
Quasioptimality of maximum–volume cross interpolation of tensors

D. V. Savostyanova,b,1

aInstitute of Numerical Mathematics of Russian Academy of Sciences, Gubkina 8, Moscow 119333, Russia
bUniversity of Southampton, School of Chemistry, Highfield Campus, Southampton SO17 1BJ, UK

Abstract

We consider a cross interpolation of high–dimensional arrays in the tensor train format. We
prove that the maximum–volume choice of the interpolation sets provides the quasioptimal
interpolation accuracy, that differs from the best possible accuracy by the factor which does
not grow exponentially with dimension. For nested interpolation sets we prove the interpolation
property and propose greedy cross interpolation algorithms. We justify the theoretical results
and measure speed and accuracy of the proposed algorithm with numerical experiments.
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1. Introduction

As demand for big data analysis grows, algorithms for high–dimensional data have become
increasingly important in scientific computing. The total number of entries in a tensor (an
array with d indices) grows exponentially with dimension d. Even for a moderate d, it is impos-
sible to process, store, and even compute all elements of a tensor by standard methods. This
issue is known in numerical analysis and related areas as the curse of dimensionality. Different
techniques are used to relax or to overcome this problem, e.g. low parametrical representation
on Smolyak’s sparse grids [62, 9], (Markov chain) Monte Carlo sampling [30, 5], reduced basis
methods [56], in particular those based on the greedy approximation [2, 45, 1, 8, 10, 63]. Signif-
icant progress was recently made in the development and understanding of the tensor product
methods [40, 37, 28, 27].

The tensor product methods implement the separation of variables at the discrete level,
known in the two–dimensional case as the low rank decomposition of a matrix. Several ap-
proaches have been developed to generalise rank–structured low parametrical models to tensors
(see e.g. [40]), and a simple and efficient tensor train (TT) format has been proposed [49]. It is
equivalent to the matrix product states (MPS) [19, 39] and the density matrix renormalization
group (DMRG) [67, 68, 55] representations, introduced in the quantum physics community for
quantum states of many–body systems. When the TT format was re-discovered in the nu-
merical linear algebra community, the optimisation techniques developed in the MPS/DMRG
framework were adapted for other high–dimensional problems, and novel algorithms were pro-
posed. Now we can use the TT/MPS and the more general HT format [29, 26, 44] to ap-
proximate high–dimensional data and perform algebraic operations [61, 49, 48]), solve linear
systems [33, 41, 38, 35, 42, 31, 14, 11, 3, 15, 16] and partial eigenproblems [46, 43, 32, 17, 12],
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compute the multidimensional Fourier transform [13] and discrete convolution [34], etc. With
these algorithms in hand, high–dimensional scientific computations become possible as soon as
all data are translated into the TT format.

It is important, therefore, to develop algorithms which construct the approximation of a
given high–dimensional array in the tensor product format. For some function–related tensors,
the TT representation can be written explicitly (see e.g. [36, 50]). In general, although every
entry of a tensor can be computed on demand (by a formula or as a solution of a feasible
problem, e.g. PDE in three dimensions), all elements are inaccessible in a reasonable time. The
question arises naturally whether it is possible to reconstruct or approximate a given tensor in
the TT format from a few elements, also known as samples.

For matrices, i.e. 2–tensors, this question is well studied. We know that a rank–r matrix is
recovered from a cross of r rows and columns if the submatrix on their intersection is nonsin-
gular. When data do not fit the low rank model exactly, the accuracy of the cross interpolation
depends crucially on the chosen cross. A good choice is the maximum volume cross, which has
the r × r submatrix with the maximum modulus of determinant on the intersection. For this
cross, the interpolation accuracy differs from the accuracy of the best possible approximation
by the factor O(r2), i.e. is quasioptimal [60, 22].

For the tensor train format an analogue of the cross interpolation formula is given in [54].
It reconstructs a tensor from a few samples under mild non-singularity conditions, if the TT
representation is exact. The structure of the algorithm suggested in [54] resembles the one-site
DMRG algorithm, that optimises the target function (e.g. Rayleigh quotient) for the factors of
the MPS/TT format (TT cores or sites). Similarly, the algorithm from [54] searches for better
crosses in order to improve the approximation accuracy. This one-site scheme is also known
as the alternating least squares (ALS) algorithm, and has been used for various tensor formats
and applications, see [40] for a review.

The drawback of the ALS scheme is that the ranks of the underlying tensor format should
be defined a priori and can not be changed during the computations. To update the ranks
adaptively, the two-site DMRG is used [68], which optimises the target function over the pairs of
neighbouring sites. The corresponding rank–adaptive version of the TT interpolation algorithm
is proposed in [59]. The algorithms from [54, 59] are heuristic, as well as interpolation algorithms
for other tensor formats, e.g. the Tucker [51, 52] and the HT format [4].

The accuracy of the cross interpolation of tensors has not been well studied yet. For the
3–dimensional Tucker model the quasioptimality with the factor O(r3) is shown in [51]. In d
dimensions we can expect an excessively large coefficientO(rd), cf. O(r2d) for the HT format [4].
The main result of this paper is more optimistic. The quasioptimality of the maximum volume
cross interpolation is generalised to the TT format with the coefficient (2r+κr+1)dlog2 de+2 that
does not necessarily grow exponentially with d. This important existence result reassures us that
for high–dimensional data that allow TT approximation, accurate cross interpolation is also
possible. Since the search for maximum volume submatrix is NP–hard problem [6], we can not
use exactly this interpolation in practical computations. However, the concept of maximum
volumes shows us the way to new powerful (yet heuristic) algorithms for high–dimensional
problems, which we propose at the end of the paper.

The rest of the paper is organised as follows. Sec. 2 presents notation and definitions. In
Sec. 3 the quasioptimality of the maximum–volume cross interpolation is proven. In Sec. 4 the
interpolation on nested sets is considered, which reduces the search space, but results in larger
quasioptimality constant. In Sec. 5 the interpolation property for the nested sets is shown. In
Sec. 6 practical cross interpolation algorithms for matrices are recalled and similar algorithms
for tensor trains are proposed. In Sec. 7 the coefficient of the quasioptimality is measured for
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randomly generated tensors, and speed and accuracy of the proposed algorithm is demonstrated
with numerical experiments.

2. Notation, definitions and preliminaries

2.1. Low rank matrix approximation
For a n1 × n2 matrix A = [A(i1, i2)] its rank-r approximation is written as follows

A(i1, i2) ≈
r∑

s=1

X(1)(i1, s)X
(2)(s, i2). (1)

Here and later we use elementwise notation, i.e. assume that all equations hold for all possible
values of free indices. For a given matrix A, the best approximation in the Frobenius norm
is given by the singular value decomposition (SVD) A = USV ∗ after the truncation of small
singular values in S.

