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Abstract: The dynamic behaviour of coupled pairs of semiconductor lasers is studied using
normal-mode theory, applied to one-dimensional (slab) and two-dimensional (circular cylindrical)
real index confined structures. It is shown that regions of stable behaviour depend not only on
pumping rate and laser separation, but also on the degree of guidance in the structures. Comparison
of results between normal-mode and coupled-mode theories for these structures leads to the tentative
conclusion that the accuracy of the latter is determined by the strength of self-overlap and cross-overlap
of the symmetric and antisymmetric normal modes in the two lasers.

Keywords: semiconductor lasers; coupled lasers; stability; normal modes; coupled modes

1. Introduction

Arrays of laterally-coupled edge-emitting lasers (EELs) and vertical-cavity surface-emitting
lasers (VCSELs) are used for many high-power or high-brightness applications [1,2]. Other potential
applications include high-frequency modulation [3,4], beam-steering [5] and parity-time symmetry
breaking [6]. The theoretical description of physical phenomena in laser arrays is usually based either
on coupled-mode theory or normal-mode analysis. The former has the advantages of simplicity and
physical insight, although it is not accurate for asymmetric structures [7], and can give erroneous
results for anti-guided structures, as discussed in [8,9]. However, for symmetric structures with weak
coupling between lasers, coupled-mode theory has been applied successfully to analyse the locking
behaviour and dynamics of arrays with two or more elements [3,5,10–22]. The normal-mode approach,
which can provide a more accurate description for a wider range of structures, has been used in
conjunction with a more sophisticated treatment of the electron-photon interaction to describe the
beam switching and ultrafast pulsations in VCSEL arrays [23–25].

Comparisons of the coupled-mode and normal-mode methods have been made in terms of
formalism [26] and of numerical results for bifurcations [17] for two-element arrays with real index
guiding. In this situation, the coupling rate η, which in coupled-mode theory is calculated from
the overlap integral of the lateral fields of the individual lasers [27], is related to the frequencies, νs,
νa, of the symmetric and antisymmetric normal modes by η = (νs − νa)/2. Expressions for η in the
case of purely real index guidance (i.e., ignoring any effects of gain or loss) have been derived for
one-dimensional step-index (slab) waveguides [27] and for circular optical fibres that are weakly
guiding (i.e., the difference between core and cladding refractive indices is much less than either
index) [28]. A simplified expression for the latter that is valid for multimode fibre couplers has
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been given by Ogawa [29]. A more general expression for the coupling coefficient between circular
cross-section VCSELs with real guidance is also available [30]. Comparison of the dynamics of a
coupled pair of lasers modelled by slab waveguides indicated generally good agreement between
coupled-mode and normal-mode treatments for edge-to-edge spacings greater than the waveguide
width [17]. The only experimental test (to the best of our knowledge) of coupled-mode limits for laser
pairs was performed by comparing predicted and measured far-field visibility of optically-pumped
VCSELs [31]; the results indicated that coupled-mode theory was inaccurate for a spacing between
the two pump spots of less than 13 µm when the modal radius of a solitary VCSEL was estimated as
3.5 ± 0.5 µm. In general, a clear definition of the ranges of parameters where coupled-mode theory is
sufficiently accurate has not been given as yet.

The present contribution is intended to contribute to the discussion of dynamics in laterally-coupled
pairs of EELs and VCSELs by presenting normal-mode theory and modelling for cases where the laser
waveguides are one-dimensional (slab) or two-dimensional (circular cylindrical) structures. In each
case, the guidance is purely real, so that no account is taken of guidance due to the effects of gain. We
give results for the boundaries between regions of stable and unstable behaviour of these coupled pairs
in the plane of normalised pump rate versus normalised spacing between the lasers. The normal-mode
results are compared with those from coupled-mode theory in each case, as well as comparing between
results for the slab and circular guides.

