
Abstract –This paper focuses on current control in a permanent-
magnet synchronous motor (PMSM).	 The paper has two main
objectives: The first objective is to develop a neural-network (NN)
vector controller to overcome the decoupling inaccuracy problem
associated with conventional PI-based vector-control methods.
The NN is developed using the full dynamic equation of a PMSM,
and trained to implement optimal control based on approximate
dynamic programming. The second objective is to evaluate the
robust and adaptive performance of the NN controller against
that of the conventional standard vector controller under motor
parameter variation and dynamic control conditions by (a)
simulating the behavior of a PMSM typically used in realistic
electric vehicle applications and (b) building an experimental
system for hardware validation as well as combined hardware
and simulation evaluation. The results demonstrate that the NN
controller outperforms conventional vector controllers in both
simulation and hardware implementation.

Index Terms – approximate dynamic programming, neural
network, permanent-magnet synchronous motor, vector control,
voltage source inverter

I. INTRODUCTION
HE performance of a PMSM depends not only on its
hardware design, but also on how it is controlled. Motor
current control plays a particularly critical role [1].

Since there is a direct relation between motor current and
torque, current control is equivalent to torque control [2]. To
achieve fast and accurate current or toque tracking, several
improved control techniques have been developed recently,
including: predictive current control [1, 2], direct torque
control [3, 4], proportional-integral (PI) plus proportional-
resonant (PR) control [5], and mixed H2/H∞ control [6].

Predictive current control [1, 2] uses a current-prediction
equation to estimate the motor current at the next sampling
interval and a control equation to determine the next control
action. It shows fast current-tracking response but becomes
unstable when the actual motor's parameters differ from the
programmed parameters used in the predictive controller [2].

Direct torque control has gained popularity in PMSM
drives by providing a simple implementation for instant motor
torque and stator-flux control [4]. However, it suffers from
drawbacks: variable switching frequency, large torque ripple,
and high sampling rates for digital implementation [4].

PI-PR control is similar to the conventional standard field-
oriented vector control, except that it combines PI with several
PR control paths to enhance tracking of the current reference
which may contain a lot of AC disturbance components [5].
The PI-PR approach requires properly tuning parameters of
different resonant terms, and its performance can be adversely
affected when motor parameters change, or when disturbance
harmonics are different from those used to tune the resonant
terms.

The mixed H2/H∞ control method [7] has become popular
[8]–[10]. However, it requires a reasonably accurate system
model [11]. Also, it does not handle non-linear constraints
very well [11]. In [12], it was found that applying a mixed
H2/H∞ controller in experimental conditions is much more
challenging than in simulated environments.

As a result of these weaknesses, the conventional standard
field-oriented vector control is still the dominant motor-
current control strategy for PMSMs in today's motor drive
industry [13, 14]. But, recent studies show this conventional
control strategy is inherently limited [15].

Neural networks (NNs) have been applied in PMSM
control since the 1990s. But, to the best of our knowledge,
NNs have not been used for current control of a PMSM based
on a voltage source inverter (VSI). In [16], a feedforward NN
identifier is utilized to replace the traditional speed-loop
controller to generate a reference current. The reference
current is then compared with the actual current to drive a
current source inverter (CSI) through a hysteresis switching
scheme. The NNs presented in [17] and [18] have a similar
function to the NN used in [16]. The difference is that a
typical current-loop controller is introduced after the NN
identifier, and VSI replaces a CSI as the PMSM inverter. In
[19], a feedforward NN is used as an identifier for a PMSM
for the purpose of offsetting the impact of uncertainties.

This paper develops a novel control strategy: NN-based
current vector-controller for a PMSM trained using an
Approximate Dynamic Programming (ADP) method. In recent
years, significant research has been conducted in optimal
control of nonlinear systems based on ADP [20-23], none of
which however focuses on vector control of PMSM motors in
power applications, although many recent studies have pivoted
around developing ADP techniques for optimal energy
management in a time scale from several minutes to several
hours. These include ADP-based optimal energy storage
management with solar renewable [24], ADP-based optimal
battery management for residential energy systems [25], and
ADP-based optimal home energy management [26]. But, the
focus of this paper is on real-time control of PMSMs for a
time scale of milliseconds and below. In [27], a preliminary
NN vector control structure for PMSMs was developed.

This paper has extended far beyond [27]. The special
contributions of the paper include: (a) an ADP-based NN
controller, (b) training of the NN as a recurrent network, (c)
detailed stability evaluation under a wide range of diverse
conditions and parameter uncertainties, (d) implementation
and hardware experiment testing of the NN controller.

Several important features of the proposed NN control
method include:

1) The NN is trained as a recurrent network, which
enables it to exhibit fixed-weight adaptive behavior [28], and

Neural-Network Vector Controller for Permanent-Magnet
Synchronous Motor Drives: Simulated and Hardware-

Validated Results

T

predictive control ability, like conventional current-predictive
controllers.

2) The NN is trained to optimize an ADP-based cost
function, making the NN controller an approximate optimal
controller, like an H2/H∞ controller.

3) The NN controller takes the error integral information
as the input, which guarantees that no steady-state error exists
for the reference tracking.

4) The NN can, in theory, emulate PI-PR control features,
due to the universal function-approximation capability of NNs.

Thus, the NN has the potential to integrate optimal,
predictive, PI, and PR control characteristics into one
controller. This paper demonstrates the NN controller’s
improved performance, under both simulation and hardware
conditions as compared to the conventional control methods.

It is worth emphasizing that the NN controller is trained
entirely offline under a wide range of simulated circumstances,
which allows our NN controller to adapt and respond to
changing motor parameters in real time [28]. This leads to
three further key benefits of our method:

a) The controller shows sufficient adaptive ability not to
need retuning every time the motor’s hardware parameters
change slightly.

b) The computational cost at runtime is extremely low and
easy to implement in low-cost hardware.

c) As training is completed offline, it is not possible for
the weights of the NN to destabilize at runtime.

The trained NN controller’s stability for controlling the
PMSM at runtime is validated against a test set and a
hardware experiment. The test set is intended to cover a
sufficiently wide range of circumstances to empirically
provide evidence for the stability of the controller. A formal
proof of runtime stability is not provided. Such proof would
involve the development of an analytical framework that is
beyond the scope of this paper.

The rest of the paper is structured as follows: Section II
covers the basic equations of the PMSM and conventional
field-oriented control. Section III elaborates on the NN control
method. Section IV shows how to train an NN based on ADP
to implement vector control for a PMSM. Section V shows
how to integrate NN control in a nested-loop PMSM control
configuration. Sections VI and VII compare the performance
of conventional and NN vector-control schemes through
computer simulation and hardware experiments. Finally, the
paper concludes with a summary of the main points.

