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One sentence summary: Genes that are required to provide resistance to the anticancer molecule 2-Deoxyglucose when overexpressed or deleted in
fission yeast have been identified.
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ABSTRACT

2-Deoxyglucose (2-DG) is a toxic glucose analog. To identify genes involved in 2-DG toxicity in Schizosaccharomyces pombe, we
screened a wild-type overexpression library for genes which render cells 2-DG resistant. A gene we termed odrl, encoding
an uncharacterized hydrolase, led to strong resistance and altered invertase expression when overexpressed. We speculate
that Odr1 neutralizes the toxic form of 2-DG, similar to the Saccharomyces cerevisiae Dogl and Dog2 phosphatases which
dephosphorylate 2-DG-6-phosphate synthesized by hexokinase. In a complementary approach, we screened a haploid
deletion library to identify 2-DG-resistant mutants. This screen identified the genes snf5, ypal, pasl and pho7. In liquid
medium, deletions of these genes conferred 2-DG resistance preferentially under glucose-repressed conditions. The
deletion mutants expressed invertase activity more constitutively than the control strain, indicating defects in the control
of glucose repression. No S. cerevisiae orthologs of the pho7 gene is known, and no 2-DG resistance has been reported for any
of the deletion mutants of the other genes identified here. Moreover, 2-DG leads to derepressed invertase activity in S.
pombe, while in S. cerevisiae it becomes repressed. Taken together, these findings suggest that mechanisms involved in 2-DG
resistance differ between budding and fission yeasts.
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INTRODUCTION

There are two main reasons to study the mechanisms of action
of the toxic glucose analog 2-Deoxyglucose (2-DG). First, in the
budding yeast Saccharomyces cerevisiae 2-DG inhibits growth, af-
fects cell wall synthesis, causes abnormal cell morphology and
cell lysis, and interferes with glucose metabolism (Biely et al.
1971; Kratky, Biely and Bauer 1975). A series of pioneering pa-
pers (Zimmermann and Scheel 1977; Entian and Zimmermann
1980; Neigeborn and Carlson 1987) have identified mutants resis-
tant to 2-DG, and corresponding genes have been characterized
leading to insights into the underlying mechanisms (for addi-
tional references, see McCartney et al. 2014). Second, 2-DG shows
anticancer activity in humans by inhibiting tumor growth with
yeast providing a model system to understand its mode of ac-
tion (Cairns, Harris and Mak 2011; Raez et al. 2013). Aerobic gly-
colysis is a metabolic pathway that is of particular importance
to cancer cells for generating energy, and 2-DG is thought to im-
pede this pathway by inhibiting several of its enzymes (Pelicano
et al. 2006). Glycolysis is also the metabolic pathway used by
rapidly proliferating yeast cells to ferment glucose to ethanol.
After cellular uptake, hexokinase phosphorylates 2-DG to the
highly toxic 2-DG-6-phosphate, which in turn cannot be further
converted to fructose-6-phosphate (Jaspers and van Steveninck
1975; Lobo and Maitra 1977).

The fission yeast, Schizosaccharomyces pombe, is only remotely
related to budding yeast and provides a valuable complemen-
tary model organism, being in several ways more closely related
to humans than to budding yeast (Hoffman, Wood and Fantes
2015). Research by the Hoffman laboratory and others on glu-
cose metabolism has advanced our understanding of glucose
signaling in fission yeast. Glucose is sensed by the Git/Protein
Kinase A (PKA) pathway (Hoffman 2005) and the glucose repres-
sion pathway involving glucose-6-phosphate (Roux et al. 2009).
Based on work in S. cerevisiae, 2-DG alters glucose sensing and
induces a glucose starvation signal (O’Donnell et al. 2015). During
glucose starvation, S. pombe PKA forms a complex with its regu-
latory subunit, and it becomes phosphorylated and re-localized
to the cytoplasm (Gupta et al. 2011). Glucose starvation triggers
the stress-activated protein kinase pathway in S. pombe (Madrid
etal. 2006, 2013), resulting in a gene expression response (Madrid
et al. 2004; Kato, Kira and Kawamukai 2013).

