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1. INTRODUCTION

1. Introduction

Understanding market anomalies in the Chinese stock market gives great value to both investors and mar-

ket regulators. As the largest emerging market, the Chinese stock market is of enormous interest among

international investors, especially after the MSCI added A shares1 to its benchmark emerging market index

in June 2017. Meanwhile, even though considerable progresses in financial liberalization and market regula-

tion have been made since the 1990s, the Chinese stock market still shows differences from other developed

markets. One typical feature of the Chinese stock market, similar to many other emerging markets, is its

high volatility. Consequently, it is questionable whether the market anomalies discovered in the developed

markets are still feasible in the Chinese stock market.

One controversial topic in the literature is the momentum effect in the Chinese stock market (see, Kang

et al., 2002; Wong et al., 2006; Wu, 2011; Cheema and Nartea, 2014 and Cakici et al., 2015). Results suggest

that the momentum anomaly in China gives a relatively reduced predictive power. However, these results

contradict the knowledge that the momentum factor is the most pervasive and well-documented market

anomaly (Fama and French, 2012; Asness et al., 2013). The standard approach to find market anomalies

is to sort cross-sectional returns according to firm-specific historical characteristics, such as size, value,

momentum, and dividends (see, Fama and French, 1992, 2012, 2015; Carhart, 1997; Daniel and Titman,

1997; amongst others), and one expects to obtain abnormal returns if anomalies exist. As a result, we can use

multi-factor models, such as the Fama-French (F-F) three-, five-factor and the Carhart four-factor models

(Fama and French, 1992, 1993, 2015; Carhart, 1997) to explain cross-sectional returns. Thus, due to these

empirical contradictions, it is natural to ask if these traditional methodologies are still appropriate in the

highly volatile Chinese stock market? Our impetus is to use updated statistical techniques to investigate

market anomalies in Chinese A-shares.
1In this paper, we term the China A-shares market as the Chinese stock market, which is dominated in Chinese Yuan/CNY,

and is mainly accessible for local investors. Compared with the developed markets, individual investors in this market outweigh
institutions regarding the stock capitalization held.
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1. INTRODUCTION

Briefly, we apply a recently developed functional data analysis technique to decompose the total variation

of the cross-sectional residuals. The intuition is that in a highly volatile market, some behavioral biases are

hard to explain with the well-known asset pricing factors, and the residuals might play a more critical role.

Blitz et al. (2011) constructed a residual-weighted portfolio and argued that the volatilities of total returns

are too high to propose a well-performing trading strategy. Thus, we explore underlying anomalies based on

the F-F three-factor residuals instead of the total stock returns. In Gandhi and Lustig (2015), the authors

focused on a relatively chaotic market of U.S. bank shares and applied principal component analysis (PCA)

to decompose a size-sorted cross-section of U.S. bank residuals, and they found that the second principal

component suggests a size factor in highly leveraged bank shares.

Enlightened by their methodology, we propose a two-step functional data analysis approach to decom-

pose the residual returns. In the first step, we smooth the cross-sectional residuals into functional curves

in the Hilbert L2[0, 1] space by using B-spline orthonormal basis functions. Secondly, we use the functional

principal component analysis (FPCA) to obtain data-driven eigenfunctions. These eigenfunctions exploit

the underlying risk patterns and suggest asset pricing factors. For a related work to study the cross-sectional

returns under the framework of FDA we refer to Kokoszka et al. (2018).

To understand the differences between our method and the method used by Gandhi and Lustig (2015),

we can compare FPCA with PCA. In the context of FDA, since discrete high dimensional data are treated

as continuous functional curves, FPCA extracts eigenfunctions rather than eigenvectors, so in some sense,

FPCA is a continuous version of the PCA. In equity markets, although the cross-sectional returns are

discretely observed, the risk patterns on the cross-sections are naturally continuous, which makes FPCA

more appropriate in this situation. An additional benefit from using the smoothing technique is that the

FPCA controls the level of roughness by filtering noise while preserving main features. For details, we refer

to the monographs of Ramsay and Silverman (2006) and Horváth and Kokoszka (2012).

In the empirical study, we apply the two-step method to explore the F-F three-factor residuals. Because
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1. INTRODUCTION

our interest lies in the momentum effect, we first sort the cross-sectional returns based on 12-month firm-

specific accumulated past returns. The cross-sections are ranked based on their historical performances,

and we form ten equal-weighted portfolios from a loser group to a winner group. Next, we decompose the

variability of the residual returns to estimate eigenfunctions. In our case, we estimated 13 eigenfunctions of

which the first four eigenfunctions explain 87.77% of the total variation of the F-F three-factor residuals, with

the first one already explaining 64.62%, and the second one 14.73%. We then construct two asset pricing

factors by using the standardized weights suggested by the first two eigenfunctions, leaving the remaining

eigenfunctions as noise.

These two data-driven risk factors help us to understand the Chinese stock market better. The first

factor is a data-driven momentum winner-minus-loser (wml) factor. Note that the behavioral bias toward

losers and winners can either be explained by the winner-minus-loser effect (Jegadeesh and Titman, 1993)

or the contrarian loser-minus-winner effect (Bondt and Thaler, 1985). Both scenarios reveal the momentum

effect. We construct relative strength portfolios (Jegadeesh and Titman, 1993) and find that the data-driven

wml factor is belonging to the latter case. From the perspective of behavioral finance, the momentum

effect may originate from three sources: (1) investor sentiments of underreacting short-run information and

overreacting information in the long-run (Chan et al., 1995; Barberis et al., 1998; Jegadeesh and Titman,

2001); (2) investor overconfidence (Bondt and Thaler, 1985; Kang et al., 2002); (3) the lead-lag effect (Lo

and Mackinlay, 1990). Based on an analysis of market data, our results show that investors in the Chinese

stock market are overreact to short-run information. The lead-lag effect also exists, which is consistent with

the conclusion made by Kang et al. (2002).

The second factor, indicating the distinction between the extreme-performing and mediocre-performing

groups, can be explained by the asymmetric disposition effect. As an extension of the prospect theory, the

disposition effect (Shefrin and Statman, 1985) describes the investors’ risk attitude toward stock perfor-

mances, which indicates that investors sell winning stock too early and ride losers too long (also see Fazzini,

2006; Barberis and Xiong, 2009). Some developments in the disposition effect were discussed by Ben-David
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and Hirshleifer (2012; also see An, 2015), who argued that the selling/buying function of the disposition

effect for past returns is asymmetric U-shaped and explained this with investor overconfidence. Our findings

are also in agreement with Chen et al. (2007), who documented the disposition effect by using brokerage

account data in the Chinese stock market. Overall, these two new asset pricing factors increase the adjusted

R2 in the F-F three-factor model from 0.79 to 0.89 and bring less significant adjusted returns (alpha). The

evidence of the robustness of these two factors is shown by using the Fama-Macbeth regression.

Our paper contributes to the literature in several ways. We suggest a functional data analysis approach

to decompose cross-sectional returns and calibrate market anomalies from samples. Our findings show

that the momentum effect in the Chinese stock market is not as weak as mentioned in the literature. We

also complement the literature by empirically showing the disposition effect in the Chinese stock market.

