
Abstract –This paper focuses on current control in a permanent-
magnet synchronous motor (PMSM).	 The paper has two main 
objectives: The first objective is to develop a neural-network (NN) 
vector controller to overcome the decoupling inaccuracy problem 
associated with conventional PI-based vector-control methods. 
The NN is developed using the full dynamic equation of a PMSM, 
and trained to implement optimal control based on approximate 
dynamic programming. The second objective is to evaluate the 
robust and adaptive performance of the NN controller against 
that of the conventional standard vector controller under motor 
parameter variation and dynamic control conditions by (a) 
simulating the behavior of a PMSM typically used in realistic 
electric vehicle applications and (b) building an experimental 
system for hardware validation as well as combined hardware 
and simulation evaluation. The results demonstrate that the NN 
controller outperforms conventional vector controllers in both 
simulation and hardware implementation.  
 

Index Terms – approximate dynamic programming, neural 
network, permanent-magnet synchronous motor, vector control, 
voltage source inverter  

I.  INTRODUCTION 
HE performance of a PMSM depends not only on its 
hardware design, but also on how it is controlled. Motor 
current control plays a particularly critical role [1]. 

Since there is a direct relation between motor current and 
torque, current control is equivalent to torque control [2]. To 
achieve fast and accurate current or toque tracking, several 
improved control techniques have been developed recently, 
including: predictive current control [1, 2], direct torque 
control [3, 4], proportional-integral (PI) plus proportional-
resonant (PR) control [5], and mixed H2/H∞ control [6].  

Predictive current control [1, 2] uses a current-prediction 
equation to estimate the motor current at the next sampling 
interval and a control equation to determine the next control 
action. It shows fast current-tracking response but becomes 
unstable when the actual motor's parameters differ from the 
programmed parameters used in the predictive controller [2].  

Direct torque control has gained popularity in PMSM 
drives by providing a simple implementation for instant motor 
torque and stator-flux control [4]. However, it suffers from 
drawbacks: variable switching frequency, large torque ripple, 
and high sampling rates for digital implementation [4].  

PI-PR control is similar to the conventional standard field-
oriented vector control, except that it combines PI with several 
PR control paths to enhance tracking of the current reference 
which may contain a lot of AC disturbance components [5]. 
The PI-PR approach requires properly tuning parameters of 
different resonant terms, and its performance can be adversely 
affected when motor parameters change, or when disturbance 
harmonics are different from those used to tune the resonant 
terms. 

The mixed H2/H∞ control method [7] has become popular 
[8]–[10]. However, it requires a reasonably accurate system 
model [11]. Also, it does not handle non-linear constraints 
very well [11]. In [12], it was found that applying a mixed 
H2/H∞ controller in experimental conditions is much more 
challenging than in simulated environments.     

As a result of these weaknesses, the conventional standard 
field-oriented vector control is still the dominant motor-
current control strategy for PMSMs in today's motor drive 
industry [13, 14]. But, recent studies show this conventional 
control strategy is inherently limited [15].  

Neural networks (NNs) have been applied in PMSM 
control since the 1990s. But, to the best of our knowledge, 
NNs have not been used for current control of a PMSM based 
on a voltage source inverter (VSI). In [16], a feedforward NN 
identifier is utilized to replace the traditional speed-loop 
controller to generate a reference current. The reference 
current is then compared with the actual current to drive a 
current source inverter (CSI) through a hysteresis switching 
scheme. The NNs presented in [17] and [18] have a similar 
function to the NN used in [16]. The difference is that a 
typical current-loop controller is introduced after the NN 
identifier, and VSI replaces a CSI as the PMSM inverter. In 
[19], a feedforward NN is used as an identifier for a PMSM 
for the purpose of offsetting the impact of uncertainties.  

This paper develops a novel control strategy: NN-based 
current vector-controller for a PMSM trained using an 
Approximate Dynamic Programming (ADP) method. In recent 
years, significant research has been conducted in optimal 
control of nonlinear systems based on ADP [20-23], none of 
which however focuses on vector control of PMSM motors in 
power applications, although many recent studies have pivoted 
around developing ADP techniques for optimal energy 
management in a time scale from several minutes to several 
hours. These include ADP-based optimal energy storage 
management with solar renewable [24], ADP-based optimal 
battery management for residential energy systems [25], and 
ADP-based optimal home energy management [26]. But, the 
focus of this paper is on real-time control of PMSMs for a 
time scale of milliseconds and below. In [27], a preliminary 
NN vector control structure for PMSMs was developed.  

This paper has extended far beyond [27]. The special 
contributions of the paper include: (a) an ADP-based NN 
controller, (b) training of the NN as a recurrent network, (c) 
detailed stability evaluation under a wide range of diverse 
conditions and parameter uncertainties, (d) implementation 
and hardware experiment testing of the NN controller.   

Several important features of the proposed NN control 
method include:  

1) The NN is trained as a recurrent network, which 
enables it to exhibit fixed-weight adaptive behavior [28], and 
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predictive control ability, like conventional current-predictive 
controllers. 

2) The NN is trained to optimize an ADP-based cost 
function, making the NN controller an approximate optimal 
controller, like an H2/H∞ controller. 

