
Computer Physics Communications 246 (2020) 106869

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Parallel cross interpolation for high-precision calculation of
high-dimensional integrals✩

Sergey Dolgov a,1, Dmitry Savostyanov b,∗,2

a University of Bath, Claverton Down, BA2 7AY Bath, UK
b University of Brighton, Lewes Road, BN2 4GJ Brighton, UK

a r t i c l e i n f o

Article history:
Received 1 April 2019
Received in revised form 6 August 2019
Accepted 20 August 2019
Available online 23 August 2019

Keywords:
High-dimensional integration
High precision
Tensor train format
Cross interpolation
Ising integrals
Parallel algorithms

a b s t r a c t

We propose a parallel version of the cross interpolation algorithm and apply it to calculate
high-dimensional integrals motivated by Ising model in quantum physics. In contrast to mainstream
approaches, such as Monte Carlo and quasi Monte Carlo, the samples calculated by our algorithm are
neither random nor form a regular lattice. Instead we calculate the given function along individual
dimensions (modes) and use these values to reconstruct its behaviour in the whole domain. The
positions of the calculated univariate fibres are chosen adaptively for the given function. The required
evaluations can be executed in parallel along each mode (variable) and over all modes.

To demonstrate the efficiency of the proposed method, we apply it to compute high-dimensional
Ising susceptibility integrals, arising from asymptotic expansions for the spontaneous magnetisation
in two-dimensional Ising model of ferromagnetism. We observe strong superlinear convergence of the
proposed method, while the MC and qMC algorithms converge sublinearly. Using multiple precision
arithmetic, we also observe exponential convergence of the proposed algorithm. Combining high-order
convergence, almost perfect scalability up to hundreds of processes, and the same flexibility as MC and
qMC, the proposed algorithm can be a new method of choice for problems involving high-dimensional
integration, e.g. in statistics, probability, and quantum physics.

© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

High-dimensional integrals often occur in quantum mechan-
ics [1], in statistics and probability, e.g. expectations with multi-
variate probability distributions [2], inverse problems with uncer-
tainty [3], and many more. Analytical formulae for them are rarely
available, hence numerical approaches become the mainstream
approach. Unfortunately, high-dimensional integrals are notori-
ously difficult for numerical methods as well. A naïve approach,
based on tensor product of one-dimensional quadrature rules,
requires the total number of function evaluations N that grows
exponentially with the problem dimension d, exceeding the pos-
sibilities of modern computers for d ≳ 10. This behaviour, known
as the curse of dimensionality, motivates development of special
methods for the integration in higher dimensions. Currently the
most popular methods are the Monte Carlo quadrature [4], quasi

✩ Equal contributions. The order of authors is alphabetical.
∗ Corresponding author.

E-mail addresses: S.Dolgov@bath.ac.uk (S. Dolgov),
d.savostyanov@brighton.ac.uk (D. Savostyanov).
1 Supported by the EPSRC, UK fellowship EP/M019004/1.
2 Supported by the EPSRC, UK grant EP/P033954/1 and the Rising Stars grant

by the University of Brighton, UK.

Monte Carlo [5–8], Markov chain Monte Carlo [2], and their
derivatives such as multilevel Monte Carlo methods [9–12]. These
algorithms are rigorously studied and many theoretical results are
available, including error bounds which typically do not depend
on problem dimension d for problems of interest. Unfortunately,
MC and qMC methods converge slowly — the relative accuracy
ε depends on the number of function evaluations Neval as ε ∼
N−α

eval, where the convergence rate α = 0.5 for MC and 0.5 ⩽
α ⩽ 1 for qMC. The numerical costs therefore grow quickly
when higher precision is required, making calculations expensive,
prohibitively long, or impossible. Methods based on Smolyak’s
sparse grids [13–15] are often used to mitigate, but cannot fully
remove, the curse of dimensionality.

In this paper we consider a problem of numerical integration
of a multivariate function in a simple tensor-product domain
such as free space Rd or hypercube [0, 1]d. We follow the naïve
approach and use a tensor product of univariate quadrature rules,
hence reducing the problem to calculation and summation over
the entries of a multi-dimensional array (which we call tensor).
To overcome the curse of dimensionality, we approximate the
whole array based on a few entries from it, but avoid calculating
the whole array. To achieve this, we develop and use the parallel
version of the tensor cross interpolation algorithm proposed by
one of the authors in [16]. This algorithm interpolates the given

https://doi.org/10.1016/j.cpc.2019.106869
0010-4655/© 2019 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.cpc.2019.106869
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2019.106869&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:S.Dolgov@bath.ac.uk
mailto:d.savostyanov@brighton.ac.uk
https://doi.org/10.1016/j.cpc.2019.106869
http://creativecommons.org/licenses/by/4.0/

2 S. Dolgov and D. Savostyanov / Computer Physics Communications 246 (2020) 106869

array in the tensor train (TT) decomposition [17,18], essentially
performing separation of variables. The array entries are evaluated
along one-dimensional lines or fibres, each of which is formed by
freezing all indices of the multivariate function and only varying
one. The lines intersect forming crosses, and on the positions of
each cross the constructed approximation interpolates the data
exactly. The positions of the crosses, and hence the nodes of the
quadrature rule, are chosen adaptively for the given function,
following the maximum-volume method [19,20]. Using the inter-
polant, various observables, including the integral of the function,
can be computed in linear in d time.

Essentially, the proposed algorithm reconstructs all nd values
of the function f (x1, . . . , xd) on a tensor product n × · · · × n
quadrature grid from a linear in d number of samples, which
are adapted specifically to f . This adaptivity allows the proposed
algorithm to locate important samples (e.g. areas of concentration
of density) and reach faster convergence, compared to main-
stream numerical methods, such as MC and qMC, where the
positions of the samples are either not optimised, or are optimal
for a wide class of functions. For the family of Ising integrals,
considered in the numerical experiments section of this paper,
the proposed algorithm demonstrates high-order convergence of
the order of ε ∼ N−7eval, clearly outperforming MC and qMC.
Using multiple precision arithmetic, we were able to compute
an integral in more than thousands dimensions to more than
hundred decimal digits, observing exponential convergence of
the proposed method. As a flexible and non-intrusive algorithm,
it can become a new method of choice for problems involving
numerical integration in higher dimensions.

Data-sparse algorithms based on tensor product decomposi-
tions (canonical polyadic [21], Tucker [22], tensor train (TT) [17]
or Hierarchical Tucker (HT) [23]) have a long history of develop-
ment [24–27], with applications in quantum physics and chem-
istry [28–32], signal processing [33,34], plasma modelling [35],
stochastics and uncertainty quantification [36,37], and fractional
calculus [38,39]. However, scalable high performance implemen-
tation of tensor product algorithms is a relatively new area of re-
search. A straightforward idea is to parallelise dense tensor alge-
bra in computations of factors of a decomposition [40]. However,
this typically requires all-to-all communications which limits the
scalability. Another strategy is to parallelise a tensor decomposi-
tion over different factors, or dimensions. One of the first examples
of such approach was the parallel density matrix renormalisa-
tion group (DMRG) algorithm [41] for ground state computations
in quantum physics. In mathematical community this research
direction started with dimension-parallel linear solver [42] and
cross algorithms in HT format [43]. The main difficulty of paral-
lelisation over dimension is the need of algorithmic modifications,
since state of the arts tensor algorithms were designed in in-
trinsically sequential way. Ideally, such modifications should not
compromise numerical stability or convergence for the sake of
parallel efficiency.

In this paper we develop a parallel version of the TT cross
interpolation algorithm [16]. The parallel algorithm is adaptive
and converges with the same rate as the sequential version.
It involves only local communications with constant loading of
processes, and demonstrates almost perfect scaling up to the
ultimate partitioning where each process is responsible for a
single direction (mode, variable). Moreover, further speedup can
be achieved using OpenMP parallelisation of tensor algebra in
each process.

The rest of the paper is organised as follows. In Section 2 we
recall the cross interpolation method for matrices and provide
necessary definitions. In Section 3 we discuss how the matrix in-
terpolation can be applied for high-dimensional arrays (tensors).
We compare the existing methods and explain why the cross

interpolation algorithm proposed by one of the authors in [16]
seems to be the most suitable for parallelisation over the dimen-
sions. We then present the parallel version of this algorithm. In
Section 4 we explain how the cross interpolation algorithm can
be applied for numerical integration. We also introduce more
formally the MC and qMC methods. In Section 5 we introduce
Ising susceptibility integrals which will be our main numerical
example in this paper. We demonstrate that the proposed method
achieves high-order (sometimes exponential) convergence, while
the convergence of MC and qMC remains sublinear. In the conclu-
sion, we briefly summarise the results of this paper and discuss
some challenges and potential directions for future work.

2. Cross interpolation: notation, definitions and algorithms

2.1. Cross interpolation of matrices

Cross interpolation is based on a simple observation: for a
given m × n matrix A = [A(i, j)]m,n

i,j=1 its rank-r interpolation
can be recovered from its r columns J = {J (t)

}
r
t=1 and r rows

I = {I(s)
}
r
s=1 as follows:

A(i, j) ≈ Ã(i, j) =
r∑

s=1

r∑
t=1

A(i,J (t))[A(I,J)]−1t,s A(I
(s), j)

= A(i,J)[A(I,J)]−1A(I, j).

(1)

Remark 1 (Compression). To compute the right-hand side we
use only the elements of selected columns A(i,J (t)), and rows
A(I(s), j). Other elements of A are not required to construct Ã
and we can avoid calculating them. Thus, evaluation and storage
of Ã requires (mr + nr − r2) matrix elements — this is more
cost-efficient than working with the whole matrix A if r ≪
min(m, n).

Due to the shape of the locus of computed entries, shown
in Fig. 1, this decomposition is known as skeleton [44], pseudo-
skeleton (if the exact inverse is replaced with, say, pseudo-inverse)
[45], or cross [46].

2.2. Notation for matrices and submatrices

Eq. (1) is understood element-wisely, i.e. holds for all possible
values of free indices i and j. According to the matrix multipli-
cation rule, the summation is performed over the summation
indices from the sets I and J . Note that the sums are taken over
the indices which are repeated in the formula, cf. Einstein’s sum-
mation convention [47]. Notation A(I,J) refers to a submatrix on
the intersection of rows I and columns J , mimicking the intuitive
syntax of programming languages like Fortran90, Matlab, R and
Julia, where a vector of indices can be passed into an array to
select a subsection of it, e.g. A(1:2,1:3) for a 2 × 3 leading
submatrix of A. We can also use index sets I = {1, . . . ,m} and
J = {1, . . . , n} to refer to full columns and rows. For instance,
the approximant Ã in (1) is a product of three matrices:

• m× r matrix of columns A(I,J) = [A(i, j)]i∈I,j∈J ;
• inverse of the r × r submatrix at the intersection A(I,J) =
[A(i, j)]i∈I,j∈J ;
• r × n matrix of rows A(I, J) = [A(i, j)]i∈I,j∈J.

Embracing this notation, we will keep the same letter A for all
three factors of the cross interpolation. Compared to the CGR
notation [45,48] or CUR notation [49], our notation in (1) high-
lights that factors of the cross decomposition are submatrices of
the given matrix A, which distinguishes it from SVD, QR and LU
factorisations.

S. Dolgov and D. Savostyanov / Computer Physics Communications 246 (2020) 106869 3

Fig. 1. Cross interpolation for matrices. The full matrix A is approximated by a low-rank decomposition Ã based on a small number of columns and rows computed
in A. Note that the approximation (1) is exact in the positions of computed rows and columns.

2.3. Maximum volume principle

The approximation A ≈ Ã is exact on the positions of com-
puted rows I and columns J , which is why we call it interpo-
lation. For other entries the mismatch between A and Ã can be
arbitrary large in general, because the approximation Ã does
not use information about the matrix A apart of its few chosen
columns and rows. Theoretical error upper bounds can be ob-
tained based on additional properties of the matrix, e.g. when A =
[f (xi, yj)]

m,n
i,j=1 is generated by asymptotically smooth function [50].

However, the quality of the cross approximation Ã depends criti-
cally on a choice of good positions (I,J) for the cross. Good the-
oretical estimates are available for the maximum-volume cross,
i.e. such that A(I,J) has the largest possible volume

vol A(I,J) = |det A(I,J)|

of all submatrices of this size. The maximum-volume principle
for matrix approximation was first proposed in [19,20,48], and
the estimates were later generalised to other norms [51,52], and
rectangular submatrices [53,54].

Unfortunately, the search for a maximum-volume submatrix
is NP-hard [55] and cheaper alternative algorithms are required
for practical calculations with large matrices.

2.4. Practical algorithms for matrix cross interpolation

When matrix A is available in full, reliable algorithms for
low-rank approximation are available, such as the famous sin-
gular value decomposition (SVD) [56], and faster rank-revealing
QR [57] and LU [58] algorithms. However, these approaches are
unfeasible for very large-scale matrices, e.g. those coming from
high-dimensional problems, when even O(mn) costs become pro-
hibitive.

