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ABSTRACT Fungi underpin almost all terrestrial ecosystem functions, yet our un-
derstanding of their community ecology lags far behind that of other organisms.
Here, red paddy soils in subtropical China were collected across a soil depth profile,
comprising 0-to-10-cm- (0-10cm-), 10-20cm-, and 20-40cm-deep layers. Using lllu-
mina MiSeq amplicon sequencing of the internal transcribed spacer (ITS) region,
distance-decay relationships (DDRs), and ecological models, fungal assemblages and
their spatial patterns were investigated from each soil depth. We observed signifi-
cant spatial variation in fungal communities and found that environmental heteroge-
neity decreased with soil depth, while spatial variation in fungal communities
showed the opposite trend. DDRs occurred only in 0-10cm- and 10-20cm-deep soil
layers, not in the 20-40cm layer. Our analyses revealed that the fungal community
assembly in the 0-10cm layer was primarily governed by environmental filtering and
a high dispersal rate, while in the deeper layer (20-40cm), it was primarily governed
by dispersal limitation with minimal environmental filtering. Both environmental filter-
ing and dispersal limitation controlled fungal community assembly in the 10-20cm layer,
with dispersal limitation playing the major role. Results demonstrate the decreasing im-
portance of environmental filtering and an increase in the importance of dispersal limi-
tation in structuring fungal communities from shallower to deeper soils. Effectively, “ev-
erything is everywhere, but the environment selects,” although only in shallower soils
that are easily accessible to dispersive fungal propagules. This work highlights that per-
ceived drivers of fungal community assembly are dependent on sampling depth, sug-
gesting that caution is required when interpreting diversity patterns from samples that
integrate across depths.

IMPORTANCE In this work, lllumina MiSeq amplicon sequencing of the ITS region
was used to investigate the spatial variation and assembly mechanisms of fungal
communities from different soil layers across paddy fields in subtropical China, and
the results demonstrate the decreasing importance of environmental filtering and an
increase in the importance of dispersal limitation in structuring fungal communities
from shallower to deeper soils. Therefore, the results of this study highlight that per-
ceived drivers of fungal community assembly are dependent on sampling depth and
suggest that caution is required when interpreting diversity patterns from samples
that integrate across depths. This is the first study focusing on assemblages of fun-
gal communities in different soil layers on a relatively large scale, and we thus be-
lieve that this study is of great importance to researchers and readers in microbial
ecology, especially in microbial biogeography, because the results can provide sam-
pling guidance in future studies of microbial biogeography.
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nderstanding the spatial variation and the mechanisms regulating belowground

microbial communities is essential for maintaining biodiversity (1, 2). Spatial
variation in belowground bacterial communities has been well documented, but this is
less extensively examined in soil fungal communities and especially those from paddy
ecosystems. Paddy ecosystems, composing the third largest cropland area and the
largest anthropogenic wetland on Earth, are crucial for global food security and
environmental sustainability (3-5). In terrestrial ecosystems, fungi are prominent drivers
of almost all terrestrial ecosystem functions such as decomposing organic plant ma-
terial (6-8), with direct consequences for global carbon and nutrient dynamics (9-11).
Currently, there is increasing awareness that the spatial variation in, and assemblages
of, soil microbes may have important aboveground consequences, such as in plant
community structure and ecosystem functioning (12, 13). Thus, more knowledge about
spatial variation and the underlying ecological mechanisms governing fungal commu-
nities from paddy soils is required to support future predictions of ecosystem func-
tioning in these soils.

Diversity patterns, especially beta-diversity patterns, provide evidence for the pro-
cesses underlying community assembly (14). A distance-decay relationship (DDR) de-
scribes the negative relationship between community similarity and geographical
distance (including both horizontal and vertical distance), which is considered to be
one of the most common patterns in ecological communities (15, 16). DDR results from
environmental filtering, dispersal limitation, and ecological drift, acting either in isola-
tion or together. Low environmental heterogeneity, high dispersal rates, and ecological
drift can homogenize the community, thus weakening DDRs (1, 14). Conversely, high
environmental heterogeneity, increased dispersal limitation, and reduced ecological
drift would enhance DDRs (1, 14). Some studies of fungi observed strong DDR between
fungal community similarity and geographical distance across strong environmental
gradients at fine scales (17, 18). At larger spatial scales, however, differences in the
extent and spatial scaling of environmental heterogeneity, soil types, and host groups
causes DDR to be observed (5), but not consistently (19).

DDRs can also provide insight into the driving factors of spatial variation in microbial
communities and thus the processes that govern microbial community assembly. There
are two different but complementary paradigms describing the assemblages of micro-
bial communities, namely, niche-based and neutral-based models (20, 21). Niche-based
theory posits that deterministic processes, including selection (variation selection and
homogeneous selection) and niche partitioning are primarily controlling community
assembly via differentiated habitat preferences and fitness of taxa (22). Neutral-based
theory posits that stochastic processes, including those associated with dispersal
properties, and random fluctuations in species abundances, in other words, ecological
drift, are dominant in governing community assembly (22). Many communities are
jointly regulated by both niche-based and neutral-based processes with different
relative effects depending on climate, edaphic characteristics, spatial factors, biotic
interactions, and biological activities (10, 23, 24), and the contributions of these factors
to community assembly vary across organisms, host types, topography, sampling scale,
and so on, which would also result in different DDR patterns (25, 26).