Instead of using individual investor-level data, we show that the asymmetric U-shape disposition effect can

be uncovered from market data. The well-known finding that disposition effect is a source of momentum

effect in Grinblatt and Han (2005) has been challenged recently. Birru (2015) did not find disposition

effect after a stock split and he argued that the disposition effect is not able to explain the momentum

effect. We complement this vein of research by showing that momentum and disposition effects give two

orthonormal risk premiums in the Chinese stock market. Additionally, we use behavioral finance theories to

explain our results, this providing a better understanding of the impact of investors’ behavior and regulation

rules on the pricing equilibrium in the Chinese stock market. This provides a deeper market insight for

international investment practitioners. Our results can be easily applied to portfolio selection in practice.

We incorporate the exploited risk factors into a buy-and-hold portfolio, and the Sharpe ratio of the mean-

variance optimization increased to 1.27.

The outline of the paper is as follows. In Section 2, we discuss the dataset and apply conventional

multi-factor models to study the market anomalies in the Chinese stock market. In Section 3 we introduce

a two-step functional data analysis approach to decompose cross-sectional residuals. Section 4 exploits the

residuals in the Fama-French three-factor model and introduces two data-driven common risk factors, which
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2. DATA AND BENCHMARK MODELS

are further elaborated in Section 5. Section 6 incorporates them into eigenfunction portfolios, and concluding

remarks are made in Section 7.

2. Data and benchmark models

In this section we introduce the dataset and revisit the results of classic multi-factor models in Chinese

A-shares. We regress past return-sorted cross-sectional returns onto the classical asset pricing factors (Fama

and French, 1992; Carhart, 1997). The F-F three-factor residuals are kept for the use of later sections.

2.1. Dataset

We collect monthly adjusted closing prices 2 for all Chinese A-shares to avoid erratic behavior in daily and

weekly frequency. To maintain the consistency with relevant studies, we exclude the financial sector due to

its high leverages, as well as listings without 12-month past returns information. The dataset ranges between

January 2007 and June 2017 in order to eliminate the influence of the structural reform in the Chinese stock

market during the year of 20063. Note that the sample period over the last decade contains two business

cycles. There are 1470 shares listed in 2007, and this number increases to 3226 in June 2017. We use the

log return transformations of the raw price data.

We use the Shanghai Stock Exchange Composite index and three-month Treasury bill rate as the market

index rm
t and the risk-free rate rf

t , respectively. For constructing the size and value factors, we collect firm-

specific market capitalization and book-to-market ratios. The short-term and long-term firm-specific past

returns are computed by the equations

PRi,t =
t−2∑

j=t−K

ri,j , LPRi,t =
t−48∑

j=t−60
ri,j , (1)

2The closing price is adjusted by its stock splits and dividend payments.
3There are non-tradable shares in the Chinese stock market before 2005 because of the liquidity shortage. In order to

reconstruct the ownership structure of listed companies, the authority launched a structural reform to eliminate the non-
tradable shares during 2005-2006.
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2. DATA AND BENCHMARK MODELS

where the subscript i denotes stock i. Unless otherwise stated, K = 12. The long-term LPRi,t is only used

to assess the performances of relative strength portfolios in section 5.1.

The market risk premium is computed as rmrft = rm
t − rf

t . We first sort cross-sectional returns

into deciles according to firm-specific size, value and past returns in ascending order, and then construct

equal-weighted small-minus-big (smb), high-minus-low (hml) and wml common risk factors. Additionally,

we collect the monthly firm-level turnovers to analyze their trading activities in section 5.2. All data was

obtained from the Wind database.

2.2. Multi-factor models

We start to build portfolios according to the standard portfolio strategy of Fama and French (1993). Cross-

sectional returns are ranked by their 12-month past returns. We group stocks into ten portfolios ranging from

“loser” to “winner” according to their firm-specific PRi,t. The portfolio returns are computed with equal

weights. For completeness, we also consider a “winner-minus-loser” portfolio. We first assess the explanatory

power of the F-F three-factor model,

ri,t − rf
t = αi + β1,irmrft + β2,ismbt + β3,ihmlt + εi,t, (2)

where ri,t denotes the ith decile portfolio return for i ∈ [1, 10]. The F-F three-factor model studies the

cross-sectional market anomalies through firm-level fundamental information (also see the five-factor model,

Fama and French, 2015). Meanwhile, in order to verify existing results about the momentum effect, we

examine the Carhart (1997) four-factor model,

ri,t − rf
t = αi + β1,irmrft + β2,ismbt + β3,ihmlt + β4,iwmlt + εi,t. (3)
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2. DATA AND BENCHMARK MODELS

Once all multi-factor models are estimated, the next issue is to assess their performance. Since a better

factor model always delivers less significant risk-adjusted returns (intercept αi), the GRS test (Gibbons et

al., 1989) is used here to test the joint significance of intercept coefficients. We aim to test the null hypothesis

H0 : αi = 0, for all i = 1, 2, . . . , 10. When comparing two multi-factor models M1 and M2, if M1 rejects

H0 at a lower significance level, we then conclude that M1 better predicts cross-sectional returns than M2.

[Insert Table 1 Here]

Table 1 displays the estimators of the regression models specified in Equations (2) and (3). Panel A

shows the estimation results in the F-F three-factor model, and we observe three remarkable facts. First, the

GRS test does not find an overall statistically significant risk-adjusted return, and the estimated intercepts

in the majority of deciles are not statistically significant. The only exceptions are the two winner (9th

and 10th) groups and the winner-minus-loser portfolio, where these portfolios show significant risk-adjusted

returns with negative signs. Second, the model exhibits better explanatory power to 4th-6th groups with

adjusted R2 = 0.86, while it becomes less efficient for the loser and winner groups, e.g., adjusted R2 = 0.79

in the winner group. Lastly, we notice that the coefficients of F-F three factors are statistically significant.

The market factor and size factor positively explain the excess returns, while the value factor shows negative

coefficients to all of the deciles under consideration. Similar results have been discovered in the literature

(see Kang et al., 2002; Wong et al., 2006; Cakici, 2015). The size effect is significant because initial public

offerings (IPO) in China are regulated by the China Securities Regulatory Commission (CRSC) rather than

based on a system of registration like in the developed markets. This barrier makes newly listed small shares

more likely to be over-valued in the stock market. The negative signs of the value factor are possible because

retail investors pay less attention to the value factor; they mainly make their investment decisions based on

market rumors.

Panel B of Table 1 shows that, not surprisingly, the Carhart four-factor model outperforms the F-F

three-factor model with a higher adjusted R2, especially in the loser and winner groups. The coefficients
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3. FUNCTIONAL DATA DECOMPOSITION APPROACH

of the wml factor are negative and positive at the losers and winners groups, respectively. The result of

the GRS test implies that the Carhart four-factor model generates less significant risk-adjusted returns than

the F-F three-factor model. Nevertheless, the variation in the cross-sectional returns is still not to be fully

explained, given the fact that risk-adjusted returns are jointly significant at the 1% significance level in both

of the models. Therefore, more risk patterns are hidden in the residuals and worth decomposing.