To compute a sufficiently good cross with sublinear costs, the
incomplete cross approximation [46] algorithm was proposed, that
increases the volume of the intersection matrix by alternating
updates of rows I and columns J . If the set of columns J is
fixed, there is a combinatorial number of possible row sets I to
compare. To keep costs feasible, rows I are updated one-by-one
with a greedy algorithm first suggested by Donald Knuth [59].
Greedy updates of rows, shown in Alg. 1, continue until the
volume is large enough. Then rows are fixed and columns are
updated, and the algorithm alternates until vol A(I,J) is signifi-
cantly large. The details of this maxvol algorithm for matrix cross
interpolation are given in [20,46].

A conceptually simpler adaptive cross approximation (ACA)
algorithm [60] follows a greedy optimisation approach by in-
creasing the interpolating sets by one columns and row at a time.
It can be seen as a Gaussian elimination with partial column

Algorithm 1 One step of the practical row selection algo-
rithm [59]
Input: Sets (I,J) of the interpolation (1)
1: B(I, I)← A(I,J)[A(I,J)]−1. % m× n matrix with

B(I, I) = I
2: (i⋆, i†)← argmax(i,j)∈I×I |B(i, j)| % (i⋆, i†) ∈ I× I
Output: Updated row set I ← I ∪ {i⋆} \ {i†} with vol A(I,J)←

vol A(I,J)|B(i⋆, i†)|.

Algorithm 2 One step of the matrix cross interpolation algorithm
Input: Sets (I,J) of the interpolation (1)
1: Pick a random set of samples L = {(i, j)} and choose the one

with the largest error,
(i⋆, j⋆)← argmax(i,j)∈L|A(i, j)− Ã(i, j)|

2: repeat % column and row partial pivoting updates
3: (i⋆, j⋆)← argmaxi∈I|A(i, j⋆)− Ã(i, j⋆)|
4: (i⋆, j⋆)← argmaxj∈J|A(i⋆, j)− Ã(i⋆, j)|
5: until rook condition (2) is met or computational budget is

exhausted
Output: Expanded index sets I ← I ∪ {i⋆}, J ← J ∪ {j⋆}

pivoting [61], which is computationally cheap but may result in
exponential amplification 2r of the error. A more conservative
complete pivoting is believed to be numerically stable [62], but
involves a search through all matrix elements, and thus is more
expensive. A good alternative is the rook pivoting [63], which
searches for a pivot (i⋆, j⋆) that is dominant in its own row and
columns:

|A(i⋆, j⋆)− Ã(i⋆, j⋆)| ⩾ |A(i, j)− Ã(i, j)|,

for all (i, j) such that i = i⋆ or j = j⋆ (2)

Rook pivoting avoids exponential deterioration of the error
[64,65] and in practice seems to have the same asymptotical
complexity as partial pivoting, thus combining the best of both
worlds. We use rook pivoting in combination with random piv-
oting, as shown in Alg. 2.

Remark 2 (Numerical Complexity). If |L| = O(m + n), a single
rank-one update step evaluates O(m+n) matrix entries and per-
forms (m+n)r additional operations. Thus r steps of Algorithm 2
produce the rank-r interpolation (1) using O((m + n)r) matrix
elements plus O((m+ n)r2) additional operations.

Remark 3 (Accuracy). Algorithm 2 does not access all elements
of a matrix and therefore is heuristic, i.e. its accuracy cannot be
guaranteed in general.

4 S. Dolgov and D. Savostyanov / Computer Physics Communications 246 (2020) 106869

Algorithm 2 is written in a very general way and many details
are clearly improvable. For example, the choice of L = {(i, j)} for
initial sampling can be optimised to ensure i /∈ I and j /∈ J since
the error A − Ã is zero on the positions of the cross. A variety
of other heuristic tricks were proposed, e.g. Mahoney et al. [49]
suggest to estimate the column and row norms of A and sample
(i, j) ∈ Lwith probabilities proportional to these norms. The focus
of this paper is not the ‘best heuristic’ for the matrix case, but
the extension to high-dimensional problems. We refer the reader
to [66] for a review of matrix low-rank approximation algorithms.

3. Cross approximation and cross interpolation in higher
dimensions

3.1. Notation for tensors and multi-indices

We consider an array A = [A(i1, . . . , id)] with d indices ik,
k = 1, . . . , d, which are also called dimensions or modes. Each
index assumes values ik ∈ Ik = {1, . . . , nk}, where nk is called
the mode size. Such arrays are called tensors in numerical linear
algebra (NLA) community [61], although we do not differenti-
ate upper and lower indices, as it is customary for tensors in
mathematical physics [47]. The total storage required for A grows
exponentially with the dimension, prohibiting work with full A
for large d. Hence, tensor product representations are required
for all practical calculations with tensors.

At the heart of tensor product formats lies the idea of sep-
aration of indices. Consider grouping indices i1, . . . , ik together
and separating them from the group ik+1, . . . , id, thus reshaping
n1× n2× · · ·× nd tensor A into a (n1 · · · nk)× (nk+1 · · · nd) matrix

A{k}(i⩽k, i>k) = A{k}(i1i2 . . . ik; ik+1 . . . id) = A(i1, i2, . . . , id),

called kth matricization or unfolding of the tensor. As in (1),
the equation is understood element-wisely for all possible values
of all indices, i.e. A{k} differs from A only by ‘shape’. Rows and
columns of A{k} are enumerated by multi-indices

i⩽k = i1i2 . . . ik ∈ I1 × I2 × · · · × Ik,
i>k = ik+1 . . . id ∈ Ik+1 × · · · × Id.

To separate row and column (multi)-indices i⩽k and i>k, we apply
matrix interpolation formula (1) to A{k}, yielding

A{k}(i⩽k, i>k) ≈ Ã{k}(i⩽k, i>k)

= A{k}(i⩽k, I>k)[A{k}(I⩽k, I>k)]−1A{k}(I⩽k, i>k). (3)

Here (I⩽k, I>k) indicate the positions of rk rows and columns of
the interpolation cross in the unfolding A{k}.

3.2. Tensor train format

The use of element-wise notation allows us to drop the super-
script for the unfolding, because the dimensions of matrices and
tensors are unambiguous from the range of the variables within.
Hence, Eq. (3) can be simplified to

A(i1, . . . , id) ≈ A(i1, . . . , ik, I>k)[A(I⩽k, I>k)]−1A(I⩽k, ik+1, . . . , id),
(4)

that emphasises separation of left and right groups of indices. By
continuing the separation process, we arrive to the decomposi-
tion where all indices ik are isolated:

A(i1, . . . , id) ≈ Ã(i1, . . . , id)

= A(i1, I>1)[A(I⩽1, I>1)]−1A(I⩽1, i2, I>2)

× [A(I⩽2, I>2)]−1 · · · A(I⩽d−1, id).

(5)

This formula is a direct generalisation of skeleton/cross interpo-
lation (1) to tensor case and is therefore called skeleton/cross
tensor decomposition [18]. Note that the factors of the cross
decomposition are constructed from fibres A(I⩽k−1, ik, I>k) of the
given tensor, while in a general tensor train (TT) decomposi-
tion [17] we deal with general factors. TT decomposition is itself a
particular case of more general Hierarchical Tucker (HT) decom-
position [23,67]. Cross approximation algorithms are available for
HT format [68,69], as well as for more specialised tensor formats,
including Tucker [22] and canonical polyadic decomposition [21].

Remark 4 (Compression). The right-hand side of (5) involves∑d
k=1 rk−1nkrk −

∑d−1
k=1 r

2
k = O(dnr2) entries3 of the tensor A.

In general, tensor cross decomposition (5) is an approxima-
tion, but not an interpolation formula for A. The following result
[16, Theorem 4] provides the sufficient condition for (5) to be
called tensor cross interpolation.

Theorem 1 (Interpolation, see [16]). If the crosses (I⩽k, I>k) are
nested:

I⩽k+1 ⊂ I⩽k× Ik+1, I>k ⊂ Ik+1×I>k+1, k = 1, . . . , d−1,
(6)

formula (5) interpolates the evaluated entries of the tensor,

A(I⩽k−1, ik, I>k) = Ã(I⩽k−1, ik, I>k), k = 1, . . . , d.

Theorem 1 cannot be reversed, i.e. nestedness of indices is not
necessary for the interpolation, as shown by the following.

Theorem 2 (Exact Recovery of the Exact-rank Tensor). If rank A{k} =
rk for all k = 1, . . . , d − 1, and all submatrices A(I⩽k, I>k) are
non-singular, the formula (5) recovers the original tensor exactly,
A(i1, . . . , id) = Ã(i1, . . . , id).

This theorem was first proven in [18] with the additional re-
quirement of nestedness. In the exact-rank case the requirement
of nestedness can be relaxed, as we show here.

Proof. If rank A{k} = rk, the rank-rk interpolation (3) recovers the
unfolding A{k} exactly, which means that (4) is also exact,

A(i1, . . . , id) = A(i1, . . . , ik, I>k)[A(I⩽k, I>k)]−1A(I⩽k, ik+1, . . . , id).
(7)

We start by applying (7) with k = 1, yielding

A(i1, . . . , id) = A(i1, I>1)[A(I⩽1, I>1)]−1A(I⩽1, i2, . . . , id).

Writing (7) with k = 2, we get

A(i1, i2, i3, . . . , id) = A(i1, i2, I>2)[A(I⩽2, I>2)]−1A(I⩽2, i3, . . . , id).
(8)

This is true for all i1 ∈ I1, so it is also true for i1 ∈ I1 = I⩽1,
because I1 ⊂ I1. Reducing (8) to A(I⩽1, i2, . . . , id) and plugging
into the previous equation, we obtain

A(i1, . . . , id) = A(i1, I>1)[A(I⩽1, I>1)]−1A(I⩽1, i2, I>2)

× [A(I⩽2, I>2)]−1A(I⩽2, i3, . . . , id).

Continuing in the same way for k = 3, . . . , d − 1, we complete
the proof. □

3 In all complexity estimates we assume n1 ∼ n2 ∼ · · · ∼ nd ∼ n and
r1 ∼ r2 ∼ · · · ∼ rd−1 ∼ r .

S. Dolgov and D. Savostyanov / Computer Physics Communications 246 (2020) 106869 5

Algorithm 3 Left-to-right sweep of the ALS maxvol cross
approximation algorithm [18]
Input: Sets (I⩽k, I>k) of the interpolation (5)
1: for k = 1, . . . , d− 1 do
2: I⋆

⩽k ← maxvol [A(I⋆
⩽k−1ik, I>k)] % choose rk rows in

rk−1nk × rk matrix
3: end for
Output: Updated index sets I⩽k ← I⋆

⩽k, k = 1, . . . , d− 1

If A{k}’s are only approximately low-rank, the good choice of
crosses (I⩽k, I>k) is important to ensure accurate approximation
in (5). If all (I⩽k, I>k) are maximum-volume submatrices in re-
spective unfoldings A{k}, the lower accuracy bounds are extended
from matrices [19,20,48] to the tensor case [16, Theorem 1].
Inspired by the maximum volume principle, we will now discuss
practical algorithms for computation of sufficiently good crosses
for the tensor cross interpolation.

3.3. Practical algorithms for tensor cross interpolation

In this section we provide a brief overview of tensor cross
interpolation algorithms for TT format and compare them.

3.3.1. ALS maxvol algorithm [18]
The algorithm in the pioneering paper [18] is a direct gener-

alisation of the matrix cross interpolation algorithm from [46] to
the tensor case. Starting from a selection of crosses (I⩽k, I>k), it
updates them one-by-one using the maximum-volume principle.
The left-to-right sequence of updates, called sweep, is shown in
Alg. 3. It is followed by a similar right-to-left sweep and the
algorithm sweeps back and forth through the TT cores until
convergence. This pattern of updates is often referred to as ALS,
coming from alternating least squares or alternating linear scheme,
although the abbreviation is often used in a broader sense.

Remark 5 (Nestedness in Alg. 3). The nestedness condition (6) is
not preserved during the sweep in Alg. 3. Consider the moment
when the left-to-right sweep reaches position k in the train and
replaces previous I⩽k with the updated rows I⋆

⩽k. The nestedness
I⋆
⩽k ⊂ I⋆

⩽k−1× Ik is ensured by construction, so the nestedness of
rows is maintained from the left side up to the current active core.
However the nestedness of rows in the right part of the train is
lost, I⩽k+1 ̸⊂ I⋆

⩽k×Ik+1, because I⩽k+1 have not yet been updated.
The nestedness is recovered when the sweep reaches the end

of the train, so the output Ã of Alg. 3 interpolates the given
tensor A.

The main limitation of this algorithm is that it cannot update
the ranks rk of the interpolation, and therefore its success relies
on two assumptions, both of which are not easy to ensure in
practice:

1. the ranks rk of the interpolation Ã are not underestimated
to ensure that a good accuracy |A− Ã| is achievable; and

2. the ranks rk of the interpolation Ã are not overestimated
and non-singular submatrices A(I⩽k, I>k) can be chosen at
the initialisation step.

