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Abstract—This paper addresses a particular pursuit-evasion
game, called as “fishing game” where a faster evader attempts
to pass the gap between two pursuers. We are concerned with
the conditions under which the evader or pursuers can win
the game. This is a game of kind in which an essential aspect,
barrier, separates the state space into disjoint parts associated
with each player’s winning region. We present a method of
explicit policy to construct the barrier. This method divides the
fishing game into two sub-games related to the included angle
and the relative distances between the evader and the pursuers,
respectively, and then analyzes the possibility of capture or escape
for each sub-game to ascertain the analytical forms of the barrier.
Furthermore, we fuse the games of kind and degree by solving the
optimal control strategies in the minimum time for each player
when the initial state lies in their winning regions. Along with the
optimal strategies, the trajectories of the players are delineated
and the upper bounds of their winning times are also derived.

Index Terms—Fishing game, pursuit-evasion games, barrier,
point capture, winning regions, optimal strategies.

I. INTRODUCTION

RESEARCHES in the areas of robotics and control are
usually related to controlling multiple mobile agents to

complete some tasks in conflicting scenarios. For example,
in RoboCup two robot soccers try to get the ball from an
opponent, in policing two autonomous vehicles attempt to
trace a crime target, in military confrontation two missiles aim
to intercept an enemy target, and from the view of escape, in
collision avoidance a robot intends to pass through two moving
obstacles, etc. These application scenarios can be generalized
to a kind of pursuit-evasion game, where one evader must pass
the gap between two pursuers.
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This paper considers such a particular pursuit-evasion game
with point capture. Specifically, the three players move in the
plane with constant speeds and unlimited directions. When
the minimum distance between the evader and the pursuers is
maintained not equal to zero and the evader travels through the
gap between the two pursuers (i.e., the included angle between
them increases from < π to > π), the evader wins; otherwise,
the pursuers win. This game is analogous to a natural scene of
two fishers using a fishing net to catch one fish, where the fish
endeavours to escape from a gap between the fishers. Thus, it
can be vividly called as “fishing game” in this paper.

Different from general pursuit-evasion games, there are two
competition focuses for the players in fishing game: one is the
relative distances which the pursuers try to minimize while the
evader attempts to maximize; the other one is the gap between
the two pursuers which the evader seeks to pass through while
the pursuers strive to narrow. In fact, the pursuit-evasion game
with more than two pursuers can be regarded as a combination
of multiple fishing games. Therefore, the above adversarial
interactions among three players are available for representing
some challenges encountered in control problems, such as
cooperative besieging and capturing of multi-robot [1, 2], paths
coordination of multi-agents [3, 4], and collision avoidance of
moving vehicles in hazardous circumstances [5, 6]. Naturally,
in a fishing game if the pursuers are faster than the evader, they
will always win from any given initial position of the players.
But a close situation that the pursuers possess superiority in
numbers while the evader also has an advantage in speed, is
more attractive to us because we cannot immediately estimate
the possibility of capture or escape for the players. This is a
typical game of kind and is the focus of this paper.

It is well-known that in Isaacs’s book [7] the core concept
of the game of kind, barrier, separates the state space into two
parts: capture zone and escape zone. If the initial state lies
in the capture zone, then there exists a suitable strategy for
the pursuer such that capturing the evader can be guaranteed
no matter what strategy the evader will take. Similarly, if the
initial state lies in the escape zone, then the evader also has
a suitable strategy to carry out such that its escape can be
guaranteed regardless of the pursuer’s strategy. Consequently,
when the initial state is on the barrier, the intersection of their
winning regions, the pursuer must adopt an optimal strategy
to prevent the state entering the escape zone; simultaneously,
the evader should also exert itself to keep the state out of the
capture zone. The nature reflected by the players competing
on the barrier is called as “semipermeability”, and the barrier
is precisely a semipermeable surface.
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The primary goal of this paper is constructing such a barrier
to delineate the winning region for each player in fishing game.
The classic Isaacs’s approach [7] to construct barrier is starting
from a point of the boundary of the usable part (BUP) of target
set (or terminal manifold) and then integrating the so-called
retrogressive path equations (RPEs). However, it is difficult to
solve the RPEs analytically in fishing game because the target
set involves not only the relative distances but also the included
angle between the pursuers and the evader. For this reason,
we present a direct and effective method, namely method
of explicit policy, demonstrates the possibility of capture or
escape by exhibiting some particular strategies or policies of
the players. Specifically, we divide the game into two sub-
games which are related to the relative distances and the
included angle, respectively. For each sub-game, we analyze
the possibility of capture or escape and obtain the analytical
forms of winning regions for the players, and then we ascertain
a precise description of the barrier by synthesizing these
winning regions. The above results comprise an open-loop
solution in Nash equilibrium [8].