II. CONVENTIONAL VECTOR CONTROL

A. PMSM Model

Conventional field-oriented vector control is based on the
Park transformation. Using the motor sign convention, this
yields the stator voltage equation [29] as:

0sd s d e q sd

sq e d s q sq e f

v R L d dt L i

v L R L d dt i

w
w wy
+ × -æ ö æ öæ ö æ ö

= +ç ÷ ç ÷ç ÷ ç ÷+ ×è ø è øè ø è ø
 (1)

where Rs is the resistance of the stator winding; we is the motor
electrical rotational speed; vsd, vsq, isd, and isq, are the d and q
components of instant stator voltage and current; Ld and Lq are
the stator and rotor d- and q-axis inductances; and yf is the
flux linkage produced by the permanent magnet (PM).

 The torque balance equation of a PM motor [29] is:

,em eq m a m LJ d dt B Tt w w= + + (2)

where Jeq is the inertia of the motor; wm is the motor rotational
speed; Ba is the friction coefficient; TL is the load torque; and
tem is the electromagnetic drive torque. Depending on the type
of a PMSM, a surface PM (SPM) or interior PM (IPM) motor,
tem can be expressed as follows:

() em f sqP i SPM motort y= (3a)

()()em f sq d q sd sqP i L L i i IPM Motort y= + - (3b)

in which P represents the number of motor pole pairs. Lastly,
the relation between wm and we is given by:

e m Pw w= × (4)

B. Conventional PMSM Vector Control

The conventional standard vector control technique usually
has two distinctive nested-loop PI controllers: the outer speed
and rotor flux linkage PI controllers and the inner current PI
controllers as shown in Fig. 1 (top), where lrd and l*

rd
represent actual and reference d-axis rotor flux linkages,
respectively. The current-loop control strategy is developed by
rewriting (1) as (5), where the terms in the large parentheses
are used as the dynamic equations, and the other terms are
compensation terms. These compensation terms are ignored
when obtaining the system transfer functions [29, 30]. Thus,
the consequent transfer functions, 1/(RS+s·Ld) and 1/(RS+s·Lq),
are used to tune a conventional d- or q-axis PI controller. The
omission of the compensation terms in deriving the transfer
functions generates a decoupling inaccuracy. After the d- and
q-axis PI controllers are tuned, the compensation terms are
added back to the output of the PI controllers, to form the final
current-loop control configuration (Fig. 1 (top)).

()
' .
sd

sd s sd d sd e q sq

Comp Termv

v R i L di dt L iw= + -
!"""#"""$!#$ (5a)

()
' .
sq

sq s sq q sq e d sd e f

Comp Termv

v R i L di dt L iw wy= + + +
!""#""$!"""#"""$

 (5b)

The design of the speed-loop controller is based on the
transfer function obtained from (2) and (3a), which is
yf×P/(Ba+s·Jeq). Details about how to tune both current- and
speed-loop controllers are presented in Section V.

III. NN VECTOR CONTROL

To address the decoupling inaccuracy associated with the
conventional standard vector control, a novel NN controller is
proposed to replace the PI-based current controller. The NN
vector controller, known here as the action network, is
implemented as shown in the lower right side of Fig. 1. The
outer speed loop remains unchanged. The design stages of the
NN controller are analogous to the design stages of a
conventional controller. Firstly, like a conventional controller,
a dynamic model of the plant is needed. Secondly, the NN
structure needs to be specified which is analogous to
specifying a conventional controller structure. Thirdly, the NN
needs to be trained, which is analogous to tuning a
conventional controller.

+-
Vdc

+

+

+

-

--

*
sqi

*
mechw

+

+

+

NN Structure

MotorEncoder
/d dt mechq

sai

sbi

sci

savsbvscv

mechw *
rdl

mechw *
rdl

+ +

rdl
*
sdi-

+

+

ò

ò
+

-+

Input

Hidden

Output

+

+
*
sdi

*
sqi

de

qe

ds

qs

*
sdv

*
sqvsdi

Inner PI Current-loop Control

Outer Speed-loop Control

Outer Rotor Flux Control

sqi

sqi
sdi

tanh

tanh

tanh

tanh

tanh

tanh

tanh

Input Layer Output Layer

dqs
!
dqe
!

Hidden LayerInner NN Current-loop Control

-

*
qlv

*
dlv

PI

PI

PI

PI

mechw

αβ

dq
SV

PWM

*
sv a

*
sv b

abc

dq

P

elecq

*
qlv

*
dlv

pwmk *
sqv

*
sdv

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

tanh

Transformation/Modulation Inverter/Motor

e q sqL iw

e d sd e fL iw wy+

-

+

+

'
sdv

'
sqv

+

Fig. 1. PMSM conventional (top) and neural-network (highlighted in grey color) vector control

A. State-Space Model of PMSM Current Loop

The NN current vector controller is developed using a
state-space model of the PMSM, by rearranging (5) into the
standard state-space form, as shown by:

sd s d e q d sd sd d

sq e d q s q sq sq q e f q

i R L L L i v Ld
i L L R L i v L Ldt

w
w wy

-æ ö æ öæ ö æ ö
= - +ç ÷ ç ÷ç ÷ ç ÷-è ø è øè ø è ø

(6)

where the system states are isd and isq. The PM flux yf is
assumed to be constant, and the converter output voltages vsd

and vsq are proportional to the control voltage generated by the
action network [31].

Since the NN controller is a digital controller, a discrete
equivalent of the continuous state-space model is required.
This is obtained by a zero-order or first-order hold discrete
equivalent mechanism. This transformation yields:

()
()

()
()

()
()

0sd s s sd s sd s

sq s s sq s sq s e f

i kT T i kT v kT

i kT T i kT v kT wy
+ -æ ö æ ö æ ö

= +ç ÷ ç ÷ ç ÷+ -è ø è ø è ø
A B (7)

in which Ts is the sampling period, A is the system matrix, and
B is the input matrix. Since Ts is present on both sides, (7) can
be simplified as:

() () ()()1 - ,sdq sdq sdq rdqi k i k v k v+ = × + ×A B
! ! ! !

 (8)

where k is an integer time step, (,)sdq

T
sd sqi i i=

!
, (,)sdq

T
sd sqv v v=!

is

the control action, and (0,)rdq

T
e fv wy=

!
 represents the induced

voltage of the permanent magnet.

B. NN Structure

The NN has a feedforward network structure as shown in
the lower right side of Fig. 1. It consists of four different
layers: an input layer, two hidden layers, and an output layer.
The input layer contains four inputs. Two of these inputs

comprise the vector ()dqe k
!

, the error term, and the other two

comprise (),dqs k
!

 the integral of the error term. These two

terms are defined by:

() () () ()* , () (1) ,dq sdq sdq dq dq dq se k i k i k s k s k e k T= - = - + ×
! !! ! ! !

 (9)

where ()*
sdqi k
!

is the reference dq current and ()dqs k
!

 is the

discrete integral of the error term obtained by the forward
rectangle rule. We also investigated NNs with more hidden
layers and more nodes in each hidden layer – but no major
improvement was found.

