
Final version of this paper can be sourced via : Cerebral Cortex, 1-12. PMID: 26941381 DOI: 
10.1093/cercor/bhw048 
 

1 
 

Motor Learning induces plasticity in the resting brain - 
Drumming Up a Connection 

 

Ali AMAD M.D, PhD1; Jade Seidman, BSc1; Stephen B. Draper, PhD2 ; Muriel M. K. Bruchhage, MSc1; 

Ruth G. Lowry3, PhD; James Wheeler3 ; Andrew Robertson PhD4; Steven C. R. Williams, PhD1*; Marcus 

S. Smith, PhD3* 

 

1. King's College London, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, London, UK 

2. University of Gloucestershire, School of Sport and Exercise, Gloucester UK 

3. University of Chichester, Department of Sport and Exercise Sciences, Chichester, UK 

4. Queen Mary University, Centre for Digital Music, School of Electronic Engineering and Computer Science, London UK 

* Joint senior authors 

 

 

 

 

 

Corresponding author:  

Dr. Ali Amad 

Centre for Neuroimaging Sciences, 

Box 089, Institute of Psychiatry, Psychology & Neuroscience 

De Crespigny Park, London SE5 8AF, UK. 

ali.amad@kcl.ac.uk 

: +44(0)203 228 3060; Fax: +44(0) 203 228 2116 

 

 

5 848 words 

4 figures 

3 tables 

1 supplementary figure 

80 references  

mailto:ali.amad@kcl.ac.uk


Final version of this paper can be sourced via : Cerebral Cortex, 1-12. PMID: 26941381 DOI: 
10.1093/cercor/bhw048 
 

2 
 

Abstract 

Neuroimaging methods have recently been used to investigate plasticity-induced changes in brain 

structure. However, little is known about the dynamic interactions between different brain regions 

after extensive coordinated motor learning such as drumming. In this paper we have compared the 

resting state functional connectivity (rs-FC) in 15 novice healthy participants before and after a course 

of drumming (30-minute drumming sessions, 3 days a week for 8 weeks) and 16 age matched novice 

comparison participants. To identify brain regions showing significant FC differences before and after 

drumming, without a priori regions of interest, a multivariate pattern analysis was performed. Drum 

training was associated with an increased FC between the posterior part of bilateral superior temporal 

gyri (pSTG) and the rest of the brain (i.e. all other voxels). These regions were then used to perform 

seed-to-voxel analysis. The pSTG presented an increased FC with the premotor and motor regions, the 

right parietal lobe and a decreased FC with the cerebellum. Perspectives and the potential for 

rehabilitation treatments with exercise-based intervention to overcome impairments due to brain 

diseases are also discussed. 

Keywords: fMRI, learning, music, neuroplasticity, resting-state 
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INTRODUCTION  

Neuroplasticity (NP) is defined as the ability of the nervous system to respond to intrinsic or 

extrinsic stimuli by reorganizing its structure, function and connections. Neuroplasticity underlies not 

only normal development and maturation but also skill learning and memory, as well as the 

consequences of sensory deprivation or environmental enrichment (Kolb and Muhammad 2014). Even 

if NP was initially thought to be limited to critical periods in development, it is now largely accepted to 

occur throughout the lifespan. In fact, animal studies have identified an enhancement of adult 

neurogenesis, synaptogenesis, angiogenesis and the release of neurotrophins as a consequence of 

learning and/or physical exercise (Hötting and Röder 2013). Moreover, several famous neuroimaging 

investigations demonstrate adaptative neuroplastic modifications in the structure (Maguire et al. 

2000; Draganski et al. 2004; Driemeyer et al. 2008) and function (Lewis et al. 2009) of the human brain 

in response to environmental demands in healthy adults (Wan and Schlaug 2010). Interestingly, few of 

these neuroimaging studies have investigated neuroplastic modifications following physical activity. 

These existing studies have mainly focused on cognitive facilitation by cardiovascular exercise in older 

adults, failing to investigate young participants or different types of physical activity (Voelcker-Rehage 

and Niemann 2013). 

Over the past decades musical training has gained increasing interest as a paradigm to study 

human experience-related NP in the same general model framework (Herholz and Zatorre 2012). 

Playing a musical instrument is a highly complex task and requires multimodal skills such as bimanual 

motor activity dependent on multi-sensory feedback, fine motor skills coupled with metric precision, 

musical memorization (Wan and Schlaug 2010), and improvisation (Pinho et al. 2014; Beaty 2015). 

These skills involve complex interactions, between sensory and motor systems and high-order 

cognitive processes, which have to be coordinated at a high degree of synchrony and accuracy (Zatorre 

et al. 2007). 

http://www.sciencedirect.com/science/article/pii/S0149763413001012#NEU8168
http://www.sciencedirect.com/science/article/pii/S0149763413001012#NEU11526
http://www.sciencedirect.com/science/article/pii/S0149763413001012#NEU750
http://www.sciencedirect.com/science/article/pii/S0149763413001012#NEU8256
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There is increasing evidence from several different neuroimaging modalities that NP is 

associated with musical training. By using structural neuroimaging, Gaser and Schlaug reported gray 

matter volume differences in motor, auditory, and visual-spatial brain regions when comparing 

professional musicians (keyboard players) with matched groups of amateur musicians and non-

musicians (Gaser and Schlaug 2003). Cerebral activity patterns associated with musical perception in 

musicians have also been studied by using functional MRI (fMRI). A significant difference in the degree 

of activation between musicians and non-musicians was noted in the temporal regions and for 

musicians the degree of activation was correlated with the age at which the person had begun musical 

training (Ohnishi et al. 2001). Functional MRI was also used to explore the brain activations of novices 

trained to play sequences on a piano keyboard (Lahav et al. 2007; Chen et al. 2012; Herholz et al. 2015) 

or to listen and imitate different auditory rhythms (Chen et al. 2007). These studies showed complex 

interactions between auditory and motor brain regions that were associated with musical training. 