3. Functional data decomposition approach

In this section, we introduce a functional data analysis approach to decompose cross-sections of portfolio

residuals. Converting the panel data yi,t = [y1,t, y2,t, . . . , yN,t], 1 ≤ t ≤ T , 1 ≤ i ≤ N to functional

observations, we smooth the cross-sectional entities into the [0, 1] interval without loss of generality and

obtain yt(u) for 1 ≤ t ≤ T and 0 ≤ u ≤ 1. We assume that the random curve yt(u) is square integrable and

that it is in the Hilbert space L2[0, 1] for all 1 ≤ t ≤ T . The space L2[0, 1] is equipped with inner product

〈x(u), y(u)〉 =
∫ 1

0 x(u)y(u)du, and the corresponding norm is ‖x(u)‖ = (
∫ 1

0 x
2(u)du)1/2. The functional data

yt(u) can be expanded by the Karhunen-Loéve Theorem (Horváth and Kokoszka, 2012),

yt(u) =
∞∑

m=1
ηt,mφm(u) ≈

M∑
m=1

ηt,mφm(u), (4)

where {φm(u), 0 ≤ u ≤ 1} are orthonormal functions on [0, 1], i.e., 〈φi, φj〉 = 0 if i 6= j and 〈φi, φi〉 =

||φi||2 = 1. The most commonly used basis functions φm(u) are Fourier basis and B-splines basis. The

former is mainly used for cases in which data contains periodical or nearly-periodical patterns, and the

latter usually adapts to non-periodic data. The number of bases M can be crucial, and it is determined by

optimizing the trade-off between fitting features and noises in the smoothing process. The coefficients ηt,m

1 ≤ m ≤M , 1 ≤ t ≤ T are given by the inner product of φm(u) and yt(u),

ηt,m = 〈φm(u), yt(u)〉 =
∫ 1

0
φm(u)yt(u)du. (5)
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3. FUNCTIONAL DATA DECOMPOSITION APPROACH

We assume that

Assumption 3.1 {yt(u), 0 ≤ u ≤ 1} is a stationary sequence with sample paths in L2[0, 1], and also the

moment condition E||yt(u)||4 <∞ is satisfied.

Assumption 3.1 is very mild as it is fairly acceptable that financial data follows autoregressive and GARCH-

type processes in L2[0, 1] (Hörmann and Kokoszka, 2010). Due to stationarity, the functional mean Eyt(u) =

µ(u) does not depend on time. The covariance function of {yt(u), 0 ≤ u ≤ 1} is defined by

c(u, v) = E[(yt(u)− µ(u))(yt(v)− µ(v))],

where c(u, v) is a symmetric, non-negative definite function. We aim to decompose c(u, v). There are

eigenvalues and corresponding eigenfunctions as λ1 ≥ λ2 ≥ · · · ≥ 0 and ψ1(u), ψ2(u), . . . satisfying

λiψi(u) =
∫ 1

0
c(u, v)ψi(v)dv, i = 1, 2, . . . . (6)

In principal component analysis as well as in functional data analysis, φm = ψm is a suitable choice in (4)

because
∑M

m=1 〈yt(u), ψm〉ψm(u) is the best approximation for yt(u) in L2[0, 1], i.e., when yt(u) is approxi-

mated with 1, 2, . . . ,M orthogonal functions in H, we get the smallest E
∥∥∥yt(u)−

∑M
m=1 〈yt(u), , ψm〉ψm

∥∥∥2
.

However, c(u, v) is unknown and it should be estimated with

ĉT (u, v) = 1
T

∑T
t=1(yt(u)− ȳT (u))(yt(v)− ȳT (v)), where ȳT (u) = 1

T

∑T
t=1 yt(u).

Now the eigenvalues and eigenfunctions of the theoretical c(u, v) are estimated by λ̂1 ≥ λ̂2 ≥ · · · ≥ 0 and

ψ̂1(u), ψ̂2(u), . . . satisfying

λ̂iψ̂i(u) =
∫ 1

0
ĉT (u, v)ψ̂i(v)dv, i = 1, 2, . . . , (7)

so due to the optimality properties of the eigenfunctions of ĉT (u, v), a popular way to decompose functional
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3. FUNCTIONAL DATA DECOMPOSITION APPROACH

observations yt(u) is

yt(u) ≈ ŷt(u) =
M∑

m=1
η̂t,mψ̂m(u), (8)

with η̂t,m =
〈
ψ̂m(u), yt(u)

〉
=
∫ 1

0 ψ̂m(u)yt(u)du.

This means that yt(u) is projected into the finite dimensional space spanned by {ψ̂1, ψ̂2, . . . , ψ̂M}. This

projection works well if yt(u) is a weakly dependent sequence. Then,

Theorem 3.1 If Assumptions 3.1 holds, then we have that for each 1 ≤ i ≤M

|λ̂i − λi|
p→ 0,

||̂ciψ̂i − ψi||
p→ 0,

where p→ denotes convergence in probability and ĉ1, ĉ2, . . . are random signs defined by ĉi = sign(
〈
ψ̂i, ψi

〉
).

Theorem 3.1 is an immediate consequence of the ergodic theorem in Hilbert spaces, i.e., ||ĉT − c|| p→ 0

(see Hörmann and Kokoszka, 2010 for the proof). Another consequence of the theorem is that ŷt(u) in

(8) is close to yt(u) if M and T are both large. Therefore, the cross-sectional patterns in the variation of

yt(u) are decomposed and expressed by a finite number of estimated eigenfunctions ψ̂i, and their variance

contributions are captured by their corresponding λ̂i.

From the computational point of view, the integral is approximated by Riemann sums; for instance,

η̂t,m in (8) is approximated by

η̂t,m = 1
N

N∑
i=1

yt(ui)ψ̂(ui),

where yt(ui) is yt(u) on the regular grid ui, 1 ≤ i ≤ N .
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4. EMPIRICAL RESULTS: DECOMPOSITION OF CHINESE A-SHARE CROSS-SECTIONAL
RETURNS

4. Empirical results: decomposition of Chinese A-share cross-sectional returns

This section uses the method proposed above to decompose the F-F three-factor residuals, i.e., ε̂i,t in Equation

(2). In order to accommodate the notation in the last section, we rewrite ε̂i,t into ε̂t(ui). The reason for

omitting the Carhart four-factor residuals is because our dependent variables are past return-sorted cross-

sectional returns, the wml factor is suspected to contain overlaps and should not be controlled here.

4.1. Decomposing variations in residuals

We explore the estimated residuals ε̂t(ui), i ∈ [1, N ], where N is the total number of sorted groups. As a

pre-analysis, we again sort cross-sectional returns into 100 groups (N = 100) using the algorithm mentioned

in section 2.2, and this is because the previous ten groups are not enough for implementing the functional

smoothing technique. In each of the groups, we regress excess portfolio returns on the F-F three factors and

save the residuals ε̂t(ui), 1 ≤ i ≤ 100. Before adopting the two-step decomposition method, the estimated

residual vectors are demeaned and standardized for emphasizing variations and reducing noise as suggested

by Blitz et al. (2011). In the first step, we smooth these residuals into functional curves. At each time t, we

set 11 knots on ε̂t(ui). Considering that there is hardly any periodical pattern in the cross-sectional returns,

we choose 13 B-spline functions as the smoothing bases as shown in Figure 1. The smoothing technique

leads to N=126 functional curves ε̂t(u) spanning over 2007-2017, appearing in the upper panel of Figure 2.

By smoothing residual observations to curves, Assumption 3.1 is satisfied.

