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Abstract

This paper presents an output feedback tracking control scheme for a three-wheeled omnidirectional mobile robot, based on pas-
sivity property and a modified generalized proportional integral (GPI) observer. The proposed control approach is practical from
an implementation point of view, since only robot position information and one robot geometrical parameter (i.e., contact radius)
are required. Firstly, a dynamic model is given and passivity property is analyzed. Then the controller is designed based on pas-
sivity property and a modified GPI observer. The design objective is to preserve the passivity property in the closed-loop system,
which is conceptually different from the traditional control design methodology. Particularly, the designed control system takes
full advantage of the robot natural damping forces. Therefore, only considerably small or non differential feedback is needed. In
addition, theoretical analysis is given to show the closed-loop stability behavior. Finally, experiments are conducted to validate the
effectiveness of the proposed control system design in both tracking accuracy and robustness.

Keywords: Omnidirectional Mobile Robot, Trajectory Tracking Control, Disturbance Observer, Passivity Property, Output
Feedback Control

1. Introduction

Recently, omnidirectional mobile robots (OMRs) are be-
coming increasingly popular in many applications, especially
those in narrow spaces with high maneuverability requirements,
such as warehouses, factories and hospitals. This is due to the
fact that OMRs can perform arbitrary motion in an arbitrary
orientation without changing the direction of wheels [1].

OMRs are typical nonlinear, time-varying, multi-input-multi-
output systems, subject to various external disturbances (i.g.,
uncertain payload, friction forces). In the literature, the dy-
namic modeling and control of OMRs have been studied by
many researchers in recent two decades [2–11]. In [2], a feed-
back linearization approach, resolved acceleration control (RAC),
was applied to an OMR with three lateral orthogonal-wheel
assemblies, in which the control performance depends on the
accuracy of the dynamic model. [3] designed a nonlinear con-
troller for an OMR using a trajectory linearization control method
with consideration of actuator dynamics. Considering static
friction effects, [4] presented a dynamic model for an OMR
and an experimental identification method to estimate the pa-
rameters of the static friction model. In [5], a model-predictive
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control scheme with friction compensation using a static fric-
tion model was proposed for an OMR. Six parameters of the
static friction model were identified using the approach pro-
posed in [4]. However, the identification process is complex.
In [6], a linear optimal controller was designed based on a sim-
ple linear model, which is obtained by linearizing a complicated
dynamic model of a three-wheeled OMR using kinematics. In
[7], a smooth switching adaptive sliding-mode controller was
proposed to tackle the tracking tasks in the presence of both
structured and unstructured uncertainties. The parameters of
motor dynamics were assumed to be unknown. In [8], a switch-
ing quasi-linear-parameter-varying controller using LMI-based
techniques was proposed for a four-wheeled OMR. Considering
wheel switching, a continuous dynamic modeling and control
approach of an OMR were discussed in [9] and [10], respec-
tively. An observer was used to estimate the complicated dy-
namics, unmodeled dynamics and input-output cross-couplings
in [10]. It should be mentioned that the designed control sys-
tem in [10] depends on part of dynamic model information.
In [11], quantitative feedback theory was applied to design a
proportional-integral controller for robust low-level control for
a redundant OMR with four wheels.

All of the controllers mentioned above are model-based de-
sign approaches, in which a complete dynamic model includ-
ing motor dynamics (i.g., [2–6, 8, 11]) or at least part of the
dynamic model information (i.g., [7, 10]) is required. It is well
known that both the dynamic modeling and parameter identifi-
cation are complex and time-consuming in practice. Therefore,
model-based control design may be restrictive from an imple-
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mentation point of view if a dynamic model or its parameters
are unknown. From a practical point of view, a control sys-
tem design will be particularly attractive if the tedious dynamic
modeling and parameter identification process can be avoided.

Passivity is one of the most fundamental properties of robotic
systems [12]. Passivity-based control has been a very powerful
design concept in many control problems of robotics, i.g., robot
control [13, 14], teleoperation control [15, 16], to name a few.
On the other hand, generalized proportional integral (GPI) ob-
server is a disturbance observer characterized by a high dimen-
sional extension [17], and it thus has a good estimation perfor-
mance of fast-varying disturbances. GPI observer based control
has been successfully applied in various practical applications
[18–20], to name a few. However, although GPI observer based
control design does not require complete model information,
part of the model information is still needed.