Interestingly, drumming, which is a coordinative exercise combining musicality, body 

coordination, cardiovascular exercise, bilateral arm, leg movements, and sensory-motor integration 

processes (De La Rue et al. 2013), has not been studied extensively to date. Only expert drummers 

have been studied thus far. Whilst Tsai and colleagues have shown that the posterior temporal lobes 

are essential for audio-motor processing (Tsai et al. 2012), Petrini et al. showed that expert drummers 

present a reduced activation bilaterally during an audiovisual task in the cerebellum and the left 

parahippocampal gyrus, respectively involved in action-sound representation and audiovisual 

integration (Petrini et al. 2011). 

Recently, resting-state functional connectivity (rs-FC) analyses have been widely used to 

investigate neuroplastic modifications. Rs-FC corresponds to the temporally correlated, low-frequency 

spontaneous fluctuations of blood oxygen level–dependent (BOLD) signals across brain regions that 

occur when a participant is not performing an explicit task (Fox and Raichle 2007). Temporal 

correlations do not appear to be random, as patterns of connectivity have been reliably identified 

across studies and participant. Moreover, it is now widely accepted that the strength of correlations 
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within and between networks has behavioural relevance (Guerra-Carrillo et al. 2014). Interestingly, it 

has been proposed that rs-fMRI is an effective measure of plasticity and that rest activity patterns 

reflect the history of repeated synchronized activation between brain regions. Thus, the study of rs-FC 

is particularly adapted to highlight neuroplastic modifications (Buckner and Vincent 2007; Guerra-

Carrillo et al. 2014).  

In this paper, we have compared the rs-FC in 15 novice healthy participants, by using a fully 

data-driven approach, before and after a course of drumming with another 16 novice participants who 

were again evaluated longitudinally but with no intervention. This longitudinal design was used to 

disentangle cause and effect by investigating the same participants before and after the course of 

drumming. We hypothesized that participants would exhibit a higher level of functional connectivity 

(FC) in the sensory and motor systems after drum training during the resting state, which could not be 

attributed to the MRI session effects (anxiety, novelty of the MRI environment). 
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MATERIAL AND METHODS  

Participants 

Thirty-one young healthy volunteers (16-19 years) with no prior drumming experience and 

with no psychiatric or neurological disorders participated in the study after providing written informed 

consent. The King’s College London College Research Ethics Committee approved the experimental 

protocol. Participants were randomly divided into two groups: drum group and control group.  

Procedure 

Assessment 

All participants were attended in to the Institute of Psychiatry Psychology and Neuroscience 

(IoPPN) at King’s College London for two scanning sessions. At the first scanning session (t1) the 

Edinburgh Handedness Inventory Short Form (EHI) for daily activities (e.g. writing, throwing…)(Veale 

2014) was used to assess each participant’s hand dominance. Responses were coded to generate a 

Laterality Quotient (scores ranging from -100 to 100), which was then used to classify individuals into 

left handers (-100 to -61), mixed handers (-60 to 60) and right handers (61 to 100). Moreover, to assess 

the baseline drumming ability and musical experience, a self-report measure was created. Participants 

reported their level of skill and length of involvement in drumming, playing of another musical 

instrument and involvement in dance or singing. Responses for all domains were coded on an ordinal 

scale (0, no experience; 1, some experience, no formal instruction; 2, limited formal instruction but 

not recent; 3, formal instruction, less than 4 years but not current; 4, formal instruction, exams 

achieved, greater than 5 years involvement and current). 
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Drumming 

Following the first drumming assessment and scanning session the drum group took part in 

three 30-minute low intensity group drumming sessions per week for 8 weeks. Each session was 

delivered by a professional drum tutor and comprised 4 integrated parts: (i) a warm up, focused on 

beating the drum with a relaxed and consistent motion of the drum sticks; (ii) snare drum 

'rudimental' exercises, played on a single drum surface, adopting a ‘flow sticking’ approach to 

sequences of left and right hands (Queen 2007); (iii) coordinated 'groove' patterns, incorporating the 

interplay of bass drum (right foot) and the hi-hat pedal (left foot) with rock/pop back beat 

ostinato patterns played on the hi-hat or ride cymbal and snare drum, including eighth note (quaver), 

quarter note (crotchet), sixteenth note (semiquaver), syncopated quarter note and 

shuffle ostinato patterns (Chaffee 1980); and (iv) performance of learned 'grooves' and 'fill-ins' to 

accompany well-known popular music songs. The complexity of drumming tuition was increased on a 

weekly basis in line with participants’ demonstration of improved drumming coordination and 

technique. The control participants were asked to not take part in any musical activities. After the 8 

weeks (t2) participants came back to the IoPPN for a second drumming assessment and scanning 

session.  