[Insert Figure 1, Figure 2 and Figure 3 Here]

Next, we apply the FPCA method to decompose the functional residual curves ε̂t(u) and find 13 empirical

eigenfunctions (ef), ψ(u) = {ψ̂j(u)|λ̂j > 0, 1 ≤ j ≤ 13}, where ψ̂j(u) is the jth eigenfunction and λ̂j is the

corresponding eigenvalue. The lower panel of Figure 2 illustrates that the first four eigenfunctions explain

87.77% of the total variation. The first eigenfunction ψ̂1(u) explains 64.62% and displays an upward trend.
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This pattern implies a risk factor that loads negatively on the loser groups and positively on the winner

groups. It is similar but not identical to the momentum wml factor. The second eigenfunction ψ̂2(u),

plotted as an asymmetric U/V shaped curve, accounts for 14.73% of the total variation. This risk pattern

suggests that investors behave differently toward extreme and mediocre stocks, thereby suggesting a risk

factor that loads positively on the extreme-performing groups and negatively on the mediocre-performing

groups. We compute the 95% confidence envelopes of the first four eigenfunctions via a bootstrapping

approach (5,000 iterations) (Hall and Hosseini-Nasab, 2006), as shown in Figure 3. Table 2 displays the

percentages of variations explained by the first four eigenfunctions, where the results exploited from the real

data are consistent with the bootstrapped ones. The eigenfunctions from the third and below are hard to

align with cross-sectional portfolio returns. Also because they account for minor variations, we treat them

as noise.

[Insert Table 2 Here]

Another method to select useful eigenfunctions is by using of the information coefficient (IC). Figure 4 plots

ICs between the past returns-sorted cross-sectional returns and eigenfunctions. Over the entire period, ψ̂1(u)

shows the highest average IC, followed by ψ̂2(u), while the average IC of ψ̂3(u) and ψ̂4(u) are flatter and

close to zero. Therefore, we use ψ̂1(u) and ψ̂2(u) to construct asset pricing factors.

[Insert Figure 4 Here]

4.2. Data-driven asset pricing factors: FPC1t and FPC2t

In order to check whether the uncovered asset pricing factors actually explain the cross-sectional returns, we

build two data-driven variables: FPC1t (rt(ui) × ψ̂1(ui)′), and FPC2t (rt(ui) × ψ̂2(ui)′), where rt(ui) =

[rt(u1), rt(u2), . . . , rt(uN )] is a 126× 100 matrix, and ψ̂j(ui)′ is a 100× 1 weights vector with the grid values

of ψ̂j(u). The first variable is a portfolio that shorts loser shares and longs winner shares, while the second

variable is a portfolio that longs extreme-performing shares and shorts mediocre-performing shares. Note
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that the weights are standardized and their sum is equal to one.

We apply the Fama-MacBeth regression (Fama and MacBeth, 1973) on FPC1t and FPC2t, which is

the standard method to estimate the coefficients of asset pricing factors. Table 3 shows the results: FPC1t

has significant risk premium on past returns-sorted portfolio returns with a strong January effect; FPC2t

is statistically significant at the 10% level, and surprisingly it is less significant over the course of January.

The final column shows that, due to orthogonality, the coefficients of risk premiums for FPC1t and FPC2t

remain unchanged and the adjusted R2 equals the sum of single-factor regressions. This finding reveals that

both FPC1t and FPC2t are strong asset pricing factors in the Chinese stock market.

[Insert Table 3 Here]

In order to have a contest with the benchmark factor models, we again compute the multi-factor re-

gression models while adding the FPC1t and FPC2t factors. Table 4 reports the results of the regression

models specified in Equations (9) and (10). Compared with Table 1, adding FPC1t and FPC2t improves

the explanatory power of the models, which we expected given the higher adjusted R2s and the statistically

less significant risk-adjusted returns are reported.

ri,t − rf
t = αi + β1,irmrft + β2,ismbt + β3,ihmlt + β4,iFPCXt + εi,t, X = 1, 2., (9)

ri,t − rf
t = αi + β1,irmrft + β2,ismbt + β3,ihmlt + β4,iFPC1t + β5,iFPC2t + εi,t. (10)

Remarkably, panel A of Table 4 shows that the estimated coefficients of the F-F three factors remain

almost the same as in Table 1. The estimated coefficients of FPC1t are similar to the wml factor in panel

B of Table 1. Also, we note that the sign of the coefficients of FPC1t are also identical to the sign of the

wml factor, and the adjusted R2 is equal to 0.95 when we regress FPC1t on wml. Hence, it is not hard to

see that FPC1t is a data-driven form of the wml factor.
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5. EXPLANATIONS OF DATA-DRIVEN ASSET PRICING FACTORS

Panel B of Table 4 shows that FPC2t significantly explains excess returns in the mediocre and loser

groups. These findings are reasonable because FPC2t affirms the behavioral biases toward mediocre and

extreme-performing shares. The coefficients of FPC2t in the mediocre groups are around −0.14, and this

coefficient changes to 0.08 in the loser group. Another remarkable fact is that FPC2t cannot explain the

wml portfolio return (adjusted R2 = 0.15), which suggests that FPC2t explains phenomena which can not

be explained by the wml or FPC1t factor.

Due to orthogonality, panel C of Table 4 shows the enhanced explanatory power of the multi-factor mod-

els when adding FPC1t and FPC2t, with adjusted R2 over 0.87 for all groups. This model takes advantage

of the observation that the risk-adjusted returns in all of the groups under study become insignificant. The

relatively lower P -values of the GRS tests indicate that model (10) outperforms the other factor models

discussed above. Finally, in order to assess the influence of market state on our asset pricing factors, we

follow Cooper et al. (2004) to inspect the role of market states on the FPC factors. By defining an upward

market (downward market) that accumulated historical 6-month or 12-month market returns as positive

(negative), our results rarely show a notable impact on FPC1t and a slightly significant impact on FPC2t.

We omit these results here.

[Insert Table 4 Here]

5. Explanations of data-driven asset pricing factors

We now explain the new asset pricing factors from the perspective of behavioral finance. Since the FPC

factors are constructed based on exploited cross-sectional risk patterns, together with the fact that cross-

sectional returns are sorted by past return, these factors give insight to investors’ behavioral biases regarding

persistence of equities’ performances.
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5. EXPLANATIONS OF DATA-DRIVEN ASSET PRICING FACTORS

5.1. How to explain FPC1t?

The previous section showed that FPC1t is a data-driven wml factor describing the investors’ behavioral bias

toward the winner and loser shares. Here we investigate the underlying psychological structures of the risk

factor FPC1t. We first follow Jegadeesh and Titman (1993) in constructing relative strength portfolios. We

sort cross-sectional returns in ascending order by firm-specific past returns with different look-back periods

K, where K varies from short-term (3, 6, 9 and 12 months) to long-term (60 months, cf. Equation (1)).

The holding periods are 3, 6, 9, 12 and 24 months. In total, there are 50 portfolios (25 momentum winner-

minus-loser and 25 contrarian loser-minus-winner). The average monthly returns are reported in Table 5.

The momentum strategy generates no profit while the portfolio with the contrarian strategy earns positive

profits under any formation and holding periods. Our results are consistent with the findings of Kang et al.

(2002), Griffin et al. (2003) and Wu (2011).

[Insert Table 5 Here]

One reason for observing profitable contrarian portfolios, as suggested by Bondt and Thaler (1985), is

investors’ overreaction, as evidenced by calculating autocorrelations of portfolio returns with negative signs.

Lo and Mackinlay (1990) observed that the cross lead-lag effect is another reason for a profitable contrarian

strategy. The lead-lag effect is observed when a higher return on stock i at period t − 1 leads to a higher

return on stock j at period t, i.e., calculating positive cross-serial correlations in portfolio returns. We thus

expect to get negative autocorrelations and positive cross-serial correlations when overreaction and lead-lag

effects exist.