In S. pombe, 2-DG leads to deformed cells that lyse at the site
of glucan synthesis (Megnet 1965; Johnson 1968). In addition, the
2-DG-resistant stdl mutant shows defects in glucose transport
(Mehta et al. 1998), and other 2-DG-resistant mutants exhibiting
derepressed invertase activity and impaired glucose uptake map
to four different genetic loci (Kig, Turkel and Temizkan 2005).
Some glucose transport-deficient S. pombe mutants are also re-
sistant to 2-DG, but 2-DG resistance and glucose transport de-
ficiency have been attributed to different genetic loci (Milbradt
and Hofer 1994). Here, we systematically identify genes that
cause 2-DG resistance when overexpressed or when deleted to
obtain functional information on 2-DG action in fission yeast.

MATERIALS AND METHODS
Media, reagents and strains

Standard methods and media were used for growth of Schizosac-
charomyces pombe strains. The minimal media used were Edin-
burgh minimal medium 2 (EMM2) (Moreno, Klar and Nurse 1991)
and MM as described (Schweingruber and Edenharter 1990), con-
taining either 2% or 0.5% glucose. In contrast to EMM, MM al-
lows to study growth as well as mating and sporulation. It was

Table 1. List of strains used in this study.

Strain

name Genotype Plasmid
wt 972 h~

ura~ ura4 D18 h~

PREP4X ura4D18 h~ pREP4X
pODR1  ura4 D18 h- pODR1
pYSP2 ura4D18 h™ pYSP2
Parent ade6 M210 ura4 D18 leul h+

odrlA ade6 M210 ura4 D18 leul SPBC215.10::KanMX h*

aclr5A ade6 M210 ura4 D18 leul clr5::KanMX h*

snf5A ade6 M210 ura4 D18 leulsnf5::KanMX h*

fyv7a ade6 M210 ura4 D18 leulfyv7::KanMX h*

pho7 A ade6 M210 ura4 D18 leulpho7::KanMX h*

ypalA ade6 M210 ura4 D18 leulypal::KanMX h*

2This deletion could not be verified by PCR.

therefore chosen to characterize the 2-DG-resistant strains. The
two media differ in their ammonium content. All media con-
tained leucine, adenine and uracil supplements as required by
the strains at 50 xg/ml. 2-deoxy D glucose >99% pure was pur-
chased from Sigma Aldrich, USA. The GOD-POD assay kit (Au-
tospan liquid gold glucose kit) for measuring invertase activity
was obtained from SPAN diagnostics (India). The primers were
obtained from Chromous Biotech, Bangalore, India. The ura4-
D18 h~ strain and the haploid deletion mutant library, along with
the parent control strain ade6-M210 ura4-D18 leul-32 ht, were
from the collection of the Bahler laboratory. It corresponds to
the latest haploid disruption library version from Bioneer (v5.0),
covering 98% of all non-essential genes. The generation of this
mutant library has been described, and correct genotypes of the
deletion mutants have been tested by PCR as described (Kim et al.
2010; Rallis et al. 2014). Table 1 lists the strains used in this study.

Growth experiments

Resistance to 2-DG of strains on solid MM media was tested by
growing cells in liquid MM to mid-log phase at 30°C, the cell den-
sity was normalized, and in a volume of 5 ul ~1.6 x 10* and
0.4 x 10* cells were applied on the plates shown in Figs 1 and 3.

Growth in liquid media was tested by inoculating cells pre-
cultured to early mid-log phase in the liquid media given in
Figs 2 and 4, and growing cells at 30°C in a rotary shaker at 180-
200 rpm. To estimate growth, the optical density was measured
at 600 nm and percentage growth inhibition was determined by
calculating the percentage decrease between growth in the ab-
sence and presence of 2-DG.

Plasmids

To overexpress wild-type genes, we used a partial Sau3A ge-
nomic library ligated into the shuttle vector pURL18 as described
previously (Barbet, Muriel and Carr 1992) (a gift from Viesturs
Simanis). To check for accurate structure of the plasmid, we se-
quenced it (Chromous Biotech, India) (data not shown). Plasmid
PREP4X, containing the thiamine repressible nmt1 promoter, was
obtained from Susan Forsburg (Forsburg 1993).