All of the drumming was performed on electronic drum sets for both drumming training (HD3, 

Roland, Nakagawa, Japan) and assessment (TD9, Roland, Nakagawa Japan) with a standard right 

handed five piece configuration comprising a snare drum, three tom-toms, hi-hat, ride cymbal, crash 

cymbal, bass drum and hi-hat pedal (played with the feet). Drumming was assessed following a short 

coaching period on the participants’ ability to play a simple 4 quarter note pattern to the song ‘Green 

Onions’ (Booker T and the MGs, Stax / Atlantic, 1962) and a simple 8 eighth note pattern, consisting of 

regular eighth note hi-hats with alternating kick and snare on the main beats of the bar, to the song 

‘Billy Jean’ (Michael Jackson, EPIC, 1982). Versions without tempo fluctuations were used, created 

using the software ‘Live’ (V9.1, Ableton, Berlin). This software analysed the beat points of the original 

recording and adapted them temporally to ensure that the version of the song heard by the 
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participants was at a constant tempo, with a consistent and precise inter beat interval so errors could 

be accurately recorded. The songs were played out of a single speaker on one channel, whilst the 

underlying beat locations were indicated by recording a click track on a second channel. A standard 

onset detection algorithm (Bello et al. 2005) was used to determine the audio buffer frame in which 

the transient of each beat in the click track occurred. A precise onset detection method was then used 

to find the onset location by iteratively dividing the audio buffer into window segments and 

determining the window in which the energy change was maximal at successively smaller window 

sizes. Thereby, a precise sample was specified for each beat location, accurately placed on the transient 

of each audible click (Robertson 2014). Timing data was exported from the drum set using the musical 

digital interface (MIDI) signal. A comparison with a piezo microphone placed on the snare indicated 

that the recorded MIDI events were a maximum of four milliseconds from the detected onset using 

audio-based methods, and generally much closer. Drumming ability was assessed objectively as the 

percentage of bars of both patterns that were completed during two 2-minute periods of data capture 

(1-3 minutes of each song). To record a completed bar all elements had to be present in each pattern 

and within half a beat (250 ms for 4 quarter note pattern and 125 ms for an 8 eighth note pattern) of 

the perfect timing. We also evaluated the error in events that should have been synchronous 

(flamming) as flam error per bar in milliseconds. For each note of the bar we evaluated the time 

between the two events. When three limbs were involved, we evaluated the difference between the 

first and last event. This was only evaluated for completed bars as it would be impossible to make a 

meaningful measurement where the pattern was breaking down or parts were missing. No practice of 

either song used in the assessment was included in the 8 weeks drumming training. Whilst a drum flam 

can be a sought-after stylistic feature of a pattern, flams were not part of the stylistically correct 

performance for the two chosen patterns. 

 

 



Final version of this paper can be sourced via : Cerebral Cortex, 1-12. PMID: 26941381 DOI: 
10.1093/cercor/bhw048 
 

9 
 

MRI acquisition and preprocessing  

All participants were scanned in a 3T MR scanner (Discovery MR750, General Electric, 

Milwaukee, WI, USA). All participants underwent an anatomical T1-weighted MRI using a gradient-

echo sequence with the following scan parameters: 196 sagittal slices, TR = 7.3 ms, TE = 3 ms, TI = 400 

ms, FA =11°, FOV = 270 mm², matrix size = 256 x 256, voxel size = 1 × 1 × 1 mm3, slice thickness = 1.2 

mm. The rs-fMRI was collected using an echo-planar imaging sequence with the following scan 

parameters: 180 volumes, interleaved ascending slice order, TR = 2000 ms, TE = 30 ms, FA = 75°, FOV 

= 211 mm², matrix size = 64 x 64, voxel size = 3 × 3 × 3 mm3, gap = 0.3 mm. Four dummy scans were 

obtained before each fMRI data acquisition to allow for the equilibration of the MRI signal. During 

acquisition, the participants remained with eyes-open attending a cross-hair on the screen in a wakeful 

resting state. Headphones and earplugs were used to attenuate the acoustic noise of the scanner. 

The anatomical and functional data were preprocessed and analyzed using Statistical 

Parametric Mapping (SPM12) and the CONN toolbox Version 14p 

(http://www.nitrc.org/projects/conn) (Whitfield-Gabrieli and Nieto-Castanon 2012). Functional data 

were preprocessed using a slice scan time correction, realignment (motion correction), registration to 

structural images and spatial normalization to Montreal Neurological Institute (MNI) standardized 

space, smoothing with a Gaussian filter of 5.0 mm spatial full width at half maximum value (FWHM). A 

conventional band-pass filter over a low-frequency window of interest (0.008-0.09) was also applied 

to the resting-state time series. After these preprocessing steps, a CompCor strategy (Behzadi et al. 

2007) was implemented, extracting signal to noise from the white matter (WM) and cerebrospinal fluid 

(CSF) by principal component analysis without affecting intrinsic FC (Chai et al. 2012). These 

components (WM and CSF) and motion parameters were included in the model and considered as 

covariates of no-interest.  

http://www.nitrc.org/projects/conn
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Voxel-to-voxel analysis 

To identify brain regions showing significant FC differences before and after drumming without 

having to restrict the analyses to one or several a priori regions of interest (ROI), whole-brain 

connectivity analysis was performed. In the present study we employed the connectome-MVPA 

approach (multivariate pattern analysis of whole-brain connectome) implemented in the CONN 

toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012). In this approach, a low-dimensional 

multivariate representation characterizing the connectivity pattern between one voxel and the rest of 

the brain was created for each voxel separately. This representation was defined by performing a 

Principal Component Analysis (PCA) characterizing the FC between this voxel and the rest of the brain. 