3) The NN controller takes the error integral information 
as the input, which guarantees that no steady-state error exists 
for the reference tracking. 

4) The NN can, in theory, emulate PI-PR control features, 
due to the universal function-approximation capability of NNs.   

Thus, the NN has the potential to integrate optimal, 
predictive, PI, and PR control characteristics into one 
controller. This paper demonstrates the NN controller’s 
improved performance, under both simulation and hardware 
conditions as compared to the conventional control methods. 

It is worth emphasizing that the NN controller is trained 
entirely offline under a wide range of simulated circumstances, 
which allows our NN controller to adapt and respond to 
changing motor parameters in real time [28].  This leads to 
three further key benefits of our method: 

a) The controller shows sufficient adaptive ability not to 
need retuning every time the motor’s hardware parameters 
change slightly.  

b) The computational cost at runtime is extremely low and 
easy to implement in low-cost hardware. 

c) As training is completed offline, it is not possible for 
the weights of the NN to destabilize at runtime. 

The trained NN controller’s stability for controlling the 
PMSM at runtime is validated against a test set and a 
hardware experiment. The test set is intended to cover a 
sufficiently wide range of circumstances to empirically 
provide evidence for the stability of the controller. A formal 
proof of runtime stability is not provided. Such proof would 
involve the development of an analytical framework that is 
beyond the scope of this paper. 

The rest of the paper is structured as follows: Section II 
covers the basic equations of the PMSM and conventional 
field-oriented control. Section III elaborates on the NN control 
method. Section IV shows how to train an NN based on ADP 
to implement vector control for a PMSM. Section V shows 
how to integrate NN control in a nested-loop PMSM control 
configuration. Sections VI and VII compare the performance 
of conventional and NN vector-control schemes through 
computer simulation and hardware experiments. Finally, the 
paper concludes with a summary of the main points. 

II.  CONVENTIONAL VECTOR CONTROL  

A.  PMSM Model 

Conventional field-oriented vector control is based on the 
Park transformation. Using the motor sign convention, this 
yields the stator voltage equation [29] as: 
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where Rs is the resistance of the stator winding; we is the motor 
electrical rotational speed; vsd, vsq, isd, and isq, are the d and q 
components of instant stator voltage and current; Ld and Lq are 
the stator and rotor d- and q-axis inductances; and yf  is the 
flux linkage produced by the permanent magnet (PM).

   The torque balance equation of a PM motor [29] is: 

,em eq m a m LJ d dt B Tt w w= + +  (2) 

where Jeq is the inertia of the motor; wm is the motor rotational 
speed; Ba is the friction coefficient; TL is the load torque; and 
tem is the electromagnetic drive torque. Depending on the type 
of a PMSM, a surface PM (SPM) or interior PM (IPM) motor, 
tem can be expressed as follows: 

( )                            em f sqP i SPM motort y=  (3a) 

( )( )em f sq d q sd sqP i L L i i IPM Motort y= + -   (3b) 

in which P represents the number of motor pole pairs. Lastly, 
the relation between wm and we is given by: 

e m Pw w= ×  (4) 

B.  Conventional PMSM Vector Control 

The conventional standard vector control technique usually 
has two distinctive nested-loop PI controllers: the outer speed 
and rotor flux linkage PI controllers and the inner current PI 
controllers as shown in Fig. 1 (top), where lrd and l*

rd 
represent actual and reference d-axis rotor flux linkages, 
respectively. The current-loop control strategy is developed by 
rewriting (1) as (5), where the terms in the large parentheses 
are used as the dynamic equations, and the other terms are 
compensation terms. These compensation terms are ignored 
when obtaining the system transfer functions [29, 30]. Thus, 
the consequent transfer functions, 1/(RS+s·Ld) and 1/(RS+s·Lq), 
are used to tune a conventional d- or q-axis PI controller. The 
omission of the compensation terms in deriving the transfer 
functions generates a decoupling inaccuracy. After the d- and 
q-axis PI controllers are tuned, the compensation terms are 
added back to the output of the PI controllers, to form the final 
current-loop control configuration (Fig. 1 (top)).  
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The design of the speed-loop controller is based on the 
transfer function obtained from (2) and (3a), which is 
yf×P/(Ba+s·Jeq). Details about how to tune both current- and 
speed-loop controllers are presented in Section V. 

 
III.  NN VECTOR CONTROL 

To address the decoupling inaccuracy associated with the 
conventional standard vector control, a novel NN controller is 
proposed to replace the PI-based current controller. The NN 
vector controller, known here as the action network, is 
implemented as shown in the lower right side of Fig. 1. The 
outer speed loop remains unchanged. The design stages of the 
NN controller are analogous to the design stages of a 
conventional controller. Firstly, like a conventional controller, 
a dynamic model of the plant is needed. Secondly, the NN 
structure needs to be specified which is analogous to 
specifying a conventional controller structure. Thirdly, the NN 
needs to be trained, which is analogous to tuning a 
conventional controller. 
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Fig. 1. PMSM conventional (top) and neural-network (highlighted in grey color) vector control

A. State-Space Model of PMSM Current Loop 

The NN current vector controller is developed using a 
state-space model of the PMSM, by rearranging (5) into the 
standard state-space form, as shown by: 
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where the system states are isd and isq. The PM flux yf is 
assumed to be constant, and the converter output voltages vsd 

and vsq are proportional to the control voltage generated by the 
action network [31]. 

