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Abstract—This paper investigates pilot design for enhanced
channel estimation in single carrier communication systems over
doubly-selective channels (DSC). Our contribution is twofold:
first, we propose to use Huffman sequences as pilot clusters
with low peak-to-average power ratio (PAPR), yet with good
channel estimation performance when periodic pilot placement
is adopted; second, we propose a low-complexity pilot placement
strategy based on the analysis of the complex-exponential basis
expansion model (CE-BEM) of the DSC. The latter leads to
improved channel estimation performance with useful insights
for pilot placement.

Index Terms—Doubly-selective channels, Channel estimation,
Huffman sequence, Pilot design.

I. I NTRODUCTION

In recent years, there has been a surge of research interest
in high mobility and high rate wireless communications, such
as wireless communications for the high speed trains (HSTs)
[1]–[4]. These wireless channels tend to suffer from both time-
and frequency-selectivity incurred by Doppler and multi-path
propagation, respectively, leading to the doubly-selective chan-
nels (DSC). Channel estimation (CE) in DSC is a challenging
task [1], and is the main focus of this work.

In the literature, various channel modeling and estimation
methods have been proposed for the DSC, both in the context
of single-carrier [2]–[7] as well as multi-carrier communi-
cations [8]–[16]. In many of these works, basis expansion
models (BEM) have been used to parameterize the channels
which can be represented as a weighted combination of only
a few basis functions [13]. The basis functions are already
known to the receiver, and therefore it needs to estimate the
corresponding BEM coefficients only. Since only few BEM
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coefficients need to be estimated, the number of pilot symbols
required for CE is significantly reduced, thereby increasing
the spectral efficiency. Thus, the BEM-based approach greatly
simplifies the CE complexity compared to the case when we
need to estimate the channel coefficient at every time/frequency
instant.

Different types of BEMs have been used to model
the time-varying channels, for example, the conventional
complex-exponential BEM (CE-BEM) [2], generalized CE-
BEM (GCE-BEM) [3], non-critically sampled CE-BEM (NCS-
CE-BEM) [17], polynomial BEM [14], [18]–[20], discrete
prolate spheroidal BEM (DPS-BEM) [6], [21], and Karhunen-
Loeve BEM (KL-BEM) [22]. Among all these, KL-BEM pro-
vides the most accurate modeling but requires the knowledge
of channel statisticswhich also needs to be periodically updat-
ed for the fast time-varying (high Doppler) channels. All other
BEMs are independent of channel statistics, and therefore,
may be more suited for modeling the time-varying channels.
For example, P-BEM is particularly attractive because of its
low modeling errors, especially in the low-Doppler cases [18].
Notably, CE-BEM and its variants, GCE-BEM and NCS-CE-
BEM are also widely used due to their analytical tractability
[23]. We consider NCS-CE-BEM because of its good channel
modeling with less number of BEM coefficients for high
Doppler scenarios, as well as due to its ease of tractability.

In the literature, various techniques have been proposed
for CE in DSC, which comprise pilot-aided, blind as well
as semi-blind estimation methods. Blind or semi-blind CE
techniques, respectively, require no or minimum pilots for CE,
resulting in greater spectral efficiency (SE) as compared to
the pilot-aided techniques [24]. Recently,reliable data-aided
virtual pilot based semi-blind CE technique has been reported
in [25] which uses the soft symbol decisions to iteratively
refine the CE quality. Further, an interesting one-shot blind
CE has been proposed in [26] for OFDM transmission which
exploits different modulation types on different subcarriers to
obtain high CE accuracy and low receiver compelxity over
quasi-static multi-path channels such as that mentioned in [27].
However, in general, blind and semi-blind CE methods are
found to work well in slowly varying channels and may incur
high receiver complexity [28]. On the other hand, pilot-aided
techniques have comparatively low SE but they are extremely
useful to estimate or track the fast time-varying channels where
the channel varies for each symbol in the transmission block,
and are therefore widely used in the current wireless standards
such as LTE-A, 802.11p/n etc.
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In this paper1, we address pilot-aided CE for single-carrier
(SC) communication over DSC. In most of the existing works
on pilot-aided SC transmission, impulse-based pilots or time-
domain Kronecker-delta (“TDKD”) pilot clusters have been
employed for CE. Illustration of the TDKD pilot clusters
can be seen in Fig. 1. These pilots, however, suffer from
high PAPR during transmission which could lead to inefficient
transmission [30], as described next. Since there are very few
impulse pilots (with zero padding on both sides of the non-
zero pilot) in a transmission block, high power is given to
the pilots to obtain a reasonably good channel estimate. For
example, as high as 35%-50% of the total transmission power
should be allocated to the pilots to obtain the optimal CE and
maximum system capacity [2]. This leads to very high power
per pilot symbol, which in turn, can drive the transmitter power
amplifier into its non-linear operating region, thus degrading
the CE quality. Notice that PAPR problem may arise in SC
systems due to other reasons such as modulation and pulse-
shaping [31], but here we consider the PAPR problem arising
from the impulse-based TDKD pilot structure.

We address the above problem by proposing a sequence-
based pilot scheme where the training power is distributed
over multiple sequence symbols (instead of a single non-zero
symbol as in the TDKD pilot structure), leading to low PAPR
pilot transmission. However, while spreading the pilot power
over a sequence, we need to ensure that the zero out-of-phase
aperiodic auto-correlation (OP-AAC) property of the impulse
pilots is preserved so as to obtain a good CE quality. Note that
periodically-placedclustered pilots orsequenceshave been
investigated earlier for the multi-carrier systems under rapidly
time-varying channels [32]–[35]. However, our work is very
different from the existing works because we intend to use
a specific type of sequence with zero OP-AAC property to
satisfy a particular CE optimality condition for single-carrier
DSC. Moreover, based on our analysis, we have also optimized
the pilot positions to improve the CE quality.

First, we analyse the CE mean square error (CE MSE)
for SC transmission in detail, and show that good quality
CE can be obtained by using sequences with zero OP-AAC
property, together with appropriate placement of the pilots
within the transmission block. Using proper sequences and
suitable pilot placement, respectively, we can reduce two
types of interferences during the BEM coefficients’ estima-
tion, namely, the inter-path interference and the inter-BEM
frequency interference terms, which improves the CE quality
significantly.

Second, to satisfy the zero OP-AAC criterion, we specifi-
cally propose the use of Huffman sequences as potential pilot
sequences. Huffman sequences are appealing, not only because
of their excellent AAC property, i.e., zero OP-AAC for all
except the last shift, but also because they offer flexible PAPRs
while still maintaining zero OP-AAC. Thus, we can choose a
Huffman sequence with low PAPR and yet having zero OP-
AAC for a required number of time shifts. Furthermore, Huff-

1 Part of this work has been presented in the conference paper [29].

man sequences can be systematically generated by efficient
algorithms [36], [37].
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A Transmission block consisting of 3 sub-blocks

Fig. 1: A transmission block consisting of three sub-blocks,each containing a time-
domain Kronecker delta (TDKD) pilot cluster. Each impulse pilot is surrounded byL
zeros on both sides, whereL denotes the number of multi-paths.

Third, based on the CE MSE analysis, we propose a
pilot placement strategy to reduce the inter-BEM frequency
interference during BEM coefficients’ estimation, thus leading
to significantly improved CE performance. In the past, several
pilot placement strategies have been proposed but these meth-
ods generally suffer from prohibitively high computational
complexity [38]. For example, a genetic algorithm based pilot
positioning strategy has been proposed in [38] whereas a
heuristic strategy has been mentioned in [17]. In contrast
to these works, our proposed method uses a low-complexity
optimization without any complex matrix inversion operations.
Also, our proposed strategy is based on a systematic analysis
of the CE MSE, and unveils important connections between
the CE MSE and the pilot design process.

The rest of the organization of the paper is as follows. In
Section II, we introduce the system model of data transmission
and the channel model for DSC. In Section III, we describe
the sequence pilot structure and the estimation of the BEM
coefficients for the DSC. In Section IV, we analyze the channel
estimation in detail, and provide a simplified approximation
of the channel estimation error. Based on the analysis in Sec-
tion IV, we propose the Huffman sequence based pilot design
and a low-complexity pilot placement strategy in Section V.
Simulation results are provided in Section VI and conclusion
is given in Section VII.

Notations: Throughout the paper, upper and lower bold face
letters denote matrix and vector, respectively.XH , XT andX∗

denote the conjugate transpose, transpose and the conjugate of
the matrixX, respectively.X−1 denotes the inverse operation
on the square matrixX. [X](i,j) denotes the(i, j)-th element
of the matrix X. tr[X] denotes the trace of the matrixX.
[X](i,:) andxi denote theith row of the matrixX, and theith

element of the vectorx, respectively.E{·} is the expectation
operator.IN , 0M×N and 0M denote theN × N identity
matrix, a zero matrix of dimensionM × N and a length-
M zero vector, respectively.CN (0, x) denotes a circularly
symmetric complex normal variable with mean 0 and variance
x. (a)+ = max(a, 0) .