3.3.2. DMRG maxvol algorithm [70]
To allow rank adaptation, we can consider a superblock

A(I⩽k−1ik, ik+1I>k+1) as rk−1nk × nk+1rk+1 matrix. If we can com-
pute the superblock in full, its low-rank decomposition can be
computed by standard algorithms e.g. SVD [56]. This allows us
to adapt the rank rk in accordance with the desired accuracy and

Algorithm 4 Left-to-right sweep of the DMRG maxvol cross
approximation algorithm [70]
Input: Sets (I⩽k, I>k) of the interpolation (5), accuracy threshold

ε

1: for k = 1, . . . , d− 1 do
2: B← A(I⩽k−1ik, ik+1I>k+1) % compute superblock as

rk−1nk × nk+1rk+1 matrix
3: USV T

← svdε(B) % compute truncated SVD with accuracy ε

4: rk ← rank (USV T); I⋆
⩽k ← maxvol U; I⋆

>k ← maxvol V
5: end for
Output: Updated index sets (I⩽k, I>k) ← (I⋆

⩽k, I
⋆
>k), k =

1, . . . , d− 1

Algorithm 5 Left-to-right sweep of the DMRG greedy cross
interpolation algorithm [16]
Input: Sets (I⩽k, I>k) of the interpolation (5)
1: for k = 1, . . . , d− 1 do
2: Apply Alg. 2 to the superblock A(I⋆

⩽k−1ik, ik+1I>k+1) seen
as rk−1nk × nk+1rk+1 matrix. Find a new pivot (i⋆⩽k, i

⋆
>k)

3: I⋆
⩽k ← I⩽k ∪ {i⋆⩽k}; I

⋆
>k ← I>k ∪ {i⋆>k}

4: end for
Output: Updated index sets (I⩽k, I>k) ← (I⋆

⩽k, I
⋆
>k), k =

1, . . . , d− 1

compute the good interpolation sets (I⩽k, I>k) from the factors of
SVD decomposition, as shown in Alg. 4.

Density matrix renormalisation group (DMRG) [71] and related
matrix product states (MPS) [72,73] algorithms were developed in
quantum physics community to find the ground state of a quan-
tum spin system. The ranks of the ground state are not known in
advance, which makes the rank adaptation crucial for the success
of the method. Then the DMRG/MPS format was rediscovered in
numerical linear algebra as the TT format [17], it was applied
to a variety of problems including signal processing [33,34], par-
tial and fractional differential equations [38,74,75], modelling of
ionospheric plasma [35] and simulation of NMR [30]. Tailoring
DMRG framework to compute interpolation and integration of
high-dimensional functions is yet another example of extreme
power and flexibility of algorithms, which can be understood,
analysed and applied beyond the boundaries of the area where
they were discovered.

Remark 6 (Nestedness in Alg. 4). Similar to Alg. 3, the DMRG
Alg. 4 does not preserve nestedness (6) during the sweep, but
recovers it at the end of each sweep. Therefore, the output of
Alg. 4 interpolates the initial tensor on all positions (I⩽k−1, ik, I>k),
k = 1, . . . , d.

Unfortunately, Alg. 4 is moderately expensive — it evaluates
O(dn2r2) points of the given tensor and interpolates only O(dnr2)
of them.

3.3.3. DMRG greedy algorithm [16]

Calculation of the superblock A(I⩽k−1ik, ik+1I>k+1) requires
O(r2n2) function evaluations. This may be too expensive, partic-
ularly when we aim for high precision and hence employ large
mode sizes nk for accurate quadratures and expect large ranks
rk to achieve accurate interpolation (5). To reduce costs we can
replace maxvol optimisation step by greedy cross interpolation
step, as proposed in [16] and shown in Alg. 5 and Fig. 2. The
algorithm sweeps back and forth the tensor train (5) and attempts
to add one cross to each set (I⩽, I>k) at a time.

6 S. Dolgov and D. Savostyanov / Computer Physics Communications 246 (2020) 106869

Fig. 2. Cross interpolation algorithm [16] searches for a new pivot (i⋆⩽k, i
⋆
>k) in each superblock A(I⩽k−1ik, ik+1I>k+1).

Remark 7 (Nestedness in Alg. 5). By construction, Alg. 5 pre-
serves nestedness (6) at each internal step of the sweep. The
output of Alg. 5 interpolates the initial tensor on all positions
(I⩽k−1, ik, I>k), k = 1, . . . , d.

Remark 8 (Complexity of Alg. 5). Computation of TT interpola-
tion (5) by Alg. 5 requires O(dnr2) evaluations of tensor elements
and O(dnr3) additional operations. The actual number of function
evaluations, Neval ≲ Cdnr2, depends on the number of rook
pivoting steps in Alg. 2. In all experiments in this paper we keep
C ⩽ 3.

To the best of our knowledge, Alg. 5 is one of the fastest tensor
interpolation algorithms currently available in public domain. As
all algorithms considered in this section, Alg. 5 allows trivial
parallelisation along each mode, which means that O(n) tensor
entries forming each fibre can be evaluated in parallel. However,
Alg. 5 also maintains nestedness on each internal step, which
makes it suitable for parallelisation over all modes. Indeed, since
no particular step violates the nestedness, all rank-one updates
can be performed in parallel, as will be explained in the following
section.

3.4. Dimension parallel tensor cross interpolation algorithm

Traditional ALS algorithm is carried out sequentially over ten-
sor factors. However, it was noticed that this dependence is more
technical than essential. A concurrency in ALS type algorithms is
a matter of active research. As observed in [41], the DMRG algo-
rithm for ground state computations can be executed in parallel
over subsets of TT blocks with only a little deterioration of the
convergence. Later a dimension parallel version of the HT-ALS for
linear equations was developed [42]. In a non-adaptive HT-Cross
method the samples and the factors can also be reconstructed in
parallel [43].

In this section we show that the adaptive Alg. 5 allows a
natural parallelisation over dimensions. From Line 3 of Alg. 5 we
see that two consecutive steps k and k + 1 are connected by
only one new pivot i⋆⩽k, which expands the left index set I⩽k.
For the sake of scalability we can accept a slight restriction of
the search space and replace expanded index sets I⋆

⩽k−1 with
the sets I⩽k−1 taken from the previous sweep, see Fig. 3 (top).
This allows us to search for new pivots in Line 2 of Alg. 5 in a

superblock A(I⩽k−1ik, ik+1I>k+1) with the old index sets, which
can be done in parallel over all different bonds k = 1, . . . , d− 1.
Different processes find their new pivots (i⋆⩽k, i

⋆
>k) independently,

and then communicate them and expand index sets before the
next whole sweep, rather than each internal step as in Alg. 5. Since
the superblocks owned by different processes overlap only for the
neighbouring processes (e.g. the index ik belongs to only (k−1)th
and kth superblocks), only the neighbouring processes need to
communicate: the multi-index i⋆⩽k is sent from kth to (k + 1)th
process, and i⋆>k+1 is sent from (k+ 1)th to kth process, see Fig. 3
(bottom).

Although the proposed restriction might potentially lead to a
different (sub-optimal) pivot selection, we observed no notice-
able change of convergence between the sequential and parallel
versions in our numerical experiments.

If fewer than d − 1 processes are available, each process can
be given several consecutive superblocks. The algorithm becomes
similar to parallel DMRG algorithm of S. White [41], see Alg. 6:
each process performs the sequential sweep as in Alg. 5 over its
local part of the TT decomposition, and after that the neighbour-
ing processes exchange new pivots in exactly the same way as
described above.

Remark 9. This dimension parallel procedure can be hybridised
with multi-threaded local computations, which consist of the
evaluation of different samples in Alg. 2 and additional linear
algebra operations.

Assuming balanced splitting over P processes, we conclude
that each process performs O(dnr2/P) evaluations of tensor ele-
ments and O(dnr3/P) additional operations. Moreover, the tuples
i⋆⩽k and i⋆>k consist of at most d − 1 integers, which need to be
communicated with neighbours using two messages in each of r
iterations, resulting in a total communication volume of O(dr).
Convergence checks require a global communication between
all processors, amounting to O(r log P) single-word messages in
total.

The parallelisation over the modes proposed in Alg. 6 can
scale well for the number of processes P ≲ d. It requires only
a small number of global communications and lends itself well
to distributed-memory ‘cluster’ architectures and MPI-based im-
plementation. In contrast, the parallelisation along each mode

S. Dolgov and D. Savostyanov / Computer Physics Communications 246 (2020) 106869 7

Fig. 3. Parallel version of the cross interpolation algorithm. Top: excluding i⋆⩽k−1 and i⋆>k+1 from the row and column sets during the pivot search disentangles
different steps in Alg. 5, with mild effect on the pivoting efficiency. Bottom: searching of pivots in different superblocks in parallel implies local data overlap and
next-neighbour communication between processors.

Algorithm 6 Dimension parallel DMRG greedy cross interpolation
algorithm
Input: Sets (I⩽k, I>k) of the interpolation (5)
1: Deduce the range [kbeg, kend) of superblocks belonging to the

process p.
2: for k = kbeg, . . . , kend − 1 do % in parallel over p
3: Apply Alg. 2 to the superblock A(I⋆

⩽k−1ik, ik+1I>k+1) seen
as rk−1nk × nk+1rk+1 matrix. Find a new pivot (i⋆⩽k, i

⋆
>k)

4: I⋆
⩽k ← I⩽k ∪ {i⋆⩽k}; I

⋆
>k ← I>k ∪ {i⋆>k}

5: end for
6: Send i⋆⩽kend−1

to process p + 1, receive i⋆⩽kbeg−1
from process

p− 1.
7: Send i⋆>kbeg

to process p− 1, receive i⋆>kend
from process p+ 1.

8: Update I⋆
⩽kbeg−1

← I⩽kbeg−1 ∪ {i
⋆
⩽kbeg−1

}; I⋆
>kend

← I>kend ∪

{i⋆>kend
}.

Output: Updated index sets (I⩽k, I>k) ← (I⋆
⩽k, I

⋆
>k), k =

1, . . . , d− 1

requires all workers to access the shared block of memory where
the fibre (or superblock) is stored. Hence, this level of paral-
lelisation is best for shared-memory architectures, such as cores
and/or threads of a CPU/GPU processor and OpenMP-based imple-
mentation. It scales efficiently when the number of cores/threads
sharing the same memory is T ≲ n.

In our algorithm we combine both MPI and OpenMP paralleli-
sation to achieve the best performance.

4. High-dimensional integration

In this section we review quadrature rules for the numerical
integration in high dimensions. We aim at computing an integral

I =
∫
[0,1]d

f (x1, . . . , xd)dx1 · · · dxd =
∫
[0,1]d

f (x)dx,

of a continuous function f (x) on a rectangular domain [0, 1]d. The
exact integral is approximated by a quadrature

I ≈ Ĩ =
Neval∑
i=1

wif (xi),

where Neval nodes {xi} and weights {wi} are chosen to reduce
the error |I − Ĩ|. Below we consider several examples of the
quadrature rules.

4.1. Full tensor product quadratures

One of the simplest strategies is to rely on an appropriate one-
dimensional quadrature rule (e.g. Gauss–Legendre, tanh–sinh),
defined by the nodes {ti}ni=1 ⊂ [0, 1] and the weights {wi}

n
i=1.

The tensor product quadrature approximates each of the one-
dimensional integrals independently,

Ĩ =
n∑

i1=1

· · ·

n∑
id=1

wi1 · · ·wid f (ti1 , . . . , tid). (9)

The main advantage of the tensor product quadrature is the fast
convergence in n, which stems from the fast convergence of the

8 S. Dolgov and D. Savostyanov / Computer Physics Communications 246 (2020) 106869

one-dimensional Gauss–Legendre rule. For example, if a function
f (x), x ∈ [−1, 1], is analytically extensible to a Bernstein ellipse
Eρ = {z ∈ C : |z − 1| + |z + 1| ⩽ ρ + 1

ρ
} of radius ρ >

1, the Gauss–Legendre quadrature converges with exponential
rate, |I − Ĩ| = O(ρ−n) [76]. However, direct application of (9) is
prohibitively expensive in high dimensions, as the total number
of quadrature nodes Neval = nd grows exponentially with d.