Transformations

Strains were transformed by the alkali cation method as
described (Moreno, Klar and Nurse 1991) or by the more
rapid transformation method (Kanter-Smoler, Dahlkvist and
Sunnerhagen 1994).
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Figure 1. Growth of odrl and ysp2 overexpressor strains on solid media in presence and absence of thiamine. Cells containing the plasmids pODR1 and pYSP2 under
the control of the nmt1 promoter, along with the control cells containing the plasmids pREP4X and wild-type cells 972, were spotted at two different cell densities on
solid MM containing 2% and 0.5% glucose (Glc). Plates contain thiamine and 2-DG as indicated (Materials and Methods). Growth resulting after plating ~1.6 x 10* and
0.4 x 10* cells as 5 ul drops was assayed. When cells were diluted more, they were not growing at all or only very poorly on 2-DG plates, indicating that 2-DG resistance

is highly dependent on initial cell density.
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Figure 2. Growth inhibition by 2-DG of the odrl overexpressor strain in liquid
medium. Cells containing the plasmids pODR1 and control cells containing the
plasmid pREP4X were grown at 30°C in MM containing 2% or 0.5% glucose as
indicated, the presence and absence of 2-DG (0.25 mg/ml). Growth was tested at
2 and 4 h, and percentages of growth inhibition by 2-DG were plotted. The given
values represent the mean of two independent experiments.
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Screening of the disruption strain library

Screening was performed as described (Rallis et al. 2014), but
with each mutant represented in quadruplicate. The initial
screening was performed on EMM containing 1 mg 2-DG/ml. We
re-tested the 2-DG-resistant strains on solid MM containing 1
mg 2-DG/ml. The strains examined in more detail have been
tested for co-segregation of the 2-DG and kanamycin resistance
marker. In addition, the deletions were validated by colony PCR
as previously described (Rallis et al. 2014) (Supplementary Table
2, Supporting Information; Supplementary Fig. 2, Supporting In-
formation)

Construction of plasmids containing odr1 and ysp2
under control of nmtl promoter

Using standard PCR-based methods (Moreno, Klar and Nurse
1991), the genes starting with the translation start codon were
fused to the nmtl promoter. The primers used were for odrl
TAAGCACTCGAGATGCCGTCTAAAGAA (forward primer) and TA-
AGCAGGATCCTTATTATTAATTAAAATCAGGAGGGATATTAT  (re-
verse primer) and for yspl TAAGCACTCGAGATGAAGGGT-
TTAGGTCT and TAAGCAGGATCCTTATTACTAATACTTGCGAGCG.
The REP4X plasmid was cut using a Xhol and BamH1 double
digest. The correct sequences of the constructs were verified by
sequencing. We call the plasmids containing the odrl and ysp2
genes under the control of the nmt1 promoter pODR1 and pYSP2,
respectively.

Invertase assay

Cells were harvested and washed twice with ice-cold 10 mM
sodium azide. Cells were pelleted and resuspended in sterile wa-
ter to an optical density of 1 at 600 nm, corresponding to ~107
cells/ml. A total of 100 ul cell suspensions were aliquoted into
fresh tubes, centrifuged, cell pellets were resuspended in 50 ul
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of 50 mM sodium acetate pH 5.1 and invertase activity was de-
termined as described (Harkness and Arnason 2014), using the
GOD-POD assay kit. Activities are given as units (micromolar
glucose produced per minute) per 10° cells. Statistical analysis
was performed using GraphPad Prism 5® (GraphPad Software
Inc., La Jolla, CA, USA). Results are expressed as mean + SEM
(Yl = 3).

RESULTS

odrl and ysp2 cause increased 2-DG resistance
when overexpressed

To identify genes involved in 2-DG toxicity, we first screened
for strains that are resistant to 2-DG when transformed with
the wild-type gene library pURL18. Out of 77 resistant trans-
formants, we could only isolate two intact nuclear genes. The
remaining cells either contained plasmids that harbored trun-
cated nuclear or mitochondrial genes, or the plasmids could not
be recovered.