Since the NN controller is a digital controller, a discrete 
equivalent of the continuous state-space model is required. 
This is obtained by a zero-order or first-order hold discrete 
equivalent mechanism. This transformation yields: 
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in which Ts is the sampling period, A is the system matrix, and 
B is the input matrix. Since Ts is present on both sides, (7) can 
be simplified as:  

( ) ( ) ( )( )1 - ,sdq sdq sdq rdqi k i k v k v+ = × + ×A B
! ! ! !

 (8) 

where k is an integer time step, ( , )sdq

T
sd sqi i i=

!
, ( , )sdq

T
sd sqv v v=!

is 

the control action, and (0, )rdq

T
e fv wy=  

!
 represents the induced 

voltage of the permanent magnet. 

B. NN Structure  

The NN has a feedforward network structure as shown in 
the lower right side of Fig. 1. It consists of four different 
layers: an input layer, two hidden layers, and an output layer. 
The input layer contains four inputs. Two of these inputs 

comprise the vector ( )dqe k
!

, the error term, and the other two 

comprise ( ),dqs k
!

 the integral of the error term.  These two 

terms are defined by: 

( ) ( ) ( ) ( )* , ( ) ( 1) ,dq sdq sdq dq dq dq se k i k i k s k s k e k T= - = - + ×
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     (9) 

where ( )*
sdqi k
!

is the reference dq current and ( )dqs k
!

 is the 

discrete integral of the error term obtained by the forward 
rectangle rule. We also investigated NNs with more hidden 
layers and more nodes in each hidden layer – but no major 
improvement was found. 

As shown by (9), the NN has the same input signals, error 
terms and integrals of error terms, and same output signals as 
those used in a conventional PI controller. Hence, the NN-
based controller can be considered as a “super-PI” controller, 
which can be conveniently applied to an existing PMSM 
digital control system for a more stable and reliable operation. 
The four inputs to the NN are first divided by their appropriate 
gains, and then processed through a hyperbolic tangent 
function, as shown in Fig. 1. The input layer then feeds into 
the hidden layers, each of which contains six nodes. Each 
node uses a hyperbolic-tangent activation function. Finally, 

the output layer gives * ( )sdqv k
!

, the output of the NN. This 

output is multiplied by a gain, kPWM, which represents the 
pulse-width-modulation (PWM) [29, 31], to obtain the final 

control action applied to the PMSM, sdqv
!

, given by: 

( ) ( )( ), ( ), ,sdq PWM dq dqv k k A e k s k w= ×! ! ! !
 (10) 

where w
!  is the network’s overall weight vector, and

( )( ), ( ),dq dqA e k s k w
! ! !

denotes the whole action network. The 

division of the inputs by 𝐺𝑎𝑖𝑛  and 𝐺𝑎𝑖𝑛2 in the NN input 
layer is to avoid the input saturation [32]. A two-hidden-layer 
NN was selected because it generally yields a stronger



approximation ability [33] than a one-hidden-layer NN and the 
training of a two-hidden-layer network is relatively easy 
compared with that for an NN with three or more hidden 
layers. The number of nodes in each hidden layer was selected 
via the trial-and-error method. 

IV.  TRAINING THE NN TO CONTROL THE PMSM  

A. ADP-Based Control Formulation for a PMSM 

ADP is a very useful tool for solving and approximating an 
optimal control of a dynamic system [34]. A typical ADP-
based control problem consists of a cost function and a 
mechanism that can minimize the cost function to achieve the 
ADP-based control. The cost function is used to measure the 
performance of the ADP-based control in tracking a target 
trajectory and is typically defined as [34]: 
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where N is the trajectory length, g is the discount factor (0 ≤ g 
≤1), ( )x k
!

signifies the states of a dynamic system, ( )u k
!

 

denotes the control action applied to the system, and U(•) is 
the utility function. The cost function J(•), dependent upon the 

initial time j and the initial state ( )x j
!

, is referred to as the 

cost-to-go of state ( )x j
!

 in an ADP problem.  

For vector control of a PMSM, the system states are 

( )sdqi k
!

and the control action is ( )sdqv k
!

according to Section 

III. The goal of the current control for a PMSM is to be able to 

track any specified target reference current trajectory ( )*
sdqi k
!

as close as possible. Therefore, the utility function in (11) for 
the PMSM vector control problem is defined as  
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In this paper, we choose g = 1, which makes the cost-to-go 
function of the ADP-based PMSM control problem as 
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N
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k j

C i j i k i k i k i k
=

é ù é ù= - + -ë û ë ûå
!

 (13) 

The objective of training the NN controller for a PMSM is 

to have the NN output control actions ( ) ,sdqv k
!

, 1, ,k j j N= + ! so that the cost-to-go function C(•) of (13) is 

minimized. It is worth pointing out that although the control 

actions ( )sdqv k
!

is not involved in (13), it affects (13) indirectly 

through (8). This impact is considered in the training of the 
NN as shown in the following section. 