4.2. Quadratures based on tensor product interpolation

4.2.1. Algorithm
To make the calculations in high dimensions feasible and

benefit from the fast convergence of the Gauss–Legendre quadra-
ture, we may replace the full tensor F = [f (ti1 , . . . , tid)] in (9)
with a cheaper approximation, reducing the complexity from
exponential in d to a manageable polynomial cost. Specifically,
in this paper we replace F with tensor product interpolation (5),
computed e.g. by Alg. 6,

f (ti1 , . . . , tid) = A(i1, . . . , id)

≈ Ã(i1, . . . , id) = A(i1, I>1)[A(I⩽1, I>1)]−1

× A(I⩽1, i2, I>2) · · · A(I⩽d−1, id).
(10)

Plugging (10) in (9), we can split the summations and treat
each mode individually, breaking the curse of dimensionality. The
result is now given as a product of (2d− 1) matrices,

Ĩ =

⎛⎝ n∑
i1=1

wi1A(i1, I>1)

⎞⎠ [A(I⩽1, I>1)]−1

×

⎛⎝ n∑
i2=1

wi2A(I⩽1, i2, I>2)

⎞⎠ · · ·
⎛⎝ n∑

id=1

widA(I⩽d−1, id)

⎞⎠ . (11)

In practical calculations, we adapt the interpolation (10) with a
step of Alg. 6 and re-calculate the approximate integral using (11),
as explained in Alg. 7. The stopping criterion in Alg. 7 is based on
internal convergence, i.e. we consider the result accurate to the
desired precision ε when the desired number of leading digits
no longer changes after the update cycle or (better yet) several
sequential updates. We will also terminate the calculations if all
applications of Alg. 6 in one or several sequential iterations of Alg.
7 fail to find a new pivot (i.e. an element with significantly large
residual).

We discovered in numerical experiments that the proposed
algorithm converges faster if it is applied to a tensor where the
function values are pre-multiplied with quadrature weights,

B(i1, . . . , id) = wi1 · · ·wid · f (ti1 , . . . , tid).

This often leads to lower TT ranks/error compared to the ap-
proximation of f (ti1 , . . . , tid) if the function has a complicated
structure near the boundaries. In this case, the boundary ele-
ments, multiplied by small cumulative products of the quadrature
weights, become less influential to both the quadrature and the
cross interpolation algorithm.

4.2.2. Complexity
After r steps of Alg. 7 we obtain the interpolation (10) with

ranks rk ⩽ r . It is composed of blocks A(I⩽k−1, Ik, I>k), k =
0, . . . , d, each of which consists of the values of function f (x) at
points xi = (ti1 , . . . , tid) with (i1, . . . , ik−1) ∈ I⩽k−1, ik ∈ Ik and
(ik+1, . . . , id) ∈ I>k. In total, Eq. (10) requires O(dnr2) evaluations
of function f (x) and O(dnr3) additional operations, as explained
by Remarks 4 and 8. Note that each function evaluation requires
at least linear number of operations (to engage all input values),
which makes the overall complexity at least quadratic in d.

Algorithm 7 High-dimensional integration using tensor cross
interpolation
Input: A function to integrate f (x) = f (x1, . . . , xd) and domain

for integration, e.g. [0, 1]d
1: Choose desired relative accuracy ε of integration.
2: Choose appropriate quadrature nodes and weights
{tik , wik}

nk
ik=1

in each mode k = 1, . . . , d.
3: Choose initial element (i1, . . . , id) ∈ I1 × · · · × Id, and use it

to initialise interpolation sets I⩽k = {(i1, . . . , ik)} and I>k =

{(ik+1, . . . , id)} for k = 1, . . . , d− 1.
4: repeat % rank-one updates of interpolation (10)
5: Calculate approximate integral Ĩ by (11) using current sets

(I⋆
⩽k, I

⋆
>k)

6: Apply Alg. 6 to update sets I⋆
⩽k ← I⩽k ∪ {i⋆⩽k}; I

⋆
>k ←

I>k ∪ {i⋆>k} for k = 1, . . . , d− 1
7: Re-calculate approximate integral Ĩ⋆ by (11) using updated

sets (I⋆
⩽k, I

⋆
>k)

8: until |Ĩ − Ĩ⋆|⩽ ε|Ĩ⋆| % internal convergence
Output: approximate integral Ĩ as shown in (11).

Evaluation of the integral by (11) requires O(dnr2) + O(r3)
operations. When calculations are performed in parallel on a
distributed-memory platform, the matrix multiplications in (11)
have to be arranged in a balanced tree way to reduce the parallel
depth of the algorithm from linear to logarithmic in the number
of processors.

Although a single evaluation of (11) does not increase the
asymptotic estimate of the cost of interpolation, re-calculation
of the integral at each step of Alg. 7 increases the costs to
O(dnr3)+O(r4). This term may become dominant if the function
evaluation requires O(d) operations and r ≫ d, in which case we
can update the integral on each step using Sherman–Morrison–
Woodbury formula [77–79], reducing the numerical costs to those
of interpolation.

4.2.3. Accuracy
To provide an analytic estimate for the error of the integration

|I − Ĩ|, we need to answer the following questions:

1. Is function f (x) separable, i.e. does it admit an accurate
representation in the TT format with moderate ranks?
This question was answered for particular classes of func-
tions, see for example [80–82], and the accuracy ε of the
best separable approximation of rank r is shown to grow
logarithmically, r = O(log ε−1).

2. Is it possible to reach the same asymptotic convergence
rate if the function is represented by the interpolation (10)
with the best choice of interpolation crosses (I⩽k, I>k)?
This question is answered positively by the analysis in [16]
and [83].

3. Is it possible to reach the same asymptotic convergence
with the interpolation crosses (I⩽k, I>k) found by a practi-
cal algorithm with (low) polynomial complexity in d, r and
n?
The heuristic nature of Alg. 6 does not allow us to answer
this question in this work. We hope that further research
will lead to tensor product algorithms combining fast prac-
tical convergence with better theoretical properties.

4.3. Monte Carlo and quasi Monte Carlo techniques

The Monte Carlo quadrature is a statistical method which is
based on the central limit theorem. It introduces random nodes
{xi}

Neval
i=1 drawn from a uniform distribution on [0, 1]d, and the

S. Dolgov and D. Savostyanov / Computer Physics Communications 246 (2020) 106869 9

Fig. 4. Two-dimensional Ising model shown as a square lattice of interacting spins. Normally, one would expect to observe individual spins in both states σi,j ∈ {↑,↓}

with equal probability (as on the left panel). Spins also would align with the direction of external magnetic field (as shown on the right panel). Surprisingly,
ferromagnetics will also exhibit collective large-distance behaviour (e.g. spontaneous magnetisation) at H = 0 for sub-critical temperatures T < Tc . Theoretical
explanation of this fact was first proposed by Lars Onsager in 1944.

integral is approximated by an average of the values of the
function at these nodes and all weights equal,

Ĩ =
1

Neval

Neval∑
i=1

f (xi). (12)

The integration error depends on the variance of f (x) (treated
as a random field after randomisation of the coordinates x),
|I − Ĩ|

2
⩽ var(f)

Neval
. Provided that the variance is independent of the

dimension, so is the error. However, the decay rate of N−0.5eval is
often prohibitively slow, especially if a high accuracy is needed.

Quasi Monte Carlo (qMC) [5,6] is another family of equal-
weight quadrature rules (that is, wi = 1/Neval for all i =
1, . . . ,Neval), but the nodes are chosen semi-deterministically.
Firstly, one constructs a deterministic lattice rule, defined by a
generating vector q = (q1, . . . , qd). The lattice is optimised to
minimise the worst-case error component by component [7,84].
The quadrature nodes are then computed as shifted multiples of
the generating vector,

xi = frac
(

i
Neval

q+ s
)

, i = 1, . . . ,Neval. (13)

Here s = (s1, . . . , sd) is a vector of random shifts, distributed
uniformly on [0, 1], and frac(x) denotes the fractional part of x.
Standard qMC rules provide a convergence rate O(N−α

eval), with
0.5 ⩽ α ⩽ 1. Under certain assumptions on the function, the
rate can be proven to be close to 1, and the constant to be inde-
pendent of d. There exist higher order qMC rules [8] which can
achieve faster convergence, but at a price of more sophisticated
lattice construction algorithms and stronger assumptions on the
function.

The shifts s make the quadrature (13) unbiased, and they also
allow to estimate the quadrature error. We repeat qMC experi-
ments using the same generating vector q but S different shifts.
Thus we obtain S sets of nodes (13), and use (12) to calculate the
estimators Ĩj, j = 1, . . . , S. Now the error can be estimated as the
empirical standard deviation,

ε ≈
1

⟨Ĩ⟩

√ 1
S − 1

S∑
j=1

(
Ĩj − ⟨Ĩ⟩

)2
, ⟨Ĩ⟩ =

1
S

S∑
j=1

Ĩj. (14)

For the MC experiment we estimate the standard deviation in a
similar way by repeating the experiments S times.

5. Numerical experiments

5.1. Ising integrals

To demonstrate the efficiency of the proposed approach, we
apply tensor product interpolation to calculate high-dimensional
integrals of so-called Ising class [85]. They are motivated by the
famous 2D Ising model, explaining spontaneous magnetisation in

ferromagnetic materials. It describes a ferromagnet as a rectan-
gular M × N grid of spin- 12 particles where each spin σi,j can be
observed in one of two possible states, σi,j ∈ {+

1
2 ,−

1
2 } = {↑,↓}.

The energy of configuration σ = {σi,j} i=1,...,M
j=1,...,N

in magnetic field H
is given as follows:

E(σ) = −
∑
i,j

σi,jσi,j+1 −
∑
i,j

σi,jσi+1,j
next neighbour interaction

−H
∑
i,j

σi,j.
response to magnetic field

The probability of each configuration is given by the Gibbs mea-
sure exp(−E(σ)/kT)/Z , where T denotes the temperature and
Z(T ,H) =

∑
σ exp(−E(σ)/kT) is known as partition function.

Assuming temperature and volume are constant, the Helmholtz
free energy of the system is F = −kT log Z(T ,H), and energy
per particle is f (T ,H) = limM→∞

N→∞
F (T ,H)/(MN). We may be

interested in spontaneous magnetisation m0(T) = − ∂ f
∂H

⏐⏐
H=0 and

zero-field magnetic susceptibility χ0(T) = − ∂2f
∂H2

⏐⏐⏐
H=0

. Suscep-
tibility is particularly interesting as it relates to long-distance
spin–spin correlation and hence can explain collective behaviour
in a ferromagnetic system connected by only next-neighbour
interactions as shown in Fig. 4.

The 2D Ising model was first solved by Lars Onsager in 1944,
who has never published the results. The solution for the mag-
netisation was published by Yang [86], and the susceptibility was
calculated by Wu, McCoy, Tracy and Barouch [87] as

kTχ0,±(T) = C0,± |1− T/Tc |−7/4+C1,± |1− T/Tc |−3/4+O(1), (15)

where Tc denotes critical (Curie) temperature, which for the
square and isotropic lattice is given by kTc = 2/ln(1 +

√
2), and

± refers to T → Tc from above (+) or below (−). The coefficients
of the asymptotic expansion are given as infinite series,

C0,+ ∼ C1,+ ∼
∑

d=1,3,...

πDd

(2π)d
, C0,− ∼ C1,− ∼

∑
d=2,4,...

πDd

(2π)d
,

(16)

where Dd’s are (d−1)-dimensional integrals, which can be written
as shown below [85]:

Cd = 2
∫
[0,1]d−1

Bd(x2, . . . , xd)dx2 · · · dxd, (17)

Dd = 2
∫
[0,1]d−1

Ad(x2, . . . , xd)Bd(x2, . . . , xd)dx2 · · · dxd, (18)

Ed = 2
∫
[0,1]d−1

Ad(x2, . . . , xd)dx2 · · · dxd, (19)

with

Ad(x2, . . . , xd) =
∏

1⩽i<j⩽d

(
1− xi+1 · · · xj
1+ xi+1 · · · xj

)2

,

10 S. Dolgov and D. Savostyanov / Computer Physics Communications 246 (2020) 106869

Bd(x2, . . . , xd) =

(
1+

d∑
k=2

x2 · · · xk

)−1 (
1+

d∑
k=2

xk · · · xd

)−1
.

Bailey et al. [85] first suggested the computational / experi-
mental mathematics approach to this problem — they took up
a challenge to calculate Dd’s numerically with high accuracy and
then use inverse symbolic calculator [88] to conjecture the values
in closed form as a linear combination of physically relevant
constants. The integrals Cd and Ed were introduced as ‘structurally
similar’, but simpler versions of Dd in assumption that their
evaluation may lead to certain insights. Indeed, all Cd’s were an-
alytically reduced to two-dimensional integrals and resolved nu-
merically to extreme precision [85]. Based on numerical results,
Bailey and co-authors were able to conjecture and then prove that
C∞ = limd→∞ = 2e−2γ , where γ is the Euler–Mascheroni con-
stant. [85]. Using dimension reduction techniques, they calculated
Dd and Ed for d ⩽ 4 in closed form in terms of Riemann zeta
function and Dirichlet L-function and conjectured the analytic
value for E5.

Ten years later, Erik Panzer developed the code to symbolically
evaluate all Ed’s in terms of alternating multizeta functions [89],
which he used to calculate integrals E1 to E8, thus confirming
the conjecture of Bailey et al. for E5. The complexity of symbolic
evaluation grows rapidly with d, e.g. E8 required 28 CPU hours
and 30 GB of memory. Hence, this method cannot be seen as a
practical way for evaluation of Ed’s for d > 10. Also, no clear
indication is given in [89] on whether the proposed method can
be applied to more complex integrals Dd.

To the best of our knowledge, apart of results listed above, no
further progress has been made in calculation of Ising integrals,
meaning that accurate evaluation of Ising susceptibility integrals
Dd remains an open problem for all except relatively small d.