The identified genes were put under the control of the
expression vector pREP4X containing the thiamine-repressible
promoter nmtl; 2-DG resistance was then examined by grow-
ing strains in the presence and absence of thiamine. Know-
ing from work in Saccharomyces cerevisiae, growth conditions
such as carbon sources can drastically alter 2-DG resistance
(McCartney et al. 2014). We therefore tested the strains both
under glucose repressing (2%) and derepressing (0.5%) condi-
tions, and identified two genes leading to 2-DG resistance when

MM 2% Glucose

+

Parent

I MM 2% Glucose

snf5A

ypalA
pasliA

pho7A

1 mg/ml 2-DG

overexpressed. For gene SPBC215.10, called here odrl (for
overexpression causing deoxyglucose resistance), the effect
of thiamine was strong under glucose-repressing conditions,
while under glucose-derepressing conditions, the overexpress-
ing strain still weakly grew in the presence of thiamine (Fig. 1).
This effect is not surprising given that full repression of the nmt1
promoter occurs only at 15 umolar thiamine (Forsburg 1993), a
concentration that causes weak 2-DG resistance for unknown
reasons (unpublished results). The other gene, ysp2, showed
only weak 2-DG resistance when overexpressed (Fig. 1). The
few resistant colonies growing on 2-DG-containing plates prob-
ably represent cells containing high plasmid copy numbers. The
resistant colonies were unlikely to reflect spontaneous 2-DG-
resistant mutants, given that no resistant cells were observed
for the wild-type cells, parent control cells and the deletion cells
(Fig. 3). Given its weak resistance, we did not further study ysp2.

To quantify 2-DG resistance of the odrl overexpressor strain,
we tested its growth in liquid medium. Neither the wild-type nor
parent strain did grow with 1 mg/ml 2-DG, so growth was exam-
ined at 0.25 mg/ml 2-DG. Cells were inoculated in the presence
and absence of 2-DG and growth was measured after 2 and 4 h
incubation. Figure 2 shows the growth inhibition by 2-DG. The
data confirm that odrl overexpression leads to 2-DG resistance,
although the effect was weaker in liquid low-glucose medium
than in high-glucose medium.

Knowing that overexpression of odrl causes resistance to
2-DG, we tested whether the corresponding deletion mutant
(odr1:kanMX ade6-M210 ura4-D18 leul-32) was more sensitive
than its parent strain. However, quantitative measurements in

MM 0.5% Glucose

MM 0.5% Glucose
+

1 mg/ml 2-DG

Figure 3. Growth of deletion mutants in absence and presence of 2-DG on solid media. The mutants as indicated, along with the parent strain (ade6-M210 ura4-D18
leul-32 h'), were spotted at two different cell densities on MM and MM containing 2-DG plates, both under glucose-repressing and derepressing conditions as given

for Fig. 1.



liquid medium showed no increased sensitivity to 2-DG for the
odrl mutant (data not shown).

Identification of four genes causing 2-DG resistance
when deleted

In a complementary approach to identify genes involved in 2-
DG toxicity, we pre-screened a haploid deletion library for mu-
tants resistant to 2-DG on EMM plates containing 1.0 mg/ml
2-DG. This first screen identified 14 mutants exhibiting 2-DG
resistance phenotypes in both of the two independent re-
peats carried out (Supplementary Fig. 1, Supporting Information;
Supplementary Table 1, Supporting Information). We also per-
formed a second screen for mutants resistant to 2-DG on EMM
plates containing the lower dose of 0.5 mg/ml 2-DG. This screen
identified 59 mutants exhibiting 2-DG resistance phenotypes in
both of the two independent repeats carried out. The hits of the
second screen included all 14 mutants of the first screen (Sup-
plementary Table 1, Supporting Information).

To characterize growth of the 14 resistant mutants from the
first screen, we tested them under the same physiological con-
ditions as the odrl overexpressor strain in MM containing 2-DG
(1.0 mg/ml). For seven mutant strains, deleted for the genes plc1,
iec1, adn3, vps38, rxt3, trk2 and moel, resistance to 2-DG was weak
(data not shown), while one mutant, deleted for the gene snz1,
did not grow after re-streaking on either MM or EMM for un-
known reasons (data not shown). These differences in resistance
and growth under the two conditions tested highlight the effect
that physiological conditions can have for experiments involv-
ing glucose metabolism. For one mutant, deleted for the gene
fyv7, the kanamycin resistance did not co-segregate with 2-DG
resistance, revealing that the resistance was not caused by the
deletion.