II. SYSTEM AND CHANNEL MODEL

A. System Model

We consider transmission over a DSC with a single antenna
each at the transmitter and the receiver. A block-based trans-
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mission design is adopted, where the data-pilot multiplexed
symbols (see Fig. 1) are transmitted and received in blocks
of length N , i.e., [x[1], x[2], ..., x[N ]]T , wherex[n] denotes
the transmitted symbol at thenth time-instant. The transmitter
sends the datax[n] at a data rate of1T symbols/sec, where
T denotes the symbol time. Then the discrete-time baseband
representation of the received signaly[n] is given as

y[n] =

L∑

l=0

h[n; l]x[n− l] + v[n], (1)

whereh[n; l] denotes the digital baseband time-varying multi-
path channel impulse response (CIR), which subsumes the
physical channel between the transmitter and the receiver, the
transmit as well as the receive pulse shaping filters, at thenth

time instant for an impulse introducedl samples previously,
L denotes the number of multi-paths defined asL = ⌊ τmax

T ⌋,
with τmax being the maximum delay spread of the channel, and
v[n] denotes the circularly symmetric AWGN, with statistical
distribution ofCN (0, σ2

v).

B. Channel Model

A DSC can be represented in the continuous time(t)-
delay(τ ) domain as

h(t; τ) =

∫ ∞

−∞

SH(τ, ν)ej2πtνdν, (2)

whereSH(τ, ν) denotes thespreading functionof the channel
in the delay(τ )-Doppler(ν) domain [39]. The digital baseband
version of the CIRh[n; l] (see (1)) can then be modeled using
the CE-BEM [2] or its variants such as NCS-CE-BEM [17],
where the channel at thelth delay tap and thenth time-instant
is expressed as a combination of a few complex exponential
basis functions, i.e.,

h[n; l] =

Q∑

q=0

hq(l)e
jωqn + e[n], (3)

whereωq denotes theqth BEM modeling frequency,hq(l) (q ∈
{0, 1, ..., Q}) the qth weight or the qth BEM coefficient2

corresponding to thelth (l = 1, ..., L) path,Q := 2⌈fmaxNT ⌉
the number of BEM coefficients, andfmax the maximum
Doppler frequency. The modeling error is denoted bye[n],
and can be minimized by choosing the appropriate basis
functions. For the above mentioned DSC representation, we
choose the NCS-CE-BEM with the(Q+1) BEM frequencies
ωq ’s uniformly distributed between[−2πfmaxT,+2πfmaxT ]
[17], because it provides a much lower modeling error as
compared to the critically-sampled CE-BEM in [2]. Notice that
NCS-CE-BEM is also a variant of CE-BEM but its modeling
frequencies are constrained within the Doppler range±fmax,
thus leading to better channel modeling.

2 It is worth noting here thathq(l) in (3) corresponds to a discretized version
of the spreading functionSH(τ, ν) in (2). Please refer to [40] for discrete
delay-Doppler spreading function.

III. P ILOT STRUCTURE ANDCHANNEL ESTIMATION

A. Pilot Structure

We assume that the data-pilot multiplexedkth transmitted
block consists ofP sub-blocks, with thepth sub-block consist-
ing of a data vector sub-blocksp and a pilot vector sub-block
bp, and is given as

x , [sT1 (k),b
T
1 (k), ..., s

T
P (k),b

T
P (k)]

T , ∀k.

Specifically, the pilot cluster in thepth sub-block can be
written as

bp = [bp,0, ..., bp,(L−1)︸ ︷︷ ︸
set to zeros

, bp,L, ..., bp,L+M−1, bp,L+M ..., bp,(Np−1)︸ ︷︷ ︸
set to zeros

]T

= [0, 0, ...0, , bp,L, ..., bp,L+M−1, 0, 0, ...0]
T , (4)

where the first and the lastL elements of the pilot cluster are
set to zeros (as shown above) so as to avoid the inter-symbol
interference between the data and the pilot symbols across the
sub-block and the main block [2]. The length of each pilot
cluster isNp = 2L +M , whereM is the length of the pilot
sequence we wish to design,2L comes from the zeros on
both sides of the sequence. For “impulse” pilot,M = 1 and
Np = 2L+ 1.

Unlike [2] and other existing works, the non-zero pilot
symbols inbp, i.e.,[bp,L, ..., bp,L+M−1] is asequenceof length
M , instead of animpulse. An example of such pilot sequence
has been shown in Fig. 2. The motivation behind using a
sequence as pilot is to reduce the PAPR of the transmitted
pilot. Formally, the PAPR of a time-domain length-N sequence
b with elements{bn} is defined as [41]:

ρ(b) =

max
0≤n≤N−1

|bn|
2

(1/N)
N−1∑
n=0

|bn|2
(5)

From (5), the PAPR of the impulse pilot shown in Fig. 1
is 2L+1. Clearly, by spreading the pilot power over multiple
elements of a sequence, we can reduce the pilot PAPR. The
challenge here is that how to design low-PAPR pilot sequence
while there is no performance loss in channel estimation as
compared to the impulse pilot based scheme. To this end, we
propose to use Huffman sequences as the pilot clusters, which
will be detailed in Section IV.

Fig. 2: A transmission block consisting of three sub-blocks,each containing a data sub-
block (black) and a sequence-based pilot cluster (red). Each sequence pilot is surrounded
by L = 2 zeros on both sides, whereL denotes the number of multi paths.ni denotes
the “start” position of the length-M sequence in theith sub-block.

B. Estimation of BEM Coefficients [2]

Since the DSC is modeled using BEM, we only need to
estimate the BEM coefficients corresponding to appropriate
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basis functions in order to construct the channel at every time
instant. Using (1) and (3), the received signal can be written
in matrix form as

y = Hx+ v, (6)

whereH =
∑Q

q=0 DqHq, Dq = diag[1, ejωq , ..., ejωq(N−1)],
andHq is a lower triangular Toeplitz matrix with first colum-
n [hq(0), ..., hq(L), 0, ..., 0]

T , and v consists of the AWGN
components, i.e.,v[n] defined in Section II-A. Due to the
zero-padding on both sides of the pilot sequence, (6) can be
segregated into separate data and the pilot equations (ys and
yb, respectively) with corresponding channel matricesHs and
Hb, and noise vectorsvs andvb, where

ys = Hss+ vs, (7)

yb = Hbb+ vb, (8)

with s , [sT1 , ..., s
T
P ], andb , [bT

1 , ...,b
T
P ]

T .
Focusing on channel estimation, we can write (8) as:

yb =

Q∑

q=0



Dq,1Hq,1b1

...
Dq,PHq,PbP


+ vb, (9)

where Dq,p and Hq,p correspond to the sub-matrices cor-
responding to the pilot symbols obtained fromDq and Hq

(shown below (6)), respectively. Specifically,Dq,p (q ∈
{0, 1, ..., Q}, p ∈ {1, 2, ..., P}) for the qth BEM frequency
and thepth sub-block can be written as

Dq,p = diag
([

ejωq(np), ejωq(np+1), ..., ejωq(np+Np−L−1)
])

,

(10)

wherenp ∈ {1, ..., N} denotes the start position of thepth

non-zero pilot symbol in a transmission block (see Fig. 2).
Next, define the pilot matrixBp as

Bp ,




bp,L · · · bp,0
...

. . .
...

bp,Np−1 · · · bp,Np−L−1


 , (11)

It can be verified thatHq,pbp = Bphq [2]. Denotinghq ,

[hq(0), ..., hq(L)]
T , andh , [hT

0 , ...,h
T
Q]

T , we can write the
pilot equation (9) as

yb = Φh+ v, (12)

whereΦ is defined as



D0,1B1 · · · DQ,1B1

...
. . .

...
D0,PBP · · · DQ,PBP


 , (13)

From (12), the MSE-based estimate of theBEM coefficient
vector ĥ is given as

ĥ = (1/σ2
v)(Γ

−1 + (1/σ2
v)Φ

HΦ)−1Φyb, (14)

where the BEM correlation matrixΓ = E{hhH} is assumed
to be known at the receiver. The MSE of the BEM coefficients’

estimation (referred to as “BEM-MSE”) is then given as

MSE , tr((Γ−1 + (1/σ2
v)Φ

HΦ)−1). (15)

Note that for a reasonably good BEM representation of
the DSC, the modeling error can be neglected, and thus
minimizing BEM-MSE also minimizes the actual channel
estimation MSE. Then, to minimize the BEM-MSE shown in
(15), we need to design the pilot sequencesbp (or Bp) so that
the MSE matrixΦHΦ is diagonal or close to diagonal [42]. It
has been shown in [2] thatΦHΦ will be diagonal if periodic
placement of impulse pilot is adopted, the transmission block
lengthN is an integer multiple of the number of sub-blocks,
and the DSC can be accurately represented using CE-BEM
with BEM frequenciesωq ’s uniformly distributed between[
2π
N (−Q

2 ), 2π
N (Q2 )

]
, i.e., ωq = 2π

N

(
q − Q

2

)
, q ∈ {0, 1, ..., Q}.