In this work we pick up the baton and apply the proposed
algorithm 6 to calculate Dd’s with high accuracy for d ≲ 1000.
However, we will first verify our algorithm by applying it to
calculate the values of Cd’s treating them as high-dimensional
integrals, and verifying the accuracy against the results calculated
by Bailey et al. in [85].

5.2. Experiment setup for double-, quadruple- and high-precision
calculations

Following Bailey [85], we evaluate the integrals numerically
using tensor product of one-dimensional Gauss–Legendre quadra-
tures, as explained in Section 4.2. The number of quadrature
points in each direction, n, is chosen adaptively to reach the
desired accuracy. Since functions Ad and Bd are infinitely smooth,
the Gauss–Legendre quadrature for Cd, Dd and Ed converges ex-
ponentially, and we can expect the number of accurate digits to
grow linearly with n.

The parallel implementation of the proposed algorithm is im-
plemented in Fortran by authors.

Double-precision calculations are implemented using GNU
Fortran compiler with BLAS and Lapack libraries from Intel MKL.

For quadruple-precision calculations we compile the same
code using a compiler option -fdefault-real-8, that sets the
default size for double precision to 16 bytes and increases
precision to approximately 33 decimal digits. We compiled the
reference implementation of BLAS and Lapack libraries with the
same parameter to reach quadruple precision in the whole calcu-
lation.

For high-precision calculations we use the MPFUN2015 li-
brary [90,91]. We use the version of MPFUN2015 utilising the
MPFR library,4 which is several times faster than the version

4 The GNU MPFR library is a C library for multiple-precision floating-point
computations in (arbitrary) high precision. It is free and available on most
platforms. The details can be obtained from www.mpfr.org.

implemented fully in Fortran. We had to rewrite reference im-
plementation of necessary BLAS libraries to use the mp_real data
type offered by MPFUN. The code itself was compiled using the
same compilers and options as for double precision calculations.
The MPFUN2015 library was set up to provide accuracy of 120
decimal digits.

The experiments were performed on two computers:

• at the University of Bath: this research made use of the
Balena High Performance Computing (HPC) Service. Each
node on Balena contains an Intel Xeon E5-2650 v2 CPU with
16 cores, running at 2.6 GHz. A single job can occupy up to
32 nodes for 5 days.
• at the University of Brighton: the development, testing and

numerical experiments were made possible by use of a
dedicated workstation. The workstation has two Intel Xeon
E5-2650 v4 CPUs with 12 cores and 2 threads each, running
at 2.2 GHz. It is also equipped with 0.5 TB of operating
memory, which proved essential for large-scale calculations
reported below.

5.3. Verification and benchmarking of the cross interpolation
algorithm

Bailey et al. [85] found analytic transformation to convert
(d− 1)-dimensional integrals Cd to two-dimensional form. Using
this simple representation, they calculated Cd’s to 1000 decimal
digits for d ⩽ 1024. They conjectured that C∞ = limd→∞ Cd =

2e−2γ , where γ is the Euler–Mascheroni constant. This result was
then proven analytically in [85, Theorem 2].

We compute C1024 directly as a (d − 1)-dimensional integral
using the proposed tensor product interpolation algorithm, and
compare the numerical result with the one obtained by Bai-
ley [85]. The comparison is shown in Fig. 5. For double and
quadruple precision calculations we observe an expected stag-
nation at the level of 15 and 32 decimal digits, respectively.
When multiple precision calculations are used, the proposed al-
gorithm seemingly provides exponential convergence for the in-
tegral C1024. As we can see in Fig. 5, the observed convergence
of relative accuracy ε agrees well with the assumption ε ∼

exp(−
√
Neval). Since the number of samples evaluated by the

cross interpolation algorithm is Neval ∼ dnr2, and d, n remain
constant, this allows us to conjecture that ε ∼ exp(−r), i.e. the
relative accuracy improves exponentially with the average TT
rank r .

This observation shows that the underlying multivariate func-
tion admits an accurate low-rank representation, and, more im-
portantly, that using the proposed algorithm a good interpolation
can be constructed and the integral can be approximated much
faster than by other currently known techniques, such as MC and
qMC algorithms. Based on this example, we are optimistic that
the challenging theoretical questions discussed in Section 4.2.3
can be answered positively for functions considered in Ising sus-
ceptibility theory, and hopefully a wider class of functions as
well.

It should be noted that although the use of quadruple and
multiple precision calculations comes at a small extra cost in
terms of number of points (it is sufficient to double the mode size
n to double the number of accurate digits), it leads to significant
overhead in terms of CPU time, since the quadruple and multiple
precision calculations are not optimised to the same degree as
native double precision calculations and BLAS libraries. This is
the reason why we report the convergence behaviour both as a
function of the number of evaluated points, and of the CPU time,
as shown in Fig. 5.

http://www.mpfr.org

S. Dolgov and D. Savostyanov / Computer Physics Communications 246 (2020) 106869 11

Fig. 5. Convergence of cross interpolation for calculation of C1024 in double, quadruple and multiple precision. Cross interpolation algorithm uses tensor product of
one-dimensional Gaussian quadrature rules with n = 33 points for double-precision, n = 65 points for quadruple-precision and n = 257 points for multiple-precision
calculations. The results are verified against the 1000-digit result reported in [85]. The relative accuracy is shown w.r.t. number of function evaluations (left) and
w.r.t. CPU time (right). We can clearly see that the proposed method converges exponentially.

Fig. 6. Integral C1024 calculated by TT cross interpolation (Alg. 6), Monte Carlo (MC), and quasi Monte Carlo (qMC). Cross interpolation algorithm uses tensor product
of one-dimensional Gaussian quadrature rules with n = 33 points for double-precision and n = 65 points for quadruple-precision calculations. QMC algorithm uses
lattice generating vectors q20 and q26 minimising the worst-case error on 220 and 226 points, respectively. Solid lines: errors of numerical methods verified against
the result of Bailey et al. [85]. Dashed lines: relative standard deviation estimates (14) of MC and qMC with number of repetitions S = 16. Left: relative accuracy
w.r.t. different numbers of function evaluations Neval . Right: relative accuracy w.r.t. total CPU time.

5.4. Convergence and comparison with quasi Monte Carlo

In Fig. 6 the proposed algorithm is compared with the state
of the art Monte Carlo (MC) and Quasi MC approaches (see
Section 4.3). For the MC quadrature we use uniformly distributed
samples on [0, 1]d.

For the qMC algorithm a particular care must be taken when
choosing the correct lattice. Frances Kuo’s website5 provides a
large collection of pre-generated lattices which were generated
by optimising the worst case error with product weights k−2,
motivated by stochastic PDEs. The integrals considered in this
paper do not exhibit the same decay, hence we decided to use
the lattice with equal weights. We used the component by com-
ponent algorithm from Dirk Nuyens’s website6 and constructed
generating vectors q20 and q26 by minimising the worst case
error on 220 and 226 points respectively. Notice that the lattice
generated from q20 starts repeating when the number of points
exceeds 220, leading to a visible stagnation of the q20 quadrature
error in Fig. 6. This is why we created lattice q26 which remains
convergent and allows to scale the computations up to billions
of points. It has to be noted that optimising a lattice is rather

5 http://web.maths.unsw.edu.au/~fkuo/.
6 https://people.cs.kuleuven.be/~dirk.nuyens/qmc-generators/.

expensive — the CBC algorithm took several days to produce q26
(this cost is not included in further analysis).

As in the previous subsection, we calculate C1024 and com-
pare our results against the 1000-digit accurate value computed
in [85]. These errors are plotted on solid lines in Fig. 6. We also
show by dashed lines the relative empirical standard deviation for
MC and qMC algorithms as described in (14). Notice that the true
error exhibits a higher fluctuation for different Neval, although the
overall convergence trend coincides with that for the standard
deviation.

We see that the MC method converges with the rate N−0.5eval
as expected from the CLT, while the qMC method (with q26)
exhibits a higher rate N−0.7eval . The TT decomposition has a much
richer approximation capacity, and provides a sub-exponential
convergence, as shown also in Fig. 5. When all calculations are
performed in double precision, TT cross interpolation is always
faster than MC and qMC methods. Switching to quadruple pre-
cision increases the TT time significantly, since we lose optimi-
sations of the Intel MKL library, but the rapid convergence still
makes it the fastest method for high accuracy.

5.5. Evaluation of ising susceptibility integrals

Now we attempt to compute original Ising susceptibility in-
tegrals Dd given by (18). Computing Dd’s for large d is much

http://web.maths.unsw.edu.au/~fkuo/
https://people.cs.kuleuven.be/~dirk.nuyens/qmc-generators/

12 S. Dolgov and D. Savostyanov / Computer Physics Communications 246 (2020) 106869

Fig. 7. Evaluation of the Ising susceptibility integrals Dd given by (18). The results are computed by the cross interpolation algorithm in quadruple precision using
tensor product of one-dimensional Gaussian quadrature rules with n = 129 points (for D8 to D256) and n = 65 points (for D512 and D1024). Left: convergence of cross
interpolation algorithm measured by the relative internal convergence, as a function of total CPU time spent on the calculation. Right: values of the Dd ’s calculated
by the proposed algorithm.

more challenging than evaluating Cd’s, for two reasons. Firstly,
each evaluation of the integrand takes O(d) operations for Cd,
but O(d2) for Dd. Secondly, all Cd’s can be analytically reduced
to two dimensional integrals, while for Dd’s reduction performed
in [85] only reduces the dimensionality by one in special cases.
Using a combination of analytic transforms and Gaussian tensor-
product quadratures, Bailey and collaborators calculated D5 to
500 decimal digits using 18h on 256 CPUs of IBM Power5 nodes
at the Lawrence Berkeley National Laboratory. They also produced
D6 to almost 100 decimal digits. Using qMC algorithm, they also
calculated D7 and D8 to 5 decimal digits. Further integrals Dd were
not made available.

We apply the proposed tensor interpolation algorithm to cal-
culate Dd’s in the original form (18) as (d − 1)-dimensional
integrals. We use the quadruple-precision version of the code
and aim to calculate integrals D8, D16, D32, . . . ,D1024 to about 30
decimal digits, which is measured by the internal convergence.
The convergence plots are shown in Fig. 7. The convergence rate
is approximately of order 7 for all considered integrals; noting a
slight bent of the curve for D256 we are hopeful that exponen-
tial convergence could have been revealed if calculations were
allowed to run longer and reach higher accuracy.

By looking at the values of Dd’s in Fig. 7 it is easy to note
that they decay exponentially. This was noted by Bailey et al.
who proved [85, Thm. 3] that O(14−d) ⩽ Dd ⩽ O(4−d). They
conjectured that as d → ∞, Dd ∼ ∆−d, and estimated ∆ ≈ 5
based on a few available to them values Dd. Based on our values
D128 and D256 shown in Fig. 7, we improve this estimate to

∆ ≈ 5.0792202086636783360436879567820. (20)

5.6. Evaluation of susceptibility coefficients

We can now come back to the asymptotic expansion of mag-
netic susceptibility (15) and the coefficients C0,± and C1,± repre-
sented via the sums (16),

Σ+ =
∑

d=1,3,...

πDd

(2π)d
, Σ− =

∑
d=2,4,...

πDd

(2π)d
,

Noting that Dd ∼ ∆−d with ∆ given by (20), the coefficients
in the sums Σ± decay geometrically, Dd/(2π)d ∼ (2π∆)−d ≈
π (31.9)−d. This means that each next term in the sums is ap-
proximately 1000 times smaller than the previous one. Hence,
if we want to evaluate Σ+ to, say, 50 decimate digits, we could
start with D1 = 2, then evaluate D3 to 47 digits (noting that the

analytical value is known since [85]), calculate D5 to 45 digits and
so on. We used the proposed algorithm to evaluate Dd’s for d ⩽ 45
with sufficient precision (judged by the internal convergence of
the algorithm), and obtained the sums to 50 decimal digits as
follows:

Σ+ =
∑

d=1,3,...

πDd

(2π)d

≈ 1.0008152604402126471194763630472102369375349255977

Σ− =
∑

d=2,4,...

πDd

(2π)d

≈ 0.026551297359252325321072273129862563625255686544007

(21)

As noted in [85], these coefficients were also computed by Nickel
[92] to 40 accurate decimal digits by high-order integration of
differential equation for Painlevé function of the third kind in
[87, Eq. (2.36)]. Bailey et al. [85], using the values of Dd obtained
by quasi Monte Carlo algorithm, were able to match the results
of Nickel to 20 decimal digits. Using tensor product interpolation
Algorithm 6, we are able to reach higher accuracy for Dd’s and
confirm that the first 40 digits in our results fully agree with the
results obtained by Nickel.