2.2. Cross interpolation of a matrix
Different low rank approximations, that can be computed faster than the SVD, are useful

for large–scale problems. A notable example of cheaper low rank approximation is the cross
(or skeleton) interpolation, defined as follows

A(i1, i2) ≈ Ã(i1, i2) =
r∑

s,t=1

A(i1, I2t )
[
A(I1s , I2t )

]−1
A(I1s , i2). (2)

The interpolation sets I1 = {I1s}rs=1 and I2 = {I2t }rt=1 contain the positions of the interpolation
rows and columns, respectively. The summation over s, t = 1, . . . , r ‘ties’ the pairs of subsets
together, similarly to the summation in (1). In the matrix form the right hand side of (2) is
the product of n1 × r matrix of columns, the inverse of r × r submatrix at the intersection,
and r× n2 matrix of rows of A. Since the interpolant Ã is computed from only (n1 + n2)r− r2
entries, for large matrices the cross interpolation is preferable to the SVD, which needs all the
elements. The interpolation formula (2) bears its name because it is exact on the cross where
the elements are computed

A(i1, i2) = Ã(i1, i2) =
∑
s,t

A(i1, I2t )
[
A(I1s , I2t )

]−1
A(I1s , i2), if i1 ∈ I1 or i2 ∈ I2. (3)

2.3. Maximum volume principle
When A is not exactly a rank-r matrix, the choice of interpolation sets I1, I2 affects the

interpolation accuracy significantly. A good choice of A� = [A(I1, I2)] is the maximum–volume
r×r submatrix [25], such that the volume volA� = | detA�| is maximal over all possible choices
of I1 and I2. Assuming that the rank r (i.e. size of A�) is defined a priori, we denote this
choice by [

I1, I2
]
= arg max

J 1,J 2
vol[A(J 1,J 2)], or [I1, I2] = maxvolA.

For I1, I2 chosen by the maximum–volume principle, the following quasioptimality statements
are proven in [21] and [60, 22], respectively.

|A− Ã| 6 (r + 1) minX ‖A−X‖2,
|A− Ã| 6 (r + 1)2minX |A−X|,

over X s.t. rankX = r. (4)
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Here ‖ · ‖2 denotes the spectral norm of a matrix, and | · | denotes the Chebyshev norm, also
known as the uniform, the supremum norm, or the maximum entry in modulus. We will also
use the Frobenius norm, denoted by ‖ · ‖.

An important property of the maximum–volume submatrix is that it is dominant [20] in
the rows and columns which it occupies, i.e.∣∣∣∑

t

[
A(I1t , I2s )

]−1
A(I1t , i2)

∣∣∣ 6 1,
∣∣∣∑

s
A(i1, I2s )

[
A(I1t , I2s )

]−1∣∣∣ 6 1. (5)

2.4. Low rank tensor train format
Several attempts have been made (see reviews [40, 37, 28, 27]) to generalise the low rank

decomposition (1) from matrices to tensors, i.e. arrays with many indices A = [A(i1, . . . , id)] .
In this paper we consider the tensor train (TT) decomposition [49] defined as follows

A(i1, . . . , id) =
∑

s
X(1)(i1, s1)X

(2)(s1, i2, s2) · · ·X(d−1)(sd−2, id−1, sd−1)X
(d)(sd−1, id)

=
∑

s

∏d

k=1
X(k)(sk−1, ik, sk).

(6)

Here ik = 1, . . . , nk, are mode or physical indices for modes k = 1, . . . , d, and sk = 1, . . . , rk are
auxiliary rank indices. Values nk are referred to as mode sizes of a tensor, and rk are tensor
train ranks or TT–ranks. Summation over s = (s1, . . . , sd−1) means summation over all pairs of
auxiliary indices s1, . . . , sd−1, where each index runs through all its possible values. Thanks to
the elementwise notation, Eq. (6) represents every entry of a tensor by the product of matrices,
where each rk−1 × rk matrix X(k)(ik) = [X

(k)
sk−1,sk(ik)] depends on the parameter ik. The three–

dimensional array X(k) =
[
X(k)(sk−1, ik, sk)

]
is referred to as TT–core. To unify the notation,

we introduce the virtual border ranks r0 = rd = 1 and consider [X(1)(i1, s1)] = [X(1)(s0, i1, s1)]
and [X(d)(sd−1, id)] = [X(d)(sd−1, id, sd)] as 3–tensors.

2.5. Tensor notation: reshapes, unfoldings, multi-indices
The elementwise notation allows us to reshape tensors into vectors or matrices simply by

moving indices. We have done this to present a TT–core
[
X(k)(sk−1, ik, sk)

]
as a parameter–

dependent matrix [X
(k)
sk−1,sk(ik)]. More complicated transformations can be expressed by index

grouping, which combines indices i1, . . . , id in a single multi-index2 i1 . . . id. For example, the
k–th unfolding of a tensor is the (n1 · · ·nk)× (nk+1 · · ·nd) matrix with elements

A{k}(i6k, i>k) = A{k}(i1 . . . ik, ik+1 . . . id) = A(i1, . . . , id).

Here and further we use the following shortcuts to simplify the notation

i6k = i1 . . . ik, i>k = ik+1 . . . id, and ib:c = ib . . . ic.

For A in the TT–format (6) it holds rankA{k} = rk. In [49] the reverse is proven: for any tensor
A there is a representation (6) with TT–ranks rk = rankA{k}. This gives the term TT–rank
the definite algebraic meaning.

2The multi-index is usually defined by either the big–endian convention i1 . . . id = id + (id−1 − 1)nd + . . .+
(i1 − 1)n2 · · ·nd or the little–endian convention i1 . . . id = i1 + (i2 − 1)n1 + . . . + (id − 1)n1 · · ·nd−1. The big–
endian notation is similar to numbers written in the positional system, while the little–endian notation is used
in numerals in the Arabic scripts and is consistent with the Fortran style of indexing. The equations and
algorithms in this paper are valid for any endianness.
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i1, i2

matrix

I2 I1i1 i2

matrix interpolant

i1, . . . , id

tensor

I>1 I61 I>2 I62 I>d−1 I6d−1i1 i2 id. . .

tensor train interpolant

Figure 1: Illustration of matrix and tensor interpolation formulae (2) and (7). Rectangle boxes show the
subtensors

[
A(I6k−1, ik, I>k)

]
which are the building blocks of the decomposition. Ellipses show the inverse

matrices
[
A(I6k, I>k)

]−1
, which do not carry free indices, but glue pairs of blocks together.

2.6. Cross interpolation of a tensor
The generalisation of cross interpolation formula (2) to the tensor case is suggested in [54]

as follows

A(i1, . . . , id) =
∑

s,t
A(i1, I>1

t1
)
[
A(I61s1

, I>1
t1

)
]−1

A(I61s1
, i2, I>2

t2
) · · ·A(I6d−1sd−1

, id)

=
∑

s,t

∏d

k=1
A(I6k−1sk−1

, ik, I>k
tk

)
[
A(I6ksk

, I>k
tk

)
]−1

.
(7)

Here I6ksk
and I>k

tk
denote the positions of rk rows and columns in the k–th unfolding A{k}.

To unify the notation, we introduce the empty border sets I60 = ∅ and I>d = ∅. We denote
submatrices on the intersection of interpolation crosses as follows[

A(I6ksk
, I>k

tk
)
]rk
tk,sk=1

=
[
A(I6k, I>k)

]
= Ak.

