(s, ρa) if p > p4 ⇔ s < s4.

(IA.15)

Combining the above cases provides the desired expression.
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II. Dynamic Consistency

Epstein and Schneider (2003) axiomatize an intertemporal version of multiple-priors utility

that is dynamically consistent. In order to do that they modify the preference model at

date zero such that the (i) conditional preference at each decision node satisfy the Gilboa

and Schmeidler (1989) axioms1 and (ii) the process of conditional preferences is dynamically

consistent. Hence, instead of choosing a parameter from the ambiguity interval (the set of

parameters that describe the decisions makers aversion to ambiguity) to minimize conditional

one-step ahead expected utility at future decision nodes the decision maker chooses a function

for each future decision node that maps the possible realizations at the decision node into

the ambiguity interval and minimizes the conditional one-step ahead expected utility at this

decision node. Therefore, date zero preferences are de�ned over all signal and dividend

realizations and thus have to satisfy the so called rectangularity condition of Epstein and

Schneider (2003).2 In a nutshell, if the backward induction solution does not coincide with

the forward planning solution (and thus the model is not dynamically consistent), then date

zero-preferences are modi�ed such that the forward planning solution coincides with the

backward induction solution. Hence, the backward induction ambiguity model represents

investors preferences and the modi�ed forward planning model is another way to represent

1Beliefs at each decision node are updated prior by prior using Bayes rule to determine the conditional

one-step ahead expected utility at each decision node.

2The dimension of the set of beliefs that describes the aversion to ambiguity at date zero is equal to the

number of future decision nodes.
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them.3

Our information inertia results do not rely on dynamics and can be expressed clearly in

the model described in Sections II-III (main paper). Hence we do not formulate a dynamic

model there. However, if we were to consider a dynamic setting and include a trading date

0 before the signal is received at date 1, then we can take the backward induction solution

and write down the forward planning model to match it. The marginal distribution of the

signal is normal with zero mean and unit variance and the conditional distribution of the

dividend given the signal is normal with mean d̄+σdρs and variance σ2
d(1− ρ2). There is no

ambiguity about the marginal distribution of the signal and thus we only need to account

for ambiguity after observing the signal. Hence, in the modi�ed forward planning model,

the decision maker at date zero uses the marginal distribution of the signal and chooses

a function ρ(s) from all functions ρ : R → [ρa, ρb] that describes the set of conditional

distributions of the dividend given the signal s.4

III. Investor Heterogeneity

In this section, we determine the price of the market portfolio in equilibrium when the

economy is populated by investors who all receive the same signal about fundamentals but

3As noted by Epstein and Schneider (2003) on page 16: �there is an important conceptual distinction

between the set of probability laws that the decision maker views as possible ... and the set of priors ...

that is part of the representation of preference. Only the latter includes elements of reasoning or processing,

backward induction for example, on the part of the decision-maker."

4The analysis is very similar to the dynamic extension of the Epstein and Schneider (2008) model which

is described in Back (2010) on page 430 and 431.
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may di�er with respect to risk and ambiguity aversion. We show that there is a range of

bad signals for which investors' long position in the market portfolio does not depend on

the signal and thus the equilibrium price of the market portfolio does not depend on these

signals.

Suppose there are H investors who all receive the signal s̃ about the future value of

the dividend d̃. Investors may di�er with respect to their initial wealth, and their aversion

to risk and ambiguity. Let w0h denote investor h's initial wealth, γh > 0 her risk aversion

coe�cient, and [ρah, ρbh] the interval that represents her ambiguity and ambiguity aversion

with 0 < ρah ≤ ρbh < 1 ∀ h ∈ {1, . . . , H}. As in the main paper, we refer to the interval as

representing the investor's ambiguity.

An equilibrium in this economy is de�ned as follows:

DEFINITION IA.1 (Equilibrium). The signal-to-price map p(s) is an equilibrium if and

only if (i) each investor chooses a portfolio θh to maximize

min
ρh∈[ρah,ρbh]

Eρh

[
uh

(
w0h +

(
d̃− p(s)

)
θh

)
| s̃ = s

]
, ∀s ∈ R (IA.16)

and (ii) markets clear, that is,
∑H

h=1 θh = 1 and investors consume the liquidating dividend

d̃ at date 1.
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A. Homogeneous Ambiguity Aversion

We know that if all investors are standard expected utility maximizers, then there exists a

representative investor (SEU-RI) with these preferences.5 We show in the next proposition

that this is still true when all investors have the same ambiguity and we determine the utility

of the ambiguity averse representative investor (MEU-RI) in equilibrium.6

PROPOSITION IA.1 (MEU-RI and Equilibrium Utility). Assume that all investors have

the same ambiguity [ρa, ρb]. Then there exists a representative investor with initial wealth

w0 =
∑H

h=1w0h and aggregate risk tolerance 1/γ ≡
∑H

h=1 1/γh. Moreover, the utility of the

MEU-RI in equilibrium is

min
ρ∈[ρa,ρb]

Eρ

[
u
(
d̃
)
| s̃ = s

]
= u

(
µ (s, ρ∗(s))− 1

2
γσ2 (ρ∗(s))

)
, (IA.17)

where

ρ∗(s) =


ρa if s ≥ −γσdρa

− s
γσd

if −γσdρb < s < −γσdρa

ρb if s ≤ −γσdρb.

(IA.18)

For the remainder of this subsection we consider a representative investor (MEU-RI)

5See Chapter 7 in Back (2010).

6Wakai (2007) and Illeditsch (2011) show that there exists a representative investor when investors have

the same ambiguity but di�er w.r.t. their CARA coe�cient.
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with initial wealth w0, risk aversion γ, and ambiguity [ρa, ρb].
7

Her equilibrium utility is determined by minimizing the equilibrium utility of an SEU-RI

over her belief ρ. The utility of the SEU-RI is strictly increasing in the posterior mean of the

dividend and strictly decreasing in the residual variance of the dividend. Hence, the belief ρ

that minimizes the SEU-RI's utility depends on the nature of the news.

