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Abstract

Epigenome-wide Association Studies (EWAS) have been a popular method to investigate the genome

over the past decade. From these experiments, more than 75,000 samples have been assayed using the

high-throughput, cost-effective HumanMethylation450 microarray (450k) developed by Illumina. With

the recent release of the HumanMethylationEPIC microarray, the size of data is expected to increase

considerably so advances are needed in the methodologies used to analyse such data.

The first part of this thesis focuses on the development of tools that can be used for the analysis of DNA

methylation microarray data. Firstly I develop a wide range of tools that can be used to quality control

data. These tools focus specifically on data-driven aspects of quality control that are often overlooked

and can cause problems during downstream analysis. Comparison of these tools to other popular methods

demonstrate that the tools I created are effective in decreasing test statistic inflation while conserving

the largest number of samples (Chapter 2). Secondly to accommodate the increase in the size of data, I

developed the bigmelon R package which reduces the amount of memory required to perform the analysis

typically required of EWAS (Chapter 3).

I then demonstrate how both the tools described in Chapters 2 and 3 can be used in EWAS settings. I

perform an EWAS between DNA methylation and various blood-lipid traits and statin-use on a dataset

comprising of 1,193 samples from the Understanding Society: UK Household Longitudinal study and

replicate the findings of many previous EWAS (Chapter 4). Lastly, I demonstrate how the data from

tens of thousands of microarrays can be utilised in preliminary analyses that focus on the wide-spread

characterisation of the probes on the 450k microarray and how tissue-specific DNA methylation patterns

may correlate with tissue-specific gene expression (Chapter 5).
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Chapter 1

Introduction

Epigenome-wide Association Studies (EWAS) between DNA methylation and disease or environmental

exposures have become increasingly popular in biomedical research (Rakyan et al., 2011). Relying on

high-throughput and cost-effective microarray technology EWAS can examine thousands of samples reli-

ably across hundreds of thousands of loci spread throughout the genome (Bibikova et al., 2011). Findings

from these studies can be used to develop our understanding concerning how a disease or trait can man-

ifest within the human body.

Due to popularity and relative ease, EWAS within the field of epidemiology are being performed at a rapid

pace (Li et al., 2019). With each new study hoping to leverage a better understanding of the cause of

disease from the wealth of information that is produced by these microarrays. In accompaniment to this

data is the steady development of methodologies that can be used to analyse the data, test genome-wide

associations and interpret these findings. However, there is a need for some caution with respects to

EWAS as the exact methods used for analysis can often go unreported. This can lead to difficulty when

trying to reproduce or compare results between studies.

In this thesis, I set out to address some of the concerns relating to EWAS in general and suggest some

methodological improvements where appropriate. Methods used for both statistical testing and data

normalisation are generally well described and reported in most studies. However, methods that are used

1



during preliminary stages of analysis such as quality control are distinctly lacking in both design and how

they are reported.

Another feature of EWAS that is regularly overlooked are limitations associated with the popular analysis

platform, the R programming language (R Core Team, 2017), that is used to carry out most of these

investigations. The R language is a useful tool for biologists and provides enough flexibility to perform

almost any type of analysis. Additionally, the scientific community encourages that developers of the R

language contribute their efforts to public repositories such as Bioconductor (Gentleman et al., 2004) to

encourage the development of reproducible research. One drawback of the R language is that it makes

extensive use of computers memory to store data and perform analyses, this becomes the main bot-

tleneck for any analysis that attempts to process large datasets. It is possible to avoid requiring large

amounts of memory by selectively reading in small amounts of data, however this process requires prior,

specific, knowledge of the data being analysed which is rarely the case when handling biological data.

This bottleneck may disappear as access to high-performance computing clusters become more accessible

within academic settings or as computers become cheaper and more powerful. However, as data sizes

are anticipated to increase rapidly, it is likely that new algorithms to analyse data are required to be able

to cope with the increasing burden of data size efficiently. The memory overheads currently associated

with R, limit the ability to perform large scale analyses. Notable attempts such as those by Horvath

(2013) and Lowe & Rakyan (2013) have been made but either focus on a small portion of the data,

or the resources that were developed to facilitate such large scale analyses were unable to handle the

computational requirements. Therefore, I would like to demonstrate what sort of analyses are possible

when such limitations are alleviated.

This chapter introduces the concept of epigenetics and how the complex of epigenetic factors and the

genetic sequence results in a change in gene expression - thus giving rise to the hundreds of cell-types

that exist. I will also describe how the field of epigenetics was established over time with a particular in-

terest in the relationship between DNA methylation and blood-lipid phenotypes and cardiovascular disease.
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1.1 Epigenetics

Out of the 38 trillion cells estimated to be in the human body (Sender et al., 2016), the majority of

these will contain the same complement of DNA. Despite being genetically identical, these cells vary

wildly in size, shape and function. This variation led scientists to wonder how it was possible for so many

phenotypes to arise from a single genotype.

The term ’epigenetics’ was first coined by Waddington (1942) to describe mitotically heritable cellular

events, that ultimately lead to a change in gene expression, which are not caused by changes in the genetic

sequence. This definition of ’epigenetics’ describes the process of epigenesis which was the prevailing

theory whereby all cells differentiate from a single undifferentiated cell. This is classically described,

diagrammatically, by the journey of a marble traversing a down a canalised landscape (Figure 1.1).

Where once the marble has chosen a course it has to continue down the chosen path until its ultimate

fate.

Since then the definition of ’epigenetics’ has changed numerous times (Haig, 2004) with the current and

most popular definition currently describing the collection of heritable changes in gene function that are

not explained by a change in the genetic sequence. This definition can be seen as a derivation from the

words ’epi’ (upon) and ’genetics’ (genetic sequence) to reflect the idea that there are additional layers of

information that exists on top of the DNA sequence that is thought to influence gene expression directly.

The evolution of the term epigenetics has been met with concern as the more modern and fashionable

definition is more liable to be abused when interpreting results. As a result there are many who advocate

clarity when using the term ’epigenetics’ to describe a change in gene expression (Greally, 2018). For

the sake of clarity, I would like to specify that I will be referring to epigenetics according to the modern

definition.

Modern epigenetics is attractive to biologists as it identifies genes and regulatory mechanisms that could

be related to the cause of complex disease (Bernstein et al., 2007). Genome-wide investigations have

identified numerous SNPs and haplotypes that contribute towards various disease but are unable to ex-

3



Figure 1.1: Waddington (1957)’s Epigenetic Landscape
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plain why certain individuals will develop the disease and others may not. It has been shown that disease

can arise when these epigenetic mechanisms are dysregulated (Bestor, 2000; Herman & Baylin, 2003;

Feinberg, 2007). This suggests that the layers of information on top of the genome do contribute towards

gene expression and is therefore of interest to us to investigate how gene expression changes alongside

changes in the epigenome in response to certain stimuli, e.g. the environment.

These layers of information that supposedly influence gene expression are primarily broken down into

three categories: DNA modifications, Histone Modifications and non-coding RNAs (Bernstein et al.,

2007; Costa, 2008). For this thesis, I will focus on DNA modifications, specifically DNA methylation,

as it is considered the easiest epigenetic modification to examine and is popular within the scientific

community. This is due to the relative stability and abundance of required material (DNA) and the

high-throughput nature of the techniques used to interrogate it. The decision to focus solely on DNA

methylation does not detract from the importance that histone modifications or non-coding RNAs may

have on gene expression. Briefly, DNA modifications describe any chemical modification that affects a

DNA base. Histone modifications describe the chemical modifications that attach to the histone proteins

to which DNA itself is wound around and usually alter chromatin state. Non-coding RNAs describe the

set of RNA molecules that bind to transcribed DNA (e.g. micro RNA).

1.2 DNA methylation

In most situations, DNA methylation refers to the covalent attachment of a methyl group (CH3) to the

5C atom of a cytosine nucleotide base (Razin & Riggs, 1980) to form 5-methylcytosine (5mc). DNA

methylation in this manner is catalysed by a group of DNA methyltransferase enzymes (DNMTs) which

use S-adenosyl-Methionine as the methyl group donor (Bird, 2002; Bestor, 2000). In mammals, this pro-

cess usually occurs on Cytosines within a cytosine-guanine dinucleotide (CpG) context (Bernstein et al.,

2007), aptly referred to as CpG methylation. Mammalian DNA methylation is not limited to 5mc in a

CpG context. Non-CpG methylation denoted as CpHpH or CpHpG methylation (where H corresponds

to A, T or C), has also been observed in both mammals and plants however the function of Non-CpG
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methylation is not understood as clearly as CpG methylation (Lister et al., 2009; Laurent et al., 2010).

There are approximately 28 million CpG sites spread throughout the genome. It has been estimated that

as many as 80% of these CpGs are methylated (Wang & Leung, 2004; Saxonov et al., 2006; Ehrlich et al.,

1982). Despite the relatively small number of CpGs in the genome, CpGs are often found in high densities

often located within promoter regions of genes (Klose & Bird, 2006). The high densities of CpGs are

referred to as CpG islands (Gardiner-Garden & Frommer, 1987; Illingworth & Bird, 2009) and account for

approximately 7% of all total CpGs in the genome and are usually unmethylated. Considering that CpGs

are usually methylated, this leads to the conclusion that there is likely to be some functional significance

regarding the methylation state of CpGs within CpG islands (Bird, 1987).

Additionally CpGs can be characterised by their location relative to their nearest CpG island. Simply,

CpGs within CpG islands are creatively known as CpG-island CpGs whereas Non-CpG island CpGs are

classified into Shores (< 2kb from an island), Shelves (<2kb from Shore) and Open Sea or intergenic

(> 2kb from Shore) CpGs (Irizarry et al., 2009). These shores and shelves account for CpGs that may

not fall into promoter regions but otherwise could be functionally significant as Irizarry et al. (2009)

demonstrate that there is a strong relationship between gene expression and these distal CpGs.

In mammals, DNA methylation patterns rapidly erase upon fertilisation (Reik et al., 2001). These pat-

terns are not reestablished until the blastocyst stage where differentiation starts to occur. This type of

methylation occurs in a de novo fashion by the enzymes DNMT3A and DNMT3B (Reik et al., 2001;

Jaenisch & Bird, 2003). After DNA methylation patterns are established, the pattern persists through

mitosis by DNMT1 which binds to hemimethylated DNA with a high specificity (Bestor, 1992, 2000). It

is thought that the DNA methylation patterns are accrued stochastically with this de novo mechanism

as a response to the environment (Reik et al., 2001).

The removal of 5mc can be described using two mechanisms. The first mechanism is through passive

demethylation through down-regulation of DNMT1 results in hemimethylated DNA remaining hemimethy-
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lated. Thus after subsequent replication events, the proportion of methylated DNA is diluted. The second

method is known as active demethylation where 5mc is converted into 5hmc through oxidation by TET1

enzymes which eventually results in the reestablishment of unmethylated Cytosine (Guo et al., 2011).

As DNA methylation is frequently correlated with gene expression, it is no surprise that it is thought to

regulate transcription in some capacity. In some situations, DNA methylation is shown to interfere with

the binding of transcription factors as with the case of CTCF (Hark et al., 2000) or that DNA methylation

can recruit methyl-binding domain proteins to alter the chromatin state (Bird, 2002). DNA methylation

has established roles in Genomic Imprinting (Razin & Cedar, 1994; Li et al., 1993), X Chromosome in-

activation (Riggs, 1975; Singer-Sam & Riggs, 2012) and in global demethylation events associated with

cancers (Jones & Baylin, 2002; Feinberg, 2007).

It needs to be considered that 5mc is not the only form of DNA modification that exists in the genome.

Indeed adenine methylation among other non-methylation based modifications such as 5hmc could have

roles in gene regulation. For example, adenine methylation is involved in the silencing LINE-1 transposable

elements (Wu et al., 2016). While 5hmc is not only limited to DNA demethylation but also has roles in

pluripotency and development (Branco et al., 2011).

1.3 Epigenome-wide Association Studies

If we were to consider the success and high throughput nature of Genome-Wide Association stud-

ies (Hindorff et al., 2009; Chanock et al., 2007; Welter et al., 2014; Johnson & O’Donnell, 2009,

http://www.ebi.ac.uk/gwas) it is no surprise that EWAS have become popular. Early reviews by Rakyan

et al. (2011) and Mill & Heijmans (2013) correctly placed EWAS using the microarray technologies as an

excellent strategy for the identification of novel association.

Summarising every EWAS performed in the last decade would be a thankless task. Since the introduction

of the EWAS design many differentially methylated positions and regions have been identified for tissues
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(Davies et al., 2012; Hannon et al., 2015; Varley et al., 2013; Ziller et al., 2013), disease (Feinberg, 2007;

Portela & Esteller, 2010), environment (Feil & Fraga, 2012), a variety of socio-economic & lifestyle habits

(Breitling et al., 2011; Lee & Pausova, 2013) and peri-natal differences seen in pregnant women (Tobi

et al., 2009; Spiers et al., 2015). In addition, since 2009 considerable effort has been made to establish

epigenetic consortia to pool together experiments to create highly collaborative resources that could be

used to describe the epigenetic landscape of disease and tissue such as The Cancer Genome Atlas, the

Epigenome Road Map and the Human Epigenome Project (Bernstein et al., 2010; Kundaje et al., 2015).

The early reviews (Rakyan et al., 2011; Mill & Heijmans, 2013; Michels et al., 2013) championed the

EWAS as being a useful strategy to investigate the epigenome and provide numerous recommendations

that should be considered going forward. The following recommendations I have briefly summarised as

they are important to stress where possible.

1. EWAS are not limited to Cross-sectional designs – The epigenome is dynamic and is susceptible

to change over time in response to the environment. Therefore it is an excellent candidate for a

wide variety of informative designs. Majority of EWAS use a cross-sectional design where both the

DNA methylation patterns and an exposure or outcome are obtained at the same point of time.

This approach is by far the easiest to perform as it only requires a single time point of investigation

and can identify numerous associations depending on the number of samples. This design does not

play into the strengths of EWAS as they can benefit from longitudinal or even short-term exposure

studies where using multiple time points can elucidate a clearer picture of how the epigenome re-

sponds to various traits.

2. EWAS are sometimes unable to infer a direction of cause – As the most common form of

EWAS makes use of a cross-sectional design; these EWAS are frequently only able to identify when

a relationship exists between an exposure or outcome to DNA methylation. These relationships

may not necessarily impart any causal evidence to suggest the exposure or outcome is caused by

a change in methylation or that the change is caused by the specified exposure or outcome. To

establish a direction of cause, the more elaborate and different designs (e.g. longitudinal) are re-
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quired. However, it may be possible to infer a direction of cause by using analysis techniques such

as Mendelian randomisation (Relton & Davey Smith, 2012).

3. Choice of Tissue – It is a well known fact that the epigenome varies between tissue and cell type.

Therefore it is essential to select a biologically relevant tissue to examine a biological question when

performing an EWAS. The choice of tissue becomes a potential issue when attempting to study an

outcome or exposure in a tissue that is difficult to obtain (e.g., brain tissue). This issue is further

compounded when trying to utilise a longitudinal design as finding a large enough group of partic-

ipants willing to undergo frequent invasive procedures can be difficult. As a result majority of the

EWAS to date have been performed using DNA obtained from whole blood or blood sub-fractions

as it is a relatively easy tissue to obtain. This raises concerns about the validity of results that

are obtained from studies that do use surrogate tissues to perform EWAS in place of tissues that

are difficult and expensive to obtain. As a result, analyses involving surrogate tissues may require

additional validation.

Further to this some tissues such as whole blood are heterogeneous and contain many different cell

types. Samples individually will have different proportions of these cell types which can produce

spurious associations should the model be uninformed that such cell-type specific variation exists.

Considerable effort has been made in developing strategies to handle cell heterogeneity. Aside from

experimentally identifying the proportion of cell types within a given sample, which may not be

available to researchers, alternative methods can be used to estimate these proportions (Houseman

et al., 2012) and have been widely adopted in EWAS. Houseman et al. (2012)’s method uses a

reference dataset for blood cell types, but various other reference datasets for different tissues have

been collected and reference-free methods are available for tissues that otherwise do not have a

reference dataset (Teschendorff et al., 2017).

4. Additional layers on confounding – In addition to selecting a relevant tissue and accounting for

cellular heterogeneity within tissues, the epigenome is also variable to other environmental expo-

sures. These include and are not limited to age, sex, disease, treatment and lifestyle habits (e.g.,
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smoking, alcohol consumption and diet). Furthermore EWAS can also be plagued by systematic

batch effects where differences in experimental design lead to a difference in signal and genetic

confounding (population structures and familial effects) both of which GWAS are familiar with

(Johnson et al., 2007; Devlin et al., 2001).

Usually, these sources of confounding can be handled by including additional exposures as covariates

within statistical models. In situations where the exposures have not been recorded, it is possible to

make use of methods that could identify surrogate variables that can explain some of the variance

within a dataset that then can be included in a model. There are some elements of caution that

need to be taken with using many covariates in statistic models as it is possible to over-fit the data

and lead to results that may be meaningless.

Failure to take account of confounding and cellular heterogeneity will lead to false positive results

which can mislead genuine interpretation and further analysis of results. In GWAS these false pos-

itive results can be account for by applying some form of genomic control (Devlin et al., 2001)

which entails dividing the test statistics by a factor. In EWAS as the source of the confounding is

not limited to population structure or cryptic relatedness a specialised method can be used (bacon)

but has yet to be widely adopted (van Iterson et al., 2017)

1.4 Assessing DNA methylation

The methylation state of DNA can be assessed in numerous ways. These range from sequencing-based

methods, immunoprecipitation of methyl-binding proteins, methylation-sensitive restriction enzyme assays

and hybridisation arrays. Out of these, the sequencing-based technologies are considered to be the ideal

experiment to investigate methylation patterns. However these sequencing methods are unable to differ-

entiate between cytosine and 5mc unless the DNA undergoes sodium bisulfite treatment. This sodium

bisulfite treatment deaminates cytosine into uracil however the methyl group (and other modifications)

in 5mc protects this deamination occurring thus leaving it intact. Sodium bisulfite treated DNA can then
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be amplified, which corrects uracil into thymine while the 5mc propagates as cytosine. Thus allowing for

differentiation between unmethylated cytosine and 5mc (Frommer et al., 1992). Additionally, next gen-

eration sequencing techniques such as NanoPore Sequencing can be used to detect methylated cytosine

without the need of bisulfite conversion (Clarke et al., 2009).

It should be noted that bisulfite treatment does not discriminate from the different types of DNA modifi-

cations such as 5hmc (Huang et al., 2010). As a result, it is possible that the DNA methylation patterns

obtained in this manner are confounded by a mixture of signals from different DNA modifications. For

this oxidative bisulfite sequencing can be used to further differentiate between 5mc and 5hmc (Booth

et al., 2012, 2013).

Whole Genome Bisulfite sequencing is considered the gold standard method to obtain DNA methylation

patterns. It is capable of interrogating the methylome of all of the 28 million CpGs at a single base

nucleotide resolution however it is expensive to carry out on hundreds of samples. Alternatives such as re-

duced representation bisulfite sequencing and hybridisation arrays allow for the same single base resolution

but across a smaller coverage for a fraction of the cost. The alternative methods of investigating DNA

methylation patterns can also cheaply examine DNA methylation but do not have the same resolution or

have as wide coverage compared to the sequencing-based methods.

Ultimately the DNA methylation microarrays became the platform of choice for EWAS. Bibikova et al.

(2009) describes the repurposing of the commonly used SNP arrays with specific probes that are designed

to hybridise to a methylated or unmethylated strand of DNA (following bisulfite treatment). By doing

this, it was possible to provide a technology that allowed for identical coverage across many samples

in a reasonably high throughput and cost-effect manner. This first iteration of the Infinium BeadChip

technology repurposed for DNA methylation was called the HumanMethylation27 BeadChip (27K) mi-

croarray and was able to interrogate the methylation state of approximately 27,000 CpG sites located

across the genome. These CpG sites were almost exclusively located within proximal promoter regions of

nearly 15,000 genes (Bibikova et al., 2009). A few years later the 450K microarray was released (Bibikova

et al., 2011) which extended the coverage of the 27K vastly by introduction an additional 450,000 loci
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that could be queried. This extension required the introduction of a new probe design (Type II design)

which makes use of a single probe and can detect methylation changes in CpGs in regions of relatively low

density. The combination of both these probe designs allows for comprehensive genome-wide coverage of

the genome for many genes and regions of interest. This microarray has been used extensively in EWAS

and was selected as the platform of choice for many studies. The 450K has been succeeded by the EPIC

array (Moran et al., 2016) which extends the number of loci scanned by nearly double (up to more than

850,000 loci), many of these loci are of the Type II design and located in regions where the biological

may not be as well understood such as enhancer regions.

Biologically speaking DNA methylation is considered a binary trait, either methylated or unmethylated.

However in EWAS many DNA molecules are being queried per sample and as a result, DNA methylation

is often expressed as a β ratio described as:

βi =
Mei

Mei + Uni + α
(1.1)

Where Me is the given methylated signal for a given loci (i), Un is the unmethylated signal and α is an

arbitrary offset to handle signals with low readings (usually 100). Conveniently these β values are bound

between 0 and 1 which lends itself to easy interpretation where a value of 0 is equivalent to all DNA

strands at a given locus being unmethylated and a value 1 corresponds to them all being methylated.

From the above formula it is possible to acheive a β value of 0 but because of the addition of α a β

value of 1 is never attainable. As the raw signal intensities (Me and Un) are usually in the thousands,

the addition of α makes a very little impact in the resultant β values.

Some concerns have been raised over the mathematical properties of β values. Firstly as the β values are

bound between two values they cannot be normally distributed and therefore violate the assumptions of

statistical tests. Secondly, the β values are heteroscedastic, where the variation of β values for a given

loci can vary differently across the range of a given variable. To handle this, Du et al. (2010) suggest

that M-values, defined as the log2 ratio between Me and Un intensities, should be used for statistical

testing as they are indeed homoscedastic but otherwise directly proportional to β values. These M-values
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are technically unbounded and share a linear relationship with β values at intermediate methylation levels

(between 0.2 and 0.8) however distort DNA methylation levels at both the high and low values. This

approach has a couple of limitations. Firstly M-values are more difficult to interpret over β values as they

represent a fold-change in methylation rather than a change in the percentage of methylation. Secondly

towards the extremes of methylation M-values can inflate the difference between small values. For ex-

ample, a change in β value of 0.01 between 0.05 & 0.06 equates to a change of 0.28 between M-values.

However, a change of 0.01 between β values of 0.10 and 0.11 equates to a change in M-values of 0.15

despite the difference in βs being the same. This difference in M-values can potentially favour variation in

probes which are either highly (un)methylated and penalise loci where there is naturally a greater variation

in methylation. It has also been noted that while the overall distribution of β values are characterised

with two peaks (bimodally distributed), the β values across single loci are usually unimodally distributed

and do not violate the assumptions of the common statistical tests used in EWAS as profoundly as once

thought.

1.5 EWAS and Lipids

As previously mentioned, EWAS have been successfully used to explore a variety of exposures and out-

comes. Among these are EWAS that focus on metabolic traits that are associated with cardiovascular

disease (CVD). Cardiovascular disease is the largest cause of death in Humans in both developed and un-

derdeveloped countries. Typically CVDs refer to the complement of diseases that are related to the heart

and circulatory system. CVDs have a large number of risk factors - Genetics, Smoking, Obesity, Diet,

Exercise and high cholesterol. GWAS have previously (Kessler et al., 2016; Arking & Chakravarti, 2009)

identified numerous SNPs that are associated with CVDs or CVD-based events (Stroke, Heart Attack) and

GWAS looking more specifically at blood-lipid levels (Willer et al., 2013) are well established. However,

the SNPs identified only explain a small percentage of the relative risk associated with developing these

disease. So we once again turn to epigenetics and attempt to identify a mechanistic explanation that

would contribute to CVDs or at least high blood-lipid Levels.
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The relationship between blood-lipids and epigenetics have been reviewed numerous times (Sayols-Baixeras

et al., 2016a; Dekkers et al., 2016a; Mittelstraß & Waldenberger, 2018) which firmly sets the pretense

that blood-lipid EWAS have been successful and produce numerous reproducible results. EWAS looking

at blood-lipid concentrations were relatively slow to get off the ground with the first one to be performed

in 2014 by Petersen et al. (2014) who investigated a variety of metabolic traits and identify a surprisingly

small number of associations considering the number of traits the authors had tested (639 traits). Par-

ticularly notable results from Petersen et al. (2014)’s study include associations of CpGs within DHCR24

and ABCG1 with Total Cholesterol. A few more studies looking at blood-lipid concentrations were also

published in the same year. Irvin et al. (2014) and Frazier-Wood et al. (2014) both identified the associa-

tion of CPT1A with LDL-C and TG concentrations in CD4+ T cells. These results were later reproduced

in peripheral whole-blood by Gagnon et al. (2014) firmly establishing a definitive relationship between

DNA methylation and blood-lipid levels.

The next largest study was performed a year later by Pfeiffer et al. (2015), who identified numerous

associations for different lipid traits, notably an association to ABCG1 with HDL-C and associations with

ABCG1, SREBF1, TXNIP and CPT1A with triglyceride concentrations. Similar findings were also found

in the study by Sayols-Baixeras et al. (2016b) who also reproduced the inverse relationship between TG

and HDL with ABCG1.

A distinct feature by all of the studies up to this point is that they were all performed using a cross-

sectional design. As a result, none of the authors were realistically able to determine whether or not the

elevated blood-lipid levels had contributed towards the changes in methylation. The study by Dekkers

et al. (2016b) made use of Mendelian randomisation to attempt to identify a direction of cause which

in turn provided evidence suggesting that an increase in HDL-C and TG concentrations that lead to the

change in methylation at the frequently reported ABCG1 locus.

The most recent and largest studies by Hedman et al. (2017) and Braun et al. (2017) replicate these

results of the past blood-lipid EWAS very well and also report numerous novel findings that had not

been reported by previous EWAS. Hedman et al. (2017) identify 25 novel associations between DNA
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methylation and blood-lipid measurements. While the findings were novel with respects to blood-lipid

concentrations, there was considerable overlap between the novel results and other metabolic traits such

as adiposity and type 2 diabetes. Braun et al. (2017) reproduce the previous associations between HDL-C

and TG with genes such as DHCR24, ABCG1, SREBF1 and CPT1A. Pathway analyses of these genes

identifies enrichment for lipid, sterol and cholesterol biosynthesis and transport (Hedman et al., 2017)

demonstrating that the results from these EWAS are identifying CpGs within genes that have some bio-

logical importance relating to lipid biology.

There is considerable overlap in the results of EWAS looking at blood-lipid levels and other metabolic

traits such as BMI, Waist Circumference (WC) and Type 2 Diabetes. The EWAS of BMI by Mendelson

et al. (2017) had reported that DNA methylation of CpGs within SREBF1, ABCG1 and DHCR24 (and

others) were also related to BMI. These results have been reported in many other independent BMI

EWAS (Aslibekyan et al., 2015; Demerath et al., 2015; Al Muftah et al., 2016; Mamtani et al., 2016).

These are also reported in the large scale meta-analysis of BMI EWAS by (Wahl et al., 2017) which was

also able to reproduce the previous associations of blood-lipid associated CpGs to be associated with

BMI. Studies looking at waist circumference identified: CPT1A and ABCG1 Wilson et al. (2017); Arner

et al. (2015) And studies into type 2 diabetes identified CpGs in TXNIP (Al Muftah et al., 2016; Florath

et al., 2016), ABCG1, SREBF1, PHOSPHO1 and SOCS3 (Kulkarni et al., 2015; Chambers et al., 2015;

Dayeh et al., 2016). It is clear that there is considerable overlap between various metabolic traits and the

epigenome and it is likely that any additional research will be valuable in the contribution to the current

understanding of the epigenetic mechanisms and how they could contribute towards CVDs.

1.6 Aims of this Thesis

1. Chapter 2 explores how quality control of data affects downstream results. In addition to exploring

a variety of quality control methods, I develop and test a set of data-driven quality control tools

which can be used in conjunction with pre-existing methodologies.
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2. Chapter 3 addresses the large memory requirements that are associated with the R programming

language which can stifle the analysis of large datasets. By drawing inspiration from the tools

that were developed for GWAS, it was possible to extend these frameworks to create a workflow

that allows for the low-memory computation of DNA methylation microarray data. This approach

can scale into the tens of thousands of samples without leading to any problems associated with

memory. The development of these tools is timely as the EPIC array has been released and essen-

tially doubles the size of every dataset going forward. Therefore the improvement on the current

methodologies used to quality control, normalise and to perform statistical testing is likely to be

well received by the scientific community.

3. Chapter 4 describes an EWAS between DNA methylation and blood-lipid measurements (TC, HDL-

C and TG) from a cohort of 1,193 participants from the Understanding Society: UK Household

Longitudinal Study which were assayed on the newly released EPIC microarray. This analysis served

two purposes, firstly to demonstrate how the tools designed in both Aims 1 and 2 can be used in

an EWAS setting. Secondly, to reproduce the findings from past EWAS performed on the 450k and

identify novel findings which are unique to the EPIC microarray.

4. Chapter 5 presents two examples of preliminary analyses of tens of thousands of samples that are

publicly available can be used to investigate biological questions. Using the software I developed in

Aim 2, I demonstrate that large-scale analyses are possible and can be used to produce a number

of insightful discoveries.
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Chapter 2

Quality control of DNA methylation

microarrays

This chapter aims to demonstrate how the quality control steps performed in EWAS can affect down-

stream results irrespective of the overarching biological question. Recently, there have been frequent calls

for a need for ”better reporting standards” with respects to quality control (Min et al., 2018). However,

there has been a lack of development and demonstration of such tools that contribute towards repro-

ducible quality control. While the auto-generated HTML reports such as those produced by ChAMP or

RnBeads are sufficient for diagnosing problems within a dataset. These documents only provide a small

description of what steps have been undertaken with respects to quality control and are rarely provided

as supplementary material alongside any published EWAS, despite the calls for better reporting standards.

