
ONLINE SUPPLEMENT TO “FORECASTING VALUE AT RISK VIA INTRA-DAY
RETURN CURVES"

1. One-step VaR Forecasting based on Functional Linear Quantile Regression

In this supplementary material, we introduce a functional linear quantile regression (FLQR)

model to forecast the VaR. This model incorporates the information in the OCIDR curves is to

use them directly as covariates in order to model the conditional quantile within the framework

of a quantile regression.

LetYi ∈ R denote the daily log return, which is defined byYi = Xi(1) = logPi(1)−logPi−1(1),

for 1 ≤ i ≤ N . We posit that the VaR at level τ follows a quantile regression model of the form

(1.1) VaRτ
i = ωτ +

L∑
l=1

βτl g(Yi−l) +
K∑
k=1

∫
bτk(t) ·Xi−k(t)dt, t ∈ [0, 1]

where ωτ , βτl , bτk(t) are parameters associated with the fixed τ th quantile. We call this model

a functional linear quantile regression model (FLQR(L,K)). The function g(·) is a non-linear

function acting on the lagged values of Yi. We set g(Yi−l) ≡ |Yi−l|, although one might consider

alternative transformations in order to estimate conditional heteroscedasticity in the sequence

Yi.

This model specification is inspired by the CAViaR model (Engle and Manganelli, 2004),

with the primary difference being that we allow the covariates to be functional data objects.

Functional versions of linear quantile regression models are relatively new in the FDA field,

and still under development. Kato (2012) considered a quantile regression with a scalar

response and functional covariates, and established a consistent FPCA-based estimator with

sharp convergence rates. However, these results are strictly speaking not suitable for applications

in the functional time series framework (in particular with financial data) because they assume

the responses and covariates are independent and identically distributed. An application to

weakly dependent data was provided by Cabrera and Schulz (2017), who used a functional

version of the linear quantile regression model to forecast electricity demand in the German

electricity market, but their paper does not establish consistency of the estimators.
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2. The FLQR(L,K) Model: Estimation, Model Selection and Simulations

In this section, we explain how to approximately estimate model (1.1). Similar to most of

functional time series models, we first conduct a dimension reduction procedure using FPCA.

Using the Karhunen-Loève (K-L) representation, we represent the demeaned process Xi(t) =∑∞
m=1 ξi,mψm(t), where the scores are given by ξi,m = 〈Xi, ψm〉 ∈ R. The basis functions ψm

share the same properties with the orthonormal bases discussed in Section 2 in the main context.

Under the assumption that the projections ofXi beyondM3 principal curves capture negligible

information regarding estimating the conditional quantile of Yi, we make the approximation

Xi(t) ≈
∑M3

m=1 ξi,mψm(t). The model (1.1) then reduces to

VaRτ
i ≈ ωτ +

L∑
l=1

βτl |Yi−l|+
K∑
k=1

M3∑
m=1

bτk,mξi−k,m,

where bτk,m = 〈bτk(t), ψm(t)〉. Similar to the estimation of FGARCH(p,q) model, we can use

TVE or cross-validation to determine the order of M3. Another option is to use information

criteria to selectM3, and we propose and study three such criteria below. Besides, as suggested

by one of the reviewers, instead of using the empirical covariance operator in presenting a

K-L representation, one can use the lagged covariance operator in order to overcome the

microstructure errors (Bathia et al. 2010). We leave this as an option for future applications,

and the results in this supplement still rely on the empirical covariance operator.

When the functions ψm(t) are replaced with estimates of the principal components ψ̂m(t), the

model (1.1) may be re-expressed as

(2.1) VaRτ
i = Z̃>i θτ = ωτ +

L∑
l=1

βτl |Yi−l|+
K∑
k=1

M3∑
m=1

b̃τk,mξ̃i−k,m,

where b̃τk,m = 〈bτk(t), ψ̂m(t)〉 and the score ξ̃i,m = 〈Xi(t), ψ̂m(t)〉. Equation (2.1) is indeed an

equality when M3 = N , unlike the above equation. This is so because even when the K-L

representation of Xi has infinitely many nonzero terms, it is always the case that its empirical

counterpart (that is, the expansion of Xi obtained via the empirical covariance function) is a

finite sum, and the latter representation yields exactly Xi (again, if we putM3 = N ).