However, for practical wireless channels, the conventional
CE-BEM may not be able to model the channel accurately,
resulting in large modeling errors [4] and poor CE even when
the matrixΦHΦ is completely diagonal.

More accurate BEM modeling of the channels has been
reported by choosing suitable BEM basis functions [3], [6],
[17], [21] to improve the CE in practical channels. However,
using the above mentioned BEM modeling approaches, the
off-diagonal elements ofΦHΦ may still be non-zeros. Thus,
further CE improvement is possible by minimizing the off-
diagonal elements. In the next sections, we address this issue
by analyzing and designing pilot sequences such that the off-
diagonal elements ofΦHΦ are reduced in magnitude, possibly
to a very small value, thus leading to better CE.

IV. CHANNEL ESTIMATION ANALYSIS

We can expandΦHΦ as:



P
∑

i=1
B

H
i D

H
0iD0iBi

P
∑

i=1
B

H
i D

H
0iD1iBi · · ·

P
∑

i=1
B

H
i D

H
0iDQiBi

P
∑

i=1
B

H
i D

H
1iD0iBi

P
∑

i=1
B

H
i D

H
1iD1iBi · · ·

P
∑

i=1
B

H
i D

H
1iDQiBi

...
...

. . .
...

P
∑

i=1
B

H
i D

H
QiD0iBi

P
∑

i=1
B

H
i D

H
QiD1iBi · · ·

P
∑

i=1
B

H
i D

H
QiDQiBi




,

(16)

It is noted thatΦHΦ consists of(Q + 1) rows, with each
row consisting of(Q + 1) sub-matrices, each of size(L +
1)× (L+ 1). From (16), diagonalizingΦHΦ is equivalent to
solving the following two equations:

P∑

i=1

BH
i DH

jiDjiBi =

P∑

i=1

BH
i Bi = PI, (17)

P∑

i=1

BH
i DH

q1iDq2iBi = 0, q1 6= q2, (18)

whereP denotes the power allocated to the pilot sequence in
one transmission block. Next, we provide an analysis of the
pilot design and the physical interpretations of equations (17)
and (18) which will be useful for the design of low-complexity
pilot structure.
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A. Analysis of Pilot Equations for CE

In this section, we provide an approach to estimate the BEM
coefficients, and show its connection to the diagonality of the
ΦHΦ matrix (equivalently, (17) and (18) will be satisfied). We
assume that the pilot sequences used in all theP sub-blocks of
the transmission block are the same, i.e.,bp = b, p = 1, ..., P ,
or equivalently,bp,j = bj in (4). Furthermore, let us assume
that the first non-zero symbol of the pilot sequence in the
pth sub-block starts at thenp-th position,np being a positive
integer. To focus on the interfering terms for the estimation of
the BEM coefficients, in the next analysis, we neglect the noise
terms. Then, using (1) and (3) (withe[n] set to zero assuming
accurate BEM modeling), the received signal corresponding to
the pilot sequence at the(np + i)th position (i = 0, ...,M +
L− 1) can be written as

y(np + i) =
i∑

l=0

bi−l+L

Q∑

q=0

hq(l)e
jωq(np+i). (19)

Note that in (19),hq(l) = 0 for l > L because of the finite
channel memory. Also,bi−l+L = 0 for (i−l) > (M−1)
because the sequence length isM (see (4)). Collecting the
pilot equations from all the sub-blocks, corresponding to
(np + i)th (p = 1, ..., P ) position, we have

y(i) = [y(n1 + i) y(n2 + i) . . . y(nP + i)]
T

= Fh(0)bi+L + Fh(1)bi−1+L + ...+ Fh(i)bL, (20)

whereF is defined as

F , [f0(i), ..., fQ(i)] =




ejω0(n1+i) . . . ejωQ(n1+i)

ejω0(n2+i) . . . ejωQ(n2+i)

...
. . .

...
ejω0(nP+i) . . . ejωQ(nP+i)


 ,

(21)

with fq(i) , [ejωq(n1+i), ..., ejωq(nP+i)]T , and h(l) ,

[h0(l), h1(l), ..., hQ(l)]
T is a vector consisting of the BE-

M coefficients corresponding to all the BEM frequencies
ωq, (q = 0, 1, ..., Q) for the lth path.

Now, we focus on estimating the BEM coefficient corre-
sponding to theqth BEM frequency for thelth path, i.e.,hq(l).
Multiplying both sides ofy(i), (i = 0, ..., (M −1)) by fHq (i),
we obtain

fHq (i)y(i) = Phq(l)bi+L + P

i∑

l′ 6=l

hq(l
′)bi−l+L

︸ ︷︷ ︸
IPI

+
∑

l′

bi−l′+L

∑

q′ 6=q

fq(i)
Hfq′(i)hq′ (l

′)

︸ ︷︷ ︸
IBI

. (22)

In (22), IPI, referred to as inter-path interference, denotes the
interference tohq(l) from the BEM coefficients of the unde-
sired paths but the same BEM frequencyq, i.e.,hq(l

′), l′ 6= l.
IBI, referred to as inter-BEM-frequency interference, denotes
the interference tohq(l) from different BEM frequencies

of all the paths, i.e.,hq′(l
′), q′ 6= q, ∀l′. In order to

remove the IBI, we need to ensure that the BEM coefficients
corresponding to all BEM frequencies for a particular pathl
should lie on independent estimation bases (or subspaces), i.e.,
the columnsfq(i) in F are orthogonal to one another. From
the orthogonality of the columnsfq(i)H fq′(i) = 0 (q 6= q′),
we obtain

e(ωq2
−ωq1

)(n1+i) + ...+ e(ωq2
−ωq1

)(nP+i) = 0,

q1, q2 ∈ {0, ..., Q}, q1 6= q2. (23)

For various BEM models, the BEM frequenciesωq ’s are
fixed and (23) is not satisfied. This leads to IBI during BEM
estimation whose amount may be significant when the pilot
power increases. In order to satisfy (23), in Section V-B, we
propose to adjust the pilot positionsnp so that the estimation
bases become nearly orthogonal and IBI becomes close to zero.
Furthermore,it can be verified that the condition(23) is related
to (18), as shown in Section IV-B.

Remark 1. From (21) and (23), note that for perfect IBI
cancelation, a minimum number of sub-blocks (equivalently,
pilot clusters) is required, i.e.,P ≥ (Q+1). For high mobility
channels (large Dopplerfmax) and large transmission block
lengthN , Q can be large, and accordingly, many pilot clusters
are required to perfectly cancel the IBI, leading to lower
efficiency.

Assuming that the feasibility conditionP ≥ (Q + 1) in
Remark 1 is satisfied, and the IBI becomes zero in (22), only
the IPI term remains as the interfering term in the estimation
of hq(l). Next, it can be noted that the BEM coefficient for a
particularq andl, i.e.,hq(l), is contained inM pilot equations
only. For example, the variablehq(0) is contained in the
first M equationsy(i), i = 0, ...,M − 1. Collecting all the
equations which containhq(0) for i = 0, ...,M − 1, we get

y , [f∗q (0)y(0), f
∗
q (1)y(1), ..., f

∗
q (M − 1)y(M − 1)]T

= P




bL 0 . . . 0
bL+1 bL . . . 0
bL+2 bL+1 . . . 0

...
...

. . .
...

bL+M−1 bL+M−2 . . . bL+(M−L−1)+




︸ ︷︷ ︸
B




hq(0)
hq(1)
hq(2)

...
hq(L)




(24)

From (24), it is clear that the coefficienthq(0) can be estimated
interference-free if the first column ofB is uncorrelated with
all other columns (Similarly, all otherhq(l), l 6= 0, can also
be estimated). Specifically, the following equations should be
satisfied.

L+M−τ−1∑

i=L

b∗i+τbi = 0, τ = 1, ..., L. (25)

By analyzing the IPI during the estimation of other BEM
coefficients, we get the same set of equations as above (details
omitted here). (25) implies thatBH

i Bi in (17) is a diagonal
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matrix, and therefore, (17) is satisfied. It is worth noting that
the above equation (25) suggests a pilot sequence withimpulse-
like aperiodic autocorrelation properties. This motivates us to
use Huffman sequence as the pilot sequence (for CE) in each
sub-block of the transmission frame. An interesting property of
Huffman sequence is that its aperiodic autocorrelation is almost
impulse-like with zero side-lobes at all time-shifts except at the
last one [36], i.e., exactly the set of conditions for interference-
free BEM estimation as mentioned in (25). Please refer to
Section V-A where we explicitly discuss the Huffman sequence
based pilot designs.