Additionally, another contribution of this paper is the fusion
of the games of kind and degree in fishing game, where each
player seeks to achieve success in the minimum time when the
initial state lies in their winning regions. We partition the state
space into four zones and then attain the optimal trajectories
associated with the optimal control strategies of the players
for every zone, which are the closed-loop solutions of fishing
game. To be the best of our knowledge, this paper is the first
that provides such a complete solution (including the open-
loop solution and the closed-loop solution) to the fishing game,
where the results obtained can be useful for giving insight into
general problems of cooperative besieging and capturing for
multi-robot systems.

This paper is organized as follows. In Section II, related
work is reviewed. In Section III, the fishing game in question
is defined and its formulation is discussed. In Section IV, the
analytical forms of the winning regions and the barrier are
obtained by analyzing the control policies of the players for
each sub-game. In Section V, the closed-loop solutions, i.e.,
the optimal strategy and the trajectory of each player with
respect to the minimum time are solved. Finally, in Section
VI, conclusions and future work are summarized.

II. RELATED WORK

In terms of the game of kind, Isaacs [7] introduces several
methods to construct the barriers including natural barriers,
artificial barriers and envelope barriers. He provides a plethora
of examples to illustrate the semipermeability of barriers, such
as the game of homicidal chauffeur, the game of two cars, the
lifeline game, the deadline game, etc. Since the pioneering
work, there have been a number of efforts to characterize the
barriers in pursuit-evasion games. For example, a complete
solution in the game of homicidal chauffeur is obtained by
Merz [9], and all the types of singular curves appearing in
the game are analyzed, involving the dispersal, universal,
equivocal, switch and focal curves. Families of semipermeable
curves in the game are deliberated by Patsko and Turova [10],

which are useful for game problems with various performance
indices and the determination of capture sets. The surveillance-
evasion problem with the same dynamics is considered by
Lewin and Breakwell [11] and other variants of the game
are investigated by David [12], Parsko and Turova [13], and
Exarchos et al. [14]. For the deadline game, Breakwell [15]
analyzes the optimal trajectories and barriers for a series of
games posed by Isaacs (e.g. the one-sided deadline game, the
cornered rat game, the game of patrolling a channel), then he
extends the results to a game of kind with two pursuers and
one evader in [16]. Moreover, constructions of barriers in the
game of two cars and the lifeline game can be consulted in
[17-21] and [22-24], respectively.

In addition, some special games related to practical ap-
plications are also handled by using Isaacs’s approach. For
example, Bhattacharya, Hutchinson and Başar [25-27] concern
the visibility based pursuit-evasion game in an environment
containing obstacles and present the necessary and sufficient
conditions for surveillance and escape. Based on these find-
ings, they construct a value function of the game and obtain
optimal trajectories for the players as well as the dispersal
surfaces arising in the solutions [28-29]. Shinar et al. [30-34]
analyze many pursuit-evasion games of kind with different
dynamics of missiles and aircrafts, in particular, a hybrid
evader who has two possible dynamics considered in [34] is
a very interesting viewpoint.

The aforementioned methods to construct barriers are often
starting from a point of the BUP of target set and then inte-
grating the RPEs, however, become more and more difficult to
take effect with the increasing complexity of pursuit-evasion
problems. The main reasons are that: the RPEs, derived from
the Hamilton-Jacobi-Isaacs (HJI) equations, are usually hard
to solve analytically for somewhat sophisticated problems,
especially in multi-agent systems. Since the solving difficulty
depends on the dynamics and the number of players, the
multi-player games of kind may also suffer from the curse
of dimensionality. To date, a general solution to multi-player
pursuit-evasion games is not yet available.

