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Highlights 

 Prognostic models are critical for the management of neck pain disorders 

 Biomechanical variables can have a high-dimensionality  

 Clinical transferability of models using biomechanical covariates may be limited 

 Altered trunk kinematics and greater jerk index are predictors of neck pain status  

 FDboost is a useful tool to build prognostic models with biomechanical data  

 

Abstract 

Background 
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Individuals with neck pain have different movement and muscular activation (collectively 

termed as biomechanical variables) patterns compared to healthy individuals. Incorporating 

biomechanical variables as covariates into prognostic models is challenging due to the high 

dimensionality of the data.  

Research question 

What is the classification performance of neck pain status of a statistical model which uses 

both scalar and functional biomechanical covariates?  

Methods 

Motion capture with electromyography assessment on the sternocleidomastoid, splenius 

cervicis, erector spinae, was performed on 21 healthy and 26 individuals with neck pain 

during walking over three gait conditions (rectilinear, curvilinear clockwise (CW) and 

counterclockwise (CCW)). After removing highly collinear variables, 94 covariates across 

the three conditions were used to classify neck pain status using functional data boosting 

(FDboost). 

Results 

Two functional covariates trunk lateral flexion angle during CCW gait, and trunk flexion 

angle during CW gait; and a scalar covariate, hip jerk index during CCW gait were selected. 

The model achieved an estimated AUC of 80.8%. For hip jerk index, an increase in hip jerk 

index by one unit increased the log odds of being in the neck pain group by 0.37. A 1° 

increase in trunk lateral flexion angle throughout gait alone reduced the probability of being 

in the neck pain group from 0.5 to 0.15. A 1° increase in trunk flexion angle throughout gait 

alone increased the probability of being in the neck pain group from 0.5 to 0.9. 
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Significance 

Interpreting the physiological significance of the extracted covariates, with other 

biomechanical variables, suggests that individuals with neck pain performed curvilinear 

walking using a stiffer strategy, compared to controls; and this increased the risk of being in 

the neck pain group. FDboost can produce clinically interpretable models with complex high 

dimensional data and could be used in future prognostic modelling studies in neck pain 

research.   

Keywords: Walking, Biomechanics, Neck pain, Machine learning, Functional regression 

 

1. Introduction 

Neck pain is a common musculoskeletal disorder with up to 50% of adults 

experiencing neck pain in any given year [1]. Up to 85% of individuals with neck pain 

continue to report persistent symptoms [1], and some may go on to experience chronic pain. 

Neck pain also has a significant socio-economic cost with annual healthcare expenditures 

amounting to US$686 million [2]. Being able to predict the clinical course of neck pain is an 

important question because it guides clinical expectations of recovery and can help clinicians 

better match different clinical phenotypes to specific interventions. 

 Predicting the course of neck pain requires the use of predictive models, and this type 

of research is termed as “prognostic model research” [3]. A predictive model contains the 

best combination of covariates needed to achieve the best predictive accuracy [4]. Covariates 

can come from various sources, such as from an individual’s socioeconomic status, and 

psychological health [1, 4]. Validated predictive models of neck pain recovery have reported 

an Area Under the Curve (AUC) ranging from 0.65 to 0.91, and the most consistent 

covariates were age and initial neck-pain disability [4]. 
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 Biomechanical variables have not been used in the development of predictive models 

in neck pain, unlike in other areas of musculoskeletal research (e.g. anterior cruciate ligament 

injury [5], occupational back pain [6]). Yet, it is well established that individuals with neck 

pain have different movement patterns and muscle behaviours (collectively termed as 

biomechanical variables) than asymptomatic controls [7-9], which may not be restricted to 

the neck. For example, individuals with neck pain walked with reduced trunk axial rotation 

angle range compared to controls [7], which may be attributed to greater trunk muscular co-

contraction, which could have negative consequences to overall spinal health [7].  

 Incorporating biomechanical measures into predictive models can be challenging 

which may deter its more widespread inclusion in prognostic research. Firstly, technological 

advancement means that researchers can collect huge amounts of biomechanical data [10]. 