The decomposition is illustrated by Fig. 1.
In [54] it is shown that if a tensor A is exactly given by tensor train format (6) with TT–

ranks rk, it is recovered from O(dnr2) tensor entries3 by formula (7). The approximate case
was not considered. In this paper we fill this gap by considering the case when the right–hand
side of (6) approximates a tensor with certain accuracy. We compare the accuracy provided by
a general tensor train (6) and by the tensor train constructed from the entries of a given tensor
by formula (7). Throughout the paper we assume that TT–ranks of (6) and (7) are the same,
i.e., sets I6k = {I6ksk

}rksk=1 and I>k = {I>k
tk
}rktk=1 have rk elements each, and Ak =

[
A(I6k, I>k)

]
is rk × rk matrix, where rk, k = 1, . . . , d− 1, are TT–ranks of (6). When a choice of I6k, I>k

is considered, it means that we choose rk ‘left’ and ‘right’ multiindices i6k ∈ I6k, i>k ∈ I>k,
i.e. columns and rows in the unfolding matrix A{k}.

2.7. Tensor norms
For tensors we will use the Chebyshev and the Frobenius norms defined as follows

|A| = max
i1,...,id

|A(i1, . . . , id)|, ‖A‖2 =
∑

i1,...,id

|A(i1, . . . , id)|2.

3We always assume n1 = n2 = . . . = nd = n and r1 = . . . = rd−1 = r in complexity estimates
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3. Maximum–volume principle in higher dimensions

We consider a tensor A which is approximated by the TT format as follows

A(i1, . . . , id) ≈ X(i1, . . . , id) =
∑

s
X(1)(i1, s1)X

(2)(s1, i2, s2) · · ·X(d)(sd−1, id),

|A−X| 6 EC , ‖A−X‖ 6 EF ,
(8)

where EC and EF are known or estimated from computations or theoretical properties of A.
We apply (2) to k–th unfolding and write the cross interpolation

A{k}(i6k, i>k) ≈ Ã{k}(i6k, i>k) =
∑

sk,tk
A{k}(i6k, I>k

tk
)
[
A(I6ksk

, I>k
tk

)
]−1

A{k}(I6ksk
, i>k).

For
[
I6k, I>k

]
= maxvolA{k} the accuracy is estimated by (4) as follows

|A{k} − Ã{k}| 6 (rk + 1) ‖A{k} −X{k}‖,
|A{k} − Ã{k}| 6 (rk + 1)2|A{k} −X{k}|.

We can safely omit the superscript for unfoldings when we use the elementwise notation,
since the grouping of indices clearly defines the shape of the resulted matrix. The equation for
the unfolding is recast for the tensor as follows

A(i1, . . . , id) =
∑

sk,tk
A(i1, . . . , ik, I>k

tk
)
[
A(I6ksk

, I>k
tk

)
]−1

A(I6ksk
, ik+1, . . . , id) + E(i1, . . . , id),

|E| 6 (rk + 1) EF , |E| 6 (rk + 1)2EC .

(9)

The interpolation step splits a d–tensor into a ‘product’ of two tensors, which have k and
d − k free indices, respectively. The same splitting is made for the Tree–Tucker format (later
reintroduced as the tensor train format) in [53], and for the HT format in [29, 44, 4]. Using (9)
recurrently, we estimate the accuracy of the interpolation–based formula (7).

Lemma 1. If a tensor A satisfies (8), and [I6k, I>k] = maxvolA{k} for k = 1, . . . , d− 1, then

A(I6k−1, ik, ik+1, I>k+1) =
∑

sk,tk
A(I6k−1, ik, I>k

tk
)
[
A(I6ksk

, I>k
tk

)
]−1

A(I6ksk
, ik+1, I>k+1)

+ E(I6k−1, ik, ik+1, I>k+1),

where |E| is estimated by (9).

Proof. In (9) we reduce free indices i6k−1 to the subset I6k−1 and i>k+1 to I>k+1.

Lemma 2. Under assumptions of Lemma 1, if for some 1 6 p < k < q 6 d for subtensors

A/ =
[
A(I6p−1, ip:k, I>k)

]
, A. =

[
A(I6k, ik+1:q, I>q)

]
,

it holds A/ = T/ + E/ and A. = T. + E. with |E/| 6 ε|A| and |E.| 6 ε|A|, then

A(I6p−1, ip:q, I>q) =
∑

sk,tk
T/(I6p−1, ip:k, I>k

tk
)(A−1k )tk,skT.(I6ksk

, ik+1:q, I>q)

+ E(I6p−1, ip:q, I>q),

|E|
|A|
6 (2 + εκk)εrk +

|E|
|A|

, κk = rk|A||A−1k |, Ak =
[
A(I6k, I>k)

]
,

where |E| is estimated by (9).
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i1, . . . , id l

i1, . . . , ik1 ik1+1, . . . , idI>k1 I6k1 l − 1

i1:p1 ip1+1:k1 ik1+1:p2 ip2+1:dI>p1 I6p1 I>k1 I6k1 I>p2 I6p2 l − 2

I>1 I61 I>2 I62 I>3 I63 I>d−1 I6d−1i1 i2 i3 id. . . 0

Figure 2: Interpolation steps on the balanced dimension tree for Thm. 1, cf. Fig. 1.

Proof. Like in the previous lemma, we reduce the elementwise equation (9) to the subset of
indices with i6p−1 ∈ I6p−1 and i>q ∈ I>q and obtain

A(I6p−1, ip:q, I>q) =
∑

sk,tk
A/(I6p−1, ip:k, I>k

tk
)(A−1k )tk,skA.(I6ksk

, ik+1:q, I>q) + E(I6p−1, ip:q, I>q),

where |E| is estimated by (9). We write

A/A
−1
k A. = (T/ + E/)A

−1
k (T. + E.) = T/A

−1
k T. + A/A

−1
k E. + E/A

−1
k A. − E/A

−1
k E..

Since Ak =
[
A(I6k, I>k)

]
is the maximum–volume submatrix in A{k} = [A(i6k, i>k)] , it domi-

nates by (5) in the corresponding rows and columns of the unfolding and a fortiori in A/ and
A., i.e. |A/A

−1
k | 6 1 and |A−1k A.| 6 1. It follows that∣∣A/A
−1
k E.

∣∣ 6 rk
∣∣A/A

−1
k

∣∣ |E.| 6 rkε |A| ,
∣∣E/A

−1
k A.

∣∣ 6 rkε |A| , and∣∣E/A
−1
k E.

∣∣ 6 r2kε
2
∣∣A−1k

∣∣ |A|2 = r2kε
2
∣∣A−1k

∣∣ |A|2 = rkκkε
2 |A| ,

which completes the proof.

Theorem 1. If a tensor A satisfies (8), and EF and/or EC are sufficiently small, then Ã given
by the cross interpolation formula (7) with interpolation sets

[
I6k, I>k

]
= maxvolA{k} provides

the accuracy

|A− Ã| 6 (2r + κr + 1)dlog2 de (r + 1) EF ,

|A− Ã| 6 (2r + κr + 1)dlog2 de (r + 1)2EC ,
(10)

where r = max rk, κ = maxκk. By ‘sufficiently small’ we mean such values of EF and/or EC

that the corresponding estimate provides |A− Ã|/|A| < 1.