B. Structure of theΦHΦ Matrix in (16)

Once we choose Huffman sequence as the pilot sequence,
(25) is satisfied. Equivalently, (17) is satisfied, and thus the
sub-matrices3(see (16) and Fig. 3), i.e.,Ψq1q1 (q1 = 0, ..., Q),
lying on the main diagonal ofΦHΦ become the scaled iden-
tity matrix PIL+1. Also, the magnitudes of theoff-diagonal
elements of theoff-diagonal(L + 1) × (L + 1) sub-matrices
Ψq1q2 , q1 6= q2 become significantly small. We can observe
this by expandingΨq1q2 in (26) (shown on top of next page),
where we denote∆q1q2 , ωq2 −ωq1 , andu = (m−n). Then,
the value of[Ψq1q2 ](m,n) without the external summation in
(26) can be written as

ej∆q1q2
(np)

M−1∑

i=|u|

(b∗L+i−u+bL+i−(−u)+)e
j∆q1q2

(i+m−u+−1)

(a)
≈ ej∆q1q2

(np)
M−1∑

i=|u|

b∗L+i−u+bL+i−(−u)+
(b)
= 0, (27)

where the approximation(a) is because the phase rotation due
to ej∆q1q2

(i+m−u+−1) is small for typical values of∆q1q2 and
small values ofi (i ≤ M), and the equality(b) is due to the
aperiodic autocorrelation properties of Huffman sequence as
shown in (25). The above approximation is more accurate if
the sequence lengthM is small. Thus theoff-diagonalelements
of the matricesΨq1q2 (q1 6= q2) become significantly small,
resulting in near-diagonalΨq1q2 . Finally, the matrixΦHΦ is
of the form as shown in Fig. 3.

From Fig. 3, we observe thatΦHΦ still contains non-
zero elements on the main diagonal of the off-diagonal sub-
matrices which need to be minimized for enhanced channel
estimation. For off-diagonal sub-matrixΨq1q2 , the diagonal
elements[Ψq1q2 ](m,m) (m = 1, ..., L + 1) in (26) can be
written as

[Ψq1q2 ](m,m) =

M−1∑

i=0

ej∆q1q2
(i+m−1)b∗L+ibL+i

(
P∑

p=1

ej∆q1q2
np

)
.

(28)

Using approximations similar to (27), for typical values of
(∆q1q2 , i), [Ψq1q2 ](m,m) is almost the same for allm =
1, ..., L + 1, i.e., for all the diagonal elements ofΨq1q2 , and
therefore, we denoteβq1q2 , [Ψq1q2 ](m,m), ∀m. Note that

3 Here we define the sub-matrices asΨq1q2 ,
P
∑

i=1
B

H
i D

H
q1i

Dq2iBi.

the term in the bracket of (28) is related to (23) which aims
for minimum IBI. Thus, minimizing the(m,m)-th, i.e., the
diagonal term ofΨq1q2 (q1 6= q2) is equivalent to reducing
the IBI during BEM estimation.

C. BEM-MSE metric approximation

Based on the above analysis, we present below a simplified
BEM-MSE expression. TheΦHΦ matrix in (16) can be
written as (see Fig. 3)

ΦHΦ ≡




Ψ00 Ψ01 . . . Ψ0Q

Ψ10 Ψ11 . . . Ψ1Q

... . . .
. . .

...
ΨQ0 ΨQ1 . . . ΨQQ




≈




PIL+1 β01IL+1 . . . β0QIL+1

β∗
01IL+1 PIL+1 . . . β0Q−1IL+1

...
...

. . .
...

β∗
0QIL+1 β∗

01IL+1 . . . PIL+1


 (29)

=




P β01 . . . β0Q

β∗
01 P . . . β0Q−1

...
...

. . .
...

β∗
0Q β∗

01 . . . P




︸ ︷︷ ︸
B̃

⊗IL+1 ≡ B̃⊗ IL+1. (30)

Using (15) and (30), and assuming thathq(l) are i.i.d. with
varianceδ, 1/(Q+ 1)(L+ 1), i.e., Γ = δI(Q+1)(L+1), and
σ2
v = 1 without loss of generality, we get the simplified

approximate BEM-MSE expression as follows.

MSE ≈ tr[(δ−1I(Q+1)(L+1) + B̃⊗ IL+1)
−1]

= tr[(B̂ ⊗ IL+1)
−1] = tr[B̂−1 ⊗ IL+1] = (L+ 1)tr[B̂−1],

(31)

whereB̂ , (δ−1IQ+1 + B̃).

Remark 2. Note thatΦHΦ in (15) is of dimension(Q +
1)(L + 1) × (Q + 1)(L + 1), and thus its inversion during
numerical search for optimal pilot parameter (specifically, pilot
position) is computationally quite expensive (of the order
O
(
(Q + 1)3(L+ 1)3

)
). On the other hand, the simplified

BEM-MSE in (31) involvesB̂ of dimension(Q+1)×(Q+1)
only. Thus, the simplified BEM-MSE expression allows us to
optimize the pilot parameters with much lower complexity,
which will be used to serve as a benchmark against another
low-complexity algorithm proposed in Section V.

Remark 3. For the impulsepilot, although the off-diagonal
elements of the sub-matricesΨq1q2 (q1 6= q2) are zeros (i.e.
(25) is satisfied becausebi+L = 0, i 6= 0), the main-diagonal
is still prominent, leading to IBI and poor CE.Also, impulse
pilot tends to suffer from high PAPR, and is therefore, not
preferred.
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Ψq1q2 =
P
∑

p=1

ej∆q1q2
np



























M−1
∑

i=0
ej∆q1q2

ib∗L+ibL+i

M−1
∑

i=1
ej∆q1q2

ib∗L+ibL+i−1 . . .
M−1
∑

i=L
ej∆q1q2

ib∗L+ibi

M−1
∑

i=1
ej∆q1q2

ib∗L+i−1bL+i

M−1
∑

i=0
ej∆q1q2

(i+1)b∗L+ibL+i . . .
M−1
∑

i=L−1
ej∆q1q2

ib∗L+ibi+1

...
...

. . .
...

M−1
∑

i=L
ej∆q1q2

ib∗i bL+i

M−1
∑

i=L−1
ej∆q1q2

(i+1)b∗i+1bL+i . . .
M−1
∑

i=0
ej∆q1q2

(i+L)b∗L+ibL+i



























(26)

Fig. 3: An example of|ΦH
Φ| matrix showing the interference during BEM coefficients’

estimation, whereQ = 2, L = 3. Periodic pilot placement is adopted. Because of this,
theΨ01,Ψ10,Ψ12,Ψ21 sub-matrices have large undesired values (yellow-colored) on
their main diagonals. The off-diagonal elements of the sub-matricesΨq1q2

, q1 6= q2,
are close to zero due to the aperiodic autocorrelation property of Huffman sequences.

V. PILOT DESIGN

As discussed in Section IV, minimizing the MSE is equiv-
alent to solving (17) and (18). Based on our above analysis, it
is required to solve (25) and (23), respectively. To this end, we
consider a two-step approach. In the first step (Section V-A),
we propose to solve (25) using a Huffman sequence which has
zero aperiodic auto-correlation sidelobes at all the non-zero
shifts except at the last one. In the second step (Section V-B),
we propose a low-complexity pilot placement strategy to
satisfy the IBI condition (23).

A. Huffman sequence design

We propose to solve the first condition (25) using Huffman
sequence, thanks to its impulse-like aperiodic autocorrelation
property. Specifically, for a length-N Huffman sequence, zero
autocorrelation sidelobes can be observed up to the first(N−2)
time shifts [36]. This implies that for a DSC withL multi-
paths, a Huffman sequence of length at least(L+2) is required
in order to satisfy (25). For example, forL = 3, we need a
length-5 Huffman sequence, sayb1×5, and the overall pilot
cluster, together with zero-padding as shown in (4), is given
as [01×3b1×501×3]. Note that it is possible to find multiple
Huffman sequences to get (25) satisfied. The issue here is to
select the one with very low PAPR.

The Huffman sequence generation, summarized in Al-
gorithm 1, is described as follows. Consider a polynomial
P =

∏N−2
n=0 (x − φnrn), where the rootrn = αn [36], with

α = ej2π/(N−1), and the radiusφn can take a value of either
t or 1/t for a real valuet. For a givent, C = 2N−1 such
polynomials, denoted as{P1, ..., PC}, are possible. A Huffman
sequencegi,t is obtained corresponding to each polynomialPi

by extracting its coefficients. For a givent, the sequence with
the lowest PAPR is then obtained asgt = arg min

i=1,...,C
ρ(gi,t)

(Step 5). Next, we vary the value oft, and choose the Huffman
sequence with the lowest PAPR asg⋆ = arg min

t
ρ(gt)

(Step 7).
Finally, we note that the energy ratio of a Huffman sequence

is large (equivalently, PAPR is less) when about half of the
roots rn lie on circle of radiust and the other half on circle
of radius 1/t [36]. Thus, in Step 2, we need to form the
polynomials for those cases in whichφn = t only for ⌈N−1

2 ⌉
out of N − 1 roots, whereasφn = 1/t for rest of the roots. As
a result, for everyt, only C =

(
N−1

⌈N−1/2⌉

)
Huffman sequences

need to be obtained, thereby reducing the search complexity,
as compared to the exhaustive search whereC = 2N−1.