For example, up to 126 biomechanical variables can be extracted from a single accelerometer 

[10]. Interpreting a predictive model with many covariates is clinically challenging. Second, 

biomechanical variables can be scalar (e.g. peak angle) and functional (e.g. angle waveform) 

in nature. Functional variables may provide a richer mechanistic insight into an individual’s 

health, compared to scalar variables. For example, a reduced cervical extension range of 

motion (scalar) cannot discriminate if movement is limited at the start and/or the end of 

motion. Even though functional variables may provide more information than scalar 

variables, the former demand for special care and adequate generalizations of common 

statistical methods (e.g. stepwise regression).  

 For biomechanical measures to be considered as potential covariates in prognostic 

research, statistical methods that can handle functional and scalar covariates, plus being able 

to generate clinically interpretable models must be used. Herein, we used a state-of-the-art 

machine learning technique “FDboost” [11], to develop a predictive model of neck pain 

status using scalar and functional biomechanical covariates. The primary aim of the present 
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study was to investigate the predictive value of biomechanical measures collected during 

walking in the classification of individuals with and without neck pain.  

2. Methods 

2.1. Design 

Data for the present study represents the result of a sub-study from a larger project 

investigating the effects of neck pain on cervical motor control [8]. The study obtained 

ethical approval from the Ethics Committee of the University of Birmingham, UK 

(CM06/03/17-1). All participants provided written informed consent prior to participation.  

2.2. Participants 

Twenty-one healthy (controls) and 26 neck pain individuals completed a single-

session experimental study. Individuals with neck pain were included if they had: 1) an 

average neck pain intensity in the previous month of ≥ three on a Numerical Rating Scale 

(NRS) (0 = “no pain”, 10 = “worst pain possible” [12]), and 2) a neck pain duration for 

≥three months. Individuals with neck pain due to whiplash were included if the grade of 

severity was < three on the Quebec Task Force Classification. Healthy participants were 

included as controls if they presented with no history of neck pain during the last two years. 

All participants were excluded if they had: chronic respiratory, rheumatologic, or neurologic 

conditions, spinal surgery, or pain induced by a spinal fracture.  

2.3. Descriptive characteristics 

The following characteristics were collected from individuals with neck pain: 1) 

average and maximum pain intensity over the last four weeks using the NRS [12], 2) 

perceived neck disability using the Neck Disability Index (NDI), 3) fear of movement using 

the Tampa Scale for Kinesiophobia (TSK).  
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2.4. Experimental conditions 

All participants performed three trials for each experimental conditions 1) rectilinear, 

2) curvilinear clockwise (CW), and 3) curvilinear counterclockwise (CCW) direction 

walking. Both rectilinear and curvilinear walking were investigated as walking in daily life 

involve changes in gait path direction [13]. Participants were instructed to walk at their 

natural speed, along a straight path for five meters (rectilinear); or following a floor marked 

circle, with 1 meter radius, in a CW or CCW direction for three consecutive trials (for CW 

and CCW, a trial was defined as a complete loop). A one-minute resting period was provided 

every 5min to avoid fatigue. Familiarisation of each condition was allowed before data 

acquisition. All walking conditions were performed barefooted, in a randomized order. 

2.5. Biomechanical modelling 

Eight infrared-based camera were used for motion capture (250Hz) (BTS 

Bioengineering, Milan, Italy). Twenty-six 14 mm retroreflective markers were attached on 

the trunk, pelvic, thigh, shank, and foot segments following the Davis protocol [14]. Head 

motion tracking was executed via a light rigid helmet including four reflective markers (apex, 

front, right and left side of the helmet). Anthropometric measurements were recorded for all 

subjects according to Davis's guidelines [14]. Marker trajectories were low-pass filtered at 

10Hz (zero lag, 4th order Butterworth), and gait events of initial contact and toe-off were 

determined using a previously defined kinematic method [15] 

Six bipolar electromyography (EMG) probes (16-bit resolution, 1kHz) were placed on 

the bilateral Sternocleidomastoid, Splenius Cervicis, Erector Spinae muscles following 

Barbero et al [16]. Prior to placement of the EMG sensors, the skin was prepared in 

accordance with the SENIAM guidelines (http://www.seniam.org/). EMG signals were 

rectified around the mean and low pass filtered via a fourth order Butterworth filter (9 Hz) to 
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create a linear envelope [17]. All participants performed 5s of antigravity contractions of each 

muscle during lying, and, after being processed as above, a 3s average of muscular activity 

envelope was extracted for use as a normalizing factor for each muscle.  