In this paper, a passivity-based output feedback control (POFC)
is designed for trajectory tracking of a three-wheeled OMR.
Firstly, a robot dynamic model is given and the passivity prop-
erty of the robot is analyzed. Then the control system is de-
signed, in which a modified GPI observer is employed to esti-
mate disturbances and control errors. The design objective is to
preserve the passivity property of the robot in the closed-loop
system, which is conceptually different from traditional control
design, such as feedback linearization control approaches. It
should be emphasized that the differential feedback gains can
be selected considerably small or even zero due to an effective
exploitation of the robot natural damping. The resulting control
system only requires one geometrical parameter (i.e., the con-
tact radius of each wheel), without using any other model pa-
rameters. Theoretical analysis is presented to show the closed-
loop stability behavior. Finally, experiments are conducted to
compare the tracking accuracy and robustness of the proposed
control design against traditional model-based RAC.

The remainder of this paper is organized as follows. In
Section II, dynamic modeling and analysis of a three-wheeled
OMR are presented. The proposed passivity-based output feed-
back trajectory tracking control scheme as well as stability anal-
ysis is presented in Section III. In Section IV, implementation
details, experimental results and discussions are presented. Fi-
nally, conclusions are drawn in Section V.

2. Dynamic modeling and analysis

In this section, a dynamic model for the robot prototype is
given and then passivity property of the robot dynamic system
is analyzed.

The prototype platform is shown in Fig. 1, with three MY
wheel-II assemblies arranged at 120◦ intervals beneath the steel
disk. Each assembly is actuated with a DC motor. For a detailed
description of the MY wheel-II mechanism and the prototype
platform, the readers are referred to [21].

The two coordinate frames used in the modeling are shown
in Fig. 2: the world coordinate frame {W} fixed on the ground
and the moving coordinate frame {M} fixed on the robot geo-
metric center. The nomenclature is defined in Table 1.

Figure 1: Prototype platform.
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Figure 2: Coordinate frames of the omnidirectional mobile robot.

Note that, as shown in Fig. 1 and Fig. 2, each MY wheel-II
assembly has two contact points with the ground, and thereby
two contact radiuses exist for each wheel (i.e., Din and Dout)
[22]. In this paper, the average contact radius (i.e., L0 = (Din+

Dout)/2) is used in the dynamic model. In addition, it is as-
sumed that no slippage is between the wheel and the motion
surface. Part of the friction forces in the transmission system
(e.g. coulomb friction), dead-zone and backlash, and friction
forces between each passive wheel and ground are unmodeled.

The robot dynamic model in the world coordinate frame in-
cluding motor dynamics is given as follows [23]:

Mq̈+Cq̇+ Dq̇ = τ, (1)

where τ = Bu, which is considered as the virtual control input
in this paper, and the real control input, u = [u1 u2 u3]T , is the
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Table 1: Nomenclature
World coordinate frame

q =
[

x y θ
]T

Robot position and orientation angle

VM =
[

Vx Vy θ̇
]T Robot translational velocity and

rotational angular rate
Mechanical constants

m Robot mass

Iv
Robot moment of inertia around

the mass center of the robot

Iw
Wheel moment of inertia around

the wheel shaft
r Wheel radius

Din Inner contact radius
Dout Outer contact radius
L0 Average contact radius

I0

Combined moment of inertia of
motor, gear train and wheel referred

to the motor shaft

b0
Combined viscous friction coefficient

of the motor, gear and wheel shaft.
kb Motor back EMF constant
kt Motor torque constant
Ra Motor armature resistance
n Gear reduction ratio

supplied voltage of three motors; and

M =
1
p2


3
2 p0+m 0 0

0 3
2 p0+m 0

0 0 3p0L0
2+ Iv

 ,

C =
1
p2


0 3

2 p0θ̇ 0

− 3
2 p0θ̇ 0 0

0 0 0

 ,

D =
1
p2


3
2 p1 0 0

0 3
2 p1 0

0 0 3p1L0
2

 ,

B =
1
2


−cosθ−

√
3sinθ −cosθ+

√
3sinθ 2cosθ

−sinθ+
√

3cosθ −sinθ−
√

3cosθ 2sinθ

2L0 2L0 2L0

 ,
p0 =

n2I0
r2 , p1 =

n2

r2 (b0 +
ktkb
Ra

), p2 =
nkt
rRa

. Dq̇ is the dissipative
force, due to the combined viscous friction of the motor, gear
and wheel shaft, as well as the motor armature resistance, gear
reduction, etc. It relates to the loss or dissipation of energy.
Since D is positive definite, the robot is a fully damped sys-
tem. On the other hand, according to the standard passivity
definition, (1) defines an output strictly passive mapping from
the virtual control input τ to q̇. Note that, the passive mapping
from the real control input u to q̇ cannot be guaranteed.