B. NN Training Mechanism to Optimize the ADP-Based 
Cost Function 

The NN shown in Section III is trained to approximate 
optimal control by using gradient descent to adjust the weights 
of the action neural network until its outputs minimize (13). 
As shown in Fig. 1, the NN receives the dq current feedback 
signal from the PMSM motor. Thus, the output control action 
of the NN at time step k changes the output current of the 

PMSM at time step k+1 via (7) or (8), the output motor current 
then changes NN inputs at time step k+1 via (9), and then the 
NN output control action at time step k+1 is modified via (10). 
This recursive process continues, making the combined 
system of the PMSM + NN similar to a recurrent neural 
network. This combined “recurrent network” is shown in Fig. 
2, unrolled in time, illustrating how the PMSM and the NN 
interact with each other. The recurrence in this architecture 
needs to be fully considered when computing the gradient of 
the ADP cost function (11) so as to enable learning by the 
gradient descent [35]. Doing so allows the trained NN to gain 
strong multi-step-ahead predictive control ability that is much 
more powerful than the conventional predictive controllers.  

Learning was accelerated using the Levenberg-Marquardt 
(LM) optimization method [36]. The LM algorithm has been 
widely used to train feedforward networks, and provides a 
nice compromise between the speed of Newton’s method and 
the guaranteed convergence of the steepest descent. For a 
moderate number of network parameters or weights, LM 
appears to be one of the fastest neural network training 
algorithms. However, since the NN and PMSM are treated as 
a recurrent neural network, it is necessary to modify the LM 
algorithm slightly using the method detailed by [32] and 
summarized below.   

First, the gradient of (13) is computed with respect to the 
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where ( )( ) , ,sdq sdqV k U i v k=
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, V is a vector containing V(1) 

to V(N), and ( )pJ w
!

is a Jacobian matrix defined for a recurrent 

neural-network by: 
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Then, using these definitions, the weight update is applied as: 
1
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(16a) 
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where I is the identity matrix, and µ is a scalar that is 
dynamically adjusted by the LM algorithm [36].  

As (14)-(16) show, the Jacobian matrix, ( )pJ w
!

, is the 

kernel for training used by the LM method. To efficiently 
compute the Jacobian matrix, we used a forward accumulation 
through time (FATT) algorithm, described in detail by [32]. 
FATT is analogous to the better-known back-propagation 
through time algorithm [37]; but with the differences that 
FATT accumulates its result via a forward-mode automatic 
differentiation [38], and also that FATT delivers a whole 
Jacobian matrix as opposed to a single gradient vector. Please 
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Fig. 2. Feedback loop between the NN and the PMSM (via the system equations (8), and via the neural inputs (9)). The combined PMSM+NN system is treated 

as a recurrent neural network, shown unrolled in time here. 
 

note that the use of FATT, in this case, is chosen merely 
because it is slightly more computationally efficient than 
computing the Jacobian matrix by a backward accumulation, 
but gives exactly the same result subject to floating-point 
rounding errors. It should be emphasized that to correctly 

compute ( )pJ w
!

by FATT, it is necessary to differentiate 

through the known motor model equations (8), and feed these 
derivatives into the next time step’s neural inputs, via (9)-(10) 
and the chain-rule, and ultimately feed this chain of 
derivatives into the accumulating cost function (13), at each 
subsequent time step.  Fuller details are given by [32]. 

V.  TRAINING/TUNING PMSM CURRENT- AND SPEED-LOOP 

CONTROLLERS FOR SIMULATION AND HARDWARE CASES 

The PMSM nested-loop control has been considered in two 
SPM motor cases: one for simulation and one for a hardware 
experiment. The simulation case uses parameters of a PM 
motor that are typical for an electric vehicle application [39]. 
The hardware experiment is based on a laboratory PM motor 
[40], which has a smaller power rating and is mainly used for 
the purpose of experimental validation. Table I shows the PM 
motor parameters used in each case.  

TABLE I 
PMSM DATA USED IN SIMULATION/EXPERIMENTAL STUDY 

 Parameter Simulation Hardware Units 

M
ot

or
 

Rated Power 50 0.24 kW 
Nominal Speed 1200 2800 RPM 
Nominal Torque 250 1.5 N·m 
Maximum Speed 6000 3800 RPM 

Permanent magnet flux 0.1758 0.01544 Wb 
Inductance in q-axis, Lq 1.598 0.255 mH 
Inductance in d-axis, Ld 1.598 0.255 mH 

Stator copper resistance, Rs 0.0065 0.22 Ω 
Inertia 0.089 0.0004 kg×m2 

Friction coefficient 0.1 0.001 N·m·s/rad 
Pole pairs 4 4  

In
ve

rt
er

 Inverter rating 60 0.4 kVA 
dc voltage 500 42 V 

Switching frequency 6 10 kHz 

A. Tuning Speed-loop Controller 

The PI parameters of the speed-loop controller are tuned 
using the proportional-integral-derivative (PID) tuner function 
within the PID controller block in MATLAB. Fig. 3 shows the 
closed-loop Simulink model used to tune the speed-loop PI 
parameters. The transfer function in Fig. 3 is yf×P/(Ba+s·Jeq) 
(derived from (2) and (3a) in Section II-A), where Ba was set 
to zero. The phase margin was 60 degrees, while the controller 
bandwidth in terms of angular frequency was chosen as 200 

rad/s. Then, the PI gains were adjusted until a better speed 
tracking performance is achieved. Note that both the NN and 
conventional controllers use the same speed-loop PI gains. 