Four of these 14 strains identified in the screen exhibited
moderate to strong resistance under glucose-repressing condi-
tions on MM plates containing 1.0 mg/ml 2-DG. A fifth strain,
clr5A, also caused 2-DG resistance, but we could not confirm
the deletion by PCR genotyping (Supplementary Fig. 2, Support-
ing Information). The four PCR-verified strains were deleted for
the following genes: snf5, ypal, pasl and pho7. For all of these
mutants, the kanamycin marker co-segregated with the 2-DG
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resistance phenotype (data not shown) shows that the resis-
tance is caused by the gene deletion. Examination of cell mor-
phologies of the four resistant mutants did not reveal any evi-
dent differences to wild-type cells (data not shown). Except for
the mutant snf5A, which has previously been reported to be
2-DG resistant (Monahan et al. 2008), the other four mutants
also grew well under derepressing conditions on solid medium
(Fig. 3). Growth tests of the four mutants in liquid medium ex-
hibited strong 2-DG resistance under glucose-repressing condi-
tions (Fig. 4A). On the other hand, these mutants did not show
any 2-DG resistance under derepressing conditions, with most
showing even higher sensitivity than the parental strain (Fig. 4B).
We assume that osmotic stabilization effects acting in colonies
but not in liquid medium may be responsible for the different
growth behavior.

2-DG-resistant mutants exhibit altered invertase
expression

The invertase Invl of Schizosaccharomyces pombe is a glucose-
repressible cell wall glycoprotein (Moreno et al. 1985). Invl
expression is partially diagnostic for the control of glucose
metabolism and particularly for the state of glucose repres-
sion. We tested the Inv1 activity in the 2-DG-resistant mutants
grown under repressed and derepressed conditions. The mutant
strains varied in their activity levels, both in the repressed and
derepressed state, when compared to the parent strain, with
the greatest upregulation observed in pas1A. The deletion mu-
tants snf5A and pho7A were more affected in glucose derepres-
sion, whereas ypalA was more affected under glucose repres-
sion (Fig. 5). In summary, comparing the ratios of the activities
of cells grown under high- and low-glucose conditions, the mu-
tants and the odrl-overexpressing strain featured a more con-
stitutive invertase phenotype than the control strains (Table 2).
Examination of the corresponding odr1A mutant revealed a hy-
perderepression (Table 2). These results indicate that the odrl
gene, in its wild-type configuration, plays a role in glucose re-
pression.

We also tested the effect of 2-DG on the regulation of
invertase activity under glucose-repressed conditions. In the
parent strains, 2-DG enhanced Inv1 activity, in contrast to the

Q
04 . / «~ Parent
= snf5A
0- . o ypalA
° o pasi1A
‘ + pho7A

0- .
0 1 2 3 4

Time in hours

Figure 4. Growth inhibition of deletion mutants by 2-DG in liquid medium. The mutants as indicated, along with the parent strain (ade6-M210 ura4-D18 leu1-32 h*),
were grown at 30°C in MM medium containing 2% glucose (A) or 0.5% glucose (B) in the presence and absence of 2-DG (0.25 mg/ml). Growth was tested after 2 and 4 h
and percentages of growth inhibition by 2-DG were plotted. The data represent the mean of two independent experiments.
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2501

3 2% glucose
E3 0.5% glucose
2% glucose+0.25 mg/ml 2-DG

Invertase Activity in Units/10 bcells

Figure 5. Invertase activity of the 2-DG-resistant mutants. Cells from the 2-
DG-resistant deletion mutants and the corresponding parent strains ade6-M210
ura4-D18 leul-32 h* were grown in MM medium containing 2% or 0.5% glucose
and in 2% glucose medium containing 2-DG as indicated. Invertase activity was
determined and is given as activity per cells (Materials and Methods). The values
given represent the mean of three measurements, with samples from each mea-
sured in five replicates, originating from three independent experiments. Error
bars represent SEM (n = 3).

Table 2. Ratios of invertase activity of 2-DG-resistant mutants under
glucose-repressed and derepressed conditions and in the presence
of 2-DG.

Fold increase of
invertase activity in
2% glucose

Fold increase of
invertase activity
from 2% to 0.5%

Strain glucose containing 2-DG
PREP4X 3.9 £ 0.26 2.2 £0.19
pODR1 1.6 + 0.06 1.3 + 0.07
Parent 5.0 £ 044 1.7 £ 06
odrlA 6.9 + 0.83 3.6 + 0.61
snf5A 1.1 £ 0.01 1.2 £ 0.19
ypalA 19 + 0.22 1.1 &+ 0.05
paslA 1.2 £ 0.004 1.0 + 0.03
pho7 A 1.0 &+ 0.08 1.0 &+ 0.06

PREP4X: control strain for overexpressor strain pODR1.