Generally, there are three ways to cope with the above
problems. The first one is dividing the game into several sub-
games and then analyzing the optimal behaviors of the players
for each sub-game. For example, Hagedorn and Breakwell
[16] undertake Isaacs’s inference [7] for a game of kind with
two pursuers and one evader (similar to fishing game) that
the optimal trajectories of the players have two phases: first,
straight-line phase during which the distances between the
pursuers and the evader are decreasing, and second, curved
phase during which one of these relative distances maintains
equal to the capture radius. That is, the target in the game is
divided into two successive sub-targets. Bhattacharya [35] also
uses Isaacs’s technique to address the problem of connectivity
maintenance game with two aerial vehicles and one jammer,
where the target set of the game is represented as the union of
two smooth termination surfaces. In [36, 37], Tomlin’s group
presents an open-loop formulation for a reach-avoid game as
a pair of games which are conservative for the attacking and
defending players respectively. Then they treat the capture-
the-flag game as a multi-stage reach-avoid game in [38] and
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develop a complete solution of the game in [1].
The second way is using the method of explicit policy

to avoid solving HJI equations. For instance, Turetsky [39]
obtains the necessary and sufficient conditions for having a
nontrivial capture zone by constructing a class of time-varying
feedback pursuit strategies. Huang et al. [40, 41] present a
decentralized control scheme for multiple pursuers based on
Voronoi partition of the game domain, a bounded convex
polytope, to guarantee capturing a single evader. Furthermore,
they consider the cooperation among the pursuers [42] in
a bounded, simply-connected planar domain, and obtain the
conditions of guaranteeing capture. Alexander, Bishop and
Ghrist [43] use convex-geometric techniques to provide a
necessary and sufficient condition for the eventual capture in
multi-pursuer one evader games on convex Euclidian domains
of arbitrary dimension and shape. Kim and Sugie [44] propose
a cyclic pursuit strategy for multiple pursuers to capture a
single target in 3D space, which only uses the local infor-
mation to generate the global group behaviour. Bopardikar
et al. [45] address a cooperative Homicidal Chauffeur game
with multiple pursuers and one evader. Inspired by hunting
and foraging behaviours of fish species, they present a multi-
phase cooperative strategy to confine the evader to a bounded
region. In [46], they study the pursuit-evasion problems in
discrete time and continuous space, where at least k pursuers
are required to reach the evader’s location simultaneously,
and provide a sufficient condition for this kind of k-capture.
Analogously, Özgüler and Yıldız [47] also investigate the for-
aging swarm behaviour in scope of noncooperative game, and
obtain the Nash equilibrium solution by explicitly describing
a class of strategies. The method of explicit policy generally,
involving geometric analysis, is computationally efficient in
generating control strategies, while are limited to relatively
simple game environment and simple motion models of the
players.

The last approach is to solve the numerical approximation
of HJI equations. Based on the theory of viscosity solution
for HJI equations [48], Bernhard, Crepey and Rapaport [49]
present a numerical method for the computation of the value
function using Kruzkov transformation, and determine the bar-
rier of this game in time by depicting the zero level set of the
value function. Bhattacharya, Başar and Falcone [50] address
a vision-based target tracking problem, and use a fully discrete
semi-Lagrangian scheme to compute the Kruzkov transforma-
tion of the value function numerically. Kumkov, Ménec and
Patsko [51] implement a procedure of dynamic programming
to construct level sets of the value function numerically for
a class of linear differential games with fixed termination
instant. Zhang, Cui and Luo [52] propose a near-optimal
control scheme, utilizing the single-network adaptive dynamic
programming (ADP), to solve the nonzero-sum differential
games of continuous-time nonlinear systems. For a nonzero-
sum game with unknown dynamics, Zhao et al. [53] present a
single-network ADP with experience replay algorithm to solve
the coupled nonlinear HJI equations. Mitchell, Bayen and
Tomlin [54] describe and implement an algorithm to compute
a so-called reachable set which is the zero sublevel set of the
viscosity solution of a time-dependent HJI partial differential

equation. In [55] they adopt this reachability algorithm to
index one differential algebraic equation, and approximate the
backward reachable set on a constraint manifold with lower
dimension and in the full dimensional state space, respectively.
Other approximation methods such as neural network [56],
Q-learning [57] and reinforcement learning [58, 59] are also
being concerned in recent years.