Suppose the signal conveys bad news (s < 0), then the worst case for the posterior mean

µ(s, ρ) is a high correlation because in this case the investor signi�cantly revises the value

of the dividend downwards whereas the worst case for the residual variance σ2(ρ) is a low

correlation because in this case there is less risk resolved by the signal. If the signal conveys

very bad news (s ≤ −γσdρb), then the mean dominates and the MEU-RI investor behaves

like an SEU-RI investor with belief ρb. If the signal conveys moderately bad or good news

(s ≥ −γσdρa), then the MEU-RI investor behaves like an SEU-RI investor with belief ρa.

There is a range of bad signal values (−γσdρb < s < −γσdρa) for which neither the posterior

mean nor the residual variance dominates and utility is minimized in the interior.

The equilibrium price when the representative investor is an SEU investor with belief ρ

is

p̄(s, ρ) = Eρ

[
d̃ | s̃ = s

]
− γVarρ

[
d̃ | s̃ = s

]
= µ(s, ρ)− γσ2(ρ). (IA.19)

The price of the asset is strictly increasing in the signal and hence it fully incorporates

all available information. This is no longer true when the representative investor is averse

7We discuss the properties of the equilibrium price when investors have di�erent ambiguity in the next

subsection.
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to ambiguity as the next theorem shows.

THEOREM IA.2 (Equilibrium Price). Consider an economy with an MEU-RI with risk

aversion γ and ambiguity [ρa, ρb] who receives the signal s. There is a unique equilibrium

price,

p(s) =


Eρa

[
d̃ | s̃ = s

]
− γVarρa

[
d̃ | s̃ = s

]
if s > −γσdρa

E
[
d̃
]
− γVar

[
d̃
]

if −γσdρb ≤ s ≤ −γσdρa

Eρb

[
d̃ | s̃ = s

]
− γVarρb

[
d̃ | s̃ = s

]
if s < −γσdρb.

(IA.20)

Moreover, p(s) = p̄ (s, ρ∗(s)) where p̄ (·) is given in equation (IA.19) and ρ∗(s) is given in

equation (IA.18).

The left graph of Figure IA.1 shows the equilibrium price as a function of the signal.

There is a range of signals that convey bad news for which the price does not depend on the

signal even though the utility of the RI is sensitive to changes in these signals.

Why does the price not always incorporate signals that convey bad news? We know from

Theorem IA.2 that the equilibrium price p(s) coincides with the equilibrium price p̄(s, ρ∗(s))

in an economy with an SEU-RI whose belief about the correlation minimizes her utility from

consuming the dividend.8 Consider a two standard deviation bad news surprise (s = −2).

In this case the equilibrium price is p = 75 when there is ambiguity aversion and when there

is no ambiguity aversion βm = 2 (see left graph of Figure IA.1). If the signal decreases, then

the SEU-RI requires a lower price as compensation for the lower posterior mean in order

8We know from the previous section that an MEU investor behaves di�erently from an SEU investor

only if she holds the risk-free portfolio which is not an equilibrium allocation.
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to hold the market portfolio. However, the MEU-RI revises the worst case scenario belief

about ρ upwards if the signal drops. The price does not change because the lower posterior

mean that would require a drop in the equilibrium price is exactly o�set by the lower risk

premium that would require an increase in the price.

Formally,

dp(s) = dµ(s, ρ∗(s))− γdσ2(ρ∗(s)) = 0, ∀ s ∈ (−γσdρb,−γσdρa). (IA.21)

The right graph of Figure IA.1 shows the posterior mean and residual variance perceived

by the MEU-RI as a function of the signal. The graph shows that there is a range of signals

for which both the mean and variance are strictly increasing in the signal. Moreover, the

posterior mean increases at the same rate as the residual variance increases in this signal

range. Hence, any change in the price due to changes in the posterior mean is exactly o�set

by a change in the residual variance.

B. Heterogeneous Ambiguity Aversion

We show in the next proposition that equilibrium prices still fail to incorporate all available

public information when investors are heterogeneous in their ambiguity.9

PROPOSITION IA.2 (Information Inertia). Let 1/γ ≡
∑H

h=1 1/γh denote aggregate risk

9We do not report the equilibrium price outside of the inaction region but provide numerical examples

in Figure IA.2.
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tolerance and let [ρa, ρb] ≡
⋂H
h=1[ρah, ρbh] 6= ∅. Then the equilibrium price is

p(s) = E
[
d̃
]
− γVar

[
d̃
]

∀ s ∈ [−γσdρb,−γσdρa] . (IA.22)

To gain intuition consider an economy populated by two MEU investors with ambiguity

aversion [ρa1, ρb1] = [0.1, 0.4] and [ρa2, ρb2] = [0.2, 0.6], respectively. The left graph of Figure

IA.2 shows the equilibrium price and the middle graph shows their equilibrium portfolios

as a function of the signal. Consider the �ve di�erent signal regions (i) (−∞,−3.15], (ii)

[−3.15,−2], (iii) [−2,−1], (iv) [−1,−0.5], and (v) [−0.5,∞). Both MEU investors behave

like SEU investors with beliefs ρb1 = 0.4 and ρb2 = 0.6 in the �rst signal range and thus the

equilibrium price depends on these signals. The equilibrium portfolio of the second MEU

investor (red dashed line) is increasing in the signal because her worst case scenario belief

(ρb2 = 0.6) is larger than the worst case scenario belief of the second MEU investor (blue

chain-dotted line) and thus she puts more weight on the signal. The analysis is similar for

the �fth signal range because with good news the worst case scenario for both investors is a

low ρ.