The resulting component scores were then stored as functional maps and entered into standard 

second-level analyses for between-condition tests (i.e. before and after drum training). Finally, an F-

test was performed, comparing (for each voxel) the component scores across the two conditions. 

Therefore, the second-level statistical analysis provided a multivariate pattern of correlated voxel 

clusters associated with drumming. In other words, regions that are significant in the resulting voxel-

level analyses indicate condition-related differences in connectivity between those areas and the rest 

of the brain. More technical details and an example of use of the connectome-MVPA method can be 

found in (Whitfield-Gabrieli et al. 2015) and in (Beaty et al. 2015). 

Seed-to-voxel analyses 

To explore the FC between clusters found in the voxel-to-voxel analysis and the rest of the 

brain between the conditions, a post hoc seed-to-voxel analysis was performed. Therefore, 10 mm 

spherical regions of interest (ROI) based on peak activation clusters from the whole-brain connectivity 

analysis were extracted and used as seeds to perform seed-to-voxel analysis. Correlations maps were 

then calculated for each participant, per condition, by extracting the mean signal time course from the 

seeds and computing Pearson׳s correlations coefficients with the time course of all other voxels of the 

brain. Those correlation coefficients were converted to normally distributed z-scores using the Fisher 
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transformation to allow for second-level general linear model (GLM) analyses. Second-level within 

group (one sample t-tests) and between group (ANOVA) analyses were performed on the average Z-

maps from the new seeds source ROIs. Finally, a paired t-test was performed to examine the change 

of resting state connectivity before versus after drum training for all participants.  

For confirmatory analysis, seed-to-voxel analyses were repeated using anatomically defined 

ROIs, free from concerns about circular analysis. For this analysis, the pSTG was chosen as it 

corresponds to the main region found in the voxel-to-voxel analysis (See Table 1 and Figure 2) and 

because it is selectively responsible for action-related sounds (Zatorre et al. 2007; Tsai et al. 2012). 

Two 10 mm spherical ROIs were created based on the Harvard-Oxford cortical atlas implemented in  

the CONN toolbox (Whitfield-Gabrieli and Nieto-Castanon, 2012). The MNI coordinates of left and right 

pSTG were respectively (-62, -29, 3) and (61, -24,1). 

As gender and handedness may be a factor which modulates musical training (Koelsch et al. 

2003; Klöppel et al. 2007) additional analyses including gender and handedness as covariates were 

conducted. The same 10 mm spherical ROIs were used as seeds in the control group in order to 

delineate brain changes which are specific to the drum training. To precisely identify the brain areas 

involved, the Harvard-Oxford Cortical and Subcortical Atlas (Desikan et al. 2006; Makris et al. 2006), 

the AAL Atlas (Tzourio-Mazoyer et al. 2002) and the Juelich Histological Atlas (Eickhoff et al. 2007) were 

used. All results were thresholded at a voxel-wise p < 0.001 and at the cluster extent p < 0.01 FWE 

corrected. 

Correlations with drum progression 

To evaluate the association between FC and drum progression, correlations (Pearson's 

coefficients) were performed between the drum progression scores in each participant and the 

connectivity values (z-scores) of regions showing significant differences after drum training from the 

seed-to-voxel analysis. Two scores were used. The first score corresponded to the mean number of 
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bars successfully completed (∆% bars completed) before versus after the drum training (t2-t1 

difference) from ‘Green onions’ and ‘Billy Jean’. The "combined progression score" corresponded to 

the proportion of bars successfully completed before versus after the drum training (t2-t1 difference) 

as the percentage of bars completed (∆% bars completed) from both songs. 

Statistical analyses  

Statistical analyses of demographic data and drum performance were performed using SPSS 

(SPSS version 18, Chicago, Illinois, USA). Independent sample t-tests or Mann-Whitney rank sum test, 

and paired t-tests were used to determine baseline differences, and the effects of drum training 

between and within groups. To test whether there was a significant interaction of group over time, we 

performed a repeated measures ANOVA model by specifying "time" as a within-subjects contrast (t1-

t2, i.e. before and after the drum training) followed by a between subject’s contrast (drummers vs. 

controls). Significance was set at p < 0.05.   
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RESULTS 

Participants and drum progression 

Based on a self-report measure, the drum group (n = 15, 7 men, 8 women, 2 mixed-handed, 

age 16.8 ± 0.7 years) and the control group (n = 16, 8 men, 8 women, all right-handed, age 17.8 ± 1.4 

years) presented no prior drumming experience (all scores ≤ 2). Moreover, there were no statistical 

differences between the two groups in terms of self-reported other musical instrument (p = 0.53 dance 

and singing experience (p = 0.31). 

At baseline, the mean number of bars successfully completed for ‘Green Onions’ and ‘Billie 

Jean’ was not significantly different between the two groups (respectively p = 0.42 and p = 0.12) (see 

Figure 1). After 8 weeks, the mean number of bars successfully completed was significantly increased 

in both groups and for the two songs (see Figure 1). The mean combined progression score was 

significantly higher (p = 0.003) for the drum group (mean = 0.45 ± 0.29) in comparison with the control 

group (mean = 0.17 ± 0.19). A before/after video is available for illustration (see 

https://vimeo.com/141911618). 

For ‘Green Onions’, repeated measures ANOVA revealed no significant effect of group (F = 3.9, 

p = 0.07), a significant effect of time (F = 19.9, p = 0.001) and no group x time interaction (F = 3.3, p = 

0.091). For ‘Billie Jean’, repeated measures ANOVA revealed a significant effect of group (F = 26.1, p < 

0.001), a significant effect of time (F = 36.1, p < 0.001) and significant group x time interaction (F = 

21.9, p < 0.001). There was no significant difference in flam error per bar between t1 and t2 in both 

groups (p = 0.24). 