Proof. We will use the dimension tree suggested in [53], see Fig. 2. The interpolation step (9)
splits a given group of indices ip, . . . , iq in two parts ip, . . . , ik and ik+1, . . . , iq, and introduces
the auxiliary summation over the sets I6k and I>k at the point of splitting. No more than two
auxiliary sets appear in each subtensor when the decomposition goes from the whole tensor
down to the leaves

[
A(I6k−1, ik, I>k)

]
, which constitute (7). All leaves consist of the original

entries of A, therefore we have zero error at the ground level. The interpolation error at the
level 1 is estimated by Lemma 1 as |E1| 6 ε1|A|, where

ε1 = min

{
(r + 1)

EF

|A|
, (r + 1)2

EC

|A|

}
. (11)
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When we move up by one level of the dimension tree, the error is amplified as shown by Lemma 2
and the relative error in Chebyshev norm is |Em| 6 εm|A|, where εm propagates as follows

εm+1 = (2 + εmκ)εmr + ε1 6 (2 + κ)εmr + εm = (2r + κr + 1)εm.

Here we use the inequality εm < 1 provided by the assumption that EF and EC are sufficiently
small. It follows that εl 6 (2r + κr + 1)l−1ε1. For a balanced tree 2l 6 2d and l 6 dlog2 de+ 1,
which completes the proof.

Remark 1. The value κk = rk|A||A−1k | is closely related to the condition number κC(Ak) of
the submatrix Ak w.r.t. the Chebyshev norm. In general |A| > |Ak| and κk > rk|Ak||A−1k | =
κC(Ak). However, as shown in [20], the ratio of the Chebyshev norms of a matrix and its
maximum–volume submatrix is bounded as |A|/|Ak| 6 2r2k + rk, and often does not grow with
rank. Therefore, κC(Ak) 6 κk 6 (2r2k + rk)κC(Ak), and usually κk ' κC(Ak). A similar value
‖A‖2‖A−1k ‖2 appears in accuracy estimate in the pioneering paper on the cross interpolation of
matrices [24, Eq. (1.5)].

Remark 2. The splitting of indices in the balanced dimension tree was used to estimate the
accuracy of the interpolation in the HT format [4]. The constructive algorithm proposed in [4]
approximates a given tensor using O(dr3 + dnr2 log d) entries [4, Lemma 7]. Under mild as-
sumptions, the upper bound for accuracy of this approximation [4, Remark 15] is of the level
O(r2d), but the authors acknowledge that “a further analysis might give more insights into the er-
ror amplification”. The analysis developed in this paper is equally applicable to the HT format.
If a balanced dimension tree is used, and interpolation indices are chosen by the maximum-
volume principle, the result of Thm. 1 extends to the HT case, and the quasioptimality constant
is reduced from O(r2d) to (2r + κr + 1)dlog2 de+2 .

The result of Thm. 1 can be interpreted as the existence of a sufficiently good TT approx-
imation computed from a few entries of a tensor by formula (7), provided that the accurate
representation in the TT format (6) is possible. The coefficient O(rdlog2 de+2) can be also under-
stood as upper bound for the ratio of the accuracy of the best cross interpolation (7) and the best
possible accuracy of the approximation (6) of the same TT–ranks. Thm. 1 is constructive and
prescribes the choice of the interpolation sets I6k, I>k to achieve the quasioptimal accuracy.
However, the actual computation of maximum–volume sets in unfoldings A{k} is impossible
due to their restrictively large sizes. In the next sections we consider the nested choice of the
interpolation sets which reduces the search space.

4. Nested maximum volume indices

In this section we switch to the ultimately unbalanced dimension tree, which splits indices
one-by-one, see Fig. 3. In [49] this tree has been used to develop the TT–SVD algorithm which
approximates a given d–tensor by the TT format. We apply the same algorithm substituting
the SVD approximation steps by the interpolation. As in the previous section, we estimate
the accuracy of the resulted approximation w.r.t. the best possible approximation of the same
TT–ranks.

Given a tensor A = [A(i1, . . . , id)] that is approximated by the tensor train (8), we apply
the interpolation formula (9) and separate the rightmost index from the others as follows

A(i1, . . . , id) =
∑

sd−1
td−1

A(i6d−1, I>d−1
td−1

)
[
A(I6d−1sd−1

, I>d−1
td−1

)
]−1

A(I6d−1sd−1
, id) + Ed−1(i1, . . . , id),

8



i1, . . . , id d− 1

I>d−1 I6d−1i1, . . . , id−1 id d− 2

I>d−2 I6d−2 I>d−1 I6d−1i1, . . . , id−2 id−1 id d− 3

I>1 I61 I>2 I62 I>3 I63 I>d−1 I6d−1i1 i2 i3 id. . . 0

Figure 3: Interpolation steps on the unbalanced dimension tree for Thm. 2, cf. Fig. 2.

where
[
I6d−1, I>d−1] = maxvol [A(i6d−1, id)] . Then we interpolate the subtensor with d − 1

free indices and separate the rightmost free index as follows

A(i6d−1, I>d−1) =
∑

sd−2
td−2

A(i6d−2, I>d−2
td−2

)
[
A(I6d−2sd−2

, I>d−2
td−2

)
]−1

A(I6d−2sd−2
, id−1, I>d−1)

+ Ed−2(i6d−1, I>d−1),

where
[
I6d−2, I>d−2] = maxvol

[
A(i6d−2, id−1I>d−1)

]
. The elements of I>d−2 are now chosen

not from all the possible values of bi-index id−1id but from the reduced set id−1I>d−1, where
index id is restricted to rd−1 elements of I>d−1. Hereinafter we omit the overline for the sake of
clarity, since the use of comma in the elementwise notation is sufficient to show which indices are
grouped together. The maximum–volume subsets I>d−1 and I>d−2 are right–nested (cf. [54])
which means that i>d−2 ∈ I>d−2 leads to i>d−1 ∈ I>d−1. As the interpolation develops further,
it holds

i>k ∈ I>k ⇒ i>k+1 ∈ I>k+1, k = d− 1, . . . , 1. (12)

Theorem 2. If a tensor A satisfies (8), then Ã given by (7) with[
I6k, I>k

]
= maxvol

[
A(i6k, ik+1I>k+1)

]
, k = d− 1, . . . , 1,

provides the following accuracy

|A− Ã| 6 rd−1 − 1

r − 1
(r + 1) EF ,

|A− Ã| 6 rd−1 − 1

r − 1
(r + 1)2EC .

(13)

Proof. At the first level of the dimension tree the interpolation writes as follows

A(i1, i2I>2) =
∑

s1,t1
A(i1, I>1

t1
)(A−11 )t1,s1A(I61s1

, i2I>2) + E1(i1, i2I>2),

where A1 = [A(I61, I>1)]. Since [I61, I>1] = maxvol [A(i1, i2I>2)] , it holds |E1| 6 ε1|A|, where
ε1 is defined by (11). This proves the statement of the theorem for d = 2, and constitutes the
base of recursion. Now we suppose that at the level k of the tree it holds

A(i6k, I>k) =
∑

s1,...,sk−1
t1,...,tk−1

A(i1, I>1
t1

)(A−11 )t1,s1 · · · (A−1k−1)tk−1,sk−1
A(I6k−1sk−1

, ik, I>k) + Ek(i6k, I>k),

9



and |Ek| 6 rk−1−1
r−1 ε1|A|. Interpolation at the next level writes as follows

A(i6k, ik+1I>k+1) =
∑

sk,tk
A(i6k, I>k

tk
)(A−1k )tk,skA(I6ksk

, ik+1I>k+1) + Ek(i6k+1, I>k+1).