Much of our knowledge about terrestrial microbial ecology, including, but not
limited to, DDR is from the top 20 cm of the soil column (27, 28). Yet, distinct microbial
community structures have been observed between the topsoil and subsoil because of
their different environments (29, 30). Soil properties change markedly with soil depth,
especially oxygen content, and soil nutrients, including organic matter, nitrogen, and
phosphorus, which all decline sharply. For example, oxygen can be detected only in the
top 10 cm of nonflooded paddy soils; it is undetectable in deeper soils (31, 32). Soil
organic matter also decreases with depth in nonflooded paddy soils, with values of 9.8
g kg™ in topsoil, but undetectable levels at 100-cm depth. A similar pattern is also
observed for total nitrogen, with 0.9 g kg~ in topsoil and again undetectable levels at
100-cm depth (32). These differences in soil properties across different depths of soil
may lead to stronger environmental filtering or nutrition competition (33) and lead to

January/February 2020 Volume 5 Issue 1 e00704-19

mSystems’

msystems.asm.org 2

1sanb Agq 020z ‘0€ Arenuer uo /610 wse swalsAswy/:dny wol) papeojumog


https://msystems.asm.org
http://msystems.asm.org/

Spatial Variation in Soil Fungal Communities

TABLE 1 Soil properties in different soil layers

mSystems’

0-10cm layer® 10-20cm layer 20-40cm layer

Soil property? (unit) Max Min Mean CV (%) Max Min Mean CV (%) Max Min Mean CV (%)
SOC (g/kg) 41.20 17.01 27.26 A 24.55 32.55 12.22 20.28 B 30.70 15.59 3.04 6.47 C 4497
TN (g/kg) 474 1.77 293 A 26.25 3.85 1.29 2.19 B 32.11 1.94 0.32 0.78 C 49.00
TP (g/kg) 1.17 0.42 0.78 A 23.72 1.37 0.38 0.63 B 31.06 1.02 0.20 042 C 42.57
C/N ratio 12.66 9.11 10.94 A 7.47 12.82 8.73 10.86 A 8.71 14.55 7.19 10.01B 1833
TK (g/kg) 27.87 6.50 14.84 A 46.81 28.13 6.44 1531 A 45.66 29.14 6.07 1544 A 47.42
AN (mg/kg) 338.10 15068 241.70 A 19.63 29033 121.28 185.59B 2747 147.00 36.75 7491 C 3573
AP (mg/kg) 97.00 7.75 40.54 A 47.87 61.55 4,53 2434 B 51.52 35.14 2.20 745 C 89.09
Fe (g/kg) 14.64 2.08 721 C 46.43 20.58 1.70 10.88 B 48.16 27.32 1.01 16.63 A 35.14
pH 5.49 4.71 511B 3.90 5.53 4,75 510 B 342 6.52 493 553 A 5.82
CEC (mol/qg) 18.75 8.14 11.83 A 23.85 14.67 7.14 1032 B 19.56 13.17 6.73 9318B 19.92

aS0C, soil organic carbon; TN, total nitrogen; TP, total phosphorus; C/N ratio, carbon-to-nitrogen ratio; TK, total potassium; AN, available nitrogen; AP, available

phosphorus; CEC, cation exchange capacity.

bSoil properties are shown for three different soil layers, 0 to 10 cm deep (0-10cm), 10-20cm, and 20-40cm. The maximum value (Max), minimum value (Min), mean
value (n = 26) (Mean), and coefficient of variation (CV) are shown. Different letters in the Mean columns indicate significant differences among soil layers at P < 0.05.

depth-dependent structuring of microbial communities and assemblages. However,
rarely has research been conducted to investigate the microbial biogeographical and
community patterns of various soil layers across large spatial scales, and certainly not
in paddy soils.

If the prevalence of environmental filters, competitive interactions for resources, or
barriers to dispersal vary across soil layers, DDRs calculated independently from each
layer are likely to be distinct, reflecting changes in the relative importance of environ-
mental factors or more neutral processes shaping the fungal community at different
depths. Yet, this is rarely tested. Thus, we investigated the spatial variation and
assembly mechanisms of fungal communities from different soil layers across paddy
fields in subtropical China. We quantified a range of soil physiochemical properties to
reflect environmental heterogeneity and used multiple statistical approaches to disen-
tangle how fungal community assembles in different soil layers. We made the following
predictions. (i) The form of DDRs describing how fungal community composition
changes with increasing geographic distance between samples is distinct for each of
the different soil layers. (ii) The relative importance of environmental factors and spatial
factors (reflecting niche-based and more neutral-based mechanisms, respectively) in
regulating fungal community assembly changes from shallow to deeper soil layers.