Voxel-to-voxel analysis 

The connectome-MVPA analysis revealed two symmetric clusters associated with drum 

training (p < 0.005, FWE correction). These clusters consisted of the posterior division of the left and 

right superior temporal gyri (STG) and middle temporal gyri (MTG) and are described as pSTG 

throughout the manuscript (see Table 1 and Figure 2). 

https://vimeo.com/141911618
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Seed-to-voxel analyses 

Group-level seed-to-voxel analyses revealed increased FC after drum training when compared 

to before between left pSTG and left superior parietal lobule (SPL), left inferior temporal gyrus, right 

angular gyrus, right supramarginal gyrus, left and right lateral occipital cortex, right inferior temporal 

gyrus and left inferior frontal gyrus and a decreased FC between the right STG and MTG (posterior 

division) and left and right cerebellum crus I and II (see Figure 3). Peak spatial coordinates in the MNI 

space and the corrected p-value (p < 0.01, FWE correction) are reported in Table 2.  

Group-level seed-to-voxel analyses revealed increased FC after drumming when compared to 

before between right pSTG and right supramarginal gyrus right angular gyrus, right SPL and right pre- 

and postcentral gyrus and a decreased FC with the left STG and MTG (posterior division), left temporal 

pole, bilateral cerebellum crus I and II, left paracingulate gyrus and right MTG (see Figure 4). Peak 

coordinates in the MNI space and the corrected p-value (p < 0.01, FWE correction) are reported in 

Table 3. 

The supplementary inclusion of gender and handedness as covariates did not change the 

results as the same clusters were found. No significant FC differences were observed in the control 

group. 

Improvement in performance and correlations with functional connectivity 

Participants with higher improvement in performance had higher right seed-right parietal lobe 

connectivity scores. Indeed, there was a significant correlation between the improvement in the mean 

number of bars successfully completed for ‘Billie Jean’, the combined progression score and the right 

parietal lobe FC (including the right supramarginal gyrus, the right angular gyrus and the right SPL) 

from the right seed. The correlation coefficients were, r = 0.60 (p= 0.02) and r = 0.57 (p= 0.03), 

respectively (see Supplementary Figure). The improvement in performance did not correlate 

significantly with the FC of the other clusters.   
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Discussion 

The main goal of this study was to determine whether we could visualise significant differences 

in the functional networks engaged in drum training in healthy participants by using rs-FC. Drum 

training was characterised behaviourally in significantly improved performance as assessed by the 

mean number of bars successfully completed for ‘Green Onions’ and ‘Billie Jean’. Interestingly, after 8 

weeks, the mean number of bars successfully completed was significantly increased in both groups 

and for the two songs. This increased drum performance in the age-matched control group can be 

explained by a learning or familiarisation effect since the two songs were no longer novel to the 

participants in both groups. However, the drum group has improved drum performance over and 

above this simple familiarisation effect. Indeed, the progression score was significantly higher for the 

drum group in comparison with the control group. Moreover, a significant effect of time (i.e. before 

and after 8 weeks) has been showed in both groups and for the two songs, and a significant group (i.e. 

drummers vs. controls) x time interaction was showed for ‘Billie Jean’. We were unable to utilise more 

sophisticated measures of drumming performance (such as timing deviations) because we could only 

evaluate the timing scores from the data that made up the completed bars, since in this population (of 

novices) there were periods of no playing and patterns that needed to be stopped as they were playing 

incorrectly. Whilst timing deviation would be a representative statistic for more experienced 

drummers, this relies on the subject's ability to play the pattern correctly in order to be meaningful. 

Drum training was also associated with: (i) an increased FC between the posterior part of bilateral pSTG 

and the rest of the brain (i.e. all other voxels), (ii) an increased FC between pSTG and the premotor 

and motor regions, (iii) an increased FC between pSTG and the right parietal lobe which was correlated 

with drum performance and (iv) a decreased FC between regions of the cerebrum and the cerebellum. 

These results could not be attributed to the MRI session effects (anxiety, novelty of the MRI 

environment) or to the normal development (Power et al. 2010; Rubia 2013) as no significant FC 

differences were observed in the age-matched control group. 
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The whole-brain FC underlying drum training was explored and revealed two symmetric brain 

regions located in the pSTG (see Figure 2). This result is consistent with previous experiments about 

training to play a melody on piano keyboard (Chen et al. 2012), hammering or clapping (Lewis et al. 

2005; Galati et al. 2008) and expert drummers (Tsai et al. 2012), which showed that the bilateral pSTG 

were selectively responsible for action-related sounds. Indeed, the pSTG is a crucial hub of the dorsal 

auditory streams which is engaged in sensorimotor integration and spatial processing ('how' and 

'where') (Rauschecker and Tian 2000; Scott et al. 2009) and therefore plays an essential role in 

auditory–motor transformations (‘do-pathway’), which is essential for music processing (Warren et al. 

2005; Zatorre et al. 2007). 

Interestingly, while using the pSTG as a seed to perform a seed-to-voxel analysis, an increased 

FC was found between the right pSTG and the left precentral and postcentral gyri including the ventral 

premotor cortex (vPMC) and the primary motor cortex. The premotor cortex can compute a variety of 

sensory–motor transformations that are relevant for music and is involved in the motor prediction and 

production of complex sequences (Zatorre et al. 2007). Specifically, the left vPMC, which might work 

in tandem with the pSTG (Hickok and Poeppel 2007; Tsai et al. 2012), could be associated with the 

serial sequence prediction and coupling between hearing music and the execution of a motor 

programme by the motor cortex, that enable the realisation of sensory-cued actions (Zatorre et al. 