In our present work, where the number of multi-paths
L is not large, Algorithm 1 is sufficient for searching low-
PAPR Huffman sequences of small lengths. However, for large
Huffman sequences, even after choosingC =

(
N−1

⌈N−1/2⌉

)
,

and after taking into account the invariance operation of
the roots [37], the search complexity increases exponentially
with the sequence length. For such cases, a low-complexity
algorithm can be employed with non-exhaustive search space,
as suggested in [37]. If we want to obtain real-valued Huffman
sequences for oddN , we should also take into account the
extra rootsrn = αnejπ/(N−1) for polynomial generation [37]
(see Step 2 of Algorithm 1). For further details, readers are
referred to [36], [37], [43].

B. Pilot placement design

In this subsection, we optimize the pilot placement to satisfy
(23) for reduced IBI. Specifically, we aim to adjust the pilot
positionsnp, ∀p, for orthogonal (estimation) bases in the
matrix F in (21). An interesting observation is that the pilot
position optimization can be designedseparately from the
sequence design.

We consider the following multi-objective optimization
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Algorithm 1 Low-PAPR Huffman sequence design

1: for t = 1/2 : 0.01 : 2
2: For a givent, form C =

(
N−1

⌈N−1/2⌉

)
polynomials {Pi,t ,∏N−2

n=0 (x− φnrn)} (i = 1, ..., C), where the rootrn = αn, and
φn assumes the value oft ⌈N−1

2
⌉ times only inPi,t, i.e., only

⌈N−1
2

⌉ out of N − 1 roots lie on circle of radiust.
3: Extract the coefficients of the polynomials{Pi,t} to form the

C Huffman sequences{gi,t}.
4: Compute the PAPR ofgi,t using (5), denoted asρ(gi,t).
5: gt = arg min

i=1,...,C
ρ(gi,t).

6: end for
7: Choose the sequence with the least PAPR, i.e.,g⋆ =

arg min
t

ρ(gt).

problem.

min
np∈N ∀p

∣∣∣∣∣

P∑

p=1

ej∆q1q2
np

∣∣∣∣∣ , ∀∆q1q2 , q1, q2 ∈ {0, ..., Q}, q1 6= q2,

(P1)

s.t. |np − np′ | ≥ (2L+M), p 6= p′,

nP +M = (N − L+ 1),

whereN denotes the full search space of the pilot positions,
i.e.,N = {1, ..., N}. Note that by solving (P1), themagnitude
of the left-hand-side of (23) will be minimized. The first
inequality constraint implies that the “starting” non-zero pilot
symbols of two different pilot clusters should be separated by
at least(2L+M) (see Fig. 2 for reference), where overlapping
of zeros of two adjacent pilot clusters is not allowed. The
second equality constraint implies that the transmission block
should end with a pilot sequence followed byL zeros, thus
avoiding inter-block interference to the next block.

On careful examination of the sub-matricesΨq1q2 , we find
that onlyQ objectives need to be minimized in (P1). Moreover,
in our channel model, the BEM frequencies are equi-spaced,
i.e.,∆ := ∆q1q2 = ωq2 −ωq1 = ωq3 −ωq2 , and so on. Finally,
we can re-formulate (P1) as a min-max problem as follows.

n⋆
p = arg min

np∈N ∀p
max

κ∈{1,...,Q}

∣∣∣∣∣

P∑

p=1

ejκ∆np

∣∣∣∣∣ , (P2)

s.t. Constraints in (P1).

The rationale of (P2) is to minimize the maximum corre-
lation between the estimation subspaces in (21). Intuitively, it
makes sense that for minimum inter-BEM frequency interfer-
ence during BEM estimation, the subspaces associated with
the pilot sampling positions must be minimally correlated.
Note that in the conventional periodic sampling by pilots,
the estimation subspaces are highly correlated which leads
to severe performance degradation in BEM estimation. Note
also that by solving (P2), the diagonal elements ofΨq1q2 get
reduced in magnitude, thereby diagonalizing theΦHΦ matrix.

Indeed, it is observed through our simulations that the proposed
pilot position optimization problem (P2) works remarkably
well for the moderate to high normalized Doppler scenarios.

The optimization problem (P2) is a combinatorial opti-
mization problem. For smallQ (e.g. Q = 2) and small
N values, numerical search may be used to find the near-
optimal pilot positions. One low-complexity approach is to
search fornp ∀p in a search space around the periodic pilot
positions [29]. However, for largeQ (high Doppler scenario)
and largeN , numerical search can be computationally very
expensive, and therefore, stochastic search methods such as
sequential/parallel stochastic search [44] or discrete stochastic
optimization [23] are necessitated to find good pilot positions
in a low-complexity manner. Thus, for largeN and largeQ
values, we resort to the stochastic sequential search (SSS)
algorithm (see Algorithm 2) to solve (P2).

Let us denote the objective in (P2) asf(n) ,

max .
κ∈{1,...,Q}

∣∣∣
P∑

p=1

ejκ∆np

∣∣∣, wheren = {n1, n2, ..., nP } denotes

the pilot position vector. In Algorithm 2,I initial pilot positions
(each pilot position vector denoted byn as shown in Step 3),
are generated randomly in the outer loop, keeping in mind the
pilot separation constraints in (P1). For each initialn, the first
non-zero position of each pilot cluster, i.e.,np (p = 1, ..., P )
is sequentially updatedone after another while the positions
of all other pilot clustersnp′ , p′ 6= p are kept fixed. After
updatingnp, the new pilot vectornp is given as

np =arg min
ñ

f(ñ),

s.t. ñ(p′) = n(p′), p′ 6= p; ñ(p) ∈ N \ {np′ , p′ 6= p},

Constraints in (P1). (32)

Step 5 in Algorithm 2 ensures that the sequential update
should stop when the solution is trapped in a local minimum.
Similarly, for each of theI random position initializations, the
best local solution is found and stored. Out of theseI good
solutions, the final solution is obtained by simply choosing the
one with the minimumf(n).

Although the SSS method does not analyze all the pilot
positions exhaustively, its performance is found to be signifi-
cantly better than the conventional periodic sampling approach.
Moreover, our approach, based on exact analysis of the MSE
equations, gives us useful insights into the design of pilot
positions.

Remark 4. It should be noted that if we wish to trans-
mit data with large efficiency on high Doppler channels,
Q(2⌈fmaxNT ⌉) can be large and sufficient number of pilot
clusters may not be available (i.e.,P < Q+1, see Remark 1).
In such a case, solving (P2) directly may not give good
pilot placement results. This is because whenP < Q + 1,
some of the columns ofF (see (21)) will always be highly
correlated. Although solving (P2) may, in general, de-correlate
the columns ofF, most of the columns will still be highly
correlated, leading to significant IBI during BEM estimation.
Instead, we suggest to minimize the maximum correlation
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Algorithm 2 Stochastic Sequential Search (SSS) Algorithm
for pilot placement

1: Initialization : SetI andJ . N̂ = 0I×P . f̂ = 0I .
2: for i = 1, ..., I
3: Randomly generaten(np ⊂ N ), satisfying the constraints in

(P1). Setñ ⇐ 01×P .
4: for j = 1, ..., J
5: if n = ñ goto Step 11end if
6: ñ ⇐ n.
7: for p = 1, ..., P − 1
8: Obtainnp from (32).n ⇐ np

9: end for (p)
10: end for (j)
11: [N̂](i,:) ⇐ n; f̂i ⇐ f(n).
12: end for (i)
13: i⋆ = arg min

i=1,...,I
f̂i.

14: Optimized pilot position vectorn⋆ = [N̂](i⋆,:).

between only the first few columns ofF. Specifically, κ
in (P2) should assume a maximum value of(P − 1), i.e.,
κ ∈ {1, ..., (P − 1)}, so that at leastP columns become
uncorrelated to a large extent. Indeed, this approach shows
remarkable performance improvement after pilot placement,
as also verified through our simulations.

C. Complexity of pilot placement design

Notice that the pilot placement search complexity can be
prohibitively high using the exhaustive search method. In
particular, for searchingP optimal pilot positions (with the
design constraints as mentioned in (P2)) in a length-N block,
approximately

(
N
P

)
searches would be required. For example,

searching9 pilot positions in a block of lengthN = 459 as
in Fig. 12 settings (see Section VI), about1018 searches are
required. This search complexity is reduced drastically using
our proposed pilot placement strategy, as explained next.