Property 1. M is a symmetric positive definite matrix, it sat-
isfies λmin(M)∥x∥2 ≤ xT Mx ≤ λmax(M)∥x∥2,∀x ∈ R3, where ∥·∥
denotes the Euclidean norm; λmin(·) and λmax(·) denote the min-
imum and maximum eigenvalue, respectively.

Property 2. With the definition of M and C in (1), Ṁ− 2C is
skew symmetric.

Remark 1. The matrix D can be rewritten as follows:

D =
nRa

rkt
(b0+

ktkb

Ra
)


3
2 0 0

0 3
2 0

0 0 3L0
2

 .
It can be seen that, the robot natural damping is related to the
gear reduction ratio and wheel radius. More specifically, the
robot natural damping has a positive correlation with the gear
reduction ratio n and an inverse correlation with the wheel ra-
dius r.

3. Passivity-based control

3.1. Control system design
Assuming that the robot dynamic equation (1) is known, the

well-known passivity-based trajectory tracking controller can
be applied as follows [24]:

τ = Mq̈r + (C+ D)q̇r −Kd s, (2)

where q̇r = q̇d −Λe, qd = [xd yd θd]T is the desired robot tra-
jectory, e = q− qd, s = ė+Λe; Kd and Λ ∈ R3×3 are diagonal
positive definite matrices. The term Kd s represents the damp-
ing injection.

Combining (1) and (2), the closed-loop error dynamics can
be obtained as follows:

Mṡ+Cs+ Ds+Kd s = 0. (3)

Based on Lyapunov stability analysis, it is straightforward
to obtain that s→ 0 as t→∞, and thus e→ 0, ė→ 0 as t→∞
[24].

It is clear that the energy minimum of open-loop system (1),
i.e., (q, q̇) = (0,0), has been shifted to (e, ė) = (0,0) by the con-
troller (2). Note that the total energy of the open-loop system
(1) is

H0(q, q̇) =
1
2

q̇T Mq̇. (4)

The controller (2) actually reshapes the original open-loop
energy function of (4) into

H1(e, ė) =
1
2

sT Ms, (5)

which is the total energy of the closed-loop system (3). This
is the well-known energy shaping plus damping ideas of the
passivity-based control approach [25].

Consider the case that the matrix M, C and D in (1) are
completely unknown and only the input matrix B is known. To
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maintain the passivity property, the objective is to design a con-
troller which results in a closed-loop system maintaining the
similar structure of (3).

Then the open-loop tracking error dynamics can be written
as:

ë = q̈− q̈d = −Λė+M−1(τ−Cs− Ds)+ f , (6)

where f = −M−1(Cq̇r + Dq̇r) − q̈r + ξ(t), is the time-varying
perturbation input vector, and ξ(t) represents the modeling er-
rors, including ummodeled forces, parameter uncertainties and
external disturbances. Defining w = M f , then the following
assumption is made.

Assumption: The time-varying perturbation input vector w
can be approximated by a (p−1)-degree family of Taylor time-
polynomial inputs and a residual term; that is,

w(t) ≈
p−1∑
i=0

αiti+δ(t), (7)

with αi ∈ R3×3 being constant coefficients, and the kth time
derivatives of the residual term δ(t), i.e., δ(k)(t)(k > p), being
uniformly absolutely bounded. Thus w(p)(t) = δ(p)(t).

Define e1 = e, e2 = ė and w1 = w. Then the open-loop track-
ing error dynamics (6) can be rewritten in state space as

ė1 = e2,

ė2 = −Λė+M−1(τ−Cs− Ds)+M−1w1,

ẇ1 = w2,

...