2. Model

The notation used for pairs of identical one-dimensional (slab) and two-dimensional (circular)
waveguides is shown in Figure 1a,b, respectively. In each case, the core (cladding) refractive index is
ncore (nclad) and the edge-to-edge separation is 2d. The slab half-width and cylinder radius are each a.
With this notation, the conventional definitions of the normalised frequency v and the normalised
decay constant of the fields in the cladding w for single solitary guides are:

v2 =
(2πa
λ

)2(
ncore

2
− nclad

2
)

and w2 =
(2πa
λ

)2(
ne f f

2
− nclad

2
)
, (1)

where λ is the free-space wavelength and neff is the effective index of the single solitary guide.
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Figure 1. (a) Schematic of two coupled slab waveguides. (b) Schematic of two coupled circular
cylindrical waveguides.

In what follows, we confine attention to the lowest-order normal modes in each of the structures of
Figure 1, ignoring polarisation effects. Due to the symmetry of the waveguides, these modes have even
parity, for the lowest order mode, and odd parity for the next highest. We refer to these as ‘symmetric’
and ‘anti-symmetric’, respectively, and are further distinguished by the fact that the anti-symmetric
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mode goes through zero at the origin, whilst the symmetric does not. With the z-axis as the propagation
direction, the total transverse electric field E(x,y,t) can then be expressed as:

E(x, y, t) =
∑

k

Ek(t)Φk(x, y) exp(−iνkt), (2)

where the suffix k denotes the symmetric (s) and antisymmetric (a) modes, νk is the frequency of mode
k, Ek, Φk are the time-dependent and spatial-dependent field components, respectively, and t is time.
For the one-dimensional slab waveguide of Figure 1a, the confinement is in the x direction, so that the
dependence on y can be neglected.

In order to work with rate equations that are autonomous, we introduce the new field variable:

Ẽk = Ek exp(−iνkt). (3)

The rate equation for Ẽk is then:

dẼk
dt

=
[
i
νk − νk′

2
− κ

]
Ẽk +

c
2ng

(1− iα)
∑

k′
Ẽk′

(
g1Γ1kk′ + g2Γ2kk′

)
, (4)

where κ is the cavity decay rate (=1/(2τp) where τp is the photon lifetime), c is the speed of light, ng is
the group index of the cavity, α is the linewidth enhancement factor, g1, g2 are the mean gains per unit
length in guides 1 and 2, and Γ1kk’, Γ2kk’ are overlap factors in guides 1 and 2, defined as:

Γ jkk′ =

∫
guide: j

Φk(x, y)Φk′(x, y)dxdy, (5)

where j = (1,2) labels the guide and the k,k’ label the modes (s,a). The spatial components of the field
are normalised as: ∫

∞

−∞

∫
∞

−∞

∣∣∣Φk(x, y)
∣∣∣2dxdy = 1. (6)

The rate equation for carrier concentration Nj in guide j is:

dN j

dt
= P j − γN j −

c
ng

∑
k,k′

Ẽ∗kẼk′g jΓ jkk′ , j = 1, 2, k = s, a, k′ = s, a, , (7)

where Pj is the pumping rate in the jth guide and γ is the carrier recombination rate. The conventional
linear relationship between gain, g j, and carrier concentration is assumed:

g j = adi f f
(
N j −N0

)
, (8)

where adiff is the differential gain and N0 is the transparency concentration.

3. Results

For numerical calculations, we use a wavelength of 1.3 µm with core radius (half-width) 4 µm
and refractive indices ncore ≈ nclad = 3.4. Three values of the difference (ncore − nclad) are chosen as
0.000971, 0.002 and 0.0055. From Equation (1), these correspond to normalised frequency v = 1.571,
2.255 and 3.740, respectively. These values have been chosen to explore different regions of operation
of the coupled guides in terms of the transverse modes supported by each solitary guide: the cut-offs
for the first and second higher-order modes of the slab are v = π/2 and π, and those for the circular
cylinder are 2.405 and 3.832, respectively. Hence, these values include operating regions, where 1, 2 or
3 transverse modes of the slab and 1 or 2 modes of the circular cylinder are present. The values of the
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other parameters appearing in the rate equations are κ = 327 ns−1, α = 2, γ = 1 ns−1, adiff = 1 × 10−15 cm2