Using the previous equation we obtain

A(i6k+1, I>k+1) =
∑

s1...sk
t1...tk

A(i1, I>1
t1

)(A−11 )t1,s1 · · · (A−1k )tk,skA(I6ksk
, ik+1, I>k+1)

+
∑

sk,tk
Ek(i6k, I>k

tk
)(A−1k )tk,skA(I6ksk

, ik+1, I>k+1) + Ek(i6k+1, I>k+1)︸ ︷︷ ︸
Ek+1(i6k+1,I>k+1)

.

Since I6k, I>k are chosen by the maximum–volume principle, the approximation error is bounded,
|Ek| 6 ε1|A|, and the submatrix Ak = [A(I6k, I>k)] is dominant∣∣∣∑

sk
(A−1k )tk,skA(I6ksk

, ik+1I>k+1)
∣∣∣ 6 1,

that gives |Ek+1| 6 r|Ek|+ |Ek|. Using the assumption of the recursion, we write

|Ek+1| 6 r
rk−1 − 1

r − 1
ε1|A|+ ε1|A| =

rk − 1

r − 1
ε1|A|.

Plugging k = d− 1, we complete the proof.

Lemma 3. If Ã is given by (7) and the interpolation sets are right–nested as shown by (12),
then for all k = 1, . . . , d− 1 it holds

Ã(i1, . . . , ik, I>k) =
∑

s1,...,sk−1
t1,...,tk−1

A(i1, I>1
t1

)(A−11 )t1,s1 · · · (A−1k−1)tk−1,sk−1
A(I6k−1sk−1

, ik, I>k).

Proof. To prove the statement of the lemma for k = d − 1, in (7) we restrict i>d−1 to I>d−1.
The last core reduces to[

A(I6d−1, id)
]
id∈I>d−1 =

[
A(I6d−1, I>d−1)

]
= Ad−1,

and cancels out with the neighbouring A−1d−1. This constitute the base of recursion. Suppose
now that the statement holds for k = p+ 1, i.e.

Ã(i1, . . . , ip+1, I>p+1) =
∑

s1,...,sp
t1,...,tp

A(i1, I>1
t1

)(A−11 )t1,s1 · · · (A−1p )tp,spA(I6psp , ip+1, I>p+1).

Consider this equation for i>p ∈ I>p, that by (12) assumes i>p+1 ∈ I>p+1. The rightmost core
reduces as follows [

A(I6p, ip+1, I>p+1)
]
i>p∈I>p =

[
A(I6p, I>p)

]
= Ap,

and cancels out with A−1p . This proves the statement for k = p and the lemma by recursion.

Since
[
I6k, I>k

]
= maxvol

[
A(i6k, ik+1I>k+1)

]
, the quasioptimal estimate (9) holds for

the entries of this subtensor only. However, Ak =
[
A(I6k, I>k)

]
is nonsingular and we can

interpolate the whole unfolding A{k} by the cross based on Ak with some (presumably worse)
accuracy estimate

A(i1, . . . , id) =
∑

sk,tk
A(i1, . . . , ik, I>k

tk
)(A−1k )tk,skA(I6ksk

, ik+1, . . . , id) + Êk(i1, . . . , id). (14)

The following theorem estimates the accuracy of the same interpolation Ã as in the previous
theorem w.r.t. the errors |Êk| in (14).

10



Theorem 3. Under the conditions of Thm. 2 assume additionally that the interpolation (14)
provides sufficiently good accuracy ε̂ = max |Êk|/|A|. Then

|A− Ã| 6 drε̂

1− dκrε̂
|A|, (15)

where κ is defined in (10). By ‘sufficiently small’ here we mean such ε̂, that the denominator
of (15) does not approach zero.

Proof. The interpolation sets (12) have been constructed from right to left according to the
dimension tree on Fig. 3. In order to estimate the accuracy we separate indices one-by-one
with the interpolation (14) proceeding from left to right. We begin with

A(i1, . . . , id) =
∑

s1,t1
A(i1, I>1

t1
)(A−11 )t1,s1A(I61s1

, i>1) + Ê1(i1, . . . , id),

and |E1| = |Ê1| 6 ε̂|A|. On the second step we write

A(i1, . . . , id) =
∑

s2,t2
A(i1, i2, I>2

t2
)(A−12 )t2,s2A(I62s2

, i>2) + Ê2(i1, . . . , id).

Restricting i1 to I61 and plugging the result into the previous equation, we obtain

A(i1, . . . , id) =
∑

s1,s2
t1,t2

A(i1, I>1
t1

)(A−11 )t1,s1A(I61s1
, i2, I>2

t2
)(A−12 )t2,s2A(I62s2

, i>2)

+
∑

s1,t1
A(i1, I>1

t1
)(A−11 )t1,s1Ê2(I61s1

, i>1) + E1(i1, . . . , id)︸ ︷︷ ︸
E2(i1,...,id)

.

Since [I61, I>1] = maxvol [A(i1, i2I>2)] , the submatrix A1 dominates in the corresponding rows∣∣∑
t1
A(i1, I>1

t1 )(A−11 )t1,s1
∣∣ 6 1, and therefore |E2| 6 (r + 1)ε̂|A|.

The third interpolation step writes as follows

A(i1, . . . , id) =
∑

s3,t3
A(i62, i3, I>3

t3
)(A−13 )t3,s3A(I63s3

, i>3) + Ê3(i1, . . . , id).

Again, we restrict i62 to I62 and plug the result into the previous equation.

A(i1, . . . , id) =
∑

s1,s2,s3
t1,t2,t3

A(i1, I>1
t1

)(A−11 )t1,s1 · · · (A−13 )t3,s3A(I63s3
, i>3) + E3(i1, . . . , id),

E3(i1, . . . , id) =
∑

s1,s2
t1,t2

A(i1, I>1
t1

)(A−11 )t1,s1A(I61s1
, i2, I>2

t2
)︸ ︷︷ ︸

Ã(i1,i2,I>2
t2

)

(A−12 )t2,s2Ê3(I62s2
, i>2) + E2(i1, . . . , id).

We need to estimate the norm of the matrix in front of Ê3, avoiding the exponential am-
plification of the coefficient. To do this, we replace the ‘piece’ of the interpolation train with
the subtensor of A. Since A = Ã + E , the same holds for the subtensors A(i1, i2, I>2) =
Ã(i1, i2, I>2) + E(i1, i2, I>2), and using Lemma 3 we write∑

s1,t1
A(i1, I>1

t1
)(A−11 )t1,s1A(I61s1

, i2, I>2) = A(i1, i2, I>2)− E(i1, i2, I>2).

Substituting this into the previous equation, we use the domination of the maximum–volume
submatrix A2 to write

∣∣∑
t2
A(i62, I>2

t2 )(A−12 )t2,s2
∣∣ 6 1 and obtain

|E3| 6 (2r + 1)ε̂|A|+ κrε̂|E|.

The error accumulates similarly in further interpolation steps. Finally,

|E| = |Ed−1| 6 drε̂|A|+ dκrε̂|E|,

which completes the proof.
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Theorems 2 and 3 estimate the accuracy of the interpolation formula (7) with the same
interpolation sets. In Thm. 2 the quasioptimality result is proven with the coefficient O(rd),
which is much larger than the one in (10), cf. the coefficient O(r2d) in [4]. Since the coefficient
in (13) grows exponentially with the dimension, it can be hardly used in the real estimates.
The result of Thm. 3 improves the estimate of Thm. 2 provided the errors |Êk| in (14) do
not grow exponentially with d. In general we cannot provide such upper bound for |Êk|. The
estimate (15) is useful in special cases when the theoretical or numerical estimates available for
the errors |Êk| are bounded or grow moderately with d.