The majority of quality control tools focus on using the inbuilt control probes available on microarrays

to identify low-quality samples. As a result, these tools can be prone to identifying samples which may

not be outliers. As an alternative to control-probe based methods, data-driven methods can provide a

conservative approach to identifying outlying samples and probes. Moreover, a combination of the two

methods can have a reasonable impact in reducing the number of false positive findings within EWAS.
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To rectify the lack of data-driven methods available in the field of EWAS. I have developed a suite of

tools that slot seamlessly into the previously established workflows provided by other software frequently

used in EWAS. These tools will allow others to perform both reproducible and robust quality control on

their data and will be able to report the exact methods used when presenting their results.

2.1 Introduction

Performing an EWAS requires the well-thought-out design of a study, the collection of biologically relevant

samples & data, careful handling of such data, appropriate statistical testing and interpretation of the

results. As excellently described in the reviews by Rakyan et al. (2011); Mill & Heijmans (2013); Michels

et al. (2013), considerable thought has been placed into the methodological design of EWAS as a whole.

As one of the goals of these reviews was to convey the message that reproducible results ultimately leads

to success, many scientists have contributed their expertise towards the development of many software

and workflows that help facilitate such reproduction. Conveniently, these software fit into a generalised

workflow as described below:

1. Data Import – The process of converting the raw data (.idat files) into a biologically interpretable

format. During this step, the raw signal intensities from the microarray are converted to methylated

and unmethylated signals and then converted into β values.

2. Quality Control – The process of removing bad samples and probes. Either through consideration

of the control probes on the microarray or through consultation of probe-lists generated by previous

studies.

3. Normalisation – The process of removing unwanted, systematic, variation between samples. This

step is often coupled with additional preprocessing methods such as removal of background noise,

adjusting the differences between Type I & Type II probes and correcting positional effects. Typi-

cally this is usually applied to the methylated and unmethylated signal intensities and then the β
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values are recalculated accordingly. Type I probes were introduced on the 27k microarray Bibikova

et al. (2009) which required two probes per loci to detect unmethylated or methylated DNA. Type

II probes were introduced on the 450k microarray (Bibikova et al., 2011) and only required a single

probe to detect methylation state. Because the Type I and Type II probes are functionally different

they have slightly different distributions which require seperate normalisation.

4. Statistical Testing – The process of obtaining differentially methylated positions (DMPs) or re-

gions (DMRs), usually using linear regression or an ANOVA to test individual probes or clusters of

probes

5. Interpretation – The process of investigating DMPs and DMRs in the context of the given biolog-

ical question.

The focus of most development efforts within these five broad steps are towards improving the normalisa-

tion and statistical testing of data because they have the most impact on the downstream results. These

focused efforts have resulted in dozens of different normalisation methods and a handful of different sta-

tistical testing protocols which are useful for EWAS. This focus makes sense as the choice of statistical

test and the model used will often define what results are obtained from a study. In a similar aspect, how

one chooses to normalise the data will affect the amount of detectable variation there is between samples

(Fortin et al., 2014b).

In contrast, there is little development or comprehensive investigation into how data can be quality con-

trolled and how this can affect the downstream results of EWAS. Furthermore, the reporting standards

of quality control, compared to normalisation or statistical testing, ranges from sparse to none at all in

published studies; leaving many uninformed of the decisions that lead to the exclusion of samples from

analysis. Despite the recent calls for better reporting standards (Min et al., 2018), there are still only a

small number of examples where the quality control of a dataset is presented alongside the results of an

EWAS.
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Currently, there are more than two dozen R packages that can be used for the analysis of DNA methy-

lation microarray data. A general summary of these packages are presented in Table 2.1 which describes

what functionality is present in some of the more popular R packages used for analysis. However, I feel

it is necessary to provide a more detailed description of some of these packages to help contextualise the

types of analyses that are available for EWAS.

• minfi is the most popular R package used in EWAS. It provides an excellent complement of tools

and data-structures that are widely used by many of the other R packages and are also useful for

most EWAS in general. Minfi offers two forms of quality control, the first using the shinyMethyl

R package and secondly offering a routine quality control pipeline wrapped into a single tool (min-

fiQC). Minfi offers a large variety of normalisation methods including Illumina, SWAN (Maksimovic

et al., 2012), quantile, ssNOOB (Fortin et al., 2016) and functional normalisation (Fortin et al.,

2014b).

Briefly, Illumina normalisation provides background substraction and correction according to control

probes. SWAN normalises probes according to technical differences between Type I and Type II

probes according to CpG content (e.g. CpG island, Open Sea). Quantile normalisation within minfi

first quantile normalises Type II probes and then interpolates the Type II quantiles onto the Type

I probes and then normalises Type I probes. Functional normalisation uses the internal control

probes to identify technical variation, this approach is more considerate than quantile normalisation

as quantile normalisation is known to eliminate variation between samples we would normally expect

large variation (e.g cancerous samples compared to healthy samples). Lastly, ssNOOB makes use

of the out-of-band intensities from Type I probes to estimate background signal and additionally

corrects for dye-bias.

Minfi also provides functions for statistical testing, namely bumphunting (Jaffe et al., 2012) and

block finding (Aryee et al., 2014) alongside the ability to directly annotate to a reference genome.
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Table 2.1: Summary of the functionality of a selection of R packages used for the analysis of DNA
methylation microarray data

Package Data Import QC Normalisation Statistical Testing Reference
minfi Yes Yes Yes Yes Aryee et al. (2014)

RnBeads Yes Yes Yes Yes Assenov et al. (2014)
ChAMP Yes Yes Yes Yes Morris et al. (2014)

wateRmelon Yes Yes Yes No Pidsley et al. (2013)
MethylAid No Yes No No van Iterson et al. (2014)

shinyMethyl No Yes No No Fortin et al. (2014a)
ewastools Yes Yes No No Heiss & Just (2018)
methylumi Yes No Yes No Triche et al. (2013)
MissMethyl No No Yes Yes Phipson et al. (2015)

sesame Yes Yes Yes No Zhou et al. (2018)
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Additionally, it provides a reference based method for the estimation of cell-type proportions using

the method described in (Houseman et al., 2012) for whole blood, cord blood and prefrontal cortex.

• ChAMP distinguishes itself from minfi by providing a more comprehensive approach to analysis

and a more rigid workflow. In terms of quality control, it automatically removes ’bioinformatically

determined’ poor-quality probes (Zhou et al., 2017) and produces an HTML report detailing the

results of some of the quality control performed on the data. It offers a narrower selection of

normalisation methods, limited to Peak-based Correction (Dedeurwaerder et al., 2011), SWAN,

Functional Normalisation and BMIQ (Teschendorff et al., 2013) (similar to minfi quantile without

the quantile normalisation steps). Within ChAMPs workflow it strongly recommends performing

SVA (Leek et al., 2017) and attempts to automatically correct for batch effects. In terms of sta-

tistical testing, it also facilitates the detection of DMRs and DMPs with the addition of further

examination of results with gene set enrichment analysis.

• RnBeads offers a very similar set of tools to what ChAMP, offers but is not limited to the analysis

of microarray data. RnBeads allows for the analysis of Bisulfite sequencing data (either RRBS or

WGBS). Distinctly, RnBeads allows for the entire analysis, from data import to interpretation of

results, to be performed using a single R function which can make it appealing to researchers who

may not be bioinformatically inclined. RnBeads does offer more normalisation options than ChAMP

allowing it to be a versatile software.

• wateRmelon offers a variety of functionality to many other packages through the use of generic

methods which apply to any pipeline (e.g. minfi). Conventionally it does not provide any methods

for statistical testing as it was designed solely for pre-processing data. In terms of normalisation,

it offers many variations of quantile normalisation that are useful in a variety of circumstances.

The authors however strongly recommend dasen normalisation for almost all circumstances as it is

the most gentle normalisation method provided according to a variety of metrics derived from the

microarrays.
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• MethylAid provides an extensive quality-control pipeline which provides various graphical plots to

help visualise how each sample behaves according to various control-probe based metrics van Iterson

et al. (2014). It fits seamlessly with the minfi workflow as it directly depends on the data-structures

provided by minfi. As a result, including it in any analysis that involves minfi is easy. However,

it does not support other software which can potentially limit MethylAid’s utility. The plots are

created using the shiny R package (Chang et al., 2018), which provides a graphical interface for

the users to explore the data without the need to create their own plots.

• shinyMethyl offers a similar quality control experience to MethylAid with a different variety of

plots (Fortin et al., 2014a). shinyMethyl also distinguishes itself from the other R packages as it

utilises the shiny R package. These shiny plots differ to how MethylAid presents the quality control

plots, but the results are often comparable.

• ewastools is a recently published R package focusing on the quality control of data. In contrast

to shinyMethyl or MethylAid, the ewastools package uses methods identical to the quality con-

trol procedures recommended by Illumina’s BeadStudio software (Heiss & Just, 2018). Briefly, it

includes over 17 different quality control checks which suggest ewasTools offers a comprehensive

set of quality control. In contrast, MethylAid offers five quality control checks. In addition to

various quality control, ewastools also offer methods to identify mislabelled samples through SNP

agreements and sex checks.

• The methylumi R package - introduced the concept of out-of-band (OOB) background correction

Triche et al. (2013) which makes use of the Type I probe signals ignored in regular analysis and

uses these OOB signals as a function of background noise instead of the control probes dedicated

to detect background signal. Although it has not been functionally updated to handle the new

EPIC arrays, the data import function provided in methylumi has been extended in wateRmelon

(through my own efforts) and other functionality has been assimilated into minfi (e.g. ssNOOB

normalisation).
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• The MissMethyl R package (Phipson et al., 2015) provides another workflow much like the ones

provided by ChAMP and RnBeads. Notably, the distinction of the missMethyl package is that it

provides a new way to test differential variation (DiffVar) using a Levene’s test and also provides

gene set analysis which is only provided thus far by ChAMP.

• A recently published package: sesame seeks to remove signals from the DNA methylation microar-

rays which are caused by genomic deletions within individuals which can confound with the results

of EWAS (Zhou et al., 2018). These artefacts are corrected using the new normalisation method

(pOOBah) which masks the artefacts while maintaining the biological variation that is of interest

between samples. In addition to providing a new analysis technique, the authors provide a fully

functional preprocessing platform that is quite versatile.

This summary shows that there is a wide range of software available for the analysis of the DNA methyla-

tion data. Each aspect of the general workflow described earlier appear to be well represented with a lot

of focus being placed on the normalisation and statistical testing of data. Many R packages do provide

some form of quality control. However, these quality control tools make decisions based on the control

probes that are available on each microarray which may not be an accurate indication of the true quality

of a sample. MethylAid and shinyMethyl both offer interactive GUIs for the exploration of data that has

been imported by minfi. Ewastools offers a relatively simple set of quality control that can only be applied

to data read in by the ewastools package and therefore not immediately applicable to other workflows.

ChAMP and RnBeads both offer HTML reports with vastly similar quality control procedures to that of

MethylAid or shinyMethyl but are also limited to their respective workflows.

All of these methods focus on control probes and therefore can be considered as one dimensional because

they do not examine the aspect of the data that is being implicitly tested (the β values). Therefore an

opportunity to develop data-driven based quality control methods presents itself. Data-driven tools are

useful because they consider the entire complement of features that are present on the array instead of

examining a small selection of probes.
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Here I introduce some tools to ameliorate this one-dimensional nature of the quality control tools avail-

able. These tools are packaged within the latest version of the wateRmelon R package and nearly all of

the tools can be used on any resultant β matrix produced by minfi, ChAMP, RnBeads or other software.

The tools I describe here include: outlyx (a robust outlier detection method), bscon (a fast tool that

checks the control probes to estimate the quality of DNA applied to the microarray), pwod (an outlier

detection tool that checks each probe separately) and qual (an experimental outlier detection tool that

considers the degree of transformation a sample undergoes during normalisation). In addition to the

quality control tools, I extend the functionality wateRmelon by including accessory functions that include

a data import function (readEPIC) capable of reading in EPIC array data, sex prediction (predictSex),

age prediction (agep) and cell type composition estimators to bring wateRmelon up to speed with other

popular R packages.

The aim of this chapter is to determine whether or not rigorous quality control of data leads to a decrease

in test-statistic inflation. To properly examine this aim I first need to answer a few questions: What is

rigorous quality control? What is test statistic inflation and how do we measure it? And how does quality

control affect downstream results?

2.1.1 What is rigorous quality control?

One may argue that a well thought out pipeline that arbitrarily removes low-quality samples and question-

able probes is sufficient for most datasets. For the most part, such an approach would not come under

much scrutiny, providing it is reported. However, simply looking at the control probes and or the median

signal intensities may not convey the full picture with respects to a samples outlying nature. The quality

of a sample can be questionable according to control probes but have a perfectly reasonable β distribution.

Likewise, a sample can have a wildly erratic β distribution but can look perfectly normal when considering

the control probes. Because of this nuance, it is likely better to use a comprehensive approach, one that

uses both control-probe and data-driven methods, when quality controlling data instead of relying on a

single aspect of quality control.
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Another well-reported form of quality control in EWAS is probe filtering. This process involves the removal

of features (probes) from analysis that are determined to have a poor signal, either through tools such

as pfilter (Pidsley et al., 2013) or from lists of probes that are known to cross-hybridise or are affected

by underlying SNPs in the probe sequence. Such probe lists are available for both the 450K (Zhou et al.,

2017) and EPIC microarrays (Pidsley et al., 2016) and used by default in some R package workflows (e.g.

ChAMP).

It is important to remember that quality control is not just limited to identifying outliers and filtering

problematic probes. It also includes checking the sanity of the data such as identifying mislabelled sam-

ples, checking for familial relationships and looking for potential batch related problems are also necessary

for comprehensive quality control. These sanity checks can be performed using specific software (e.g.

omicsPrint (Van Iterson et al., 2018) or ewastools) or manually by inspecting principal components or

making multidimensional scaling plots.

2.1.2 What is test statistic inflation

Test statistic inflation is a phenomenon that has affected GWAS and EWAS for a long time. In genome-

wide analyses where hundreds of thousands of statistical tests are being performed, it becomes necessary

to adjust the test-statistics to satisfy the multiple testing thresholds. Often this adjusted is done by

dividing the test statistics by the number of tests being performed (Bonferroni Correction) or by con-

verting test statistics into a false discovery rate such as the method suggested by Benjamini & Hochberg

(1995). Test statistic inflation can be observed, even after this adjustment, when the observed number

of significant results obtained is greater than the expected number of significant results. This increase

suggests that there is a bias towards the lower tail of p-values within a given set of results therefore

indicating the potential for false positives.

In GWAS this inflation is caused by population structure or cryptic relatedness, where immeasurable

sub-populations within sample groups drive variance towards spurious associations. A popular remedy
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for inflation in GWAS is to divide the test statistics prior to multiple testing adjustment by an inflation

factor λGC . This factor is defined as the ratio between the median test statistic and the median expected

test statistic derived from an empirical null of a χ2 distribution equivalent to a value of 0.456 (Devlin

& Roeder, 1999; Devlin et al., 2001). Dividing test-statistics by this inflation factor increases (providing

that λGC > 1) the observed p-values such that the corrected p-values are comparable to the expected

distribution of p-values (the empirical null distribution). This approach works in these scenarios as it will

doctor the upper-tail of the observed distribution (providing that λGC > 1)

In EWAS the source of this inflation is more complicated. Due to the nature of the epigenome and how

it is measured, epigenetic data is subjected to many sources of confounding including age, environment,

cell heterogeneity and batch effects. Additionally it had been shown that λGC is limited when the trait

being investigate is associated with multiple small effects (Voorman et al., 2011) which is usually the

case in EWAS. To remedy these additional sources of confounding van Iterson et al. (2017) proposed a

novel method of estimating λ for EWAS (henceforth referred to as λbacon). Distinctly, the λbacon method

implements a Bayesian outlier model which assumes that there are a small number of genuinely associ-

ated findings and calculates the inflation factor with these findings excluded. This means that λbacon is

mostly independent of the relatively few associations that an EWAS generates. In addition to computing

the inflation factor, van Iterson et al. (2017) also make the argument that the test statistics produced

by EWAS are also subject to a bias which leads to a shift in the distribution of effect sizes. Despite

such development, the practice of controlling for test statistic inflation in EWAS is not yet commonplace.

Nonetheless, it is possible to use either λGC or λbacon as a way to estimate the amount of test statistic

inflation that exists in any given analysis.

When trying to account for test statistic inflation, one should try their best to remove batch effects,

outliers and other sources of confounding. While appropriate quality control should effectively handle

outliers, efforts have been made to reduce the other sources of inflation. Correcting for batch effects can

be done using ComBat (Johnson et al., 2007) or by including experimental variables as covariates (e.g.

Slide and plate numbers). Removal of unwanted variations can be done using sva (Leek et al., 2017), ruv

(Gagnon-Bartsch, 2018) or CATE (Wang & Zhao, 2015) but have been demonstrated not to be effective
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in removing all confounding (van Iterson et al., 2017). Alternative workflows such as ChAMP or the

workflow proposed by Lehne et al. (2015) suggest including various numbers of principal components in

the model which is another strategy that is employed by GWAS.

2.1.3 Does meaningful quality control decrease test statistic inflation

Given that test statistic inflation in the context of EWAS is driven by numerous sources, it is reasonable

to assume that the application of a quality control method can decrease the test statistic inflation and

improve genuine signals. In the example of ewastools, Heiss & Just (2018) look at a wide variety of

datasets but limit their analysis to only describe the number of samples that fail quality control measures

(reflective of Illumina’s suggestions). Heiss & Just (2018) identify numerous samples in each dataset

which suggests that a majority of the datasets could benefit from quality control prior to analysis. There-

fore a reasonable extension of these analyses would be to consider how different quality control methods

differ in the number of samples identified and how the removal of flagged samples can affect down-stream

results. Although I am limited by the fact the deposited data may not have all of the required information

to reproduce the exact analysis used in the original studies, I should be able to perform analyses to a

reasonable standard while comparing three different quality control methods (wateRmelon, MethylAid

and ewastools).

2.2 Methods

There are many publicly available datasets and also a large number of quality control pipelines I can

examine. Therefore, I decided to select three quality control pipelines that allow for the precise control

of other features of analysis (e.g. normalisation and statistical testing). By comparing the differences in

the number of samples flagged by each method and by performing the same statistical analysis, I will be

able to examine how different quality control methods fare in reducing test statistic inflation.

I decided to compare the MethylAid package (an interactive GUI quality control R package) which also
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includes a part of minfis quality control pipeline, ewastools (a command-line tool derivative of the Bead-

Studio software of Illumina) and wateRmelon (the data-driven tools I will describe in this study). The

reasoning behind choosing to focus on both MethylAid and ewastools are dedicated software for the

quality control of data and provide will perform functionality similar to that of most software such as

ChAMP or RnBeads.

In MethylAid, outliers are determined based on five checks and additional between-sample checks can

be manually verified. MethylAid’s outlier tests include looking at the median signal intensities, bisulfite

conversion efficiency, the overall quality of samples in both sample dependent and independent control

probes (using the non-polymorphic and hybridisation probes) and a measure of background noise on a per

sample basis according to the negative control probes. Ewastools use these same quality control probes

but tests each sample based on the guidelines suggested by Illumina. In total, ewastools uses 17 different

metrics to quality control samples.

Despite the large selection of quality control methods available, none of these are particularly data driven

and therefore the opportunity to develop and present some data-driven tools is described here. Data-

driven methods for detecting outliers are attractive as it is entirely possible for a potentially outlying

sample to appear completely normal or even well-performing according to the control probes. Conversely,

samples flagged by control probe methods may appear to fail but will otherwise generate a usable signal

and thus could lead to removing data that otherwise do not need removal.

One data-driven approach can include checking the distribution of β values on a per sample basis and

remove samples that have a distinctly different shape (See Figure 2.1 for example). Another method for

outlier detection can also include the use of dimensional reduction techniques such as principal compo-

nents analysis or multidimensional scaling and plotting two of the dimensions in a scatter plot. Both

methods are particularly useful as they are quite robust and can identify samples which are considerably

different from the rest of the data. However, both of these methods are not reproducible as they require

manual selection and verification to determine outliers.
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Figure 2.1: Example of using β distributions to identify outliers. Potential outliers are coloured in red
and are characterised by lower peaks at β values of 0 and 1 alongside an increased band around a β of
0.5.
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The outlyx function uses both principal components analysis and Mahalanobis distances to identify out-

liers within datasets. By default, it considers the first principal component as it is the largest source of

variance within DNA methylation data. The Mahalanobis distances are computed by using the pcout

function from mvoutlier package (Filzmoser et al., 2008). Samples are flagged based on how far they

away from the bulk of the data in terms of interquartile range and also based on the final weight according

to the pcout function. The final weight ranges from 0 to 1 where values <0.25 are considered outliers

by the original authors, this final weight is computed from two other metrics and a value of <0.25 is

only ever acheived if a sample scores a 0 in atleast 1 of the two tests (Filzmoser et al., 2008). Overall,

outlyx is fairly conservative (depending on the thresholds chosen) as only samples that fail both tests will

be considered outlying. This approach yields a robust and reproducible method that is both easily inter-

preted using outlyx’s inbuilt plotting functionality and is unaffected by both swamping and masking effects.

The next tool, bscon, functions similarly to how the other control probe based metrics perform. The dis-

tinct difference is that bscon translates the signal from bisulfite conversion probes into a percentage. This

distinction allows for a more natural interpretation of sample quality compared to other quality control

metrics based on bisulfite conversion probes (e.g. MethylAid’s raw signal method and ewastool’s ratio

method (Unmethylated Intensity/ Methylated Intensity)). As a result, it is possible to set meaningful

thresholds (e.g. < 80% bisulfite conversion) to screen for outliers.

Qual seeks to exploit an area of quality control that is almost always overlooked in EWAS and can be

important in diagnosing downstream problems with samples that may not present themselves as outlying

by the current quality control tools. The thought process behind qual is to measure the amount of change

a sample requires to fit with the expected distribution following normalisation. As normalisation attempts

to correct for systematic variation, it is possible that it drastically changes the raw signals of a sample

such that it fits with the remaining dataset. This ’violence’ can be explained with the root mean square

(RMSD) and the standard deviation (SDD) of the difference (∆β) between the normalised and raw β

values for a given sample, ∆βj = βNormalisedj − βRawj . Samples that are subjected to a low degree of

violence are expected to have small RMSD and SDD values, likewise a sample that has been subjected

to a high degree of violence will have high RMSD and SDDs. The effectiveness of qual is dependent on
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both the normalisation method used and whether or not the application of normalisation was meaningful.

A meaningless normalisation for example could involve normalising two datasets together from different

tissues, where the differences are always going to be very large.

Lastly, I suggest another probe filtering method that does not aim to remove testable probes from analysis

but rather prune the individual probes for outliers within their own β distribution which may be caused by

SNPs that may not be accounted for according to existing probe filtering methods. The aptly name tool,

pwod (’p’robe-’w’ise ’o’utlier ’d’etection), identifies probe-level outliers based on signals that lie outside

of more than 4 interquartile ranges from the upper and lower quartiles of each single probes distribution.

The extremely conservative threshold is used to ensure that only obvious probe-level outliers are removed.

These tools: outlyx, bscon, qual and pwod - make up a thoughtful quality control pipeline that considers

many aspects of quality control to remove samples from analysis. These tools can be used by themselves

or as part of a preexisting methodology and are highly reproducible as the results and reporting of these

tools are straightforward.

To test the usefulness of these tools, they were compared to the quality control tools provided by Methy-

lAid and ewastools as they are representative of the other quality control pipelines that are available. The

datasets used to test the methods are detailed below, but the general analysis of each dataset is as follows.

All data was read in using the readEPIC function to parse idat files into methylumiset objects. Datasets

were quality controlled according to the default parameters for each method. For both MethylAid and

ewastools, any flagged samples were removed from the dataset then low-quality probes identified by pfilter

were removed from analysis. Data was then normalised using dasen normalisation. For watermelon, out-

liers from bscon and outlyx were removed prior to dasen normalisation, samples flagged by qual were then

removed followed by pfilter then the raw methylated and unmethylated intensities (with samples identified

by qual removed) was normalised using dasen one more dasen normalisation again. After normalisation

all quality control pipelines were additionally subjected to pwod.
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2.2.1 Datasets

The datasets used for this analysis were obtained from GEO and an additional 1,193 samples were used

from the Understanding Society UK household longitudinal study which were assayed on the EPIC array.

Despite initially looking at over 70 data-sets, only a selection of these were used for further analysis due

to lack of information or inappropriate annotations to produce a sensible model or to reproduce the model

the original authors had described in their analysis.

2.2.2 Measuring Test Statistic inflation

Test statistic inflation was quantified as the genomic inflation factor λGC . Briefly, this is derived as the

median observed test-statistic divided by the median expected value from an empirical null distribution,

computed from a χ2 distribution. For this study I will only be using λGC as a measure of inflation and will

not be dividing the test-statistics by the factor prior to calculating the number of bonferroni significant

hits. As I also intend to compare the number of bonferroni significant hits between the methods the

number of hits identify before and after genomic control should be comparable between methods.

2.2.3 Statistical Analysis

The datasets that were selected for statistical testing attempted to follow the model used by the original

author however the quality control and normalisation method used in the original studies were not used.

Because of this, the results from these reproduction analyses may not be exact reproductions due to miss-

ing variables and difference in upstream processing. All models included age, sex, slide number and array

position as covariates with cell-type composition estimates included when the samples were obtained from

whole blood. Each model (for each dataset) will be run for each method of quality control (no quality

control, wateRmelon, MethylAid and ewastools). Test statistic inflation and the number of genome-wide

significant results will be compared across all tests to examine how each quality control method affects

downstream results.
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2.3 Results

To ascertain how the tools described in this study can be used in an analysis it is useful to demonstrate

how each tool functions Firstly, outlyx is the first data-driven outlier detection tool that uses dimensional

reduction techniques to identify outliers according to two separate tests. By using two tests it is a both

highly robust and conservative that is not affected by swamping and masking effects. As seen in Fig-

ure 2.2 the outlyx function provides an inbuilt plotting function which provides users with a useful plot

that demonstrates how each sample looks with respects to the rest of the data. In general, the second

test (using Mahalanobis distances) appears to be more likely to identify outliers. By using two tests it

is possible to ensure that only genuinely outlying samples are identified. This approach does require a

considerable amount of computing resources to produce results however it can be sped up at the cost of

some accuracy by using a smaller subset of probes.

In regards to which thresholds would be most appropriate for data I observe that the final weight produced

by the pcout function tends to score samples poorly quite frequently. Due to how the pcout function is

designed a weighted score of <0.20 is acheived when a sample scores a value of 0 in either of the two tests

that the pcout function uses. This can be seen in Figure 2.4 and Figure 2.3b where there is a distinct

cluster or change in shape of the slope at a value of 0.20. To avoid this I chose a value of 0.15 to select

samples which are distinctly different from the bulk of the data. Despite this a threshold of 0.15 will still

select approximately 24% of samples (Figure 2.4). By using the interquartile based method (>2 IQRs) in

addition to the mahalanobis method we manage to flag <1% of samples to be outliers and may warrant

the removal from analysis as the IQR method is indeed the limiting factor for outlyx where 2 IQRs only

flags around 1.5% of samples (Figure 2.4 and Figure 2.3a).

The bscon tool works similarly to all the other control probe based metrics described in this study. One

distinction with bscon is that the output is in the form of a percentage. This makes it incredibly easy to

make an assumption about the quality of the sample. In general, the tool will output a value of around

95% if the sample is of very good quality (A score of 100% is unlikely due to background noise). From

examination of all the data analysed in Table 2.2 we can see that appoximately 90% of all samples have a

bscon value >80% (Figure 2.5 and Figure 2.6). Although a low bisulfite conversion value may determine
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Figure 2.2: Example of the output from the outlyx tool. Performed on 93 samples obtained from DNA
from cerebellum brain tissue assayed on the 450k microarray. No. of IQRs from Upper or Lower quantiles
are calculated from loading values from PC1. Final Mahalanobis Weight is derived from a modified
version of the pcout function. Outliers can are determined as outlying based on where each point (a
single sample) lies on the plotting area. Samples within the red squares are considered outlying.
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Figure 2.4: Overall number of outliers detected by outlyx when applied to the numerous datasets described
in Table 2.2. Red-dashed lines indicate thresholds of 2 IQRs and a final weight of <0.15.
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if a sample is outlying a low bisulfite conversion value may indicate potential lab problems which should

be looked into further.

Qual is an interesting tool that has the potential to be a useful tool in the bioinformaticians toolbox.

Qual measures the degree of normalisation violence that a sample undergoes during normalisation. This is

often an unaddressed area of EWAS as the assumption is that the data after normalisation has had most

of the technical problems have now been accounted for. Out of all the software available only RnBeads

offers similar functionality but do not expand on it in any way. Here we characterise this violence using

the RMSD and SDD of the difference between normalised and raw values on a per sample basis. This

allows relatively easy interpretation, by plotting the two metrics in a scatter plot (Figure 2.7) will provide a

pattern where samples that change very little, cluster around the origin while samples that have had a lot

of violence are further away. From examination of various thresholds (Figure 2.8) we see that at a value

of around 0.05 there is a sharp elbow in the number of samples flagged by both RMSD and SDD. I found

that a value of > 0.05 for both RMSD and SDD appear to capture around 5% of samples (Figure 2.9)

and serves to function as a conservative threshold. However, whether samples should be removed from

analysis or a more suitable normalisation method should be used depends entirely on the research question.