As shown by (9), the NN has the same input signals, error
terms and integrals of error terms, and same output signals as
those used in a conventional PI controller. Hence, the NN-
based controller can be considered as a “super-PI” controller,
which can be conveniently applied to an existing PMSM
digital control system for a more stable and reliable operation.
The four inputs to the NN are first divided by their appropriate
gains, and then processed through a hyperbolic tangent
function, as shown in Fig. 1. The input layer then feeds into
the hidden layers, each of which contains six nodes. Each
node uses a hyperbolic-tangent activation function. Finally,

the output layer gives * ()sdqv k
!

, the output of the NN. This

output is multiplied by a gain, kPWM, which represents the
pulse-width-modulation (PWM) [29, 31], to obtain the final

control action applied to the PMSM, sdqv
!

, given by:

() ()(), (), ,sdq PWM dq dqv k k A e k s k w= ×! ! ! !
 (10)

where w
! is the network’s overall weight vector, and

()(), (),dq dqA e k s k w
! ! !

denotes the whole action network. The

division of the inputs by 𝐺𝑎𝑖𝑛 and 𝐺𝑎𝑖𝑛2 in the NN input
layer is to avoid the input saturation [32]. A two-hidden-layer
NN was selected because it generally yields a stronger

approximation ability [33] than a one-hidden-layer NN and the
training of a two-hidden-layer network is relatively easy
compared with that for an NN with three or more hidden
layers. The number of nodes in each hidden layer was selected
via the trial-and-error method.

IV. TRAINING THE NN TO CONTROL THE PMSM

A. ADP-Based Control Formulation for a PMSM

ADP is a very useful tool for solving and approximating an
optimal control of a dynamic system [34]. A typical ADP-
based control problem consists of a cost function and a
mechanism that can minimize the cost function to achieve the
ADP-based control. The cost function is used to measure the
performance of the ADP-based control in tracking a target
trajectory and is typically defined as [34]:

()() () ()(), , ,
N

k j

k j

C x j j U x k u k kg -

=

= ×å! ! !

(11)

where N is the trajectory length, g is the discount factor (0 ≤ g
≤1), ()x k
!

signifies the states of a dynamic system, ()u k
!

denotes the control action applied to the system, and U(•) is
the utility function. The cost function J(•), dependent upon the

initial time j and the initial state ()x j
!

, is referred to as the

cost-to-go of state ()x j
!

 in an ADP problem.

For vector control of a PMSM, the system states are

()sdqi k
!

and the control action is ()sdqv k
!

according to Section

III. The goal of the current control for a PMSM is to be able to

track any specified target reference current trajectory ()*
sdqi k
!

as close as possible. Therefore, the utility function in (11) for
the PMSM vector control problem is defined as

() () ()() () ()()2 2* *, ,sdq sdq sd sd sq sqU i v k i k i k i k i k= - + -
! !

 (12)

In this paper, we choose g = 1, which makes the cost-to-go
function of the ADP-based PMSM control problem as

() 2 2* *, () () () ()
N

sdq sd sd sq sq
k j

C i j i k i k i k i k
=

é ù é ù= - + -ë û ë ûå
!

 (13)

The objective of training the NN controller for a PMSM is

to have the NN output control actions () ,sdqv k
!

, 1, ,k j j N= + ! so that the cost-to-go function C(•) of (13) is

minimized. It is worth pointing out that although the control

actions ()sdqv k
!

is not involved in (13), it affects (13) indirectly

through (8). This impact is considered in the training of the
NN as shown in the following section.

B. NN Training Mechanism to Optimize the ADP-Based
Cost Function

The NN shown in Section III is trained to approximate
optimal control by using gradient descent to adjust the weights
of the action neural network until its outputs minimize (13).
As shown in Fig. 1, the NN receives the dq current feedback
signal from the PMSM motor. Thus, the output control action
of the NN at time step k changes the output current of the

PMSM at time step k+1 via (7) or (8), the output motor current
then changes NN inputs at time step k+1 via (9), and then the
NN output control action at time step k+1 is modified via (10).
This recursive process continues, making the combined
system of the PMSM + NN similar to a recurrent neural
network. This combined “recurrent network” is shown in Fig.
2, unrolled in time, illustrating how the PMSM and the NN
interact with each other. The recurrence in this architecture
needs to be fully considered when computing the gradient of
the ADP cost function (11) so as to enable learning by the
gradient descent [35]. Doing so allows the trained NN to gain
strong multi-step-ahead predictive control ability that is much
more powerful than the conventional predictive controllers.

Learning was accelerated using the Levenberg-Marquardt
(LM) optimization method [36]. The LM algorithm has been
widely used to train feedforward networks, and provides a
nice compromise between the speed of Newton’s method and
the guaranteed convergence of the steepest descent. For a
moderate number of network parameters or weights, LM
appears to be one of the fastest neural network training
algorithms. However, since the NN and PMSM are treated as
a recurrent neural network, it is necessary to modify the LM
algorithm slightly using the method detailed by [32] and
summarized below.

First, the gradient of (13) is computed with respect to the

weight vector /C w¶ ¶
!

. In matrix form this is:

()2
1

1

()
()

2 () 2 ()

N

N
Tk

p
k

V k
C V k

V k J w V
w w w

=

=

¶
¶ ¶

= = =
¶ ¶ ¶

å
å

!"
!" !" !" (14)

where ()() , ,sdq sdqV k U i v k=
! !

, V is a vector containing V(1)

to V(N), and ()pJ w
!

is a Jacobian matrix defined for a recurrent

neural-network by:

1

1

(1) (1)

(1)

() ,

() () ()

M

p

M

V V

w w V

J w V

V N V N V N

w w

¶ ¶é ù
ê ú¶ ¶ é ùê ú ê ú= =ê ú ê úê ú ê ú¶ ¶ ë ûê ú
¶ ¶ê úë û

!
"#

$ % $ $

!

 (15)

Then, using these definitions, the weight update is applied as:
1

() () ()T T
p p pw J w J w J w Vµ

-
é ùD = - +ë ûI

!" !" !" !"

(16a)

updatew w w= +D
!" !" !"

(16b)

where I is the identity matrix, and µ is a scalar that is
dynamically adjusted by the LM algorithm [36].

As (14)-(16) show, the Jacobian matrix, ()pJ w
!

, is the

kernel for training used by the LM method. To efficiently
compute the Jacobian matrix, we used a forward accumulation
through time (FATT) algorithm, described in detail by [32].
FATT is analogous to the better-known back-propagation
through time algorithm [37]; but with the differences that
FATT accumulates its result via a forward-mode automatic
differentiation [38], and also that FATT delivers a whole
Jacobian matrix as opposed to a single gradient vector. Please

System
Equations NN System

Equations NN System
Equations NN

Initial system
states

Reference signals

System
Equations NN

Final system states

Forward Path: total N time steps

()0sdqv
! ()1sdqi

!
()0sdqi

!

()* 0sdqi
! ()* 1sdqi

!

()sdqv l
!()1sdqv

! ()1sdqi l +
!

()*
sdqi l
!

()* 1sdqi N -
!

()1sdqv N -
!

()sdqi N
!