ẇp−1 = wp,

ẇp = δ
(p)(t),

(8)

Assuming that M=I, then C(q̇)= 0 is satisfied if it is defined
using the Christoffel sysmbols [12, 26]. Define ê1 and ê2 as
the estimation of e1 and e2, respectively. Then a modified GPI
observer can be derived for the error dynamics (8) as follows
[26]:

˙̂e1 = ê2−Λê1+ (λp+1−Λ)ẽ,
˙̂e2 = λpẽ,
˙̂w1 = ŵ2+λp−1ẽ,
...

˙̂wp−1 = ŵp+λ1ẽ,
˙̂wp = λ0ẽ,

(9)

where ẽ = e− ê1, the observer gains λi ∈ R3×3, i = 0, 1, . . . p+1
are diagonal positive definite. λi j is used to represent the jth
diagonal element in λi, j= 1, 2, 3. ŵi is the estimation of wi, i=
1, 2, . . . p. p is the order of GPI observer.

The selection of λi is to make sure that the poles of the ob-
server error dynamics in three channels are placed at the desired
locations. The characteristic polynomial of the observer error
dynamics for each channel is as follows:

η(s j) = s j
p+2+λ(p+1) js j

p+1+ · · ·+λ1 js j+λ0 j, (10)

where j= 1, 2, 3. With proper selection of λi, ė≈ ˙̂e1 and w≈ ŵ1.
For the sake of simplicity, the poles in the three channels

are placed in the following manner:

η(s j) = (s j+ωo j)p+2, (11)

where j = 1, 2, 3, ωo j (ωo j > 0) is a parameter to specify the
desired poles. In this paper, the observer order p is set as 2, and
then the observer gains can be easily obtained by comparing
(10) and (11) as follows:

λ0 =

 ω
4
o1
ω4

o2
ω4

o3

 , λ1 =

 4ω3
o1

4ω3
o2

4ω3
o3

 ,

λ2 =

 6ω2
o1

6ω2
o2

6ω2
o3

 , λ3 =

 4ωo1
4ωo2

4ωo3

 .
The design objective is to derive a controller resulting in a

similar structure of (3), in order to preserve the passivity prop-
erty in the closed-loop system. Therefore, a possible selection
of the controller can be given as:

τ = −Kd( ˙̂e1+Λe)− ŵ1 = −Kd s+Kd ˙̃e− ŵ1, (12)

where ˙̃e = ė− ˙̂e1.
With the selection of (12), the closed-loop tracking error

dynamic equation can be obtained by combining (6) and (12):

Mṡ+Cs+ Ds+Kd s = σ. (13)

where σ = Kd ˙̃e+ w̃ and w̃ = w− ŵ1 . It is noted that the closed-
loop tracking error equation (13) has a similar structure with
(3). It can be proved that system (13) is strictly passive from σ
to s.

Finally, since τ is a virtual control input, the real control
input of the proposed trajectory tracking controller is given as
follows:

u = B−1(−Kd( ˙̂e1+Λe)− ŵ1). (14)

It can be seen from (9) and (14) that the only required model
parameter in implementation of the designed control system is
the contact radius L0, which is the geometrical information of
robot. Compared with traditional model-based control design,
such as RAC in [2], the tedious dynamic modeling and param-
eter identification process can be avoided. As a result, the pro-
posed control design may be an attractive option from an im-
plementation point of view. In addition, it can be seen in the
observer (9) and controller (14) that only the position feedback
signal is needed without measuring the robot velocity.
Remark 2. As already mentioned before, since the robot proto-
type is a fully damped dynamic system, the damping injection
may be avoided by exploiting the robot natural damping. In
other words, Kd may be set quite small or even zero in prac-
tice because of an effective exploitation of the robot natural
damping. This design concept is totally different from tradi-
tional control design approach, such as RAC in [2]. In [2], the
robot natural damping is canceled in the feedback linearization
and Kd has to be set large enough to ensure system stability. It
should be pointed out that high frequency disturbance may be
introduced into the control system due to large Kd.
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3.2. Stability analysis
The boundedness of ˙̃e and w̃ have been proved in [26], and

thus σ is bounded.
Theorem 1. The closed-loop system (13) is bounded-input
bounded-output (BIBO) stable with respect to the pair (s,σ),
i.e., ∃β1, β2 > 0 such that

∥s∥ ≤ β1+β2 ∥σ∥, (15)

and e ∈ L3
∞, ė ∈ L3

∞.