In addition to looking for outliers on the sample level, it is possible to identify individual outlying signals

on the probe level. In most circumstances, the β distribution of a single probe has a unimodal distri-

bution except for probes that have a SNP underlying the probe sequence which can yield a multimodal

distribution. These probes that could exhibit multimodal distributions are usually removed form analysis

as they are often identified in the probe lists. In the probes that are considered normal and unimodally

distributed there is not a consistent check to identify whether or not there are any outliers on the probe

level. Indeed it is difficult to ascertain why a signal on a probe would be extremely different from the

rest of the data but, it is thought that either SNP heterozygotes or minor allele frequencies are a likely

cause of this. To aid in this, pwod considers the quartiles of each probe and removes any signal that is

more than 4 IQRs away from the upper and lower quartiles (Figure 2.10). These large boundaries are to

ensure that no genuine variations caused by the experiment design would influence as even the largest

effect sizes seen in studies only contributes to a minor difference in methylation between groups.
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Figure 2.5: Example usage of the bscon function performed numerous datasets described in described in
Table 2.2. Computation of the bisulfite conversion percentage per sample using bscon allows for easy
determination of low-quality samples. In general samples of good quality will have a bisulfite conversion
rate of ∼ 95% depending on the source of DNA. Samples that have a bisulfite conversion percentage less
than a certain threshold (shown here as 80%) should be considered as outlying and removed.
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Figure 2.6: Number of samples flagged by different thresholds of bscon when applied to numerous datasets
described in described in Table 2.2.
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Figure 2.7: Example usage of the qual function from wateRmelon. Performed on 93 samples obtained from
DNA from cerebellum brain tissue assayed on the 450k microarray, normalised using the dasen method.
Differences between normalised and raw betas values are characterised using two metrics (RMSD and
SDD), samples that undergo the largest amount of change are characterised by having a large RMSD
and SDD (see Figure 2.9 for examples), in general samples that have a RMSD and SDD > 0.05 should
be treated carefully.

41



0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

020406080100

R
M

S
D

% of Samples Flagged

(a
)

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

020406080100
S

D
D

% of Samples Flagged

(b
)

F
ig

u
re

2.
8:

D
is

tr
ib

u
ti

on
s

of
th

e
n

u
m

b
er

of
sa

m
p

le
s

fl
ag

ge
d

by
q

u
al

w
h

en
ap

p
lie

d
to

n
u

m
er

ou
s

d
at

as
et

s
d

es
cr

ib
ed

in
d

es
cr

ib
ed

in
T

ab
le

2.
2

u
si

n
g

d
iff

er
en

t
th

re
sh

ol
d

s
of

(a
)

R
M

S
D

an
d

(b
)

S
D

D

42



−6 −4 −2 0 2 4

−6
−4

−2
0

2
4

Log Root Mean Square Difference

Lo
g 

St
an

da
rd

 D
ev

ia
tio

n 
of

 D
iff

er
en

ce

0% 6.12%

9.7%84.2%

Figure 2.9: Scatter plot of the outputs of qual (RMSD) and (SDD) when applied to numerous datasets
described in described in Table 2.2. Outputs are log-transformed due to some RMSD and SDD values
being exceedingly large. Red dashed lines represent RMSD and SDD thresolds of 0.05 e−3. Each quadrant
are described by the percentage of samples that exist within that area. For example, 6.81% of samples
would be flagged by the qual tool when using the value of 0.05 as a threshold.
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Figure 2.10: Density plot of a single CpG site describing the differences between raw (black) and pwod-
treated data (red). It can be seen that the distribution of both raw and pwod beta values are identical
except for a single, outlying signal lying far from the mean of the bulk distribution. This process is applied
to every probe available in the data-set.
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To assess how each of the quality control workflow performs I first determined how many samples were

flagged as outlying within each dataset according to the three methods being examined. To do this, I

used over 70 datasets that were publicly available on GEO. These datasets were assayed on the 450K

microarray except for the large dataset assayed on the newly released EPIC microarray (UKHLS). Each

dataset was quality controlled using the default thresholds as described by each workflow.
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Table 2.2: Summary of the number of flagged samples using default thresholds by ewastools (with Non-
Polymorphic probes), MethylAid and wateRmelon (with bscon)

Dataset No. Samples ewastools (+ NP probes) Methylaid wateRmelon (+ bscon)
GSE42861 689 2 (16) 0 4 (5)
GSE43976 95 0 (8) 0 0 (0)
GSE51032 845 3 (91) 204 77 (79)
GSE51057 329 0 (15) 5 0 (2)
GSE52980 13 0 (1) 0 0 (10)
GSE55491 24 0 (0) 0 1 (1)
GSE59065 296 0 (7) 134 5 (5)
GSE59524 24 0 (0) 0 0 (0)
GSE60655 36 0 (0) 0 1 (3)
GSE61107 48 0 (1) 3 0 (1)
GSE61279 110 82 (82) 55 4 (80)
GSE61454 269 129 (248) 188 3 (85)
GSE61496 312 8 (26) 4 4 (6)
GSE62219 60 9 (48) 55 7 (13)
GSE63106 62 0 (0) 0 0 (0)
GSE63695 97 0 (39) 40 47 (39)
GSE65058 24 2 (2) 2 0 (0)
GSE65638 16 0 (0) 0 0 (0)
GSE66459 22 0 (0) 0 0 (0)
GSE67393 117 10 (29) 64 3 (11)
GSE67419 24 0 (0) 0 0 (0)
GSE67444 70 4 (22) 12 0 (0)
GSE68777 40 5 (13) 33 0 (2)
GSE69852 6 0 (0) 0 0 (0)
GSE70478 38 0 (0) 1 2 (2)
GSE72120 72 0 (5) 25 4 (4)
GSE72354 34 14 (14) 0 0 (0)
GSE72364 12 0 (0) 0 0 (11)
GSE72556 96 25 (51) 70 12 (15)
GSE73115 180 2 (6) 0 0 (0)
GSE73412 74 12 (12) 7 1 (1)
GSE73626 18 0 (1) 1 0 (0)
GSE73745 24 0 (0) 0 0 (2)
GSE74432 122 0 (0) 8 13 (13)
GSE74548 174 11 (33) 67 5 (7)
GSE76503 48 0 (0) 21 0 (0)
GSE79064 18 0 (0) 1 0 (0)
GSE79257 137 62 (71) 28 6 (42)
GSE79329 34 0 (0) 0 0 (0)
GSE80261 216 5 (35) 51 11 (17)
GSE81846 16 0 (0) 5 0 (15)
GSE82084 36 10 (10) 7 5 (6)
GSE85042 71 0 (0) 0 0 (1)
GSE85506 47 0 (1) 0 0 (0)
GSE85568 115 0 (3) 13 0 (0)
GSE87571 732 1 (15) 0 7 (8)
GSE87582 21 0 (0) 0 0 (1)
GSE87655 6 2 (3) 0 0 (5)
GSE88883 100 8 (8) 0 0 (0)
GSE89474 10 1 (1) 5 0 (0)
GSE90871 24 0 (0) 2 0 (0)
GSE93266 75 11 (11) 1 0 (0)
GSE94462 16 4 (6) 3 1 (1)
GSE97362 235 35 (35) 47 1 (2)
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GSE98056 69 23 (25) 49 0 (0)
GSE98203 88 43 (45) 0 1 (1)
GSE98876 71 16 (16) 42 0 (0)
GSE99553 84 23 (23) 1 0 (0)
GSE99863 257 29 (29) 3 6 (6)

GSE100940 24 0 (0) 0 0 (1)
GSE102177 36 5 (5) 0 0 (0)
GSE102504 25 7 (7) 11 0 (0)
GSE103413 67 1 (6) 1 3 (7)
GSE103769 57 0 (0) 5 0 (0)
GSE103911 65 5 (5) 0 0 (0)
GSE104087 40 0 (0) 0 1 (1)
GSE104287 48 3 (4) 0 2 (2)
GSE104472 72 19 (19) 0 1 (1)
GSE104812 48 15 (15) 0 0 (0)
GSE105124 108 84 (84) 0 0 (108)
GSE105798 11 4 (4) 0 0 (0)
GSE107737 24 12 (12) 0 0 (0)

UKHLS 1193 13 (1193) 95 14 (19)
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The number of outliers flagged by each workflow is described in Table 2.2. There appears to be con-

siderable variation in the number of samples flagged between each method. Overall it appears that the

tools described in this thesis (wateRmelon) are more conservative (flag fewer samples) when compared

to both MethylAid and ewastools. MethylAid and ewastools performed relatively the same and tended

to flag samples in high numbers on separate datasets. The disparity between different methods suggests

that a comprehensive and careful approach to quality control is likely needed in all situations.

Each quality control workflow presents its own disadvantages. Ewastools tends to flag outliers exclusively

on the Non-Polymorphic control probes which is seen in both GSE61454 and UKHLS where almost all

samples were flagged as outliers. Heiss & Just (2018) do caution that these quality control checks are

to be used to flag samples for further investigation as the samples could still be usable. MethylAid has

a tendency to identify outliers based on the hybridisation efficiency control probes as seen in cases such

as GSE51032 and GSE59065 where many of the samples are flagged. Lastly, the tools in wateRmelon

are mostly data-driven they suffer in performance if they are run on large datasets. Additionally, they

are functionally dependent on the composition of the dataset being analysed. Specifically, these tools

are sensitive to datasets that contain mixtures of tissues (outlyx) or are dependent on the normalisation

method that has been applied to the data (qual).

The datasets that are described in Table 2.2 only represent a small fraction of the data available on public

repositories. While it would be interesting to consider all of the datasets that are publicly available it

would be tedious and ultimately uninformative to examine all datasets that are of usable quality with

respects to quality control. As a result, I have chosen to focus on a selection of datasets that displayed

a reasonable variation in the number of samples flagged by each method to examine how removing the

flagged samples according to each quality control method will affect the downstream results.

For the following analyses, I perform statistical models on a selection of the quality controlled datasets

with each of the quality control methods. I decided to not exclude samples based on the non-polymorphic

control probes for the ewastools method because of the tendency of these probes to flag the majority of

samples within a given dataset. The datasets that were chosen had models that were relatively close to the
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original analyses performed in their respective studies where the data originated from. In circumstances

where no EWAS had been previously published or the original model was not possible to reproduce due

to missing variables the models was then assumed. In all circumstances, the final model used for each

dataset was either a fixed-effect linear regression model or an ANOVA depending on the variable of interest.

Test statistics were compared for the following workflows: No quality control, ewastools (without NP

probes), MethylAid and wateRmelon (with bscon). All quality-control methods explored additionally had

pwod applied to compare with the dasen normalised β matrix. To evaluate whether or not the models

were inflated or indeed the test statistics had been improved a few measures were considered. Genomic

Control (λGC) was used to quantify the general degree of test statistic inflation despite the limitations

described earlier and the number of significant results (unadjusted and Bonferroni corrected) were also

examined.

Table 2.3 summarises the results of the statistical testing for each dataset using each quality control

workflow. Application of wateRmelon yielded the largest relative decreases in test statistic inflation and

the number of significant probes when compared to the other quality control pipelines. All forms of

quality control did affect the downstream results usually a decrease in test statistic inflation which shows

that any amount of quality control is likely to have an impact on a study. A key point that needs to be

considered is that the amount of test statistic inflation and the number of significant probes identified in

a model will be dependent on what is being examined. For example, if the model is looking at differences

between sex, then it makes sense that there will be thousands of genome-wide significant hits as there

are thousands of loci located on the sex chromosomes on the microarray.

The number of probes tested in each model tested does vary between dataset and the quality control

method used. However, within this study, the number of probes will not vary considerably (< 1000

probes) between the different quality control methods but may not be comparable with the number of

probes analysed in the original study the dataset comes from.
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The models performed here do vary from the original manuscripts slightly. In the case of GSE42861,

the original study by Liu et al. (2013) identified around 50,000 genome-wide significant (after Bonferroni

correction) results. The only real difference between these analyses is that I used dasen normalisation and

additionally included the slide and microarray position as covariates within the model. Upon removing

these terms from the model, I find that the number of genome-wide significant hits for the no quality

control model increases to > 20,000 probes. This falls short of the 50,000 probes identified by Liu et al.

(2013) which suggests that the disparity between these results is likely due to the normalisation method-

ologies. Indeed the dasen normalisation method attempts to correct for positional effects in addition to

correcting for Type I and Type II differences which could be driving these large numbers of significant

results. Considering that more than five years have passed since the Liu et al. (2013) paper was published

it may be worth revisiting these results using the understanding we have gained during this time to see if

it is possible to glean any new or potentially missed understanding.

Out of the three quality control methods explored in this study, the best performing method appears

to be wateRmelon as it is firstly the most conservative (preserves the most samples) method out of the

three methods. In addition to keeping the largest number of samples it did decrease test statistic inflation

and also changed the number of genome-wide significant hits. This trade-off between keeping the largest

number of samples and improving the results demonstrates that data-driven methods are superior in terms

of quality controlling data. In addition, the application of pwod, regardless of the quality control method,

further reduced the amount of test statistic inflation and the number of genome-wide significant results in

approximately half of the cases. Considering that pwod only requires a β matrix to function it is general

enough that it can be applied to any dataset before statistical testing and should yeild and improvement

in results.

2.4 Discussion

In this study, I attempt to identify what is the most effective quality control method for use on DNA

methylation microarray data. While it remains to be fully determined which quality control workflow
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should be implemented for analysis. I present evidence to suggest that data-driven methods, particularly

those aimed towards identifying outlying samples, should be considered as part of any robust and repro-

ducible quality control pipeline.

Firstly it should be noted that all of the quality control pipelines, including those not compared in this

study, will be effective in handling test statistic inflation in the majority of cases. However, the data-driven

methods I have developed appear to be superior to the control-probe based methods. A comprehensive

approach (one that uses both control-probe based and data-driven methods) is likely to be the most

effective way to quality control data as a broad approach will identify potential outliers that would have

otherwise been missed.

The tools I introduced in this chapter are (outlyx, qual, pwod) are general enough that they can be

applied to any β matrix that has been produced by other software packages. This quality means that

these tools can easily fit into other preexisting workflows without too much hassle. Whereas using quality

control methods such as ewastools requires a highly specific pipeline that may not facilitate all necessary

functionality to perform an EWAS. Although I do not compare my tools with the quality control tools

described in other popular R packages, I feel that due to the high similarity between the tools examined in

this study that the conclusions of this study are still applicable. I demonstrate that my tools are the most

effective in reducing the amount of test statistic inflation and reduce the number of spurious associations

while also preserving the largest number of samples for downstream analysis. Although these results are

dependent on the variable of interest, there is a marked decrease in significant results coupled with a

decrease of λGC in almost all datasets when wateRmelon quality control is applied.

The number of genome-wide significant hits in this study were determined using Bonferroni correction.

This was used over applying a false discovery rate to control for multiple testing because Bonferroni

correction is a simple, conservative method of determining the number of genome-wide significant hits

there were in each model. As I was interested in determining which quality control methods were most

effective in reducing test statistic inflation and improving genuine results the use of Bonferroni correction

is appropriate because in circumstances where the number of genome-wide significant hits increased us-
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ing a different methodology could suggest that the effect size of a genuine association was able to reach

genome-wide significance.

The models used to estimate how effective each quality control workflow may not have been identical

reproductions to the original publications. From experience, I decided to include cell-type composition

estimates (where appropriate) and the slide number and microarray position for each sample as covariates.

While the originating authors may not have gone as far to include these as covariates, it has been shown

that cell heterogeneity should be accounted for when it presents itself (Teschendorff & Relton, 2018). As

a result, I sometimes obtained wildly different results compared to the original studies. In the case of

Liu et al. (2013) I identified a handful of genome-wide significant probes while Liu et al. (2013) obtained

> 50,000. Upon removing the slide numbers and positions from the model, the number of genome-wide

significant hits increased to approximately half of what was identified in the original study suggesting that

the remaining difference was due to the difference in normalisation methodology. Indeed the normalisation

method I used was considerate of array position while also adjusting the probes for Type I and Type II

differences while Liu et al. (2013) used the default normalisation methodology as provided by Illumina.

Despite these methodological differences it is surprising that the such a large discrepancy between these

two analyses which are for the most part identical. These discrepancies in analyses could be interesting

to follow-up as we understand more about the 450K microarray and how to perform EWAS it may be

beneficial to revisit old studies and attempt to reproduce the results using new methodologies.

Although the data-driven methods performed better than their control-probe counterparts they are not

without drawbacks. These tools require an entire β matrix to function (or two in the case of qual) which

can take up a large amount of computer memory and could take a long time to run. However, computers

are getting larger and faster so these problems may not be as large of limitations as they appear to be. In

addition, as these tools are data-driven, it is possible to speed up the tools considerably by sub-sampling

the number of probes to be used at the cost of accuracy. In addition to potentially having a long compute

time, these tools by their very definition are dependent on the contents of the data. For example, outlyx

will perform poorly on datasets that contain multiple tissue types however it appears to perform fairly

well on heterogeneous tissues such as blood. Likewise, qual will perform differently depending on the type
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of normalisation that is being applied to the dataset and gentle normalisation methods may not impart

such large changes on the data thus potentially requiring different thresholds.

Outlyx appears to be the most robust outlier tool that is currently available for DNA methylation data.

Although it is derivative of manual data checking using principal components it distinguishes itself in that

it is a robust and reproducible method that is robust to masking and swamping effects that will detect

outliers without the user needing to investigate thresholds. While it performs poorly on mixed-tissue or

mixed disease datasets, it performs remarkably well on heterogeneous tissues such as whole blood. In

addition, because it only requires a β matrix is it able to be implemented in all of the current workflows

(e.g. RnBeads, ChAMP, minfi) without too much hassle. Lastly, outlyx provides a simple and elegant

plotting functionality that visually shows how each sample appears according to the tool.

Qual is an interesting tool as its utility has yet to be fully realised. As part of the wateRmelon quality

control workflow, it works well to identify samples which have undergone drastic changes during nor-

malisation. This aspect of quality control is almost always ignored, so it is difficult to compare this

to other types of quality control as it is unique. I exclude samples using qual based on a term coined

as ’normalisation violence’ which is proposed to be some type of confounding that is introduced during

normalisation. However, this is speculative as I have not examined the differences in downstream results

without the application of qual. In the future, I would like to perform a more thorough and comprehen-

sive examination of both quality control and normalisation to establish whether or not this normalisation

violence is a confounding influence on results.

Identifying outliers on the probe level appears to have some effect on downstream results. The pwod

function I developed here showed a decrease in test statistic inflation in approximately half of the datasets

examined. Although it is not as large of a difference in comparison with the application of outlyx or

qual, there is still a reasonable enough difference in the results to consider applying pwod in most cir-

cumstances. Considering that the alternatives to probe-filtering are currently pfilter and removing probes

according to probe-lists (Zhou et al., 2017) I believe that pwod is a useful addition to the probe-level

quality control of data. A distinction of pwod to other probe-filtering methodologies is that pwod does
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not remove probes from analysis but instead removes observations from each probe. This allows for many

more loci to be tested while potentially removing some of the genetic confounding that could be driving

spurious associations.

The analysis performed in this study was focused on how upstream quality control leads to better results.

Other aspects of analysis can lead to differences in downstream results. It is important to consider that

both the choice of the normalisation method and the choice of the statistical test being performed are

likely to affect the results especially in conjunction with quality control. Use of sophisticated analyses such

as bumphunting (Jaffe et al., 2012) are thought to yield highly robust results as they consider comethyla-

tion implicitly during the statistical testing of differential methylation. Additionally, the identification of

surrogate variables Leek et al. (2017); Wang & Zhao (2015); Gagnon-Bartsch (2018), removal of batch

effects Johnson et al. (2007), thorough probe filtering (Zhou et al., 2017; Pidsley et al., 2016) and the

use of reproducible pipelines (Lehne et al., 2015, RnBeads, ChAMP) can also drastically improve results

but also potentially mask genuine results that have small effect sizes.

The new method for applying genomic control described by van Iterson et al. (2017) in the BACON R

package could vastly improve the results of EWAS. Because the application of genomic control is not

yet widely adopted in EWAS because of the additional sources of confounding, λbacon could fulfil this

role in the future. In this study, I chose to not apply any form of genomic control on the results and

solely used λGC as a measure of test statistic inflation. In consideration, it is possible that using λbacon

as the measure of test statistic inflation may have been more appropriate to use as λbacon is somewhat

considerate of the additional confounding that EWAS are subjected to.

Ultimately the quality control of data requires a careful and considerate approach to ensure that there

are no technical problems associated with data. I explored how a variety of quality control tools focused

on identify outlying samples can affect downstream results and determined that a combination of both

data-driven and control-probe based methods would likely yield the best results. I demonstrate that a

data-driven approach to quality control leads to the largest improvements in the reduction of test statistic

inflation while conserving the largest number of samples for analysis. It is up to those who are responsible
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for the analysis of the data to perform reasonable quality control and to report the methods used in some

degree so that analysis in the future can be reproduced accurately.

2.5 Conclusion

There is no definitive quality control pipeline. While it may seem obvious, it is imperative that some

form of quality control is applied to the data before statistical analyses. I demonstrate that there is a

great deal of variation in the results of data when different quality control pipelines are applied. This

is expected as there will be small differences in the number of samples and the number of probes being

analysed. While all quality control pipelines were effective in attenuating some test statistic inflation,

it was the tools described here which performed the best. In most situations, the quality control tools

provided solely by the software used to read in data are not able to identify all problematic samples. I

recommended a comprehensive approach that considers one-of or some of the data-driven tools that I

have described in this study. The tools I have developed are general enough that they can be applied to

any processed β matrix and therefore can easily fit into pre-existing workflows. I suspect that these tools

could be welcome additions to any bioinformaticians toolbox and should be heavily considered. I stress

that the reporting of the quality control of data is as important as reporting the type of normalisation

method used and will vastly improve the reproducibility of any study should it be included in the future.
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Chapter 3

Bigmelon: tools for analysing large

DNA methylation datasets
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Abstract

Motivation: The datasets generated by DNA methylation analyses are getting bigger. With the

release of the HumanMethylationEPIC micro-array and datasets containing thousands of samples,

analyses of these large datasets using R are becoming impractical due to large memory require-

ments. As a result there is an increasing need for computationally efficient methodologies to

perform meaningful analysis on high dimensional data.

Results: Here we introduce the bigmelon R package, which provides a memory efficient workflow

that enables users to perform the complex, large scale analyses required in epigenome wide asso-

ciation studies (EWAS) without the need for large RAM. Building on top of the CoreArray Genomic

Data Structure file format and libraries packaged in the gdsfmt package, we provide a practical

workflow that facilitates the reading-in, preprocessing, quality control and statistical analysis of

DNA methylation data.

We demonstrate the capabilities of the bigmelon package using a large dataset consisting of

1193 human blood samples from the Understanding Society: UK Household Longitudinal Study,

assayed on the EPIC micro-array platform.

Availability and implementation: The bigmelon package is available on Bioconductor (http://bio

conductor.org/packages/bigmelon/). The Understanding Society dataset is available at https://

www.understandingsociety.ac.uk/about/health/data upon request.

Contact: tgorri@essex.ac.uk or lschal@essex.ac.uk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

DNA methylation is the most easily analyzed, and probably the

most stable epigenetic mark. There are multiple site-specific assay

methods for DNA methylation based on bisulfite conversion, and

currently the most used genome-wide method are micro-arrays

made by Illumina, based upon genotyping technology. This has

made Epigenome-Wide Association Studies (EWAS) (Rakyan

et al., 2011) possible, analogous to genome-wide association studies
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(GWAS). EWAS have been dominated by the use of the Illumina

Infinium HumanMethylation450 BeadChip micro-array, or 450K

array (Bibikova et al., 2011), which allows for the interrogation of

DNA methylation levels of more than 450 000 loci at a relatively

low-cost. The 450K has been used widely and as of July 2017, data

from more than 60 000 arrays have been deposited onto the Gene

Expression Omnibus (under GPL13534). The 450K has since been

superseded by the HumanMethylationEPIC BeadChip micro-array

(EPIC). The EPIC array has substantial overlap with the 450K and

extends genome coverage to almost twice the number of loci

(Moran et al., 2016). With this increase in size of data it is apparent

that current methodologies are not suitable for handling the large

memory requirements necessary for analysis.

Analysis of DNA methylation array data is usually performed

using one of three software packages: Minfi (Aryee et al., 2014),

ChAMP (Morris et al., 2014) and RnBeads (Assenov et al., 2014),

all available on Bioconductor (Gentleman et al., 2004). Minfi pro-

vides tools for the reading-in of raw data files, normalization, map-

ping of DNA methylation data to the genome and the identification

of differentially methylation positions and regions. The ChAMP

package extends the minfi package but also seeks to integrate other

analyses and incorporates a selection of useful tools such as batch

correction and gene enrichment analysis into a rigid workflow.

RnBeads also offers a similar workflow to ChAMP but is not limited

to DNA methylation micro-array data and can additionally analyze

sequencing data. RnBeads also seeks to guide users through analyses

with sequential functions and can even perform an entire analysis

pipeline within a single function. Other packages worth mentioning

include MethylAid (van Iterson et al., 2014) and wateRmelon

(Pidsley et al., 2013), which focus on the quality control and prepro-

cessing of DNA methylation data respectively. WateRmelon is ex-

tremely compatible with minfi, ChAMP and RnBeads and provides

a variety of useful normalization methods and quality control tools.

MethylAid thoroughly examines the control probes located on DNA

methylation micro-arrays and presents users with a collection of

graphics that help diagnose problematic samples. Downstream ana-

lysis of any resultant processed data is performed on a probe-by-

probe basis with tools such as limma (Ritchie et al., 2015) or with a

variety of methods to identify differentially methylated regions such

as bumphunter (Jaffe et al., 2012) or block-finding (Hansen

et al., 2011).

Analysis of DNA methylation data from the raw format (.idat

files) first requires the parsing of data using the illuminaio package

(Smith et al., 2013) and conversion into a useful format. Using the

minfi package as an example: idat files are read into R, into mem-

ory, as an RGChannelSet object and subsequently can be converted

into a MethylSet object using a specified normalization method-

ology or left unprocessed whilst simultaneously matching probes to

identifiers. This MethylSet object essentially contains two matrices

corresponding to methylated (M) and unmethylated (U) intensities.

Statistical analysis of DNA methylation data mostly involves b val-

ues which are the ratio between the Methylated and total signals,

defined as b ¼ M
ðMþUþaÞ, where a is an arbitrary value to offset low in-

tensity values (usually 100). Assuming all three steps

(RGChannelSet ! MethylSet ! b matrix) are performed within a

single R session it would not be unreasonable to assume that there

are three copies of the same information stored in memory. If such

analysis was performed on a dataset consisting of 1000 450K arrays

we can expect to require at least 16 GB of memory (Supplementary

Materials S1) to simply load and convert data from raw format to a

biologically interpretable output before any statistical analysis has

been performed. The memory requirements may be mitigated

through careful memory management and garbage-collection how-

ever taking such steps would require reloading data into memory if

they are needed at a later point in time.

All the R packages described require data to be first loaded into

memory prior to any analysis. This can become an issue when han-

dling particularly large datasets as this would take up a considerable

amount of time and memory (depending on the computer) to load

into R. Presently, this is not an issue as the average size of an experi-

ment using 450K arrays is around 100 samples (400 Mb b matrix

size). Out of the 900 experiments deposited onto GEO (as of July

2017), only 27 of these have sample sizes larger than 500 and these

larger studies (Hannon et al., 2016; Jaffe et al., 2016; Liu

et al., 2013) may have been presented with analytical challenges

during down-stream analysis. Furthermore, large-scale analyses that

involved the aggregation of numerous datasets such as the ones used

in creating the epigenetic clock (Horvath, 2013) or exploring reposi-

tories such as Marmal-Aid (Lowe and Rakyan, 2013) may have

been severely limited by the need to load all the data into memory as

this would have made analysis computationally expensive.

Recent efforts have been made to handle this problem, notably

with the release of the meffil R package (Min et al., 2017). The mef-

fil R package allows the parsing of data one sample at a time and

offers a single form of normalization (functional normalization) but

is still limited by the fact that end result, b values, are stored in mem-

ory. In addition to this, meffil does not permit for the (raw) methy-

lated and unmethylated intensities to available alongside the b
values which can be useful in certain analyses. Furthermore meffil

does not allow for interactive preprocessing of data prior to normal-

ization, a feature that is highly important in our experience of

EWAS studies.

This feature of analysis, coupled with the release of the EPIC

array means that data will be increasing in size and current method-

ologies may not be suitable for the analysis of large datasets. To

combat potential memory constraints imposed by DNA methylation

analysis we introduce the bigmelon R package which includes

memory-efficient tools for reading-in, quality control, exploring

data and provides a practical workflow. In a well-run large-scale

genomics project the data is examined, quality-controlled and stored

as experimental batches are produced, rather than at the end.

Bigmelon is the only existing package that is designed to facilitate a

workflow of incremental data addition and analysis.

2 Approach

The bigmelon package makes use of the genomic data structure file

format (.gds format) implemented in the gdsfmt package (Zheng

et al., 2012). Originally designed for the storage of SNP micro-

arrays used in GWAS, the.gds format is a hard-disk representation

of data with libraries that support efficient access. The gdsfmt pack-

age is also used by the GWASTools package (Gogarten et al., 2012)

and the SNPRelate package (Zheng et al., 2012) which provide tools

for principal components analysis and identity-by-descent algo-

rithms that are integral in GWAS for adjusting for population struc-

ture and cryptic relatedness. In a similar manner, bigmelon is an

extension of both gdsfmt and wateRmelon that enables the analysis

of high dimensional DNA methylation data. The design objective of

bigmelon is to provide the tools necessary for a complete workflow,

these include quality control, normalization and statistical testing

but also provide methods for further evaluation and analysis. Tools

are additionally provided for estimating covariates such as age

(Horvath, 2013), sex and whole blood cell-type proportions
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(Houseman et al., 2012). Another heavily used tool for evaluating

and exploring data is principal components analysis, and an efficient

sampling approach to doing this on a large datasets is provided.

