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Abstract

An alternative pathway for the human brain to communicate with the outside

world is by means of a brain computer interface (BCI). A BCI can decode elec-

troencephalogram (EEG) signals of brain activities, and then send a command

or an intent to an external interactive device, such as a wheelchair. The effec-

tiveness of the BCI depends on the performance in decoding the EEG. Usually,

the EEG is contaminated by different kinds of artefacts (e.g., electromyogram

(EMG), background activity), which leads to a low decoding performance. A

number of filtering methods can be utilized to remove or weaken the effects of

artefacts, but they generally fail when the EEG contains extreme artefacts. In

such cases, the most common approach is to discard the whole data segment

containing extreme artefacts. This causes the fatal drawback that the BCI can-

not output decoding results during that time. In order to solve this problem,

we employ the Lomb-Scargle periodogram to estimate the spectral power from

incomplete EEG (after removing only parts contaminated by artefacts), and

Denoising Autoencoder (DAE) for learning. The proposed method is evalu-

ated with motor imagery EEG data. The results show that our method can

successfully decode incomplete EEG to good effect.
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1. Introduction

The combination of advanced neurobiology and engineering creates a new path-

way, namely a brain computer interface (BCI). The BCI provides a bridge con-

necting the human brain to the outside world [1]. This means that people do

not have to rely on the conventional pathway of an intent initialized in the5

brain being passed to muscles through peripheral nerves, and are able to inter-

act directly with the external environment [2]. Due to the lack of involvement

of peripheral nerves and muscles, with the aid of a BCI system, disabled peo-

ple could restore their abilities of communication [3] and the degenerated motor

function [4, 5]. During the past two decades, a variety of BCI systems have been10

created for different applications. These BCI systems are generally divided into

two types: active BCI and passive BCI, according to the level of interaction

with external stimuli. In the case of a passive BCI, when using a steady-state

visual evoked potential (SSVEP) BCI [6], the user may, for example, simply

stare at an intended digital number shown on a screen to dial a phone number.15

When a steady-state flicker is replaced with an occasional flicker, a different

type of BCI called P300 can be used to output letters by hierarchical selections

[3]. Compared to the passive BCI, the active BCI is more natural. Users can

express their intents whenever they want to, rather than according to a pre-

defined timing arrangement or external cooperation, as with the passive BCI.20

For instance, people with paraplegia can regain movement in a wheelchair by

motor imagery [4], or can control a computer cursor in virtual 2D [7] or 3D [8]

environments through brain modulation. Moreover, BCI is also used to develop

prostheses, with which disabled people can, for example, move an object [9] or

drink a cup of coffee [10]. More recently, BCI has been applied to facilitate25

rehabilitation [11, 12]. Besides applications for disabled people, BCI also has

promising applications for healthy persons, especially in the field of entertain-

ment. BCI is employed to control video games instead of conventional inputs
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such as a keyboard and joystick [13]. In this way, healthy people can enjoy the

experience of manipulating virtual objects in a manner different from that used30

in daily life.

From the application point of view, the user experience is very important. This

requires smoothness in the manipulation of the BCI system. In order to meet

this requirement, the BCI system needs to translate brain activities into output

information continuously without any interruption. In other words, this re-35

quires all the EEG segments to be present for the decoding. If some of the EEG

segments are discarded due to extreme noise contamination, the BCI cannot

generate the corresponding output during that period. Hence, it would be good

to be able to utilize the remaining portion of the affected EEG segment, after

only removing the part directly affected by noise. In general, spectral power40

features are usually utilized to distinguish different motor imageries (e.g., left-

hand and right-hand motor imageries) [14, 15, 16, 17], as they are considered

to be robust for the representation of the contents of motor imageries. If the

segment is complete (continuous), the Fourier transform can be well used to

transform temporal data points into the spectral domain. This fails in the case45

of incomplete data, such as an EEG segment with a portion (or portions) of

data removed (unevenly spaced). In order still to utilize such segments of EEG

with arbitrary portions of data removed and provide users with an experience

of smooth manipulation, we employ the Lomb-Scargle periodogram to estimate

the spectral power [18, 19], and Denoising Autoencoder (DAE) [20, 21] based50

neural network or support vector machine (SVM) [22, 23] to predict the classes

of motor imageries. The results show that the proposed method is suitable for

decoding incomplete EEG in a BCI system.