RESULTS

Soil properties. All soil properties except total potassium (TK) exhibited consider-
able vertical variation (Table 1). Soil organic carbon (SOCQ), total nitrogen (TN), available
nitrogen (AN), carbon-to-nitrogen (C/N) ratio, total phosphorus (TP), available phos-
phorus (AP), and cation exchange capacity (CEC) decreased significantly with soil depth,
while pH and Fe showed the opposite tendency. Soil properties also varied widely
across sampling sites in each soil layer (Table 1), while the average coefficient of
variation showed no significant difference among soil layers (P > 0.05; see Table S1A
in the supplemental material). Environmental variation (variance-covariance matrix) of
standardized soil properties in the 0-to-10-cm (0-10cm)- and 10-20cm-deep layers was
significantly higher than that in subsoil (Fig. 1A). Variance-covariance matrix based on
all original soil properties confirmed this result (Fig. 1B). To examine how soil properties
varied with geographic distance between samples of the same soil depths, we used
Mantel correlation tests, and these tests showed that only a few soil properties in the
0-10cm-deep (AP and Fe) and 10-20cm-deep (C/N ratio and Fe) soils covaried with
geographical distance. However, many soil properties, including SOC, TN, C/N ratio, AN,
Fe, and pH covaried with geographical distance in the 20-40cm-deep soil layer (Ta-
ble S1A). Additionally, soil parent material did not significantly influence soil properties
(Table S1B).

Overall structure of fungal communities. Generally, Ascomycota (46.45%), Zygo-
mycota (31.58%), and Basidiomycota (14.35%) were highly dominant across all samples
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FIG 1 Boxplot showing the overall spatial variation in soil properties according to variance-covariance matrices based on all standardized soil properties (A)
and original soil properties (B). Lowercase letters above the boxes indicate significant difference at P < 0.05.

(see Fig. S2 in the supplemental material). The relative abundance of Ascomycota,
Basidiomycota, and Chytridiomycota tended to decrease with soil depth, while Zygo-
mycota showed the opposite trend (Fig. S3). The relative abundance of Glomeromycota
and Neocallimastigomycota showed no significant differences across different soil layers
(Fig. S3). The relative abundance of Ascomycota and Chytridiomycota was significantly
positively correlated with SOC, TN, C/N ratio, and AN but negatively correlated with Fe
(P < 0.05; Table S2). The relative abundance of Zygomycota was negatively correlated
with SOC, TN, CN, and AN but positively correlated with Fe (P < 0.05; Table S2). The
relative abundance of Basidiomycota was significantly correlated only with AP
(r=0.387, P < 0.001) and Fe (r = —0.415, P < 0.001), and the relative abundance of
Glomeromycota and Neocallimastigomycota was not significantly correlated with any
soil properties (Table S2).

Fungal biomass and alpha-diversity (richness and Shannon-Wiener index) decreased
significantly with soil depth (Fig. 2), whereas spatial variation in fungal biomass and
alpha-diversity increased with soil depth (biomass, 27.98%, 27.64%, and 68.15%; aver-
age coefficients of richness, 8.73%, 11.03%, and 17.66%; average coefficients of
Shannon-Wiener index, 4.81%, 5.67%, and 15.22%; all quoted for 0-10cm-, 10-20cm-,
and 20-40cm-deep soil layers, respectively). Spatial variation in fungal community
structure (i.e., Serensen’s index, pairwise Bray-Curtis dissimilarity, and Jaccard distance)
also increased significantly along with soil depth (Fig. 3A). Principal-coordinate analysis
(PCoA) based on beta-diversity indices showed that samples cluster within each soil
layer (Fig. S4), and one-way permutational multivariate analysis of variance (per-
mANOVA) confirmed that the fungal communities in different soil layers were signifi-
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FIG 2 Boxplots showing the fungal biomass (A) and alpha-diversity of fungal communities (B and C) in each layer. Lowercase letters above the boxes indicate

significant difference at P < 0.05.
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cantly different from each other (Table S3A). In addition to soil depth, soil parent
material also significantly affected fungal community composition (Table S3B).
Correlation between fungal community and soil variables and geographical
distance. Partial Mantel tests showed that fungal beta-diversity indices were signifi-
cantly correlated with more soil properties in shallower soil layers (0-10cm and 10-
20cm), while only a few soil properties showed significant correlations with beta-
diversity indices in the 20-40cm-deep layer (Table S4). We observed significant
correlations between fungal beta-diversity indices and geographical distance between
samples in both the 0-10cm and 10-20cm-deep soil layers (Fig. 3B). However, in the
20-40cm layer, no significant DDR could be observed regardless of the beta-diversity
index used (Fig. 3B). In addition, between the 0-10cm and 10-20cm soil layers, the DDR
slopes showed no significant difference across beta-diversity indices (P > 0.05).
Contributions of environmental and spatial factors to variation in fungal
communities. On the basis of three beta-diversity indices, forward selection proce-
dures were respectively applied to select subsets of environmental and spatial variables
which had significant effects on species composition (Table 2). Indices in the 0-10cm
soil layer, regardless of which beta-diversity index was used, the environmental factors
pH and TP, and spatial factor PCNM2 (principal coordinate 2 of neighbor matrices) were
always selected. In the 10-20cm layer, the environmental factor Fe and the spatial factor
PCNM2 could also be frequently selected. In the 20-40cm layer, when using Serensen’s
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TABLE 2 Results of forward selection of environmental and spatial variables for fungal communities based on four beta-diversity indices®