  
Fig. 3. Using Simulink to design the speed- and current-loop controllers 

B. Tuning Conventional Current-loop Controller 

The PI gains of the conventional current-loop controller 
were also tuned using the PID tuner function. The transfer 
function in Fig. 3 is 1/(RS+s·Ld) or 1/(RS+s·Lq) (see Section II-
B). The current controller bandwidth in terms of angular 
frequency was 2,000 rad/s while the phase margin was kept 
the same as that of the speed-loop controller. Since the current 
controller is in the inner loop, the bandwidth has to be larger 
to track the current well. Similarly, the PI gains were then 
adjusted until a better tracking performance was obtained. 

C. Training NNs  

For both the simulation and hardware experimental cases, 
an NN was trained using the method of Section IV and the 
motor parameters of Table I. The training procedure is as 
follows: 1) randomly generate changing sample reference dq 
current trajectories; 2) randomly generate a sample initial state 
isdq(1); 3) unroll the PMSM current trajectory from the initial 
state; 4) train the NN as detailed in Section IV; and 5) repeat 
the process for all of the reference dq current trajectories and 
sample initial states until reaching a stop criterion. Each initial 
state isdq(1) was generated randomly within acceptable d- and 
q-axis current ranges that are within the rated current limit in 
terms of the current amplitude and also cannot cause the 
controller to operate beyond the PWM saturation limit, i.e., 

2 2 2 2
_ _max,sd sq sdq rated sd sq sdqI I I V V V+ £ + £   (17) 

where Isdq_rated and Vsdq_max denote the rated motor dq current 
amplitude and maximum dq voltage amplitude that can be 
applied to the motor due to the motor inverter PWM saturation 
constraint, respectively. Each trajectory duration was unrolled 
for a duration of 1 second, with a sampling time of Ts=0.1ms, 
and the reference dq current was changed randomly every 0.1 
seconds also within acceptable d- and q-axis current ranges. 
All of the network weights were initially randomized using a 
uniform distribution within ±0.1, and 10 randomized reference 
current trajectories were created during each training epoch. 
Fig. 4 shows a successful training convergence obtained 
through the use of the LM algorithm. Note that the NN is 



trained offline, and no training occurs in the real-time control 
stage. After training, the NN controller is intended to be able 
to optimally track the reference d- and q-axis currents. 

 
Fig. 4. Average cost per trajectory time step for training NN  

VI.  PERFORMANCE AND STABILITY EVALUATION OF 

CONVENTIONAL AND NN VECTOR CONTROLLERS USING 

SIMPOWERSYSTEMS 

A simulation model of the PM motor drive was developed 
using MATLAB SimPowerSystems based on parameters of 
the simulated PMSM in Table I. Fig. 5 shows the simulation 
model containing conventional and NN controllers as shown 
in Fig. 1. The controller sampling rate is 0.1ms. Details about 
how to build a simulation model using SimPowerSystems can 
be found in [41]. In the MATLAB environment, the 
computing time for each control action of the NN takes about 
20µs. Since the NN is trained offline, no training occurs in the 
real-time control stage, which makes the NN control algorithm 
very fast to execute. This execution time will reduce further 
when the NN is implemented on a DSP chip.  

 
 Fig. 5. PMSM motor control configuration in SimPowerSystems  

The stability of the NN was evaluated against a testing 
dataset, as is a common practice in the neural network field 
[42]. The training and testing datasets represent different sets 
of trajectories. The testing dataset covers an extremely wide 
range of circumstances to validate the NN controller over 
various key criteria. These criteria include speed-control,
current control, robustness of speed- and current-loop control, 
robustness against fluctuations in flux-linkage, robustness 
against load disturbance, and improved tolerance to sampling 
time variations, etc., as shown in Sections VI-A to VI-G. 

A.  Speed Control Evaluation  

Fig. 6 compares motor speed control using conventional 
and NN control techniques, in which the friction factor and the 
load torque are zero. The motor starts with a reference 
rotational speed increasing linearly from 0 rad/s to 60 rad/s, 
stays at 60 rad/s for about 0.75 seconds, and then reduces to 
40 rad/s. At t=2s, the reference speed increases to 80 rad/s, 
and then remains at 80rad/s. The reference d-axis current is 

0A. Both the conventional and NN controllers can track the 
reference speed properly. But, for each reference speed 
increase or decrease, the conventional controller shows more 
overshoot and oscillations, particularly in motor current (Fig. 
6b & 6c), implying that there are more torque oscillations 
when using the conventional controller. Note: the reference q-
axis current is generated by the speed-loop controller as 
shown in Fig. 1. 
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Fig. 6. Speed tracking control - NN vs. conventional: (a) motor rotational 
speeds, (b) reference/actual q-axis currents using NN control, (c) 

reference/actual q-axis currents using conventional control.  