For the other three ranges of signals there is at least one investor who ignores the signal

and uses her prior when choosing her optimal portfolio. In other words, there is at least one

investor who behaves as if the signal is uninformative even though her utility is negatively

a�ected by it. Consider the second signal range. The �rst MEU investor still behaves like

an SEU investor with belief ρb1 = 0.4 but the second MEU investor does not rely on the

signal. Hence her demand, which is increasing for the �rst range of signals, is now decreasing
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because neither mean nor variance depends on the signal and the equilibrium price increases

with it. The equilibrium price still depends on the signals in the second region because of

the �rst investor but not as much as for the �rst range of signals. Both investors do not rely

on the signals in the third region and hence the equilibrium price does not depend on these

signals. The intuition for the fourth signal range is similar to the second. In this case the

�rst investor does not rely on the signal when choosing her optimal portfolio and hence in

equilibrium her asset demand decreases with the signal.

There is no information inertia in optimal portfolios of SEU investors and hence the

equilibrium price always depends on the signal in their presence. But how much do SEU

investors move the price? To answer this question, we consider a unit mass of investors where

α denotes the fraction of MEU investors and 1 − α denotes the fraction of SEU investors.

The third graph of Figure IA.2 shows that when the fraction of MEU investors is su�ciently

large, then there are signal regions for which the equilibrium price shows lower sensitivity to

news than the price in an economy where the SEU-RI has the belief ρa.
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C. Proofs of Results

Proof of Proposition IA.1. Using θh(s, p) to denote the demand at price p for investor h who

recieves signal s, it follows from Theorem IA.1 that

θh(s, p) =



µ(s,ρa)−p
γhσ2(ρa)

p ≤ p1

max
(
d̄−p
γhσ

2
d
, 0
)

p1 < p ≤ p2

µ(s,ρb)−p
γhσ2(ρb)

p2 < p ≤ p3

min
(
d̄−p
γhσ

2
d
, 0
)

p3 < p ≤ p4

µ(s,ρa)−p
γhσ2(ρa)

p > p4,

(IA.23)

where p1, p2, p3, p4 are as in Theorem IA.1 due to homogeneous ambiguity aversion [ρa, ρb]

across investors.

Aggregating individual demands leads to aggregate demand,

θ(s, p) =
H∑
h=1

θh(s, p)



µ(s,ρa)−p
γσ2(ρa)

p ≤ p1

max
(
d̄−p
γσ2
d
, 0
)

p1 < p ≤ p2

µ(s,ρb)−p
γσ2(ρb)

p2 < p ≤ p3

min
(
d̄−p
γhσ

2
d
, 0
)

p3 < p ≤ p4

µ(s,ρa)−p
γσ2(ρa)

p > p4,

(IA.24)

with 1
γ

=
∑H

h=1
1
γh

risk tolerance, wealth w0 =
∑H

h=1w0h and ambiguity described by [ρa, ρb].

The representative investor holds the risky asset in equilibrium and consumes the divi-

dend. Thus, using CE(θ) and Proposition 1 (main paper) with θ(s, p) = 1 for the RI yields

19



(IA.17) as the representative investor utility in equilibrium. Since u′ > 0, the equilibrium

utility can be computed by solving

min
ρ∈[ρa,ρb]

µ(s, ρ)− 1

2
γσ2(ρ). (IA.25)

Since µ(s, ρ) − 1
2
γσ2(ρ) is strictly convex in ρ over [ρa, ρb], the following �rst order (Kuhn-

Tucker) condition is necessary and su�cient for the solution to the constrained minimization

problem.

0 ≤ ρ(s+ σsγ) (IA.26)

with equality if ρ ∈ (ρa, ρb). Solving this yields (IA.18) as desired.

Proof of Theorem IA.2. We make the dependence of demand on price p explicit for exposi-

tional clarity. Market clearing requires that θ(s, p) = 1 since there is one unit of the risky

asset in aggregate.

Consider three cases: (i) s > −γρaσd, (ii) −γρbσd ≤ s ≤ −γρaσd, and (iii) s < −γρbσd.

(i) Suppose s > −γρaσd. Then θ̂a < 1. We need to verify that markets clear when

p(s) = µ(s, ρa)− γσ2(ρa). From Theorem 1 (main paper), it follows that

θ(s, p) = θ(s, ρa, p) =
µ(s, ρa)− p(s)

γσ2(ρa)
= 1 (IA.27)
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if and only if

p(s) = µ(s, ρa)− γσ2(ρa) ≤ p1 = µ(s, ρa)− γσ2(ρa) max
{
θ̂a, 0

}
(IA.28)

or

p(s) = µ(s, ρa)− γσ2(ρa) > p4 = µ(s, ρa)− γσ2(ρa) min
{
θ̂a, 0

}
. (IA.29)

Since θ̂a < 1, p(s) ≤ p1 and the result follows.

(ii) Suppose −γρbσd ≤ s ≤ −γρaσd. Then θ̂b ≤ 1 ≤ θ̂a. We need to verify that markets

clear when p(s) = d̄− γσ2
d. From Theorem 1 (main paper) it follows that

θ(s, p) = θ(s, 0, p) =
d̄− p(s)
γσ2

d

= 1 (IA.30)

if and only if

p(s) = d̄− γσ2
d > p1 = µ(s, ρa)− γσ2(ρa) max

{
θ̂a, 0

}
(IA.31)

and

p(s) = d̄− γσ2
d ≤ p2 = µ(s, ρb)− γσ2(ρb) max

{
θ̂b, 0

}
. (IA.32)

Since θ̂a ≥ 1 and µ(s, ρa)− γσ2(ρa)θ̂a = d̄− γσ2
dθ̂a, we have p(s) > p1.