Fig. 2. Feedback loop between the NN and the PMSM (via the system equations (8), and via the neural inputs (9)). The combined PMSM+NN system is treated

as a recurrent neural network, shown unrolled in time here.

note that the use of FATT, in this case, is chosen merely
because it is slightly more computationally efficient than
computing the Jacobian matrix by a backward accumulation,
but gives exactly the same result subject to floating-point
rounding errors. It should be emphasized that to correctly

compute ()pJ w
!

by FATT, it is necessary to differentiate

through the known motor model equations (8), and feed these
derivatives into the next time step’s neural inputs, via (9)-(10)
and the chain-rule, and ultimately feed this chain of
derivatives into the accumulating cost function (13), at each
subsequent time step. Fuller details are given by [32].

V. TRAINING/TUNING PMSM CURRENT- AND SPEED-LOOP

CONTROLLERS FOR SIMULATION AND HARDWARE CASES

The PMSM nested-loop control has been considered in two
SPM motor cases: one for simulation and one for a hardware
experiment. The simulation case uses parameters of a PM
motor that are typical for an electric vehicle application [39].
The hardware experiment is based on a laboratory PM motor
[40], which has a smaller power rating and is mainly used for
the purpose of experimental validation. Table I shows the PM
motor parameters used in each case.

TABLE I
PMSM DATA USED IN SIMULATION/EXPERIMENTAL STUDY

 Parameter Simulation Hardware Units

M
ot

or

Rated Power 50 0.24 kW
Nominal Speed 1200 2800 RPM
Nominal Torque 250 1.5 N·m
Maximum Speed 6000 3800 RPM

Permanent magnet flux 0.1758 0.01544 Wb
Inductance in q-axis, Lq 1.598 0.255 mH
Inductance in d-axis, Ld 1.598 0.255 mH

Stator copper resistance, Rs 0.0065 0.22 Ω
Inertia 0.089 0.0004 kg×m2

Friction coefficient 0.1 0.001 N·m·s/rad
Pole pairs 4 4

In
ve

rt
er

 Inverter rating 60 0.4 kVA
dc voltage 500 42 V

Switching frequency 6 10 kHz

A. Tuning Speed-loop Controller

The PI parameters of the speed-loop controller are tuned
using the proportional-integral-derivative (PID) tuner function
within the PID controller block in MATLAB. Fig. 3 shows the
closed-loop Simulink model used to tune the speed-loop PI
parameters. The transfer function in Fig. 3 is yf×P/(Ba+s·Jeq)
(derived from (2) and (3a) in Section II-A), where Ba was set
to zero. The phase margin was 60 degrees, while the controller
bandwidth in terms of angular frequency was chosen as 200

rad/s. Then, the PI gains were adjusted until a better speed
tracking performance is achieved. Note that both the NN and
conventional controllers use the same speed-loop PI gains.

Fig. 3. Using Simulink to design the speed- and current-loop controllers

B. Tuning Conventional Current-loop Controller

The PI gains of the conventional current-loop controller
were also tuned using the PID tuner function. The transfer
function in Fig. 3 is 1/(RS+s·Ld) or 1/(RS+s·Lq) (see Section II-
B). The current controller bandwidth in terms of angular
frequency was 2,000 rad/s while the phase margin was kept
the same as that of the speed-loop controller. Since the current
controller is in the inner loop, the bandwidth has to be larger
to track the current well. Similarly, the PI gains were then
adjusted until a better tracking performance was obtained.

C. Training NNs

For both the simulation and hardware experimental cases,
an NN was trained using the method of Section IV and the
motor parameters of Table I. The training procedure is as
follows: 1) randomly generate changing sample reference dq
current trajectories; 2) randomly generate a sample initial state
isdq(1); 3) unroll the PMSM current trajectory from the initial
state; 4) train the NN as detailed in Section IV; and 5) repeat
the process for all of the reference dq current trajectories and
sample initial states until reaching a stop criterion. Each initial
state isdq(1) was generated randomly within acceptable d- and
q-axis current ranges that are within the rated current limit in
terms of the current amplitude and also cannot cause the
controller to operate beyond the PWM saturation limit, i.e.,

2 2 2 2
_ _max,sd sq sdq rated sd sq sdqI I I V V V+ £ + £ (17)

where Isdq_rated and Vsdq_max denote the rated motor dq current
amplitude and maximum dq voltage amplitude that can be
applied to the motor due to the motor inverter PWM saturation
constraint, respectively. Each trajectory duration was unrolled
for a duration of 1 second, with a sampling time of Ts=0.1ms,
and the reference dq current was changed randomly every 0.1
seconds also within acceptable d- and q-axis current ranges.
All of the network weights were initially randomized using a
uniform distribution within ±0.1, and 10 randomized reference
current trajectories were created during each training epoch.
Fig. 4 shows a successful training convergence obtained
through the use of the LM algorithm. Note that the NN is

trained offline, and no training occurs in the real-time control
stage. After training, the NN controller is intended to be able
to optimally track the reference d- and q-axis currents.

Fig. 4. Average cost per trajectory time step for training NN

VI. PERFORMANCE AND STABILITY EVALUATION OF

CONVENTIONAL AND NN VECTOR CONTROLLERS USING

SIMPOWERSYSTEMS

A simulation model of the PM motor drive was developed
using MATLAB SimPowerSystems based on parameters of
the simulated PMSM in Table I. Fig. 5 shows the simulation
model containing conventional and NN controllers as shown
in Fig. 1. The controller sampling rate is 0.1ms. Details about
how to build a simulation model using SimPowerSystems can
be found in [41]. In the MATLAB environment, the
computing time for each control action of the NN takes about
20µs. Since the NN is trained offline, no training occurs in the
real-time control stage, which makes the NN control algorithm
very fast to execute. This execution time will reduce further
when the NN is implemented on a DSP chip.

 Fig. 5. PMSM motor control configuration in SimPowerSystems

The stability of the NN was evaluated against a testing
dataset, as is a common practice in the neural network field
[42]. The training and testing datasets represent different sets
of trajectories. The testing dataset covers an extremely wide
range of circumstances to validate the NN controller over
various key criteria. These criteria include speed-control,
current control, robustness of speed- and current-loop control,
robustness against fluctuations in flux-linkage, robustness
against load disturbance, and improved tolerance to sampling
time variations, etc., as shown in Sections VI-A to VI-G.

A. Speed Control Evaluation

Fig. 6 compares motor speed control using conventional
and NN control techniques, in which the friction factor and the
load torque are zero. The motor starts with a reference
rotational speed increasing linearly from 0 rad/s to 60 rad/s,
stays at 60 rad/s for about 0.75 seconds, and then reduces to
40 rad/s. At t=2s, the reference speed increases to 80 rad/s,
and then remains at 80rad/s. The reference d-axis current is

0A. Both the conventional and NN controllers can track the
reference speed properly. But, for each reference speed
increase or decrease, the conventional controller shows more
overshoot and oscillations, particularly in motor current (Fig.
6b & 6c), implying that there are more torque oscillations
when using the conventional controller. Note: the reference q-
axis current is generated by the speed-loop controller as
shown in Fig. 1.