To study the dependence structure of past returns-sorted cross-sectional portfolio returns, we calculate

serial correlations among these portfolios using lags ranging from 1 to 4. Panel A of Table 6 documents

serial correlation coefficients, which shows that 33 out of 40 coefficients are negative. This result indicates a

short-run overreaction effect in the Chinese stock market. Similar results were found by Tan et al. (2008)
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5. EXPLANATIONS OF DATA-DRIVEN ASSET PRICING FACTORS

and Ni et al. (2015). Panel B of Table 6 gives cross-autocorrelations with lags 1. Even though the cross-serial

correlations vary between positive numbers and negative numbers, note that the historical returns of the

loser group is positively correlated with the contemporary returns of the winner group (with correlation value

0.06). A similar situation occurs between the historical returns of the winner group and the contemporary

returns of the loser group (with correlation value 0.02). This result implies that there is a lead-lag effect

between winner and loser portfolios. We thus confirm that investors’ overreaction and the lead-lag structure

are the driving forces of the data-driven momentum factor.

[Insert Table 6 Here]

5.2. How to explain FPC2t?

FPC2t captures investors’ asymmetric investment behavior regarding extreme and mediocre-performing

shares. This pattern is in accordance with the asymmetric U-shaped disposition effect observed by Ben-

David and Hirshleifer (2012), see Panel B of Figure 2 in their paper. The authors claimed this effect reflects

investors’ overconfidence in the U.S. market, as investors always over-value their knowledge and are inclined

to trade stocks with big news; these stocks are more likely to be extreme-performing stocks.

Moreover, another potential source of FPC2t is the selling pressure driven by the disposition effect on

both outperforming and underperforming stocks. Deviations from the current price level increases liquida-

tions in extreme-performing stocks. Hence, investors have to pay the risk premium to ‘mediocre-performing

stocks’ for their safety. This argument parallels with the low-volatility anomaly. We note that our work,

from this perspective, demonstrates another measure of “safety”, in addition to idiosyncratic risk (Blitz

and Vliet, 2007) and beta (Frazzini and Pederson, 2014). Regulation rules in the Chinese stock market

restrict the daily price ceiling and floor, i.e., maximum 10% price changes, which have been widely adopted

in Asian exchanges (Chan et al., 2005). A significant price change in extreme-performing shares thus leads

to drainage of liquidity and severely exacerbates order imbalance, resulting in a higher return compensating
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for the illiquidity.

Another notable pattern is that the FPC2t factor shows a right skewness toward losers. This asymmetric

pattern can be interpreted by prospect theory. Prospect theory states that investors are more inclined to

trade winning stocks and to hold losers. In another word, investors are more likely to re-examine positions

or to update their beliefs about profitable stocks but are relatively inattentive to losers. Also see An (2015).

[Insert Figure 5 Here]

In order to empirically assess the disposition effect, we use firm-specific turnover to measure their trading

activities. Table 7 shows that the turnover ratio between the extreme and mediocre groups is as high as

1.4124. Table 8 further reports turnover ratios between each of individual groups. The ratios between the

loser groups and mediocre groups are more than 1.0 but less than 1.1, while these ratios rise to 1.8245

in cases of the winner and group 5. Figure 5 plots the turnover ratio for each group during the sample

period. Although trading turnover in the loser group is not always higher than in the mediocre groups,

the asymmetric U-shaped pattern is observable, particularly during the periods of 2009-2010, 2011-2014 and

2017.

[Insert Table 7 and Table 8 Here]

Meanwhile, since the eigenfunctions ψ̂1(u) and ψ̂2(u) are orthonormal, the behavioral biases explained by

FPC1t and FPC2t cannot account for each other. In other words, this result indicates that the disposition

effect can be separated from the momentum effect so that it deliveries a different risk premium4.

6. The eigenfunction portfolio

In this section, we apply the FPC1 and FPC2 factors to develop a portfolio construction strategy. The

relative strength portfolios have shown that the contrarian strategy earns positive returns while the momen-
4We also applied the same approach to the U.S. market including more than 7,000 shares in the NYSE, AMEX and NASDAQ

from 2,000 to 2017. The result showed that the FPC2t factor still exists but is not as strong as in the Chinese stock market.
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tum strategy does not. Thus, together with the market index, we treat the contrarian loser-minus-winner

portfolio as the benchmark trading strategy. Considering a buy-and-hold strategy without any transaction

cost, we conducted an in-sample simulation. Recall that cross-sectional returns were sorted into 100 groups

from the loser to the winner. We constructed extreme spread portfolios, which portfolio weights are assigned

by using the standardized values of ψ̂1(u) and ψ̂2(u). We name these portfolios as eigenfunction portfolios

and denote them with EP1 and EP2, respectively. We also apply a mean-variance optimization on the EP1

and EP2, where the optimal weights are calculated by using historical three-month rolling windows, in order

to avoid any future information.

Table 9 reports some popular statistics. The first eigenfunction strategy performs similarly to the

contrarian-lmw strategy with a Sharpe ratio of around 0.48. The second eigenfunction portfolio is also

profitable with Sharpe ratio of 0.33, which is lower than EP1 as fewer variations are explained. Lastly,

benefiting from the orthogonality, the mean-variance optimized portfolio records a boosting of the Sharpe

ratio to 1.27 and a much lower maximum draw-down of −0.02.

Figure 6 plots the cumulative returns for contrarian, EP1, EP2, and mean-variance optimized portfolios.

The monthly performance shows that the mean-variance optimization obtains positive returns in all of the

months under study. Therefore, the use of common risk patterns exploited by FPC1t and FPC2t leads to

better portfolio selection. Note that as long as EP1 and EP2 persist out-of-sample, the momentum and

disposition payoff structures should always be profitable in the active portfolio selection. Next, we discuss

the profitability of eigenfunction portfolios under the framework of the FDA.

[Insert Table 9 and Figure 6 Here]

In order to discuss the profitability of eigenfunctions in the L2[0, 1] space, we consider the recalling

functional objective rt(u). Recalling Equation (7), where the empirical eigenfunctions ψ̂j(u) and eigenvalues

λ̂j are estimated, we incorporate these data-driven cross-sectional patterns into curves rt(u). The curves
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rt(u) thus can be approximated well with finite K eigenfunctions,

rt(u) ≈ µ(u) +
K∑

j=1

〈
rt(u), ψ̂j(u)

〉
ψ̂j(u) + εt(u), (11)

where µ(u) is the functional mean, and the projection
〈
rt(u), ψ̂j(u)

〉
is the time-varying functional loading

for ψ̂j(u).

We take the jth eigenfunction portfolio return rpj ,t as an example. It is not hard to see that rpj ,t is the

inner production between the jth eigenfunction ψ̂j(u) and the return rt(u),

rpj ,t = 〈rt(u), ψ̂j(u)〉. (12)

Substituting Equation (11) into above equation, we then get

rpj ,t = 〈(µ(u) +
K∑

j=1

〈
rt(u), ψ̂j(u)

〉
), ψ̂j(u)〉+

〈
εt(u), ψ̂j(u)

〉
=
〈
µ(u), ψ̂j(u)

〉
+ 〈
〈
rt(u), ψ̂j(u)

〉
, ψ̂j(u)〉+

〈
εt(u), ψ̂j(u)

〉
.

(13)

According to Theorem 3.1, the third term
〈
εt(u), ψ̂j(u)

〉
is noise. It is clear that two sources generate the

profits of jth eigenfunction portfolio, namely, a deterministic part and a stochastic part. The former is

an inner product between ψ̂j(u) and the functional mean µ(u), and the latter is a time-varying functional

loading that projects rt(u) on the jth eigenfunction ψ̂j(u). Since cross-sectional behavioral patterns in one

market are likely to be formed in the long run, we can easily obtain profits by taking the deterministic part.