We define the parameter set θτ = {ωτ , βτ1 , . . . , βτL, b̃τ1,1, . . . , b̃τ1,M3
, . . . , b̃τK,1, . . . , b̃

τ
K,M3
} ∈

Θτ ⊂ RK·M3+L+1, and Z̃i−1 ≡ {|Yi−1|, . . . , |Yi−L|, ξ̃i−1,1, . . . , ξ̃i−1,M3 , . . . , ξ̃i−K,1, . . . , ξ̃i−K,M3}.
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After these simplifications, estimating the FLQR(L,K) model turns out to be equivalent with

estimating a scalar linear quantile regression model. Therefore, we are able to estimate θτ by

solving the classic optimization problem presented in Koenker (2005),

(2.2) θ̂τ = arg min
θτ∈Θτ

(N −K)−1

N∑
i=K+1

ρτ (Yi − Ỹi),

where ρτ (x) = x · (τ − 1(x ≤ 0)) denotes the check function, and Ỹi = VaRτ
i as shown in

Equation (2.1).

Under natural ergodicity conditions on the returns Yi andOCIDR curvesXi(t), one can establish

the consistency of θ̂τ along the lines of the consistency results in Engle and Manganelli

(2004). Based on the estimator θ̂τ , we can obtain the estimated kernel bτk(t) in (1.1) as

b̂τ (t) =
∑M3

m=1 b̂
τ
mψ̂m(t).

Following Kato (2012), we now introduce three types of information criteria (AIC, BIC, and

HQ) to use in order to select the optimal order of L, K, andM3 in (2.1). We treat θ̂τ specified

in (2.2) as a conditional maximum likelihood estimator, and let the conditional distribution of

Yi based onFi−1 to follow an asymmetric Laplace density function with an unknown weighting

parameter ς ,

f(Yi|Fi−1, τ, ς) =
τ(1− τ)

ς
exp[−1

ς
ρτ (Yi − ωτ −

L∑
l=1

βτl |Yi−l| −
K∑
k=1

M3∑
m=1

bτk,mξ̃i−k,m)],

Since that coefficients ωτ , βτk and bτm can be estimated through (2.2), we find a plug-in estimator

of the unknown parameter ς given by,

ς̂ = N−1

N∑
i=K+1

[ρτ (Yi − ω̂τ −
L∑
l=1

β̂τl |Yi−l| −
K∑
k=1

M3∑
m=1

b̂τk,mξ̃i−k,m)],

and then substituting ς̂ produces the log-likelihood function,

LN =N · log(τ(1− τ))−N · log(ς̂)− 1

ς̂

N∑
i=K+1

[ρτ (Yi − ω̂τ

−
L∑
l=1

βτl |Yi−l| −
K∑
k=1

M3∑
m=1

b̂τk,mξ̃i−k,m)].

(2.3)
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We thereby can compute the AIC, BIC, and HQ criteria as,

AIC = −2LN + 2(M3 ×K + L+ 1),

BIC = −2LN + logN · (M3 ×K + L+ 1),

HQ = −2LN + log(logN) · (M3 ×K + L+ 1),

(2.4)

respectively. The model candidate with the smallest information criteria is selected as the

optimal model. The following provides a Monte Carlo simulation study to examine the finite

sample performance of these information criteria in the FLQR framework, which suggests that

they work well in general for selecting the correct model with sample sizes relevant for VaR

forecasting.

We now conduct a Monte Carlo simulation study to assess the finite sample performance of the

FLQR(L,K) model selection based on the proposed information criteria. Motivated by Kato

(2012), the simulation considers two data generating processes (DGP) for Yi,

(1) DGP 1:

(2.5) Yi = 0.01 +

∫
b(t)Xi−1(t)dt+ εi, t ∈ [0, 1]

where εi is IID with the distribution N (0, 1) and is independent of Xi−1(t). We set the

kernel function b(t) as,

b(t) =
M∑
m=1

bjφj(t)

where bj = −(−1)j · (j + 1)−1/2, and the orthonormal bases φj(t) = sin(j · π · t). We

generate Xi(t) through a functional autoregression,

Xi(t) =
M∑
j=1

ξi,jφj(t)

where each loadings series ξi,j obeys an autoregressive process of order one ξi,j =

0.5 · ξi−1,j + vi,j for all j ∈ [1,M ], and the collection vi,j is an IID sequence with

N (0, σ2
v).
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(2) DGP 2:

Yi = 0.01 +

∫
b(t)Xi−1(t)dt+ εi, t ∈ [0, 1], ε = σi · zi

σ2
i = 0.01 + 0.85 · σ2

i−1 + 0.05 · ε2
i−1

(2.6)

where the parameters and covariates in the mean equation are set to be as the same as

DGP 1.