Beta-diversity Variable 0-10cm layer 10-20cm layer 20-40cm layer

index source Variable(s) R2 Variable(s) R2 Variable(s) R2

Sgrensen’s index Environmental pH, TP 0.118  Fe, pH 0.129 pH, TN 0.108
Spatial PCNM2, PCNM11 0.144 PCNM2, PCNM11, PCNM1 0.195 PCNM2, PCNM11, PCNM3 0.153

Bray-Curtis dissimilarity ~ Environmental — pH, TP 0.098 Fe 0.101 NS NS
Spatial PCNM2 0.190  PCNM2, PCNM11, PCNM8  0.340  PCNM20 0.097

Jaccard distance Environmental ~ pH, TP 0119  Fe, pH 0111  pH, TN 0.098
Spatial PCNM2, PCNM11  0.105  PCNM2, PCNM11, PCNM1  0.167  PCNM2, PCNM11, PCNM3  0.144

aSpatial variables were derived from vertical spatial coordinates using Moran’s eigenvector maps. NS, not statistically significant (P > 0.05).

index and Jaccard distance, the environmental factors pH and TN and the spatial factors
PCNM2, PCNM11, and PCNM3 were selected. If using Bray-Curtis dissimilarity, no
environmental factor could be selected, while the spatial factor PCNM20 had significant
effects on these two indices.

Variation partitioning was applied based on the results of forward selection, and in
general, the variation in species composition was largely (at least 81.94%) unexplained
(Table 3). Of the variance that could be explained, spatial factors rather than environ-
mental factors explained more across all soil layers, except in the 0-10cm soil layer
where environmental variables explained slightly more. In the 20-40cm layer, environ-
mental factors barely explain any variance (Table 3).

Community assembly process measurements with dominance test and normal-
ized stochasticity ratio (NST). Based on R? values (0.756, 0.710, and 0.688 for 0-10cm-,
10-20cm-, and 20-40cm-deep soil layers, respectively) and the proportions of outlying
taxa beyond the dashed line (18.44%, 16.84%, and 16.64% for 0-10cm-, 10-20cm-, and
20-40cm-deep soil layers, respectively) reflecting those outside model predictions, the
dominance test showed that fungal community assemblages of each soil layer were
well described by neutral-based models (Fig. 4A). Operational taxonomic units (OTUs)
outside model predictions accounted for, on average, 77.28%, 22.46%, and 28.85% of
total sequences in 0-10cm-, 10-20cm-, and 20-40cm-deep soil layers, respectively. The
random forest model showed that these OTUs were more influenced by environmental
factors than those inside model predictions (Table S5). The m value (migration rate,

TABLE 3 Variation partitioning of fungal communities based on three beta-diversity
indices?

- - o
e ety Gk Variation explained (%)

and component 0-10cm layer 10-20cm layer 20-40cm layer
Serensen’s index
[E|S] 1.47 4.26%* 132
[S|E] 4.06** 6.58** 2.53*
[ENS] 0.01 1.04 1.68
[R] 94.46 88.12 94.47
Bray-Curtis dissimilarity
[E|S] 6.39** 0.74 NS
[S|E] 3.41% 12.97** NS
[ENS] 1.51 435 NS
[R] 88.69 81.94 NS
Jaccard distance
[E|S] 3.21** 2.89** 1.01
[S|E] 2.20** 4.52** 1.82*
[ENS] 0.44 0.63 1.08
[R] 94.15 91.95 96.09

aFour different components are shown: pure environmental fraction ([E|S]), pure spatial fraction ([S|E]), shared
fraction of environmental and spatial effects ([ENS]), unexplained fraction ([R]). Values shown in boldface
type showed significant effects. *, **, and *** indicate significant effects at P < 0.05, 0.01, and 0.001,
respectively. NS indicates that variation partitioning could not be conducted because the subset of
environmental variable was lacking.
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jac:

with 50% as the boundary point between more deterministic (<50%) and more stochastic (>50%) assembly. (C
and D) One-way ANOVA and nonparametric Mann-Whitney U test were conducted to test the significance of
difference in habitat niche breadth (C) and niche overlaps (D), respectively.

0.147, 0.098, and 0.046 for 0-10cm-, 10-20cm-, and 20-40cm-deep soil layers, respec-
tively) tended to decrease along with soil depth, suggesting that fungi in soil layer
0-10cm were highly diffused.

The NST based on Jaccard distance (NST;,.) index showed that fungi within the
0-10cm soil layer were predominately governed by deterministic processes (NST;,. =
37.74%), but fungi within the 20-40cm soil layer were primarily controlled by stochastic
processes (NST,. = 70.41%). Within the 10-20cm soil layer, determinism played a
marginally stronger role in controlling fungal community assemblages (NST,. =
57.40%; Fig. 4B). These observations suggested that deterministic processes decreased
while stochastic processes increased with soil depth. Supporting results from NST;,,
NST based on Bray-Curtis dissimilarity (NSTy,,,) also gradually increased along with soil
depth (Fig. S5; 36.14%, 52.66%, and 76.35% for 0-10cm-, 10-20cm-, and 20-40cm-deep
soil layers, respectively).