But these behavioral patterns might vary in the short run, so that rpj ,t has to take a risk (variance) from the

stochastic part. One potential way to improve the profitability of the eigenfunction portfolio is to predict

the functional loadings; this will be difficult and more studies will be required.
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7. CONCLUSION

7. Conclusion

This paper employed a functional principal component analysis approach to decompose cross-sectional Fama-

French three-factor model residuals in the Chinese stock market. Based on our empirical results, two asset

pricing factors were derived from the market data, which we interpreted as the momentum effect and the

asymmetric disposition effect, respectively. According to behavioral finance theories, we explain these two

data-driven factors through investors’ overreaction, overconfidence, and the lead-lag effect. These two factors,

combined with the Fama-French three factors explain almost all variation of cross-sectional returns in the

Chinese stock market. Our findings empirically verified the existence of the momentum effect and the

disposition effect in the Chinese stock market, and the orthogonality of empirical eigenfunctions suggests that

the disposition effect could not explain the momentum effect. By incorporating these cross-sectional patterns

into the portfolio selection, we found that the Sharpe ratio of the mean-variance optimized portfolio could be

boosted to 1.27. Our functional data analysis approach can be generally applied to any market of interest,

particularly to markets suffering from high volatilities. Future works can focus on the following issues:

understanding the role of higher order eigenfunctions; investigating the relationship between data-driven

factors and macroeconomic variables; and modeling market anomalies by using a functional multi-factor

model.
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Table 1: Results for F-F three-factor and Carhart four-factor models

Table 1 shows the OLS regression estimates on the past returns-sorted equal-weighted excess returns and asset pricing

factors. Each column represents excess portfolio returns from the first decile (loser) to the last decile (winner). The

returns on the winner-minus-loser portfolio are in column “wml”. Panel A shows the estimation results for the three-factor

Fama French model (Fama and French 1992). Panel B gives the estimation results of Carhart’s four-factor model with an

additional wml factor (Carhart, 1997). The final two columns show the F statistics and P values of the GRS test (Gibbons

et al., 1989). *, ** and *** denote statistical significance at 10%, 5% and 1%, respectively.

Loser 2 3 4 5 6 7 8 9 Winner wml F(GRS) p(GRS)

Panel A: Fama-French model

α 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.01∗ −0.02∗∗∗ −0.01∗∗

rmrf 1.10∗∗∗ 1.09∗∗∗ 1.10∗∗∗ 1.09∗∗∗ 1.08∗∗∗ 1.07∗∗∗ 1.08∗∗∗ 1.07∗∗∗ 1.04∗∗∗ 1.06∗∗∗ -0.02

smb 0.97∗∗∗ 0.92∗∗∗ 0.88∗∗∗ 0.91∗∗∗ 0.89∗∗∗ 0.84∗∗∗ 0.90∗∗∗ 0.80∗∗∗ 0.85∗∗∗ 1.71∗∗∗ 0.37∗∗∗ 4.82 0.0000

hml −0.92∗∗∗ −1.31∗∗∗ −1.44∗∗∗ −1.57∗∗∗ −1.54∗∗∗ −1.69∗∗∗ −1.78∗∗∗ −1.86∗∗∗ −1.75∗∗∗ -0.79 0.45∗

AdjR2 0.83 0.85 0.85 0.86 0.86 0.86 0.85 0.86 0.82 0.79 0.15

Panel B: Carhart model

α −0.01∗∗ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.01∗∗ 0.00

rmrf 1.08∗∗∗ 1.08∗∗∗ 1.09∗∗∗ 1.09∗∗∗ 1.08∗∗∗ 1.07∗∗∗ 1.08∗∗∗ 1.07∗∗∗ 1.04∗∗∗ 1.08∗∗∗ 0.00

smb 1.24∗∗∗ 1.13∗∗∗ 1.05∗∗∗ 1.05∗∗∗ 0.99∗∗∗ 0.89∗∗∗ 0.90∗∗∗ 0.73∗∗∗ 0.64∗∗∗ 1.24∗∗∗ 0.00∗∗ 3.65 0.0003

hml −0.87∗∗∗ −1.28∗∗∗ −1.41∗∗∗ −1.54∗∗∗ −1.53∗∗∗ −1.68∗∗∗ −1.78∗∗∗ −1.87∗∗∗ −1.78∗∗∗ −0.87∗∗∗ 0.00

wml −0.73∗∗∗ −0.58∗∗∗ −0.45∗∗∗ −0.39∗∗∗ −0.28∗∗ -0.15 -0.02 0.20 0.56∗∗∗ 1.27∗∗∗ 1.00∗∗∗

AdjR2 0.87 0.88 0.86 0.87 0.86 0.87 0.86 0.86 0.84 0.89 1.00
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Table 2: The percentage of variations explained by the first four eigenfunctions

The columns show the percentage of variability accounted for by the first four eigenfunctions of cross-sectional returns. The

last column documents the total variations explained by the first four eigenfunctions. The first row shows the percentages

computed from the real data, and the second row shows the percentage computed from the bootstrap with 5,000 replications.

1st eigenfunction 2nd eigenfunction 3rd eigenfunction 4th eigenfunction Total

Real data 64.62% 14.73% 5.16% 3.26% 87.77%

Bootstrap 74.72% 14.78% 5.22% 3.39% 88.11%

Table 3: Fama-MacBeth regression on FPC1t and FPC2t

The estimated coefficients of the Fama-MacBeth regression on FPC1t and FPC2t with dependent variable past returns-

sorted equally weighted portfolio returns are documented. First, we computed the factor risk exposures for each portfolio

by regressing the portfolio returns on the risk factors. Second, we obtained coefficients for risk premiums by regressing

the portfolio returns on the risk exposures month to month. To measure the strength of risk premiums instead of their

directions, we used the absolute value of their coefficients. Bracketed values are Newey-West robust t-statistics.

Jan.2007-Jun.2017 Jan.2007-Jun.2017 Jan.2007-Jun.2017

Entire Jan Feb-Nov Dec Entire Jan Feb-Nov Dec Entire Jan Feb-Nov Dec

FPC1t

0.13

(3.43)

0.18

(4.56)

0.12

(3.23)

0.15

(4.45)

0.13

(3.99)

0.17

(5.53)

0.12

(3.75)

0.14

(5.09)

FPC2t

0.07

(1.92)

0.08

(1.87)

0.07

(1.93)

0.07

(1.92)

0.07

(2.47)

0.08

(2.93)

0.07

(2.41)

0.07

(2.62)

AdjR2 0.17 0.28 0.16 0.20 0.08 0.09 0.08 0.09 0.25 0.37 0.24 0.26
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Table 4: Results for multi-factor models with FPCs

The OLS estimates of the coefficients in regressing past returns-sorted excess portfolio returns on Fama-French risk factors,

and functional momentum factors FPC1t and FPC2t are presented. Columns represent excess portfolio returns from the

first decile (loser) to last decile (winner), and returns on the winner-minus-loser portfolio (wml). Panel A displays the three

Fama-French risk factors and FPC1t. Panel B replaces FPC1t with FPC2t. Panel C considers both FPC1t and FPC2t,

forming a five-factor model. The final two columns present F statistics and P values of the GRS tests (Gibbons et al. 1989).

*, ** and *** denote statistical significance at 10%, 5% and 1% level.