Proof. Consider a Lyapunov function:

V(t) =
1
2

sT Ms. (16)

According to Property 1, the Lyapunov function (16) satis-
fies:

1
2
λmin(M)∥s∥2 ≤ V ≤ 1

2
λmax(M)∥s∥2. (17)

The derivative of (16) can be derived as follows:
.

V = sT Mṡ+ 1
2 sT Ṁs

= sT (σ−Cs− Ds−Kd s)+ 1
2 sT Ṁs

= sTσ+ 1
2 sT (Ṁ−2C)s− sT (D+Kd)s

= sTσ− sT (D+Kd)s.

(18)

Note that Property 2 has been used in (18).
Combining (17) and (18), the following inequation is gained:

V̇ ≤ − 2λmin(D+Kd)
λmax(M) V +

√
2V

λmin(M) ∥σ∥

=−γ1V+
√

2V
λmin(M) ∥σ∥ ,

(19)

where γ1 =
2λmin(D+Kd)
λmax(M) > 0. Divide both sides of (19) by 2

√
V:

V̇

2
√

V
=

d
dt

(
√

V) ≤ −γ1

2

√
V +

√
1

2λmin(M)
∥σ∥ . (20)

Define H =
√

V , γ= γ1
2 > 0, ε=

√
1

2λmin(M) ∥σ∥, then (20) can
be rewritten as:

Ḣ ≤ −γH+ε. (21)

Then there is:

H(t) ≤ H(0)exp(−γt)+ ε
γ

[
1− exp(−γt)] ,∀t ∈ [0,∞) . (22)

Since −γt≤ 0, 0< exp(−γt)≤ 1, inequation (22) can be writ-
ten as follows by combining with (17):√

λmin(M)
2

∥s∥ ≤ H ≤ H(0)+
ε

γ
. (23)

Then the following can be obtained:

∥s∥ ≤ β1+β2 ∥σ∥, (24)

where β1 =
√

2
λmin(M) H(0), β2 =

1
γλmin(M) .

Since s = ė+Λe, and Λ ∈ R3×3 is diagonal positive definite,
it can be easily conclude that if s ∈ L3

∞, then e ∈ L3
∞, ė ∈ L3

∞.
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Figure 3: Schematic of the experimental setup.

4. Experiments

Fig. 3 shows the complete schematic of the experimental
setup. The central controller and motor controllers are sim-
ple microcontrollers (all are dsPIC33FJ128MC804 from Mi-
crochip). They were programmed to operate at 40 million in-
structions per second. Three DC motors (Maxon) are the same
with gear reduction ratio of 185.7 and the nominal voltage of 24
V. Each motor is installed with an incremental encoder (1024
counts per turn, Maxon). Three DC motor drivers (LMD18200
from Texas Instruments) are identical.

As seen from Fig. 3, the communication between the cen-
tral controller and the three motor controllers is via CAN bus,
which was programmed to operate at 1 Mb/s. The central con-
troller calculates the control law and generates the control input
to three motor controllers. Then each motor controller gener-
ates the corresponding pulse-width modulation (PWM) signal
to each motor driver. In addition, each motor controller col-
lects information from encoder and then sends it to the central
controller via CAN bus. The robot posture is determined using
odometry which is commonly used in the tracking control study
of mobile robot [27, 28], to name a few. The laptop is used to
receive experimental data via UART. The sample time is set as
10 ms.

4.1. Tracking performance

In this part, experiments were conducted to compare the
tracking performances of the proposed design against traditional
model-based RAC in [2]. The parameters of the robot proto-
type were identified as follows: m = 35 kg, Iv = 1.35 kg ·m2,
r = 0.06 m, Din = 0.147 m, Dout = 0.236 m, L0 = 0.192 m, I0 =

3.15× 10−5 kg ·m2, kt = 0.0292N ·m/A, kb = 328 rpm/V, n =
186, b0 = 1.5× 10−4 Nms/rad, Ra = 0.61 Ω. It should be re-
minded that only the geometrical parameter L0 is needed in the
proposed control design without requiring any other model pa-
rameters.