2.6. Data analysis 

Fifty-eight scalar and functional biomechanical variables were extracted per walking 

condition for all participants (Supplementary Material [SM] for description). These variables 

broadly represented the spectrum of biomechanical variables collected during gait (e.g. 

segment angles [18]; spatio-temporal variables [19]; gait variability variables [20]), and in 

neck pain neuromuscular research [21]. For EMG variables, activities from bilateral muscles 

were extracted; and for lower limb kinematics and spatio-temporal variables, only values 

from the right limb were extracted. For all variables, values within a right stride cycle (initial 

contact to initial contact) were extracted for subsequent analysis. Each biomechanical 

variable per condition was treated as a single covariate, making a total of 174 covariates. 

Treating each biomechanical variable per condition as a single covariate, will enable a 

clinician to prospectively collect the most important variables under specific walking 

conditions to use within a predictive model.  

One participant was excluded as missing biomechanical data were present in the 

rectilinear walking trial. Eighty-four out of 174 biomechanical covariates were excluded as 

they exhibited a high absolute correlation of > 0.7 with all other covariates [22]. Ninety 

biomechanical covariates together with four demographic covariates of age, height, weight, 

and sex, were used as inputs for a scalar-on-function (SoFR) regression model. All 

biomechanical covariates were demeaned as pre-processing, so that different covariates had 

equal potential to be included in the model.  

Jo
ur

na
l P

re
-p

ro
of



8 
 

A SoFR model is one where the response variable takes on scalar values, and the 

covariates take on functional (or scalar) values. Functional regression models are extensions 

of standard regression models such as generalized additive models. With 94 covariates for N 

= 46 observations, the model cannot be estimated with conventional fitting methods without 

additional penalisation as the corresponding algorithm for parameter estimation suffers from 

a singular matrix. Hence, we used component-wise gradient boosting to estimate the model 

[11] to fit a functional logistic regression model. The algorithm is an iterative procedure 

which successively adds one covariate to the model, like a forward stepwise regression, with 

the ability to handle functional covariates, perform variable selection, and allow for penalized 

estimation. In order to estimate the optimal number of iterations, the data was divided by 

splitting the participants into 4 folds, each with a roughly similar ratio of individuals with 

neck pain, on which cross-validation was performed. The area under the Receiver Operating 

Characteristic curve (AUC) was used to quantify the model’s ability to discriminate the two 

groups. All analyses were performed using R version 3.5.3 , using the “FDboost” package 

[11]. 

3. Results 

Descriptive characteristics of the participants can be found in Table 1. The group 

averaged values for all functional covariates can be found in the SM (Figures s1, s2, s3). Two 

functional covariates trunk lateral flexion angle during CCW gait, and trunk flexion angle 

during CW gait; and a single scalar covariate, hip jerk index during CCW gait were selected 

as the best covariates of neck pain status. The model achieved an estimated AUC of 80.8%. 

The final model in the application is: 

𝑃 (𝑔𝑟𝑜𝑢𝑝𝑖 =  𝑛𝑒𝑐𝑘 𝑝𝑎𝑖𝑛) =  𝐿𝑜𝑔𝑖𝑡−1(𝛽0 + ∫ 𝑥𝑖1 (𝑡)𝛽1(𝑡)𝑑𝑡 + ∫ 𝑥𝑖2 (𝑡)𝛽2(𝑡)𝑑𝑡 +  𝑥𝑖3𝛽3) 
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for participants 𝑖 = 1, … , 46 where 𝛽0 is the intercept of 0.087, 𝛽1(𝑡) and 𝛽2(𝑡) are 

the coefficients of the two functional covariates (Figure 1a, 2a), and 𝛽3 is the coefficient of 

hip jerk index during CCW gait with a value of 0.37.  

For the scalar covariate of hip jerk index, an increase in hip jerk index by one unit (all 

jerk values are dimensionless due to the formulation, see SM) increased the log odds of being 

in the neck pain group by 0.37. To simplify the interpretation of the 𝛽 coefficients of the 

functional covariates, the predicted log odds was calculated for each participant when only an 

instantaneous unit change occurs in a gait cycle (Figure 1b, 2b), and the cumulative increase 

in class probabilities was calculated when a change occurs across all time points (0% to 