If θ̂b ≤ 0, then s ≥ 0. So, p(s) = d̄ − γσ2
d ≤ d̄ + ρbσds = µ(s, ρb) = p2. If 0 < θ̂b,

then since θ̂b ≤ 1 we p(s) = d̄ − γσ2
d ≤ d̄ − γσ2

dθ̂b = µ(s, ρb) − γσ2(ρb)θ̂b = p2. So,

p1 < p(s) ≤ p2
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(iii) Suppose s < −γρbσd. Then θ̂b > 1. We need to verify that markets clear when

p(s) = µ(s, ρb)− γσ2(ρb). From Theorem 1 (main paper), it follows that

θ(s, p) = θ(s, ρb, p) =
µ(s, ρb)− p(s)

γσ2(ρb)
= 1 (IA.33)

if and only if

p(s) = µ(s, ρb)− γσ2(ρb) > p2 = µ(s, ρb)− γσ2(ρb) max
{
θ̂b, 0

}
(IA.34)

and

p(s) = µ(s, ρb)− γσ2(ρb) ≤ p3 = µ(s, ρb)− γσ2(ρb) min
{
θ̂b, 0

}
. (IA.35)

Since θ̂b > 1, p2 < p(s) ≤ p3 and the result follows.

Combining the above cases provides the desired result.

Proof of Proposition IA.2. Using θh(s) to denote the demand for investor h, it follows from
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Theorem IA.1 that

θh(s, p) =



µ(s,ρah)−p
γhσ2(ρah)

p ≤ p1h ≡ µ(s, ρah)− γhσ2(ρah) max
(
θ̂ah, 0

)
max

(
d̄−p
γhσ

2
d
, 0
)

p1h < p ≤ p2h ≡ µ(s, ρbh)− γhσ2(ρbh) max
(
θ̂bh, 0

)
µbh−p

γhσ2(ρbh)
p2h < p ≤ p3h ≡ µ(s, ρbh)− γhσ2(ρbh) min

(
θ̂bh, 0

)
min

(
d̄−p
γhσ

2
d
, 0
)

p3h < p ≤ p4h ≡ µ(s, ρah)− γhσ2(ρah) min
(
θ̂bh, 0

)
µ(s,ρah)−p
γhσ2(ρah)

p > p4h,

(IA.36)

where θ̂ah ≡ −s/(γhρahσd) and θ̂bh ≡ −s/(γhρbhσd).

We �rst show that there exists an equilibrium. Individual demand given in equation

(IA.36) is continuous and non-increasing in p with lim
p→−∞

θh(s, p) =∞ and lim
p→∞

θh(s, p) = −∞

for all h ∈ {1, . . . , H}. Hence, aggregate demand θ(s, p) =
∑H

h=1 θh(s, p) is continuous and

non-increasing in p with lim
p→−∞

θ(s, p) = ∞ and lim
p→∞

θ(s, p) = −∞. Hence, there exists an

equilibrium because the market clearing condition θ(s, p)− 1 = 0 has always a solution.

We next determine the equilibrium stock price p(s) for all s ∈ [−γσdρb,−γσdρa]. By

assumption we have that ρa = max {ρa1, . . . , ρah} and ρb = min {ρb1, . . . , ρbh}. Hence, since

s < 0,

p1(s) ≡ max
h∈{1,...,H}

p1h(s) = max
h∈{1,...,H}

{
d̄+

σd
ρah

s

}
= d̄+

σd
ρa
s (IA.37)

p2(s) ≡ min
h∈{1,...,H}

p2h(s) = min
h∈{1,...,H}

{
d̄+

σd
ρbh

s

}
= d̄+

σd
ρb
s. (IA.38)

We have that ρb ≥ ρa and thus (i) [−γσdρb,−γσdρa] 6= ∅ and (ii) p2(s) ≥ p1(s) for all

s ∈ [−γσdρb,−γσdρa].
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It follows from equations (IA.36)-(IA.38) that

θh(s, p) =
d̄− p
γhσ2

d

∀ p1(s) ≤ p ≤ p2(s), and ∀h ∈ {1, . . . , H}. (IA.39)

Aggregating over all investors leads to

θ(s, p) =
H∑
h=1

θh(s, p) =
d̄− p
σ2
d

H∑
h=1

1

γh
=
d̄− p
γσ2

d

∀ p1(s) ≤ p ≤ p2(s).

Imposing the market clearing condition θ(s, p)=1 leads to the price p(s) = d̄ − γσ2
d.

Finally, the desired result follows from noting that p1(s) ≤ d̄ − γσ2
d ≤ p2(s) if and only if

−γσdρb ≤ s ≤ −γσdρa.

IV. Equilibrium Prices

In Section IV, we provide the proof for Theorem 3 (main paper) where we derive equilibrium

asset prices when an investor receives ambiguous news about the future payo� of a �rm.

This model is more general because it allows the signal to be correlated with the systematic

and idiosyncratic component of an asset but the proof is similar to that of Theorem 2 (main

paper), and hence was omitted to save space.

Proof of Theorem 3 (main paper). We solve for the prices by backward induction using the

24



SDF

Md̃(s) =
u′
(
d̃
)

Eρ∗(s)

[
u′
(
d̃
)
| s̃ = s

] , (IA.40)

where ρ∗(s) minimizes ex-post utility from consuming the aggregate dividend in equilibrium.

Using reasoning similar to that for Theorem 2 (main paper) yields that

ρ∗(s) =



ρa if s > −γ ω
β1
σ1ρa ≡ ŝa

− s
γσ1

ω
β1

if ŝb ≤ s ≤ ŝa

ρb if s < −γ ω
β1
σ1 ≡ ŝb

(IA.41)

Hence, the ex-post price of asset 1 is

p1 (s) = Eρ∗(s)

[
d̃1 Md̃(s) | s̃ = s

]
= p̄1 (ρa, s > sa) + p̄1 (0, sb ≤ s ≤ sa) + p̄1 (ρb, s < sb)

(IA.42)

and the ex-post market portfolio price is

pm (s) = Eρ∗(s)

[
d̃ Md̃(s) | s̃ = s

]
= p̄m (ρa, s > sa) + p̄m (0, sb ≤ s ≤ sa) + p̄m (ρb, s < sb)

(IA.43)

The individual ex-post stock prices for i 6= 1 are

pi(s) = Eρ∗(s)

[
(βid̃+ εi)Md̃(s) | s̃ = s

]
= βipm(s). (IA.44)
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The equilibrium value function is

V (s) = u

(
pm(s) +

1

2
γσ2

m (ρ∗(s))

)
= u

(
µm(s, ρa)−

1

2
γσ2

m(ρa)

)
1{s>sa} + u

(
µm(s, ρb)−

1

2
γσ2

m(ρb)

)
1{s<sb}

+ u

(
d̄− 1

2
γσ2

d −
1

2

s2

γ

)
1{sb≤s≤sa}

(IA.45)

where µm(s, ρ) = d̄+ ω
β1
σ1ρ and σ

2
m(ρ) = σ2

d −
(
ω
β1
σ1ρ
)2

.