Community-level habitat niche breadths (Bcom) were estimated, and fungi in the
20-40cm soil layer showed the highest values, followed by those from the 10-20cm

layer and finally the 0-10cm layer (Fig. 4C). In contrast to Bcom, the niche overlaps
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among fungi were lowest in the deepest soil layer (20-40cm), while fungi in the
shallower layers showed no significant difference in niche overlaps (Fig. 4D).

DISCUSSION

This study quantified spatial variation and drivers of fungal community assembly in
paddy field soils from a typical region of subtropical China. Our results consistently
revealed that spatial variation in fungi was higher in topsoil than in subsoil and
demonstrated the decrease in importance of environmental filtering and an increase in
the importance of dispersal limitation in structuring fungal communities from shallower
to deeper soils.

We observed obvious spatial variation in fungal communities among our sampling
sites (Fig. 3); while the spatial variation was lower than reported from studies con-
ducted on very large scales (34, 35), it was higher than that recorded at smaller scales
(36, 37), suggesting that the degree of spatial variation observed in fungal communities
was dependent on the scale. Distance-decay relationships revealed significant correla-
tions between changes in fungal community composition and the geographical dis-
tance between samples for 0-10cm and 10-20cm soil layers, but not in the deeper
20-40cm layer (Fig. 3B), suggesting that DDR occurred only in topsoil. Additionally, the
slopes of the DDRs from the 0-10cm and 10-20cm soil layers were similar, which may
result from the uniform tillage operations that homogenize topsoil to some extent. It
should be noted that some factors, such as low environmental heterogeneity, high
dispersal, and ecological drift, would greatly weaken the DDR via homogenizing
communities (38). Environmental heterogeneity was significantly higher in the shal-
lower soil layers (0-10cm and 10-20cm) than in deeper soil layers, suggesting that low
environmental heterogeneity indeed weakened the DDR in the 20-40cm soil layer.
Although shallower soil layers (0-10cm and 10-20cm) had higher dispersal rate than
deeper soil layers (Fig. 4A), the relatively higher environmental heterogeneity main-
tained a significant DDR. Judging from DDR and migration rate, we postulate that the
fungal communities in shallower soils (0-10cm and 10-20cm deep) are relatively more
influenced by environmental factors and dispersal than deeper soils. Additionally,
partial Mantel tests showed that a greater number of soil properties were correlated
with fungal community composition in shallower soil layers than deeper soil layers (see
Table S4 in the supplemental material), whereas few of these soil properties were
correlated with geographical distance in these layers (Table S1). This implies that fungal
communities in shallower layers are influenced by nonspatially autocorrelated environ-
mental factors.

While higher environmental heterogeneity leads to higher structural heterogeneity
of communities (1, 14), our study results showed that the degree of environmental
variability did not match the extent of community variability (Fig. 1 and 3A). Thus,
environmental factors and environmental variability have less of an impact on variation
in species composition compared with other nonenvironmental factors here. Both
partial Mantel tests and forward selection demonstrated that some soil properties,
especially pH, had significant effects on species composition (Table S4 and Table 2), but
their effects were limited and unlikely to be ecologically meaningful. For example, soil
pH is always demonstrated to be a key factor affecting microbial assemblages (39),
while the coefficients of variation in pH are never higher than 6% in our research, which
can keep the soils under relatively strong acidity.

Variation partitioning showed that environmental factors played a slightly more
dominant role in driving fungal community assembly in the 0-10cm soil layer. However,
spatial factors, rather than environmental factors, played a far larger and more impor-
tant role in governing fungal community assembly in the deeper soil layers (10-20cm
and 20-40cm) (Table 3), reflecting an increased importance of neutral processes with
increasing soil depth. Some other studies on paddy soils found that spatial factors
better predicted for fungal community composition compared with environmental
factors (5), in contrast to studies of forest soils where environmental factors are
generally shown as the better predictors (10). However, our results show that the
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relative importance of environmental versus spatial factors is soil depth dependent, as
environmental factors can better predict fungal communities in the 0-10cm-deep
paddy soil layer, while spatial factors are better predictors in deeper soil layers
(10-20cm and 20-40cm). Such a pattern should be closely related to the decreased
environmental heterogeneity and dispersal rate with soil depth, exposing fungi in
topsoil to higher environmental selection and immigration (40). However, a large
proportion of variation remains unexplained whichever beta-diversity indices were
used (at least 81.94%; Table 3). The unexplained variation may be attributed to
unmeasured environmental variables, which could include total dissolved oxygen, the
distance from the river or nearby streams, and drainage potential. For example,
dissolved oxygen may vary greatly across different soil layers (31, 32), promoting redox
gradients that may influence the variation in fungal community composition. The
distance from sampling site to the nearest river or stream may be another factor
affecting fungal community composition, as these bodies of water potentially help the
free movement of fungi. In fact, we found it a common phenomenon that a large
proportion of variation is rarely explained when using variation partitioning. For
example, nearly 90% of variation cannot be explained by spatial or environmental
factors on plant community (41), aquatic organisms (42), and soil eukaryotes (33). More
importantly, although sampling effects or unmeasured variability may contribute to the
unexplained variation, it is tempting to speculate that the high fraction of unexplained
variance could be caused by the evolutionary noise produced by ecologically neutral
processes of diversification, i.e.,, through random ecological drift, which cannot be
determined by mathematical models (40, 43, 44).