Ref NN Conv

Time (s)

Fig. 6. Speed tracking control - NN vs. conventional: (a) motor rotational
speeds, (b) reference/actual q-axis currents using NN control, (c)

reference/actual q-axis currents using conventional control.

B. Current Control Evaluation

In the motor drive industry, evaluation of the current-loop
controllers is normally conducted under the condition that the
speed of the test motor is kept constant and the motor is
evaluated while tracking reference d- and q-axis currents. This
can be achieved, as in Fig. 5, by changing Load Torque block
to Speed block and setting the PMSM to operate according to
a specified constant speed value. Fig. 7 compares current-
control performance using conventional and NN controllers.
The initial d-axis reference current is -40A and changes to
-80A at 0.4s. The initial q-axis reference current is 100A and
changes to 0A at 0.25s and then to 50A at 0.6s. As shown in
Fig. 7, the NN controller is more stable and reliable, and
responds faster than the conventional controller.

Ref NN Conv

Fig. 7. Current tracking control - NN vs. conventional: (a) d-axis current, (b)

q-axis current.

C. Robustness of Speed-Loop Controller

In practical applications, both the motor inertia and friction
factor may change depending on the load of the EV and road

0 10 20 30 40 50 60
0

100

200

300

of Iteration

A
ve

ra
ge

 T
ot

al
 C

os
t

(a) d-axis current

(b) q-axis current

(a) Speed

(b) q-axis currents: NN

(c) q-axis currents: PI

conditions. This will affect the performance of the motor
speed-loop controller. Fig. 8 compares conventional and NN
vector-control methods when the friction factor changes from
0N·m·s in Fig. 6 to 0.2N·m·s and the inertia is tripled, while
the other conditions are the same as those used in Fig. 6,
except that a load torque of 20N·m is included. In general, the
speed tracking control is not affected much and shows a
similar performance using both NN and conventional vector
controllers. Compared to Fig. 6, a little more time is needed
for the transition from one reference speed to another, due to a
larger inertia and friction factor.

Fig. 8. NN vs. conventional: Reference and actual motor rotational speeds for

a higher motor inertia and friction factor

D. Robustness of Current-Loop Controller

In real applications, the motor resistance and inductance
may deviate from their nominal values by a significant amount.
This affects the PM motor current-loop controllers. Fig. 9
demonstrates what happens when both the motor resistance
and inductance are reduced by 40%, with all other conditions
being the same as those used in Fig. 7. The results show the
NN controller is better able to track the reference and actual d-
and q-axis motor currents under variable parameter conditions,
and is more stable and reliable than the conventional control.

Ref NN Conv

Fig. 9. NN vs. conventional for 40% decrease of motor resistance/inductance:

Ref NN Conv

Fig. 10. NN vs. conventional for 40% increase of rotor flux linkage

E. Impact of Rotor Magnet Flux Linkage

In a PM motor, the rotor-magnet flux linkage may change
due to an increase or decrease in the motor temperature. This
would affect the performance of the motor. A test was carried
out to evaluate the conventional and NN vector-control
methods when the rotor magnet flux linkage is lower or higher
than the nominal value listed in Table I. Fig. 10 compares
current tracking using the conventional and NN control
methods, when the rotor magnet flux linkage increases by
40%, while the other conditions remain the same as those used
in Fig. 7. The study shows a better dynamic response of d- and
q-axis current tracking using the NN controller.

F. Impact of Load Disturbance and Sampling Rate

Load disturbance and sampling rate impacts to motor
speed control were also investigated. Fig. 11a shows PM
motor performance, using conventional and NN controllers,
under an impulse load disturbance while the other conditions
are the same as those used in Fig. 6. The impulse disturbance
of an additional 30N·m appears at 1.5s and lasts for 0.1s. Fig.
11b shows the motor performance when a large sampling
interval of 2ms is applied to the speed-loop controller and to
read motor position/speed data while the other conditions are
the same as those used in Fig. 11a. The sampling time for the
current-loop controller is still 0.1ms as the motor current
change is much faster than the speed change. The results show
that the NN controller is less impacted by load disturbance and
more reliable for a large sampling interval applied to the speed
control loop than the conventional one.

Ref NN Conv

Speed-loop Ts: 0.1ms

Speed-loop Ts: 2ms

 Time (s)

Time (s)

Fig. 11. NN vs. conventional - Load disturbance and speed-loop sampling
time impacts: (a1)&(b1) reference/actual motor rotational speeds, (a2)&(b2)
reference/actual q-axis currents using NN control, (a3)&(b3) reference/actual

q-axis currents using conventional PI control

A summary in terms of maximum, average, and standard
deviation of the absolute tracking errors associated with Figs.
6 to 11 for the NN and conventional controllers is presented in
Table II as shown below.

TABLE II
TRACKING ERROR MAXIMUM, AVERAGE, AND STANDARD DEVIATION VALUES

 Figure #
Maximum Average Std

NN Conv. NN Conv. NN Conv.

0 0.5 1 1.5 2 2.5 3
0

20

40

60

80

S
pe

ed
 (

ra
d/

s)

Time (sec)

Reference ANN Conv

2.05 2.1 2.15

78

79

80

81

Time (s)

NN (a) d-axis current (b) q-axis current
(a) d-axis current (b) q-axis current
(a1) (a2)

(c2)

(b1) (b2)
(b3)

S
pe

ed

tr
ac

ki
ng

(r

ad
/s

)

Fig. 6(a) 1.3031 1.5132 0.0594 0.0586 0.1620 0.1585

Fig. 8 3.5608 3.5610 0.1854 0.1851 0.4905 0.4901

Fig. 11(a1) 1.3030 1.5133 0.0763 0.0755 0.1708 0.1676

Fig. 11(b1) 1.7839 2.1820 0.0797 0.0790 0.1836 0.1862

C
ur

re
nt

 tr
ac

ki
ng

 (
A

) Fig. 7(a) 24.53 29.90 0.54 0.79 0.57 1.41

Fig. 7(b) 99.25 99.58 0.79 0.86 1.65 1.71

Fig. 9(a) 17.24 24.81 0.93 1.05 0.78 1.88

Fig. 9(b) 99.66 100.13 1.70 1.65 1.73 1.71

Fig. 10(a) 22.36 28.83 0.64 0.84 0.59 1.40

Fig. 10(b) 99.77 99.86 1.19 1.18 1.68 1.73

G. Sampling Time Impact at High Speed

The rotating speed of a PM motor is directly related to the
electrical frequency of the stator voltage and current. As the
rotating speed increases, the electrical frequency increases too.
This requires the sampling rate to increase as the maximum
demanded motor rotating speed increases. The study shows
that for sampling times of 100, 80, 40, and 20µs, respectively,
the NN controller can provide stable control in terms of
rotational speed up to 10000, 11000, 13500, and 16500 rpm,
while the traditional controller crashes at 7500, 9000, 10000,
and 13000 rpm, respectively. Fig. 12 shows the performance
using conventional and NN controllers (including flux
weakening control) for sampling times of 100µs and 20µs,
respectively. The study shows that the NN controller is more
stable and reliable than the conventional controller in
supporting the high-speed operation of a PM motor.