Based on the exponential BEM, we have obtained the

optimization functionf(n) , max .
κ∈{1,...,Q}

∣∣∣
P∑

p=1
ejκ∆np

∣∣∣ (see

(P2)). Clearly, the main complexity in computingf(n) comes
fromP complex addition operations for each of theQ different
κ′s, and themax . operation which is essentially a comparison
operation with a complexity ofO(Q), totaling to a complexity
of O(PQ +Q)) ∼ O(PQ) operations.

Now, within each inner iteration (j = 1, ..., J) of the SSS
(see Algorithm 2),np computation (Step8) involvesO(N)
f(n) calculations andO(N) comparisons for the minimization
operations in (32). Thus,np computation involvesO(N) +
NO(PQ) ∼ O(NPQ) operations. Sincenp is computed
for (P−1) pilot positions, and assuming that the inner and
outer iterations occur up toJ (Step4) and I (Step2) times,
respectively, the overall complexity is given byIJO(P 2QN)
operations.

Note that a significant complexity reduction in our approach
comes by considering the objective functionf(n) which
involves onlyO(PQ) addition operations. On the other hand,
other works such as [17], [38] assume a direct MSE objective

minimization for each of the pilot positions, which involves
a complexity of O(Q3) complex multiplication operations
because of the matrix inversion during the MSE computa-
tion. Furthermore, the genetic algorithm based pilot position
optimization in [38] is generally more complex compared to
our Algorithm 2, and may involve tuning of various hyper-
parameters as well as partiala priori knowledge of the
solution.

It is worth noting that sometimes the pilot placement may
result in highly uneven (e.g., very large) data sub-blocks.
Although this improves the overall MSE performance, the
bit error rate (BER) improvement may be limited, especially
for the zero-forcing (ZF) or minimum-sum mean square error
(MMSE) equalizers. This is because a long data sub-block
implies that the pilot symbols on both sides of the data sub-
block may not be able to sample the time-varying channel
fast enough to catch up with its short coherence interval,
leading tolocalizedCE errors over individual long data sub-
block. Therefore, we use trellis-based maximum-likelihood
(ML) equalizers for data equalization to achieve good BER
performance. Finally, in our simulations, we use the pilot
position search using simplified BEM-MSE (see (31)) min-
imization as a benchmark to assess the performance of our
proposed pilot optimization problem (P2).

VI. SIMULATION RESULTS

In this section, we carry out numerical simulation to e-
valuate the proposed pilot design for channel estimation in
DSC. We consider a DSC of orderL = 3, i.e., four multi-
paths. Each channel tap is modeled as an i.i.d. random variable
correlated in time according to Jakes’ model with the corre-
lation function given asJ0(2πnfmaxT ), whereJ0(·) is the
zeroth-order Bessel function of the first kind [6]. The average
channel gain for each path is assumed to be1L+1 so that the
overall channel gain is unity. Unless stated exclusively, the
signal to noise ratio (SNR) is defined as the average SNR
(averaged over all the data and the pilot sub-blocks in the
transmission frame), i.e.,ρ , PT

(N−2LP )σ2
v

[2], wherePT is the
total power over the entire transmission block of the sequence-
pilot based scheme,σ2

v is the noise variance, andP is the
number of sub-blocks within the transmission frame. We make
sure the number of pilots is sufficient so that the number
of equations is not less than(Q + 1)(L + 1), the number
of unknown BEM coefficients. Unless stated otherwise, the
transmission efficiencyη is assumed to be2/3, i.e., the data
symbols constitute66.67% of the transmission frame. In our
simulations, the CE MSE for thelth multi-path is defined as

MSEl =
1

MN

M∑

m=1

N−1∑

n=0

|h(m)(n; l)− ĥ(m)(n; l)|2, (33)

where h(m)(n; l) and ĥ(m)(n; l) denote the actual and esti-
mated channels, respectively, for themth transmission block,
M the number of Monte-Carlo simulations, andĥ(m)(n; l) =
Q∑

q=0
ĥ
(m)
q (l)ejωqn, with ĥ

(m)
q (l) being themth block’s estimat-
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ed BEM coefficient corresponding to the BEM frequencyωq

(see (14)).
First, we consider the case where the normalized Doppler

spreadfmaxT for the fading channel is0.005. SinceL = 3,
the Huffman sequence should be of lengthM = (L+2) = 5.
Due toL zero-padding on both sides of the sequence, the total
pilot length in a pilot sub-block is2L + 5 = 11. In order to
maintainη = 2/3 for the periodic pilot placement, the data
length is set to be22 for each sub-block. ConsideringP = 3
sub-blocks in the transmission frame, the overall frame length
is N = 99 symbols, and thus the number of BEM coefficients,
Q = 2⌈fmaxNT ⌉ = 2.

Using Algorithm 1, we find the lowest PAPR
real-valued4 Huffman sequence-based pilot to be
[0, 0, 0, 1, 1, 0.5,−1, 1, 0, 0, 0]. The positions of the first
non-zero symbols of the periodic pilot sequence in the3 sub-
blocks are given as[n(o)

1 = 26, n
(o)
2 = 59, n

(o)
3 = 92]. During

pilot position optimization, in order to avoid inter-block
interference at the end of the current block (in other words,
the second constraint in (P1) is satisfied), we let the last
sub-block’s first non-zero pilot position to ben3 = 92, i.e.,
same as periodic placement case5. Using numerical search to
solve (P2), high quality pilot position solutions are obtained
as [n⋆

1 = 8, n⋆
2 = 60, n⋆

3 = 92]. The pilot positions before
and after optimization are shown in Fig. 4. Note that after
optimization, the data length is different in each sub-block
(unlike periodic placement case where each sub-block has
data length of22). Finally, the pilot positions obtained by
optimizing the simplified BEM-MSE in (31) are given as
[n⋆

1 = 8, n⋆
2 = 48, n⋆

3 = 92].

Fig. 4: Absolute values of the data (blue asterisks) and pilot(red circles) symbols in a
transmission frame of lengthN = 99 with (a) Periodic pilot positions (b) Pilot positions
after optimization

Fig. 5 shows the channel MSE performances of various
algorithms. We also compare our sequence-pilot based CE
results with the impulse-pilot based scheme, i.e., the case when
impulse pilot (“TDKD” pilot structure, see Fig. 1) is used in
all the3 sub-blocks for CE, each consisting of14 data symbols
and7 (one impulse pilot surrounded byL = 3 zeros on either
side) pilot symbols, totaling to a block length6 N = 63.

Note that for the above mentioned comparison, power
fairness should be carefully taken into account for the sequence

4 For length-5 Huffman sequence, we note that the lowest PAPR attained by
both the complex and real-valued Huffman sequences are the same.5 Note
that for the case of non-contiguous packet-based transmission, even the last
sub-block’s pilot position can be optimized, eventually leading to4 data
sub-blocks and3 pilot sub-blocks. 6 Note that block lengthN = 63 symbols
is chosen in order to maintainη = 2/3.

and impulse pilot based schemes. Specifically, for CE, the
total pilot powerin a transmission block is assumed to be the
same in both the schemes. Similarly, for BER performances,
we ensure that thepower per data or information symbolis
exactly the same in both the schemes. For our simulations,
power allocation between the data and the pilots is denoted by
the pilot-to-data-ratio (PDR), defined as

PDR,
Total pilot power in a block
Total data power in a block

=
Total pilot power in a block

number of data symbols in a block× power per data symbol
.

As discussed previously, for the transmission efficiencyη =
2/3, the sequence pilot scheme has66 data symbols whereas
the impulse pilot scheme has only42 data symbols in a block.
Therefore, when the total pilot power and the power per data
symbol are kept the same in both these schemes, the PDRs
of the two schemes can be different. For example, for the
simulations in Figs. 5 and 6, PDRs for impulse and sequence
pilot schemes are approximately0.37 and0.23, respectively.

In Figs. 5 and 6, “NCS-CE-BEM” denotes thenon-
critically-sampledCE-BEM which provides the best BEM fit
for the CE-BEM [17], and “CE-BEM” denotes thecritically-
sampledCE-BEM mentioned in [2]. “Impulse”, “Huffman”,
and “Random” denote impulse pilot, proposed Huffman-
sequence based pilot, and random pilot sequence, respectively.
“Periodic placement” and “Optimized placement” mean that
the pilot placements are periodic and the proposed optimized
pattern, respectively. “P-BEM” denotes the polynomial BEM
[18]. “GCE-BEM” denotes the generalized CE-BEM [3] in
which oversampling is used to obtain a more precise channel
model. Note that in all the schemes except “GCE-BEM”,
Q = 2, and thereforeP = (Q + 1) = 3 sub-blocks are
sufficient for BEM estimation. On the other hand, in “GCE-
BEM”, Q = 4 due to oversampling, and at least5 sub-blocks
should be used, resulting in the frame length ofN = 105
(comparable toN = 99 for the sequence-based proposed
schemes). Finally, “NCS-CE-BEM-MSE, optimized” denotes
the performances obtained by optimizing the pilot positions
based on the simplified BEM-MSE metric in (31).
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Fig. 5: MSE performances of various algorithms.fmaxT = 0.005, Q = 2.