2007). 

The left and right pSTG seed regions showed an increased FC respectively with the left and 

right SPL, a coupling essential in sensory-motor transformation (Hickok and Poeppel 2004; Zatorre et 

al. 2007). The SPL, which is anatomically connected to the posterior temporal lobe (Kamali et al. 2014), 

is critical for many sensory and cognitive processes, including sensorimotor (Wolpert et al. 1998) and 

somatosensory integration, motor learning, spatial perception, mental rotation, visuospatial attention, 

and memory (Wang et al. 2015). Moreover, it has been involved in the perception of bimanual 

interaction with an external object (Naito et al. 2008) and the storage of movements and kinematics 
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(Seitz et al. 1997). This appears to be very consistent with the present experiment involving drum 

training. In the music training framework, the SPL has also been suggested to coordinate the complex 

spatial and timing components of musical performance (Langheim et al. 2002). After drum training, 

both pSTG were also more functionally connected with the right inferior parietal lobule (IPL), which 

comprises of the angular and supramarginal gyri, and the intraparietal sulcus (IPS). Interestingly, the 

SPL and the IPL cluster, which includes the IPS, are part of the dorsal attention network (Petersen and 

Posner 2012). The dorsal attention network is involved in the maintenance of spatial priority maps for 

covert spatial attention, saccade planning, and visual working memory (Vossel et al. 2014). Moreover, 

our results are consistent with the right hemisphere dominance that has been described for 

visuospatial attention (de Schotten et al. 2011). Interestingly, these posterior parietal regions also 

support mental transformations of acoustic or visual information into motor representations (Warren 

et al. 2005; Zatorre et al. 2007; Herholz et al. 2015). The increased functional coupling between the 

bilateral pSTG and the right dorsal attention network might be associated with the improvement of 

the integration of sensory and motor functions, as the FC of the right parietal lobe cluster was 

significantly correlated with the improvement in drum performance. 

The increased FC between the left pSTG and the inferior frontal gyrus (IFG) corresponds to the 

ventral auditory streams arising from the primary auditory cortex, and projecting anteriorly from the 

primary auditory cortex to the IFG along the STG (Scott et al. 2009). This ventral pathway, also known 

as the what-pathway, is involved in auditory object identification (Leaver and Rauschecker 2010). It is 

specialized for invariant auditory object properties, which are time-independent, and less related to 

motor systems (Zatorre et al. 2007). The left seed was more functionally connected with the left 

inferior temporal gyrus and the lateral occipital cortex. These are part of the ventral visual pathway 

involved in human object perception and recognition and in the encoding of spatial relationships 

between subparts of scenes (Grill-Spector and Weiner 2014). This increased FC reflects the audio-visual 

integration, which has been shown to be crucial in multimodal training (Paraskevopoulos et al. 2012).  
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Interestingly, both seeds also showed a decreased FC with the bilateral cerebellum (crus I and 

II). A recent meta-analytic connectivity study identified these two cerebellar subregions as part of a 

cerebellar cluster significantly associated with motor learning, working memory, recitation and 

repetition as well as music comprehension and production (Riedel et al. 2015). All integral components 

involved in learning to play the drums. According to the Marr-Albus-Ito theory on motor learning, 

cerebellar Purkinje cells (PC) learn to recognize contexts during rehearsal of an action, creating an 

anticipatory neural state (Marr 1969; Ito 1970; Albus 1971). Climbing fibres innervating the PC further 

encode possible errors, consequently suppressing the PC synapses involved in such erroneous 

performance with the help of long-term depression. Once the action has been learned, the occurrence 

of the context alone is enough to fire the PC to cause the next elemental movement. This increase in 

efficiency in turn decreases cerebellar activity in the region used, which enables a resource allocation 

to other areas (Petrini et al. 2011). When such movement involves excitatory output to the cerebral 

cortex, PC form inhibitory synapses with the deep cerebellar nuclei. As a result, an increase in 

cerebellar activity would induce a decrease in activity in cortical target regions and vice versa (Vahdat 

et al. 2011). As a result, the cerebellum is able to integrate and coordinate motor and sensory signals, 

react quicker and with less error, creating a smooth motor performance. With this increase of 

efficiency, a decrease of cerebellar activation in regions required for motor learning, music 

comprehension and production can be expected after drum training.  

Both pSTG also showed a decreased FC with the contralateral STG and the right pSTG showed 

a decreased FC with the ipsilateral anterior part of the MTG. These decreased FC can reflect complex 

interferences between the ipsilateral and contralateral auditory pathways (Pantev et al. 1986) that can 

be associated to the synaptic inhibition involved in sound localisation (Grothe 2003). In fact, auditory 

pathways are formed by excitatory and inhibitory neural connections and networks. It is now well 

known that music induced lateral inhibition in the human auditory cortex (Pantev et al. 2012). 