Finally, the package is designed to facilitate incremental analysis, so

that small batches of data can be readily looked at for quality con-

trol and even allow for first pass analyses as data is produced.

3 Materials and methods

A summary of the bigmelon workflow is described in Figure 1, the

workflow can be broken down into three main parts: data import,

quality control & preprocessing and analysis. Further descriptions

of each section are as follows:

1. Data import:

Much like other packages described, bigmelon offers the ability

to read data into R into the gds file format using the iadd or

iadd2 functions. The output of these functions is a hard-disk rep-

resentation of an object that closely resembles the methylumiset

object from the methylumi package (Triche et al., 2013). For

large data-sets these functions support memory-efficient batch

processing. minfi (RGChannelSet, MethylSet) and methylumi

(MethyLumiSet) objects can also be converted into gds format

using the eset2gds function.

2. QC & preprocessing:

Once data is in a gds file, it is possible to do thorough quality

control using a number of memory-efficient tools. These include

checking for outliers (outlyx), array quality (bscon), principal

components analysis and age predictions, which can reveal mis-

labelling and other problems. After problematic samples are

removed the data can be normalized. A range of quantile nor-

malization methods are available as in wateRmelon. We intro-

duce (qual), a quality measure based on the magnitude of

changes introduced by the normalizer. This can identify further

problematic samples which can degrade the quality of the data-

set, for example introducing test-statistic inflation.

3. Analysis:

One way to analyze the data is to extract the b values or subsets

of them from the gdsfmt object and analyze them with any of

the conventional methods. Bigmelon also facilitates conversion

to MethylSet and MethyLumiSet objects using the gds2mset or

gds2mlumi functions. This of course will be limited by the avail-

able memory. The core of EWAS analysis probewise analysis,

and this is can be done relatively fast using minimal memory

with apply.gdsn, and can also be parallelized using

clusterApply.gdsn More complex analysis methods can be

adapted for use with bigmelon objects. We provide a guide to

doing this using bumphunter, and a bumphunter method is pro-

vided in the package.

3.1 Datasets
To demonstrate the capability of the bigmelon package we analyze

two large datasets. The first consists of 1193 individuals from the

Understanding Society: UK Household Longitudinal Survey. The

goal of Understanding Society is to assess long-term and short-term

effects of social and economic change on a variety of outcomes.

Social and economic data are recorded through questionnaires and

additional information including biomarker data and genotyping

micro-arrays have also been obtained. Biomarker and relevant ques-

tionnaire data are available at https://www.understandingsociety.ac.

uk/about/health/data upon request. 500Ng of whole blood DNA

from each individual was treated with sodium bisulfite using the

EZ96 DNA methylation kit (Zymo Research, CA, USA) following

manufacturer’s standard protocol. DNA methylation intensities

were assess using Illumina Infinium HumanMethylationEPIC

BeadChips (Illumina Inc, CA, USA) in the Laboratory of Professor

Jon Mill (University of Exeter). DNA methylation levels were

assessed on an Illumina HiScan System (Illumina). This data-set is

used to demonstrate the complete workflow described in Figure 1.

The second dataset is the Marmal-aid database (Lowe and

Rakyan, 2013). Marmal-aid is the largest, most readily available

dataset for DNA methylation consisting of 14 586 450K arrays.

Originally it was collated to be used as a reference database for

many cancerous and noncancerous tissues as it contains rich detail

about each array (Tissue, Disease State, Sex and Age) but it can also

serve as a useful resource for software performance on very large

datasets.

3.2 Comparisons of memory usage
To test the difference in memory usage during analysis we the

normalizeQuantiles function from limma (used on the Marmal-Aid

dataset) with the bigmelon optimized versions (qn.gdsn). Bigmelon

contains many optimized versions of functions used to normalize

data and reproduce the results of the analysis precisely but differ in

how the computations are handled. The aim of testing the difference

in memory usage is to demonstrate that it is possible to execute

memory expensive computations without much cost of speed.

Memory usage was recording using an in-house bash script

(Supplementary Materials S2) to monitor the memory usage of a

specified R process at regular intervals during the normalization

process.

3.3 Data accession
To estimate how much time it takes to retrieve that data from the

hard disk into memory, the time taken to retrieve random portions

of data from the Marmal-Aid dataset using the microbenchmark

package (Mersmann, 2015).

All analyses were performed using R 3.4.0 on a machine with

500GB RAM (necessary for conventional analysis).

4 Results

4.1 Bigmelon provides a convenient workflow
Data import: the functions iadd and iadd2 conveniently read in raw

data (idat files), and can append new data to an existing gdsfile,

which is the key mechanism allowing an incremental workflow. We

go through an analysis of Understanding Society data-set to demon-

strate the steps shown in Figure 1.

Quality Control: The outlyx function is a robust outlier detec-

tion tool that identifies outlying samples without supervision

(Fig. 2). Within the original 1193 samples it can be seen that 6

samples are outlying (Fig. 2A), and removal of the most-outlying

sample yields no change in the results for the remaining samples

(Fig. 2B), suggesting that the tool is not susceptible to swamping/

masking effects. Similarly, removal of all outlying samples does

not unmask further candidates. (Fig. 2C) further demonstrating

the robustness of the quality-control procedure. Due to the un-

supervised nature of this tool, it can also be used to check data-

sets after quality control.

Atypical arrays are most likely the result of DNA quality or

processing faults, and the control probes on the array offer some in-

formation on this. bscon calculates a bisulfite conversion value,

which would ideally be 100%. In some datasets this may be lower,
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but certainly particularly low samples are an indication of trouble.

Supplementary Figure S1 shows the output of bscon on the

Understanding Society dataset. Here we select a conservative thresh-

old of 85% bisulfite conversion, and six samples were identified as

having low-quality, from these only one of these was also identified

as being atypical using outlyx.

Minor systematic differences between arrays introduced by sam-

ple quantity or other technical variations are readily normalized

away, and quantile normalization based methods are excellent for

imposing identical distributions on vectors that are similar in the

first place. The objective of EWAS is to detect a relatively small

number of true differences on a homogeneous background. We

introduce a function qual that measures ’normalisation violence’

required to bring an individual array into line. The properties of the

measure have not been fully explored, but a reasonable cutoff of

0.05 for root mean squared deviation identifies 6 potentially bad

arrays in this dataset (Supplementary Fig. S2).

In summary, out of 1193 samples we began with, 18 were

removed for failing qc criteria, 6 from outlyx, 7 from qual and 5

from bscon as detailed above. Each of these involve thresholds that

may need to be that may need to be adjusted in some cases but in

the main they can be used as automated filters. Additional qc and

sanity checks are equally important but require more human inter-

vention. Principal component analysis often reveals stratification,

samples with the wrong labelled sex and other problems. In

Supplementary Figure S3 we present the first and second principal

component loading values which clearly show two clusters which

can be used to guess the sex of samples, in our experience we have

found that the number of probes required to produce such a plot is

small and in some cases <1% of the total number of probes on a

micro-array will produce a biologically interpretable result. It is for

that reason the principal components method packaged in bigmelon

allows for a random selection of probes to be used instead of the full

data-set. Age prediction (Supplementary Fig. S4) can also be used to

check whether or not samples aligned with their supposed phenotyp-

ic data. In addition to offering age prediction using Horvath’s coeffi-

cients we also allow the option to compute ages using Hannum’s

coefficients (not shown) (Hannum et al., 2013).

Cell-Type composition estimation (Supplementary Fig. S5) has

been optimized by imposing methylated and unmethylated quantiles

onto the reference dataset instead of normalizing the reference and

biological dataset together as it was felt that given a large enough

number of samples, the addition of the reference dataset would not

have an effect on the precision of the cell-type estimates. When com-

pared to minfi it can be seen that the cell counts calculated using by

normalizing data together do not vary much from the cell counts

calculated from the alternative method and correlated highly

Fig. 1. Example of bigmelon workflow. The workflow is broken up into three

parts: Data Import, Quality Control and Analysis. Quality-control and analysis

boxes propose examples that can be used at each stage of the analysis

A B C

Fig. 2. Demonstration of outlyx on Understanding Society Dataset (n¼1193). (A) The results of outlyx used on all samples, (B) The results of outlyx with an obvi-

ous outlier removed and (C) the results of outlyx with all outliers removed
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together (Root Mean Squared Differences between minfi and bigme-

lon estimated cell counts range from 0.020 to 0.006).

4.2 Bigmelon uses less memory
When comparing the memory usage of bigmelon to other software

(limma and wateRmelon) it can be seen that there is at least a

hundred-fold difference in memory usage at any given time through-

out analysis (Fig. 3). These improvements in memory efficiency are

mostly dependent on the size of the data that are being analyzed

however this demonstrates that there is vast improvement using two

large biological data-sets. This improvement suggests it may be pos-

sible to carry out a complete analysis workflow on a low-end com-

puter (e.g. a workstation with just over 2 GB memory) as a full

analysis only requires 600 MB of memory at any given time. In this

comparison the performance of limma is identical to that of

wateRmelon and minfi, as all use the same normalizeQuantiles func-

tion. This is further demonstrated in Supplementary Figure S6 where

we assess the time it takes to quantile normalize varying data-sizes

on a modest workstation where it quickly runs out of memory and

resorts to thrashing to complete analysis. This reflects how both

minfi, wateRmelon and other R packages would perform.

4.3 Random access is fast
Despite being stored on the hard-disk access is still relatively fast

(Fig. 4). The median seek-time, using the Marmal-Aid dataset as a

benchmark, ranged from 6.2 ms when seeking a single data-point

randomly from the gds file to 13 min, when seeking all the data (458

877 rows, 14 586 columns). Additionally, accessing full rows and

columns from hard-disk take on average 14 and 0.3 s respectively. It

however must be noted that it appears the time required for access-

ing any amount of data is dependent on the number of samples being

accessed at the time, for example accessing all data for a 500 sample

dataset will only take 22 s.

5 Discussion

We have demonstrated how the bigmelon package resolves a severe

limitation that is associated with current methodologies in EWAS.

The bigmelon package facilitates the reading-in, quality-control,

preprocessing and statistical analysis of DNA methylation micro-

array data with an additional selection of useful tools. Through stor-

age of data on the hard-disk it is possible to circumvent majority of

memory constraints and allow the analysis to be performed on most

computers. Additionally, due to the nature of the workflow (Fig. 1)

it is possible to append data to pre-existing gds files allowing users

to analyze data as it is produced. The workflow has similarities to

the workflows presented in minfi and ChAMP, and there is a reason-

ably simple transition path from these to bigmelon.

Currently, bigmelon does not support all of the generalized clus-

tering methodologies used for the identification of differentially

methylated regions, although we do have an implementation of

bumphunter. Bigmelon allows for the seamless transition to and

from minfi or methylumi data structures (MethylSet and

MethyLumiSet objects), offering a route to using specialized tools if

enough memory is available. To assist in the writing optimized func-

tions for users with highly specific analyses we have provided a

guide to writing functions for bigmelon that covers most of the im-

portant aspects to writing memory efficient code (Supplementary

Materials S3). We plan to implement as many analyses as we see fit

and will strive towards implementing many existing methodologies

in the future.

6 Conclusion

The bigmelon package offers users the ability to easily handle and

analyze large DNA methylation datasets (both 450K and EPIC)

without the need of huge RAM or powerful computers however can

reap the benefits of powerful computers as the gds file format sup-

ports parallel computing. The bigmelon package trivializes the

Fig. 3. Comparison of quantile normalization on 52 GB b matrix from Marmal-

aid dataset (n¼ 14 586) using limma::normalizeQuantiles function and bigme-

lon::qn.gdsn, computation was performed on a single core computer with

500GB of memory

Fig. 4. Median time spent randomly accessing different sized portions of data

from the Marmal-Aid data-set (n¼14 586) stored in.gds file format
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compilation, exploration and analysis of extremely large datasets

and should prove integral for the analysis of DNA methylation data

in the future.
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3.1 Supplementary Figures
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Supplementary Figure 1: Histogram of bisulfite conversion percentages from
Understanding Society: UK Household dataset as estimated by the bscon func-
tion in wateRmelon. Conservative threshold of 85% represented with red-dashed
line is used to filter out low-quality samples.
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Supplementary Figure 2: Differences between dasen normalised and raw β val-
ues from Understanding Society: UK Household dataset as calculated by the
qual function in wateRmelon package. Samples above thresholds of 0.05 (dashed
lines) Root Mean Square Difference (rmsd) or Standard Deviation of Difference
(sdd) were excluded from further analysis as they represent data that have un-
dergone the most change during normalisation. Each data point represents a
single sample.
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Supplementary Figure 3: Scatter plot of loading vectors from Principal Com-
ponents 1 and 2 from Understanding Society: UK Household dataset calculated
from a random 1% of data. Data-points correspond to individual samples and
coloured by annotated sex.
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Supplementary Figure 4: Example of age prediction on the Understanding Soci-
ety: UK Household dataset, calculated by the agep function in the wateRmelon
package, red dashed lines represented a perfect fit between biological and pre-
dicted age.
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Supplementary Figure 5: Comparison between bigmelon and minfi methods
of cell-type composition estimations. minfi cell-type compositions estimated
using the estimateCellCounts function and bigmelon cell-type composition es-
timations determined using estimateCellCounts.gds function. estimateCell-
Counts.gds functions similar to the minfi version however differs only when
normalising the biological data with the reference dataset, by normalising refer-
ence dataset using the biological dataset quantiles rather than normalising the
two datasets together. Root mean square difference was calculated for each pre-
dicted cell-type to show overall good precision despite differing methodologies.
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Supplementary Figure 6: Median run time of quantile normalisation methods
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3.2 Explanation of Supplmentary Materials

Supplementary Material 1 describes a breakdown of how much memory an EWAS could theoretically

take up in memory using the object.size function in R. Using linear algebra it is possible to then estimate

the amount of memory required to merely load the data into R prior to any statistical testing. Additionally,

this material also includes a description of how functions in the bigmelon R package have been written

to exploit storing data on the hard-disk instead of within computer memory.

Supplementary Material 2 contains the bash script that was used to monitor the memory usage of a

specified process running on a linux system. Due to flaws with the inbuilt methods to record memory

usage within R, which tracks the sizes of objects within an environment the outputs of the original method

over-estimate the concurrent memory usage of an R function which makes it difficult to determine the

precise amount of memory being used by a single R process. The bash script monitors a given job id

and outputs the % of memory used by the process on a given machine. This allows memory usage to be

monitored over-time. Output of % of memory consumed can be converted into the amount of RAM used

by multiply the output by the computers memory.

Supplementary Material 3 describes a detailed guide on how I would write memory-efficient functions

using the bigmelon R package. Here I demonstrate the process of implementing a memory-efficient

method of bumphunter which originally includes a number of matrix multiplications which often require

large amounts of computer memory. Due to the length of this material it is located within the Appendices.
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3.3 Supplementary Material 1

Concurrent memory usage

Given how standard work-flows currently exist it is necessary to parse the raw idat files in pairs and convert

them into meaningful values. This can consume a lot of memory before any meaningful analysis has even

taken place. For example: Parsing a single pair of idat files (450k) within minfi requires a minimum 76

MB of memory with each additional pair of idat files contributing an additional 4.8 MB to the total object

size (of the RGChannelSet, not including detection p-values or beadcounts). Typical work-flow dictates

that data is further processed into a MethylSet (either through processing or not) which then additionally

requires at least 60 MB of memory plus 7.4 MB per sample. Lastly, analysis is often performed on Beta

values which are the ratio between Methylated and Unmethylated values. Which in total requires 30 MB

plus 3.7 MB per sample.

The consumption of memory can be largely avoided through garbage collection and deleting unneeded

memory objects after processing. However assuming that after going through a pipeline a resultant beta

matrix containing 1,000 samples there is approximately (3.7GB and 6.6GB of memory are being used to

store the beta matrix alone for 450k and EPIC array respectively.) These estimations in data-sizes are

estimates that do not include other encoded data within the idats such as detection-p values and bead

counts. Which also influence the total memory requirement for reading in data.

Linear functions of memory usage for minfi given increasing n for 450K and EPIC micro-arrays. Gener-

alised object sizes determined using object.size() function on increasing sizes of objects from minfi. N.B.

This is estimated using RGChannelSet instead of RGChannelSetExtended which contain information that

can be used to compute detection-p values and bead counts and take up more memory.
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450K::

MRG−450k = n4.8 + 76

MMset−450k = n7.4 + 60

Mβ−450k = n3.7 + 30

MTotal−450k = MRG−450k +MMset−450k +Mβ−450k

MTotal−450k = n4.8 + n7.4 + n3.7 + 166

(3.1)

EPIC::

MRG−EPIC = n8 + 126.7

MMset−EPIC = n13.3 + 105.7

Mβ−EPIC = n6.6 + 52.9

MTotal−EPIC = MRG−EPIC +MMset−EPIC +Mβ−EPIC

MTotal−EPIC = n8 + n13.3 + n6.6 + 285.3

(3.2)

How bigmelon acheives memory efficiency

As the bigmelon R package stores data within a .gds file format which is stored on the hard-disk it is

possible to access smaller portions of data quickly. For example, if we are interested in the β values of a

single sample within a data set of 500 samples, we would require 1.9 Gb of memory to first store the entire

dataset in memory and then randomly access the specified set of data. In bigmelon, we would technically

only require 33 Mb of memory as the dataset is stored upon a hard-disk and the queried range is then

loaded into R. Using this, it is possible to perform operations by iterating across the rows or columns of

a dataset to perform tasks using as little memory as possible. This comes at a cost of speed as read from

hard-disk multiple times will add up over time.

For a specific example we can take a look at performing quantile normalisation. Normally this is performed

by sorting each column of data and then calculating the mean of each row which yields us the quantiles

(ordered from lowest to highest). These are then used to replace the original values according to the rank

of each original value, performed in a sample-wise manner.

Within bigmelon, instead of storing the sorted data within R it is possible to access each sample one

73



at a time, sort the data and store the sorted values in the form of a rolling sum. After performing this

operation on all samples we can arrive at the row means by dividing each value by the number of samples

we used. Then the data can be accessed once again (one sample at a time) and the values can be

replaced by the quantiles and written back onto the hard-disk during the second pass over the data. The

advantage of using bigmelon is that this process shouldn’t use more than 200 Mb of memory regardless

of the number of samples that are being processed however if we were using the former method we would

end up a lot of memory (as described by Figure 3 within the Chapter.)

3.4 Supplementary Material 2

#!/bin/bash

while [ true ]

do np=$(ps -ef | grep $1 | wc -l)

if [ "$np" -gt 0 ]; then

top -n 1 -b | grep $1 | awk -v x=10 ’{print $x}’ >> $2

sleep 1

else exit

fi

done
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Chapter 4

Lipids, Drugs and Rock & Roll

4.1 Introduction

Cardiovascular disease (CVD) refers to the set of diseases associated with the heart and circulatory sys-

tem. Collectively CVDs contribute towards the largest cause of death in human beings in both developed

and under-developed countries, with recent estimates accounting for around 31% of total deaths each

year (Mendis et al., 2011). CVDs are considered a complex disease and have many risk factors. These

risk factors include age, smoking status, diet, exercise, genetic variation and blood-lipid levels.

From an examination of the number of deaths attributed to each risk factor, it can be seen that many

of the metabolic traits are among the top causes of death (Figure 4.1). Considering that there are many

angles of the epidemiology of CVDs to explore, I decide to focus on the relationship between DNA methy-

lation and blood-lipid levels for this study.

These blood-lipid levels refer to four main measurements: High-Density Lipoprotein Cholesterol (HDL-C),

Low-Density Lipoprotein Cholesterol (LDL-C), Triglycerides (TG) and Total Cholesterol (TC). In general,

an increase in blood-lipid levels (or a decrease in HDL-C concentration) are often associated with both

CVDs and atherosclerosis. Atherosclerosis describes the process of an accumulation of plaques made

up of fatty materials (cholesterol and triglycerides) within arteries. The build-up of these plaques leads
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to an increase in blood pressure and gives rise to myocardial infarction or stroke, usually resulting in death.

All of the associated risk factors of CVDs have previously been investigated in rich detail in both genome-

wide and epigenome-wide contexts.

GWAS have identified more than 100 SNPs to be associated with blood-lipid concentrations (Willer et al.,

2013). The studies that looked at the genetic contribution towards elevated blood-lipid levels established

the expected genetic risk of CVDs does exist. GWAS can explain why some individuals exhibit increased

blood-lipid concentrations but provide little information towards understanding the complex interplay be-

tween the genetic and environmental factors that contribute to the development of CVDs. As a result,

epigenome-wide approaches are now considered because they can provide insight into how non-genetic

components can contribute towards disease.

Recently, numerous studies have explored the relationship between DNA methylation and metabolic traits

(See Section 1.5 for an in-depth review of literature). EWAS investigating blood-lipid levels are not as

popular as other metabolic traits such as Obesity or Type II Diabetes (Wahl et al., 2017; Petersen et al.,

2014) but many studies (Hedman et al., 2017; Braun et al., 2017; Pfeiffer et al., 2015; Dekkers et al.,

2016b) and reviews (Dekkers et al., 2016b; Mittelstraß & Waldenberger, 2018) have been presented on

blood-lipid levels over the last five years. All of the EWAS on blood-lipids to date have been performed

on the 450K microarray.

Because Illumina has recently released the EPIC microarray (Moran et al., 2016) the opportunity to extend

and reproduce the results from previous studies on the new platform has presented itself. This is cou-

pled with the generation of a large data-set, assayed on the EPIC array, organised by the Understanding

Society: UK Household Survey - which is rich in information of socio-economic and lifestyle factors in

addition to a number of biomedical measurements. In addition to extending previous results, this study

will be able to serve as an excellent demonstration of both the quality control and memory optimisation

methods that I have described in Chapters 2 and 3.

In this study, I present the first EWAS between blood-lipid concentrations (TC, TG and HDL-C) and

DNA methylation performed on the new EPIC microarray. This EWAS was carried out on 1,193 samples
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obtained from individuals taking part in the Understanding Society UK Household study. The results

replicate many of the existing findings from past EWAS and present additional novel findings, providing

an interesting opportunity for future work to validate and study further.
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Figure 4.1: Ranking of 10 selected risk factors on cause of death - adapted from Mendis et al. (2011)
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4.2 Methods

4.2.1 Discovery Cohort

The British Household Panel Survey began in 1991. In 2010 it was incorporated into the larger UK

Household Longitudinal Survey (Knies, 2015). Annual interviews have been collecting socio-demographic

information. This survey was coupled with biomedical measures and blood samples that were collected

during 2011 to 2012. Respondents of the BHPS were eligible to give a blood sample if they had taken part

in the previous main interview in English, were over the age of 16 years old, lived in the United Kingdom

(excluding NI), were not pregnant and additionally met other conditions detailed in the Understanding

Society user guide (Benzeval et al., 2014).

DNA methylation profiles were obtained from DNA extracted from whole blood from 1,193 eligible indi-

viduals who had consented to both blood sampling and genetic analysis during 2011-2012 and had been

present at all annual interviews between 1999 to 2011. Additionally, samples whose time between blood

sampling and processing that exceeded three days were not considered for analysis. Eligibility require-

ments for genetic analyses meant that the epigenetic samples were restricted to participants of white

ethnicity.

4.2.2 DNA Methylation Measurements

500ng of whole blood DNA from 1193 individuals were treated with sodium bisulfite using the EZ96 DNA

methylation kit (Zymo Research, CA, USA) following the manufacturer’s standard protocol. DNA methy-

lation was assessed using Illumina Infinium HumanMethylationEPIC BeadChips (Illumina Inc, CA, USA)

(Moran et al., 2016). DNA methylation levels were quantified on an Illumina iScan System (Illumina, CA,

USA). Samples were randomly assigned to chips and plates to minimise batch effects. A fully methylated

control (CpG Methylated HeLa Genomic DNA; New England BioLabs, MA, USA) was included in a ran-

dom position on each plate to facilitate sample tracking, resolve experimental inconsistencies and confirm

data quality. Raw signal intensities were parsed into R and converted into β values using the bigmelon R
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package.

4.2.3 Quality Control

Data was quality controlled using the tools described in Chapter 2. Poor quality and low represented

probes were removed from the data using pfilter. Data outliers and low-quality samples were identified

and removed using outlyx and bscon (< 85% bisulfite conversion). Data was then normalised using the

dasen quantile normalisation method. Following this, the difference between normalised and raw β values

was estimated using the qual function. Samples found the have a RMSD > 0.05 and a SDD > 0.05 were

removed from analysis. The raw signal intensities, following removal of samples identified by qual, were

re-normalised using qual. After quality control, a total of 857071 probes and 1,175 samples remained for

further analysis. Details of how the dataset was quality controlled are described in full detail in Chapter 3

and descriptions of the tools is provided in Chapter 2.

4.2.4 Lipid Measurements

Blood-lipid measurements were obtained from non-fasting whole-blood samples. TC, TG and HDL-C

were measured directly while LDL-C measurements were calculated using Friedewald method (Friedewald

et al., 1972).

CholesterolLDL(mmol dm−3) = CholesterolTotal(mmol dm
−3) − CholesterolHDL(mmol dm−3)−

Triglyceride(mmol dm−3)

2.19

(4.1)
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4.2.5 Discovery EWAS

Multivariate fixed-effect linear regression models were used to assess the relationship between DNA methy-

lation and each blood-lipid trait (TG, HDL-C, TC and LDL-C) using age, sex, plate number and cell-type

composition (CD8 T Cells, CD4 T Cells, Natural Killer cells, B Cells, Monocytes and Granulocytes) esti-

mates were included as covariates in the following model.

DNAmi ∼Lipid Phenotype+Drug Status+Age+ Sex+

Plate Number + CD8T + CD4T +NK +BCell +Mono+Gran

(4.2)

The cell-type estimates were computed using estimateCellCounts function from minfi using a reference

based deconvolution method described by Houseman et al. (2012) using a reference dataset obtained

from 450K microarrays.

Linear regressions were chosen because they are generally quite robust to violations in their assumptions

whereas other tests may not be as forgiving. For statistical analysis, all blood-lipid measurements were

scaled to a mean of 0 and a SD of 1, except for TG concentrations which were natural log transformed.

These TG concentrations were log transformed as the distribution was otherwise skewed towards the

left (and therefore exhibited a log-normal distribution) while the other blood-lipid measurements were

otherwise normally distributed.

The statin-use model was similar to the above model but did not include any blood-lipid measurements.

Participants that were taking non-statin lipid-lowering medication were further excluded from all analyses.

In total 1,173 samples were used in this discovery EWAS.

Prior to statistical testing, all outlying observations on a per probe basis were removed using the pwod

function from wateRmelon.
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Genome-wide significant hits were assessed based on a bonferroni corrected p-value <0.05

4.2.6 Sensitivity Analysis

To test the robustness of the genome-wide significant results identified in the discovery EWAS, I performed

a sensitivity analysis by re-performing the previously described model including additional covariates which

could influence the results. The additional covariates include metabolic traits (BMI, waist circumference),

lifestyle factors (smoking status, alcohol consumption) and the first 10 principal components obtained

from previously obtained genotyping data. Further models were performed with removing genetically sim-

ilar participants (singletons only) and removing all participants that were known to be using lipid-lowering

medication.

4.3 Results

The characteristics of the Understanding Society: UK Household study cohort is described in Table 4.1.

Out of the 1,193 samples that were initially assayed on the EPIC microarray a total of 1,173 remained

following quality control. Overall the cohort consists of a majority of samples obtained from female par-

ticipants who are on average one year younger than the males in the cohort. More males participants

were using lipid-lowering medication which could explain the overall lower cholesterol measurements (TC,

LDL-C, HDL-C) in males when compared to females while the TG levels remain higher.

EWAS for TC, LDL-C, HDL-C and TG blood concentrations were performed on 857,071 CpG sites located

throughout the genome. A total 4 (TC), 0 (LDL-C), 42 (HDL-C) and 23 (TG) differentially methylated

CpGs were identified in each initial analysis with estimated effect sizes ranging from 0.002 to 0.013,

-0.010 to 0.011 and -0.025 to 0.015 per standard deviation increase for TC, HDL-C and TG concentra-

tions respectively. Effect size estimates were not sensitive to smoking, alcohol-use and genetic variation;
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however, some CpGs displayed sensitivity to diet-related measurements (BMI and Waist circumference).

There were no genome-wide significant findings reported from the LDL-C EWAS.

The metabolic traits that were examined in this study display a wide variety of correlation Figure 4.2.

TC and LDL-C shared the highest correlation alongside a high correlation between WC and BMI. HDL-C

concentrations showed small correlations with TC, WC, BMI and shared an inverse correlation with TG

concentrations. These correlations make some sense as LDL-C concentrations are determined as the

remainder of TC concentrations after the subtraction of both HDL-C and TG measurements. BMI and

WC are well known to correlate. The inverse correlation between HDL-C and TG could be explained by

diets that involve higher HDL-C may be sparse in TG or vice versa. Despite the small correlations it seems

appropriate to treat each of these blood-lipid traits independently in models to avoid any attenuation of

genuine effect.

4.3.1 Total Cholesterol

The EWAS between DNA methylation and TC concentrations revealed a total of 4 genome-wide significant

CpG sites (Table 4.2). All four of the CpGs identified were present on the 450K microarray and therefore

had the opportunity to be identified in previous studies. All of the associations present a positive increase

in methylation state at each CpG site with increasing TC concentrations although the effect sizes are very

small, ranging from +0.002 to +0.013 per standard deviation of TC concentration.