From Fig. 5, it can be observed that for the same pilot power
in all the schemes, the Huffman sequence pilots with periodic
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pilot placement (“NCS-BEM-Huffman, periodic placement”)
provide much better CE, as compared to the CE-BEM and
GCE-BEM based impulse pilot schemes. Notably, the per-
formance of the P-BEM based impulse pilot scheme is quite
close to the Huffman pilot scheme, but the later has the added
advantage of low PAPR. Due to the pilot power spread over the
sequence symbols,the Huffman pilot cluster has a much lower
PAPR of2.59 (please refer to(5) for PAPR calculation.) as
opposed to7 for the impulse pilot. It is worth noting that for
the “NCS-CE-BEM-Huffman, periodic placement”, only the
condition (25) is satisfied due to the Huffman sequence but the
IBI values (see (23)) are large as the pilot positions are not
optimized here. On the other hand, the proposed “NCS-CE-
BEM-Huffman, optimized placement” satisfies (25) and tends
to minimize IBI also in (23), and thus provides significantly
better CE MSE compared to both the impulse as well as the
Huffman pilots with periodic pilot placement. Specifically, its
MSE performance is close to thebenchmarksimplified BEM-
MSE (see (31)) optimization based pilot positions.

We also show random pilot sequence based MSE plots
which, as expected, perform poorly as compared to the pro-
posed pilot design. Note that the “Random, optimized place-
ment” scheme shows poor performance although optimized
pilot positions are adopted. This is because (25) cannot be
satisfied by the random pilot sequence, thus resulting in IPI
during BEM estimation which degrades its MSE and BER
performances.

Fig 6 shows the BER performances of the various al-
gorithms for QPSK modulation using ML (Viterbi) data e-
qualization. For both the sequence and impulse pilot based
schemes, same power is allocated to each data or information
symbol, and here, the SNR on the x-axis denotes the SNR
per data symbol only. Similar to the trend displayed in the
MSE curves shown in Fig. 5, the proposed pilot scheme “NCS-
CE-BEM-Huffman, optimized placement” shows the best BER
performance (close to the benchmark scheme “NCS-CE-BEM-
MSE, optimized placement”).

5 10 15 20

SNR per data symbol (dB)

10-5

10-4

10-3

10-2

10-1

100

B
E

R

CE-BEM-impulse [2]
NCS-CE-BEM-Random, periodic placement
GCE-BEM-impulse [3]
NCS-CE-BEM-Random, optimized placement
P-BEM-impulse [18]
NCS-CE-BEM-Huffman, periodic placement
NCS-CE-BEM-Huffman, optimized placement (Proposed)
NCS-CE-BEM-MSE, optimized placement

Fig. 6: BER performances of various algorithms, QPSK modulation, fmaxT =
0.005, Q = 2.

Note that in Figs. 5 and 6, “MSE-optimized placement”
has been used as the benchmark. In this case, we refer to
the pilot position optimization based on theapproximateMSE
expression of the BEM coefficients’ estimation, as mentioned

in Section IV-C. Fig. 7 shows that the actual BEM-MSE
(15) and the approximate BEM-MSE (31) are quite close for
both the periodic as well as the optimized pilot placement
cases. This validates the approximate BEM-MSE expression
in (31), and thus the pilot position optimization based on the
approximate BEM-MSE is also justified.
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Fig. 7: A comparison of Actual BEM-MSE (15) and Approximate BEM-MSE (31) at
different values of Average pilot SNRs;fmaxT = 0.005, Q = 2.

Next, we consider higher normalized DopplerfmaxT =
0.01 with L = 3 multi-paths and block lengthN = 165. As a
result,Q = 4, and we need5 pilot clusters for5 sub-blocks.
Here, since our main focus is low-PAPR transmission, from
now onwards, we consider sequence-based transmission only.
For the periodic placement, each sub-block has33 symbols,
with 22 data and11 pilot symbols (length-11 sequence),
leading to110 data symbols and55 pilot symbols in the entire
frame. However, after pilot placement optimization, the pilot
positions becomeirregular (no longer periodic), and therefore,
each sub-block’s data length also changes. The proposed pilot
cluster consists of the same length-11 Huffman sequence as
earlier. The PDR is set to0.234, and other channel parameters
are the same as earlier.

The periodic pilot placement is given by[n(o)
1 = 26, n

(o)
2 =

59, n
(o)
3 = 92, n

(o)
4 = 125, n

(o)
5 = 158], whereas the proposed

pilot placement solution (obtained from Algorithm 2) is ob-
tained as[n(⋆)

1 = 8, n
(⋆)
2 = 45, n

(⋆)
3 = 82, n

(⋆)
4 = 119, n

(⋆)
5 =

158]. Note that after optimization, the first pilot cluster is closer
to the edge of the frame, i.e.,n(⋆)

1 = 8. This implies that the
channel sampling by the pilots should start from the beginning
of the frame otherwise the information in the first few channel
samples could not be taken into account (such as in periodic
placement case, which begins with data sub-block followed by
pilot cluster) for CE. Similarly, a pilot cluster placed closer to
the frame end gives better CE.

In Fig. 8, we plot the absolute values of theΦHΦ matrix for
fmaxT = 0.01 which also reflects the interference pattern dur-
ing the BEM estimation. We observe that due to the proposed
pilot design, theΦHΦ matrix becomes almost diagonal. This
implies that the IBI and IPI are significantly reduced during
BEM estimation due to the proposed Huffman sequence and
pilot placement, leading to reduced MSE, and therefore better
CE which is further confirmed by Fig. 9.

Fig. 9 shows that the proposed Huffman sequence-based



0018-9545 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TVT.2019.2958976, IEEE
Transactions on Vehicular Technology

Fig. 8: |ΦH
Φ| matrix due to (a) Periodic pilot positions (b) Pilot positions after

optimization;fmaxT = 0.01, Q = 4.

optimized pilot design (“Huffman, Optimized placement”) has
significantly better CE MSE performance (closest to the bench-
mark “MSE-optimized placement” scheme), as compared to
random sequence based pilots and periodic pilot positions. The
BER plots in Fig. 10 show similar trends, thus proving the
effectiveness of our proposed pilot design.
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Fig. 9: MSE performances of various algorithms;fmaxT = 0.01, Q = 4.

5 10 15 20

SNR(dB)

10-2

10-1

B
E

R

Random, Periodic placement
Random, Optimized placement
Huffman, Periodic placement
Huffman, Optimized placement (Proposed)
Huffman, MSE-optimized placement

Fig. 10: BER performances of various algorithms, QPSK modulation, fmaxT =
0.01, Q = 4.

Remark 5. Note that the “MSE-optimized” scheme serves
as a good benchmark for MSE performances of different
algorithms when the number of BEM coefficientsQ is small.
However, for higher Doppler,Q becomes large and hence the
“MSE-optimized” scheme needs to invert a larger (albeit much
smaller than the original MSE matrix in(15)) (Q+1)×(Q+1)
matrix for each pilot position during exhaustive search, which
can be computationally quite expensive. In contrast, our pro-
posed “min-max” search (see(P2)) does not require any
matrix inversion, and thus, can be used to find the sub-optimal

pilot positions in a low-complexity manner, even for large
Doppler and largeQ.

In Fig. 11, we consider higher normalized Doppler
fmaxT = 0.02, with a transmit symbol durationT = 33.33µs.
Thus, fmax = 600 Hz, which corresponds to a mobility of
324 km/hr for a carrier frequency of2 GHz. The efficiency
η = 59.2% and the PDR is0.54. The channel order is
L = 3, i.e., 4 multi-paths. Accordingly, a low PAPR length-5
Huffman sequence withL zero-padding (ZP) on both sides
[01×3, 1, 1, 0.5,−1, 1,01×3] is used as the pilot cluster for
CE. We also consider the CE MSE performances of other
competitive sequences such as Zadoff-Chu and Generalized
Barker sequences [36] which have low PAPR and low OP-
AAC. For each case, the block length isN = 243 with 9 sub-
blocks, each comprising a data sub-block of16 data symbols
and a pilot sub-block of11 pilot symbols (5 sequence symbols
with 3 ZP on either sides). The sequence pilots are placed
periodically within the transmission block because here, we
want to analyze only the effect of different sequence types (and
not pilot placement) on the CE performance. The number of
BEM coefficientsQ = 2⌈fmaxNT ⌉ = 10.