5.7. Performance and scalability

In Fig. 8 we benchmark the algorithm for different numbers
of processes and threads using MPI, OpenMP and hybrid paral-
lelisation. The first two lines in Fig. 8 (left) show the CPU time
for OpenMP-only parallelisation of local computations (i.e. essen-
tially Alg. 5 with no dimension parallelisation), and for MPI-only
approach where all local computations are performed in one
thread, but different chunks of the TT decomposition are assigned
to different processes (Alg. 6). Moreover, the hybrid approach
always uses T = 16 threads for local operations, and different
numbers of processes P for parallelisation over dimension. In
Fig. 8 (left) we report the product of the number of processes and
the number of threads in each process.

The integral D32 is taken over 31 variables, which means there
are 30 rank-update steps to perform simultaneously (recall that
TT ranks separate the dimensions, so there is one less rank than
dimensions). Hence, our MPI parallelisation can scale only up to
30 processors. Using the hybrid framework, we accelerate the
computing further up to a maximum of 512 cores, available on
the Balena cluster per one job. We notice a very good scaling,
since the cost of communicating O(rd + r log P) bytes is much

S. Dolgov and D. Savostyanov / Computer Physics Communications 246 (2020) 106869 13

Fig. 8. Left: strong scaling for D32 for different numbers of processes P and numbers of threads T , quadruple precision with n = 129. Right: strong MPI scaling (1
OpenMP thread per process) for D512 , double precision with n = 33.

smaller than the cost of computing O(dnr2/P) tensor elements. A
slight deviation from the linear scaling for the largest numbers of
processes is due to load imbalance, as different TT blocks pick up
different ranks in the course of the cross algorithm.

This is demonstrated further in Fig. 8 (right), where we ap-
proximate a function for the D512 integral. The maximal number
of processes 510 allows us to use only T = 1 OpenMP thread, and
instead vary the number of MPI processes P in the entire range.
We see that the time is closer to the perfect scaling due to better
balancing when each process owns more TT blocks. Even better
scaling could be expected for D2p+2 integrals, where the same
number of TT blocks could be assigned to each of 2p processes.
Nevertheless, even in a deliberately unbalanced situation (which
is more practical though), the algorithm scales almost linearly
up to the maximum computing capacity available at the given
machine.

Finally, we should note that even though with the proposed
algorithm 6 we enjoy fast convergence, the numerical costs re-
main quite high. For example, calculation of D1024 to 18 decimal
digits (see Fig. 7) took about 4 days on 512 nodes of Balena
supercomputer at the University of Bath, consuming approxi-
mately a megawatt hour of energy. Based on our preliminary
experiments with qMC, and assuming that the convergence rate
ε ∼ N−0.7eval will not deteriorate, we estimate that to reach the same
accuracy with qMC we would need approximately 1013 years of
calculations and 109 terawatt hours of energy — which exceeds
the age of the Universe (≈ 1.3 · 1010 years) and annual world
energy consumption (≈ 1.5 · 105 TWh in 2014) by three orders
of magnitude.

6. Conclusion

The problem of high-dimensional integration is a particularly
important and challenging area. Motivated by risk simulation in
finance and engineering, this problem was actively researched
and resulted in Monte Carlo Metropolis algorithm [4] considered
as one of top 10 algorithms of the 20th century [93]. The use
of random samples in the MC algorithm allows to break away
from tensor-product quadratures and hence avoid the curse of
dimensionality, seemingly inevitable in higher dimensions. The
flexibility and simplicity of MC was spoiled by its slow conver-
gence, motivating the further development, until the arrival of the
quasi Monte Carlo algorithm [5,6]. QMC lattices can be optimised
for a class of functions (e.g. those appearing from stochastic
PDEs [7,8]), and demonstrate faster convergence, which currently

makes qMC the method of choice in areas of sPDEs, finance and
risk modelling, engineering, etc. However, the convergence is
still not too fast, particularly considering that in practice many
end users can make sub-optimal choices in choosing/creating
the correct qMC lattice for their problems, leading to excessive
numerical costs and increasing negative effect of the HPC industry
on the environment.

The curse of dimensionality turns therefore in a challenge of
precision. Although admittedly many practical problems (e.g. in
areas of stochastic inference or machine learning) do not require
precision above one or two decimal digits, many applications
(e.g. engineering, theoretical quantum physics, quantum compu-
tations) need the answer to be precise to ten(s) or hundred(s)
of decimal digits, which cannot be achieved (or leads to exces-
sive costs in terms of energy and CPU time) using mainstream
MC/qMC approaches. In this paper we address this challenge by
development of a new algorithm, based on tensor decomposi-
tions. We are pleased to see that the idea of the decompositional
approach to matrix computation [94], which was also recog-
nised as a top 10 algorithm of 20th century [93], can break the
curse of dimensionality — arguably one of the main challenges of
numerical mathematics since 1960s [95] and till the present day.

Tensor product algorithms have undergone very rapid devel-
opment during the last 15 years, including progress in theory,
publicly available algorithmic implementations, and growth of ar-
eas of applications. Using the idea of separation of variables, ten-
sor methods give a new hope in lifting the curse of dimensionality
and drastically reducing the computational burden associated
with high-dimensional problems in a number of areas from quan-
tum physics and chemistry to stochastics, signal processing and
data analysis. In this paper we applied tensor cross interpolation
algorithm [16] to reconstruct the behaviour of the given high-
dimensional function from a few samples and to numerically
integrate it. Our research proposes a new step in development of
tensor product algorithms, by combining the algorithmic power
provided by data-sparse low-rank tensor product representations,
and the efficient parallel implementation utilising the potential of
modern HPC systems.

The Ising susceptibility integrals, which we use in this paper
to demonstrate the efficiency of the proposed method, are impor-
tant not only because of their applications in the quantum theory
of ferromagnetism [87], but also as a convenient benchmark
for testing and comparing numerical algorithms and analytic
approaches. Bailey, Borwein and Crandall [85] approached this

14 S. Dolgov and D. Savostyanov / Computer Physics Communications 246 (2020) 106869

problem from many different directions, and their results mark
the state of the art of what can be achieved using the algorithms
and methods of the 20th century. This is not an easy competition,
and we are pleased that our algorithm stands up for it: we
are able to reproduce the values calculated in [85] and also
to improve the precision of physically relevant integrals from
5–6 to 18–32 decimal digits in dimensions d ≲ 1000. Using
multiple precision library developed by David Bailey [91], we
were able to reach precision of over 100 decimal digits which
revealed sub-exponential convergence of our algorithm ε ∼

exp(−
√
Neval) for one of the considered integrals. The potential

to converge sub-exponentially w.r.t. the number of function eval-
uations clearly distinguish the proposed method from MC/qMC
algorithms, which usually demonstrate sublinear convergence
ε ∼ N−α

eval with 0 ⩽ α ⩽ 1.
The use of multiple precision arithmetic comes at a significant

price. Even though MPFUN2015 [91] and other arbitrary precision
libraries [90] are well optimised, the lack of optimisation at CPU
level and vectorisation at the level of BLAS operations slows
the calculations down, increasing the challenge of high preci-
sion. From programming point of view, extra steps are needed
to rewrite BLAS and Lapack functions in multiple precision.
Although this problem is mitigated in more modern languages
(such as Matlab, Python and Julia), they do not always provide
enough control of parallelisation at both the distributed-memory
(MPI) and shared-memory (OpenMP) levels. This is why for the
development and demonstration stage we decided to implement
the algorithm in Fortran, although it is clear that further work is
required to provide simpler user-friendly interfaces to high-level
languages mentioned above.

The context of numerical integration is particularly convenient
because the final answer is simply a number, allowing us to
objectively evaluate and compare the quality of different algo-
rithms for the given problem. High accuracy of the produced
results shows that for the considered examples the proposed
method is superior to MC and qMC algorithms. However it must
be noted that tensor cross interpolation does not just compute
the integral, but indeed reconstructs the whole function in the
high-dimensional tensor-product domain and represents it in
TT form. When the compact representation of the function is
available, it can be post-processed (e.g. interactively) to produce
projections, nonlinear functionals (e.g. high-order moments), etc.
This approach can be compared to calculation with functions
using Chebyshëv polynomials [96], and integrating Chebyshëv
interpolation together with the tensor cross interpolation seems
to be a natural direction for further work, continuing the existing
work in two and three-dimensions [97,98].

The most important direction of development of this work
is without doubt the application of the proposed method to
larger variety of applications. Many problems motivating pre-
cise high-dimensional integration are listed in [90]; we can ex-
tend this list by mentioning applications in multivariate prob-
ability [99], stochastics [37,100], and optimal control [101,102].
We are hopeful that the proposed tensor cross interpolation
algorithm will demonstrate fast convergence in these applications
and eventually becomes a method of choice for high-dimensional
integration.

Acknowledgements

Authors appreciate financial support of EPSRC, UK which makes
this work possible — grants EP/M019004/1 (S.D.) and
EP/P033954/1 (D.S.). Numerical calculations for this paper were
performed on a dedicated server, provided to D.S. by the
University of Brighton, UK (Rising Stars grant), and on Balena High

Performance Computing (HPC) Service at the University of Bath,
UK.

Software

The Fortran implementation of algorithms from this paper is
made by both authors and publicly available at:
• github.com/savostyanov/ttcross.

References

[1] H.-D. Meyer, U. Manthe, L.S. Cederbaum, Chem. Phys. Lett. 165 (1990)
73–78.

[2] S. Brooks, A. Gelman, G. Jones, X.-L. Meng (Eds.), HandBook of Markov
Chain Monte Carlo, CRC Press, 2011.

[3] A.M. Stuart, Acta Numer. 19 (2010) 451–559, http://dx.doi.org/10.1017/
S0962492910000061.

[4] N. Metropolis, S. Ulam, J. Am. Stat. Assoc. 44 (247) (1949) 335–341,
http://dx.doi.org/10.1080/01621459.1949.10483310.

[5] H. Niederreiter, Bull. AMS 84 (6) (1978) 957–1041.
[6] W.J. Morokoff, R.E. Caflisch, J. Comput. Phys. 122 (2) (1995) 218–230,

http://dx.doi.org/10.1006/jcph.1995.1209.
[7] I.G. Graham, F. Kuo, D. Nuyens, R. Scheichl, I.H. Sloan, J. Comput. Phys.

230 (10) (2011) 3668–3694, http://dx.doi.org/10.1016/j.jcp.2011.01.023.
[8] J. Dick, F.Y. Kuo, Q.T.L. Gia, D. Nuyens, C. Schwab, SIAM J. Num. Anal. 52

(6) (2014) 2676–2702, http://dx.doi.org/10.1137/130943984.
[9] A. Barth, C. Schwab, N. Zollinger, Numer. Math. 119 (2011) 123–161,

http://dx.doi.org/10.1007/s00211-011-0377-0.
[10] F.Y. Kuo, C. Schwab, I.H. Sloan, Found. Comput. Math. 15 (2) (2015)

411–449, http://dx.doi.org/10.1007/s10208-014-9237-5.
[11] F. Kuo, R. Scheichl, C. Schwab, I. Sloan, E. Ullmann, Math. Comp. 86 (2017)

2827–2860, http://dx.doi.org/10.1090/mcom/3207.
[12] F. Nobile, L. Tamellini, F. Tesei, R. Tempone, Sparse Grids and Applications

- Stuttgart 2014, Springer International Publishing, 2016, pp. 191–220.
[13] S.A. Smolyak, Dokl. Akad. Nauk SSSR 148 (5) (1963) 1042–1053, transl.:

Soviet Math. Dokl. 4 (1963) 240-243.
[14] H.-J. Bungatrz, M. Griebel, Acta Numer. 13 (1) (2004) 147–269, http:

//dx.doi.org/10.1017/S0962492904000182.
[15] M. Bieri, C. Schwab, Comput. Methods Appl. Mech. Engrg. 198 (13–14)

(2009) 1149–1170, http://dx.doi.org/10.1016/j.cma.2008.08.019.
[16] D.V. Savostyanov, Linear Algebra Appl. 458 (2014) 217–244, http://dx.doi.

org/10.1016/j.laa.2014.06.006.
[17] I.V. Oseledets, SIAM J. Sci. Comput. 33 (5) (2011) 2295–2317, http:

//dx.doi.org/10.1137/090752286.
[18] I.V. Oseledets, E.E. Tyrtyshnikov, Linear Algebra Appl. 432 (1) (2010)

70–88, http://dx.doi.org/10.1016/j.laa.2009.07.024.
[19] S.A. Goreinov, N.L. Zamarashkin, E.E. Tyrtyshnikov, Math. Notes 62 (4)

(1997) 515–519, http://dx.doi.org/10.1007/BF02358985.
[20] S.A. Goreinov, I.V. Oseledets, D.V. Savostyanov, E.E. Tyrtyshnikov, N.L.

Zamarashkin, in: V. Olshevsky, E. Tyrtyshnikov (Eds.), Matrix Methods:
Theory, Algorithms, Applications, World Scientific, Hackensack, NY, 2010,
pp. 247–256.

[21] D.V. Savostyanov, Numer. Math. Theor. Meth. Appl. 2 (4) (2009) 439–444,
http://dx.doi.org/10.4208/nmtma.2009.m9006s.