4.3.2 Triglycerides

A total of 23 genome-wide significant probes were identified to be associated with log-transformed triglyc-

eride concentrations and DNA methylation (Table 4.3, 4.4 and 4.5). 19 of the 23 CpG sites identified in

this analysis were annotated to a total of 12 genes. Effect sizes ranged from -0.022 to +0.015. 9 of 23

probes identified are specific to the EPIC microarray and are therefore novel.
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Table 4.1: Characteristics of the Understanding Society: UK Household Longitudinal study cohort

Characteristic Male Female Total Sample
n 488 685 1173

Mean Age [SD] (years) 58.86 [14.90] 57.29 [15.01] 57.95 [14.98]
Mean TC [SD] (mmol/L) 5.21 [1.18] 5.51 [1.13] 5.38 [1.16]

Mean HDL-C [SD] (mmol/L) 1.34 [0.41] 1.66 [0.47] 1.53 [0.47]
Mean TG [SD] (mmol/L) 2.03 [1.20] 1.65 [0.97] 1.80 [1.09]

Mean LDL-C [SD] (mmol/L) 2.94 [1.04] 3.10 [0.97] 3.02 [0.99]
% using Lipid-Lowering Medication 23.77% 17.37 19.27%

Waist Circumference [SD] (cm) 100.63 [11.51] 90.74 [13.88] 94.87 [13.83]
BMI [SD] 28.24 [4.41] 28.34 [5.84] 28.30 [5.30]

BMI

WC

Log TG

HDL−C

LDL−C

TC

TC LDL−C HDL−C Log TG WC BMI

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

Figure 4.2: Heatmap of Pearson Correlations between metabolic traits: Total Cholesterol (TC) concen-
tration, LDL-C concentration, HDL-C concentration, Log Transform Triglycerides (TG) concentration,
Waist circumference (WC) and Body Mass Index (BMI). Obtained from 1,193 participants from the
Understanding Society: UK Household longitudinal study.
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Sensitivity analysis of significant probes shows that most results are robust to sources of potential con-

founding including genetic relatedness. Some probes are affected by the inclusion of diet-related variables

(BMI and Waist Circumference), as shown by the decrease of effect size estimates (Figures 4.6 & 4.7).

Investigation of quantile-quantile plots from the discovery model and models that included the BMI and

WC as covariates show that there is slight test statistic inflation in the discovery model (λ = 1.04).

Including BMI and WC as covariates do nominally reduce this inflation; however, because the inflation is

very close to a value of 1 I am comfortable that the discovery model is appropriate.
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Table 4.2: Top 4 significant loci from the Total Cholesterol discovery EWAS

Probe ID Gene Name CHR Location Epic Effect Size adj p-value Previous Association
cg03440556 SCD 10 102107757 FALSE 0.008079 0.002569
cg07839457 NLRC5 16 57023022 FALSE 0.01314 0.03872 Hedman et al.

(2017)
cg10073091 DHCR24 1 55352301 FALSE 0.002419 0.03909
cg09978077 SREBF2 22 42229983 FALSE 0.002264 0.04548 Sayols-Baixeras

et al. (2016b);
Hedman et al.
(2017)

Figure 4.3: Comparison of Quantile-Quantile plots of genome-wide analysis of Triglyceride EWAS including
Discovery model and models include diet-related covariates. Estimated inflation (λ) according to the
bacon R package (van Iterson et al., 2017) for each model is 1.04 (Discovery), 1.03 (BMI), 1.01 (WC)
and 1.03 (BMI+WC).
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Table 4.3: Top 23 genome-wide significant probes from the Triglyceride discovery EWAS

Probe ID Gene Name CHR Location Epic Effect Size adj p-value Previous Association
cg11024682 SREBF1 17 17730094 FALSE 0.01321 7.787e-14 Dekkers et al.

(2016b); Braun
et al. (2017); Hed-
man et al. (2017);
Sayols-Baixeras
et al. (2016b);
Pfeiffer et al. (2015)

cg19693031 TXNIP 1 145441552 FALSE -0.02258 2.974e-09 Hedman et al.
(2017); Sayols-
Baixeras et al.
(2016b); Dayeh
et al. (2016);
Pfeiffer et al. (2015)

cg00574958 CPT1A 11 68607622 FALSE -0.005894 5.882e-09 Dekkers et al.
(2016b); Sayols-
Baixeras et al.
(2016b); Hedman
et al. (2017);
Pfeiffer et al. (2015)

cg06500161 ABCG1 21 43656587 FALSE 0.01519 6.269e-09 Hedman et al.
(2017); Braun et al.
(2017); Dekkers
et al. (2016b);
Sayols-Baixeras
et al. (2016b);
Pfeiffer et al. (2015)

cg16740586 ABCG1 21 43655919 TRUE 0.01508 2.812e-05
cg27243685 ABCG1 21 43642366 FALSE 0.01105 6.198e-05 Hedman et al.

(2017); Braun et al.
(2017); Dekkers
et al. (2016b);
Sayols-Baixeras
et al. (2016b);
Pfeiffer et al. (2015)

cg05325763 CPT1A 11 68607719 TRUE -0.007075 0.0001936
cg20052079 JARID2 6 15504923 FALSE -0.01726 0.0004051
cg18513344 MUC4 3 195531298 FALSE -0.007236 0.0009992
cg08309687 21 35320596 FALSE -0.01785 0.00157
cg17075888 PDK4 7 95225339 TRUE -0.01631 0.001803
cg03173502 JARID2 6 15505345 FALSE -0.01605 0.003408
cg18353028 CYP7B1 8 65669513 TRUE -0.01433 0.00586
cg21623127 LIX1 5 96432134 TRUE -0.01456 0.005985
cg13500852 JARID2 6 15505460 FALSE -0.01296 0.007171
cg06723828 PSMD13 11 251223 TRUE 0.009368 0.009346
cg13027183 JARID2 6 15504872 FALSE -0.01639 0.01678
cg00683922 PFKFB2 1 207242569 TRUE 0.01467 0.01811
cg17058475 CPT1A 11 68607737 FALSE -0.005529 0.02195 Dekkers et al.

(2016b); Sayols-
Baixeras et al.
(2016b); Hedman
et al. (2017);
Pfeiffer et al. (2015)

cg03062284 2 122994061 TRUE -0.006741 0.0248
cg19758958 11 62319222 TRUE -0.01057 0.02781
cg06690548 SLC7A11 4 139162808 FALSE -0.01478 0.03169
cg07504977 10 102131012 FALSE 0.01385 0.04751 Sayols-Baixeras

et al. (2016b);
Hedman et al.
(2017)
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Figure 4.4: Manhattan plot of genome-wide analysis from Triglyceride discovery model. Red line denotes
genome-wide significance level equivalent to bonferroni corrected p-value <0.05.

88



Figure 4.5: Volcano plot of genome-wide analysis from Triglyceride discovery model. Red dashed line
denotes genome-wide significance level equivalent to bonferroni corrected p-value <0.05
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Figure 4.6: Comparison of effect sizes of genome-wide significant probes present on the 450K microarray
from Triglyceride models including different covariates. Each point corresponds to the unstandardised
effect size for each CpG in a given model, where the lines correspond to the size of the standard error
associated with the effect size. Discovery refers to the initial model run which includes age, sex, drug
status, cell-type composition estimates and plate number. Annotated labels correspond to the covariate
included within the discovery analysis. No medication corresponds to the discovery model being run
without any participants using lipid-lowering medication and the singleton model refers to all genetically
similar participants being excluded from analysis.
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Figure 4.7: Comparison of effect sizes of genome-wide significant probes exclusive to EPIC microarray
from Triglyceride models including different covariates. Each point corresponds to the unstandardised
effect size for each CpG in a given model, where the lines correspond to the size of the standard error
associated with the effect size. Discovery refers to the initial model run which includes age, sex, drug
status, cell-type composition estimates and plate number. Annotated labels correspond to the covariate
included within the discovery analysis. No medication corresponds to the discovery model being run
without any participants using lipid-lowering medication and the singleton model refers to all genetically
similar participants being excluded from analysis.
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4.3.3 HDL-C

A total of 42 genome-wide significant loci were identified in the initial discovery model between HDL-C

and DNA methylation. 23 of these probes are novel because they are only located on the EPIC array

and not present on the 450K. Effect sizes ranged from -0.011 to 0.011 (Table 4.4, 4.9 and 4.10). Out

of these 42 probes, these annotated to 29 genes, 10 of which did not annotate to any gene but could be

distal to nearby gene regions. Similar to the sensitivity analysis of the TG significant loci, the majority of

these probes are insensitive to potential confounding, however some probes are affected by the inclusion

of diet-related covariates (Figures 4.11 & 4.12).

Quantile-Quantile plots of the discovery model and models including BMI and WC as covariates (Fig-

ures 4.8) show that the discovery model is not highly inflated (λ = 1.13). However, including BMI within

the model does reduce this inflation considerably.
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Table 4.4: Top 42 genome-wide significant probes from HDL-C discovery EWAS

Probe ID Gene Name CHR Location Epic Effect Size adj p-value Previous Association
cg06500161 ABCG1 21 43656587 FALSE -0.01032 1.266e-15 Hedman et al.

(2017); Braun et al.
(2017); Dekkers
et al. (2016b);
Sayols-Baixeras
et al. (2016b);
Pfeiffer et al. (2015)

cg17901584 DHCR24 1 55353706 FALSE 0.01066 6.903e-10 Braun et al. (2017);
Dekkers et al.
(2016b); Hedman
et al. (2017)

cg00683922 PFKFB2 1 207242569 TRUE -0.01011 3.191e-06
cg01676795 POR 7 75586348 FALSE -0.008554 1.581e-05 Hedman et al.

(2017)
cg22699725 PFKFB2 1 207242586 TRUE -0.009005 1.68e-05
cg16100392 TAAR3 6 132931717 FALSE -0.008796 0.0001275
cg02246605 20 39591425 TRUE -0.007963 0.0003291
cg00089960 SETD1B 12 122245655 TRUE -0.005751 0.0005655
cg20930793 HEATR5A 14 31872220 TRUE -0.005809 0.0009334
cg22488164 PLBD1 12 14716910 FALSE -0.00815 0.001048 Hedman et al.

(2017)
cg27243685 ABCG1 21 43642366 FALSE -0.005737 0.001116 Hedman et al.

(2017); Braun et al.
(2017); Dekkers
et al. (2016b);
Sayols-Baixeras
et al. (2016b);
Pfeiffer et al. (2015)

cg19773170 14 23008246 TRUE -0.00876 0.001281
cg08804919 14 100515656 TRUE -0.005588 0.001343
cg18353028 CYP7B1 8 65669513 TRUE 0.008293 0.001563
cg12378285 2 136808729 TRUE -0.007287 0.002153
cg15328937 LOC101929452 2 7212089 TRUE 0.005092 0.002891
cg08319289 IL1RAP 3 190261614 TRUE -0.00728 0.00408
cg07426444 MYO9A 15 72209354 TRUE -0.007329 0.004416
cg24246165 ACYP2 2 54435033 TRUE -0.006094 0.005091
cg16740586 ABCG1 21 43655919 TRUE -0.007384 0.005167
cg20301125 5 130975565 TRUE -0.007711 0.005168
cg19750657 UFM1 13 38935967 FALSE -0.00753 0.005653 Hedman et al.

(2017)
cg00301370 LOC101928162 12 10902496 TRUE -0.006983 0.005668
cg02335576 AGBL4 1 49338938 TRUE -0.005823 0.007602
cg00949930 CCDC141 2 179916205 TRUE -0.00562 0.008225
cg20052079 JARID2 6 15504923 FALSE 0.008867 0.008347
cg26804423 ICA1 7 8201134 FALSE -0.005965 0.008404 Hedman et al.

(2017)
cg00994936 DAZAP1 19 1423902 FALSE -0.005538 0.01204
cg09831562 SOX2OT 3 181327125 FALSE -0.008452 0.01336
cg00358010 1 221338314 TRUE 0.004536 0.01712
cg26470501 BCL3 19 45252955 FALSE 0.005793 0.01796
cg02108045 SOCS2-AS1 12 93962028 TRUE -0.004015 0.01821
cg24422344 9 81178462 TRUE -0.01045 0.03142
cg03309738 6 13764242 TRUE 0.008042 0.03383
cg25739715 OSM 22 30663881 FALSE 0.002355 0.03621 Hedman et al.

(2017)
cg26080684 7 72775853 TRUE -0.007727 0.03913
cg10404730 SORL1 11 121330348 TRUE -0.006776 0.03948
cg16013680 P4HA3 11 73989529 TRUE -0.008038 0.04048
cg18608055 SBNO2 19 1130866 FALSE 0.006276 0.04181
cg27444020 GAB2 11 78108461 TRUE -0.00723 0.04688
cg07375358 ZBTB16 11 114056431 TRUE -0.007488 0.04815
cg03062284 2 122994061 TRUE 0.003683 0.04845
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Figure 4.8: Comparison of Quantile-Quantile plots of genome-wide analysis of HDL-C EWAS including
Discovery model and models include diet-related covariates. Estimated inflation (λ) according to the
bacon R package (van Iterson et al., 2017) for each model is 1.13 (Discovery), 1.02 (BMI), 1.13 (WC)
and 1.02 (BMI+WC).
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Figure 4.9: Manhattan plot of genome-wide analysis from HDL-C discovery model. Red line denotes
genome-wide significance level equivalent to bonferroni corrected p-value <0.05
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Figure 4.10: Volcano plot of genome-wide analysis from HDL-C discovery model. Red dashed line denotes
genome-wide significance level equivalent to bonferroni corrected p-value <0.05
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Figure 4.11: Comparison of effect sizes of genome-wide significant probes present on the 450K microarray
from HDL-C models including different covariates. Each point corresponds to the unstandardised effect
size for each CpG in a given model, where the lines correspond to the size of the standard error associated
with the effect size. Discovery refers to the initial model run which includes age, sex, drug status, cell-
type composition estimates and plate number. Annotated labels correspond to the covariate included
within the discovery analysis. No medication corresponds to the discovery model being run without
any participants using lipid-lowering medication and the singleton model refers to all genetically similar
participants being excluded from analysis.
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Figure 4.12: Comparison of effect sizes of genome-wide significant probes exclusive to EPIC microarray
from HDL-C models including different covariates. Each point corresponds to the unstandardised effect
size for each CpG in a given model, where the lines correspond to the size of the standard error associated
with the effect size. Discovery refers to the initial model run which includes age, sex, drug status, cell-
type composition estimates and plate number. Annotated labels correspond to the covariate included
within the discovery analysis. No medication corresponds to the discovery model being run without
any participants using lipid-lowering medication and the singleton model refers to all genetically similar
participants being excluded from analysis.
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4.3.4 Statin-Use

Having examined the various blood-lipid traits, it may be interesting to explore the differential methy-

lation that is associated with statin-use. By using a similar model to the one used to investigate TC,

HDL-C and TG however without including a lipid trait in these analyses. Using this approach, I identified

9 genome-wide significant CpG sites that are distinctly novel and annotate to genes that are related to

lipid metabolism. Examination of the quantile-quantile plot of the p-values suggests that there is little

evidence of test-statistic inflation as there is little deviation from the expected distribution (Figure 4.13).
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Figure 4.13: Quantile-Quantile plot of genome-wide analysis from Statin-use model
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Table 4.5: Top 9 significant loci for Statin-Use EWAS

Probe ID Gene Name CHR Location Epic Effect Size adj p-value Previous Association
cg17901584 DHCR24 1 55353706 FALSE -0.03908 4.332e-23 Braun et al. (2017);

Dekkers et al.
(2016b); Hedman
et al. (2017)

cg06500161 ABCG1 21 43656587 FALSE 0.02563 1.431e-13 Hedman et al.
(2017); Braun et al.
(2017); Dekkers
et al. (2016b);
Sayols-Baixeras
et al. (2016b);
Dayeh et al. (2016);
Pfeiffer et al. (2015)

cg05119988 SC4MOL 4 166251189 FALSE -0.02759 1.613e-10
cg27243685 ABCG1 21 43642366 FALSE 0.01772 3.599e-07 Hedman et al.

(2017); Braun et al.
(2017); Dekkers
et al. (2016b);
Sayols-Baixeras
et al. (2016b);
Dayeh et al. (2016);
Pfeiffer et al. (2015)

cg15659943 ABCA1 9 107631656 TRUE 0.01571 1.527e-06
cg09646062 DHCR24 1 55324150 TRUE 0.0163 2.219e-05
cg15128785 SREBF2 22 42230879 TRUE -0.02619 6.21e-05
cg12403973 SREBF2 22 42230899 TRUE -0.02665 0.008327
cg10177197 DHCR24 1 55316481 FALSE 0.01129 0.01494
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Figure 4.14: Volcano plot of genome-wide analysis from Statin-use model. Red dashed line denotes
genome-wide significance level equivalent to bonferroni corrected p-value <0.05

102



Figure 4.15: Manhattan plot of genome-wide analysis from Statin-use model. Red line denotes genome-
wide significance level equivalent to bonferroni corrected p-value <0.05
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4.4 Discussion

I present the first EWAS between blood-lipid concentrations and DNA methylation to be performed on

the EPIC microarray. This provided a prime opportunity to reproduce the findings from previous studies

and explore novel findings that are exclusive to the EPIC microarray. In total, I identify 37 novel CpGs

associated with both TG and HDL-C concentrations (9 and 28 CpGs respectively). Many of these novel

CpGs are annotated to genes that have been previously reported. The probes that did not appear to

annotate to a gene have yet to be fully explored but could be distal to genes or enhancer regions.

A summary of some of the more notable associations identified in these analyses are presented in Table 4.6.

I identify numerous genes that directly relate to cholesterol or lipid biology. Many of the identified genes

have been reported to be associated with other blood-lipid phenotypes or metabolic traits.

There are two genes that I believe should be discussed in further detail. The first gene is JARID2 of

which I identify four CpGs to be associated with both HDL-C and TG concentration. JARID2 encodes

a DNA binding molecule which helps form Polycomb repressive complexes which play an important role

in stem cell pluripotency (Jones & Wang, 2010). In humans, JARID2 is mostly active during prenatal

development which has been identified in an EWAS looking at gestational age (Spiers et al., 2015) but

more interesting is that in adult humans JARID2 is almost exclusively expressed in the heart. Mouse

models have shown that JARID2 is very important in heart development as JARID2 knockouts and het-

erozygotes exhibit heart malformations and lethality (Cho et al., 2018). This could suggest that JARID2

could play an important role in the development of the human heart and that alteration of methylation

patterns could play a role in the development of CVDs. In embryo’s, the DNA methylation state of

JARID2 is highly methylated but decreases rapidly as gestational age increases. Here I observe a decrease

in methylation with increasing TG concentration and an increase in methylation coupled with increasing

HDL-C. What makes this finding so interesting is the fact that it has not been presented in any other

studies that look at blood-lipid levels and only identified in a single study that looked at BMI (Wahl

et al., 2017). It is not known whether or not these associations are identified in this study because the

DNA methylation patterns were assayed on a different platform or that the population from which the
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Table 4.6: Summary of results obtained from TC, TG, HDL-C and statin-use EWAS from the Under-
standing UK Household Dataset

Gene Name CpG (Association) Gene Function Reported by [Association]
ABCA1 cg15659943 (Statin-use) Cholesterol Transport Guay et al. (2012)[HDL]
ABCG1 cg16740586 (TG)

cg06500161 (TG, HDL-C)
cg27243685 (TG)

Cholesterol Transport Pfeiffer et al. (2015) [TG, HDL]
Hedman et al. (2017) [TG, HDL]
Braun et al. (2017)[TG, HDL]
Dekkers et al. (2016b)[HDL]
Sayols-Baixeras et al. (2016b)[TG, HDL]

CPT1A cg00574958 (TG)
cg17058475 (TG)
cg05325762 (TG)

Fatty Acid Oxidation Gagnon et al. (2014)
Dekkers et al. (2016b)[TG]
Braun et al. (2017) [TG]
Hedman et al. (2017)[TG]
Sayols-Baixeras et al. (2016b)[TG]
Chasman et al. (2009)[GWAS]
Kettunen et al. (2012)[GWAS]

DHCR24 cg10073091 (TC)
cg17901584 (HDL, Statin-use)
cg10177197 (Statin-use)
cg09646062 (Statin-use)

Cholesterol Biosynthesis Dekkers et al. (2016b)[LDL]
Hedman et al. (2017) [TC, HDL]
Braun et al. (2017) [TG, HDL]
Demerath et al. (2015)[BMI]
Kazmi et al. (2017)

JARID2 cg20052079 (TG, HDL)
cg03173502 (TG)
cg13027183 (TG)
cg13500852 (TG)

Embryonic Development Wahl et al. (2017)[BMI]
Spiers et al. (2015)[Gestational Age]

NLRC5 cg07839457 (TC) Cytokine Response Hedman et al. (2017)[TC]
Meeks et al. (2017)[Obesity]
Zhang et al. (2016)[HIV]
Zhang et al. (2017)[Hepatitis C]

PFKFB2 cg00683922 (HDL, TG)
cg22699725 (HDL)

Glycolysis

SC4MOL cg05119988 (Statin-Use) Cholesterol Biosynthesis
SCD cg03440556 (TC) Fatty Acid Biosynthesis Crujeiras et al. (2016)[Insulin resistance]

Skuladottir et al. (2016)[Sleep-
deprivation]

SREBF1 cg11024682 (TG) Lipid Homeostasis Pfeiffer et al. (2015)[TG]
Hedman et al. (2017) [TG, HDL]
Sayols-Baixeras et al. (2016b) [TG, HDL]
Dekkers et al. (2016b) [TG]
(Demerath et al., 2015)[BMI]

SREBF2 cg09978077 (TC)
cg15128785 (Statin-Use)
cg12403973 (Statin-Use)

Lipid Homeostasis Hedman et al. (2017)[TC]
Sayols-Baixeras et al. (2016b) [TC]

TXNIP cg19693031 (TG) Cellular Redox Signaling Pfeiffer et al. (2015)[TG]
Hedman et al. (2017) [TG]
Sayols-Baixeras et al. (2016b)[TG]
Dayeh et al. (2016)[T2D]
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participants come from could be influencing these results. Thus it is possible that there four associations

could be driven by genetic variation. Although, the function of JARID2 is mainly implicated in the heart,

it may also have a function in blood however this would need further investigation.

The second gene that is interesting in this study is novel and specific to the EPIC array. The PFKFB2

gene encodes a protein that is important in glycolysis. The effect sizes do change slightly with the inclu-

sion of BMI and Waist circumference which suggests that the association between DNA methylation and

PFKFB2 may be driven by diet rather than individual blood-lipid concentration.

There are also a number of results that were detected in this statin-use EWAS. This discovery EWAS

identified 9 CpGs that annotated to other lipid-related genes. Novel genes include ABCA1 and SC4MOL

alongside associations with numerous CpGs within DHCR24 and SREBF2. Of these, the SC4MOL gene

and ABCA1 gene have not been identified in previous EWAS but have important roles in lipid metabolism.

As this is the first statin-use EWAS to be reported there are no results from previous studies to make

comparisons with. Thus it is difficult to have any confidence in these results. The quantile-quantile plot

suggests there is no test-statistic inflation which is encouraging alongside many of the top results are an-

notated to genes with clear lipid-related function. It is entirely possible that the results from this statin-use

EWAS could essentially be a low-high cholesterol case-control EWAS as statins are usually prescribed to

individuals who have elevated cholesterol levels. Even though those on statins may lower cholesterol, it is

possible that there are other factors that could be influencing the methylation patterns thus the changes in

DNA methylation patterns may not be related to lipid-lowering medication. This will need careful handling

and further investigation as it is likely that the results from this statin-use EWAS could be confounded

by other blood-lipid profiles as there is considerable overlap in some of the key findings in all of the EWAS.

Overall none of the results presented in this study appear to be out of the ordinary. Inspection of the

quantile-quantile plots for the HDL-C and TG analysis also suggests there is only a small amount of

inflation in the discovery analysis. Although the inclusion of BMI and WC does reduce the amount of

inflation for both the TG and HDL-C models and the number of genome-wide significant results, there is

only a small amount of inflation to begin with. I decided to use the results from the discovery EWAS as
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the genome-wide results from the discovery analysis were comparable with previous studies.

The genome-wide significant results from both the HDL-C and TG EWAS appear to be robust to other

potential sources of confounding. When these models were performed with other known risk factors of

CVDs which could also influence the blood-lipid concentrations most probes showed the same size of

effect. In circumstances where the effect size was attenuated in some form, this was almost exclusively

caused by the inclusion of diet-related variables (BMI or WC) within the model. The results appear to

be robust to genetic confounding as demonstrated in the singletons and models that include the principal

components derived from genetic data.

There is evidence which suggests there are small amounts of colinearity between some of the blood-lipid

phenotypes that were being investigated. In particular a high correlation between TC and LDL-C con-

centrations and an anti-correlation between HDL-C and TG concentrations. The models used to obtain

these results contained a single blood-lipid phenotype as the variable of interest. This is in agreement

with the approach of all the past EWAS that have been performed. However, it is possible that there

is the potential that these blood-lipid phenotypes could interact in some way and therefore should be

included within the models. Despite the potential of confounding by other blood-lipid measurements the

inclusion of BMI and waist circumference for genome-wide significant results only affected a few of the

results in a very small manner (Figures 4.11, 4.12, 4.6 & 4.7).

The most substantial limitation of this study is the lack of a replication dataset to reproduce the findings

of the discovery EWAS. At this moment in time that are no comparably large datasets that have been

assayed on the EPIC array that also have blood-lipid measurements to facilitate such investigation. A

comprehensive review of past results shows that the majority of the results obtained here are in agreement

with past results. Therefore I am confident that the findings presented here are robust and meaningful

despite the lack of reproduction.

Extra care must be taken when interpreting these results as they do not describe any direction of cause.
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Rather these results only show that a relationship between DNA methylation and a given blood-lipid

phenotype exists. To discern a direction of cause I could employ Mendelian randomisation to establish

whether or not the DNA methylation patterns are influenced by genetic variation. Dekkers et al. (2016b)

implement Mendelian randomisation in their lipid study and had found that the increase in blood-lipid

concentrations led to changes in methylation in the loci (cg06500161) that satisfied the requirements

for testing. As genotyping data does exist for the Understanding Society data, it is possible to perform

Mendelian randomisation and would be a worthwhile investigation to perform in the future. A large

number of mQTLs (CpGs that are directly influenced by genetic variation) have been identified using the

Understanding Society dataset used in this EWAS (Hannon et al., 2018). Therefore it is possible that the

results from this mQTL analyses could be used to identify CpGs that are potentially mediated by genetic

variation.

For these analyses I only filter the dataset according to pfilter as described in wateRmelon (Pidsley et al.,

2013) and for SNP heterozygotes using pwod. This does not include any of bioinformatically derived

probes such as those described by Pidsley et al. (2016) which include probes which are known to be

cross-reactive or have SNPs that underly the given probe sequence. Moreover, if I were to remove all of

the probes described by Pidsley et al. (2016) I would remove one of the strongest signals that is presented

in this study (cg06500161). According to these probe-lists, cg06500161 has a genetic variant which is

inside the body of the probe sequence. Considering that this finding is ubiquitously reported in blood-lipid

EWAS, from multiple populations and has been shown not to be influenced by genetic variation I decided

to keep this probe in this analysis as it is an important biological replication. While this signal may be

robust to technical problems, it is possible that the other probes which are identified in the probe list

described by Pidsley et al. (2016) could be confounded I could equally be missing out on potentially

meaningful findings if I were to remove them from analysis. Instead of worrying about which probes

should be tested during an EWAS I believe that further validation of significant hits would uncover the

true biological significance of presented findings.

As many as 20 of the findings presented in this study have been previously identified in lipid-related

EWAS performed on the 450K microarray. This demonstrates that the EPIC microarray is a reliable tool
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and is likely to be useful for EWAS going forward. Functionally the EPIC array offers an incremental

improvement over the 450K microarray, but the coverage of the EPIC array still queries approximately

3% of the CpG sites within the human genome. It is likely that the previous studies using the 450K have

identified most of the results that would be identified by the EPIC array in the future, but there are now

new opportunities to explore the epigenetic landscape of functional genomic elements that have not been

as well described.

EWAS offer a mechanistic understanding of the events that lead to or are caused by heightened blood-

lipid levels and instances of CVD. However, they do not infer a direction of cause and require alternative

study designs or complicated methodology (e.g. Mendelian randomisation). On the contrary, GWAS can

infer such a direction of cause but may not offer functional explanations of the genetic variants that are

associated with a given trait. Thus belies the strength of examining the epigenome as it is dynamic and

can respond to external stimuli such as lifestyle choices and could provide insights into why individuals

with the same genetic variations will exhibit different phenotypes.

4.5 Conclusion

In this chapter, I present the first EWAS between DNA methylation and blood-lipid phenotypes using the

EPIC microarray. I also describe the first EWAS to explore statin use as an independent trait. In total,

I identify many loci that are associated with both lipid metabolism and biosynthesis which have been

previously identified in studies that look at a variety of metabolic traits.

Of particular note, I identify two striking results that have yet to be explored in any detail. In both the

HDL-C and TG EWAS I identify numerous CpGs within JARID2 and PFKFB2 which are known express

almost exclusively in the heart. As these genes are associated with elevated TG and HDL-C concentra-

tions, there is the potential for complex interplay between these two genes and CVDs which needs to be

explored further but could be both be interesting candidates for future investigation.
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Chapter 5

Large scale analyses using the 450k

microarray

To demonstrate the types of analyses that are possible using the bigmelon software I perform two prelim-

inary analyses that both involve a large number of samples. This chapter is subsequently split into two

part to describe each analysis.