and N0 = 1 × 1018 cm−3.
First, we compare the coupling coefficient η for coupled circular cylindrical guides with the three

values of v. We used industry standard software to numerically compute the normal modes and their
complex two-dimensional field distributions. The results were benchmarked against published data
wherever possible to confirm computational accuracy. For the case of symmetric one-dimensional slab
waveguides, analytic solutions were used as the benchmark. Figure 2 shows the variation of ηwith
the ratio d/a of edge-to-edge spacing to diameter for these three cases. The discrete points (indicated
by circles, triangles and diamonds) are calculated from the difference of lowest-order normal-mode
frequencies, η = (νs − νa)/2. The dashed lines are fitted to these results using the approximation due to
Ogawa [29] of the form:

η ∝
1

d1/2
exp

(
−2w

d
a

)
, (9)

where w is given by Equation (1) for the solitary guide. Also shown in Figure 2 (by square symbols) are
the corresponding calculated results for a slab guide with v = 1.571. In this case, the dotted line is fitted
to these results using the analytical form for the coupling rate [27], which yields η ∝ exp(−2wd/a). In
all cases, the constant of proportionality is found by setting the functions equal to the normal-mode
result at d/a = 1. There is a very good level of agreement between the numerical results and the
analytic forms.
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Figure 2. Variation of coupling rate with d/a for pairs of circular cylindrical guides with three values of
v and for a slab guide with v = 1.571. Symbols (circles, squares, triangles, diamonds) are calculated
from normal-mode theory; dashed and dotted lines are fitted from analytic results given in the text.

Next, we turn our attention to the behaviour of the overlap factors defined in Equation (5) and
evaluated for the lowest-order symmetric and antisymmetric normal modes. Figures 3–5 show plots of
these versus d/a for coupled circular cylindrical guides with v = 1.571, 2.255 and 3.740, respectively.
Each overlap factor is shown as a ratio to the conventional optical confinement factor ΓS for the
lowest-order mode (LP01) of the corresponding solitary single guide, given by [32]:

ΓS = 1−
(
1−

w2

v2

)(
1−

K0
2(w)

K1
2(w)

)
, (10)

where K0, K1 are modified Bessel functions. This ratio occurs when rate Equations (4) and (7) are
cast into normalised form for computational purposes. In these figures, the subscript denoting the
guide has been dropped and the values for subscripts k , k′ are given as |Γsa|, since this quantity
has a different sign in each guide. The symbols (circles, triangles, diamonds) in these figures refer to
numerically calculated points, whilst the broken lines are empirical fits used later in the numerical



Photonics 2019, 6, 74 5 of 10

solutions of the rate equations. It is noteworthy that there is significant structure in the variation of
these overlap factors for low values of d/a in the operating regions considered here, and that the region
of d/a where this structure occurs reduces with increasing v. Plots of the overlap factors for a specific
slab waveguide have been presented in [17], including the detuning between resonant frequencies
of the two lasers, and show somewhat less variation at corresponding d/a values for the case of zero
detuning. In the limit of large d/a, all the ratios of overlap to confinement factors shown in Figures 3–5
tend to a value of 0.5. In this limit, it can be shown that rate Equations (4) and (7) reduce to the
corresponding equations for the coupled-mode approximation [21]; details of this reduction as well as
other aspects of the normal-mode treatment will be presented elsewhere.
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Using the results of Figures 2–5, together with similar results for slab guides, rate Equations
(4) and (7) can be solved numerically and the regions of stable and unstable behaviour determined.
Figures 6–8 show the results of this in terms of Hopf bifurcations in the plane of P/Pth vs. d/a, where Pth
is the threshold value of P for a solitary laser.
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At a given point in the plane, the steady state solutions were found using a nonlinear solver,
started as close as possible to the expected solutions using approximate analytical expressions. These
solutions yielded a Jacobian matrix, which was then diagonalised to find the eigenvalues. At a Hopf
bifurcation, a pair of complex conjugate eigenvalues crosses the imaginary axis and the real part goes
from negative (stable solution) to positive (unstable solution). A bisection routine was then written to
trace the boundary between stable and unstable solutions using this criterion.