[22] I.V. Oseledets, D.V. Savostianov, E.E. Tyrtyshnikov, SIAM J. Matrix Anal.
Appl. 30 (3) (2008) 939–956, http://dx.doi.org/10.1137/060655894.

[23] W. Hackbusch, S. Kühn, J. Fourier Anal. Appl. 15 (5) (2009) 706–722,
http://dx.doi.org/10.1007/s00041-009-9094-9.

[24] T.G. Kolda, B.W. Bader, SIAM Rev. 51 (3) (2009) 455–500, http://dx.doi.
org/10.1137/07070111X.

[25] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer–
Verlag, Berlin, 2012.

[26] B.N. Khoromskij, ESAIM: Proc. 48 (2015) 1–28, http://dx.doi.org/10.1051/
proc/201448001.

[27] J. Ballani, L. Grasedyck, M. Kluge, Extraction of Quantifiable Information
from Complex Systems, in: Lecture Notes in Computational Science and
Engineering, vol. 102, Springer, 2014, pp. 195–210, http://dx.doi.org/10.
1007/978-3-319-08159-5_10.

[28] H.-J. Flad, B.N. Khoromskij, D.V. Savostyanov, E.E. Tyrtyshnikov, Rus. J.
Numer. Anal. Math. Model. 23 (4) (2008) 329–344, http://dx.doi.org/10.
1515/RJNAMM.2008.020.

[29] I.V. Oseledets, D.V. Savostyanov, E.E. Tyrtyshnikov, Numer. Linear Algebra
Appl. 17 (6) (2010) 935–952, http://dx.doi.org/10.1002/nla.682.

[30] D.V. Savostyanov, S.V. Dolgov, J.M. Werner, I. Kuprov, Phys. Rev. B 90
(2014) 085139, http://dx.doi.org/10.1103/PhysRevB.90.085139.

[31] S. Dolgov, B. Khoromskij, Numer. Linear Algebra Appl. 22 (2) (2015)
197–219, http://dx.doi.org/10.1002/nla.1942.

http://github.com/savostyanov/ttcros
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb1
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb1
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb1
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb2
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb2
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb2
http://dx.doi.org/10.1017/S0962492910000061
http://dx.doi.org/10.1017/S0962492910000061
http://dx.doi.org/10.1017/S0962492910000061
http://dx.doi.org/10.1080/01621459.1949.10483310
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb5
http://dx.doi.org/10.1006/jcph.1995.1209
http://dx.doi.org/10.1016/j.jcp.2011.01.023
http://dx.doi.org/10.1137/130943984
http://dx.doi.org/10.1007/s00211-011-0377-0
http://dx.doi.org/10.1007/s10208-014-9237-5
http://dx.doi.org/10.1090/mcom/3207
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb12
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb12
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb12
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb13
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb13
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb13
http://dx.doi.org/10.1017/S0962492904000182
http://dx.doi.org/10.1017/S0962492904000182
http://dx.doi.org/10.1017/S0962492904000182
http://dx.doi.org/10.1016/j.cma.2008.08.019
http://dx.doi.org/10.1016/j.laa.2014.06.006
http://dx.doi.org/10.1016/j.laa.2014.06.006
http://dx.doi.org/10.1016/j.laa.2014.06.006
http://dx.doi.org/10.1137/090752286
http://dx.doi.org/10.1137/090752286
http://dx.doi.org/10.1137/090752286
http://dx.doi.org/10.1016/j.laa.2009.07.024
http://dx.doi.org/10.1007/BF02358985
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb20
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb20
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb20
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb20
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb20
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb20
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb20
http://dx.doi.org/10.4208/nmtma.2009.m9006s
http://dx.doi.org/10.1137/060655894
http://dx.doi.org/10.1007/s00041-009-9094-9
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1137/07070111X
http://dx.doi.org/10.1137/07070111X
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb25
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb25
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb25
http://dx.doi.org/10.1051/proc/201448001
http://dx.doi.org/10.1051/proc/201448001
http://dx.doi.org/10.1051/proc/201448001
http://dx.doi.org/10.1007/978-3-319-08159-5_10
http://dx.doi.org/10.1007/978-3-319-08159-5_10
http://dx.doi.org/10.1007/978-3-319-08159-5_10
http://dx.doi.org/10.1515/RJNAMM.2008.020
http://dx.doi.org/10.1515/RJNAMM.2008.020
http://dx.doi.org/10.1515/RJNAMM.2008.020
http://dx.doi.org/10.1002/nla.682
http://dx.doi.org/10.1103/PhysRevB.90.085139
http://dx.doi.org/10.1002/nla.1942

S. Dolgov and D. Savostyanov / Computer Physics Communications 246 (2020) 106869 15

[32] S.V. Dolgov, D.V. Savostyanov, Numerical Mathematics and Advanced
Applications — ENUMATH 2013, Vol. 103, 2015, pp. 335–343, http://dx.
doi.org/10.1007/978-3-319-10705-9_33.

[33] S.V. Dolgov, B.N. Khoromskij, D.V. Savostyanov, J. Fourier Anal. Appl. 18
(5) (2012) 915–953, http://dx.doi.org/10.1007/s00041-012-9227-4.

[34] D.V. Savostyanov, Linear Algebra Appl. 436 (9) (2012) 3215–3224, http:
//dx.doi.org/10.1016/j.laa.2011.11.008.

[35] S.V. Dolgov, A.P. Smirnov, E.E. Tyrtyshnikov, J. Comput. Phys. 263 (2014)
268–282, http://dx.doi.org/10.1016/j.jcp.2014.01.029.

[36] Z. Zheng, X. Yang, I.V. Oseledets, G.E. Karniadakis, L. Daniel, IEEE Trans.
Comput.-aided Des. Integr. Circuits Syst. 34 (1) (2015) 63–76, http://dx.
doi.org/10.1109/TCAD.2014.2369505.

[37] S. Dolgov, B.N. Khoromskij, A. Litvinenko, H.G. Matthies, SIAM J. Uncertain.
Quantif. 3 (1) (2015) 1109–1135, http://dx.doi.org/10.1137/140972536.

[38] J.A. Roberts, D.V. Savostyanov, E.E. Tyrtyshnikov, J. Comput. Appl. Math.
260 (2014) 434–448, http://dx.doi.org/10.1016/j.cam.2013.10.025.

[39] S. Dolgov, J.W. Pearson, D.V. Savostyanov, M. Stoll, Appl. Math. Comput.
273 (2016) 604–623, http://dx.doi.org/10.1016/j.amc.2015.09.042.

[40] E. Solomonik, D. Matthews, J.R. Hammond, J.F. Stanton, J. Demmel, J.
Parallel Distrib. Comput. 74 (12) (2014) 3176–3190, http://dx.doi.org/10.
1016/j.jpdc.2014.06.002.

[41] E. Stoudenmire, S. White, Phys. Rev. B 87 (15) (2013) 155137, http:
//dx.doi.org/10.1103/PhysRevB.87.155137.

[42] S. Etter, SIAM J. Sci. Comput. 38 (4) (2016) A2585–A2609, http://dx.doi.
org/10.1137/15M1038852.

[43] L. Grasedyck, R. Kriemann, C. Löbbert, A. Nägel, G. Wittum, K. Xylouris,
Comput. Vis. Sci. 17 (2) (2015) 67–78, http://dx.doi.org/10.1007/s00791-
015-0247-x.

[44] F.R. Gantmacher, The Theory of Matrices, Clelsea, NY, 1959.
[45] S.A. Goreinov, E.E. Tyrtyshnikov, N.L. Zamarashkin, Rep. Russ. Acad. Sci.

342 (2) (1995) 151–152.
[46] E.E. Tyrtyshnikov, Computing 64 (4) (2000) 367–380, http://dx.doi.org/10.

1007/s006070070031.
[47] A. Einstein, Ann. Phys. 354 (7) (1916) 769–822, http://dx.doi.org/10.1002/

andp.19163540702.
[48] S.A. Goreinov, E.E. Tyrtyshnikov, N.L. Zamarashkin, Linear Algebra Appl.

261 (1997) 1–21, http://dx.doi.org/10.1016/S0024-3795(96)00301-1.
[49] P. Drineas, R. Kannan, M.W. Mahoney, SIAM J. Comput. 36 (1) (2006)

184–206, http://dx.doi.org/10.1137/S0097539704442702.
[50] E.E. Tyrtyshnikov, Calcolo 33 (1) (1996) 47–57, http://dx.doi.org/10.1007/

BF02575706.
[51] J. Schneider, J. Approx. Theory 162 (2010) 1685–1700, http://dx.doi.org/

10.1016/j.jat.2010.04.012.
[52] S.A. Goreinov, E.E. Tyrtyshnikov, Dokl. Math. 83 (3) (2011) 374–375,

http://dx.doi.org/10.1134/S1064562411030355.
[53] N.L. Zamarashkin, A.I. Osinsky, Dokl. Math. 94 (3) (2016) 643–645, http:

//dx.doi.org/10.1134/S1064562416060156.
[54] A.Y. Mikhalev, I.V. Oseledets, Linear Algebra Appl. 538 (2018) 187–211,

http://dx.doi.org/10.1016/j.laa.2017.10.014.
[55] J.J. Bartholdi III, Oper. Res. Lett. 1 (5) (1982) 190–193.
[56] G. Golub, W. Kahan, SIAM J. Numer. Anal. 2 (2) (1965) 205–224.
[57] M. Gu, C. Eisenstat, SIAM J. Sci. Comput. 17 (4) (1996) 848–869, http:

//dx.doi.org/10.1137/0917055.
[58] C.-T. Pan, Linear Algebra Appl. 316 (1–3) (2000) 199–222, http://dx.doi.

org/10.1016/S0024-3795(00)00120-8.
[59] D.E. Knuth, Linear Multilinear Algebra 17 (1985) 1–4, http://dx.doi.org/

10.1080/03081088508817636.
[60] M. Bebendorf, Numer. Math. 86 (4) (2000) 565–589, http://dx.doi.org/10.

1007/pl00005410.
[61] G.H. Golub, C.F. Van Loan, Matrix Computations, Johns Hopkins University

Press, Baltimore, MD, 2013.
[62] J.H. Wilkinson, J. Assoc. Comput. Mach. 8 (1961) 281–330, http://dx.doi.

org/10.1145/321075.321076.
[63] L. Neal, G. Poole, Linear Algebra Appl. 173 (1992) 239–264, http://dx.doi.

org/10.1016/0024-3795(92)90432-A.
[64] L.V. Foster, J. Comput. Appl. Math. 86 (1) (1997) 177–194, http://dx.doi.

org/10.1016/S0377-0427(97)00154-4.
[65] G. Poole, L. Neal, J. Comput. Appl. Math. 123 (2000) 353–369, http:

//dx.doi.org/10.1016/S0377-0427(00)00406-4.
[66] K.N. Kumar, J. Schneider, Linear Multilinear Algebra 65 (11) (2017)

2212–2244, http://dx.doi.org/10.1080/03081087.2016.1267104.
[67] L. Grasedyck, SIAM J. Matrix Anal. Appl. 31 (4) (2010) 2029–2054, http:

//dx.doi.org/10.1137/090764189.

[68] J. Ballani, L. Grasedyck, M. Kluge, Linear Algebra Appl. 428 (2013)
639–657, http://dx.doi.org/10.1016/j.laa.2011.08.010.

[69] J. Ballani, L. Grasedyck, SIAM/ASA J. Uncertain. Quantif. 3 (1) (2015)
852–872, http://dx.doi.org/10.1137/140960980.

[70] D.V. Savostyanov, I.V. Oseledets, Proceedings of 7th International Work-
shop on Multidimensional Systems (NDS), IEEE, 2011, http://dx.doi.org/
10.1109/nDS.2011.6076873.

[71] S.R. White, Phys. Rev. Lett. 69 (19) (1992) 2863–2866, http://dx.doi.org/
10.1103/PhysRevLett.69.2863.

[72] M. Fannes, B. Nachtergaele, R. Werner, Comm. Math. Phys. 144 (3) (1992)
443–490, http://dx.doi.org/10.1007/BF02099178.

[73] A. Klümper, A. Schadschneider, J. Zittartz, Europhys. Lett. 24 (4) (1993)
293–297, http://dx.doi.org/10.1209/0295-5075/24/4/010.

[74] I.V. Oseledets, S.V. Dolgov, SIAM J. Sci. Comput. 34 (5) (2012)
A2718–A2739, http://dx.doi.org/10.1137/110833142.

[75] S.V. Dolgov, B.N. Khoromskij, I.V. Oseledets, SIAM J. Sci. Comput. 34 (6)
(2012) A3016–A3038, http://dx.doi.org/10.1137/120864210.