The controller parameters of RAC were set as:

Kp =

 16
16

16

 , Kd =

 40
40

40

 . (25)
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Table 2: Experimental results: IAE of RAC and POFC

Index IAExy(m) IAEθ(rad) MAExy(m) MAEθ(rad)

RAC 0.979 1.972 0.511 0.132

POFC 0.360 0.202 0.012 0.021

The controller parameters of POFC were set as:

Λ =

 16
16

4

 , Kd =

 1
1

1

 . (26)

The observer parameters of POFC for the x and y channel were
set as ωo1 = ωo2 = 16 rad/s, and the observer parameter for the
rotational channel was set as ωo3 = 4 rad/s. It should be noted
that all of the experiments in this paper were conducted using
the same parameters above, without any retuning.

The integral of absolute error (IAE) and maximum absolute
error (MAE) were used to evaluate the control performances.

The definition of IAE and MAE are as follows:

 IAExy[m] =
∫ T

0

(
|ex|+

∣∣∣ey
∣∣∣)dt,

IAEθ[rad] =
∫ T

0 |eθ |dt.

{
MAExy [m] =max

{
max |ex| , max

∣∣∣ey
∣∣∣ },

MAEθ [rad] =max |eθ | .

In the first experimental scenario, the robot was commanded
to track a circle of 0.8 m radius within 30 s, i.e., xd = 0.8cos( π15 t)
m; yd = 0.8sin( π15 t) m. In the first 10 s, the robot performed
translational motion without rotation, i.e., θd = 0 rad. After 10
s, the desired robot orientation angle was set as θd = 0.35(t−10)
rad. The robot initial posture was set as [0.8(m) 0(m) 0(rad)]T .
Experimental results are shown in Fig. 4. The calculation re-
sults of IAE and MAE (steady state) are shown in Table 2.

It is shown in Fig. 4 (b) that the tracking error of the pro-
posed POFC is much smaller than that of model-based RAC in
both translational and rotational motion. As is displayed in Ta-
ble 2, the IAExy and IAEθ of RAC are almost 3 times and 10
times as large as those of POFC, respectively. It is also found
that the MAExy and MAEθ of RAC are almost 5 times and 6
times as large as those of POFC, respectively. This is due to the
fact that unmodeled dynamics (i.g., friction forces) and param-
eter uncertainties exist in the robot control system, which will
deteriorate the tracking performances of model-based RAC. How-
ever, in the proposed POFC, the unmodeled dynamics and pa-
rameter uncertainties can be estimated in the observer (see Fig.
4 (c)) and compensated in the control input (see Fig. 4 (d)).

Moreover, the proposed output feedback design only re-
quires the robot position information, while RAC is a state feed-
back design requiring both position and velocity information.
Emphasis should be paid that velocity signal is obtained by dif-
ferentiating the position signal in many cases, which may result
in deterioration of the control performance due to the introduc-
tion of high frequency noise.

Table 3: Robustness Comparisons.

IAE IAEWT
xy (m) IAEW

xy(m) IAEWT
θ (rad) IAEW

θ (rad)

RAC 0.147 0.538 0.136 0.637

POFC 0.058 0.075 0.032 0.053

MAE MAEWT
xy (m) MAEW

xy(m) MAEWT
θ (rad) MAEW

θ (rad)

RAC 0.012 0.035 0.011 0.094

POFC 0.005 0.006 0.005 0.007

4.2. Robustness

In this experimental scenario, a lemniscate trajectory was
selected to compare the robustness of the proposed design with
RAC. The reference lemniscate trajectory was set as: xd = 0.4
cos( π40 t) m; yd = 0.4sin( π20 t) m. In the first 40 s, the robot orien-
tation was fixed, i.e., θd = 0 rad. After 40 s, the desired orienta-
tion angle was θd = π40 (t−40) rad. The robot initial posture was
set as [0.4(m) 0(m) 0(rad)]T . The control parameters of both
RAC and POFC were set to be the same as before.