Figure 6 shows results for slab and circular cylindrical guides with v = 1.571, as well as the
corresponding results obtained using the values of overlap factors in the limit of large d/a (labelled ‘inf’).
Figures 7 and 8 show the corresponding results for v = 2.255 and 3.740, respectively. The general
form of the curves in each case resembles those reported in earlier literature on laterally-coupled
lasers [11,13,21], although in some cases the branches of the curves at the lower left of each Figure are
not reported. Stable solutions for the antiphase mode are found to the upper right of the upper branches
(away from the origin) and to the lower left of the lower branches of the curves (near the origin); in
other regions, unstable steady state solutions are found. The results labelled ‘inf’ in Figures 6–8 are
in perfect agreement with those from coupled-mode theory, using the approximation for the Hopf
bifurcation [21]:

P
Pth

=
2α ηγ −

adi f f N0

gth

1 +
adi f f N0

gth

. (11)

Comparing the results in Figures 6–8, it is clear that with increasing values of v, the regions of
instability shrink with their limits moving to lower ranges of d/a. This trend follows that of the overlap
factors in Figures 3–5 in their deviation from the value of 0.5 at small d/a. Also, with increasing v,
the curves for the slab and circular cylindrical guides become closer, illustrating the power of this
normalisation. Attempts to achieve a closer match between these curves by choosing differing v values
(in terms of core-cladding index difference) for each, based on matching either the w value or the
coupling rate slope with d/a for the slab and circular guides, met with limited success.

Comparing the curves computed from the normal-mode equations with those from the
coupled-mode approximation (equivalent to the curves labelled ‘inf’) in Figures 6–8 indicates that in
most cases the latter are at lower d/a ranges than the former. For the slab waveguide at the largest value
of v (in Figure 8), the agreement between coupled-mode and normal-mode results is rather closer than
for the other values, and this may result from the limited range over which the normalised overlap
factors deviate from 0.5. It is worth bearing in mind also that higher-order modes (1 for the circle, 2
for the slab) are present in the guides of Figure 8, but we have considered only coupling between the
fundamental modes of each guide (as represented by the lowest-order symmetric and antisymmetric
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normal modes of the coupled structure). The theory of coupling between higher-order modes in
coupled optical fibres, including the effects of spin-orbit interaction, has been presented in [33].

4. Discussion

The normal-mode theory for laterally-coupled pairs of identical semiconductor lasers has been
given in terms of rate equations for the lowest-order symmetric and antisymmetric modes in structures
with real index guidance. Both one-dimensional (slab) and two-dimensional (circular cylindrical)
guides have been considered. Attention has been drawn to the important role played by the overlap
factors between the modes in each guide and their variation with guide separation. In the limit of
large separation, these overlap factors, when normalised by the confinement factor of the fundamental
mode in a solitary laser guide, tend to the value 0.5. In this limit, the normal-mode rate equations
reduce to those for the coupled-mode approximation with the corresponding result that the coupling
rate is given by half the difference in frequencies of the symmetric and antisymmetric modes.

Results for the boundaries between regions of stability and instability in the plane of normalised
pump rate versus normalised guide spacing have been presented for slab and circular guides with three
different values of (weakly-guiding) core-cladding refractive index difference and all other parameter
values the same. These results indicate that the ranges of instability shrink with increasing index
difference and their boundaries move to lower values of guide spacing. The coupled-mode results
become closer to those from the normal-mode theory with increasing index difference and increasing
guide spacing. This behaviour is attributed to the corresponding changes of the normalised overlap
factors with these parameters, in particular their deviation from the limiting value of 0.5. It is, therefore,
postulated that the behaviour of the normalised overlap factors determines the level of accuracy of the
coupled-mode theory, a property that has hitherto not been properly defined.

Future work in this subject will include extension of the normal-mode theory for coupled lasers to
include the influence of polarisation and the effects of higher order modes.
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