 Sampling time: 100µs Sampling time: 20µs

a1) Ref/actual motor rotational speed a2) Ref/actual motor rotational speed

b1) NN: d- and q-axis currents b2) NN: d- and q-axis currents

c1) Conv: d- and q-axis currents c2) Conv: d- and q-axis currents

Fig. 12. NN vs. conventional: Sampling impact for PM motor control toward
high rotational speed. The left and right column of graphs represent a

sampling time of 100µs and 20µs, respectively.

The stability of the PM motor control depends strongly on
the abc to dq transformation. This is especially true when the
rotational speeds increase, which causes the rotor electrical
angular position to change quickly. Thus, to capture the three-

phase current and the electrical angular position information
correctly, a small sampling time would be needed. Otherwise,
the calculated dq current can be distorted. Similar to Fig. 11,
using the same sampling rate, the NN controller is more robust
than the conventional controller at a high operating speed, as
illustrated by Fig 12. A tentative explanation for this is that
the NN is a comparatively flexible function approximator,
compared to a PI or alternative controllers, and is specifically
optimized to have a fast response time and low overshoot. On
the other hand, the conventional PI-based controller only has
two parameters to tune, and therefore cannot compete in fast
response time and low overshoot. As a result, the NN
controller has a stronger ability to compensate for the dq
transformation distortion caused by a low sampling rate than
the conventional controller.

VII. HARDWARE EXPERIMENT

A. Experimental Setup

To further verify the feasibility and stability of the NN
vector controller, a DSP-based digital control system was
implemented (Fig. 13). The experimental setup (Fig. 13(a))
consists of three major parts: (i) a motor drive system
containing an SPM motor from Motorsolver coupled to a DC
motor [40], (ii) a power converter board from Vishay HiRel
Systems which has two independent three-leg converters, and
(iii) a dSPACE DS1103 controller board to collect various
input signals, e.g. current, voltage and motor speed, and to
generate PWM output for controlling the SPM and DC motors.
One converter was formed as a DC/AC converter to control
the PM motor, while the other one was formed as an H-bridge
DC/DC converter to control the DC motor.

The control algorithms for both the PM and DC motors
were built in Simulink (Fig. 13(b)). They were then compiled
and loaded as the assembly code to the DSP chip within the
DS1103 controller board. In Fig. 13(b), the measurements of
the PM motor’s speed and rotor position are obtained by the
DS1103ENC_POS module, and the voltage and current
measurements are obtained by the DS1103ADC module. The
speed measurements are passed to both the DC and PM motor
controllers; the three-phase PM motor current measurements
are passed to the PM motor controller; and the DC motor
current measurement is passed to the DC motor controller.

The PM motor-controller block implements either the
conventional or NN vector control, according to Fig. 1, and
outputs the α and β reference voltage to the space-vector
modulation block, which generates T1, T2, and sector
information needed by the DS1103SL_DSP_PWMSV block
to generate the driving pulses. The driving pulses are applied
to the three-phase DC/AC converter to control the PMSM.
The DC motor controller block generates two complementary
duty ratio signals that are passed to DS1103SL_DSP_PWM
block to produce the driving pulses applied to the DC/DC
converter to control the DC motor.

Detailed information on how to build a hardware
experiment using MATLAB Simulink and dSPACE can be
found in [43]. Information about online processing capabilities
of dSPACE DS1103 and its real-time coding specifications
can be found in [44, 43].

0 2 4 6 8 10
0

2000

4000

6000

8000

10000

12000

S
p

e
e

d
 (

rp
m

)

T ime (sec)

Ref

ANN

Conv

0 2 4 6 8 10
0

3000

6000

9000

12000

15000

18000

S
p

e
e

d
 (

rp
m

)

T ime (sec)

Ref

ANN

Conv

0 2 4 6 8 10
-150

-100

-50

0

50

C
u

rr
e

n
t

(A
)

T ime (sec)

0 2 4 6 8 10
-150

-100

-50

0

50

C
u

rr
e

n
t

(A
)

T ime (sec)

0 2 4 6 8 10
-150

-100

-50

0

50

C
u

rr
e

n
t

(A
)

T ime (sec)

0 2 4 6 8 10
-150

-100

-50

0

50

C
u

rr
e

n
t

(A
)

T ime (sec)

Time (s) Time (s) Time (s) Time (s) Time (s) Time (s)

NN NN

 10

(a) Circuit connection

(b) dSPACE based real-time controller

(c) Experiment setup

Fig. 13. Hardware laboratory testing and control systems

The simulation cases shown by Figs. 6 through 12 in
Section V are divided into two categories: one corresponds to
speed and current tracking control (Figs. 6, 8, 11 and 12),
while the other corresponds to current tracking control only
under constant motor speed (Figs. 7, 9 and 10). Then,
hardware experiments were performed based on the laboratory
setup for each of these cases, with Section VII-B showing the
results associated with the speed and current tracking control
and Section VII-C giving the results associated with current
tracking under constant motor speed. The parameters of the
laboratory motor are shown in Table I and the controller
sampling rate is 0.1ms. The minimum rotational speed that
can be measured using the speed sensor was found to be
1.31rad/s, or 12.5rpm in the experimental setup. In the
experimental arrangement, the PM motor parameters could be
different from the nominal values shown in Table I [45, 46]
and there could be unexpected disturbances and noises.

B. PM Motor Speed and Current Control

In this test, both the speed and current controls are applied
to the PM motor while the DC motor is idle. The speed- and
current-loop controllers of the PM motor were redesigned
based on the parameters shown in Table I, and were tested
first in the simulation, and then on the hardware motor. The
test sequence was scheduled as follows, with t=0s as the
starting point for data recording: At t=1s, the input speed
increases from 0 rad/s to 100 rad/s, and then stays at 100 rad/s;
at t=2s, the speed decreases to 50 rad/s and retains this value
till t=3s; at t=3s, the speed increases to 200 rad/s and
decreases again to 100 rad/s at t=4s.

Fig. 14 presents the simulation results. Due to the low
ratings of the laboratory motor, the relevant oscillation of the
simulated stator current looks worse than that of the 50kW
PM motor in tracking the current variation in a much larger
range in Section VI. The result of the hardware experiment
(Fig. 15) is a little bit different from the simulation result. A
potential reason is that the actual motor inertia and friction
coefficient are more complicated and different from those
used in the simulation. Due to uncertain motor parameters,
noises and disturbances, more oscillations of the PM motor
were found in the hardware experiment results (Fig. 15).
Under the challenging laboratory condition, the NN controller
performed better than the conventional controller (Fig. 15).