The first part of this chapter seeks to identify how probes on the 450K microarray behave with respects

to various characteristics. The purpose of this is to produce a supplementary probe lists which can be

used in conjunction with bioinformatically derived probe-lists such as those present by Zhou et al. (2017)

and Pidsley et al. (2016). These probe lists classify a number of probes on the 450K and EPIC array (re-

spectively) which could be confounded by cross-hybridisation or underlying SNPs in the probe sequences

which can affect the accuracy of the DNA methylation measurements of listed probes.

The second part of this chapter examines how tissue-specific DNA methylation patterns correlate with

tissue-specific gene expression. This analysis was primarily inspired by the preprint article by Ford et al.

(2017) where DNA methylation was induced at numerous promoter regions to examine if the induced

change in methylation were accompanied by a change in gene expression. In addition, numerous studies
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negatively correlate promoter DNA methylation with transcriptional activity (Weber et al., 2007). How-

ever, gene-body methylation is positively correlated with gene expression (Yang et al., 2014). As the 450k

microarray has been used to assay thousands of samples from a wide variety of tissues, it is possible to

use the wealth of data that is publicly available to examine the relationship between gene-region DNA

methylation and gene expression in a tissue-specific manner.

5.1 General Introduction

Over the span of a decade, DNA methylation microarrays have undergone two sets of revision. From

the 27K (Bibikova et al., 2009) to the extremely popular 450K (Bibikova et al., 2011) and now with the

newly released EPIC array (Moran et al., 2016), it is expected that scientists will continue to use these

cost-effective platforms and deposit subsequent data to publicly available resources. With this continuous

growth of data, it expected that large-scale analyses using thousands of samples from these repositories

will eventually be presented. However, there have been very few studies that exceed more than a couple

thousand samples or combine data from multiple sources. This is surprising considering the efforts that

have been made in improving the techniques and physical compute power to perform such analyses. Ex-

emplary analyses such as Horvath (2013)s ’epigenetic clock’ and the collation of the Marmal-aid database

by Lowe & Rakyan (2013) were both performed early on during the 450K era, but very few have been

performed since.

Horvath (2013) focused his analysis on CpGs that were shared between the 27K and 450K arrays. This

enabled the analysis of more than 4,000 samples but consequently missed out on a considerable proportion

of the 450K. This approach proved to favourable as Horvath (2013)was able to produce a biologically

tangible biomarker (’epigenetic age’) that could be derived from DNA methylation patterns which has

become extremely popular and has been associated to various adverse conditions including all-cause mor-

tality (Marioni et al., 2015).

Marmal-aid (Lowe & Rakyan, 2013) managed to collect the DNA methylation patterns of more than
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14,000 samples from a variety of tissues by storing each sample in native R data format (.Rdata file

format), but this approach still required each file to be loaded into memory when requested. Although

it was a tremendous resource, it sadly did not take off in popularity and has since been taken offline due

to a lack of usage. A distinct advantage to having such a readily accessible resource that contains so

many samples is that it made analyses such as those looking at the methylation state between a variety

of tissues at given loci considerably easier as it removed the need to search online or collaborate with

others to find relevant samples.

The aims of this chapter are to:

1. Characterise some potential weakness of the 450k microarray platform and highlight areas where

caution should be taken.

2. Examine the relationships between gene-region DNA methylation patterns and gene expression levels

in a tissue-specific manner.

5.1.1 General Methods

5.1.1.1 Datasets

To examine the characteristics of the 450K microarray as described in Aim 1, I first require a large enough

number of samples to produce conclusions about how each probe on the 450K performs. The Marmal-Aid

dataset is sufficiently large enough to produce such conclusions but is unsuitable for my purposes as it

only contains raw and normalised β values. Despite the lack of raw data, it is still useful for some charac-

teristics I wish to explore. Briefly, the Marmal-Aid dataset contains DNA methylation data from 14,573

samples from a variety of tissues obtained from data that was deposited to GEO (up until late 2013)

and TCGA. Data from Marmal-aid was downloaded according to the tutorial (currently unavailable) in

’.Rdata’ format and each sample was converted into a single gds file. This is the same dataset that was

used in Chapter 3 to investigate the scalability of the bigmelon R package as it was the largest dataset

available at the time.
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Due to the Marmal-Aid dataset only containing β values I sought to create a new dataset which contained

the information that is provided by the raw idat files, specifically the bead counts and raw signal inten-

sities. More than 60,000 450K microarrays have been deposited to GEO under the platform accession

number GPL13534, as of July 2017. This number has since increased to more than 75,000 samples.

However due to the time when the data was initially obtained only samples that were submitted before

July 2017 were considered in the following analysis.

Combination from so many sources posed one significant problem when collating data from GEO. This

problem was caused by inconsistencies between supplied annotations for the data by the data originators.

When data is submitted to GEO or other repositories, the curators are encouraged to follow the minimum

information about microarray experiment (Brazma et al., 2001, MIAME) guidelines. Despite these guide-

lines, the amount of information that accompanies the data varies considerably which makes it difficult

to combine the data from multiple sources. As my approach was to obtain as many idat files as possible

this lead to a wide variety of annotations across datasets.

When constructing the dataset of multiple datasets from GEO, I decided to exclude datasets which had

fewer than 50 samples. This decision was made to avoid swamping the dataset with numerous, systematic

batch effects. The flowchart presented in Figure 5.1a describes how I arrive at a total n of 15,773 unique

samples obtained from 91 different datasets following the deduplication of identical microarray barcodes.

At the time this roughly equated to approximately one quarter of all of the 450K microarray data that

had been submitted to GEO.

The datasets that had fulfilled the brief criteria (having raw idat files and n > 50) were imported into

R using the geotogds function from bigmelon which automatically downloads and imports the raw data

and phenotypic annotation into separate gds files. Phenotypic annotations for characteristics such as sex,

age and tissue type were derived during data sanitisation using regular expressions and normalised into a

consistent format. For example, sex was obtained by searching for ”Sex”, ”Gender”, ”Male”, ”Female”,

”M” or ”F” in provided annotations and converted into a binary trait. Missing samples were left as NA

or were attempted to be predicted using the predictSex function from wateRmelon. Age was similarly
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resolved by searching for relevant keywords (e.g. ’years’, ’age’). All ages were converted to years and any

ages labelled as prebirth were treated as 0. Missing ages were imputed according to Horvath’s Epige-

netic clock using the agep function. Lastly, tissue annotations were obtained through regular expressions

search for ”Tissue” or ”Source” and then manually verified with associated publications. Samples with

no discernible tissue annotation were treated as NA as there was no reliable way to verify which tissue

unannotated samples had come from.

5.1.1.2 Quality Control and Normalisation

The large size of the GEO dataset presented some problems with respects to both normalisation and

quality control of the data. Firstly due to the data being comprised of numerous sources and disease

applying any normalisation methodology risks removing any small meaningful differences between sam-

ples that would otherwise be detected. Lowe & Rakyan (2013) opted to normalise the data based on

a quantile subsampling routine which randomly selected 10,000 probes to produce quantiles that were

then interpolated back into a full β distribution. This approach was used due to memory constraints that

were imposed due to the sheer size of the dataset. Instead, I could have used a quantile-based method

such as dasen or a more sensitive approach such as funnorm or ssNoob which can be implemented on

a single sample basis (Min et al., 2018; Fortin et al., 2016) I decided to leave the dataset unnormalised

because the dataset is large enough that it should be robust to potential confounding. Likewise, quality

controlling the dataset presents similar issues. Data-outlier detection tools (outlyx, qual) would not be

effective due to the heterogeneous nature of the data. Similarly, control-probe based methods may not

be informative as expected as demonstrated in Chapter 2.

5.2 Part 1

During the seven years of the 450Ks extensive use, there have been few attempts to characterise certain

characteristics directly relevant to the performance of the microarray. Such characterisation could be use-

ful in circumstances where the idat files are no available or if the sample size is too small to draw a direct
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GEO. a) Flowchart describing the process of selection of GEO accession until July 2017 (under GPL14534)
to use in further analysis. b) Distribution of sample size for each GEO accession under GPL14534 (July
2017)
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conclusion regarding how certain probes are behaving. I feel it is genuinely worthwhile to explore these

characteristics with the intention to supplement the widely used probe lists such as those presented by

Zhou et al. (2017) and Pidsley et al. (2016) but with a focus on how they behave in a data-driven context.

To do this, I consider more than 15,000 samples from a variety of tissues assayed on the 450K microarray

and characterise a variety of properties that are used in quality control pipelines in small datasets, with

the intention to extend the guidelines to a larger scale. Providing a supplementary probe list of poorly

performing probes will enable scientists to perform some level of quality control on data when the raw

data that is usually required to perform such filtering is unavailable.

Characterising the poorly performing probes of the 450K will mostly require exploratory analysis of gen-

eral trends of certain measures. Such measures that can be used are those that are used to often quality

control the data such as pfilter, which uses the detection p-values and beadcounts to identify a set of

probes that have ’failed’ to generate a reliable signal. Other alternatives also involve identifying probes

that exhibiting small minor allele frequencies and are therefore susceptible to genetic confounding if not

checked for. This is provided by the pwod function in wateRmelon (also described in Chapter 2), but

probes that are in Hardy-Weinberg equilibrium could be detected as I have a large enough sample size.

Lastly, I explore how much each probe can vary across the many tissues and samples I have acquired.

Considering I have 15,773 samples and access to the Marmal-Aid dataset to reproduce some of the char-

acteristics I suspect that I have enough data to explore these aspects robustly. In addition to this, there

is an opportunity to explore the quality control thresholds that are typically used on smaller datasets

on a larger scale as could be that the threshold currently used may not be suitable for larger datasets.

For example, if using pfilter, a probe in a dataset of 100 samples would only require 5 samples to be

considered for removal while if the sample threshold was scaled up to 10,000 samples a staggering 500

samples would be required to flag the very same probe. While the proportion of data is still the same -

the threshold required to remove features is much more penalising to a smaller dataset.

5.2.1 Part 1 Methods

To extend Zhou et al. (2017)s probe list, I considered the following characteristics:
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1. Bead Counts – The BeadChip microarrays contain thousands of sequence-specific oligonucleotide

coated beads to which DNA can hybridise to. Generally speaking the higher the number of beads

that are present on the microarray for a given probe sequence the more reliable (due to higher

the overall representation) a signal obtained from that specific probe is. In EWAS it has become

common practice to remove any signals that are obtained from probes where the number of beads

are below a certain number or a certain number in a proportion of the total number of samples.

For example, the pfilter tool removes probes when the beadcount is < 3 in > 5% of samples. This

threshold was arbitrarily defined and may not be appropriate for large datasets.

2. Detection p-values – Detection p-values are a measure of the error with respects to the signal

obtained from a probe to the background signal. Similar to beadcounts these detection p-values

can be used to remove signals based on various thresholds. In most cases, the recommended

approach is to simply remove signals (set individual β values to NA) that have a corresponding

a detection p-value of ≥ 0.01 or ≥ 0.05, but other methods have been suggested. Lehne et al.

(2015) suggests excluding based on a detection p-value derived from a low enough p-value such

that all signals obtained from the Y-Chromosome from females samples are excluded from analysis.

Another alternative is using pfilter where probes are removed if > 1% of samples have a detection

p-value > 0.05. It should be noted that the calculations of detection p-values are intrinsically

different between software. Specifically, the method used to derive detection p-values in R using

minfi will be different from what is provided by Illumina’s GenomeStudio or by other packages

such as methylumi. Thus the process of removing low-confidence measurements may vary between

analysis.

3. Probe Variance – Statistical tests used in EWAS require that there is sufficient variance between

groups or per standard deviation of a continuous variable for an effect to be estimated. In rare

situations, it is possible that a probe can exhibit little to no variation such that any discernible

effect would not be detected, even with thousands of samples. Therefore removing such probes

could be beneficial when performing many statistical tests as it can both reduce the multiple testing

thresholds and save in compute time as there would be fewer loci being tests. There are a few

drawbacks to this approach. Targeting probes with low variance using an arbitrary threshold will

select more Type I probes than Type II probes due to Type I probes having a distribution with peaks
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closer to 0 and 1 while Type II probes peaks at 0.9 due to background signal. Furthermore, there

may be circumstances where highly invariable probes could exhibit wild variation in very specific

circumstances (i.e. with rare diseases). As a result, it would be useful to explore the probes which

a usually invariable to identify circumstances when low variance probes vary slightly.

4. Minor Allele Frequencies – The last characteristic I intend to explore is the common practice of

removing probes that exhibit SNP-like distributions. The preexisting probe lists already describe

the probes which overlap with public SNPs but do not account for private SNPs and features that

can exhibit minor allele frequencies. Thus a sample-wide scan of each probe to find features that

display a SNP-like distribution (in the case of β values this is a trimodal distribution with peaks

typically at 0.25, 0.50 and 0.75). I use k-means clustering to identify probes that display clusters in

Hardy-Weinberg equilibrium. By identifying probes that exhibit SNP-like distributions it could be

possible to reduce the amount of genetic confounding in any given analysis.

By identifying a comprehensive set of probes that exhibited abnormalities on a large enough scale, it

would not be unreasonable to assume that any probe that is identified in this way could be problematic

in both large and small scale analyses. Moreover, when the ability to perform meaningful quality control

is limited, it is possible to make use of this analysis to prune the data accordingly as probes identified

according to this analysis have been determined to be problematic in some form.

5.2.2 Part 1 Results

Examining the quality of the data within the GEO dataset requires extremely careful and time-consuming

decision making to ensure that each sample would have been equally considered. Due to missing annota-

tions, the identification of sex-mismatches or sample-swaps was not possible for the majority of datasets.

As a result, the provided annotation for all samples were treated as accurate. When checking the quality

of the data using methods that look at the control probes (e.g. bscon) it can be seen that the quality of

the DNA varies considerably between datasets (Figure 5.2). Application of a generous threshold of 80%

bisulfite conversion shows that the majority of datasets are of good quality and display tight quantile

distributions around 90%. As many as 7 datasets (of 91) appeared to have performed poorly according
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to this tool. The worst performing dataset according to bscon, GSE79009, assayed DNA obtained from

Schwannoma (Agnihotri et al., 2016) where the quality of the DNA could be potentially scarce when

compared to the availability of whole blood DNA. Following the conclusions of Chapter 2 of this thesis,

I reason that a sample can be of usable quality despite failing control-probe based quality control and

therefore still included in downstream analysis.

Similarly, the application of data-driven tools such as pwod or outlyx would also be difficult to apply on the

entire GEO dataset. Applying these tools on the entire complement of 15,773 samples would likely yield

no meaningful results as these tools perform poorly on heterogeneous data. Application on a per-dataset

basis would penalise datasets that contain heterogeneous tissues or have a complex design where specific

groups would need to be tested individually. Due to incomplete annotations, it becomes very difficult to

appropriate devise quality control pipelines that would be appropriate for each given dataset. Thus the

decision to not apply any form of quality control to the GEO dataset was made for the following analyses.

5.2.2.1 Bead Counts

The first characteristic I explore is the overall representation of each CpG probe on the microarray which

is determined as the bead count that a probe has on the microarray. When using the default thresholds as

outlined by pfilter (bc < 3, n > 5%) a total of 303 probes were identified according to these thresholds.

This suggests that a majority of the probes on the 450K are represented reasonably well when considering

a large number of samples. When I considered these thresholds on a per dataset basis (Figure 5.3a) the

median number of probes identified in all of the datasets is 557 probes. From Figure 5.3a it can be seen

that a few datasets have more than 5,000 probes identified as being poorly represented. The reason for

this wide variation in the number of poor samples will require further investigations as the number of

probes detected by bead counts do not appear to correlate with correlate with quality control metrics and

could be solely due to the random distribution of beads that are present on each microarray.

Next, I compared the number of times a probe fails (using the default thresholds) in an increasing pro-

portion of the datasets (Figure 5.3b). Fewer than 750 probes (649) appear to fail in 20% of datasets
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Figure 5.2: Box and whiskers plots of bisulfite conversion values as determined by bscon for 91 datasets
obtained from GEO.
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which suggests that overall each probe is fairly well represented and that only a small subset of probes

could be removed as they are known to fail 20% of the time.

I then explored how variation in the thresholds for this beadcount check affects the number of probes

that would be detected in this manner. Figure 5.4 shows box and whisker plots for the number of probes

identified in each dataset and the large GEO dataset for a variety of thresholds using cut offs that range

from < 2 to < 7 beads in as much as 10% of the samples. A cut-off of n > 1% appears to be too strict,

even when applied to the GEO dataset as a whole as a large number of probes are flagged as a result.

If using such a threshold in conjunction with a stricter bead count (e.g. bc < 5) roughly 60,000 probes

could be removed from analysis. Relaxed thresholds such as bc < 4 and n > 10% produce similar numbers

of probes to the default parameters and could be a reasonable alternative to the default thresholds as

there is only just a significant difference in means (p = 0.04948) between these two thresholds.
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5.2.2.2 Detection p-values

The second characteristic I explore to identify problematic probes was using the detection p-values. Ac-

cording to the thresholds defined by pfilter (p > 0.05, n > 1%) a total of 24,141 probes were flagged as

having an unreliable signal across all samples. When each dataset was treated separately (Figure 5.5a)

the mean number of probes identified was similar (21625). Using an identical approach as used with the

beadcounts 14.681 probes failed in 20% of datasets (Figure 5.5b).

Different thresholds in both the detection p-values and the number of samples show similar trends when

increasing the threshold. Increasing the detection p-value threshold (while keeping the proportion of

samples the same) did not significantly affect the number of probes that were identified as being low

quality (Figure 5.6). Increasing the proportion from 1% to 5 or 10% yielded a significant difference in the

number of probes detected while an increase from 5% to 10% did not.

Regardless of the thresholds used, it is seen that as many as 10 datasets have more than > 50,000

unreliable signals in most circumstances. Of particular note, one dataset (GSE72556) has as many as

300,000 probes that would be detected by any thresholds.

When combining together the probes that fail both the default parameters of pfilter (beadcounts and

detection p-values) on a global scale, 20% of the time, a total of 15,124 probes are found to fail at

least one of the two tests (206 probes fail both tests). When considering where each of these probes are

located within the genome it can be seen that there is a mostly uniform proportion for each chromosome

with the exception of the Y Chromosome which exhibits an 88% failure rate (Figure 5.7). This suggests

that any signal generated by probes on the Y chromosome are likely to be confounded by background

noise.
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Figure 5.4: Number of probes removed based on a variety of thresholds on beadcounts. Each box and
whisker plot corresponds to a set of thresholds applied to each dataset (n=91) in the GEO dataset. Red
points correspond to the number of probes identified when thresholds are applied to the full GEO dataset.
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Figure 5.6: Number of probes removed based on a variety of thresholds on detection p-values. Each
boxplot corresponds to a set of thresholds applied to each dataset (n=91) in the GEO dataset. Red
points correspond to the number of probes identified when thresholds are applied to the full GEO dataset.
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5.2.2.3 Sample Variance

A very much unexplored feature of probe filtering is the removal of probes that do not vary at all. While

it is expected that a majority of CpGs will vary by some amount, it is uncommon for certain probes to

exhibit little to no variation (especially across many samples). Because I have a large number of samples

from a variety of tissues it is possible to identify a set of probes which display minuscule amounts of

variation even across different tissues and disease. In other words, identifying cases where no variation

exists when variation is expected.

There has been no recommendation for what the absolute minimum amount of variance that a probe

should exhibit. Therefore, I explored how much each probe can vary. Figure 5.8 shows the distribution

of probe standard deviations split across Type I and Type II probes in both the GEO and Marmal-aid

datasets. What is clear is that the variation between Type I and Type II probes is different as Type I

probes show large peaks at 0.026 and 0.066 for GEO and Marmal-Aid respectively while Type II probes

have a more variable distribution with two distinct peaks, one within the range of 0.026-0.066 and the

other peak around 0.16.

There are currently no recommendations for what is the absolute minimum amount of variance a probe

should exhibit. I decided to explore the bottom 5th percentile of each dataset within the GEO dataset and

created an intersection between all of the probes that were identified within the bottom 5th percentile.

When considering the probes which consistently exhibit a low variation (> 50% of the time) there are

11,938 (3623 Type I, 8315 Type II) probes that tend to have small variation. Removal of these probes,

in particular, will warrant caution as there will be certain circumstances where these probes can exhibit

a large variation, thus removing these low variable probes can lead to the possibility of missed associations.

5.2.2.4 Minor Allele Frequencies

Lastly, I examined the presence of minor allele frequencies and private SNPs at the single loci level. The

previously described lists have determined numerous CpGs which have known public SNPs that underlie
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the probe sequence. This means that these probes can be confounded by genetic differences and are rec-

ommended for removal. However, this does not account for unknown SNPs that could be identified in the

remaining set of probes. By using k-means clustering to cluster the raw β values to three separate centres

representing low, intermediate and high methylation, it is possible to generate pseudo-allele frequencies

for each given locus. After clustering, the allele frequencies were tested if they were in Hardy-Weinberg

equilibrium to establish whether or not any of the probes exhibited a SNP-like distribution. This process

was applied to both the GEO and Marmal-aid datasets. In total 67892 (GEO) and 49860 (Marmal-aid)

probes were in Hardy-Weinberg equilibrium. The intersection of both probe sets revealed a total of 15,004

probes to have SNP-like proportions.

5.2.2.5 Summary

When combined with the preexisting probe lists and other recommendations (such as removing probes

from the X and Y chromosomes) a total of 103,128 CpGs can be removed from analysis prior to statis-

tical testing. Table 5.1 shows a breakdown of the number of probes in each category and the properties

associated with those features.

5.2.3 Part 1 Discussion

The quality control of DNA methylation microarray data is extremely important in EWAS. On smaller

scales, this process is relatively straightforward and many of the tools and methods have been developed

with these small datasets in mind. As there is now a large amount of information that is available on

public repositories, it is likely that larger analyses will be taking place and therefore it is useful to consider

how signals on the 450K microarray will behave during this bigger analyses.

By examining four characteristics of the 450K microarray, I propose an extension to the already popular

probe-lists to recommended that up to 103,128 probes that could be removed from analysis as they

demonstrate some form of confounding. This is not to say that any analysis that includes these probes

131



Table 5.1: Breakdown of all 103,128 CpGs identified to be filtered from analysis

Characteristic CpG Context Type I Type II

Bead Count <3, n >5%, >20% datasets

Island 212 89
Shore 56 70
Shelf 18 35

Open Sea 65 104

Detection P >0.05, n >1%, >20% datasets

Island 397 618
Shore 531 1960
Shelf 225 2479

Open Sea 878 7593

< 5th percentile variation in > 50% datasets

Island 3383 5737
Shore 125 2069
Shelf 19 60

Open Sea 96 449

Intersected HW SNPs from GEO and Marmal-Aid

Island 2813 2509
Shore 651 3455
Shelf 222 1124

Open Sea 685 3545

Zhou et al. (2017)’s List + Cross Hybridised

Island 8892 8447
Shore 2711 10589
Shelf 930 4834

Open Sea 4544 17218

X, Y and SNP probes

Island 2208 2204
Shore 481 2497
Shelf 97 1093

Open Sea 379 2754

Total Combined

Island 16306 17672
Shore 4237 19430
Shelf 1425 8391

Open Sea 6287 29380
Total 28255 74873
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will be of bad quality but is more of an addition to the existing understanding of how the 450K array

performs in preparation for larger analyses. I had set out to describe the characteristics and test a few

thresholds to identify a set of probes that perform and behave differently from the bulk of the 450K

microarray. I do not recommend that these probes be used instead of quality control but this list can

be used in place of quality control if performing such quality control is not possible such as obtaining a

preprocessed β matrix from GEO.

When using the default parameters as defined by the pfilter function (beadcount <3, n >5%; detection

p >0.05, n >1%) to identify probes that fail 20% of the time I identify 15,124 probes to fail one or both

of these two thresholds. The probes that fail these thresholds are fairly well distributed across all the

chromosomes and divided between Type I and Type II probes evenly. This is with the exception of Type

II probes that are located within intergenic regions of the genome. Additionally, this probeset is inclusive

of nearly 90% of the CpGs located on the Y Chromosome. The pfilter function was designed more than

6 years ago and the default thresholds were chosen based on past experience with EWAS at the time and

was tested on datasets of around 100-200 samples. These thresholds nonetheless appear to perform well

on a majority of the datasets that are within GEO with a few exceptions. Alternative threshold such as

detection p >0.01 or Lehne et al. (2015)’s suggestion of 10−16 yielded a non-significant difference in the

number of probes detected, suggesting that any of these three thresholds are sufficient for use. Most of

the probes on the 450K microarray appear to be fairly well represented with only 649 probes consistently

having low representations.

I also try to characterise probes by how much they vary across thousands of samples and tissues. What is

apparent and expected is that the Type I and Type II probes behave wildly differently. Type I probes are

defined by a single peak around a SD of 0.02 while Type II probes have one peak at an SD of 0.03 and

a wider peak at an SD of around 0.06. This suggested that using an arbitrary cutoff, e.g. <0.02) would

be unsuitable as it would unfairly penalise Type I probes as they are known to vary less. Thus I opted

to use a different approach. First I split the probes according to design and then ranked the variation of

each probe within each dataset (n = 91). I then intersected the bottom 5th percentile of each dataset to

identify a set of probes which consistently (>50% of the time) had low variation. Using this method, I
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identify 11,938 probes which were shown to vary an extremely small amount. However, the treatment of

invariable probes is not as clear cut as it is with the other probes on this list. In fact, I would recommend

keeping these low variance probes for analysis. As EWAS are growing in size the advantages of having a

large number of samples is that there is the a large enough power to identify very small effect sizes - even

from probes with a SD of 0.01. While I have included these in the probe-list I would like to note that

I do not recommend that these probes be removed when considering a large number of samples as it is

possible to identify associations with them. Additionally, it is possible that these probes can vary wildly

in certain diseases and tissues that were missed in the 91 datasets I decided to look at.

Lastly, I characterised probes that exhibited a typical SNP-like distribution. Removing probes that have

signals that are subjected to genetic confounding is a well known and established technique already. And

the probe-lists have already identified public SNPs that are within the probe sequences of the 450K

microarray. I set out to identify an additional set of unknown SNPs (or low-frequency alleles) which

were otherwise missed. The intersection of the detected probes between GEO and Marmal-aid dataset

appeared to be well distributed between both CpG islands and probe designs. Out of the 51,000 SNPs

that are listed in Zhou et al. (2017)’s list only 1607 of these were identified in my intersection of SNP-like

probes.

The detection p-values are a measure of confidence that a signal is presented above the background signal.

However, there are numerous ways to calculate this. The most popular way of computing the detection

p-values will generate a different set of detection p-values according to the official method (Illumina’s

GenomeStudio). As a result, the software that was used to read in the raw data will affect the detection

p-values for each probe. Although this is a small matter, the detection p-values used in this analysis were

derived from the detection p algorithm described in methylumi. If I were to go back and read all of the

idat files using minfi I would have received a completely different set of results. Thus the application of

pfilter (with the detection p thresholds) could have identified a completely different probe-set to the one

presented here.

This analysis does not answer whether or not that removing the probes identified is actually useful for
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analysis. In the future, I would like to implement the extension I provide in this chapter to a number

of EWAS. It is entirely possible to combine the results of this study with the multiple EWAS that were

performed in Chapter 2. This would allow me to explore whether or not the application of probe-filtering

does lead to improved results.

In this part of this chapter, I extend the widely used probe lists that researchers use extensively in EWAS

with a new set of features that are more reflective of the overall quality of the probes in question. The

intention behind this is to provide alternative methods of quality control where there is no opportunity to

perform the routine quality control steps as defined by individual software packages.

Considering the 450K is approaching the end of its lifespan where the last few remaining datasets are

being produced and submitted to online repositories the wealth of data provided by these 450K arrays will

enable us to generate more assumptions about these DNA methylation microarrays behave. As the use

of meta-analyses and large scale data analyses taken precedence the need for generalised, reproducible

quality control will become increasingly more needed. This work describes the first steps towards achiev-

ing a thoughtful starting point towards the quality control of large numbers of data.

5.3 Part 2

Recent efforts in the field of epigenetics have been focused on understanding the role of DNA methylation

and disease. The concept that DNA methylation is involved in transcriptional regulation has been well-

observed (Jones, 2012) and has been shown to play important roles in gene silencing mechanisms such

as X-inactivation and genomic imprinting (Jaenisch & Bird, 2003). Despite this, there is little evidence

to suggest whether or not stochastic DNA methylation has a causal role in gene silencing or is left as a

result of gene silencing. Early studies had identified correlations between promoter hypomethylation with

gene expression and conversely, gene body hypermethylation has been correlated with gene expression as

well (Jones, 2012).
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A recent study by Ford et al. (2017) set out to ascertain whether induction of DNA methylation at pro-

moter regions is accompanied with transcriptional repression. As such Ford et al. (2017) sought to assess

changes of DNA methylation alongside changes in gene expression and chromatin state by inducing the

methylation state in numerous promoters. To do this Ford et al. (2017) used engineered cell-lines de-

rived from MCF-7 cell lines which upon doxycycline (dox) treatment, expresses Zinc Finger (ZF) Domain

proteins fused with DMNT3A proteins (ZF-D3A) that induced the methylation of thousands of promoter

regions to which these ZF domains can bind to. Originally designed to target an 18 bp GC-rich sequence

within the SOX2 promoter, these ZF fusion proteins were also found to non-specifically bind to other

GC-rich sequences such as those found in CpG islands. Ford et al. (2017) measured the methylation

state, mRNA counts and chromatin state of the MCF-7 cell lines at three conditions: MCF-7 control,

ZF-D3A +dox and ZF-D3A dox-withdrawn (where dox treatment was used but then withdrawn after DNA

methylation was induced). What Ford et al. (2017) had found was there was not enough evidence to

support the idea that induced DNA methylation alone would not be sufficient as a gene silencing mecha-

nisms. They had also found that active chromatin (H3K4me3) could exist simultaneously alongside DNA

methylation and that following the removal of dox the induced methylation patterns were quickly removed.