In fact, the fishing game is related to the classic one-sided
deadline game described by Isaacs [7], or more closely to a
pursuit game proposed by Breakwell [16]. But differing from
their assumption of some positive capture radius, point capture,
i.e., the capture radius is zero, is considered in our fishing
game. Thus, it is more challenging to capture a faster evader
for the pursuers. Moreover, their handling method of dividing
the target into two successive sub-targets is also not suitable
for fishing game.

Generally, analysis for a game of kind highlights the trade-
offs between problem characteristics, probability for capture
or escape, solutions optimality, and computational complexity.
Comparing the various methods presented in the aforemen-
tioned references, we find that the methods associated with
solving HJI equations, whether analytically or numerically, are
complicated to obtain a complete solution for the fishing game.
Instead, the method of explicit policy can effectively avoid
such a dilemma, even though some properties may be some-
what tortuous to prove geometrically. The following sections
discuss the concrete implementation of this method, which
shows that both the form of solution and the representation of
barrier are quite concise.

III. PROBLEM FORMULATION

In this section, we present the problem formulation of
fishing game. Consider two identical pursuers P1, P2 and one
evader E moving in the plane (Fig. 1), the evader has speed
ve and both pursuers have speed vp. Their control variables
are the directions of their velocity vectors respectively. The
evader attempts to pass the gap between the two pursuers, i.e.,
crossing the line segment P1P2 from left to right as shown in
Fig. 1 (segment P1P2 is time-varying), whilst avoiding being
captured by the pursuers. On the contrary, the pursuers strive to
capture the evader whilst preventing the evader from threading.

The kinematic equations of the pursuers and the evader in
the realistic game space are given by:

ẋ1 = vp sinϕ1, ẏ1 = −vp cosϕ1 (1)
ẋ2 = vp sinϕ2, ẏ2 = −vp cosϕ2 (2)
ẋe = ve sinφ, ẏe = −ve cosφ (3)

where the positions of the players are denoted as P1(x1, y1),
P2(x2, y2) and E(xe, ye), and the corresponding control vari-
ables are denoted as ϕ1, ϕ2 and φ, respectively.

The problems in fishing game are that:
1) What conditions of the initial state can guarantee the win

of the pursuers or the evader when they play optimally?
2) If the win can be assured, what strategies should be

adopted by the pursuers or the evader to achieve success
in the minimum time.
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Fig. 1. Fishing game in the fixed reference system, where φ, ϕ1 and ϕ2 are
the moving directions of players E, P1 and P2 in the realistic game space,
respectively. α, ϕ̂1 and ϕ̂2 are the alternative control variables of the players,
defined as the relative headings of E, P1 and P2 from the vectors

−−→
EP2,

−−→
P1E

and
−−→
EP2, respectively. θ denotes the included angle ∠P2EP1, and γ denotes

the angle of vector
−−→
EP2. d1, d2 and r12 are the lengths of segments EP1,

EP2 and P1P2, respectively.

Since the pursuers’ win can always be attained from any
given initial state for vp > ve, we only concern the case vp ≤
ve and use a to denote the ratio of vp to ve, a = vp/ve ≤ 1.
The winning strategy of the pursuers for a > 1 is to move
towards the evader individually.