Ref NN Conv

Fig. 14. NN vs. conventional: simulation of laboratory PM motor: (a)

Reference and actual motor rotational speeds, (b) q-axis currents

Ref NN Conv

Fig. 15. NN vs. conventional: hardware experiment of laboratory PM motor:

(a) Reference and actual motor rotational speeds, (b) q-axis currents

C. PM Motor Current Control under Constant Speed

In this case, only the current control is applied to the PM
motor while the DC motor is controlled to ensure the speed of

PMSM Control

DC motor constant speed control

MATLAB

ControlDesk

DC Motor PM Motor

DC/AC
Inverter DC/DC

Converter

PWM
Converter

Board

I/O

(a) Speed

(b) q-axis current

(a) Speed

(b) q-axis current

the whole system constant. Fig. 16a shows the simulation
result of the q-axis current for the laboratory PMSM operating
at 100rad/s and zero d-axis reference current. Again, the much
smaller current tracking range makes the relevant oscillation
of the motor current apparently worse than that of the 50kW
PM motor shown in Section VI. Fig. 16b presents the
hardware experiment results of the q-axis current under the
same condition. The NN controller clearly displays less
oscillation than the conventional controller for the laboratory
PM motor, showing a strong adaptive control ability of the
NN controller under uncertain, noisy and disturbing laboratory
conditions. The success of the hardware experiments indicates
that it is possible to implement the NN controller in a real-life
PM motor.

Ref NN Conv

Fig. 16. NN vs. conventional: (a) simulated and (b) experiment q-axis current
of laboratory PM motor

A summary in terms of maximum, average, and standard
deviation of the absolute tracking errors associated with the
experiment results shown by Figs. 15 and 16 for the NN and
conventional controllers is presented in Table III.

TABLE II
TRACKING ERROR MAXIMUM, AVERAGE, AND STANDARD DEVIATION VALUES

Figure #
Maximum Average Std

NN Conv. NN Conv. NN Conv.

Speed tracking
Fig. 14(a) (rad/s)

8.3859 8.5428 0.6709 0.6673 1.6791 1.6703

Speed tracking
Fig. 15(a) (rad/s)

32.7481 36.0681 5.2326 5.8308 7.1686 8.2316

Current tracking
Fig. 16(a) (A)

4.73 3.55 0.44 0.39 0.27 0.26

Current tracking
Fig. 16(b) (A)

1.90 3.48 0.82 0.94 0.41 0.64

VIII. CONCLUSION

PMSMs are widely used in electric drive applications
particularly in electric drive vehicles. This paper presents an
NN-based vector-control method to overcome the limitations
of conventional vector-control approaches. It describes how to
achieve approximately optimal vector control using a neural
network, which is trained to minimize an ADP-based cost
function. Compared to the conventional vector control, the NN
vector controller produces the fastest response speed, lowest
overshoot, and, in general, the best performance. Additionally,

since a neural network is trained under variable system
parameters, the NN-based vector controller shows enhanced
performance when the sampling time changes and system
parameters are difficult to identify, especially in hardware
experiment conditions. The hardware experiment confirmed
that the NN-based controller is able to track reference
commands while maintaining a high power quality, making it
possible to implement the NN vector controller in a real
PMSM environment. In hardware experimental conditions, a
conventional controller usually needs to be retuned whenever
the motor parameters change. In contrast, the NN-based
controller retains good performance under a variety of runtime
PM motor parameters, despite the NN being trained using the
nominal motor parameters of Table 1.

REFERENCES

[1] C. Lin, T. Liu, L, Fu, and C. Hsiao, "Model-free predictive current
control for interior permanent-magnet synchronous motor drives based
on current difference detection technique." IEEE Trans. Ind. Electron.,
61, no. 2 (2014): 667-681.

[2] T. Türker, Umit Buyukkeles, and A. Faruk Bakan, "A Robust
Predictive Current Controller for PMSM Drives." IEEE Trans. Ind.
Electron., 63, no. 6 (2016): 3906-3914.

[3] Y. Ren, Z.Q. Zhu, and J. Liu, "Direct torque control of permanent-
magnet synchronous machine drives with a simple duty ratio
regulator." IEEE Trans. Ind. Electron., 61, no. 10 (2014): 5249-5258.

[4] Y. Cho, K. Lee, J. Song, and Y. Lee, "Torque-ripple minimization and
fast dynamic scheme for torque predictive control of permanent-
magnet synchronous motors." IEEE Trans. Power. Electron., 30, no. 4
(2015): 2182-2190.

[5] C. Xia, B. Ji, and Y. Yan, “Smooth Speed Control for Low-Speed
High-Torque Permanent-Magnet Synchronous Motor Using
Proportional-Integral-Resonant Controller,” IEEE Trans. Ind.
Electron., vol. 62(4), pp. 2123-2134, Apr. 2015.

[6] M. Qian, "Mixed H2/H∞ control of permanent magnet synchronous
motor based on particle swarm optimization algorithm." Journal of
Computer Applications, 8 (2012): 076.

[7] D. S. Bernstein and W. M. Haddad, “LQG control with an H∞
performance bound: a riccati equation approach,” IEEE Trans. Autom.
Control, vol. 34, no. 3, pp. 293–305, Mar. 1989.

[8] S. Das and I. Pan, “On the mixed H2/H∞ loop-shaping tradeoffs in
fractional-order control of the AVR system,” IEEE Trans. Ind.
Informat., vol. 10, no. 4, pp. 1982–1991, Nov. 2014.

[9] H. Zhang, Y. Shi, and A. S. Mehr, “Parameter-dependent mixed
H2/H∞ filtering for linear parameter-varying systems,” IET Signal
Processing, vol. 6, no. 7, pp. 697–703, Sep. 2012.

[10] H. Shayeghi, A. Jalili, and H. Shayanfar, “A robust mixed H2/H∞
based LFC of a deregulated power system including SMES,” Energy
Conversion and Management, vol. 49, no. 10, pp. 2656–2668, 2008.

[11] A.A. Stoorvogel, "The H∞ control problem: a state space approach,"
University of Michigan, Feb. 5, 2000, available at
http://wwwhome.math.utwente.nl/~stoorvogelaa/book2.pdf.

[12] Z. Li, C. Zang, P. Zeng, H. Yu, S. Li and X. Fu, "Mixed H2/H∞
Optimal Control for Three-phase Grid Connected Converter,"
International Journal of Electronics. Status: in press.

[13] B. Akin and M. Bhardwaj, "Sensorless Field Oriented Control of 3-
Phase Permanent Magnet Synchronous Motors," Texas Instruments
Incorporated. Available at
http://www.ti.com/lit/an/sprabq3/sprabq3.pdf.

[14] R. Filka and M. Stulrajter, "3-Phase PMSM Motor Control Kit with the
MPC5604P," Freescale Semiconductor, Inc., available at
https://cache.freescale.com/files/product/doc/AN1931.pdf.

[15] S. Li, T.A. Haskew, and L. Xu, “Conventional and Novel Control
Designs for Direct Driven PMSG Wind Turbines,” Electric Power
Syst. Research, vol. 80, pp. 328-338, March 2010.

[16] M.A. Rahman, and M.A. Hoque, "On-line adaptive artificial neural
network based vector control of permanent magnet synchronous
motors." IEEE Trans. Energy Conv., 13, no. 4 (1998): 311-318.