Note that the nestedness of the interpolation sets is essential in the proof of Thm. 3. The
result of Thm. 3 cannot be generalised to the ‘fully’ maximum–volume case described in Thm. 1.

5. Two–side nestedness and the interpolation property

In this section we consider the interpolation (7) where both left and right interpolation sets
are nested, i.e. for all valid k it holds

i>k ∈ I>k ⇒ i>k+1 ∈ I>k+1, i6k ∈ I6k ⇒ i6k−1 ∈ I6k−1. (16)

A naive way to construct such sets is to run the right–to–left interpolation pass explained
in Sec. 4 and keep the right sets I>k only. The left sets I6k are computed by the left–to–right
interpolation pass which separates the index i1, then i2, etc. We obtain[

J 6k, I>k
]
= maxvol

[
A(i6k, ik+1I>k+1)

]
,
[
I6k,J >k

]
= maxvol

[
A(I6k−1ik, i>k)

]
.

Note that
[
A(I6k, I>k)

]
is not necessarily the maximum–volume submatrix neither in matrix[

A(i6k, ik+1I>k+1)
]
, nor in

[
A(I6k−1ik, i>k)

]
, nor even in

[
A(I6k−1ik, ik+1I>k+1)

]
, where they

intersect. Therefore, we cannot use (4) to estimate the accuracy of (7) with these interpola-
tion sets. Due to the restrictive sizes, the computation of the maximum volume submatrix is
impossible even with implied nestedness. To make the problem tractable, we should further
reduce the search space — the practical recipes will be discussed in the next section.

If both left and right interpolation sets are nested, Eq. (7) is indeed the cross interpolation
formula, as shown by the following theorem.

Theorem 4. For a tensor A, the approximation Ã given by (7) with indices I6k, I>k satisfy-
ing (16), is exact on the positions of all entries evaluated in a tensor

A(I6k−1, ik, I>k) = Ã(I6k−1, ik, I>k), k = 1, . . . , d. (17)

Proof. It is sufficient to repeat the arguments from the proof of Lemma 3 for the left and right
interpolation sets.

A n1×n2 matrix A of rank r is defined by (n1+n2)r− r2 parameters, e.g. by n1r+n2r+ r
elements of the SVD decomposition A = USV ∗ minus r(r+1) normalisation constraints U∗U =
I, V ∗V = I. The cross interpolation formula (2) recovers a rank–r matrix from (n1 + n2)r− r2
entries, if a submatrix [A(I1, I2)] is nonsingular. If rankA > r, formula (2) provides the
approximation Ã, which is exact on (n1 + n2)r − r2 positions of a matrix. These facts are
extended to the tensor case by the following theorem.

Theorem 5. A tensor A with mode sizes n1, . . . , nd and TT–ranks r1, . . . , rd−1 is defined by

s =
d∑

k=1

rk−1nkrk −
d−1∑
k=1

r2k
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parameters. If the left and right interpolation sets satisfy (16), and the submatrices Ak =
[A(I6k, I>k)], k = 1, . . . , d− 1, are nonsingular, formula (7) recovers A from exactly s entries.
If a tensor A is not given by (6) exactly, formula (7) interpolates it on at least s positions.

Proof. The first statement is proven in [57, Prop. A.3]. Taking into account the result of Thm. 4,
the second and the third statements require to calculate the total number of tensor entries in
all subtensors in (17). Each block

[
A(I6k−1, ik, I>k)

]
consists of rk−1nkrk elements of a tensor,

but some entries contribute to more than one block. For example, if (16) holds, subtensors
[A(i1, I>1)] and [A(I61, i2, I>2)] intersect by the submatrix A1 = [A(I61, I>1)] , which has r21
elements. Similarly,

[
A(I6k−1, ik, I>k)

]
and

[
A(I6k, ik+1, I>k+1)

]
have r2k common elements in

the submatrix Ak.
The common elements of

[
A(I6k, ik+1, I>k+1)

]
and [A(I6p−1, ip, I>p)] are described by the

following conditions

i6p−1 ∈ I6p−1, i6k ∈ I6k, i>p ∈ I>p, i>k+1 ∈ I>k+1.

If p < k, they are reduced by (16) to {i6k ∈ I6k, i>p ∈ I>p} ⊂ {i6k ∈ I6k, i>k ∈ I>k}. This
means that for p = 1, . . . , k−1 all common entries of [A(I6p−1, ip, I>p)] and

[
A(I6k, ik+1, I>k+1)

]
belong to Ak = [A6k, I>k]. The total number of entries shared between blocks equals

∑d−1
k=1 r

2
k,

which completes the proof.

6. Interpolation algorithms for matrices and tensors

We start this section with a short overview of the cross interpolation algorithms for matrices.
The idea of reconstruction and approximation of a matrix from several columns and rows by
the skeleton decomposition (2) or the pseudoskeleton decomposition Ã = CGR, C = [A(i,J )] ,
R = [A(I, j)] , has been suggested by Goreinov and Tyrtyshnikov [23]. In [24] the accuracy of
the pseudoskeleton approximation has been studied, and it has been pointed out that a good
cross should intersect by a well bounded submatrix. The connection with the maximum–volume
submatrix has been mentioned in [24], and the maximum–volume principle has been presented
in more detail in [21].

The search for the maximum–volume submatrix per se is an NP–hard problem [6]. For
practical computations, it is necessary to find a sufficiently good submatrix reasonably fast. The
alternating direction algorithm has been proposed in [64], which adaptively increases the size
of the interpolation cross following the maximum–volume principle at each step, and computes
the approximation of a matrix in linear time w.r.t. the size. The greedy algorithm of such kind,
equivalent to the Gaussian elimination with rook pivoting, was then suggested by Bebendorf [7].
Due to its particular simplicity, it has become widely known as the adaptive cross approximation
(ACA). In practical computations, ACA and similar methods with minimal information are
liable to breakdowns, i.e. they may quit when a good approximation is not yet obtained. A
cheap remedy proposed in [58] is to check the accuracy on the random set of entries and restart
the algorithm if necessary.4 Another well–known sampling method is the CUR algorithm of
Mahoney et al [18], which is the pseudoskeleton CGR decomposition where positions of the
rows and columns are chosen randomly.

The accuracy of the maximum–volume cross approximation is estimated for any matrix [21,
60, 22]. Algorithms which use a few elements (e.g. ACA) are heuristic and construct the
approximation which can be arbitrarily bad for other matrix elements. The accuracy of such

4Published in English later as [52, Alg. 3]
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Algorithm 1 Greedy cross interpolation algorithm for tensor trains
Require: Function to compute entries of a tensor A = [A(i1, . . . , id)]
Ensure: Cross interpolation (7) with the nested interpolation sets (16)
1: I6k = ∅, I>k = ∅, k = 1, . . . , d, Ã = 0, E = A
2: while |A− Ã| is not sufficiently small do
3: Find a pivot i? = (i?1, . . . , i

?
d) s.t. |E(i?1, . . . , i?d)| ' |A− Ã|

4: Add i?6k to I6k, and i?>k to I>k, k = 1, . . . , d− 1

5: Update the interpolation Ã by (7)
6: end while

algorithms can be estimated in special cases, e.g. for matrices generated by asymptotically
smooth functions on quasi–uniform grids, see [7, 66], cf. [65] in many dimensions.