Dominance test, NST index, and habitat niche breadth were used to help explain the
spatial variation in fungal communities and their associated ecological drivers. The
dominance test showed that the models had high R? values, and more than 80% of
species had frequencies within predicted ranges (Fig. 4A), suggesting that the fre-
quency with which fungi occurred in different soil layers can be well described by the
neutral model. Even so, some nonneutral process should also be considered. Within
each soil layer, there were some fungal species, less than 20%, whose distributions
deviated from neutral predictions (Fig. 4A). For example, in the 0-10cm soil layer, the
<20% OTUs occurring outside predictions accounted on average for >77% of total
sequences, while in 10-20cm and 20-40cm soil layers, the <20% OTUs occurring
outside predictions accounted for < 23% of total sequences on average (Fig. 4A).
Random forest models showed that OTUs outside model predictions were more
influenced by environmental factors than those inside model predictions (Ta-
ble S5).These results suggested that more fungi (higher relative abundance, rather than
a larger number of taxa) in the 0-10cm layer were selectively enriched or excluded as
a result of environmental selection (45). The model also showed a very high migration
rate (m) in topsoil and a very low migration rate in subsoil, implying high and
unhindered dispersal in topsoil and significant dispersal limitation in subsoil. While
some studies suggest that fungi are free to disperse, and thus dispersal limitation does
not exist (46), other studies suggest that as fungi are relatively large compared with
other microbes (e.g., bacteria) (47), their dispersal may be limited. In our study, the
migration rate of fungi was much higher in topsoil. This is easy to monitor, because
paddy fields are covered with water for most of the year, and the flow of water would
greatly help the free movement of fungi. However, the fungi in subsoil can hardly
disperse prior to moving from subsoil to topsoil or, at least, can hardly widely disperse.
Additionally, tillage operations that may contribute to the dispersal of fungi are
typically only carried out in the topsoil.

The NST index suggested that the relative importance of deterministic processes
over stochastic processes in structuring fungal communities decreased with soil depth
(Fig. 4B and Fig. S5). The higher environmental heterogeneity in the topsoil exposed
soil fungi to a greater range of environmental filters, which drives the unambiguously
deterministic process of environmental selection (48). Thus, our results imply that as soil
depth increases, environmental selection has an ever lower influence on structuring
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fungal communities. In contrast, the relative influence of stochastic process in struc-
turing fungal communities increased with soil depth (NST), and this is likely related to
increased dispersal limitation (22). Although some stochastic processes such as diver-
sification and ecological drift, which are problematic to quantify, may also increase
along with soil depth.

Species with wider niche breadth are considered to be generalists which are less
influenced by environmental factors because of higher environmental tolerances (49,
50). In our study, habitat niche breadth of fungi continuously increased along with soil
depth (Fig. 4C), suggesting that fungi in subsoil with wider niche breadth were
governed less by environmental filtering. We initially expected that niche overlaps
should be higher in subsoil because of relatively lower resources. However, niche
overlaps among fungi were significantly lower in the 20-40cm soil layer than in the
0-10cm and 10-20cm layers (Fig. 4D). This is likely a result of lower fungal biomass and
richness (Fig. 2). Fungi in the 20-40cm layer occupied wider niche breadths with lower
niche overlaps, suggesting that they can effectively utilize an array of resources with
less competition (51) and that they are better adapted to the local environment. Thus,
the fungi in the 20-40cm soil layer should be less influenced by deterministic processes,
including environmental filtering and competitive exclusion.

Conclusions. We observed obvious spatial variation in fungal communities of paddy
fields in subtropical China and found that environmental heterogeneity decreased
along with soil depth, while spatial variation in fungal communities showed the
opposite tendency. An array of statistical analyses revealed that the fungal community
assembly in the 0-10cm-deep layer was primarily governed by environmental filtering
and high dispersal, while in the deeper layer (20-40cm), it was primarily governed by
dispersal limitation and minimal environmental filtering. Both environmental filtering
and dispersal limitation controlled the fungal community assembly in the 10-20cm-
deep layer, with dispersal limitation playing the major role. This work highlights that
perceived drivers of fungal community assembly are dependent on sampling depth.
Thus, future studies interpreting diversity patterns from soil samples that integrate over
a wide range of depths should do so with caution, as different ecological mechanisms
are likely acting in different soil layers.