To represent the dynamics of fishing game more compactly,
a reduced state space can be formed by the relative distances
d1, d2 and the included angle θ (see Fig. 1) in which the
dynamics are derived as follows:

ḋ1 = −vp cos ϕ̂1 − ve cos(θ − α), d1(t0) = d01 (4)

ḋ2 = vp cos ϕ̂2 − ve cosα, d2(t0) = d02 (5)

θ̇ = −vp
d1

sin ϕ̂1 +
ve
d1

sin(θ − α)−

− vp
d2

sin ϕ̂2 +
ve
d2

sinα, θ(t0) = θ0 (6)

where α, ϕ̂1 and ϕ̂2 are the alternative control variables of
the players, defined as the relative headings of E, P1 and P2

from the vectors
−−→
EP2,

−−→
P1E and

−−→
EP2, respectively. As shown

in Fig. 1, α = φ−γ, ϕ̂1 = ϕ1+π−θ−γ and ϕ̂2 = ϕ2−γ (γ is
the angle of vector

−−→
EP2). θ is the included angle between the

vectors
−−→
EP1 and

−−→
EP2, θ = Arg(

−−→
EP1) − Arg(

−−→
EP2). Arg(·)

is the principal value of the argument of a vector, within the
range (−π, π]. The full state space is denoted by Ω = {d1 ≥
0, d2 ≥ 0,−π < θ ≤ π} ∈ R3.

Without loss of generality, we assume that the initial in-
cluded angle θ0 ∈ [0, π). As for the case of (−π, 0), it is
easy to obtain a similar result according to symmetry. Thus,
from the beginning of the fishing game with point capture,
min{d01, d02} > 0 and 0 ≤ θ0 < π, if

a) min{d1, d2} > 0 and θ = π, the evader wins;
b) else if min{d1, d2} = 0, or the state maintains {d1 >

0, d2 > 0 and θ < π} indefinitely, the pursuers win.
The above are regarded as the termination conditions of fishing
game.

IV. WINNING REGIONS AND BARRIER

The problem formulated in the previous section is a game
of kind, where the entire state space is split by a barrier into
two disjoint regions: the capture zone and the escape zone. In
this work, our primary goal is to construct such a barrier,
and subsequently solve the optimal feedback strategies for
the pursuers and the evader when the initial state is in their
winning regions, respectively.

In a general game of kind, target set refers to a set of
the states satisfying a termination condition of the game. The
pursuer wishes to steer the state to the target set, while the
evader hopes to keep it out of that set. The boundary of target
set, i.e., terminal manifold, is composed of two parts: one is
called as usable part (UP), on which the pursuer can force
the state to penetrate into the interior of target set despite
the evader’s strategy; the other one is called as nonuseable
part (NUP), on which the evader can frustrate the penetration
regardless of the pursuer’s strategy. Thus, each player exerts
its optimal endeavor to make the state moving tangentially
to the boundary of target set, where the points of tangency
constitute the boundary of usable part (BUP). Obviously, the
BUP of target set is semipermeable and can be used as the
initial curve for the barrier within the reversed time. Starting
from a point of the BUP, the barrier can be constructed by
integrating the retrogressive path equations (RPEs).

That is the classic Isaacs’s approach [7] to construct the
barrier, nonetheless, is unsuited to fishing game directly,
because the corresponding RPEs associated with the reduced
state variables (d1, d2 and θ) are hard to solve analytically.
Instead, we can divide the game into two sub-games from
the perspective of the pursuers: the first one involves the
competition on the included angle θ that the pursuers attempt
to decrease it while the evader hopes to increase it; The
second one is focused on the distance min{d1, d2} that the
pursuers try to make it zero, while the evader strives to
keep it positive and increase the angle θ. Since the two sub-
games are not successive, there will be some intersections
between their solutions. Thus, our method is solving these
two sub-games of kind, respectively, and then integrating the
corresponding solutions (including the optimal strategies, the
winning conditions) into a complete solution of the whole
game.