In the DGP1, the dynamics of Yi only depends on the conditional mean equation; i.e., there is

no GARCH effect on Yi; thus L and K are set to be 0 and 1, respectively. Comparably, in the

DGP 2, we set L = 1 and K = 1. For each DGP, the projection number M are set to be 5 or

10, and the sample sizes are chosen to beN = 125, 250 and 500. For the simulation, first 1,000

observations are burned, and the simulation is replicated 1,000 times.

We fit Yi and Xi(t) with a FLQR(L,K) model and concentrate on three quantiles τ = 0.025,

0.01, 0.005. As the FLQR(L,K) model is estimated under finite dimensional projections (2.1),

we work on the FLQR(L,K,M3) model, and select the optimal specification on the permutation

of L = {0, 1, 2}, K = {1, 2, · · · , 5} and M3 = {1, 2, · · · , 10}. The procedure is to compute

AIC, BIC and HQ information criteria for each model candidate, and select the one with the

smallest criteria. We assess the model performances by using the averaged root mean square

error (ARMSE),

ARMSE =
1

1, 000

1,000∑
1

{ 1

N

N∑
i=1

|Ŷ τ
i − Y τ

i |2}1/2

where Ŷ τ
i is the fitted quantile of Yi and Y τ

i is the true quantile. Table 2.1 reports the results.

Overall, all of the three information criteria suggest precise orders of L, K, and M3 for all

DGPs, and the ARMSE is reduced along as the sample size N increases. Moreover, at a less

extreme quantile (2.5%), the FLQRmodel suffers a larger error to tailed quantiles (0.5%), which

is reasonable as the tailed behavior is usually more difficult to model and estimate.
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Table 2.1. ARMSE of the Optimal Selected Models with the values in the
parentheses representing for the optimal order selected by the information crite-
ria, e.g., (1,1,5) means L = 1, K = 1, andM3 = 5, respectively.

DGP 1: L = 0, K = 1,M3 = 5
N=500 N=750 N=1,000

AIC BIC HQ AIC BIC HQ AIC BIC HQ

τ = 0.025
0.3142,
(0,1,5)

0.3089,
(1,1,4)

0.3146,
(0,1,5)

0.3008,
(0,1,5)

0.3007,
(0,1,5)

0.3008,
(0,1,5)

0.2922,
(0,1,5)

0.2923,
(0,1,5)

0.2921,
(0,1,5)

τ = 0.01
0.3482,
(0,1,5)

0.3451,
(0,1,4)

0.3481,
(0,1,5)

0.3245,
(0,1,5)

0.3243,
(0,1,5)

0.3249,
(0,1,5)

0.3126,
(0,1,5)

0.3129,
(0,1,5)

0.3125,
(0,1,5)

τ = 0.005
0.3900,
(1,1,5)

0.3838,
(1,1,4)

0.3899,
(0,1,5)

0.3593,
(0,1,5)

0.3595,
(0,1,5)

0.3596 ,
(0,1,5)

0.3310,
(0,1,5)

0.3306,
(0,1,5)

0.3312,
(0,1,5)

L = 0, K = 1,M3 = 10

τ = 0.025
0.3165,
(0,1,9)

0.3112,
(0,1,8)

0.3164,
(0,1,10)

0.3051,
(0,1,9)

0.3036,
(0,1,8)

0.3049,
(0,1,9)

0.2976,
(0,1,9)

0.2976,
(0,1,9)

0.2978,
(0,1,10)

τ = 0.01
0.3542,
(1,1,10)

0.3513,
(1,1,9)

0.3543,
(0,1,10)

0.3283 ,
(0,1,10)

0.3251,
(0,1,9)

0.3284,
(0,1,10)

0.3195,
(0,1,10)

0.3179,
(0,1,10)

0.3196,
(0,1,10)

τ = 0.005
0.4400,
(1,1,10)

0.4341,
(1,1,9)

0.4399,
(0,1,10)

0.3749,
(0,1,10)

0.3706,
(0,1,9)

0.3751,
(0,1,10)

0.3445,
(0,1,9)

0.3433,
(0,1,9)