However, the data from Ford et al. (2017)s study was recently reanalysed by Korthauer & Irizarry (2018)

who had found contradictory results with the original conclusions of Ford et al. (2017)s study. Instead,

Korthauer & Irizarry (2018) found that the induction of methylation at a variety of promoter regions did

in fact have a gene-silencing effect. These contradictory results were found due to changes in how the

data were analysed. Of note, Korthauer & Irizarry (2018) used statistical inference to identify induced

DMRs instead of arbitrary cut-offs. Korthauer & Irizarry (2018) tested the relationship between DNA

methylation with mRNA and H3K4me3 using fold-change values instead of the absolute count data.

This allowed for small differences between regions of low count to have the potential to be significant

rather than only considering large differences between regions that have high counts. These differences

in analysis were enough to establish that as much as 80% of forcibly methylated promoter CpGs were

accompanied with a decrease in gene expression and a decrease in H3K4me3.

Despite the contrary results of the initial analysis, citeFord2017s study caught my attention as it demon-
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strated that role DNA methylation plays as an epigenetic mechanism still has room for investigation. As

I had previously obtained the DNA methylation patterns of more than 15,773 samples from a variety of

tissues, it should be possible to explore if gene-region specific DNA methylation patterns correlate with

gene expression.

5.3.1 Part 2 Methods

5.3.1.1 General Trends gene region Methylation

The 450K microarray interrogates the methylation state of numerous CpGs that annotated to roughly

20,000 genes. These probes can be categorised based on the area of where they are located within the

gene. These are the TSS1500 (1,500 bp away from transcription start site), TSS200, 5’ UTR, 1st Exon,

Gene Body and 3’ UTR. Specific gene region methylation was estimated for each gene as the mean β

value of all CpGs that were annotated to a given gene region. CpGs that were annotated to multiple

gene regions or genes were also included in the estimate of all genes or regions such probes annotated to.

Neighbouring CpGs that did not correspond to any gene regions were not included in these calculations.

The gene region methylation were obtained from 6464 samples across 17 tissues from the GEO dataset

that is described in Section 5.1.1.1.

5.3.1.2 Tissue specific Gene Expression

Relevant gene expression values for the 17 tissues for 11,334 genes were obtained from the InterMine

web resource (Smith et al., 2012; Kalderimis et al., 2014). These gene expression values are stored as a

moderated T-statistic which corresponded to the ratio of the log2Fold change to its standard error. Where

a negative refers to the down-regulation of a gene in a specific tissue and a positive value corresponds to

up-regulation.

In summary: moderated gene expression values and the average DNA methylation state for TSS1500,

TSS200, 5’UTR, 1st Exon, Gene Body and 3’ UTR were obtained from 6464 450K microarrays for a total
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of 11,334 genes and 17 different tissues. The relationship between gene expression and DNA methylation

was explored using Pearson correlation both for each tissue separately and all tissues combined.

5.3.2 Part 2 Results

The Pearson correlations between moderated gene expression T-statistics obtained from InterMine and

the average DNA methylation across 6 different gene regions are described in Table 5.2. Overall there

appears to be little to no correlation with these gene expression values with most of the tissues or with

all of the tissues combined.

Figure 5.10 shows the overall distribution of the DNA methylation patterns per gene region across all

tissues. Low methylation in promoters and intermediate to high methylation within the gene body and

3’ UTRs suggest the methylation of these regions are consistent with previous observations.

Approximately two-thirds of the correlations are negative which provides support for the previously seen

negative correlations with gene expression. And all correlations when combining all 17 tissues together

yielded small negative correlations and thus a decrease of gene expression is observed with increasing

DNA methylation across all gene regions although the correlation is small.

5.3.3 Part 2 Discussion

The results presented in this analysis are extremely preliminary and are intended to demonstrate the types

of analysis that could be performed when combining large amounts of data. Here I take thousands of

DNA methylation patterns that had been deposited to GEO and combined them with tissue-specific gene

expression data taken from the InterMine web resource. I report that there is a small negative correlation

with increasing DNA methylation across all gene regions with gene expression in more than 10,000 genes

across 17 different tissues, which is consistent with previous observations (Jones, 2012). Although each

tissue separately can demonstrate different directions of correlations this can be explored in the future.
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Figure 5.10: Average DNA methylation per genomic region vs Tissue Specific Gene Expression obtained
from intermine for 17 different tissues.
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Table 5.2: Pearsons Correlation between moderated T-statistics for Gene Expression and average DNA
methylation of Genomic Regions by Tissue

Tissue TSS1500 TSS200 5’UTR 1st Exon Gene Body 3’ UTR
Adipose 0.0838* 0.0938* 0.0983* 0.097* 0.0466* -0.0147

Bone Marrow -0.0555* -0.0795* -0.106* -0.0783* -0.0645* -0.0176
Bulk Brain -0.074* -0.0935* -0.0748* -0.095* -0.0205 -0.00139

Cervix -0.149* -0.181* -0.204* -0.182* -0.157* 0.0217
Colon -0.117* -0.166* -0.19* -0.163* -0.113* 0.0423*

Cord Blood 0.0625* 0.0624* 0.0226* 0.0675 -0.047* -0.0285
Dorsolateral Prefrontal Cortex 0.139* 0.181* 0.176* 0.186* 0.127* -0.0746*

Esophagus -0.0402* -0.0887* -0.0748* -0.0983* -0.0571* -0.0111
Kidney 0.0203 -0.00489 -0.023 0.0191 -0.0479* -0.0373
Liver 0.0537* 0.0211 0.0162* 0.0415 -3.61e-05 -0.00727
Lung -0.200* -0.287* -0.283* -0.287* -0.143* 0.0903*

Lymph node 0.104* 0.127* 0.121* 0.129* 0.0649* -0.0323
Placenta -0.138* -0.174* -0.170* -0.170* -0.0531* 0.120*
Prostate -0.0791* -0.116* -0.134* -0.104* -0.0908* -0.0367*
Thyroid -0.0568* -0.0811* -0.0823* -0.0766* -0.0605* -0.0241
Tongue 0.0869* 0.0967* 0.0853* 0.0905* 0.0325 0.00532

Whole Blood -0.0121 -0.0511* -0.0701* -0.0478* -0.0609 4.56e-05
All Tissues -0.0299* -0.0565* -0.0654* -0.0518* -0.0425* -0.000451

* p <0.0001

The lack of correlations between DNA methylation and gene expression does not mean that DNA methy-

lation does not play a role in gene expression as there have been well studied examples of this. Rather

these results demonstrate that the data that is available from 450K microarrays are not just limited to

epigenome-wide association studies and can be used in alternative analyses.

Many of the correlations between gene region methylation and gene expression were significant, negative

and small in size. These correlations were seen across various tissues and in general across all tissues

combined. However, nearly all of the correlations between 3’ UTR methylation and gene expression were

not significant with the exception of four tissues. This can suggest that 3’ UTR methylation may not be

indicative of transcriptional activity. More interestingly, gene body methylation was found to be negatively

correlated with gene expression across numerous tissues which is in disagreement with previous studies

(Yang et al., 2014).

The largest (negative) correlations that are observed are all from lung tissue. This could be due to the

fact that approximately half of the lung samples used in this analysis were sourced from cancerous tissues.

Therefore it is possible that the relatively large correlations observed in lung tissues may be caused by

global demethylation events which are a known characteristic of cancerous tissues (Feinberg, 2007). This
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would need to be examined as it is also possible that batch effects that were not accounted for could

be confounding these observations. As no normalisation was applied to the data it is possible that there

could be some unmediated effects that are also influencing these results.

What is also interesting is that some tissues presented a positive correlation with gene expression as DNA

methylation increased. Tissues such as adipose have positive correlations between DNA methylation and

gene expression across the majority of gene-regions. It is not known why these tissues specifically are

positively correlated with their respective gene expression. This would be an interesting avenue for future

work, firstly to verify that this positive correlation exists and to understand why and how this can come

about.

Despite these results not being entirely translatable to Ford et al. (2017)’s study - the analyses are some-

what related. Initially, Ford et al. (2017) provided evidence that suggested that induced DNA methylation

of promoter regions was not accompanied by a gene silencing response. These results were reanalysed and

shown that induced DNA methylation did in fact lead to gene silencing. Here I present on a genome-wide

scale using thousands of publicly available data that there are little (or no) correlations between DNA

methylation and gene expression. More importantly, I have demonstrated how it is possible to efficiently

handle and manipulate large numbers of samples to generate such conclusions as a proof of concept for

future work. And as a result - highly encourage others to reproduce these results.

Although this study was brief there are numerous limitations I would like to address:

The gene expression values that were obtained from interMine were based on moderated test statistics

which were based on comparisons of given tissues to a specific set of other tissues. Therefore the gene-

expression values that were obtained for a given tissue (e.g. Lung) may not be representative of a true

comparison between it and another tissue. Furthermore, the gene expression values used in this study are

not indicative of any gene silencing mechanisms and are more or less related to the up or down-regulation

of a given gene in a tissue. This analysis could be drastically improved if data from other -omics-based
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experiments were included such as chromatin state, similar to the approach that Ford et al. (2017) used

in their study.

For this analysis, I had only considered the CpGs that were annotated to genes according to the manifest

that was provided by Illumina. As a direct result, there is plenty of room to extend these analyses to

include enhancer regions and gene-flanking CpGs or even unannotated CpG Islands. There is a strong

likelihood that the method used to estimate the average gene region methylation could be skewed by the

overall number of CpGs that are present in each region. In addition, it is possible that simply the ’average

methylation score’ is not the best metric to consider gene-region wide methylation as the methylation

pattern can be highly variable across the length of a given region (such as a gene body). Therefore

alternative methods of computing the gene-region methylation should be considered. Although in this

preliminary analysis it is unlikely this would have had much of an impact on the results but in the future

I think the CpG density per gene region should be factored into the analysis.

I also use the gene-region annotation for each CpG to determine the functional role of a CpG. However

the location of a CpG within a gene may not be a good indication of a given CpGs functional capacity.

It is possible that CpG island context is a more informative medium to identify whether or not DNA

methylation of a CpG could play a role in gene regulation as it has been demonstrated that CpG island

methylation is important in gene regulation (Irizarry et al., 2009). Therefore a natural extension for this

analysis would be to perform this analysis using CpG island context instead of gene-region annotation.

It is possible that categorising CpGs according to their location within a CpG island may correlate better

with gene expression. Furthermore, Ford et al. (2017)’s study had essentially selected CpGs that were

located within CpG islands. As Ford et al. (2017) induced methylation of CpGs using ZF-D3A hybrid

proteins which bind with high specificity to CpG dense sections of DNA. It is likely that only CpGs located

within or near CpG islands were used for their analysis. My analysis looked at all CpGs that annotated

to genes on the 450K which included CpGs that may not be nearby CpG islands.

I use data from a large number of sources. This lead to the data being very noisy and heterogeneous.

In addition to this, I decided early on in the analysis to leave the data unnormalised as a majority of
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the normalisation methods are known to drastically attenuate global differences in methylation such as

those observed between different tissues. This lack of normalisation is potentially an issue as there is

likely going to be extremely large variation at almost every loci. As I was looking at DNA methylation

patterns in a tissue specific manner it is possible that I may be able to each tissue within the GEO

dataset separately before carrying this analysis out. Additionally, the gene-region methylation calcula-

tion combined the signals from both Type I and Type II probes in certain cases. These probe designs

differ considerably which is why methods that adjust the probe distributions such that they are com-

parable with each other are often used (e.g. dasen or BMIQ), as a result the gene region methylation

signals used could have been quite inaccurate. In the future I would like to explore this analysis by im-

plementing some form of normalisation (either across all samples or in a tissue-wise manner) which will

also handle these differences in probe designs as it could vastly improve the results present in this analysis.

Some of the tissues within the data-set are subject to numerous diseases and cancer which could be

influencing the DNA methylation patterns in some form. In this study, I opt to treat all non-cancerous

tissues as healthy but this doesn’t rule out other diseases which can affect DNA methylation patterns.

Specifically, some of these tissues had a large proportion of samples obtained from cancerous sources.

These were: brain (83%), Lung (50%), Prostate (95%), Tongue (100%) and Thyroid (50%). I expect

this will need further investigation but it is likely that these tissues in particular could have been subjected

to a small amount of confounding as the gene expression data used for these tissues would likely have

been sourced from healthy tissues. As a result the DNA methylation patterns and gene expression data

for these mostly cancerous tissues may not be entirely comparable.

This analysis was only performed with a small selection of the data on GEO that had raw idat files

associated with it. As there are still an excess of 50,000 samples that are still available on GEO (that are

in a variety of processed states) it could be possible to go back through GEO and collect data from more

tissues and more samples. There will however be issues with missing probes and differing preprocessing

methodologies but I do not expect this to have much of an issue as you will be reaching sample numbers

that would have the capacity to produce robust results.
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5.4 Conclusion

In this chapter I demonstrate two preliminary analyses that make use of more than 15,000 samples. Al-

though the analyses performed here are quite limited it is important to consider that the scale of these

analyses is larger than most studies to date. I show that the bigmelon software can easily handle tens

of thousands of samples without imposing too many technical limitations such as high memory. These

analyses were performed using data that fulfilled a brief criteria (having idat files, n > 50), it is likely that

using a more strict criteria or focusing analysis on a specific tissue would likely produce an easier analysis

with fewer potential confounding.

Firstly, using the 15,773 samples I investigated the characteristics of the probes that are present on the

450K microarray. Considerable effort has been made in the past to identify problematic probes which

could produce unreliable signals. However, these efforts did not consider the sample-wide quality control

metrics that I explored here. By looking at these metrics I extend these probe-lists to 103,128 probes

which fail a variety of criteria. I believe that these additional probes could be useful for analysis where

the raw idats are unavailable for quality control.

The second piece of analysis I used the large dataset I created and combined it with data that has been

collected from another public resource (interMine). Using both these data, I investigated the correlation

between DNA methylation and gene expression. From this preliminary study it may appear that there is

no correlation between DNA methylation and gene expression. However it is important to remember that

the DNA methylation has been shown to regulate gene expression in various circumstance. Although I

perform a genome-wide approach for this analysis it is likely that there are still facets that are missing

and limitations that perhaps could dealt with using a better designed experiment.

The publicly available data that is on GEO is a useful resource as it contains more than 70,000 450ks

and a growing number of EPIC array data. I have created a tool (geo2gds) which downloads and parses

DNA methylation data (only GEO accessions with raw idat files) from GEO into a gds format file. This

can then be combined with other datasets which makes data collation easy. It is possible that this tool
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can be converted to work on accessions that only contain processed βs but disparities between processing

methodologies and probe-filtering can limit the analysis of such data.

The geo2gds function also attempts to download the phenotypic annotations which accompany the GEO

accessions but due to inconsistencies between annotations, the combination of multiple datasets using this

method requires manual verification and sanitisation of annotations to produce something meaningful.

The MIAME guidelines are suggested for GEO submissions but not all datasets submitted to GEO contain

the necessary information to reproduce the analysis that had been performed. In the future, I believe the

submission guidelines for DNA methylation data (and other omics data) should be updated to include

the sex, age and tissue sources of samples, in addition to the raw files being made available. This would

allow for data to be readily combined and make large scale analyses easier to perform. I foresee that such

changes would make constructing large datasets from multiple sources quite straightforward. However, I

acknowledge that certain data protection and privacy issues will not allow for so much information to be

made publicly available.

Previous large scale analyses such as those presented by Karlsson Linnér et al. (2017) and Horvath (2013)

are dwarfed in comparison to these analyses and any technical limitations that they had faced could be

remedied through the use of the infrastructure I have provided (Gorrie-Stone et al., 2018, Chapter 3). It

is my hope that others will go on to use the tools that I have created to produce large and interesting

analysis that push the limits of the software and uncover biologically important discoveries.

145



Chapter 6

General Discussion

The DNA methylation microarrays have been invaluable for EWAS as a whole. As a single platform, they

have proven themselves to be an incredibly cost-effective platform to assay thousands of samples. As the

number of samples submitted to GEO alone approaches 100,000, there is truly a fantastic wealth of data

that is now available to analyse. There is no doubt that this data will become an invaluable resource for

future work.

As these microarray platforms have recently been extended, it is expected that a similar number of samples

will be assayed on the EPIC array in the future. Both sets of microarray provide thousands of gigabytes of

information all from a rich diversity of disease and tissue types. Although there has yet to be a standard

for this type of large scale analysis I am confident that practical guidelines and well thought out methods

will be established in the future. Despite these microarrays being selective in the field of epigenetics

they investigate, I imagine that they can and will be combined with other omics data to comprehensively

investigate a variety of interesting and impactful biological questions.

It is apparent that datasets are becoming larger and the physical size of computing resources could be-

come a potential limitation for both EWAS and multi-omics studies going forward. As part of this thesis,

I developed the bigmelon R package which reduces the memory requirements of the R programming

language and EWAS to more manageable levels. I extensively tested this software on datasets comprised
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of more than 15,000 samples and was able to perform analyses that would otherwise require hundreds

of gigabytes of memory to perform in a timely manner. Despite the software being specifically tailored

to microarray data, I imagine that repurposing or developing a new platform that is specifically designed

to combine microarray data and sequencing data from multiple omics experiments is possible and could

enable complex bioinformatical analysis without the need of large compute resources. I demonstrate that

data stored on the hard-disk using optimised accessory routines is a viable alternative to using cloud-

computing or computing stacks specifically built for big data. Software such as bigmelon was designed

so that it integrates relatively effortlessly with the other popular software used for the analysis of DNA

methylation data within R. For this reason, I believe it is possible to apply this approach of analysis to

other branches of -omics data.

As the cost of whole-genome sequencing is becoming cheaper with every passing year it is not difficult

to imagine that sequencing-based techniques are likely going to replace the use of microarrays when per-

forming genome-wide analysis. It is almost guaranteed that the size of data would balloon and therefore

make EWAS inaccessible. Therefore it is highly important that there are equal amounts of focus and

attention placed into the development of efficient and accessible software to facilitate truly genome-wide

analyses.

It needs to be considered whether or not the bisulfite treatment and subsequent assaying of DNA is an

appropriate measurement of CpG methylation. As bisulfite treatment is insensitive to alternative forms

for cytosine modifications, such as hydroxymethylation, it may be unsuitable for the precise estimation

of DNA methylation patterns. While it has been generally accepted that the contribution of other DNA

modification does not have a large impact on the robustness of findings but it can make the interpretation

or identification of underlying mechanisms of disease difficult to discern. Adjustments to methodologies

such as oxidative bisulfite treatment can be performed in conjunction with normal bisulfite treatment to

identify a more accurate estimation of DNA methylation and other modifications but these considerations

have not been widely adopted. Herein lies another problem, because splitting the signal between 5mC and

5hmC essentially requires two experiments both the cost and the size of the resultant data are essentially

doubled which could potentially limit the number of samples that are being analysed. Therefore the need
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for highly optimised methods such as those provided in bigmelon could be integral moving forward.

During the course of this PhD I examined over 100 different DNA methylation microarray datasets that

were obtained from a variety of sources and quality. Given that I have spent a considerable amount of

time looking at this data and how to analyse it I have some insights that I would like to discuss.

Data, when submitted to public repositories, should be submitted with the raw idat files. This may seem

obvious but nearly three quarters of the datasets that were deposited to GEO did not contain the raw files

and contained some form of processed β or intensities where assessing the quality is difficult. Depositing

the raw data will prove favourable for many analyses and will not limit submitted data to reproduction

analyses. In addition to the deposition of raw idat files, I also recommend that data should be supplied

with information that goes beyond the key model that is performed in studies supported by the submitted

data. Frequently, data is supplied with very little information detailing key variables including the age and

sex of the participant and even which tissue the sample was sourced from. These basic annotations are

extremely useful for generalised analyses such as the one described in Chapter 5 but can become difficult

to handle if data is unconventionally annotated. I understand that ethical considerations and data privacy

issues will inevitably make providing the raw data and even some key variables such as Age, Sex and Tissue

Type difficult. From my understanding, it is the MIAME guidelines which are most commonly adopted

(if any are adopted at all) when data is submitted. I think that extending these guidelines purposefully

towards ’reasonable information’ or even ’extensive information’ (e.g. including sex, age, tissue type and

other information to satisfactorily reproduce an analysis) would allow for better opportunities for both

reproduction and innovative analyses.

I have explored the majority of the available quality control methods that are available for EWAS. From

my analyses I ultimately recommend a comprehensive approach to quality control is likely to be the more

favourable for any EWAS. I stress, much like those before me, that the need for reproducible research is

paramount to the success of a study and that provide clear and concise details about what steps were

involved during the analysis of data is highly valued in any EWAS. By comprehensive quality control I

refer to quality control that includes both control-probe and data-driven based methods. For control-
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probe based methods majority of the tools are quite useful, although the thresholds may need adjusting.

The interactive GUIs that are provided by both MethylAid and shinyMethyl are very informative and fit

nicely into the minfi workflow. The data-driven methods specifically refer to the tools (outlyx, qual,

pwod) described in Chapter 2 all of which can be used as part of any work-flow as they only require a β

matrix to run and are otherwise insensitive to the useful data structures in which data are stored. Quality

control is a subjective task and will depend on the data that is being analysed however providing a short

description of how the data was quality controlled will be valuable in being able to verify and reproduce

research independently.

There is also an excellent variety of normalisation methods that can be applied to DNA methylation data.

Generally there is no consensus on which method is the ”best” for both 450K and EPIC microarray data.

This can be disorientating for users who are unfamiliar with the slight differences between each method

and may result in an inappropriate method being applied. I would recommend using some variety of quan-

tile normalisation as it is consistent and simple to understand. The dasen method was seen to be highly

effective for 450K microarrays as it accounts for the difference in probe designs and slide positioning.

However it has yet to be determined whether or not the slide positioning effects that are prominent on

the 450K array are in fact present on the EPIC array at all. Alternative preprocessing methods such as

background correction and adjusting for dye bias should be considered if one suspects that these issues

could be problematic for downstream analysis.

I explore the idea of expanding the probe-lists that are commonly used in EWAS by examining certain

characteristics of the 450K which are often used for low-level data processing. Current probe filtering

focuses on the removal of probes that could have unreliable signals by virtue of how the probe is designed.

This has quickly become a widely accepted form of quality control as it provides a consistent list of features

that are readily accessible. This has been considered as a thoughtful and conservative way to reduce false

positive findings. However, this type of probe-filtering is arbitrary and it may remove highly significant

findings that are robust to these technical defects. It could therefore be more appropriate to consult

probe-lists after performing discovery analysis to identify and verify probes that do have an unreliable

signal. For a specific example: one of the most robust signals that is associated with increased blood-
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lipid levels (cg06500161) has a SNP within the underlying probe sequence (See Chapter 4). Surely the

fact that this CpG is so strongly associated with a human trait does not warrant it’s removal from analysis.

There are multiple ways one can design an EWAS and perform statistical analyses. Analyses of DNA

methylation data done by either detecting differentially methylated positions (DMP) and differentially

methylated region (DMR). Each of these have their own advantages. Identifying DMPs is straightfor-

ward and analogous to how GWAS are performed. Testing each available CpG enables the possibility to

identify loci which have functional significance such as those located within transcription factor binding

sites. Identification of DMRs potentially reduce the number of false positive findings caused by technical

artefacts and reduce multiple testing thresholds but can be limited by both the coverage and the density

of CpGs for each region as certain regions will have more loci available to estimate the overall DNA

methylation pattern. However due to the considerable expansion of probes that comes with the EPIC

microarray this problem could be overcome depending whether or not the coverage per region is more

balanced. Realistically either of these approaches are suitable for EWAS but I would steer towards DMP

approaches as there are numerous ways to handle false positive results, such as quality control.

Further to this, the type of model is also important in what results are obtained from analysis. Majority

of the models that are used in EWAS are sensible as we have many years of GWAS to draw experience

on. Due to the dynamic nature of the methylome and the often heterogeneous nature of methylomes

obtained from common tissues, there has been a movement to include various extraneous variables within

the statistical model. Some of these are reasonable such as cell-type composition estimations as not

accounting for these will have drastic downstream effects. There are pipelines that suggest spending the

time to identify surrogate variables or including principal components within models stating that such an

approach will vastly improve the results. Ultimately, a well designed study and a thoughtful model should

already contain the key variables to robustly produce meaningful results.

There are hundreds of different decisions that can be made while performing an EWAS and it is extremely

important that any decisions made are communicated clearly. Doing so will enable the ease of reproduc-

tion and the longevity of the data in the future.
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Finally it is possible that all of the tools and methods that were developed for the 450K and EPIC mi-

croarray could be inappropriate for extensively large datasets (n >10,000). It is likely that the current

methods would probably be sufficient and I imagine that these could be used naively and produce results.

However, I would feel much better if at some point in the future these methods were revised for large

datasets but this would require a considerable amount of time and effort.

As we are entering the late stages of EWAS that focus solely on a single epigenetic factors it is expected

that more studies will begin to combine different experiments to produce multi-omics based EWAS.

Through combinations of methylomics, transcriptomics and other -omics related experiments the poten-

tial to truly disseminate the functional and mechanistic role the epigenome has upon gene regulation in

a wide variety of human traits and disease. Such analyses will likely involve complicated methodologies

and software to consistently collate together data from multiple experiments or to facilitate large-scale

meta analyses of results from multiple studies. This will elevate EWAS to an extremely effective analysis

technique which will be the foundation of identifying and developing novel therapeutic interventions.
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Writing bigmelon-ised Functions
Tyler J. Gorrie-Stone

Preface

This is an introduction to implementing functions for bigmelon. Given enough memory, it’s straightforward to
extract the complete intensity or beta metrix from a .gds file and work on that. In order to make a function
that works memory-efficiently on large datasets though, you need to think about how the function works,
and what subsets you should extract to work on sequentially or in parallel.

We will demonstrate using bumphunter::bumphunter as an example and the six 450k samples from the
minfiData package as example data.

We will assume you have also read the package vignettes.
library(bigmelon)
library(parallel) # optional, for parallel processing examples
library(microbenchmark) # optional, to demonstrate some code performance
library(bumphunter)
library(minfiData)

# make a gdsfile
bd <- system.file('extdata', package='minfiData')
gfile <- iadd2(bd, gds = 'melon.gds')
closefn.gds(gfile)
# open the file again, allowing forking (important for multicore processing)
gfile <- openfn.gds('melon.gds', allow.fork = T)

Accessing Data, loops and apply

Preprocessing steps such as quantile normalisation, tend to involve processing an array at a time, ie looping
over columns or apply on margin=2. Analyses are more often probewise, ie looping over rows or apply on
margin=1. In either case it is important to analyse what the function has to keep from these operations
and whether that has to be kept in a memory-efficient form. This generally comes down to whether it is a
column or row summary (ie output is one or a few rows/columns) or the same shape as the input. There is
an apply.gdsn function that optionally keeps the output as a gdsfile node.

Because of the overhead of file access, it’s also worth considering combining several operations into a pass
over the matrix instead of making several pass

Accessing Data

Within bigmelon we provide user friendly [ functions to enable users to directly access data similar to that of
an expressionSet object like a MethylSet object. This is described, in the vignette. These are particularly
useful for interactive use if you are inclined to look at certain regions.
# Pulling out the first row of the data-set
betas(gfile)[1, 1:4, name = TRUE]

## 5723646052/5723646052_R02C02 5723646052/5723646052_R04C01
## 0.4143280 0.3733613
## 5723646052/5723646052_R05C02 5723646053/5723646053_R04C02
## 0.2125911 0.1893959
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# Alternative
gfile[1, 1:4, node = 'betas', name = FALSE]

## [1] 0.4143280 0.3733613 0.2125911 0.1893959

There is little difference between the two above examples. You can access all data as you normally would
using logical, character or numerical indexing. A key distinction is the name argument will provide the
dimnames of the resultant vector/matrix. In the first example we are using a familiar function betas on
gfile and then indexing. While in the second example we are calling the gfile object directly and adding
an additional argument within the [ function to call a specific node that we are interested in selecting. This
is particularly useful for calling data that does not have a standard name or a function associated with it.

Alternatively you can use readex.gdsn, which [ calls, directly. In most cases this is faster but requires a list
of indices and does not provide dimnames
node <- index.gdsn(gfile, 'betas') # target specific node of interest
readex.gdsn(node = node, sel = list(1, 1:4))

## [1] 0.4143280 0.3733613 0.2125911 0.1893959

Lastly, and most importantly, accessing data by column is considerably faster than accessing data by row! So
in terms of performing analysis if you can restructure the code to handle columns instead of rows the time
spent accessing data is greatly reduced.

Looping Examples

Now that we know how to access data we can begin with some loops. Here we will compare a few ways that
a for-loop can be done - and evaluate the caveats of each, and then compare it with the apply-like functions
in gdsfmt. In these examples we will emulate colSums for a gds object.
# Example 1 using `[`
sums1 <- function(gfile){

sums <- vector('numeric', length(colnames(gfile)))
for(i in seq_along(colnames(gfile))){

sums[i] <-sum(betas(gfile)[,i], na.rm = TRUE)
}
sums

}
microbenchmark(sums1(gfile), times = 10)

## Unit: seconds
## expr min lq mean median uq max neval
## sums1(gfile) 1.423583 1.424809 1.464565 1.469261 1.494947 1.501467 10
# Example 2 using readex.gdsn
sums2 <- function(gfile){

sums <- vector('numeric', length(colnames(gfile)))
for(i in seq_along(colnames(gfile))){

sums[i] <- sum(readex.gdsn(index.gdsn(gfile, 'betas'), sel = list(NULL, i)), na.rm = TRUE)
}
sums

}

microbenchmark(sums2(gfile), times = 10)

## Unit: milliseconds
## expr min lq mean median uq max neval
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## sums2(gfile) 29.23284 29.44034 30.4932 29.83899 30.17611 36.85755 10

The time difference between [ and using readex.gdsn is noticeable, while it is relatively small here it could
be a problem in larger data-sets.