The existing cross interpolation algorithms for tensors can be classified similarly. The
skeleton decomposition is generalised to the tensor case in [54] by formula (7). The existence
result is generalised from the matrix case [21, 60, 22] to the TT case by Thm. 1. Algorithm
proposed in [54] approximates the maximum–volume positions in the ALS way, similarly to the
one from [64].

A greedy cross interpolation algorithm for the TT format can be suggested similarly to the
matrix case, see Alg. 1. Similarly to the ACA for matrices, Alg. 1 relies on the interpolation
property for the tensor trains, established by Thm. 4. On each step Alg. 1 searches for a pivot
i? where the error of the current approximation is (quasi)maximum in modulus. Then it adds
the indices of i? = i?6ki

?
>k to all subsets I6k and I>k, k = 1, . . . , d− 1, to maintain the two–side

nestedness (16). The updated interpolation is exact on all lines (i?1, . . . , i
?
k−1, ik, i

?
k+1, . . . , i

?
d),

ik = 1, . . . , nk, k = 1, . . . , d.
The full pivoting in higher dimensions is impossible due to the curse of dimensionality, and

we need cheaper alternatives to find a new pivot and estimate the accuracy for the stopping
criterion. There are several options how to do this:

1. to choose indices randomly, following the tensor–CUR algorithm of Mahoney et al [47];
2. to choose the maximum in modulus element of the current residual among a randomly

sampled set;
3. to choose the pivot from a restricted set, then check the accuracy of the approximation

over a random set of entries, and restart if necessary, similarly to [52, Alg. 3].

The restricted pivoting set can naturally arise from the locality requirement. By this we
mean that with a new pivot we should modify only a few interpolation sets I6k and I>k and
increase only a few TT–ranks of the approximation, not all of them. To put it differently, a
pivoting algorithm should update only a few TT–cores of (7) at each step, similarly to the ALS
and DMRG algorithms introduced in quantum physics.

Following the two-site DMRG algorithm, in Alg. 2 we choose a new pivot i? in the supercore
A′ =

[
A(I6k−1, ik, ik+1, I>k+1)

]
. This choice provides i?6k−1 ∈ I6k−1, and by (16) i?6p ∈ I6p for

p 6 k − 1. Similarly, i?>k+1 ∈ I>k+1 and by nestedness i?>p ∈ I>p for p > k + 1. When we add
i?6k to I6k and i?>k to I>k, the two–side nestedness (16) is preserved ipso facto.

The greedy algorithm with pivoting in A′ can be implemented as a simple modification of
the cross interpolation algorithm TT–RC from [59]. The TT–RC algorithm is of the DMRG
type, which means that it updates two neighbouring TT–cores at each step, computing the
matrix A′ in full. The proposed Alg. 2 substitutes this step with the cross interpolation and
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Algorithm 2 Greedy restricted cross interpolation algorithm for tensor trains
Require: Function to compute entries of a tensor A = [A(i1, . . . , id)]
Ensure: Cross interpolation (7) with the nested interpolation sets (16)
1: Choose I6k, I>k, k = 1, . . . , d, which satisfy (16), and compute Ã by (7)
2: while stopping criterion is not satisfied do
3: for k = 1, . . . , d− 1 do {Left–to–right half–sweep}
4: Apply the cross interpolation (e.g. [52, Alg. 3]) to the DMRG supercore matrix[

A(I6k−1ik, ik+1I>k+1)
]
. Use interpolation sets I6k, I>k as the initial guess, and ex-

pand them to J 6k,J >k, adding a few crosses. Obtain (18) such that I6k ⊂ J 6k and
I>k ⊂ J >k

5: Substitute I6k and I>k by the expanded sets J 6k and J >k

6: end for
7: Perform right–to-left half–sweep in the same way
8: end while

approximates

A(I6k−1ik, ik+1I>k+1) ≈
∑

sk,tk
A(I6k−1ik,J >k

tk
)
[
A(J 6ksk

,J >k
tk

)
]−1

A(J 6ksk
, ik+1I>k+1), (18)

where J 6k and J >k are computed by the matrix cross interpolation algorithm, s.t.[
J 6k,J >k

]
' maxvol

[
A(I6k−1ik, ik+1I>k+1)

]
.

Since we already have the interpolation sets I6k, I>k, which deliver a (hopefully accurate)
approximation to the unfolding A{k} and hence to the supercore A′, it is natural to re-use them
and look for J 6k,J >k that contain I6k, I>k, respectively. The resulting greedy algorithm
requires O(dnr2) evaluation of tensor elements and O(dnr3) additional operations, i.e. scales
linearly in the mode size and very moderately in the TT–rank. The algorithm is rank–revealing,
i.e. will not increase the TT–ranks of the approximation (7) over the TT–ranks of a given tensor.

7. Numerical experiments

The numerical results have been obtained using the Iridis High Performance Computing
Facility at the University of Southampton.5 Cross interpolation and auxiliary tensor train
subroutines are written in Fortran90 by the author. The code was compiled using the Intel
Composer and linked with Lapack/Blas subroutines provided with the MKL library.

In the experiments we use a very simple version of Alg. 2. On each step (Line 4) we improve
the current approximation by adding only one cross to [I6k, I>k]. The position of the new cross
is computed as follows. First, a random sampling is performed on rk−1nk + nk+1rk+1 entries of
the matrix

[
A(I6k−1ik, ik+1I>k+1)

]
, and an element is chosen where the error of the current

interpolation is maximum in modulus. Then the residual for the row or column (for left and
right half–sweep, resp.) which contains this element is evaluated, and the pivot i? is chosen
among its entries. If pivot is not zero up to the machine precision, the obtained cross is added
to interpolation sets I6k, I>k. If pivot is machine null, the rank rk is not increased.

The interpolation sets are always initialised by the index (1, 1, . . . , 1).
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|A−X|

µ = 10−7

µ = 10−5

µ = 10−3

µ = 10−1

0 1 2 3 4 5 6 7

log2
|A−Ã|
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Figure 4: Distribution of log2(|A− Ã|/|A−X|) for randomly generated tensors A given by (19) and the cross
interpolation Ã, computed by Alg. 2 (dashed lines), and additionally improved by the TT-RC algorithm from [59]
(solid lines). Dimension d = 16, mode size n = 2, noise level µ = 10−7, rank r = 5, unless other values are
shown on the graph.

7.1. The quasioptimality coefficient
For a number of randomised experiments we measure the ratio between the accuracy of the

approximation in the TT format (6) and the cross interpolation (7) with the same TT–ranks.
Given dimension d, mode size n = 2, mode ranks r and noise level µ, we consider the tensor

A = X + µR, |X| = 1, |R| = 1, (19)

where R is random and X is given by the TT format (6) with TT–ranks r and random TT–
cores. All random elements are independently and uniformly distributed on the unit set and
we seed them using the internal pseudorandom generator provided with the compiler.

We apply Alg. 2 to compute the initial cross interpolation Ãgreedy with TT–ranks not larger
than r. Then we run 10 additional sweeps of the DMRG–like TT–RC algorithm [59] to im-
prove the positions of the interpolation crosses and obtain ÃDMRG. Density distributions of the
logarithm of the quasioptimality coefficient for Ãgreedy and ÃDMRG are shown on Fig. 4. The
number of tests for each density distribution curve is at least 220.