Loser 2 3 4 5 6 7 8 9 Winner wml F(GRS) p(GRS)

Panel A: F-F with FPC1t

α −0.01∗∗ 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.01∗ 0.00

rmrf 1.07∗∗∗ 1.07∗∗∗ 1.09∗∗∗ 1.08∗∗∗ 1.07∗∗∗ 1.07∗∗∗ 1.08∗∗∗ 1.08∗∗∗ 1.06∗∗∗ 1.10∗∗∗ 0.02∗

smb 1.15∗∗∗ 1.07∗∗∗ 0.99∗∗∗ 1.01∗∗∗ 0.96∗∗∗ 0.87∗∗∗ 0.88∗∗∗ 0.74∗∗∗ 0.68∗∗∗ 1.39∗∗∗ 0.12∗∗∗ 2.99 0.0022

hml −0.97∗∗∗ −1.36∗∗∗ −1.48∗∗∗ −1.60∗∗∗ −1.56∗∗∗ −1.69∗∗∗ −1.78∗∗∗ −1.84∗∗∗ −1.70∗∗∗ −0.70∗ 0.14∗∗

FPC1t −0.12∗∗∗ −0.10∗∗∗ −0.08∗∗∗ −0.07∗∗∗ −0.05∗ -0.02 0.01 0.04∗ 0.11∗∗∗ 0.22∗∗∗ 0.17∗∗∗

AdjR2 0.87 0.87 0.86 0.86 0.85 0.85 0.85 0.86 0.85 0.89 0.95

Panel B: F-F with FPC2t

α 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 −0.01∗∗∗ −0.02∗∗∗ −0.01∗∗∗

rmrf 1.09∗∗∗ 1.09∗∗∗ 1.10∗∗∗ 1.09∗∗∗ 1.08∗∗∗ 1.07∗∗∗ 1.08∗∗∗ 1.07∗∗∗ 1.04∗∗∗ 1.06∗∗∗ -0.02

smb 0.82∗∗∗ 0.99∗∗∗ 0.97∗∗∗ 1.09∗∗∗ 1.10∗∗∗ 1.09∗∗∗ 1.17∗∗∗ 1.09∗∗∗ 1.18∗∗∗ 1.55∗∗∗ 0.36∗∗∗ 3.44 0.0006

hml −1.18∗∗∗ −1.17∗∗∗ −1.29∗∗∗ −1.24∗∗∗ −1.17∗∗∗ −1.22∗∗∗ −1.29∗∗∗ −1.36∗∗∗ −1.16∗ −1.09∗ 0.05

FPC2t 0.08∗∗ -0.04 -0.05 −0.10∗∗∗ −0.12∗∗∗ −0.14∗∗∗ −0.16∗∗∗ −0.16∗∗∗ −0.18∗∗∗ 0.09 0.00

AdjR2 0.84 0.85 0.85 0.87 0.87 0.88 0.87 0.88 0.84 0.79 0.15

Panel C: F-F with FPC1 and FPC2

α 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

rmrf 1.07∗∗∗ 1.07∗∗∗ 1.08∗∗∗ 1.08∗∗∗ 1.07∗∗∗ 1.07∗∗∗ 1.08∗∗∗ 1.08∗∗∗ 1.06∗∗∗ 1.10∗∗∗ 0.02∗

smb 1.01∗∗∗ 1.15∗∗∗ 1.09∗∗∗ 1.19∗∗∗ 1.17∗∗∗ 1.13∗∗∗ 1.17∗∗∗ 1.02∗∗∗ 1.00∗∗∗ 1.21∗∗∗ 0.10∗∗∗

hml −1.22∗∗∗ −1.21∗∗∗ −1.31∗∗∗ −1.26∗∗∗ −1.18∗∗∗ −1.23∗∗∗ −1.28∗∗∗ −1.34∗∗∗ −1.13∗∗∗ −1.01∗∗∗ 0.10∗ 2.16 0.0243

FPC1t −0.12∗∗∗ −0.10∗∗∗ −0.08∗∗∗ −0.07∗∗ −0.05∗ -0.02 0.00 0.04 0.11∗∗∗ 0.22∗∗∗ 0.17∗∗∗

FPC2t 0.08∗∗ -0.05 -0.05 −0.10∗∗∗ −0.12∗∗∗ −0.14∗∗∗ −0.16∗∗∗ −0.16∗∗∗ −0.18∗∗∗ 0.09∗ 0.01

AdjR2 0.87 0.88 0.87 0.88 0.87 0.88 0.87 0.88 0.88 0.89 0.95
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Table 5: Relative strength of momentum and contrarian portfolios

Table 5 shows the relative strength of the average monthly returns from momentum and contrarian portfolio strategies.

Formation periods are denoted by K, which equals to 3, 6, 9 and 12 months for short-run past returns and 60 months

for long-run past returns. Holding periods vary from 3 to 24 months in each column. We apply the method proposed in

Jegadeesh and Titman (1993) to construct equally weighted portfolios with overlapping holding periods. Bracketed values

are Newey-West robust t-statistics.

Momentum Contrarian

K 3 6 9 12 24 3 6 9 12 24

3 months
-0.0030

(-1.52)

-0.0028

(-1.90)

-0.0025

(-2.36)

-0.0025

(-2.85)

-0.0024

(-4.48)

0.0028

(1.42)

0.0025

(1.78)

0.0023

(2.19)

0.0023

(2.63)

0.0023

(4.24)

6 months
-0.0042

(-2.30)

-0.0039

(-2.85)

-0.0036

(-3.14)

-0.0034

(-3.43)

-0.0032

(-4.23)

0.0042

(2.25)

0.0038

(2.78)

0.0035

(3.05)

0.0034

(3.34)

0.0031

(4.15)

9 months
-0.0036

(-2.00)

-0.0032

(-2.55)

-0.0030

(-2.74)

-0.0028

(-2.85)

-0.0023

(-2.77)

0.0034

(1.92)

0.0030

(2.39)

0.0028

(2.55)

0.0026

(2.66)

0.0021

(2.55)

12 months
-0.0042

(-2.19)

-0.0039

(-2.78)

-0.0036

(-3.09)

-0.0034

(-3.25)

-0.0027

(-3.09)

0.0038

(2.00)

0.0034

(2.45)

0.0032

(2.68)

0.0029

(2.81)

0.0022

(2.58)

60 months
-0.0025

(-1.64)

-0.0023

(-2.21)

-0.0022

(-2.48)

-0.0021

(-2.63)

-0.0018

(-2.89)

0.0018

(1.14)

0.0013

(1.21)

0.0011

(1.15)

0.0008

(0.99)

0.0002

(0.47)
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Table 6: Serial and cross-Serial correlations

Serial and cross-serial correlations in the past returns-sorted portfolio returns are displayed. Panel A describes the serial

correlations up to lag 4. Panel B describes the cross-serial correlation with lag 1. The correlation between lagged loser

returns and contemporary winner returns is 0.06, and the correlation between lagged winner returns and contemporary

loser returns is 0.02. The sample includes stocks without missing data from January 2007 to June 2017 (1307 stocks).