Alternatively the same result can be achieved with sapply
sums3 <- function(gfile){

sums <- sapply(seq_along(colnames(gfile)), function(i, gfile){
sum(readex.gdsn(index.gdsn(gfile, 'betas'), sel = list(NULL, i)), na.rm = TRUE)

}, gfile = gfile)
sums

}
microbenchmark(sums3, times = 10)

## Unit: nanoseconds
## expr min lq mean median uq max neval
## sums3 70 70 279.9 70.5 71 2165 10

apply-like functions

The apply.gdsn is usually faster than any for-loop in R and has added benefits that it can store the output
directly into a gds node should you prefer it, usually this allows for cleaner code and looks nicer in my
opinion. I highly recommend reading the manual pages for apply.gdsn! Here we are also able to compute
the colSums of the small matrix in rapid time.
sums4 <- function(gfile){

sums <- apply.gdsn(node = index.gdsn(gfile, 'betas'),
margin = 2, # colSums
FUN = sum,
selection = NULL,
# Otherwise selection can be a list akin to readex.gdsn
as.is = "double",
# Can be "list", "none", "character", "logical", "gdsnode"
na.rm = TRUE # Other arg for sum!

)
sums

}

microbenchmark(sums4, times = 10)

## Unit: nanoseconds
## expr min lq mean median uq max neval
## sums4 70 70 168.3 71 71 978 10

This is comparible with the other examples, however the benefit of using apply.gdsn lies in its ability to
process data by rows. (see below).
sums5 <- function(gfile){

sums <- apply.gdsn(node = index.gdsn(gfile, 'betas'),
margin = 1, # rowSums
FUN = sum,
selection = NULL,
# Otherwise selection can be a list akin to readex.gdsn
as.is = "double",
# Can be "list", "none", "character", "logical", "gdsnode"
na.rm = TRUE # Other arg for sum!
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)
sums

}

microbenchmark(sums5, times = 10)

## Unit: nanoseconds
## expr min lq mean median uq max neval
## sums5 70 70 252 71 71 1816 10

As we can see, apply.gdsn wastes little time in computing the rowSums of a matrix. If we were to do this
with a for loop, we would be here for a very long time.

Depending on what you are using apply.gdsn for it is usually possible to parallelise it by replacing it with
clusterApply.gdsn or writing a mclapply function. n.b. clusterApply.gdsn has problems when being
used within functions (and in this Rmarkdown document and cannot be demonstrated but below is an
example of how to use it). Also doing things in parallel will use more memory.

Another distinction of clusterApply.gdsn is that is cannot write data to a gds file, if you ever wish to do
this; you will need to use a for loop or apply.gdsn.

cl <- makeCluster(2)
sums <- clusterApply.gdsn(cl = cl,

gds.fn = gfile[[1]],
# gfile[[1]] is the absolute path of the gdsfile
node.name = "betas",
margin = 1,
FUN = sum,
selection = NULL,
as.is = 'double'

)
stopCluster(cl)

mcsums <- function(gfile){
sums <- mclapply(seq_along(colnames(gfile)), FUN = function(i, gfile){

sum(readex.gdsn(
index.gdsn(gfile, 'betas'),
sel = list(NULL, i)),
na.rm = TRUE

)
}, gfile = gfile, mc.cores = 2)
sums

}
microbenchmark(mcsums(gfile), times = 10)

## Unit: milliseconds
## expr min lq mean median uq max neval
## mcsums(gfile) 86.84666 102.3932 115.1241 109.1796 130.3954 148.4915 10

There’s a balance between the added hassle of parallelising methods and the speedup that it produces. For
most analyses to date we have managed without it.

A Note

Some operations may not be parallelisable. These include copying data from one gds-object to another,
doing operations that require the results of a previous iteration and writing data to a gds file. In general
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terms, always try to do things using apply.gdsn or clusterApply.gdsn. If you cannot move onto a for-loop,
sapply, mclapply etc., if you are attempting to iterate over rows consider chunking the matrix into 1000 by p
matrix and load and process each chunk into RAM instead of loading the individual row (loading a small
chunk (up to 1000 rows) is just as fast loading a single row). If all else fails, bite the bullet and load the
entire matrix into memory or find a heuristic approach to the problem.

An example of optimisation: bumphunter

We continue to implement bigmelon methods for popular EWAS realated functions, but can’t anticipate all
users’ needs. It is often possible to do this yourself without rewriting very much of the code.

We will be optimising the bumphunter function. The code is quite long and there is a lot to go through but I
will try to describe some of my thought process behind the optimisation.

Review the Code:

The bumphunter function is an interesting function and heavily used in the realms of EWAS. What distinguishes
it from other functions is that it computes its own test statistics and provides two cross-validation methods
for the tools. As a result it involves a lot of matrix arithmetic on the entire dataset. I of course am not the
original author of the code and the coments and documentation can be a huge help in breaking the problem
down.

After some careful review I was able to narrow down that the optimisation of bumphunter could be acheived
by rewriting two parts of the function. Specifically these parts required the entire dataset. With the current
test data it is a 485577 x 6 matrix) but in the intended use case it could be multiple Gb.

To begin optimisation we can start by making a direct copy of the code and strip out any of the preliminary
checks that consider data sanity (e.g stopifnot(is.matrix(data))).

I made the following changes to the start of the code:
n <- objdesp.gdsn(mat)$dim[1] # new
p <- objdesp.gdsn(mat)$dim[2] # new
#if (!is.matrix(mat))
# stop("'mat' must be a matrix.")
if (p != nrow(design))

stop("Number of columns of 'mat' must match number of rows of 'design'")

Maybe I should have used better names than n and p, but it’s useful to have the dimensions stored at the
beginning and to check they make sense.

Step 1: ‘Permutation’

Moving onto the first piece of code we will need to optimise: This is the .getEstimate function - which as
the name implies computes the beta estimates for the model you intend to run. The code is very fast and it
is a shame that we need to break it down into something slower to make it memory efficient.

Here is what I came up with (Changes I have made I have indicated with a ## the line above:
.getEstimate2 <- function(mat, design, coef, B = NULL, permutations = NULL, full = FALSE){

##
p <- objdesp.gdsn(mat)$dim[2]
##
n <- objdesp.gdsn(mat)$dim[1]
v <- design[, coef]
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A <- design[, -coef, drop = FALSE]
qa <- qr(A)
S <- diag(nrow(A)) - tcrossprod(qr.Q(qa)) # ncol * ncol matrix, "small"
vv <- if(is.null(B)){

matrix(v, ncol = 1)
} else {

if (is.null(permutations)) {
replicate(B, sample(v))

} else {
apply(permutations, 2, function(i) v[i])

}
}
sv <- S %*% vv
vsv <- diag(crossprod(vv, sv))
#b <- (mat %*% crossprod(S, vv))/vsv
# if (!is.matrix(b))
# b <- matrix(b, ncol = 1)
if(full){

# sy <- mat %*% S
df.residual <- p - qa$rank - 1
if(is.null(B)){
## New Chunk

o <- apply.gdsn(node = mat, margin = 1, as.is = 'list',
FUN = function(x, S, vv, vsv, sv, df.residual){

sy <- x %*% S
b <- (x %*% crossprod(S, vv))/vsv
tcross <- tcrossprod(b, sv)
sigma <- sum((sy - tcross)^2)/df.residual
list('B'=b, 'sigma'= sigma)

}, S = S, vv = vv, vsv = vsv, sv = sv, df.residual = df.residual
)

} else {
o <- apply.gdsn(node=mat, margin=1, as.is = 'list',

FUN = function(x, S, vv, vsv, sv, B, df.residual){
tmp <- sy <- x %*% S
sigma <- b <- (x %*% crossprod(S, vv))/vsv
for(j in seq_len(B)){

tmp <- tcrossprod(b[,j], sv[,j])
sigma[j] <- sum((sy-tmp)^2)

}
sigma <- sqrt(sigma/df.residual)
list('B'= b, 'sigma'=sigma)

}, S = S, vv = vv, vsv = vsv, sv = sv, df.residual = df.residual, B = B
)

}
coef <- if(is.null(B)) sapply(o, '[[', 'B') else t(sapply(o, '[[', 'B'))
sigma <- if(is.null(B)) sapply(o, '[[', 'sigma') else t(sapply(o,

'[[', 'sigma'))
out <- list(coef = coef, # n * B big

sigma = sigma, # n * B big
stdev.unscaled = sqrt(1/vsv),
df.residual = df.residual)

if(is.null(B)) out$stdev <- as.numeric(out$stdev)
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} else {
out <- apply.gdsn(node=mat, margin = 1, as.is = 'list',

FUN = function(x, S, vv, vsv){
b <- (x %*% crossprod(S, vv))/vsv

}, S = S, vv = vv, vsv = vsv
)
out <- do.call(rbind, out)

}
## End new Chunk
return(out)

}

There is a lot to take in but we are certain the new function works!
mat <- betas(gfile)
design <- model.matrix(~c(1,1,1,2,2,2))
head(bumphunter:::.getEstimate(mat = mat[,] , design = design, coef = 2, B=NULL, full = F))

## [,1]
## cg00000029 -0.089415463
## cg00000108 -0.014796262
## cg00000109 -0.008447514
## cg00000165 0.182835398
## cg00000236 0.007545778
## cg00000289 -0.048587910
head(.getEstimate2(mat = mat, design = design, coef = 2, B=NULL, full = F))

## [,1]
## [1,] -0.089415463
## [2,] -0.014796262
## [3,] -0.008447514
## [4,] 0.182835398
## [5,] 0.007545778
## [6,] -0.048587910

We must remember to at some point relabel the dimnames, this can be usually be done at the end.

There is a lot to unpack here. So we will begin at the top and work down:

The code is remarkably different from the original code (the parts that have been commented out). Most
notably I have moved the two large cross products (b <- (mat %*% crossprod(S, vv))/vsv and sy <-
mat %*% S) within apply.gdsn, and modified the structures of the code so that they will compute the
crossproduct of a single row.

Taking a closer look at one of the apply.gdsn’s being used here. . .
... # Rest of code above

o <- apply.gdsn(node=mat, margin=1, as.is = 'list',
FUN = function(x, S, vv, vsv, sv, B, df.residual){

tmp <- sy <- x %*% S
sigma <- b <- (x %*% crossprod(S, vv))/vsv
for(j in seq_len(B)){

tmp <- tcrossprod(b[,j], sv[,j])
sigma[j] <- sum((sy-tmp)^2)

}
sigma <- sqrt(sigma/df.residual)
list('B'= b, 'sigma'=sigma)
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},
S = S, vv = vv, vsv = vsv, sv = sv,
df.residual = df.residual, B = B

)
coef <- if(is.null(B)) sapply(o, '[[', 'B') else t(sapply(o, '[[', 'B'))
sigma <- if(is.null(B)) sapply(o, '[[', 'sigma') else t(sapply(o, '[[', 'sigma'))
out <- list(coef = coef, # n * B big

sigma = sigma, # n * B big
stdev.unscaled = sqrt(1/vsv),
df.residual = df.residual)

... # Rest of code

The structure is somewhat similar to a regular apply or lapply but with a few differences. The as.is
specifies the output format, this can can numeric, character, a list or a gds file (which we will see later).

Here we can see that for each row of mat we compute using the %*% and then convert the output into the
correct format at the end of the apply. Since the output of .getEstimate is at minimum 2 matricies of
length n, and B columns. This is fairly small in terms of memory usage, so we are comfortable with keeping
this in memory. If we suspect that we would have a B > 1000 then we may want to consider storing the
output into a gds file, and thus we would need to change the code to store a large matrix. We provide the
apply.gdsn with static elements of the function such as S, vv, etc. so that we do not have to continuously
recalculate them as this can eat into computation time, expecially when these variables are quite small.

Step 2: Bootstrapping

After computing the estimates, we need to do the null boot-strapping or null permutations. We already
optimised the permutation step by updating .getEstimate so we can look towards the boot-strapping part of
bumphunter. The bootstrapping section makes use of the foreach package to do some multicore processing
if specified to, but we will initially do the analysis on a single core.

Here is what I came up with:
if (nullMethod == "bootstrap"){

message("[bumphunterEngine] Performing ", B, " bootstraps.")
qr.X <- qr(design)
##rescale residuals
h <- diag(tcrossprod(qr.Q( qr(design))))
##create the null model to which we add bootstrap resids
design0 <- design[,-coef,drop=FALSE]
qr.X0 <- qr(design0)
##
boots <- createfn.gds('bs.gds', allow.duplicate = TRUE)
res <- add.gdsn(node = boots, name='resids', val = NULL, storage = 'float64',

valdim = c(p,0))
null <- add.gdsn(node = boots, name='null', val = NULL, storage = 'float64',

valdim = c(p,0))
apply.gdsn(node = mat, margin = 1, as.is = 'gdsnode', target.node = list(x=res, y=null),

FUN = function(x, s1, s2, n1){
res <- t(s1 %*% x)/s2
null <- t(n1 %*% x)
list(x=res, y=null)

}, s1 = t(diag(nrow(design)) - tcrossprod(qr.Q(qr.X))),
s2 = sqrt(1-h), n1 = tcrossprod(qr.Q(qr.X0))

)
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##Now do the boostraps
chunksize <- ceiling(B/workers)
bootIndexes<-replicate(B, sample(1:p,replace=TRUE),simplify=TRUE)

# tmp <- foreach(bootstraps = iter(bootIndexes, by = "column", chunksize = chunksize),
# .combine = "cbind", .packages = "bumphunter") %dorng% {
# apply(bootstraps, 2, function(bootIndex){
# ##create a null model
# matstar <- null+resids[,bootindex]
## ##compute the null beta estimate
# nullbetas <- backsolve(qr.R(qr.X),crossprod(qr.Q(qr.X),t(matstar)))[coef,]
# if (useWeights){
# ##compute sigma
# sigma <- rowSums(t(tcrossprod( diag(nrow(design)) -
# tcrossprod(qr.Q(qr.X)), matstar))^2)
# sigma <-
# sqrt(sigma/(nrow(design)-qr.X$rank))
# outList <- list(coef=nullbetas,sigma=sigma)
# } else {
# outList <- nullbetas
# }
# return(outList)
# })
# }

## replace the foreach...
tmp <- lapply(seq_len(ncol(bootIndexes)),

FUN = function(x, resids, null, s1,s2,s3,s4,s5,coef, useWeights){
outList <- apply.gdsn(list(x=resids, y=null), margin=c(2,2), as.is='list',

FUN = function(X, j, s1, s2, s3, s4, s5, useWeights, coef){
# create null model
matstar <- X$y + X$x[j]
# compute estimate
nullbetas <- backsolve(s1, crossprod(s2, matstar))[coef]
if(useWeights) {

# compute sigma
sigma <- sqrt(sum((s4%*%matstar)^2)/s5)
outList <- list(coef = nullbetas, sigma = sigma)

} else {
outList <- nullbetas

}
return(outList)

}, j = bootIndexes[,x],
s1 = s1,
s2 = s2,
s3 = s3,
s4 = s4,
s5 = s5,
useWeights = useWeights,
coef = coef)

if(useWeights) return(list(coef = sapply(outList, '[[', 'coef'),
sigma = sapply(outList, '[[', 'sigma')))

else return(unlist(outList))
}, resids = index.gdsn(boots, 'resids'),
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null = index.gdsn(boots, 'null'),
s1 = qr.R(qr.X),
s2 = qr.Q(qr.X),
useWeights = useWeights,
coef = coef,
s3 = tcrossprod(qr.Q(qr.X)),
s4 = t(diag(nrow(design))-tcrossprod(qr.Q(qr.X))),
s5 = (nrow(design) - qr.X$rank)

)
## Done
if (useWeights && smooth) { # Here...

bootRawBeta <- do.call(Map, c(cbind, tmp))$coef # or sapply(tmp, '[[' ,'coef')
weights <- do.call(Map, c(cbind, tmp))$sigma
} else {
##
bootRawBeta <- sapply(tmp, '[[' ,'coef')
weights <- NULL
}
NullBeta<-bootRawBeta
rm(tmp)
rm(bootRawBeta)
##
closefn.gds(boots)
unlink(boots[[1]])

}

In summary: I replace the foreach with an lapply and optimised the bootstraps with a funky apply.gdsn.
So there is alot to go though.

Once more I will go through some interesting features:
boots <- createfn.gds('bs.gds', allow.duplicate = TRUE)
res <- add.gdsn(node = boots, name='resids', val = NULL,

storage = 'float64',
valdim = c(p,0)

)
null <- add.gdsn(node = boots, name='null', val = NULL,

storage = 'float64',
valdim = c(p,0)

)
apply.gdsn(node = mat, margin = 1, as.is = 'gdsnode',

target.node = list(x=res, y=null),
FUN = function(x, s1, s2, n1){

res <- t(s1 %*% x)/s2
null <- t(n1 %*% x)
list(x=res, y=null)

},
s1 = t(diag(nrow(design)) - tcrossprod(qr.Q(qr.X))),
s2 = sqrt(1-h), n1 = tcrossprod(qr.Q(qr.X0))

)

In this chunk we create a new gds file to store some values in, since the output of these %*% is going to
generate a matrix the same shape as our input. We use apply.gdsn with as.is = 'gdsnode' and add
target.node = list(x=res, y=null).

What is handy is we can label where each of the data goes in the list output to avoid confusion. Inside the
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apply.gdsn we compute both the scaled residuals and the null model estimate in a row-wise manner (this
is done in two memory intensive steps in bumphunter: resids <- t(tcrossprod( diag(nrow(design)) -
tcrossprod(qr.Q(qr.X)), mat)) and null <- t(tcrossprod(tcrossprod(qr.Q(qr.X0)), mat)) ) but
in bigmelon we take it nice and slow. Again like above we provide non-trivial computations (again do not
take up much memory) as arguments to the apply.gdsn to avoid having to compute the same thing hundreds
of thousands of times.

The next chunk is where things get interesting. . .
tmp <- lapply(seq_len(ncol(bootIndexes)),

FUN = function(x, resids, null, s1,s2,s3,s4,s5,coef, useWeights)
outList <- apply.gdsn(list(x=resids, y=null), margin=c(2,2), as.is='list',

FUN = function(X, j, s1, s2, s3, s4, s5, useWeights, coef){
# create null model
matstar <- X$y + X$x[j]
# compute estimate
nullbetas <- backsolve(s1, crossprod(s2, matstar))[coef]
if(useWeights) {

# compute sigma
sigma <- sqrt(sum((s4%*%matstar)^2)/s5)
outList <- list(coef = nullbetas, sigma = sigma)

} else {
outList <- nullbetas

}
return(outList)

}, j = bootIndexes[,x],
s1 = s1,
s2 = s2,
s3 = s3,
s4 = s4,
s5 = s5,
useWeights = useWeights,
coef = coef)

if(useWeights) return(list(coef = sapply(outList, '[[', 'coef'),
sigma = sapply(outList, '[[', 'sigma')))

else return(unlist(outList))
}, resids = index.gdsn(boots, 'resids'),

null = index.gdsn(boots, 'null'),
s1 = qr.R(qr.X),
s2 = qr.Q(qr.X),
useWeights = useWeights,
coef = coef,
s3 = tcrossprod(qr.Q(qr.X)),
s4 = t(diag(nrow(design))-tcrossprod(qr.Q(qr.X))),
s5 = (nrow(design) - qr.X$rank)

)

We remove the foreach in the original function and replace it with an lapply to iterate of the bootstraps.
Then within each bootstrap we call apply.gdsn and compute the null model and get the beta estimates.
Similar to .getEstimate2 we supply non-trivial computations to the functions as stored variables to avoid
computing them many times.

I would like to draw interest to this line: apply.gdsn(list(x=resids, y=null), margin=c(2,2),... as
it demonstrates one of the most impressive functionalities of apply.gdsn, similar to mapply where you give
multiple variables to be looped over in a matrix we can likely specify more than one object to the first
argument in apply.gdsn in this case we supply two gdsn.class nodes within a list under the names x and
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y. This translates to the ability to call either of the two objects within the applied function by calling X$x
and X$y respectively. This makes it impressively easy to write memory efficient functions that require more
than one large matrix and is one of the biggest advantages to using apply.gdsn over other ways of looping.

The rest of the code remains unchanged from the original function.

Testing the finished product

In most scenarios you will be able to write some code that is able to reproduce the results you want without
using a large amount of memory - this would be in particularly useful if you intend on doing analysis that is
not possible on the large scale. The trade of is a considerable amount of speed though.
set.seed(1)
pos <- sample(1:100000, 485577, rep=T)
set.seed(2)
chr <- sample(as.character(1:22), 485577, rep = T)

out <- bumphunterEngine(betas(gfile)[,], design=model.matrix(~c(1,1,1,2,2,2)),
chr=chr, pos=pos, nullMethod = 'bootstrap',
B = 3, coef = 2, verbose = T, pickCutoff = T)

## [bumphunterEngine] Using a single core (backend: doSEQ, version: 1.4.4).

## [bumphunterEngine] Computing coefficients.

## [bumphunterEngine] Performing 3 bootstraps.

## Loading required package: rngtools

## Loading required package: pkgmaker

## Loading required package: registry

##
## Attaching package: 'pkgmaker'

## The following object is masked from 'package:S4Vectors':
##
## new2

## The following object is masked from 'package:base':
##
## isNamespaceLoaded

## [bumphunterEngine] Computing marginal bootstrap p-values.

## [bumphunterEngine] cutoff: 0.181

## [bumphunterEngine] Finding regions.

## Warning in regionFinder(x = beta, chr = chr, pos = pos, cluster =
## cluster, : NAs found and removed. ind changed.

## [bumphunterEngine] Found 20838 bumps.

## [bumphunterEngine] Computing regions for each bootstrap.

## Warning in FUN(newX[, i], ...): NAs found and removed. ind changed.

## Warning in FUN(newX[, i], ...): NAs found and removed. ind changed.

## Warning in FUN(newX[, i], ...): NAs found and removed. ind changed.
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## [bumphunterEngine] Estimating p-values and FWER.
out <- bumphunterEngine.gdsn(betas(gfile), design=model.matrix(~c(1,1,1,2,2,2)),

chr=chr, pos=pos, nullMethod = 'bootstrap',
B = 3, coef = 2, verbose = T, pickCutoff = T)

## [bumphunterEngine] Using a single core (backend: doSEQ, version: 1.4.4).

## [bumphunterEngine] Computing coefficients.

## [bumphunterEngine] Performing 3 bootstraps.

## [bumphunterEngine] Computing marginal bootstrap p-values.

## [bumphunterEngine] cutoff: 0.204

## [bumphunterEngine] Finding regions.

## Warning in regionFinder(x = beta, chr = chr, pos = pos, cluster =
## cluster, : NAs found and removed. ind changed.

## [bumphunterEngine] Found 14867 bumps.

## [bumphunterEngine] Computing regions for each bootstrap.

## Warning in FUN(newX[, i], ...): NAs found and removed. ind changed.

## Warning in FUN(newX[, i], ...): NAs found and removed. ind changed.

## Warning in FUN(newX[, i], ...): NAs found and removed. ind changed.

## [bumphunterEngine] Estimating p-values and FWER.

Here in this example data-set there is very little difference. However when testing this very function in a
dataset of 1,200 EPIC arrays, the bigmelon version I have written uses very little memory (it depends on the
number of bootstraps you want to do) the original bumphunter used in excess for 40Gb of memory, however
this function takes a considerably longer time than just simply extracting the values and feeding it to the
original function. It is likely that the function could be further optimised (through parallelisation) but in the
interest of keeping this short we will leave it here.
# Closing and deleting gds file for this example
closefn.gds(gfile)
unlink('melon.gds')

sessionInfo()

## R version 3.4.3 (2017-11-30)
## Platform: x86_64-pc-linux-gnu (64-bit)
## Running under: Ubuntu 14.04.5 LTS
##
## Matrix products: default
## BLAS: /usr/lib/libblas/libblas.so.3.0
## LAPACK: /usr/lib/lapack/liblapack.so.3.0
##
## locale:
## [1] LC_CTYPE=en_GB.UTF-8 LC_NUMERIC=C
## [3] LC_TIME=en_GB.UTF-8 LC_COLLATE=en_GB.UTF-8
## [5] LC_MONETARY=en_GB.UTF-8 LC_MESSAGES=en_GB.UTF-8
## [7] LC_PAPER=en_GB.UTF-8 LC_NAME=C
## [9] LC_ADDRESS=C LC_TELEPHONE=C
## [11] LC_MEASUREMENT=en_GB.UTF-8 LC_IDENTIFICATION=C
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##
## attached base packages:
## [1] stats4 parallel stats graphics grDevices utils datasets
## [8] methods base
##
## other attached packages:
## [1] doRNG_1.6.6
## [2] rngtools_1.2.4
## [3] pkgmaker_0.22
## [4] registry_0.5
## [5] minfiData_0.24.0
## [6] IlluminaHumanMethylation450kmanifest_0.4.0
## [7] microbenchmark_1.4-3
## [8] bigmelon_1.5.7
## [9] gdsfmt_1.14.1
## [10] wateRmelon_1.25.1
## [11] illuminaio_0.20.0
## [12] IlluminaHumanMethylation450kanno.ilmn12.hg19_0.6.0
## [13] ROC_1.54.0
## [14] lumi_2.30.0
## [15] methylumi_2.24.1
## [16] minfi_1.24.0
## [17] bumphunter_1.20.0
## [18] locfit_1.5-9.1
## [19] iterators_1.0.9
## [20] foreach_1.4.4
## [21] Biostrings_2.46.0
## [22] XVector_0.18.0
## [23] SummarizedExperiment_1.8.1
## [24] DelayedArray_0.4.1
## [25] FDb.InfiniumMethylation.hg19_2.2.0
## [26] org.Hs.eg.db_3.5.0
## [27] TxDb.Hsapiens.UCSC.hg19.knownGene_3.2.2
## [28] GenomicFeatures_1.30.0
## [29] AnnotationDbi_1.40.0
## [30] GenomicRanges_1.30.1
## [31] GenomeInfoDb_1.14.0
## [32] IRanges_2.12.0
## [33] S4Vectors_0.16.0
## [34] ggplot2_2.2.1
## [35] reshape2_1.4.3
## [36] scales_0.5.0
## [37] matrixStats_0.53.0
## [38] limma_3.34.8
## [39] Biobase_2.38.0
## [40] BiocGenerics_0.24.0
##
## loaded via a namespace (and not attached):
## [1] TH.data_1.0-8 colorspace_1.3-2
## [3] siggenes_1.52.0 mclust_5.4
## [5] rprojroot_1.3-2 base64_2.0
## [7] affyio_1.48.0 bit64_0.9-7
## [9] mvtnorm_1.0-6 xml2_1.2.0
## [11] codetools_0.2-15 splines_3.4.3
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## [13] knitr_1.18 Rsamtools_1.30.0
## [15] annotate_1.56.1 readr_1.1.1
## [17] compiler_3.4.3 httr_1.3.1
## [19] backports_1.1.2 assertthat_0.2.0
## [21] Matrix_1.2-12 lazyeval_0.2.1
## [23] htmltools_0.3.6 prettyunits_1.0.2
## [25] tools_3.4.3 bindrcpp_0.2
## [27] gtable_0.2.0 glue_1.2.0
## [29] GenomeInfoDbData_1.0.0 affy_1.56.0
## [31] dplyr_0.7.4 Rcpp_0.12.15
## [33] multtest_2.34.0 preprocessCore_1.40.0
## [35] nlme_3.1-131 rtracklayer_1.38.2
## [37] stringr_1.2.0 XML_3.98-1.9
## [39] beanplot_1.2 nleqslv_3.3.1
## [41] zoo_1.8-1 zlibbioc_1.24.0
## [43] MASS_7.3-48 BiocInstaller_1.28.0
## [45] hms_0.4.0 sandwich_2.4-0
## [47] GEOquery_2.46.14 RColorBrewer_1.1-2
## [49] yaml_2.1.16 memoise_1.1.0
## [51] biomaRt_2.34.1 reshape_0.8.7
## [53] stringi_1.1.6 RSQLite_2.0
## [55] genefilter_1.60.0 RMySQL_0.10.13
## [57] BiocParallel_1.12.0 rlang_0.1.6
## [59] pkgconfig_2.0.1 bitops_1.0-6
## [61] nor1mix_1.2-3 evaluate_0.10.1
## [63] lattice_0.20-35 purrr_0.2.4
## [65] bindr_0.1 GenomicAlignments_1.14.1
## [67] bit_1.1-12 plyr_1.8.4
## [69] magrittr_1.5 R6_2.2.2
## [71] multcomp_1.4-8 DBI_0.7
## [73] pillar_1.1.0 mgcv_1.8-23
## [75] survival_2.41-3 RCurl_1.95-4.10
## [77] tibble_1.4.2 KernSmooth_2.23-15
## [79] rmarkdown_1.8 progress_1.1.2
## [81] grid_3.4.3 data.table_1.10.4-3
## [83] blob_1.1.0 digest_0.6.14
## [85] xtable_1.8-2 tidyr_0.8.0
## [87] openssl_0.9.9 munsell_0.4.3
## [89] quadprog_1.5-5
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