A. Competition on the Included Angle θ

In the first sub-game of kind, the termination conditions can
be reduced to a discrimination of the included angle θ: when
θ < π always holds, the pursuers win; when θ = π, the evader
wins. Now, we begin to solve the fishing game based on the
changes of θ, and derive the main equation:

min
ϕ̂1,ϕ̂2

max
α

[−vp
d1

sin ϕ̂1 −
vp
d2

sin ϕ̂2+

+
ve
d1

sin(θ − α) +
ve
d2

sinα] = 0 (7)

so that the optimal control strategies of the pursuers and the
evader are

ϕ̂∗
1 =

π

2
, ϕ̂∗

2 =
π

2
(8)
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sinα∗ =
d1 − d2 cos θ

r12
, cosα∗ =

d2 sin θ

r12
(9)

where r12 =
√
d21 + d22 − 2d1d2 cos θ is the distance between

the pursuers P1 and P2, and symmetrically

sin(θ − α∗) =
d2 − d1 cos θ

r12
, cos(θ − α∗) =

d1 sin θ

r12
. (10)

Thus the main equation (7) can be rewritten as

−vp
d1

− vp
d2

+
ver12
d1d2

= 0 (11)

then,
r12 = a(d1 + d2) (12)

where a = vp/ve is the speed ratio of the pursuers to the
evader. Consider the expression of r12, from (12) we have

cos θ = cosΘ =
(1− a2)(d1 + d2)

2

2d1d2
− 1. (13)

Here, we call Θ the non-escape angle according to the
following theorem:

Theorem 4.1: If the initial state satisfies

r12(t0) ≤ a(d1(t0) + d2(t0)) (14)

or
θ(t0) ≤ Θ(t0) (15)

then the pursuers’ win can be guaranteed as long as they adopt
the strategy (8).

Proof: As condition (14) is equivalent to condition (15),
we only prove the latter. Firstly, if θ(t0) < Θ(t0), from the
formula (13) and the main equation (11), we have

θ̇(t0) = −vp
d1

− vp
d2

+
ver12
d1d2

< 0.

Substituting the optimal control strategies (8) and (9) into the
differential equations (4) and (5), then

ḋ1 = −ved1
r12

sin θ, ḋ2 = −ved2
r12

sin θ

and ḋ1/ḋ2 = d1/d2. Let b = d1/d2, since the game continues
in terms of d1 > 0, d2 > 0 and 0 < θ < π, we have

ḃ =
ḋ1d2 − ḋ2d1

d22
= 0.

Besides, the formula (13) can be transformed to

cosΘ =
(1− a2)(1 + b)2

2b
− 1. (16)

Therefore, the value of Θ(t) will be an invariant when the
pursuers and the evader play optimally. And obviously · · · <
θ(t2) < θ(t1) < θ(t0) < Θ(t0) = Θ(t1) = Θ(t2) = · · · ,
i.e., the value of θ(t) will decrease monotonically with time.
Further, based on the concept of Nash equilibrium, we are
sure that the objective of θ(tf ) < π can be achieved by the
pursuers no matter what strategy of the evader.

Secondly, if θ(t0) = Θ(t0), then θ̇(t0) = 0 when all the
players adopt the optimal strategies. It means that the value
of θ(t) will remain unchanged. But ḋ1 < 0 and ḋ2 < 0, so
the pursuers can still make min{d1, d2} = 0 to terminate the
game in finite time.

Remark 4.1: According to the formula (16), for a meaning-
ful cosΘ ≤ 1, a and b must satisfy

1− a

1 + a
≤ b ≤ 1 + a

1− a
, (a < 1). (17)

If the above inequalities are not satisfied, for example,

b >
1 + a

1− a
> 1, i.e., a <

b− 1

b+ 1

then

θ̇|ϕ̂∗
1 ,ϕ̂

∗
2 ,α

∗ = −vp
d1

− vp
d2

+
ver12
d1d2

=
ve
d1

[
√
b2 + 1− 2b cos θ − a(1 + b)]

>
ve
d1

[
√
b2 + 1− 2b cos θ − (b− 1)]

≥ 0

that is, θ̇ > 0 will occur regardless of the value of θ.
This implies that the condition (14) or (15) has entailed the
constraints of b in (17). Moreover, it also shows that if the
pursuers hope to win they should make b, the ratio of d1 to
d2, close to 1 when a is small. �

Remark 4.2: From the formula (13), given b, the value of
the non-escape angle Θ increases monotonically with a, and
when a = 1, Θ = π; Given a, Θ will achieve the maximum
value arccos(1− 2a2) when b = 1. �

Remark 4.3: Note that when θ = 0, if r12 ≤ a(d1+d2) the
pursuers can still win the game since thereafter θ ≤ 0. The
three players’ trajectories associated with the optimal strate-
gies (8) and (9) are sketched in Fig. 2. When r12 < a(d1+d2)
(see Fig. 2(a)), ḋ1 > 0, ḋ2 > 0 and θ̇ < 0, thus the evader will
not able to go through P1 and P2 whether on the left or the
right. In particular, when r12 = a(d1+d2) (see Fig. 2(b)), their
trajectories will be circles with the center at the midpoint of
segment P1P2. The evader still can not win the game. Actually,
in the next section we will see that the pursuers can make
r12 = 0 to terminate the game as long as they go straight
towards each other. �

From Theorem 4.1, the winning region of the pursuers
denoted by D1

p can be described as follows

D1
p = {d1, d2, θ |

√
d21 + d22 − 2d1d2 cos θ ≤ a(d1 + d2)}

= {d1, d2, θ | cos θ ≥ (1− a2)(d1 + d2)
2

2d1d2
− 1} (18)

and its boundary is denoted by B1,

B1 = {d1, d2, θ | cos θ =
(1− a2)(d1 + d2)

2

2d1d2
− 1}. (19)

Obviously, if a = 1, D1
p will be the entire state space

subtracting the evader’s winning condition {d1 > 0, d2 >
0 and θ = π}. So, we will suppose a < 1 in the rest of
this paper.

Next, we analyze the complementary region of D1
p . At this

time, even though θ̇ > 0 when the players adopt strategies (8)
and (9), we worry about that the evader still fails in θ = π
because min{d1, d2} may be equal to zero previously. But
since the maximum non-escape angle, maxΘ, is equal to
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Fig. 2. The trajectories of the players using strategies (8) and (9) after θ = 0 and r12 ≤ a(d1 + d2), where the red curve with black spots represents the
evader’s trajectory, the blue curve and the green curve with circles represent the trajectories of the pursuers P1 and P2 respectively. When (a) r12 < a(d1+d2),
the evader moves away from the gap between P1 and P2 gradually. Symmetrically, this dilemma will also be encountered if it turns right initially. When (b)
r12 = a(d1 + d2), the players E, P1 and P2 remain in a straight line, and their trajectories will be circles with the center at the midpoint of segment P1P2.

arccos(1− 2a2) for any given a < 1, the evader’s win can be
ensured according to the following theorem:

Theorem 4.2: If the initial state satisfies

θ(t0) > arccos(1− 2a2) (20)

then there exists a suitable strategy for the evader to escape
through the pursuers no matter what strategies the pursuers
will take.

Proof: This theorem can be proved briefly by introducing
a well-known concept of Apollonius circle [7], which is the
locus of a point that the ratio of the distances between this
point to two fixed points is constant. As shown in Fig. 3, the
ratio is equal to a < 1, the centers of circle Q1 and circle Q2

are

Q1 =

(
x1 − a2xe

1− a2
,
y1 − a2ye
1− a2

)
Q2 =

(
x2 − a2xe

1− a2
,
y2 − a2ye
1− a2

)
and the corresponding radiuses are

R1 =
ad1

1− a2
R2 =

ad2
1− a2

.

Further, it is easy to obtain that

sin∠P1EA = sin∠P2EB = sin ξ = a.

Because θ > arccos(1− 2a2), we have θ > 2ξ and ∠AEB >
0. Thus, if the evader moves straight towards the interspace
between A and B, i.e., its heading satisfies ξ < α∗ < θ − ξ,
the pursuers will never catch up with it.