We note that for the randomly generated tensors, the quasioptimality coefficient is not very
large. For example, the top left graph on Fig. 4 corresponds to d = 16 and r = 5. The estimate of

5Iridis4 is based on Intel 2.6 GHz processors, for more specifications see cmg.soton.ac.uk/iridis.
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Thm. 1 provides the upper bound for the quasioptimality coefficient (2r+κr+1)dlog2 de(r+1)2 >
16462 > 221. The computed value is

log2(|A− Ãgreedy|/|A−X|) = 3.2± 2.1, log2(|A− ÃDMRG|/|A−X|) = 1.3± 0.6.

Therefore, for the considered experiment the upper bound 221 provided by Thm. 1 overestimates
the actual value by a factor > 219.5.

It is important to check how the accuracy of the interpolation depends on the dimension d
and the TT–ranks r. The results of these experiments are shown in the right column of Fig. 4.
We see that the coefficient grows with rank and dimension slower than the upper bound (10).
For example, for r = 32 the upper bound is & 258, assuming κ = 1. The actual coefficient
computed in the numerical experiments is of the order 23 for Ãgreedy and 24 for ÃDMRG. Note
that in this case the interpolation improved by the DMRG–like algorithm has worse accuracy
than the interpolation returned by Alg. 2. This may be explained by the fact that the TT–RC
algorithm has the truncation step which reduces TT–ranks and introduces a perturbation to
the tensor. The double–side nestedness (16) is not preserved during this step which may result
in the loss of the interpolation property and deteriorate the accuracy. This emphasises the
importance of the interpolation property given by Thm. 4.

Finally, we analyse how the accuracy of the cross interpolation depends on the noise level
µ. On the bottom left graph on Fig. 4 we see that this parameter does not change the distri-
bution significantly. When µ 6 10−5, further reduction of the noise level has no effect on the
distribution of the quasioptimality coefficient.

We summarise that for random tensors the accuracy of the computed cross interpolation
behaves much better than the upper bound in (10).

7.2. Speed and accuracy of the greedy interpolation algorithm
We apply Alg. 2 to the tensor A = [A(i1, . . . , id)] with elements

A(i1, . . . , id) = 1/
√
i21 + . . .+ i2d. (20)

This example is the standard test considered in e.g. [51, 54, 4]. We test the algorithm for large
mode sizes n and dimensions d, where the evaluation of the accuracy |A− Ã| is impossible due
to the restrictively large number of entries. We substitute the exact evaluation by estimates
computed on a large number of randomly distributed elements as follows

|A|∼ = max
i∈I
|A(i1, . . . , id)|, ‖A‖2∼ =

n1 · · ·nd

#I
∑
i∈I

|A(i1, . . . , id)|2, (21)

where indices i = (i1, . . . , id) ∈ I are chosen randomly, and #I denotes the number of elements
in the random set I. In our tests #I > 230.

The relative accuracy of the interpolation computed by Alg. 2 is shown on Fig. 5. We note
that for significantly large ranks it reduces almost to the machine precision threshold and does
not stagnate near the square root of machine precision, cf. [54, 4].

The runtime of the Alg. 2 is shown on Fig. 6. It is not difficult to notice the linear scaling
w.r.t. the mode size n. The scaling in dimension is between O(d) and O(d2), since the algorithm
requires O(d) evaluations of tensor elements, and each tensor element depends on d indices.
The scaling w.r.t. TT–rank is quadratic, which shows that the evaluation of tensor elements
takes longer than other operations.

Finally, we compare the performance of Alg. 2 with the HT cross interpolation algorithm [4]
applied to the same problem, see Table 1. One of the largest problems reported in [4] is the one
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Figure 5: Accuracy of the approximation Ã delivered by Alg. 2 for tensor (20) with dimension d, mode size n
and TT–ranks r. The graphs show the estimates (21) of the relative error in the Chebyshev norm (left) and in
the Frobenius norm (right).

with d = 32, n = 32 and r = 27, where the relative accuracy 10−12 is reached. The computation
in HT format requires 5.17 seconds; the TT cross interpolation is constructed by Alg. 2 in 0.50
seconds, and is of the same accuracy. Therefore, Alg. 2 is ten times faster than the algorithm
from [4].

We also consider a larger problem with d = 1024, n = 1024 and r = 50. The accuracy of
the approximation computed by Alg. 2 is of the order 10−8, and the computation takes 7 hours
and 10 minutes on 1 core of Iridis4. This can be used as a milestone for comparison with the
future algorithms.

8. Conclusions and future work

We have generalised two results on the matrix cross interpolation to the tensor case, using
the cross interpolation formula (7) proposed by Oseledets and Tyrtyshnikov [54] for the tensor
train format. First, we have shown (Thm. 1) that the maximum–volume cross interpolation is
quasioptimal, i.e. its accuracy in the Chebyshev norm differs from the best possible accuracy by
the factor which does not grow exponentially with dimension. This extends the matrix result
of Goreinov and Tyrtyshnikov [22]. Second, we have shown (Thm. 4) that for the nested inter-
polation indices formula (7) computes

∑d
k=1 rk−1nkrk −

∑d−1
k=1 r

2
k parameters of the TT format

inspecting exactly the same number of tensor entries, and on these elements the interpolation
is exact. This generalises the classical result on the skeleton approximation of matrices to the
TT case.
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Figure 6: Computation time of Alg. 2 applied to the tensor (20) with dimension d, mode size n and TT–ranks
r.

TT HT
d n r acc time acc time
32 32 27 10−12 0.50s 10−12 5.17s
1024 1024 50 10−8 7.16h —

Table 1: Accuracy |A − Ã|∼/|A|∼ and runtime of Alg. 2 (TT) and the HT cross interpolation algorithm [4]
(HT) for tensor (20).

In the tensor case, the maximum–volume interpolation sets in general are not nested, and
currently we are not able to suggest the choice of sets which provide quasioptimality and the
interpolation property simultaneously. It would be interesting to find the nested interpolation
sets which provide a moderate coefficient of the quasioptimality.

Using the interpolation property, we have proposed the fast and simple greedy cross interpo-
lation algorithm, which provides very accurate results for the standard test, and is several times
faster than other methods. Many variants of this algorithm can be developed, taking in account
the interpolation property and the available information on the error of the interpolation for
different entries of a tensor. It is easy to overcome the breakdowns, if they occur, simply by
taking random pivots in larger subtensors or in the whole tensor, as is suggested in Alg. 1. In
our experiments we have never had a breakdown using the restricted pivoting in Alg. 2.

The theoretical and experimental results of this paper show that the curse of dimension-
ality cannot stop us from developing fast and reliable cross interpolation methods in higher
dimensions. The cross interpolation allows to convert a given high–dimensional data array into
the tensor train format, for which many operations essential for the scientific computing are
already possible. For many high–dimensional problems we can try to substitute the randomised
(Monte Carlo) sampling by the cross interpolation in order to benefit from its adaptivity. This
is a subject of further work.

Software

The implementation of Alg. 2 made by the author is available at:

• github.com/savostyanov/ttcross.

The Matlab implementation of Alg. 2 is made by Sergey Dolgov as:

• cross/greedy2_cross.m in github.com/oseledets/TT-Toolbox.
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