B.  Current Control Evaluation  

In the motor drive industry, evaluation of the current-loop 
controllers is normally conducted under the condition that the 
speed of the test motor is kept constant and the motor is 
evaluated while tracking reference d- and q-axis currents. This 
can be achieved, as in Fig. 5, by changing Load Torque block 
to Speed block and setting the PMSM to operate according to 
a specified constant speed value. Fig. 7 compares current-
control performance using conventional and NN controllers. 
The initial d-axis reference current is -40A and changes to       
-80A at 0.4s. The initial q-axis reference current is 100A and 
changes to 0A at 0.25s and then to 50A at 0.6s. As shown in 
Fig. 7, the NN controller is more stable and reliable, and 
responds faster than the conventional controller. 
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Fig. 7. Current tracking control - NN vs. conventional: (a) d-axis current, (b) 

q-axis current.  

C.  Robustness of Speed-Loop Controller  

In practical applications, both the motor inertia and friction 
factor may change depending on the load of the EV and road 
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conditions. This will affect the performance of the motor 
speed-loop controller. Fig. 8 compares conventional and NN 
vector-control methods when the friction factor changes from 
0N·m·s in Fig. 6 to 0.2N·m·s and the inertia is tripled, while 
the other conditions are the same as those used in Fig. 6, 
except that a load torque of 20N·m is included. In general, the 
speed tracking control is not affected much and shows a 
similar performance using both NN and conventional vector 
controllers. Compared to Fig. 6, a little more time is needed 
for the transition from one reference speed to another, due to a 
larger inertia and friction factor.  

 
Fig. 8. NN vs. conventional: Reference and actual motor rotational speeds for 

a higher motor inertia and friction factor 

D.  Robustness of Current-Loop Controller  

In real applications, the motor resistance and inductance 
may deviate from their nominal values by a significant amount. 
This affects the PM motor current-loop controllers. Fig. 9 
demonstrates what happens when both the motor resistance 
and inductance are reduced by 40%, with all other conditions 
being the same as those used in Fig. 7. The results show the 
NN controller is better able to track the reference and actual d-
and q-axis motor currents under variable parameter conditions, 
and is more stable and reliable than the conventional control.  
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Fig. 9. NN vs. conventional for 40% decrease of motor resistance/inductance:  
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Fig. 10. NN vs. conventional for 40% increase of rotor flux linkage 

E.  Impact of Rotor Magnet Flux Linkage  

In a PM motor, the rotor-magnet flux linkage may change 
due to an increase or decrease in the motor temperature. This 
would affect the performance of the motor. A test was carried 
out to evaluate the conventional and NN vector-control 
methods when the rotor magnet flux linkage is lower or higher 
than the nominal value listed in Table I. Fig. 10 compares 
current tracking using the conventional and NN control 
methods, when the rotor magnet flux linkage increases by 
40%, while the other conditions remain the same as those used 
in Fig. 7. The study shows a better dynamic response of d- and 
q-axis current tracking using the NN controller. 

F.  Impact of Load Disturbance and Sampling Rate  

Load disturbance and sampling rate impacts to motor 
speed control were also investigated. Fig. 11a shows PM 
motor performance, using conventional and NN controllers, 
under an impulse load disturbance while the other conditions 
are the same as those used in Fig. 6. The impulse disturbance 
of an additional 30N·m appears at 1.5s and lasts for 0.1s. Fig. 
11b shows the motor performance when a large sampling 
interval of 2ms is applied to the speed-loop controller and to 
read motor position/speed data while the other conditions are 
the same as those used in Fig. 11a. The sampling time for the 
current-loop controller is still 0.1ms as the motor current 
change is much faster than the speed change. The results show 
that the NN controller is less impacted by load disturbance and 
more reliable for a large sampling interval applied to the speed 
control loop than the conventional one.  
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Fig. 11. NN vs. conventional - Load disturbance and speed-loop sampling 
time impacts: (a1)&(b1) reference/actual motor rotational speeds, (a2)&(b2) 
reference/actual q-axis currents using NN control, (a3)&(b3) reference/actual 

q-axis currents using conventional PI control 

A summary in terms of maximum, average, and standard 
deviation of the absolute tracking errors associated with Figs. 
6 to 11 for the NN and conventional controllers is presented in 
Table II as shown below. 

TABLE II 
TRACKING ERROR MAXIMUM, AVERAGE, AND STANDARD DEVIATION VALUES

 Figure # 
Maximum Average Std 

NN Conv. NN Conv. NN Conv. 
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Fig. 6(a) 1.3031 1.5132 0.0594 0.0586 0.1620 0.1585 