Fig. 5 shows the experimental setup for the robustness test.
The experiments were conducted on a rubber floor, to increase
friction forces. To introduce payload disturbances, a chair was
installed on the robot prototype. In the first 60 s, no payload dis-
turbance was introduced. After 60 s, payload disturbance was
introduced by adding a person (weight: 70 Kg) on the robot
prototype (i.e., totally 105 Kg). In other words, the robot mass
has been increased 200% compared with the original mass (i.e.,
35 Kg). Besides, robot moment of inertia around the mass cen-
ter (Iv) and friction forces also have a significant change due
to the payload disturbance. Therefore, both large parameter un-
certainties and large external disturbances were introduced after
60 s. Experimental results are shown in Fig. 6 and Fig. 7. Table
3 also shows the performance index of the two control methods
after 60 s. IAEWT

xy , MAEWT
xy , IAEWT

θ and MAEWT
θ represent

the index of performance without payload disturbances. IAEW
xy,

MAEW
xy, IAEW

θ and MAEW
θ represent the index of performance

with payload disturbances.
It can be seen in Fig. 6 that the control performance of

RAC has large deviations after the payload disturbance was in-
troduced (i.e., after 60 s). It is also illustrated in Table 3 that
MAExy and MAEθ of RAC with payload disturbances have re-
spectively increased to 292% and 855% compared with RAC
without disturbances. However, it can be seen from Fig. 7 and
Table 3 that for POFC, the tracking performance remains al-
most the same after payload disturbance was introduced. As a
result, compared with RAC, the proposed POFC achieves much
better robustness to large parameter uncertainties and large ex-
ternal disturbances.

4.3. Discussion

The experimental results above demonstrate that the pro-
posed POFC enjoys essentially much better robustness to large
external disturbances and large parameter uncertainties, yet achieves
much better tracking accuracy performances, compared with
RAC. It should be emphasized that the superior performance
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Figure 4: Experimental results of RAC and POFC (circle trajectory): (a) Reference trajectory and responses in the xy-plane. (b) Tracking errors. (c) Estimated
disturbances w(t) by observer. (d) Control input u(t).

Rubber Floor

Figure 5: Experimental setup of robust tests.

of the proposed POFC is achieved only requiring a geometric
parameter, i.e., L0, without any other robot model parameter
information.

It should be noted that Kd in POFC (see (26)) was set con-
siderably small compared with that of RAC (see (25)). Actu-
ally, it is shown in simulations and experiments that Kd can
be set as zero, yet the control performance remains almost un-
changed. Therefore, the problems due to large differential feed-
back, such as introduction of high frequency noise, can be avoided.
This is because the proposed controller makes an effective ex-
ploitation of the robot natural damping. The robot prototype
itself already has large enough damping. However, if the robot
natural damping is not large enough, damping should be added
in the controller.

For RAC, however, the parameter Kd should be selected
large to add enough damping, since the natural damping of the
robot itself has already been canceled in the controller. If RAC
uses the same samll Kd as that of POFC, it is found in the ex-
periments that the control system cannot work and have severe
oscillations.

7



-0.5 0 0.5

x(m)

-0.4

-0.2

0

0.2

0.4

y
(m
) Reference

Without Disturbance

With Disturbance

(a)

0 20 40 60 80

t(s)

0

0.5

1

1.5

2

2.5

3

3.5

(r
a
d
)

Reference

Without Disturbance

With Disturbance

(b)

-0.02

0

0.02

e
x
(m
)

-0.05

0

0.05

e
y
(m
)

0 20 40 60 80

t(s)

-0.1

0

0.1

e
(r
a
d
)

Without Disturbance

With Disturbance

(c)

Figure 6: Experimental results of RAC: (a) Reference trajectory and responses in the xy-plane. (b) Reference trajectory and responses in the rotational direction.
(c) Tracking errors.
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Figure 7: Experimental results of POFC: (a) Reference trajectory and responses in the xy-plane. (b) Reference trajectory and responses in the rotational direction.
(c) Tracking errors.

5. Conclusions

In this paper, a passivity-based output feedback tracking
control scheme has been proposed for a three-wheeled OMR
using only one geometric parameter. Compared with tradi-
tional RAC, the proposed control approach does not require any
model parameter information except the contact radius. The
controller is designed based on a modified GPI observer and
passivity property. The design objective is to preserve the pas-
sivity property of closed-loop system, which is conceptually
different from the traditional control design theoretic method-
ology. The designed control scheme takes full advantage of the
robot natural damping forces, where only considerably small
or non differential feedback is needed. Stability analysis has
shown that the control system is BIBO stable. Experimental re-
sults have demonstrated that the proposed POFC enjoys much
better robustness to large external disturbances and large pa-
rameter uncertainties, yet achieves much better tracking accu-
racy performances, compared with RAC.
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