Panel A: Serial Correlations

Loser G2 G3 G4 G5 G6 G7 G8 G9 Winner

Lag1 -0.08 -0.04 -0.09 -0.05 0.01 0.01 -0.10 -0.02 -0.07 -0.04

Lag2 -0.07 -0.06 -0.07 -0.18 -0.15 0.04 -0.13 -0.02 -0.10 -0.08

Lag3 -0.12 -0.05 -0.15 -0.13 0.01 -0.06 0.04 -0.08 -0.16 -0.09

Lag4 -0.01 -0.12 0.03 -0.06 -0.12 -0.16 -0.06 -0.15 0.04 -0.04

Panel B: Cross-serial Correlations

Loser G2 G3 G4 G5 G6 G7 G8 G9 Winner

Loser(Lag1) -0.11 -0.08 0.18 -0.08 -0.15 -0.10 -0.03 0.05 0.08 0.06

G2(Lag1) 0.11 0.03 -0.04 0.00 0.10 -0.05 0.08 -0.12 0.06 -0.06

G3(Lag1) 0.01 0.23 -0.03 0.04 -0.15 0.11 -0.04 -0.22 0.03 -0.09

G4(Lag1) -0.15 0.11 0.10 -0.02 -0.04 0.02 -0.06 -0.01 -0.19 -0.09

G5(Lag1) 0.20 0.00 0.12 -0.07 -0.03 -0.14 -0.04 0.07 0.08 0.04

G6(Lag1) -0.08 0.01 0.02 -0.06 -0.15 0.17 -0.01 -0.06 0.03 -0.14

G7(Lag1) 0.12 0.12 -0.01 0.01 -0.03 0.12 0.00 0.03 -0.11 -0.03

G8(Lag1) 0.21 -0.11 -0.01 0.04 -0.16 -0.05 0.03 0.12 0.05 0.16

G9(Lag1) -0.08 0.07 -0.02 0.17 -0.10 0.09 -0.15 -0.16 -0.08 -0.18

Winner(Lag1) 0.02 -0.02 0.05 0.01 0.05 -0.13 -0.03 -0.12 -0.01 -0.06
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Table 7: Turnover ratios in pair-wise groups

Turnover ratios for different groups are shown. ‘Extreme’ implies the loser and winner groups; ‘Mediocre’ implies groups 5

and 6. G2/9, G3/8 and G4/7 imply the combinations of groups 2 and 9, 3 and 8, and 4 and 7, respectively.

G2/9 G3/8 G4/7 Mediocre

Extreme 1.3200 1.3859 1.4007 1.4124

Extreme G3/8 G4/7 Mediocre

G2/9 0.7780 1.0446 1.0523 1.0615

Extreme G2/9 G4/7 Mediocre

G3/8 0.7558 0.9676 1.0093 1.0164

Extreme G2/9 G3/8 Mediocre

G4/7 0.7535 0.9626 0.9970 1.0106

Extreme G2/9 G3/8 G4/7

Mediocre 0.7495 0.9573 0.9898 0.9963
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Table 8: Turnover ratios in individual groups

Turnover ratios for individual groups are given. Each sub-panel shows turnover ratios between the subject of its row and

each remaining group.

G2 G3 G4 G5 G6 G7 G8 G9 Winner

Loser 1.0862 1.0744 1.0615 1.0402 1.0209 0.9896 0.9682 0.9089 0.6385

Loser G3 G4 G5 G6 G7 G8 G9 Winner

G2 0.9451 0.9881 0.9709 0.9520 0.9351 0.9079 0.8887 0.8362 0.5879

Loser G2 G4 G5 G6 G7 G8 G9 Winner

G3 0.9691 1.0242 0.9858 0.9654 0.9465 0.9196 0.8997 0.8481 0.5983

Loser G2 G3 G5 G6 G7 G8 G9 Winner

G4 0.9977 1.0494 1.0278 0.9846 0.9640 0.9347 0.9144 0.8601 0.6064

Loser G2 G3 G4 G6 G7 G8 G9 Winner

G5 1.0211 1.0739 1.0506 1.0274 0.9831 0.9530 0.9307 0.8746 0.6157

Loser G2 G3 G4 G5 G7 G8 G9 Winner

G6 1.0519 1.1063 1.0800 1.0547 1.0309 0.9748 0.9512 0.8941 0.6317

Loser G2 G3 G4 G5 G6 G8 G9 Winner

G7 1.0879 1.1471 1.1205 1.0915 1.0668 1.0408 0.9795 0.9162 0.6468

Loser G2 G3 G4 G5 G6 G7 G9 Winner

G8 1.1226 1.1838 1.1555 1.1253 1.0980 1.0700 1.0321 0.9368 0.6583

Loser G2 G3 G4 G5 G6 G7 G8 Winner

G9 1.2245 1.2972 1.2691 1.2326 1.2015 1.1723 1.1247 1.0910 0.7001

Loser G2 G3 G4 G5 G6 G7 G8 G9

Winner 1.8426 1.9600 1.9267 1.8759 1.8245 1.7850 1.7123 1.6543 1.5080
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Table 9: Statistics of portfolios

Average monthly returns, Sharpe ratios and the maximum draw-down of five portfolios are displayed. The first two

columns are the benchmarks market index and contrarian-lmw portfolios. Considering that the momentum-wml portfolio

is unprofitable and the contrarian-lmw is profitable, the portfolio weight for EP1 is −ψ̂1 instead of ψ̂1, and the weight for

EP2 is ψ̂2. The last three columns represent portfolios EP1, EP2 and their mean-variance optimization. Assuming no

transaction costs, we hold all portfolios from January 2007 to June 2017.

Benchmark Portfolios Eigenfunction Portfolios

Market index Contrarian EP1 EP2 Optimized portfolio

average return 0.0168 0.0182 0.0236 0.0248 0.0264

Sharpe ratio 0.0550 0.4757 0.4936 0.3272 1.2736

maximum draw-down -1.2368 -0.0773 -0.1245 -0.2141 -0.0208

Figure 1: The 13 B-spline basis functions

The figure plots 13 basis functions used on 100 grouped cross-sectional returns. Nine dashed lines are interior breakpoints or

knots, splitting 100 groups into ten intervals and requiring 13 basis functions for smoothing.
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Figure 2: Functional Residual Curves and Decomposed Eigenfunctions

Functional objects and the corresponding first four estimated eigenfunctions are displayed. The upper sub-figure shows 126

functional curves, which are cross-sectional past returns-sorted residuals smoothed by a 13 cubic B-spline smoother. The lower

sub-figure shows the first four estimated eigenfunctions computed from 126 functional objects through FPCA. The first four

account for 87.77% of the total variation.
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Figure 3: Confidence envelopes of the first four eigenfunctions

Figure 3 displays 95% confidence envelopes of the eigenfunctions. By bootstrapping functional cross-sectional residual curves

5,000 times, we computed 95 % confidence envelopes for the first four functional eigenfunctions.
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Figure 4: Information coefficients

The figure plots information coefficients between past returns-sorted cross-sectional returns and the first two eigenfunctions.

There are 126 information coefficients from January 2007 to June 2017. To assess the strength of the correlation, we set the

domain of the coefficients to be between 0 and 1 by taking their absolute values.
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Figure 5: Asymmetric turnover surface

The turnovers of cross-sectional shares sorted by firm-specific 12-month momentum are displayed. The x-axis measures groups

from loser to winner, and splitting into deciles. The y-axis denotes periods between January 2007 and June 2017. The z-axis

shows the value of turnovers.
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Figure 6: Portfolio performance

Cumulative portfolio returns and monthly average returns for different portfolios are shown. The upper sub-figure shows the

performance of the contrarian, EP1, and EP2 portfolios and their optimization. The lower sub-figure displays the monthly

average return performance. Terms “-1st ef” and “2nd ef” indicate EP1 and EP2, respectively.
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