100%) of gait (Figure 1c, 2c). As examples, a 1° increase in trunk lateral flexion in CCW 

walking alone or a 1° increase in trunk flexion angle in CW walking alone only altered the 

log odds of being in the neck pain group by <0.02 in magnitude (Figure 1b, 2b). At the 

cumulative level, a 1° increase in trunk lateral flexion angle throughout gait alone reduced the 

𝑃 (𝑔𝑟𝑜𝑢𝑝𝑖 =  𝑛𝑒𝑐𝑘 𝑝𝑎𝑖𝑛) from 0.5 at 0% gait to 0.15 at 100% gait (Figure 1c); and a 1° 

increase in trunk flexion angle throughout gait alone increased 𝑃 (𝑔𝑟𝑜𝑢𝑝𝑖 =  neck pain) 

from 0.5 at 0% gait to 0.9 at 100% gait (Figure 2c). 

Discussion 

 Prognostic research is important to guide clinical management of a complex disorder 

such as neck pain disorders. Much research have shown differences in movement strategies 

between individuals with and without neck pain [7-9]. Yet, biomechanical variables have 

never been incorporated into predictive models within neck pain research. The two main 

findings of the present study were that 1) curvilinear walking (both CW and CCW) provided 

the most discriminatory set of biomechanical variables, and 2) global and not local (i.e. non-
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cervical) biomechanical variables were most discriminatory between individuals with and 

without neck pain. 

 Individuals with neck pain have been reported to walk with a reduced trunk axial 

rotation range compared to controls [7]. The differences between the present study and that of 

Falla et al. [7] could be attributed to at least two reasons. First, the present study investigated 

gait biomechanics during curvilinear walking, which requires greater trunk lateral flexion 

angles, than rectilinear walking which Falla et al. [7] adopted [23]. Second, the present study 

treated biomechanical variables as covariates in a prediction model, rather than as a response 

variable for hypothesis testing [7]. A biomechanical variable which is significantly different 

between two clinical groups may not in turn be the most discriminatory, when considered 

amongst a high-dimensional landscape of potential covariates.  

 Trunk kinematics typically work synergistically with cervical kinematics to produce 

head movements [24]. For example, 67% of head flexion angle is contributed by the cervical 

spine, with the remaining coming from the trunk [24]. The synergistic role between trunk and 

cervical joints suggests that a greater trunk flexion angle in individuals with neck pain 

compared to controls could be a compensatory strategy for a reduced cervical flexion angle in 

the former compared to the latter. However, this was not presently observed in that 

individuals with neck pain positioned their head, trunk, and even pelvic segments in a greater 

flexed posture, than controls. This suggests that altered trunk flexion angles during walking 

between individuals with and without neck may be a global “stiffening” strategy [7].  

 A global “stiffening” strategy is observed similarly in the frontal plane, across the 

head, trunk and pelvic segments. When walking in a CCW direction, the trunk normally 

flexes laterally towards the right to change the direction of progression of the centre of mass 

(COM) towards the centre of the circle in a leftward direction (termed “hip strategy” in [25]). 
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This implies that individuals with neck pain use less hip strategy than controls. Another 

strategy to alter the direction of progress is by altering foot placement during swing [25]. A 

smaller use of the hip strategy in individuals with neck pain was unlikely due to differences 

in foot placements between groups, given the similar stride width during CCW walking (both 

groups: mean of 0.36m). It is possible that the reduced trunk, head, and pelvic segments in 

individuals with neck pain could be a global response to reduce pain, and/or represent a fear 

avoidance behaviour [26]. 

 The period within gait where each functional covariate had the biggest effect was 

between 20-25% cycle for trunk flexion angle, and between 45-50% cycle for trunk lateral 

flexion angle (Figures 1a, 2a). The period of 20-25% cycle represents a phase where the 

contralateral limb is approaching mid-swing, which requires trunk extension to raise the 

COM, reducing the amount of swing limb flexion needed to clear the ground. The period of 

45-50% cycle represents a phase where step-to-step transition is happening, where the COM 

medial-lateral accelerations and postural stability demands are high [27]. Trunk kinematic 

differences between individuals with and without neck pain may only be partially explained 

by neuromuscular differences (see Figure s2 and s3 “erector spinae”). In CCW walking at 45-

50% cycle, muscle activity of the left erector spinae was higher in individuals with neck pain 

compared to controls, which may result in a more vertically oriented trunk in the frontal 

plane. Inter-group differences between the erector spinae muscles during CW was similar, yet 

trunk flexion angle differences persist during 20-25% cycle. A more detailed neuromuscular 

and kinetic investigation of whole-body mechanics during curvilinear walking would be 

required in future research to explain the specific kinematic differences between individuals 

with and without neck pain. 