Ex-ante there is no ambiguity about the distribution for s̃ and thus the SDF is

Ms̃ =
V ′ (s̃)

E [V ′ (s̃)]
, (IA.46)

where V ′(s) denotes the marginal value of wealth.

The ex-ante market portfolio price is therefore

p0,m = E [pm (s) Ms̃] = d̄− γσ2
d −

1√
2π

ω1

β1
σ1(ρb − ρa)

1 +
γ
ω1
β1
σ1

√
2π

(ρb − ρa)
(IA.47)

Similarly,

p0,1 = E [p1 (s) Ms̃] = β1(d̄− γσ2
d)−

1√
2π

σ1(ρb − ρa)

1 +
γ ω
β1
σ1

√
2π

(ρb − ρa)
(IA.48)

Finally, for all i 6= 1,

p0,i = E [pi (s) Ms̃] = βip0,m. (IA.49)
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V. Separating Ambiguity and Ambiguity Aversion

In this section, we discuss the implications on portfolio choice and equilibrium price of sep-

arating ambiguity and ambiguity aversion. We consider two well known models of decision-

making: (i) the non-smooth GHTV model (Gajdos, Hayashi, Tallon, and Vergnaud (2008))

and (ii) the smooth KMM (Klibano�, Marinacci, and Mukerji (2005)) model.

A. The GHTV Model

In this section, we study optimal portfolios and equilibrium stock prices when investors are

averse to ambiguity in the sense of Gajdos, Hayashi, Tallon, and Vergnaud (2008). This

preferences model, in short the GHTV model, allows for a distinction between ambiguity

and ambiguity aversion. We show that if investors are su�ciently ambiguity averse then

there is a range of good and bad signals for which risky portfolios is not very sensitive to

news. Moreover, there is a range of bad signals for which the price of the market portfolio

is not very sensitive to news if the representative investor is su�ciently ambiguity averse.10

Suppose there are two dates 0 and 1. Investors can invest in a risk-free asset and a risky

asset. Let p denote the price of the risky asset, d̃ the future value or dividend of the risky

10If we follow Bianchi and Tallon (2014) and consider a slightly modi�ed GHTV preference model, then all

the results in the paper go through if we change the interval [ρa, ρb] to [ραa , ρ
α
b ], where ρ

α
a = αρa+(1−α)ρS ,

ραb = αρb + (1 − α)ρS , and ρS = (ρa + ρb)/2. In this case the amount of ambiguity is measured by the

interval [ρa, ρb] and α measures the degree of ambiguity aversion.
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asset, and θ the number of shares invested in the risky asset. There is no consumption at

date zero. The risk-free asset is used as numeraire, so the risk-free rate is zero. Hence, future

wealth w̃ is given by

w̃ = w0 +
(
d̃− p

)
θ, (IA.50)

in which w0 denotes initial wealth.

Suppose investors receive a signal s̃ about the future value d̃ of the asset. The joint

distribution of d̃ and s̃ is normal:

 d̃

s̃

 ∼ N


 d̄

0

 ,

 σ2
d β

β 1


 , (IA.51)

where β = ρσd. Investors do not know the correlation between d̃ and s̃ and consider a

family of joint distributions described by ρ ∈ [ρa, ρb] with ρa > 0 and ρb < 1 when making

decisions.11

We follow Gilboa and Schmeidler (1993) and determine the family of conditional dividend

distributions given the signal by applying Bayes rule to each correlation. Hence, standard

normal-normal updating for each ρ ∈ [ρa, ρb] leads to

d̃ | s̃ = s ∼ Nρ

(
µ(s, ρ), σ2(ρ)

)
, (IA.52)

where µ(s, ρ) = d̄+ βs denotes the conditional mean and σ(ρ) = σd
√

1− ρ2 the conditional

11There is no ambiguity about the marginal distribution of the signal and hence there is no loss in

generality by normalizing the mean and the variance of the signal to zero and one, respectively.
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volatility of d̃ given s.

Suppose investors have CARA utility over future wealth w̃ (i.e. u(w̃) = −e−γw̃ with

γ > 0). The utility of a risk and ambiguity averse investors who holds θ shares of the risky

asset is

UGHTV(θ) = α min
ρ∈[ρa,ρb]

Eρ [u (w̃) | s̃ = s] + (1− α) EρS [u (w̃) | s̃ = s] , (IA.53)

where ρS = (ρa + ρb)/2. There are no closed form solutions for optimal demand and equilib-

rium price but it is straightforward to compute them numerically. Suppose the unconditional

Sharpe ratio of the asset is positive λd > 0. The left graph of Figure IA.3 shows that the

optimal portfolio does not react much to news if ambiguity aversion α is su�ciently high.

Suppose there is a representative investor who is maximizing utility given in equation (IA.53).

In equilibrium, the representative investor holds the stock and consumes the liquidating div-

idend d̃. The right graph of Figure IA.3 shows the equilibrium stock price as a function of

the signal for di�erent aversion to ambiguity α. The price reacts moderately to signals that

convey good and moderately bad news and it reacts strongly to signals that convey very bad

news. There is a range of signals that convey bad news for which the price does not react

much to news if α is su�ciently large.