2. Methodology

We first employed the Lomb-Scargle periodogram [18, 19] to estimate band55

powers from incomplete EEG signals. Next, the extracted features were used

to train an unsupervised DAE [20, 21] or a supervised SVM with Radial Basis

3



Function (RBF) kernel [22, 23]. In the case of DAE, the mapping weights of

DAE were used to initialize a neural network. After fine-tuning the weights, this

trained neural network was used to recognize the classes of motor imageries. Fig.60

1 illustrates the proposed method.
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Figure 1: Schematic depiction of the proposed method.

2.1. Lomb-Scargle Periodogram

A four-second trial is divided into 25 segments of one-second length with an

overlap of 87.5%. A segment is denoted by X, which is N by T matrix, where
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N is the number of channels, and T is the number of sampling points. The65

spectral power of each channel time series y(ti) is estimated by the Lomb-Scargle

periodogram [18, 19]. The estimated spectral power at frequency Ωf can be

obtained by minimizing the following sum of difference squares:

min
a>0

φ∈[0, 2π]

T∑
i=1

(y(ti)− α cos(Ωf ti + φ))
2
. (1)

Let

a = α cosφ (2)

and70

b = −α sinφ . (3)

We can then rewrite equation (1) as:

min
a, b

T∑
i=1

(y(ti)− a cos(Ωf ti)− b sin(Ωf ti))
2
. (4)

The optimal parameters â and b̂ can be obtained through minimizing equation

(4)  â

b̂

 = R−1r, (5)

where

R =

T∑
i=1

 cos(Ωf ti)

sin(Ωf ti)

[
cos(Ωf ti) sin(Ωf ti)

]
, (6)

and75

r =

T∑
i=1

 cos(Ωf ti)

sin(Ωf ti)

 y(ti) . (7)

The power of specific frequency Ωf is then estimated with respect to optimal

parameters â, b̂ as follows:

1
T

T∑
i=1

[
â b̂

] cos(Ωf ti)

sin(Ωf ti)

2

= 1
T

[
â b̂

]
R

 â

b̂


= 1

T r
T(Ωf )R−1(Ωf )r(Ωf ) .

(8)
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Similarly, the minimization of squares mentioned above is used to estimate spec-

tral powers at all frequencies. After that, spectral estimation for one channel is

completed. These steps are repeated for all channels and all segments to obtain80

the spectral powers. Because the frequency range of 8-30 Hz is mostly related

to the motor imagery task [17], we divided this band into four subbands with a

bandwidth of 5 Hz (i.e., 8-12 Hz, 13-17 Hz, 18-22 Hz, and 23-27 Hz). Subband

powers were obtained by averaging spectral powers within the corresponding

frequency band range for each channel. Then, subband powers (four features85

for each channel) for all channels were concatenated into a feature vector:

F = [f11, f12, f13, f14, f21, f22, f23, f24, · · · , fN1, fN2, fN3, fN4]T , (9)

where N is the number of channels. Subsequently, features were normalized as:

fqp = log

 fqp
N∑
i=1

4∑
j=1

fij

 . (10)

The normalized features were then fed into a neural network with DAE initial-

ization, or into an SVM classifier to distinguish which class the current EEG

segment belongs to.90

2.2. DAE-based neural network

For a time, neural networks were less frequently used due to the drawback

that they easily became stuck in the local minima, so more use was made of

SVM classifier. However, recently neural networks have regained popularity,

in particular when using a pre-training strategy [21, 24, 25]. In this paper,95

we construct a three-layer neural network with DAE initialization (A neural

network with more layers might possibly achieve a better performance through

in-depth feature learning).

The power features extracted by Lomb-Scargle Periodogram was first corrupted,

denoted as f̂ , by means of a stochastic mapping f̂ ∼ qD(f̂ |f). The part enclosed100

by the orange rectangle in Fig. 1 shows a schematic diagram of the DAE. We
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set the corrupted elements to 0. Then, the corrupted features were mapped to

a hidden representation (120 units) by the sigmoid function

y = g1, θ(f̂) = s(W · f̂ + b). (11)

Consequently, we reconstructed the uncorrupted z as

z = g2, θ′(y). (12)

The objective was to train parameters θ = {W, b} and θ′ = {W ′, b′} for mini-105

mization of the average reconstruction error over a training set. In other words,

to find the parameters to let z be as close as possible to f , we performed the

following optimization:

[θ∗, θ′ ∗] = arg min
θ, θ′

1
n

n∑
i=1

L(f (i), z(i))

= arg min
θ, θ′

1
n

n∑
i=1

L(f (i), g2, θ′(g1, θ(f̂
(i)))),

(13)

where L is a squared error loss function L(f, z) = ‖f − z‖2, n is the number of

training samples, and θ∗, θ′ ∗ are the optimal values of θ, θ′. Once the optimal110

parameters were obtained, we were able to use those parameters to initialize a

neural network. A top layer was added onto the neural network. After that,

the parameters were fine-tuned in a supervised way.

3. Evaluation Data

Two different categories of data are used to prove the feasibility of the pro-115

posed method. One is the simulated data and the other is the two-class motor

imagery data. We use simulated data to illustrate systematically that spectral

power can be correctly estimated when the data become unevenly spaced after

removing some data points from them. Further, we use real motor imagery data

to demonstrate that classification accuracy does not dramatically decrease when120

increasing the percentage of data within the segment that has been removed, so

that the proposed method is useful to process incomplete data in a BCI system.

The simulated data were generated by mixing two sinusoidal signals, which were
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3 Hz and 6 Hz, respectively. The maximal amplitude of the 3 Hz sinusoidal sig-

nal was 1.5 times that of the 6 Hz sinusoidal signal. The motor imagery data125

came from three subjects. Fourteen electrodes (shown with a green background

in the scalp illustration in Fig. 1) were used to record the EEG signal on the

sensorimotor cortex while the subject was conducting motor imagery at a sam-

pling rate of 250 Hz. Those electrodes were referenced at the mastoids behind

the ears and grounded at AFz. Each subject participated in four sessions. Each130

session consisted of 15 trials, each of which was four seconds long. The sub-

ject conducted either left hand motor imagery or right hand motor imagery

according to the cue shown on the computer monitor.

4. Results

4.1. Simulated data135
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Figure 2: Spectral power estimations for the complete signal and signals after data point

removal.

We first evaluated the performance of the spectral power estimation on simu-

lated data. The simulated data was mixed with two sinusoidal signals, which
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were 3 Hz and 6 Hz, respectively. The spectral power estimated from the com-

plete signal, and the incomplete signals with different proportional removal of

data points (from 10% to 80% with an interval of 10%) are shown in Fig. 2.140

The data points were removed at random. In order to keep the same scale over

cases with different proportional data removal to facilitate comparisons between

them, the powers shown in Fig. 2 were normalized by dividing by a proportional

factor (1-p, where p is the percentage of data removed). For example, the esti-

mated power is divided by a factor of 0.7 when 30% of data points are removed145

from the signal. From Fig. 2, we can see that the components at 3 Hz and 6

Hz can be well estimated in all cases with different proportions of data removal,

even up to removal of 80% of data points.

4.2. Real motor imagery data

In general, BCI encounters a common problem that there is no output when the150

whole segment has to be discarded due to partial noise contamination in that
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Figure 3: An example of data point removal. The data points shown with a grey background

are removed while data points shown with a white background are retained.
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segment. If a method can obtain comparable recognition accuracy (the same or

slightly worse) by using only the remaining portion of the segment (the portion

from which noise contamination has been removed), this method is considered

as an effective solution to the aforementioned problem.155
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Figure 4: An example of block point removal. The data points shown with a grey background

are removed, while data points shown with a white background are retained.

For real motor imagery data, two ways were used to randomly remove the partial

data from the segment. One is that data points within a segment were randomly

removed (see Fig. 3 for an example). The other is that data blocks within a

segment were randomly removed (see Fig. 4 for an example). The width of the

blocks removed was generated according to a normal distribution with a mean160

of 20 and a standard deviation of 10.

We used the data from the preceding session to train the SVM classifier with

a RBF kernel, and tested it with the data from the following session. Two ap-

proaches were used for the evaluation of the accuracy (i.e., sliding time window

accuracy and trial accuracy). Sliding time window accuracies were calculated165

as the number of segments classified as correct divided by the total number
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Figure 5: Classification accuracies for the form of data point removal. The thin red lines

represent trial accuracies, and the bold blue lines represent sliding time window accuracies.

of segments. A trial was classified as belonging to the class to which most of

the sliding time windows within that trial belonged. Then trial accuracies were

obtained according to the ratio of trials classified as correct. Fig. 5 and Fig.