 That a stiffer walking strategy was adopted by individuals with neck pain compared to 

controls, was also supported by the discriminatory value of the hip jerk index. Research on 
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other disorders have shown that individuals with low back pain performed rectilinear walking 

with greater in-phase trunk-pelvis segment coordination, and running with greater leg joint 

stiffness [28, 29]. Greater stiffness reduces the shock attenuation capacity and increases load 

transmission to the proximal body segments, such as the back and neck regions [30]. 

 Boosting as a technique is less commonly used in clinical biomechanics research, as 

compared to techniques such Support Vector Machine (SVM) [31]. A disadvantage of 

techniques such as SVM is that the models can have a complex non-linear structure with a 

high number covariates, which makes it less clinically interpretable. In contrast, the model 

produced in the present study allows clinicians to focus their data collection efforts to the 

measurement of just three movement variables in two gait tasks. Although association does 

not imply causation, knowing what movement variables and when movement best predicts 

neck pain status could help in clinical therapeutic management. For example, knowing that 

trunk lateral flexion angle in CCW gait is the best predictive covariate, may focus a 

hypothesis driven search of plausible neuromuscular impairments that could cause altered 

trunk kinematics for intervention; and even inspire the development of novel therapeutic 

strategies to correct aberrant gait kinematics [32] 

A limitation of this study was the relatively small sample size compared to the 

number of covariates included in the model, which precluded splitting the data into a training 

and validation dataset. The number of participants in the present study was however, 

comparable to other similar research in clinical biomechanics (n = 41 in [31], n = 44 in [10]). 

In defence, the present study’s aim was to explore the development of predictive models 

using biomechanical variables, rather than aim to develop an externally validated predictive 

model. Another limitation was that variables included in the model were not specific to the 

individual’s side of pain, and specific to the direction of movement that aggravates the pain. 

For example, an individual may have right sided neck pain that is painful only during left 
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cervical rotation. Classification performance may be augmented by inclusion of subject-

specific variables into FDboost, a highly relevant research area we leave for future 

investigations. 

5. Conclusion 

 Three biomechanical variables (two functional and a scalar), trunk lateral flexion 

angle during CCW gait, and trunk flexion angle during CW gait; hip jerk index during CCW 

gait were selected as the best covariates of neck pain status. “FDboost” can be used in future 

prognostic modelling studies in neck pain, and other clinical areas, where biomechanical data 

are collected as part of a holistic health assessment. The clinical attractiveness of “FDboost” 

is that it can produce clinically interpretable models even with complex high dimensional 

datasets. 
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Figure captions 

 

Figure 1. (a) Beta coefficient of trunk lateral flexion angle (°) during counterclockwise 

(CCW) walking; (b) predicted log odds of being in the neck pain group for each participant 

for a 1° increase in trunk lateral flexion angle per gait instance; (c) cumulative predicted 

probability of being in the neck pain group for each participant for a 1° increase in trunk 

lateral flexion angle across all gait instances; (d) visualisation of trunk lateral flexion 

differences between groups (not drawn to scale).  
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Figure 2. (a) Beta coefficient of trunk flexion angle (°) during clockwise (CW) walking; (b) 

predicted log odds of being in the neck pain group for each participant for a 1° increase in 

trunk flexion angle per gait instance; (c) cumulative predicted probability of being in the neck 

pain group for each participant for a 1° increase in trunk flexion angle across all gait 

instances; (d) visualisation of trunk flexion differences between groups (not drawn to scale). 
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Table 1: Participants’ characteristics and results of self-report questionnaires (mean ± 

standard deviation, SD)  

 Neck pain (n = 26) Control (n = 21) 

Sex 15 F, 11 M 10 F, 11 M 

Age (years) 32.3 (12.6) 28.8 (10.8) 

Maximum pain intensity (NRS) 6.2 (2.2) - 

Average pain intensity (NRS) 4.1 (1.7) - 

NDI 11.5 (6.7) - 

TSK 35.4 (8.3) - 

Abbreviations: M- male; F-female; NRS-numerical rating scale (0-10); NDI – neck 

disability index; TSK- tampa scale of kinesiophobia 
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