B. The KMM Model

We study in this section the implications for portfolio choice and asset pricing when investors

face Bayesian model or parameter uncertainty and we distinguish between ambiguity and

29



aversion to ambiguity by considering the smooth ambiguity model axiomatized in Klibano�,

Marinacci, and Mukerji (2005). We provide characterisations of the optimal portfolio (Propo-

sition IA.3) and equilibrium price (Proposition IA.4) below and illustrate that there are signal

regions for which portfolios and prices show lower sensitivity to news than an SEU investor

with belief ρa, if aversion to ambiguity is su�ciently high. Consider the model described in

Section I (main paper) and assume that the correlation between the signal and the dividend

is random. Let P denote the prior distribution for ρ̃ with support [ρa, ρb] ⊂ (0, 1).12 The

joint distribution of d̃ and s̃ conditional on knowing the correlation ρ is normal and given in

equation (2) (main paper). Hence, standard Bayesian updating leads to

d̃ | s̃ = s, ρ̃ = ρ ∼ Nρ

(
µ(s, ρ), σ2(ρ)

)
. (IA.54)

The investor does not learn anything about the correlation ρ after observing the signal and

hence the prior P coincides with the posterior.13 Let u(·) denote the function that measures

attitudes toward risk and φ(·) the function that measures attitudes towards ambiguity. The

utility of an ambiguity averse investor in the sense of Klibano�, Marinacci, and Mukerji

(2005) who holds θ shares of the risky asset is therefore

EP [φ (Eρ̃ [u (w̃) | s̃ = s])] = EP
[
φ
(
u
(
CE(θ, ρ̃)

])]
, (IA.55)

12The SEU investors of the previous sections have dogmatic priors over the correlation ρ.

13Investors can draw inferences about the correlation ρ, if they observe a time series of d̃ and s̃. In this

case P in equation (IA.55) below would be the distribution of ρ̃ conditional on observing the signal s̃ = s.
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where CE(θ, ρ) denotes the certainty equivalent of an SEU investor with dogmatic belief ρ.

If φ(·) is linear, then investors are neutral to ambiguity and thus we call them BMU investors

(investors who face Bayesian model uncertainty) otherwise we call them KMM investors.

For the remainder of this section we assume that investors have constant absolute risk

aversion and constant relative ambiguity aversion, that is, u(w) = −e−γw and φ(u) =

− 1
1+α

(−u)1+α with γ positive and α nonnegative.14 Hence, the certainty equivalent CE(θ, ρ)

is given in equation (6) (main paper).

C. Portfolio Choice

Let θ(s) denote the portfolio of a KMM investor that maximizes utility given in equation

(IA.55). The properties of θ(s) are summarized in the next proposition.

PROPOSITION IA.3 (Portfolio Choice). For every distribution P with support [ρa, ρb] ⊂

[0, 1] such that utility given in equation (IA.55) exists, let Q (ρ; s, θ(s)) denote the risk and

ambiguity adjusted distribution of ρ̃ conditional on s̃ = s. Speci�cally,

dQ (ρ; s, θ(s)) =
e−γ(1+α)(σdsρ θ(s)+ 1

2
γσ2
dρ

2θ(s)2)

EP

[
e−γ(1+α)(σdsρ̃ θ(s)+ 1

2
γσ2
dρ̃

2θ(s)2)
]dP(ρ) (IA.56)

14We choose constant absolute risk aversion for u(·) so that conditional on knowing ρ investors have

mean-variance preferences. The choice of constant relative ambiguity aversion for φ(·) simpli�es the analysis

but does not change the qualitative result of this section.
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The optimal portfolio is unique and implicitly given by

θ(s) =
λQ (s, θ(s))

γσQ (s, θ(s))
(IA.57)

where

σQ (s, θ(s)) = σd

√
1− EQ(ρ;s,θ(s)) [ρ̃2 | s̃ = s] (IA.58)

λQ (s, θ(s)) =
d̄− p+ σdsEQ(ρ;s,θ(s)) [ρ̃ | s̃ = s]

σQ (s, θ(s))
. (IA.59)

Why does the Sharpe ratio and volatility depend on the position in the asset? To

answer this question consider �rst the case where α = 0. The BMU investor hedges against

parameter uncertainty by adjusting its distribution for risk. The risk adjusted probability

Q depends on the position in the asset because the e�ects of di�erent realizations of ρ̃ on

utility depend on the asset position. For instance, suppose an investor who contemplates a

long position in the asset receives a signal that conveys bad news. If the long position is

very large, then the investor is more concerned about the residual variance and thus the risk

adjusted probability of low correlation states is higher than the actual probability of these

states. Similarly, for a moderate long position in the asset, the investor is more concerned

about a low posterior mean and thus the risk adjusted probability of high correlation states

exceeds the actual probability of these states.15 A KMM investor is also averse to ambiguity

and thus puts additional weight on the states of the world for which ρ has adverse e�ects

on utility. An increase in risk aversion would also make a BMU investor more concerned

15There is no parameter uncertainty for the risk free portfolio and thus Q and P coincide.
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about parameter uncertainty. However, an increase in risk aversion has the indirect e�ect of

decreasing the asset position which makes her less concerned about parameter uncertainty.

The left graph of Figure IA.4 shows the optimal portfolio as a function of the signal

when the unconditional Sharpe ratio is positive and ρ̃ is uniformly distributed on the interval

[ρa, ρb]. The black solid line represents an MEU investor, the red solid line represents a BMU

investor (α = 0), and the other three lines represent KMM investors with di�erent degrees

of ambiguity aversion α. There is a range of signals for which risky portfolios become less

and less sensitive to news as ambiguity aversion increases. Moreover, the �gure shows that

there are signal ranges for which asset demand is strictly increasing in α, which is consistent

with Gollier (2011) who also �nds that an increase in aversion to ambiguity does not always

lead to a decrease in asset demand.