Moreover, reductions in temporal gyrus activity were reported previously for auditory perceptual pitch 
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training (Jäncke et al. 2001) and discrimination training for micromelodies (Zatorre et al. 2012). The 

right pSTG was also less functionally connected with more frontal regions, such as the paracingulate 

gyrus, which can reflect interactions in top-down strategies. The frontal regions may be involved in the 

control of action plans and in the selection and/ or inhibition of action chunks. This is particularly 

important for musical performance, as chunking is defined as the re-organization or re-grouping of 

movement sequences into smaller sub-sequences during performance, to facilitate the smooth 

performance of complex movements and to improve motor memory (Zatorre et al. 2007). Those kinds 

of patterns involving networks with increased and decreased activations or FC have already been 

described for motor training (Allison et al. 2000; Voelcker-Rehage and Niemann 2013) and in the music 

literature (Lahav et al. 2007; Petrini et al. 2011; Chen et al. 2012; Pinho et al. 2014). They are 

furthermore thought to be associated with greater automaticity in cognitive processes (Voelcker-

Rehage and Niemann 2013; Beaty 2015). 

Finally, the fact that the adult brain is capable of NP modifications, as demonstrated here, 

highlights the potential of rehabilitation treatments designed to induce plastic changes to overcome 

impairments due to brain diseases (Wan and Schlaug 2010), which may include stroke, traumatic brain 

injury and a range of neuropsychiatric disorders (Cramer et al. 2011). Intriguingly, most regions 

highlighted by our analyses (IPL, SPL, MTG and STG) are part of the human mirror neurons system 

(MNS), which is activated when an individual performs an action and when a similar or identical action 

is passively observed (Molenberghs et al. 2012). (Molnar-Szakacs and Overy 2006)[71]From a clinical 

perspective, our results could be particularly interesting to consider a drum-based intervention in 

disorders involving a MNS dysfunction such as in autism spectrum disorders (ASD) (Molnar-Szakacs 

and Heaton 2012).  Drumming with a social partner could then be particularly relevant for individuals 

with ASD. Previous studies investigating interpersonal body movement synchronization and social 

processes found that drumming could improve social interaction (Hove and Risen 2009; Kirschner and 

Tomasello 2009; Yun et al. 2012).  
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By using additional neuroimaging methods, future studies should also investigate further the 

functional interplay between cortical and cerebellar regions. Here, DTI tractography and/or structural 

MRI analyses could explore whether the changes in FC are accompanied by structural changes, which 

would help illuminate the role of the cerebellum in multimodal action learning. Furthermore, the 

complex interplay between the left-right hemispheres, as showed in our FC results, should be 

specifically investigated. Indeed, it is now well known that musical ability is associated with left-right 

differences in brain structure and function (Schlaug et al. 1995). However, drummers are unique in 

that they combine both independent and multi-limb coordination when playing, which is necessary for 

the physical multitasking of drumming and which can lead to complex inter-hemispheric interactions. 

Adding an active control group participating in non-musical motor activities would also help distinguish 

motor action and higher functions involved in music training. Such an active control condition could 

consist of learning a new physically demanding multi-limb motor sport (such as for example playing 

basketball). Finally, adolescence is characterised by changes in brain structure and function, 

particularly in regions of the cortex, notably the frontal, parietal and temporal regions, that are 

involved in higher-level cognitive processes (e.g. memory), for which capacity may be increased in 

adolescence. It has thus been suggested that adolescence might represent a second ‘window of 

opportunity’ in brain development (Fuhrmann et al. 2015). Hence, future experimental studies are 

needed to compare effect of environment manipulation, such as drum training, in child, adolescent, 

and older adult groups. 

In conclusion, this is the first FC study to compare novice healthy participants before and after 

an extensive coordinated motor learning such as drumming. An agnostic data-driven approach, i.e. 

resting-state MVPA, was used to examine the FC of all voxels in the brain, independent of a priori 

anatomical hypotheses. This method allowed us to highlight the central role of the posterior part of 

the STG in this task. Moreover, by using the MVPA results as seeds to compute a seed-to-voxel analysis, 

we showed complex patterns of increased and decreased FC associated with drum training that were 
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partly correlated with the improvement in drum performance. Indeed, as musical training has been 

shown to modulate unimodal as well as multimodal cortical processing, the seed-to-voxel analyses 

provide important information on the interaction between the cortical areas involved within the whole 

network supporting the instrumental performance (Pantev and Herholz 2011). Finally, one can argue 

that our drum training regimen is a relevant task to highlight the neuroplastic mechanisms involved in 

motor learning in a naïve population and that drum-based intervention could be relevant to overcome 

impairments due to brain diseases. 
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TABLES CAPTIONS 
 

Table 1. Whole-brain connectome-MVPA analysis (voxel-to-voxel analysis). MNI coordinates (x, y, z) 
represent peaks within a cluster. Cluster size corresponds to spatial extent (i.e. number of voxels). 
Correction for multiple comparisons was performed using family-wise error correction at the cluster 
level. L/R = left/ right side of the brain. 

   MNI coordinates   
 

Cluster 

size 

Side 

(L/R) 
Brain areas x y z F max Z max 

Pcorr 

value 

160 L 

Superior Temporal Gyrus 
(posterior division) 

-64 -28 12 15.02 4.78 <0.001 

Middle Temporal Gyrus 
(posterior division) 

-58 -26 -8 9.00 3.72  

49 R 

Superior Temporal Gyrus 
(posterior division) 

64 -18 02 11.71 4.25 <0.005 

Middle Temporal Gyrus 
(posterior division) 

70 -28 0 8.80 3.67  

 

 

Table 2. Functional connectivity of the left pSTG. MNI coordinates (x, y, z) represent peaks within a 
cluster. Cluster size corresponds to spatial extent (i.e. number of voxels). Correction for multiple 
comparisons was performed using family-wise error correction at the cluster level. L/R = left/ right side 
of the brain. 