[17] Y. Yi, D.M. Vilathgamuwa, and M.A. Rahman. "Implementation of an
artificial-neural-network-based real-time adaptive controller for an

(a) Simulation (b) Hardware

interior permanent-magnet motor drive." IEEE Trans. Ind. Appl., 39,
no. 1 (2003): 96-104.

[18] T. Pajchrowski, and K. Zawirski, "Application of artificial neural
network to robust speed control of servodrive." IEEE Trans. Ind.
Electron., 54, no. 1 (2007): 200-207.

[19] C. Xia, C. Guo, and T. Shi, "A neural-network-identifier and fuzzy-
controller-based algorithm for dynamic decoupling control of
permanent-magnet spherical motor." IEEE Trans. Ind. Electron., 57,
no. 8 (2010): 2868-2878.

[20] Dimitri P. Bertsekas, " Dynamic Programming and Optimal Control:
Approximate Dynamic Programming," 4th Ed., Athena Scientific,
2012.

[21] F.L. Lewis and D. Liu (eds.), Reinforcement Learning and
Approximate Dynamic Programming for Feedback Control, IEEE
Press / Wiley, 2012, pp. 474-493.

[22] H. Zhang, C. Li, X. Zhang, and Y. Luo, "Data-Driven Robust
Approximate Optimal Tracking Control for Unknown General
Nonlinear Systems Using Adaptive Dynamic Programming Method,"
IEEE Trans. Neural Netw., vol. 22, no. 12, pp. 2226-2236, Dec. 2011.

[23] G. Xiao, H. Zhang, Y. Luo, and Q. Qu, "General value iteration based
reinforcement learning for solving optimal: tracking control problem of
continuous-time affine nonlinear systems," Neurocomputing, vol. 245,
pp. 114-123, 2017.

[24] Q. Wei, G. Shi, R. Song, and Y. Liu, "Adaptive Dynamic
Programming-Based Optimal Control Scheme for Energy Storage
Systems With Solar Renewable Energy," IEEE Trans. Ind. Electron.,
vol. 64, no. 7, pp. 5468-5478, Jul. 2017.

[25] Q. Wei, D. Liu, and G. Shi, "A Novel Dual Iterative Q-Learning
Method for Optimal Battery Management in Smart Residential
Environments," IEEE Trans. Ind. Electron., vol. 62, no. 4, pp. 2509-
2518, Apr. 2015.

[26] Q. Wei, D. Liu, G. Shi, and Y. Liu, "Multibattery Optimal
Coordination Control for Home Energy Management Systems via
Distributed Iterative Adaptive Dynamic Programming," IEEE Trans.
Ind. Electron., vol. 62, no. 7, pp. 4203-4214, Jul. 2015.

[27] S. Li, M. Fairbank, X. Fu, D.C. Wunsch, and E. Alonso, "Vector
Control of Permanent Magnet Synchronous Motor using Adaptive
Recurrent Neural Networks,” Proc. 2013 IEEE International Joint
Conference on Neural Network, Dallas USA, August 4-9, 2013.

[28] D.V. Prokhorov, L.A. Feldkamp, and I.Y. Tyukin. "Adaptive behavior
with fixed weights in RNN: an overview," Proc. the IEEE Int. Joint
Conf. on Neural Networks (IJCNN), pp. 2018-2023, 2002.

[29] N. Mohan, Advanced Electric Drives – Analysis, Modeling and
Control using Simulink, MN: Minnesota Power Electronics Research &
Education, ISBN 0-9715292-0-5, 2001.

[30] S. Li, T.A. Haskew, E. Muljadi and C. Serrentino, “Characteristic
Study of Vector-Controlled Direct Driven Permanent Magnet
Synchronous Generator in Wind Power Generation,” Electric Power
Compon. and Syst., vol. 37, pp. 1162-1179, Oct. 2009.

[31] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics:
Converters, Applications, and Design, 3rd Ed., John Wiley & Sons Inc.,
October 2002.

[32] X. Fu, S. Li, M. Fairbank, D. C. Wunsch, and E. Alonso, “Training
recurrent neural networks with the Levenberg-Marquardt algorithm for
optimal control of a grid connected converter,” IEEE Trans. Neural
Netw. Learn. Syst., Oct. 2014.

[33] M.T. Hagan, H.B. Demuth, M.H. Beale, Neural Network Design; PWS
Publishing: Boston, USA, 2002.

[34] F.Y. Wang, H. Zhang, and D. Liu, "Adaptive dynamic programming:
An introduction," IEEE Comput. Intell. Mag., pp. 39–47, 2009.

[35] M. Fairbank, S. Li, X. Fu, E. Alonso, & D. Wunsch, "An adaptive
recurrent neural-network controller using a stabilization matrix and
predictive inputs to solve a tracking problem under disturbances,"
Neural Networks, 49, pp. 74-86, 2014.

[36] M. Hagan and M. Menhaj, “Training feedforward networks with the
marquardt algorithm,” IEEE Trans. Neural Netw., vol. 5(6), pp. 989-
993, Nov. 1994.

[37] P. Werbos, "Backwards differentiation in AD and neural nets: Past
links and new opportunities," Automatic differentiation: Applications,
theory, and implementations, 15-34, Springer, Berlin, Heidelberg,
2006.

[38] L.B. Roll, "Automatic Differentiation Techniques and Applications,"
Lecture Notes in Computer Science 120, Edited by G. Goos and J.
Hartmanis, Springer, 1981.

[39] O. Tremblay and L.A. Dessaint, "Hybrid Electric Vehicle Power Train
Using Battery Model," MATLAB 2010, The MathWorks, Inc.

[40] MotorSolver, “Permanent Magnet Brushless Motor (Fitted with 1000
line encoder) for DYNO-KITS used for Teaching Labs,” The
University of Minnesota.

[41] The MathWorks, "Model and simulate electrical power systems,"
available at https://www.mathworks.com/products/simpower.html.

[42] S. Haykin, "Neural Networks - A comprehensive foundation," Prentice
Hall, 1999.

[43] A. Thomas, "dSPACE DS1103 Control Workstation Tutorial and DC
Motor Speed Control," Senior Project Report, Bradley University ECE
Department, May 11, 2009, available at
http://ee.bradley.edu/projects/proj2009/dscntrl/Tutorial.pdf.

[44] "DS1103 PPC Controller Board," available at
http://www.ceanet.com.au/Portals/0/documents/products/dSPACE/dsp
ace_2008_ds1103_en_pi777.pdf

[45] S.J. Underwood and I. Husain, "Online parameter estimation and
adaptive control of permanent-magnet synchronous machines," IEEE
Trans. Ind. Electron., vol. 57, no. 7, pp.2435-2443, 2010.

[46] D. Yang, H. Mok, J. Lee, and S.Han. "Adaptive Torque Estimation for
an IPMSM with Cross-Coupling and Parameter Variations," Energies,
10(2), (2017): 167.