MATERIALS AND METHODS

Soil sampling and physicochemical characterization. Soil samples were collected near the end of
December 2017 from red paddy soils in Yujiang (Jiangxi Province, China; 116°41" E to 117°09" E, and
28°04' N to 28°37' N), where > 85% of cultivated land is paddy fields. Sampling sites have subtropical
monsoon climates, with abundant sunshine and rainfall (mean annual sunshine hours, 1,739.4 h; mean
annual temperature, 17.6°C;mean annual precipitation, 1,750 mm). The total sampling area is 927 km?,
including 78.2% of hills and 21.2% of plains. The cropping system here is mainly double cropping rice
(Oryza sativa L.) (i.e., early and late season rice). Rotary tillage to a depth of 15 to 20 cm (15-20cm) is
conducted prior to seedling. The natural conditions, including climate, soil properties, topography,
geomorphology, cropping system, and social and economic conditions, including productivity level, are
typically representative of subtropical areas of southern China (52).

Sampling sites were chosen to satisfy the following conditions. (i) The whole region needed to be
covered. (i) The main parent material of the soils needed to be included. (iii) Field management,
including cropping system and fertilizer applications, should be uniform. On the basis of these principles,
26 sites were selected, with pairwise geographical distances ranging from 1.3 km to 50.7 km (Fig. 5; see
Fig. S1 in the supplemental material). The soil samples were collected in December 2017 after the harvest
and in the absence of water flooding. Within each site, five 40-cm-deep soil cores (6-cm diameter, free
from rice roots) were collected at random locations and partitioned into three depth intervals: 0-10cm,
10-20cm, and 20-40cm. Samples were refrigerated at 4°C using a portable fridge and transported to the
laboratory. Samples from each plot were composited by depth, homogenized, and subsampled for
subsequent analyses. Subsamples for physical and chemical properties were air dried, ground, and sieved
through 2-mm mesh. Subsamples for microbial properties were stored at —40°C.

Soil chemical properties were determined using the methods described by Pansu and Gautheyrou
(53). Soil pH was assayed using a pH meter (FE30; Mettler-Toledo) with 1:2.5 soil-water suspension. Cation
exchange capacity (CEC) was determined by saturating the exchange sites of 1 g of each sample twice
with T M ammonium acetate solution at pH 7, followed by replacing the adsorbed ammonium ions twice
with 1 M KCI. Soil organic carbon (SOC) was titrated against 0.5 M ferrous iron solution after it had been
digested with 0.8 M K,Cr,0, and concentrated H,SO, (vol/vol, 1:1) at 150°C for 30 min. Total nitrogen
(TN) and available nitrogen (AN) were measured as Kjeldahl N. Briefly, the soil sample was heated and
boiled with concentrated H,SO,. The total nitrogen (TN) was then absorbed by 2% boric acid solution
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FIG 5 Locations of the sampling sites.

and titrated against 0.1 M sulfuric acid. The available nitrogen was hydrolyzed by 1 M sodium hydroxide
and measured by microdiffusion methods. Total phosphorus (TP) and available phosphorus (AP) were
extracted with HF-HCIO, and sodium bicarbonate, respectively, and then determined by the molybde-
num blue method using an UV spectrophotometer at 700 nm. Total potassium (TK) was determined
using flame emission spectrometry after the soil had been digested in concentrated HF-HCIO,, (vol/vol,
2:1). Free iron (Fe) of the soil was extracted by dithionite-citrate- bicarbonate (DCB) solution with 1 g of
soil being digested in 40 ml of 0.3 M sodium citrate and 5 ml of 1 M sodium hydrogen carbonate at 353
K for 30 min, and the amount of free iron was then determined by flame atomic absorption spectro-
photometry.

Soil DNA extraction, amplification, lllumina sequencing, and sequence processing. Soil DNA
was extracted from 0.5 g of soil (fresh weight) using a FastDNA SPIN kit (MP Biomedicals, CA, USA) and
then subsequently purified using a PowerClean DNA clean-up kit (MoBio, CA, USA) according to the
manufacturers’ instructions. The concentration and quality of the extracted DNA were measured using
a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, DE, USA). Quantitative PCR was done
on the Bio-Rad CFX96 touch real-time PCR detection system following protocols previously described
(54). Results are reported as gene copy numbers and are used to reflect fungal biomass.

Each of the 78 DNA samples was amplified separately using the fungal PCR primers ITSTF (5'-CTTG
GTCATTTAGAGGAAGTAA-3’) and ITS2 (5'-GCTGCGTTCTTCATCGATGC-3') (55) that target the internal
transcribed spacer 1 (ITS1) region. PCR products were then sequenced on the lllumina MiSeq PE250
platform. Raw sequence data were analyzed using the Quantitative Insights into Microbial Ecology
(QIIME) pipeline (v1.9.1) (http://giime.org/) (56). Paired-end reads were merged using FLASH (57). Reads
with length of <200 bp or with average quality scores of <25 were removed, resulting in 796,863
high-quality sequences. ITSx 1.0.11 (http://microbiology.se/software/) was then used to remove 5.85 and
28S regions from merged sequences (58). Any chimeric sequences were removed using the USEARCH
tool based on the UCHIME algorithm (59). Operational taxonomic unit (OTU) picking was performed
using the “pick_otus.py” command with the nondefault UCLUST algorithm (the parameters were as
follows: picking method, uclust; similarity of 0.97; max_accepts of 20, and max_rejects of 100) (60). Se-
quences were clustered into 12,474 OTUs after excluding singletons and rarefying to 44,296 sequences
per sample (based on the sample with the minimum numbers of reads) (61, 62). The taxonomic identity
of each OTU was then determined based on comparisons against the UNITE database (v7) (https://unite
.ut.ee/).