 
  

MNI coordinates  
 

 
Cluster 

size 

Brain areas Side 

(L/R) 
x y z T max 

Pcorr value 

Post > Pre         

Cluster 1 741 Superior Parietal Lobule L -36 -50 50 7.85 <0.0001 

  Lateral Occipital Cortex L -24 -60 34 7.54  

Cluster 2 526 Inferior Temporal Gyrus L -50 -46 -18 6.36 <0.0001 

Cluster 3 424 Angular Gyrus R 40 -54 52 6.34 <0.0001 

  Supramarginal Gyrus  R 42 -36 44 6.24  

  Lateral Occipital Cortex R 32 -64 42 5.93  

Cluster 4 103 Inferior Temporal Gyrus R 56 -46 -28 8.45 <0.01 

Cluster 5 103 Inferior frontal gyrus L -30 48 -2 6.43 <0.01 

Post < Pre         

Cluster 1 276 Superior Temporal Gyrus  R 54 -30 4 -6.74 <0.001 

  Middle Temporal Gyrus R 68 -42 0 -6.54  

Cluster 2 152 Cerebellum Crus I and II L -18 -76 -36 -6.50 <0.001 

Cluster 3 159 Cerebellum Crus I and II R 22 -72 -28 -5.77 <0.001 
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Table 3. Functional connectivity of the right pSTG. MNI coordinates (x, y, z) represent peaks within a 
cluster. Cluster size corresponds to spatial extent (i.e. number of voxels). Correction for multiple 
comparisons was performed using family-wise error correction at the cluster level. L/R = left/ right side 
of the brain. 

  
 

 MNI coordinates  

 
Cluster 

size  

Brain areas Side 

(L/R) 
x y z T max 

Pcorr 

value 

Post > Pre         

Cluster 1 388 Supramarginal Gyrus  R 38 -48 38 6.19 <0.0001 

  Angular Gyrus R 42 -54 50 6.09  

  Superior Parietal Lobule R 32 -54 44 5.73  

Cluster 2 309 Precentral Gyrus  L -48 -10 32 5.67 <0.0001 

  Postcentral Gyrus L -44 -20 32 5.56  

Post < Pre         

Cluster 1 1010 Middle Temporal Gyrus  L -52 -24 -12 -7.64 <0.001 

  Temporal Pole L -50 20 -20 -7.53  

  Superior Temporal Gyrus  L -58 -32 -2 -7.19  

Cluster 2 137 Cerebellum Crus I and II L -20 -76 -34 -8.88 <0.001 

Cluster 3 134 Cerebellum Crus I and II R 26 -80 -34 -8.28 0.001 

Cluster 4 122 Paracingulate Gyrus L 2 50 14 -6.36 <0.01 

Cluster 5 116 Middle Temporal Gyrus R 48 4 -28 -7.20 <0.01 
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FIGURES  

 

Figure 1. Mean number of bars successfully completed for ‘Green Onions’ and ‘Billie Jean’ before and 

after the drum training. At baseline, the mean number of bars successfully completed was not 

significantly different between the two groups for the both songs (respectively p = 0.42 and p = 0.12). 

After 8 weeks, the mean number of bars successfully completed was significantly increased in both 

groups and for the two songs. Error bars denote the standard deviation. * significant at p < 0.05 ; ** 

significant at p < 0.001 
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Figure 2. Results from the voxel-to-voxel analysis showing areas of highest connectivity in the whole 

brain by comparing before vs after drum training. These clusters consisted of the posterior division of 

the left and right superior temporal gyri (STG) and middle temporal gyri (MTG) and are described as 

pSTG. This map is based on F-contrasts thresholded at p < 0.01, FWE corrected. Clusters were rendered 

on the “ch256” brain template using MRIcroGL (http://www.mccauslandcenter.sc.edu/mricrogl/). L/R 

= left/ right side of the brain. 
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Figure 3. Results from seed-to-voxel functional connectivity (FC) of the left pSTG seed (results of voxel-

to-voxel analysis). Higher FC was detected after drum training within left superior parietal lobule, left 

inferior temporal gyrus, right inferior parietal lobule (angular gyrus and supramarginal gyrus), left and 

right lateral occipital cortex and left inferior frontal gyrus (upper panel, p < 0.01, FWE corrected). A 

decreased FC was measured after drum training within right superior and middle temporal gyrus 

(posterior division) and left and right cerebellum crus (lower panel, p < 0.01, FWE corrected). Clusters 

were rendered on the “ch256” brain template using MRIcroGL 

(http://www.mccauslandcenter.sc.edu/mricrogl/). L/R = left/ right side of the brain.  
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Figure 4. Results from seed-to-voxel functional connectivity (FC) of the right pSTG seed (results of 

voxel-to-voxel analysis). Higher FC was detected after drum training within right inferior parietal lobule 

(angular gyrus and superior parietal lobule) and right pre and postcentral gyrus (upper panel, p < 0.01, 

FWE corrected). A decreased FC was measured after drum training within left superior and middle 

temporal gyrus, left temporal pole, left and right cerebellum crus, paracingulate gyrus and the anterior 

part of the right MTG. Clusters were rendered on the “ch256” brain template using MRIcroGL 

(http://www.mccauslandcenter.sc.edu/mricrogl/). L/R = left/ right side of the brain. 

Supplementary figure. Significant correlation between the right seed-right parietal lobe and the drum 

progression scores.  
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