Fig. 8 3.5608 3.5610 0.1854 0.1851 0.4905 0.4901 

Fig. 11(a1) 1.3030 1.5133 0.0763 0.0755 0.1708 0.1676 

Fig. 11(b1) 1.7839 2.1820 0.0797 0.0790 0.1836 0.1862 

C
ur

re
nt

 tr
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ki
ng

 (
A

) Fig. 7(a) 24.53 29.90 0.54 0.79 0.57 1.41 

Fig. 7(b) 99.25 99.58 0.79 0.86 1.65 1.71 

Fig. 9(a) 17.24 24.81 0.93 1.05 0.78 1.88 

Fig. 9(b) 99.66 100.13 1.70 1.65 1.73 1.71 

Fig. 10(a) 22.36 28.83 0.64 0.84 0.59 1.40 

Fig. 10(b) 99.77 99.86 1.19 1.18 1.68 1.73 

G.  Sampling Time Impact at High Speed 

The rotating speed of a PM motor is directly related to the 
electrical frequency of the stator voltage and current. As the 
rotating speed increases, the electrical frequency increases too. 
This requires the sampling rate to increase as the maximum 
demanded motor rotating speed increases. The study shows 
that for sampling times of 100, 80, 40, and 20µs, respectively, 
the NN controller can provide stable control in terms of 
rotational speed up to 10000, 11000, 13500, and 16500 rpm, 
while the traditional controller crashes at 7500, 9000, 10000, 
and 13000 rpm, respectively. Fig. 12 shows the performance 
using conventional and NN controllers (including flux 
weakening control) for sampling times of 100µs and 20µs, 
respectively. The study shows that the NN controller is more 
stable and reliable than the conventional controller in 
supporting the high-speed operation of a PM motor.  

  Sampling time: 100µs          Sampling time: 20µs 

a1) Ref/actual motor rotational speed a2) Ref/actual motor rotational speed 

b1) NN: d- and q-axis currents b2) NN: d- and q-axis currents 

c1) Conv: d- and q-axis currents c2) Conv: d- and q-axis currents 

Fig. 12. NN vs. conventional: Sampling impact for PM motor control toward 
high rotational speed.  The left and right column of graphs represent a 

sampling time of 100µs and 20µs, respectively. 

The stability of the PM motor control depends strongly on 
the abc to dq transformation. This is especially true when the 
rotational speeds increase, which causes the rotor electrical 
angular position to change quickly. Thus, to capture the three-

phase current and the electrical angular position information 
correctly, a small sampling time would be needed. Otherwise, 
the calculated dq current can be distorted. Similar to Fig. 11, 
using the same sampling rate, the NN controller is more robust 
than the conventional controller at a high operating speed, as 
illustrated by Fig 12. A tentative explanation for this is that 
the NN is a comparatively flexible function approximator, 
compared to a PI or alternative controllers, and is specifically 
optimized to have a fast response time and low overshoot. On 
the other hand, the conventional PI-based controller only has 
two parameters to tune, and therefore cannot compete in fast 
response time and low overshoot. As a result, the NN 
controller has a stronger ability to compensate for the dq 
transformation distortion caused by a low sampling rate than 
the conventional controller. 

VII.  HARDWARE EXPERIMENT 

A.  Experimental Setup 

To further verify the feasibility and stability of the NN 
vector controller, a DSP-based digital control system was 
implemented (Fig. 13). The experimental setup (Fig. 13(a)) 
consists of three major parts: (i) a motor drive system 
containing an SPM motor from Motorsolver coupled to a DC 
motor [40], (ii) a power converter board from Vishay HiRel 
Systems which has two independent three-leg converters, and 
(iii) a dSPACE DS1103 controller board to collect various 
input signals, e.g. current, voltage and motor speed, and to 
generate PWM output for controlling the SPM and DC motors. 
One converter was formed as a DC/AC converter to control 
the PM motor, while the other one was formed as an H-bridge 
DC/DC converter to control the DC motor.  

The control algorithms for both the PM and DC motors 
were built in Simulink (Fig. 13(b)). They were then compiled 
and loaded as the assembly code to the DSP chip within the 
DS1103 controller board. In Fig. 13(b), the measurements of 
the PM motor’s speed and rotor position are obtained by the 
DS1103ENC_POS module, and the voltage and current 
measurements are obtained by the DS1103ADC module. The 
speed measurements are passed to both the DC and PM motor 
controllers; the three-phase PM motor current measurements 
are passed to the PM motor controller; and the DC motor 
current measurement is passed to the DC motor controller. 

The PM motor-controller block implements either the 
conventional or NN vector control, according to Fig. 1, and 
outputs the α and β reference voltage to the space-vector 
modulation block, which generates T1, T2, and sector 
information needed by the DS1103SL_DSP_PWMSV block 
to generate the driving pulses. The driving pulses are applied 
to the three-phase DC/AC converter to control the PMSM. 
The DC motor controller block generates two complementary 
duty ratio signals that are passed to DS1103SL_DSP_PWM 
block to produce the driving pulses applied to the DC/DC 
converter to control the DC motor.

Detailed information on how to build a hardware 
experiment using MATLAB Simulink and dSPACE can be 
found in [43]. Information about online processing capabilities 
of dSPACE DS1103 and its real-time coding specifications 
can be found in [44, 43]. 
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(a) Circuit connection  

 

(b) dSPACE based real-time controller 

 
(c) Experiment setup 

Fig. 13.  Hardware laboratory testing and control systems 

The simulation cases shown by Figs. 6 through 12 in 
Section V are divided into two categories: one corresponds to 
speed and current tracking control (Figs. 6, 8, 11 and 12), 
while the other corresponds to current tracking control only 
under constant motor speed (Figs. 7, 9 and 10). Then, 
hardware experiments were performed based on the laboratory 
setup for each of these cases, with Section VII-B showing the 
results associated with the speed and current tracking control 
and Section VII-C giving the results associated with current 
tracking under constant motor speed. The parameters of the 
laboratory motor are shown in Table I and the controller 
sampling rate is 0.1ms. The minimum rotational speed that 
can be measured using the speed sensor was found to be 
1.31rad/s, or 12.5rpm in the experimental setup. In the 
experimental arrangement, the PM motor parameters could be 
different from the nominal values shown in Table I [45, 46] 
and there could be unexpected disturbances and noises.  