Why does the sensitivity to news for some risky portfolios decrease with aversion to

ambiguity? The intuition for this result is similar to the intuition for the information inertia

result. Asset demand for a KMM investor is increasing in the Sharpe ratio and decreasing in

the volatility of the asset. Both the Sharpe ratio and volatility are determined by averaging

over ρ̃ using the risk and ambiguity adjusted probability Q. The risk and ambiguity adjust-

ment depends on the signal and thus the conditional volatility and Sharpe ratio depend on

the signal. The right graph of Figure IA.4 shows the (log) of the conditional Sharpe ratio

and volatility perceived by a KMM investor for di�erent degrees of ambiguity aversion α. If

α is su�ciently large, then there is a range of signals for which both the conditional Sharpe

ratio and volatility increase at approximately the same rate and thus the portfolio does not
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react much to these signals.16

D. Equilibrium Price

Suppose there exists a representative investor with prior P over the correlation ρ̃. In equi-

librium the representative investor holds the asset (θ = 1) and consumes the liquidating

dividend d̃. The properties of the equilibrium price are summarized in the next proposition.

PROPOSITION IA.4. The unique equilibrium price is

p(s) = d̄− γσ2
d + sσd EQ(ρ,s) [ρ̃ | s̃ = s] + γσ2

dEQ(ρ,s)

[
ρ̃2 | s̃ = s

]
, (IA.60)

where Q(ρ, s) denotes the risk and ambiguity adjusted equilibrium distribution of the corre-

lation ρ̃ conditional on s̃ = s. Speci�cally,

dQ(ρ; s) =
e−γ(1+α)(σdsρ+ 1

2
γσ2
dρ

2)

EP

[
e−γ(1+α)(σdsρ̃+ 1

2
γσ2
dρ̃

2)
]dP(ρ). (IA.61)

The left graph of Figure IA.5 shows the equilibrium price as a function of the signal when

ρ̃ is uniformly distributed on the interval [ρa, ρb]. The black solid line represents an economy

with an MEU-RI the red solid line represents an economy with a BMU-RI (α = 0), and the

other three lines represent economies with a KMM-RI with di�erent degrees of ambiguity

aversion α. There is a range of signals for which the equilibrium price becomes less sensitive

16There is also a range of signals for which the risk-free portfolio does not react much to news if α is

su�ciently large.
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to changes in the signal when α increases.

Why does the sensitivity of the equilibrium price to news decrease with aversion to

ambiguity? Intuitively, the price increases with the posterior mean and decreases with the

posterior variance. The RI hedges against risk and ambiguity and thus both the mean and

variance depend on the signal. The right graph of Figure IA.5 shows that there is a range

of signal values for which both the risk and ambiguity adjusted mean and variance increase

at approximately the same rate and thus the equilibrium price does not react much to these

signals.

E. Proofs

Proof of Proposition IA.3. For all θ ∈ R, the function ξ(θ, s, ρ),

ξ(θ, s, ρ) =
e−γ(1+α)(σdsρ θ+ 1

2
γσ2
dρ

2θ2)

EP

[
e−γ(1+α)(σdsρ̃ θ+ 1

2
γσ2
dρ̃

2θ2)
] (IA.62)

is non-negative and EP [ξ(θ, s, ρ̃)] = 1 hence dQ (s, ρ, θ) as de�ned in (IA.56) is a conditional

probability distribution.

The utility U(θ) of a KMM investor from holding portfolio θ is as given in (IA.55) with

u(w) = −e−γw, γ > 0 and φ(u) = − 1
1+α

(−u)1+α , α ≥ 0. The �rst-order condition for this

investor's optimal portfolio is

0 = U ′(θ) = EP
[
φ′(u(CE(θ, ρ̃)))u′(CE(θ, ρ̃)) (λ(s, ρ̃) + γθσ(ρ̃))σ(ρ̃)

]
. (IA.63)
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The second derivative of (IA.55) with respect to θ is

U ′′(θ) = EP
[
(λ(s, ρ̃) + γθσ(ρ̃))2 σ2(ρ̃) (φ′′(·)u′(·) + φ′(·)u′′(·))− φ′(·)u′(·)γσ2(ρ̃)

]
< 0

(IA.64)

given u′ > 0, u′′ < 0 and φ′ > 0, φ′′ ≤ 0.

Hence, KMM investor utility is strictly concave in θ and optimal portfolio is unique.

Solving for θ(s) using the �rst-order condition and φ′(u) = (−u)α and u′(w) = γe−γw yields

θ(s) = EP[φ′(·)u′(·)(λ(s,ρ̃)σ(ρ̃))]
γEP[σ2(ρ̃)]

=
(d̄−p)+σdsEQ(ρ;s,θ(s))[ρ̃|s̃=s]

γσ2
d(1−EQ[(ρ̃2)])

= λQ(s,θ(s))

γσQ(s,θ(s))

(IA.65)

as desired.

Proof of Proposition IA.4. Setting θ(s) = 1 in (IA.56) and using Q(ρ, s) to denote Q(ρ; s, 1)

yields the distribution of ρ̃ condtional on s̃ = s in (IA.61).

The representative investor holds the risky asset and consumes the dividend in equilib-

rium. Setting θ(s) = 1 in the �rst-order condition (IA.63) yields,

λQ(s,1) = γσQ (s, 1) . (IA.66)

Using the expressions for λQ (s, θ(s)) and σQ (s, θ(s)) from Proposition IA.3 with θ(s) = 1
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and Q(ρ, s) for Q(ρ; s, 1), solving for p(s) yields (IA.60) as the unique equilibrium price.

VI. Di�erent Payo� Distributions

Consider the dividend growth rate d̃ and assume that its mean and variance is d̄ and σ2
d,

respectively. Suppose we regress the dividend growth rate, d̃, on a constant and the (stan-

dardized) signal s̃. There is ambiguity about the correlation between the signal and the

dividend growth rate, ρ, and hence there is ambiguity about the posterior dividend growth

rate because the slope coe�cient is a linear function of ρ and there is ambiguity about the

posterior variance because the regression rsquared is ρ2. Hence, the residual variance of

the dividend growth rate is σ(ρ)2 = σ2
d(1 − ρ2) and the posterior mean of the dividend is

E[ed̃ | s̃ = s] = ed̄+σdρs.