Statistical analysis. Alpha-diversity indices, including richness and Shannon-Wiener index were
calculated in QIIME using the “alpha_diversity.py” script. Statistically significant differences in soil prop-
erties, fungal biomass, and alpha-diversity indices were determined by one-way analysis of variance
(ANOVA), along with the use of Duncan’s test for multiple comparisons (P < 0.05). If the variances of
observations were heterogeneous, nonparametric Mann-Whitney U test were used to determine the
statistical significance. Variance-covariance matrix based on all soil properties was calculated to indicate
the overall variation in soil properties. Three beta-diversity indices, including Serensen’s index, pairwise
Bray-Curtis dissimilarity, and Jaccard distance coupled with principal-coordinate analysis (PCoA) were
conducted to indicate the community dissimilarities. Partial Mantel tests were conducted to determine
the potential effects of each soil property on fungal composition.
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Variation-partitioning analysis was conducted to disentangle the relative importance of environmen-
tal factors and spatial factors on variation in fungal communities. Spatial variables were derived from the
principal coordinates of neighbor matrices (PCNM) algorithm, which was able to deconvolute total spatial
variation into a discrete set of explanatory spatial scales (63). Forward selection procedures were
subsequently used to select respective subsets of environmental and spatial variables. The forward
selection was stopped if the significance level (P > 0.05) was reached, or if no improvement of selection
criterion (R?) was seen when adding any additional variables. A two-way permutational multivariate
analysis of variance (permANOVA) was then performed with the selected variables using the R script
provided by Wu et al. (38). Pure environmental variation without a spatial component represents the
strength of environmental filtering, while pure spatial variation without an environmental compo-
nent is interpreted as the effect of dispersal limitation. The fractions of explained variance are based
on adjusted fractions (R?,y;, adjusted coefficient of multiple determination), which accounts for the
number of variables and sample sizes. The significance of each component via partitioning was
evaluated with a permutation test, except for the interaction term and residuals (these cannot be
tested statistically).

A neutral assembly model (the so-called dominance test) was used to determine the potential
contribution of neutral processes to the community assembly by predicting the relationship between the
occurrence frequency of OTUs and their relative abundance (64). This model evaluates whether the
microbial assembly process from a metacommunity follows a neutral model (inside model predictions)
or a niche-based process (outside model predictions) as a function of the metacommunity log abun-
dance. Random forest analyses were subsequently performed to quantitatively evaluate the importance
of predictors influencing OTUs that occurred outside or inside predictions of the dominance test. The
importance of each predictor was determined by assessing the decrease in prediction accuracy (that is,
the increase in the mean square error [MSE] between observations and predictions) when the data for
the predictor were randomly permuted. This decrease was averaged over all trees to produce the final
measure of importance. These analyses were conducted using the “randomForest” package of the R
statistical language (65). The significance of predictor importance was assessed by using the “rfPermute”
package.

We further applied the normalized stochasticity ratio (NST) to help confirm fungal community
assembly processes. NST is an index developed with 50% as the boundary point between more
deterministic (<50%) and more stochastic (>50%) assembly (66). We choose NST to indicate assembly
processes because our research met the requirements of this method: (i) local/landscape scale sampling
as opposed to global scale; (ii) n = 6. This analysis was conducted in the R statistical language (65) using
“NST" package (the parameters were as follows: “dist.method” of “bray”/"jaccard,” “abundance.weighted”
of “TRUE”, and “rand” of “1000"). By considering the overall performance of similarity metrics, NST based
on Jaccard distance (NST}, ) is recommended for estimating the magnitude of stochasticity in community
assembly (66), but NST based on Bray-Curtis dissimilarity (NST,,,,) is also calculated in our research to
further verify NST;,.

Niche breadth and niche overlaps were respectively calculated according to Levin's niche breadth
index and Levin's niche overlap index (38). Briefly, Levin’s niche breadth index was determined as follows:

N
B=1/> P
i=1

where B; represents the habitat niche breadth of OTUj in a metacommunity, N is the total number of
communities of each metacommunity, and P; is the proportion of OTU j in community i. A high B
indicates that the OTU occurs widely and evenly along a wide range of locations, representing wide
habitat niche breadth. We calculated the average B values from all taxa in a single community (Bcom) as
an indicator of habitat niche breadth at the community level. Levins’ niche overlap index (O) was
calculated as follows:

Oy =

7 M=

N
(PiPy)/ > (Py)
i=1

where O, represents the niche overlap between OTU; and OTU,, N is the total number of communities
of each metacommunity, P; is the proportion of OTU j in community i, P,; is the proportion of OTU k in
community i. A high O indicates that the species exhibited more niche overlap.

Data accessibility. The ITS sequences used in this study were submitted to the NCBI Sequence Read
Archive (SRA) under the accession number SRP200912.
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