0.3433,
(0,1,10)

DGP 2: L = 1, K = 1,M3 = 5

τ = 0.025
0.3269,
(1,1,5)

0.3253,
(1,1,4)

0.3271,
(1,1,5)

0.3144,
(1,1,5)

0.3141,
(1,1,5)

0.3144,
(1,1,5)

0.3168,
(1,1,5)

0.3167,
(1,1,5)

0.3168,
(1,1,5)

τ = 0.01
0.3569,
(1,1,5)

0.3552,
(1,1,4)

0.3569,
(1,1,5)

0.3400,
(1,1,5)

0.3392,
(1,1,5)

0.3401,
(1,1,5)

0.3383,
(1,1,5)

0.3382,
(1,1,5)

0.3384,
(1,1,5)

τ = 0.005
0.4024,
(1,1,5)

0.4000,
(1,1,4)

0.4024,
(1,1,5)

0.3723,
(1,1,5)

0.3720,
(1,1,5)

0.3723,
(1,1,5)

0.3518,
(1,1,5)

0.3509,
(1,1,5)

0.3518,
(1,1,5)

L = 1, K = 1,M3 = 10

τ = 0.025
0.3232,
(1,1,10)

0.3229,
(1,1,8)

0.3234,
(1,1,10)

0.3170,
(1,1,10)

0.3162,
(1,1,9)

0.3169,
(1,1,10)

0.3170,
(1,1,10)

0.3167,
(1,1,10)

0.3168 ,
(1,1,10)

τ = 0.01
0.3635,
(1,1,10)

0.3613,
(1,1,9)

0.3634,
(1,1,10)

0.3518,
(1,1,10)

0.3519,
(1,1,9)

0.3517,
(1,1,10)

0.3336,
(1,1,10)

0.3338,
(1,1,10)

0.3335,
(1,1,10)

τ = 0.005
0.4248,
(1,1,10)

0.4202,
(1,1,9)

0.4248,
(1,1,10)

0.3709,
(1,1,10)

0.3701,
(1,1,9)

0.3709,
(1,1,10)

0.3690,
(1,1,10)

0.3692,
(1,1,10)

0.3690,
(1,1,10)

3. Application to equity and FOREX market returns

In this section, based on the empirical analysis in the main context, we document the empirical

VaR forecasting results by using the FLQR model. Regarding the order of the FLQR(L,K)

model, in each training sample, we select the optimal model specification (the orders to L, K,

andM3) from the pool ofL ∈ {0, 1, 2, 3},K ∈ {1, 2, · · · , 5} andM3 ∈ {1, 2, · · · , 10} by using

the AIC information criteria, given the fact that the AIC outperforms the other two information

criteria in the simulation study. The optimal fitted models are used to predict 1-day-ahead VaR.

Comparedwith othermodels reported in themain context, the FLQRmodel generally performed

the worst. This is consistent with our expectations and the literature on quantile regression, as

there appears to be a general consensus that it is difficult to accurately estimate extremal quantiles
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through quantile regression-type methods. The asymptotic arguments in Chernozhukov (2005)

suggest that one can expect such methods to be feasible when the tail probability considered

multiplied by the sample size is large. In our setting, using approximately three years of training

data (N ≈ 750) is still apparently prohibitive for estimating the 1% and lower tail quantiles.

The FLQR model did not pass the backtests at any reasonable significance level. This result

is in accordance with the simulation outcomes shown in Table A.1, which indicate that the

estimation error of the FLQR model increases along with quantiles deviating from the center.

This model is expected to work when a less tailed quantile is chosen, e.g. τ = 5% - 10%.

Table 3.1. Violation rates and P-values of backtests for the VaR forecasts with
the bold values indicating significance at the 5% level.

S&P500 DAX30 CAC40 USD-Euro
τ 2.5% 1% 0.5% 2.5% 1% 0.5% 2.5% 1% 0.5% 2.5% 1% 0.5%

Panel A: VaR Violation Rates
FLQR 0.040 0.035 0.022 0.055 0.037 0.028 0.049 0.040 0.037 0.083 0.070 0.047

Panel B: Unconditional Coverage Test
FLQR 0.02 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00

Panel C: Conditional Coverage Test
FLQR 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Panel D: Average Probability Scores valued with units 10−4

FLQR 8.42 6.50 5.02 10.41 6.12 4.67 10.40 8.14 6.23 6.02 4.93 2.62
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