In contrast to the previous section, we assume that the error term of the regression, η̃,

is skew normally distributed and has unit variance. Let Gη(t; a, b, c) denote the moment

generating function of a skew normally distributed random variable with location parameter

a, scale parameter b, and shape parameter c. Hence, the mean is a+ bc
√

2
π
, the variance is

b2
(

1− 2c2

π

)
, and skewness 4−π

2

(
c
√

2/π
)3

(1−2c2/π)
3
2
. The moment generating function of η̃ is

Gη(t; a, b, c) = 2eat+
1
2
b2t2Φ(bλt), λ =

c√
1 + c2

, (IA.67)

where the parameters are chosen such that the random variable η has zero mean and unit

variance. If λ = 0, then η̃ is normally distributed and if λ is positive (negative), then η̃ has

a positive (negative) skewness.
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Consider an economy with an representative SEU investor with CRRA utility and belief

ρ who consumes the liquidating dividend ed̃. The equilibrium utility of the SEU investor

and the stochastic discount factor in this economy are

Ū(ρ, s) = Eρ

[
u
(
ed̃
)
| s̃ = s

]
and Md̃(s) =

e−γd̃

Eρ

[
e−γd̃ | s̃ = s

] , (IA.68)

respectively. The risk aversion coe�cient γ is strictly positive and, thus, the equilibrium

price is

p̄(s, ρ) = E
[
ed̃Md̃(s) | s̃ = s

]
=

Gη ((1− γ)σ(ρ); a, b, c)

Gη (−γσ(ρ); a, b, c)Gη (σ(ρ); a, b, c))
E
[
ed̃ | s̃ = s

]
.

For instance, if the regression error term is normally distributed, then

p̄(s, ρ;λ = 0) = e−γσ
2
d(1−ρ2)E

[
ed̃ | s̃ = s

]
.

The equilibrium utility of an MEU-RI is

U(s) = min
ρ∈[ρa,ρb]

Ū(ρ, s) = Ū(ρ∗(s), s). (IA.69)

where ρ∗(s) is the worst case scenario correlation and, thus, in general will depend on the

signal. The SDF in this economy is therefore

Md̃(s) =
e−γd̃

Eρ∗(s)

[
e−γd̃ | s̃ = s

] ,
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Hence, the equilibrium price is

p(s) = Eρ∗(s)

[
ed̃Md̃(s) | s̃ = s

]
= p̄(s, ρ∗(s)). (IA.70)

For instance, if the regression error term is normally distributed, then

p(s) =


e−γσ

2
d(1−ρ2a)Eρa

[
ed̃ | s̃ = s

]
if s > −γσdρa

e−γσ
2
dE
[
ed̃
]

if −γσdρb ≤ s ≤ −γσdρa

e−γσ
2
d(1−ρ2b)Eρb

[
ed̃ | s̃ = s

]
if s < −γσdρb.

(IA.71)
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Figure IA.1. Equilibrium Price

The left graph shows the equilibrium price and the right graph shows the RI's perceived
posterior mean and variance as a function of the signal. Red lines represent an SEU-RI
economy with belief βb = ρbσd = 3, purple lines represent an SEU-RI economy with belief
βm = σd(ρa + ρb)/2 = 2, blue lines represent an SEU-RI economy with belief βa = ρaσd = 1,
green lines represent an SEU-RI economy with belief ρ0 = 0, and black lines represent an
MEU-RI economy with ambiguity aversion [ρa, ρb]. In the right graph dashed lines represent
the mean and chain-dotted lines the variance. The parameters are d̄ = 100, σ2

d = 25, and
γ = 1.
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Figure IA.2. Equilibrium Price and Portfolio

The left graph shows the equilibrium price and the middle graph shows the equilibrium
portfolios as a function of the signal in an economy populated with heterogenous MEU
investors. The blue chain-dotted line shows the optimal portfolio of an MEU investor with
ambiguity aversion [ρa1, ρb1] = [0.1, 0.4] and the red dashed line shows the optimal portfolio
of an MEU investor with ambiguity aversion [ρa2, ρb2] = [0.2, 0.6]. The right graph shows the
equilibrium price as a function of the signal when there is a unit mass of investors where α
denotes the fraction of MEU investors and 1−α denotes the fraction of SEU investors. The
parameters are d̄ = 100, σ2

d = 25 and γ1 = γ2 = 1.
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Figure IA.3. Demand and Equilibrium Price in the GHTV Model

The left graph shows the optimal portfolio as a function of the signal when p = 75. The
right graphs show the equilibrium price of the market portfolio as a function of the signal.
The black lines represent an MEU investor and the colored lines represent GHTV investors
with di�erent degree of aversion to ambiguity α. The parameters are ρa = 0.2, ρb = 0.6,
d̄ = 100, σ2

d = 25, and γ = 1.
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Figure IA.4. Optimal Portfolio

The left graph shows the optimal portfolio and the right graph shows the risk and ambiguity
adjusted (log of the) conditional Sharpe ratio and volatility as a function of the signal. The
black lines represent an MEU investor, the red lines represent a BMU investor (α = 0), and
the other lines represent KMM investors with di�erent degrees of ambiguity aversion α. In
the right graph dashed lines represent the Sharpe ratio and chain-dotted lines the volatility.
The parameter ρ is uniformly distributed on the interval [ρa, ρb] = [0.2, 0.6] and d̄ = 100,
p = 75, σ2

d = 25, and γ = 1.
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Figure IA.5. Equilibrium Price

The left graph shows the equilibrium price and the right graph shows the risk and ambiguity
adjusted conditional mean and variance as a function of the signal. The black lines represent
an MEU investor, the red lines represent a BMU investor (α = 0), and the other three lines
represent KMM investors with di�erent ambiguity aversion α. In the right graph dashed
lines represent the mean and chain-dotted lines the variance. The parameter ρ is uniformly
distributed on the interval [ρa, ρb] and d̄ = 100, σ2

d = 25, and γ = 1.
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