Parent: parent strain of deletion strains (ade6-M210 ura4-D18 leu1-32 h*).
Different ratios of activities in pREP4X and parent strains are due to plasmid
effects. Activity was measured in MM containing 2%, 0.5% or 2% glucose plus
0.25 mg/ml 2-DG (see Materials and Methods) and the ratios +£SEM (n = 3) are
indicated here.

situation in S. cerevisiae where 2-DG represses its activity
(Randez-Gil, Prieto and Sanz 1995). Similar results were obtained
for all tested strains, including control strains 972, ura4-D18 and
the pREP4X-containing strain (data not shown). These results
suggest that 2-DG is mimicking glucose starvation. For the 2-
DG-resistant mutants, the effects of 2-DG on Inv1 expression are
qualitatively similar as for low glucose (Table 2).

DISCUSSION

The genetics of 2-DG resistance is complicated as 2-DG and its
metabolic products are involved in a variety of processes. This
makes it difficult to understand mechanism of 2-DG actions or
its resistance. We identified the Schizosaccharomyces pombe odr1
gene causing strong 2-DG resistance when overexpressed. De-
spite examining many 2-DG resistant transformants, we could
detect only one gene exhibiting this strong overexpression phe-
notype. In Saccharomyces cerevisiae, a similar screening yielded
two genes, DOG1 and DOG2 (Randez-Gil et al. 1995). These find-
ings suggest that the number of genes whose overexpression
confers 2-DG resistance is limited. On the other hand, we un-
covered several deletion mutants that render cells resistant to
2-DG. Among 14 initially selected mutants, four mutants con-
ferred moderate to good resistance to 2-DG. By screening at a 2-
fold lower 2-DG concentration, we isolated 59 resistant mutants
(Supplementary Fig. 1, Supporting Information; Supplementary
Table 1, Supporting Information). These findings suggest that
control of 2-DG resistance is a complex process involving many
genes, considering also that we have not tested any genes that
are essential for growth. In a similar screen performed in S. cere-
visiae, 19 deletion mutants that are resistant to 2-DG have been
reported (Ralser et al. 2008), although it has later been suggested
that 16 of these mutants are not actually causing 2-DG resistance
(McCartney et al. 2014). Out of the three remaining genes, dele-
tion of HXK2 and REG1 provides strong resistance on glucose-
rich media, whereas deletion of LSM6 is only weakly resistant
(Neigeborn and Carlson 1987; Ralser et al. 2008; McCartney et al.
2014).

The transcription of the invertase gene is repressed by the
presence of glucose (Tanaka et al. 1998). The deletion mutants
are affected to different degrees in the control of invertase ac-
tivity (Fig. 5). According to the invertase activity ratios in the
repressed versus derepressed states, the mutants exhibit con-
stitutive invertase activity (Table 2). The corresponding proteins
could be directly or indirectly involved in this control. The inver-
tase activity data also indicate that 2-DG induces a glucose star-
vation signal and thus derepresses the invertase activity, while
the deletion mutants resistant to 2-DG show more constitutive
invertase activities across different conditions (Fig. 5).

Decreased growth on glucose has been reported for mutants
deleted for clr5, ypal and pho7, consistent with these genes be-
ing defective in the control of glucose metabolism (Vachon et al.
2013; Doi et al. 2015). The genes snf5, pas1 and pho7 are involved
in transcription (Table 3), raising the possibility that mutants of
these genes prevent some changes in gene expression induced
by 2-DG that could promote resistance to 2-DG. The snf5, ypal
and pasl genes show orthologs in S. cerevisiae, but the corre-
sponding mutants have not been reported to be 2-DG resistant.
The S. cerevisiae protein Snfl is involved in controlling 2-DG sen-
sitivity (O’'Donnell et al. 2015), but its S. pombe ortholog, Ssp2, has
neither been reported to be involved in resistance to 2-DG, nor
did it come up in our screen.