6 show test accuracies for the conditions of data point removal and data block170

removal, respectively. In general, the accuracies for all sessions of all subjects

did not dramatically decrease. Trial accuracies varied more than sliding time

window accuracies across different proportional sections of data removal. This

is because a trial was classified as correct even if the number of sliding time

windows in the trial classified as correct was only one more than the number175

of sliding time windows classified as incorrect. Likewise, trials with one more

incorrect sliding time window than correct sliding time window were classified
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Figure 6: Classification accuracies for the form of block point removal. The thin red lines

represent trial accuracies, and the bold blue lines represent sliding time window accuracies.

as incorrect. Therefore, in some cases, the trial accuracy changed greatly while

the accuracy of the sliding time widows did not change much. A comparable

classification accuracy could be achieved even when 80% of data were removed.180

High accuracies were retained no matter how many data points were removed

- in the range from 10% to 80% - for subject 1, especially for sessions 2 and

3. The accuracies for 80% data removal were substantially worse than those

for 70% data removal for subject 1 in the condition of block data removal. It

appears that our method is relatively sensitive to data removal in block form.185
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4.3. Comparison between DAE and SVM

In this section, we show a comparison between DAE and SVM in terms of clas-

sification accuracy of sliding time windows. SVM has been widely adopted since

its conception and has been successfully applied in many fields. Deep learning

is a promising and burgeoning method. DAE is utilized as a building brick to190

compose a deep learning network. It is meaningful to illustrate the effective-

ness of this for EEG feature recognition using our paradigm. The parameters

used in the training are listed in Table 1. Fig. 7 shows the accuracy difference

between DAE and SVM for each session of each subject under the condition of

data point removal. Asterisks located above the zero horizontal line mean that195

the accuracy of DAE is higher than that of SVM. The bars shown on the right

of each sub-plot are the average differences. The bottom right plot illustrates

the overall difference averaged across all sessions of all subjects. From Fig. 7,

we can see that there is no clear winner - the DAE is better than the SVM in

a number of sessions but turns out to be worse in other sessions. The overall200

average accuracy of DAE is still better than that of SVM. Fig. 8 shows the

accuracy comparison under the condition of block point removal. The result is

similar to the condition of data point removal. The overall average accuracy of

DAE is higher than that of SVM under the condition of block point removal,

but the increase in accuracy of DAE compared with SVM is less than the case205

of data point removal.

Table 1: Parameter Settings

Parameters Values

Corrupted fraction 0.3

Mini-batch size 25

Learning rate for pre-training 0.9

Number of pre-training epochs 20

Learning rate for fine-tuning 0.9

Number of fine-tuning epochs 50
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Figure 7: Accuracy comparison between DAE and SVM under the condition of data point

removal. Each asterisk represents an accuracy difference between the DAE and the SVM. The

difference is calculated by the DAE accuracy minus the corresponding SVM accuracy. The

bar at the right of each plot illustrates the average difference in a session.

From the results of comparisons, the DAE is shown to be comparable to the

SVM. However, it is possible that the DAE can outperform the SVM when more

layers are used and parameters are better tuned. It is not yet clear whether the

DAE can significantly exceed the SVM in terms of EEG classification, but there210
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removal. Graphical symbol expressions are the same as in Fig. 7.

has been a report that stacked DAE (i.e., multiple DAEs combined together

to obtain deeper learning of features) performed better than the SVM on the

image benchmark dataset named MNIST [20].
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5. Conclusion

We propose the combination of the Lomb-Scargle periodogram and either SVM215

or DAE to distinguish incomplete EEG segments (i.e., segments from which

a portion of data has been removed due to noise contamination). The results

indicate that classification accuracy is not dramatically decreased when different

percentages of data are removed. Therefore, the classification performance using

the proposed method for incomplete segments is acceptable for a BCI application220

system. This means that the segment with noise contamination can still be

utilized to output commands after only removing the noisy portion, instead of

discarding the whole segment, as is conventionally done in BCI systems. In

brief, the proposed method can achieve comparable classification performance

even when most of the data points in a segment have been removed. It provides225

an alternative solution for the frequent problem occurring in a BCI system that

there is no output when a segment is discarded.
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