Note that although a low-PAPR Huffman sequence is cho-
sen, it has a slightly higher PAPR of2.58, as compared to
the other sequences which have a PAPR of2.2 (consider
the ZP during PAPR calculation, see (5)). However, Huffman
sequence outperforms all other sequences in terms of CE,
thanks to its exactzero OP-AAC property. Thus, with only a
slight compromise in PAPR, Huffman sequence shows better
CE capabilities. In comparison, an impulse pilot cluster (not
shown here) would have a much higher PAPR of7 in this case.
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Fig. 11: MSE performances of various sequences;fmaxT = 0.02, Q = 10, L = 3,
number of sub-blocksP = 9, block lengthN = 243, efficiency= 59.2%, Periodic
pilot placement.

In Fig. 12, we compare the performances of various se-
quences for high mobility channels (largefmax), and larger
multi-paths (L) and higher efficiency (η), as compared to
Fig. 11. The system parameters are:T = 16.67µs, fmax =
600, mobility v = 324 km/hr, η = 2/3, L = 5, sequence
length= (L+ 2) = 7, Q = 10, number of sub-blocksP = 9,
block lengthN = 459, and the pilot positions are optimized
using Algorithm 2. SinceN and fmax are quite large, and
we wish η = 2/3, we use only9 pilot clusters (sub-blocks)
here. Due to length-L ZP on both sides of the sequence pilot,
each of the9 pilot clusters is of length-17 (7 + 5 × 2 = 17).
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However, here the number of pilot clustersP < Q, therefore,
due to insufficient number of pilot clusters, BEM coefficients’
estimation is not completely interference-free (see Remark 4)
which may affect the system BERs also. For such a case, as
mentioned in Remark 4, the maximization operation in (P2)
will be done only over(P−1) = 8 terms, i.e.,κ ∈ {1, ..., 8}
in (P2).

For the above system parameters, Fig. 12 shows the BER
performances of various sequence pilot based schemes after
pilot position optimziation. Clearly, the Huffman sequence
shows the best BER performance, with an SNR gain greater
than 3 dB at a BER of 10−2, as compared to the other
sequence based schemes. Furthermore, from Table I, it can
be observed that the PAPR of the Huffman sequence is only
slightly higher than the Zadoff-Chu and Barker sequences, but
its CE MSE and BER performances are comparatively much
better. In comparison, an impulse pilot cluster would have a
much higher PAPR of11 in this case.
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Fig. 12: BER performances of various sequences, QPSK modulation; fmaxT =
0.01, Q = 10, L = 5, number of sub-blocksP = 9, block lengthN = 459,
efficiency= 66.67%, Proposed pilot placement after optimization.

Finally, in Fig. 13, we consider the performance of our
proposed method for the ITU vehicular channel B model with
six multi-paths [45]. The symbol durationT is taken to be
2.77µs (equivalently, a bandwidth of360 KHz). The carrier
frequencyfc = 2 GHz, mobility v = 162 km/hr, and the
maximum Doppler frequencyfmax = 300 Hz. As a result, the
normalized Doppler valuefmaxT = 8.3 × 10−4 is very low,
and thereforeQ = 2, i.e., only(Q+1) = 3 BEM coefficients
suffice to model the channel. The transmission block lengthN
is taken to be540 with 489 data symbols and51 pilot symbols.
Thus, a high spectral efficiencyη = 90.56% is obtained. It is
worth noting that with the above parameters, a block length
of N = 540 is equivalent to six resource blocks (RBs) (2 RBs
perslot in a 3-slot LTE frame structure [46]). This corresponds
to a total duration of1.5 ms frame in a typical LTE physical
resource allocation grid [46]. Each block is divided into3 sub-
blocks, with each sub-block consisting of some data symbols
and a length-17 pilot sequence cluster (the pilot sequences are
the same as in Fig. 12).5% of the total transmission power
is allocated to the pilots and the rest to the data symbols. For
the conventional (periodic pilot pattern based) scheme, equal
number of data symbols, i.e.,163 symbols are placed in each
sub-block whereas for our proposed scheme, variable number

of data symbols are placed in each sub-block, depending on
the pilot pattern optimization.

Fig. 13 shows that our proposed Huffman sequence based
optimized pilot pattern indeed achieves better BER perfor-
mances for the above scenario, as compared to other sequences
with conventional pilot placement. Specifically, the SNR gain
is about4 dB at a BER of10−3, as compared to other sequence
pilot based schemes.
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Fig. 13: BER performances of various sequences, QPSK modulation; fmaxT = 8.3×
10−4, Q = 2, six multi-paths, number of sub-blocksP = 3, block lengthN = 540,
efficiency= 90.56%.

VII. C ONCLUSION

In this paper, we have investigated sequence-based pilot de-
signs for channel estimation (CE) in doubly-selective channels
(DSC). Specifically, we propose the use of low-PAPR Huffman
sequences for CE instead of the conventional high-PAPR
impulse pilots. We provide a detailed analysis of CE with
sequence-based pilots which gives useful insights into the pilot
design process. Based on our analysis, we also propose a low-
complexity pilot placement strategy to significantly improve
the CE. Simulation results show that our proposed pilot design
significantly outperforms the conventional periodic pilots under
various Doppler scenarios, both in terms of CE mean square
error and bit error rates.
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TABLE I: Performances of various pilot sequences at an average SNR of23 dB

Sequence Type Length-7 Sequence
Pilot cluster

for a sub-block
CE MSE (dB) BER

PAPR of pilot

cluster, eqn.(5)

Huffman bH =




1,−0.5506, 0.1516 + 0.9891i,

−0.6341 − 0.5446i,−0.1516 − 0.9891i,

−0.5506,−1


 [01×5,bH , 01×5] −20.83 5.9 × 10−3 3.2

Zadoff-Chu bZ =



1, 0.6235 − 0.7818i,−0.9010 − 0.4339i,

0.6235 + 0.7818i,−0.9010 − 0.4339i,

0.6235 − 0.7818i, 1


 [01×5,bZ , 01×5] −18.53 2.3 × 10−2 2.42

Barker bB =



0.6457 + 0.7636i, 0.6133 + 0.7899i, 0.6178 − 0.7863i,

0.8087 − 0.5882i,−0.2198 + 0.9755i,

0.9998 + 0.0223i,−0.8943 + 0.4474i


 [01×5,bB, 01×5] −17.96 2.9 × 10−2 2.42
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tion for TDS-OFDM systems in rapidly time-varying mobile channels,”
IEEE Trans. Wireless Commun., vol. 17, no. 12, pp. 8123–8135, Dec.
2018.

[36] P. Fan and M. Darnell,Sequence design for communications applica-
tions. Research Studies Press, 1996.

[37] L. Bomer and M. Antweiler, “Long energy efficient Huffman sequences,”
vol. 4, Apr. 1991, pp. 2905–2908.

[38] Z. Tang and G. Leus, “Time-multiplexed training for time-selective
channels,”IEEE Signal Process. Lett., vol. 14, no. 9, pp. 585–588, Sept.
2007.

[39] F. Hlawatsch and G. Matz,Wireless communications over rapidly time
varying channels. Academic Press, 2011.

[40] G. Taubock, F. Hlawatsch, D. Eiwen, and H. Rauhut, “Compressive
estimation of doubly selective channels in multicarrier systems: Leakage
effects and sparsity-enhancing processing,”IEEE J. Sel. Signal Process.,
vol. 4, no. 2, pp. 255–271, April 2010.

[41] S. Hu, Z. Liu, Y. L. Guan, W. Xiong, G. Bi, and S. Li, “Sequence
design for cognitive CDMA communications under arbitrary spectrum
hole constraint,”IEEE J. Sel. Areas Commun., vol. 32, no. 11, pp. 1974–
1986, Nov. 2014.

[42] S. Ohno and G. B. Giannakis, “Capacity maximizing MMSE-optimal
pilots for wireless OFDM over frequency-selective block rayleigh-fading
channels,”IEEE Trans. Inf. Theory, vol. 50, no. 9, pp. 2138–2145, Sept.
2004.

[43] M. H. Ackroyd, “Synthesis of efficient Huffman sequences,”IEEE Trans.
Aerosp. Electron. Syst., vol. AES-8, no. 1, pp. 2–8, Jan. 1972.

[44] C. Qi, G. Yue, L. Wu, Y. Huang, and A. Nallanathan, “Pilot design
schemes for sparse channel estimation in OFDM systems,”IEEE Trans.
Veh. Technol., vol. 64, no. 4, pp. 1493–1505, Apr. 2015.

[45] R. Jain, “Channel models: A tutorial,”
http://www.cse.wustl.edu/j̃ain/cse574-08/ftp/channelmodel tutorial.pdf.

[46] “3GPP TS 36.211 v13.2.0 (2016-06),”3rd Generation Partnership
Project; Technical Specification Group Radio Access Network; Evolved
Universal Terrestrial Radio Access (E-UTRA); Physical channels and
modulation (Release 13), 2016.