[76] E. Tadmor, SIAM J. Numer. Anal. 23 (1986) 1–23.
[77] J. Sherman, W.J. Morrison, Ann. Math. Stat. 21 (1) (1950) 124–127,

http://dx.doi.org/10.1214/aoms/1177729893.
[78] M.A. Woodbury, Statistical Research Group, in: Memo. Rep., vol. 42,

Princeton University, Princeton, N.J, 1950.
[79] W.W. Hager, SIAM Rev. 31 (2) (1989) 221–239, http://dx.doi.org/10.1137/

1031049.
[80] E.E. Tyrtyshnikov, Linear Algebra Appl. 379 (2004) 423–437, http://dx.doi.

org/10.1016/j.laa.2003.08.013.
[81] W. Hackbusch, D. Braess, IMA J. Numer. Anal. 25 (4) (2005) 685–697.
[82] W. Hackbusch, B.N. Khoromskij, Computing 76 (3–4) (2006) 177–202,

http://dx.doi.org/10.1007/s00607-005-0144-0.
[83] A.I. Osinsky, Comput. Math. Math. Phys. 59 (2) (2019) 201–206, http:

//dx.doi.org/10.1134/S096554251902012X.
[84] J. Dick, F.Y. Kuo, I.H. Sloan, Acta Numer. 22 (2013) 133–288, http://dx.

doi.org/10.1017/S0962492913000044.
[85] D.H. Bailey, J.M. Borwein, R.E. Crandall, J. Phys. A: Math. Gen. 39 (2006)

12271–12302, http://dx.doi.org/10.1088/0305-4470/39/40/001.
[86] C.N. Yang, Phys. Rev. 85 (1952) 808, http://dx.doi.org/10.1103/PhysRev.

85.808.
[87] T.T. Wu, B.M. McCoy, C.A. Tracy, E. Barouch, Phys. Rev. B 13 (1) (1976)

316, http://dx.doi.org/10.1103/PhysRevB.13.316.
[88] D.H. Bailey, Comput. Sci. Eng. 2 (1) (2000) 24–28, http://dx.doi.org/10.

1109/5992.814653.
[89] E. Panzer, Comput. Phys. Comm. 188 (2015) 148–166, http://dx.doi.org/

10.1016/j.cpc.2014.10.019.
[90] D.H. Bailey, J.M. Borwein, Mathematics 3 (2015) 337–367, http://dx.doi.

org/10.3390/math3020337.
[91] D.H. Bailey, MPFUN2015: A thread-safe arbitrary precision computation

package. https://www.davidhbailey.com/dhbpapers/mpfun2015.pdf.
[92] B. Nickel, J. Phys. A 32 (21) (1999) 3889, http://dx.doi.org/10.1088/0305-

4470/32/21/303.
[93] J. Dongarra, F. Sullivan, Comput. Sci. Eng. 2 (1) (2000) 22–23.
[94] G.W. Stewart, Comput. Sci. Eng. 2 (1) (2000) 50–59, http://dx.doi.org/10.

1109/5992.814658.
[95] R.E. Bellman, Dynamic Programming, Princeton University Press,

1957.
[96] L.N. Trefethen, Approximation Theory and Approximation Practice, SIAM,

2013.
[97] A. Townsend, L.N. Trefethen, SIAM J. Sci. Comput. 35 (6) (2013)

C495–C518, http://dx.doi.org/10.1137/130908002.
[98] B. Hashemi, L.N. Trefethen, SIAM J. Sci. Comput. 39 (5) (2017) C341–C363,

http://dx.doi.org/10.1137/16M1083803.
[99] S. Dolgov, K. Anaya-Izquierdo, C. Fox, R. Scheichl, Approximation and

sampling of multivariate probability distributions in the tensor train
decomposition, arXiv preprint 1810.01212 2018. URL http://arxiv.org/abs/
1810.01212.

[100] S. Dolgov, R. Scheichl, SIAM/ASA J. Uncertain. Quantif. 7 (1) (2019)
260–291, http://dx.doi.org/10.1137/17M1138881.

[101] S. Dolgov, J.W. Pearson, Preconditioners and tensor product solvers for
optimal control problems from chemotaxis, arXiv preprint 1806.08539
2018. URL http://arxiv.org/abs/1806.08539.

[102] D. Quiñones Valles, S. Dolgov, D. Savostyanov, in: C. Constanda, P.J. Harris
(Eds.), Integral Methods in Science and Engineering, Birkhäuser, Cham,
2019, pp. 367–379, http://dx.doi.org/10.1007/978-3-030-16077-7_29.

http://dx.doi.org/10.1007/978-3-319-10705-9_33
http://dx.doi.org/10.1007/978-3-319-10705-9_33
http://dx.doi.org/10.1007/978-3-319-10705-9_33
http://dx.doi.org/10.1007/s00041-012-9227-4
http://dx.doi.org/10.1016/j.laa.2011.11.008
http://dx.doi.org/10.1016/j.laa.2011.11.008
http://dx.doi.org/10.1016/j.laa.2011.11.008
http://dx.doi.org/10.1016/j.jcp.2014.01.029
http://dx.doi.org/10.1109/TCAD.2014.2369505
http://dx.doi.org/10.1109/TCAD.2014.2369505
http://dx.doi.org/10.1109/TCAD.2014.2369505
http://dx.doi.org/10.1137/140972536
http://dx.doi.org/10.1016/j.cam.2013.10.025
http://dx.doi.org/10.1016/j.amc.2015.09.042
http://dx.doi.org/10.1016/j.jpdc.2014.06.002
http://dx.doi.org/10.1016/j.jpdc.2014.06.002
http://dx.doi.org/10.1016/j.jpdc.2014.06.002
http://dx.doi.org/10.1103/PhysRevB.87.155137
http://dx.doi.org/10.1103/PhysRevB.87.155137
http://dx.doi.org/10.1103/PhysRevB.87.155137
http://dx.doi.org/10.1137/15M1038852
http://dx.doi.org/10.1137/15M1038852
http://dx.doi.org/10.1137/15M1038852
http://dx.doi.org/10.1007/s00791-015-0247-x
http://dx.doi.org/10.1007/s00791-015-0247-x
http://dx.doi.org/10.1007/s00791-015-0247-x
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb44
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb45
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb45
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb45
http://dx.doi.org/10.1007/s006070070031
http://dx.doi.org/10.1007/s006070070031
http://dx.doi.org/10.1007/s006070070031
http://dx.doi.org/10.1002/andp.19163540702
http://dx.doi.org/10.1002/andp.19163540702
http://dx.doi.org/10.1002/andp.19163540702
http://dx.doi.org/10.1016/S0024-3795(96)00301-1
http://dx.doi.org/10.1137/S0097539704442702
http://dx.doi.org/10.1007/BF02575706
http://dx.doi.org/10.1007/BF02575706
http://dx.doi.org/10.1007/BF02575706
http://dx.doi.org/10.1016/j.jat.2010.04.012
http://dx.doi.org/10.1016/j.jat.2010.04.012
http://dx.doi.org/10.1016/j.jat.2010.04.012
http://dx.doi.org/10.1134/S1064562411030355
http://dx.doi.org/10.1134/S1064562416060156
http://dx.doi.org/10.1134/S1064562416060156
http://dx.doi.org/10.1134/S1064562416060156
http://dx.doi.org/10.1016/j.laa.2017.10.014
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb55
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb56
http://dx.doi.org/10.1137/0917055
http://dx.doi.org/10.1137/0917055
http://dx.doi.org/10.1137/0917055
http://dx.doi.org/10.1016/S0024-3795(00)00120-8
http://dx.doi.org/10.1016/S0024-3795(00)00120-8
http://dx.doi.org/10.1016/S0024-3795(00)00120-8
http://dx.doi.org/10.1080/03081088508817636
http://dx.doi.org/10.1080/03081088508817636
http://dx.doi.org/10.1080/03081088508817636
http://dx.doi.org/10.1007/pl00005410
http://dx.doi.org/10.1007/pl00005410
http://dx.doi.org/10.1007/pl00005410
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb61
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb61
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb61
http://dx.doi.org/10.1145/321075.321076
http://dx.doi.org/10.1145/321075.321076
http://dx.doi.org/10.1145/321075.321076
http://dx.doi.org/10.1016/0024-3795(92)90432-A
http://dx.doi.org/10.1016/0024-3795(92)90432-A
http://dx.doi.org/10.1016/0024-3795(92)90432-A
http://dx.doi.org/10.1016/S0377-0427(97)00154-4
http://dx.doi.org/10.1016/S0377-0427(97)00154-4
http://dx.doi.org/10.1016/S0377-0427(97)00154-4
http://dx.doi.org/10.1016/S0377-0427(00)00406-4
http://dx.doi.org/10.1016/S0377-0427(00)00406-4
http://dx.doi.org/10.1016/S0377-0427(00)00406-4
http://dx.doi.org/10.1080/03081087.2016.1267104
http://dx.doi.org/10.1137/090764189
http://dx.doi.org/10.1137/090764189
http://dx.doi.org/10.1137/090764189
http://dx.doi.org/10.1016/j.laa.2011.08.010
http://dx.doi.org/10.1137/140960980
http://dx.doi.org/10.1109/nDS.2011.6076873
http://dx.doi.org/10.1109/nDS.2011.6076873
http://dx.doi.org/10.1109/nDS.2011.6076873
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1103/PhysRevLett.69.2863
http://dx.doi.org/10.1007/BF02099178
http://dx.doi.org/10.1209/0295-5075/24/4/010
http://dx.doi.org/10.1137/110833142
http://dx.doi.org/10.1137/120864210
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb76
http://dx.doi.org/10.1214/aoms/1177729893
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb78
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb78
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb78
http://dx.doi.org/10.1137/1031049
http://dx.doi.org/10.1137/1031049
http://dx.doi.org/10.1137/1031049
http://dx.doi.org/10.1016/j.laa.2003.08.013
http://dx.doi.org/10.1016/j.laa.2003.08.013
http://dx.doi.org/10.1016/j.laa.2003.08.013
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb81
http://dx.doi.org/10.1007/s00607-005-0144-0
http://dx.doi.org/10.1134/S096554251902012X
http://dx.doi.org/10.1134/S096554251902012X
http://dx.doi.org/10.1134/S096554251902012X
http://dx.doi.org/10.1017/S0962492913000044
http://dx.doi.org/10.1017/S0962492913000044
http://dx.doi.org/10.1017/S0962492913000044
http://dx.doi.org/10.1088/0305-4470/39/40/001
http://dx.doi.org/10.1103/PhysRev.85.808
http://dx.doi.org/10.1103/PhysRev.85.808
http://dx.doi.org/10.1103/PhysRev.85.808
http://dx.doi.org/10.1103/PhysRevB.13.316
http://dx.doi.org/10.1109/5992.814653
http://dx.doi.org/10.1109/5992.814653
http://dx.doi.org/10.1109/5992.814653
http://dx.doi.org/10.1016/j.cpc.2014.10.019
http://dx.doi.org/10.1016/j.cpc.2014.10.019
http://dx.doi.org/10.1016/j.cpc.2014.10.019
http://dx.doi.org/10.3390/math3020337
http://dx.doi.org/10.3390/math3020337
http://dx.doi.org/10.3390/math3020337
https://www.davidhbailey.com/dhbpapers/mpfun2015.pdf
http://dx.doi.org/10.1088/0305-4470/32/21/303
http://dx.doi.org/10.1088/0305-4470/32/21/303
http://dx.doi.org/10.1088/0305-4470/32/21/303
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb93
http://dx.doi.org/10.1109/5992.814658
http://dx.doi.org/10.1109/5992.814658
http://dx.doi.org/10.1109/5992.814658
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb95
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb95
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb95
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb96
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb96
http://refhub.elsevier.com/S0010-4655(19)30256-5/sb96
http://dx.doi.org/10.1137/130908002
http://dx.doi.org/10.1137/16M1083803
http://arxiv.org/abs/1810.01212
http://arxiv.org/abs/1810.01212
http://arxiv.org/abs/1810.01212
http://arxiv.org/abs/1810.01212
http://dx.doi.org/10.1137/17M1138881
http://arxiv.org/abs/1806.08539
http://arxiv.org/abs/1806.08539
http://dx.doi.org/10.1007/978-3-030-16077-7_29

	Parallel cross interpolation for high-precision calculation of high-dimensional integrals
	Introduction
	Cross interpolation: notation, definitions and algorithms
	Cross interpolation of matrices
	Notation for matrices and submatrices
	Maximum volume principle
	Practical algorithms for matrix cross interpolation

	Cross approximation and cross interpolation in higher dimensions
	Notation for tensors and multi-indices
	Tensor train format
	Practical algorithms for tensor cross interpolation
	ALS maxvol algorithm ot-ttcross-2010
	DMRG maxvol algorithm so-dmrgi-2011proc
	DMRG greedy algorithm sav-qott-2014

	Dimension parallel tensor cross interpolation algorithm

	High-dimensional integration
	Full tensor product quadratures
	Quadratures based on tensor product interpolation
	Algorithm
	Complexity
	Accuracy

	Monte Carlo and quasi Monte Carlo techniques

	Numerical experiments
	Ising integrals
	Experiment setup for double-, quadruple- and high-precision calculations
	Verification and benchmarking of the cross interpolation algorithm
	Convergence and comparison with quasi Monte Carlo
	Evaluation of ising susceptibility integrals
	Evaluation of susceptibility coefficients
	Performance and scalability

	Conclusion
	Acknowledgements
	Software
	References