B.  PM Motor Speed and Current Control 

In this test, both the speed and current controls are applied 
to the PM motor while the DC motor is idle. The speed- and 
current-loop controllers of the PM motor were redesigned 
based on the parameters shown in Table I, and were tested 
first in the simulation, and then on the hardware motor. The 
test sequence was scheduled as follows, with t=0s as the 
starting point for data recording: At t=1s, the input speed 
increases from 0 rad/s to 100 rad/s, and then stays at 100 rad/s; 
at t=2s, the speed decreases to 50 rad/s and retains this value 
till t=3s; at t=3s, the speed increases to 200 rad/s and 
decreases again to 100 rad/s at t=4s. 

Fig. 14 presents the simulation results. Due to the low 
ratings of the laboratory motor, the relevant oscillation of the 
simulated stator current looks worse than that of the 50kW 
PM motor in tracking the current variation in a much larger 
range in Section VI. The result of the hardware experiment 
(Fig. 15) is a little bit different from the simulation result. A 
potential reason is that the actual motor inertia and friction 
coefficient are more complicated and different from those 
used in the simulation. Due to uncertain motor parameters, 
noises and disturbances, more oscillations of the PM motor 
were found in the hardware experiment results (Fig. 15). 
Under the challenging laboratory condition, the NN controller 
performed better than the conventional controller (Fig. 15). 
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Fig. 14. NN vs. conventional: simulation of laboratory PM motor: (a) 

Reference and actual motor rotational speeds, (b) q-axis currents 

Ref NN Conv 

    
Fig. 15. NN vs. conventional: hardware experiment of laboratory PM motor: 

(a) Reference and actual motor rotational speeds, (b) q-axis currents 

C.  PM Motor Current Control under Constant Speed 

In this case, only the current control is applied to the PM 
motor while the DC motor is controlled to ensure the speed of 
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the whole system constant. Fig. 16a shows the simulation 
result of the q-axis current for the laboratory PMSM operating 
at 100rad/s and zero d-axis reference current. Again, the much 
smaller current tracking range makes the relevant oscillation 
of the motor current apparently worse than that of the 50kW 
PM motor shown in Section VI. Fig. 16b presents the 
hardware experiment results of the q-axis current under the 
same condition. The NN controller clearly displays less 
oscillation than the conventional controller for the laboratory 
PM motor, showing a strong adaptive control ability of the 
NN controller under uncertain, noisy and disturbing laboratory 
conditions. The success of the hardware experiments indicates 
that it is possible to implement the NN controller in a real-life 
PM motor. 
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Fig. 16. NN vs. conventional: (a) simulated and (b) experiment q-axis current 
of laboratory PM motor  

A summary in terms of maximum, average, and standard 
deviation of the absolute tracking errors associated with the 
experiment results shown by Figs. 15 and 16 for the NN and 
conventional controllers is presented in Table III. 

TABLE II 
TRACKING ERROR MAXIMUM, AVERAGE, AND STANDARD DEVIATION VALUES 

Figure # 
Maximum Average Std 

NN Conv. NN Conv. NN Conv. 

Speed tracking 
Fig. 14(a) (rad/s) 

8.3859 8.5428 0.6709 0.6673 1.6791 1.6703 

Speed tracking 
Fig. 15(a) (rad/s) 

32.7481 36.0681 5.2326 5.8308 7.1686 8.2316 

Current tracking 
Fig. 16(a) (A) 

4.73 3.55 0.44 0.39 0.27 0.26 

Current tracking 
Fig. 16(b) (A) 

1.90 3.48 0.82 0.94 0.41 0.64 

VIII.  CONCLUSION 

PMSMs are widely used in electric drive applications 
particularly in electric drive vehicles. This paper presents an 
NN-based vector-control method to overcome the limitations 
of conventional vector-control approaches. It describes how to 
achieve approximately optimal vector control using a neural 
network, which is trained to minimize an ADP-based cost 
function. Compared to the conventional vector control, the NN 
vector controller produces the fastest response speed, lowest 
overshoot, and, in general, the best performance. Additionally, 

since a neural network is trained under variable system 
parameters, the NN-based vector controller shows enhanced 
performance when the sampling time changes and system 
parameters are difficult to identify, especially in hardware 
experiment conditions. The hardware experiment confirmed 
that the NN-based controller is able to track reference 
commands while maintaining a high power quality, making it 
possible to implement the NN vector controller in a real 
PMSM environment. In hardware experimental conditions, a 
conventional controller usually needs to be retuned whenever 
the motor parameters change. In contrast, the NN-based 
controller retains good performance under a variety of runtime 
PM motor parameters, despite the NN being trained using the 
nominal motor parameters of Table 1. 
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