Even though some molecular functions of the corresponding
proteins have been described (Table 3), we do not have a straight-
forward explanation for how the genes identified affect 2-DG
resistance and glucose repression when deleted. The protein
Snf5 is a subunit of the SWI/SNF chromatin remodeling com-
plex involved in transcription and chromatin-related processes.
Interestingly, the human SnfS ortholog is involved in cancer de-
velopment (Roberts and Orkin 2004). Deletion of snf5 leads to
increased mRNAs encoding hexose transports (Monahan et al.
2008), which could explain the increased 2-DG resistance in the



Table 3. List of genes and their annotations identified in this study.
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Gene standard

name Gene product Molecular function References
snf5 Chromatin remodeling (SWItch/Sucrose Regulation of transcription and glucose Monahan et al. (2008)
Non-Fermentable; SWI/SNF) complex import
subunit
ypal Protein phosphatase type 2A regulator Regulation of protein phosphatase activity Goyal and Simanis (2012)
pho7 Transcription factor Regulation of RNA polymerase II-mediated Estill, Kerwin-Iosue and
transcription Wykoff (2015)
pasl Cyclin Regulation of G1/S transition of cell cycle van Slegtenhorst, Mustafa

and Henske (2005)

Only the most important annotations of the genes are given. For more details refer to S. pombe genome data and annotations database (Wood et al. 2012).

high-glucose condition only, where increased influx of glucose
may titrate out 2-DG (Figs 3 and 4). This result is of interest in
light of findings in S. cerevisiae that 2-DG acts by reducing the
levels of hexose transporters by «-arrestin-mediated endocyto-
sis and degradation in vacuoles (O’Donnell et al. 2015). Deletion
of snf5in S. pombe may thus counteract this effect of 2-DG. Except
for the snf5 deletion, the other four deletion mutants showed re-
sistance to 2-DG in both high- and low-glucose conditions, sug-
gesting that these gene deletions affect resistance by a different
mechanism.

We speculate that the S. pombe Odr1 hydrolase might func-
tion in detoxifying toxic forms of 2-DG, similar to the S. cere-
visiae Dogl/Dog?2 proteins that encode haloacid dehalogenase-
like (HAD-like) hydrolase enzymes exhibiting specific 2-DG-6-
phosphatase activities and thus render cells 2-DG resistant
when overexpressed. The physiological function of these en-
zymes is not known (Sanz, Randez-Gil and Prieto 1994; Randez-
Gil, Prieto and Sanz 1995; Randez-Gil et al. 1995). An HAD-
like hydrolase domain is also present in Odrl, besides a Cof-
subfamily domain believed to be required for enzymes act-
ing on phosphorylated sugars (Marchler-Bauer et al. 2015). It
is therefore plausible that Odrl detoxifies the toxic form of
2-DG. Notably, these proteins have opposite effects on inver-
tase expression: overexpression of Odrl causes derepression
of S. pombe invertase, whereas overexpression of Dogl causes
repression of S. cerevisiae invertase (Randez-Gil, Prieto and
Sanz 1995).

A BLAST search (Altschul et al. 1990) for Dog1/Dog2 orthologs
in S. pombe yielded protein SPCC1020.07 (annotated as a pseu-
douridine 5 phosphatase), and a search for Odr1 paralogs in S.
pombe revealed a protein (SPAC25B8.12c) with 45% identity. None
of these proteins, however, did come up in our screen for genes
causing 2-DG resistance during overexpression, but the deletion
mutant of SPCC1020.07 renders the cells weakly 2-DG resistant
(Supplementary data, screening at 0.5 mg/ml 2-DG, Supporting
Information).

The S. pombe orthologs of genes conferring resistance when
overexpressed or deleted in S. cerevisiae (DOG1/DOG2, REG1 and
HXK?2) did not come up in our screen. Moreover, the odrl gene,
rendering S. pombe cells 2-DG resistant, shows the opposite ef-
fect on invertase activity to the DOG1 gene, rendering S. cere-
visiae 2-DG resistant. Notably, the finding that 2-DG derepresses
the invertase activity in S. pombe, unlike in S. cerevisiae where
it is repressed (Randez-Gil, Prieto and Sanz 1995), suggests that
control of 2-DG resistance in the two yeasts is achieved by
at least partially different mechanisms. The mechanisms by
which the identified genes affect 2-DG-induced gene expres-
sion, sensitivity and glucose repression in S. pombe require
further studies.

SUPPLEMENTARY DATA

Supplementary data are available at FEMSYR online.
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