Similarly, from Theorem 4.2, the evader’s winning region
denoted by D1

e is given by

D1
e = {d1, d2, θ | d1 > 0, d2 > 0, θ > arccos(1− 2a2)} (21)

Fig. 3. The optimal strategy of the evader when the state satisfies θ >
arccos(1− 2a2), where the dashed circles with centers Q1 and Q2 are the
Apollonius circles. A and B are the intersection points of the tangents of point
E to circle Q1 and circle Q2, respectively. The ratio of |AP1| (or |BP2|) to
|AE| (or |BE|) is equal to a. If the evader moves along the direction of vector−→
EA, it will meet the pursuer P1 at pint A. That is similar to the direction
of

−−→
EB. Thus, the optimal strategy of the evader will be going towards the

interspace between A and B (the shaded area), then the pursuers will never
catch up with it.

whose boundary, denoted by B2, is

B2 = {d1, d2, θ | d1 > 0, d2 > 0, θ = arccos(1−2a2)}. (22)

Remark 4.4: When the state lies in the region Ω\{D1
p ∪D1

e }
(Ω is the full state space), i.e., Θ < θ ≤ arccos(1− 2a2), the
possibility of capture or escape is uncertain in the first sub-
game, because the pursuers might capture the evader within the
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termination condition min{d1, d2} = 0, or the evader might
pass between the pursuers successfully. However, an exception
will arise in a particular assumption that the movement of the
evader is confined to a straight line, then the pursuers’ win
can be assured by choosing some suitable strategies when the
initial state is in Ω\D1

e , i.e., θ ≤ arccos(1 − 2a2). In this
case, the first sub-game is equivalent to the whole game and
the barrier of the game is B2. An extreme situation is shown
in Fig. 4, where θ = arccos(1−2a2) and there is no interspace
between A and B for the evader to escape. �

Fig. 4. The optimal strategy of the players when the evader moves along a
straight line and θ = arccos(1−2a2). Since the evader only can go straight,
there is no interspace between A and B for the evader to escape.

B. Competition on the Distance min{d1, d2}
We now study the second sub-game of kind in which

the termination conditions are that: when min{d1, d2} = 0,
the pursuers win, when min{d1, d2} > 0 and θ = π, the
evader wins. In fact, when the initial state lies in the region
Ω\{D1

p ∪D1
e }, if the target of the pursuers, min{d1, d2} = 0,

is unreachable, the evader will win the game because it has
a faster speed and can always choose a strategy according to
(9) so as to θ̇ > 0 no matter what strategies of the pursuers.
This implies that min{d1, d2} = 0 and min{d1, d2} > 0
are complementary, and consequently we can use Isaacs’s
approach [7] to construct the corresponding barrier.

However, it is very difficult to obtain the analytical form
of the barrier based on the reduced state equations (4) ∼ (6),
since the retrogressive path equations (RPEs) along with them
is quite complicated to solve. To this end, we start from the
state equations (1) ∼ (3) and have the following main equation

min
ϕ1,ϕ2

max
φ

vp(λ1 sinϕ1 − λ2 cosϕ1) + vp(λ3 sinϕ2−

− λ4 cosϕ2) + ve(λ5 sinφ− λ6 cosφ) = 0.
(23)

The min and max are furnished in (23) by ϕ∗
1, ϕ∗

2 and φ∗

respectively, where

sinϕ∗
1 =

−λ1

ρ1
, cosϕ∗

1 =
λ2

ρ1
, ρ1 =

√
λ2
1 + λ2

2 (24)

sinϕ∗
2 =

−λ3

ρ2
, cosϕ∗

2 =
λ4

ρ2
, ρ2 =

√
λ2
3 + λ2

4 (25)

sinφ∗ =
λ5

ρ3
, cosφ∗ =

λ6

ρ3
, ρ3 =

√
λ2
5 + λ2

6 (26)

so that the main equation (23) can be rewritten as

−vp(ρ1 + ρ2) + veρ3 = 0. (27)

We are led to the RPEs [7] as follows:

x̊1 =
vpλ1

ρ1
, ẙ1 =

vpλ2

ρ1
(28)

x̊2 =
vpλ3

ρ2
, ẙ2 =

vpλ4

ρ2
(29)

x̊e = −vpλ5

ρ3
, ẙe = −vpλ6

ρ3
(30)

λ̊1 = λ̊2 = · · · = λ̊6 = 0 (31)

where ˚ denotes the temporal derivative in retrogressive time.
The target of the pursuers is min{d1, d2} = 0, but in fact,

the distances d1 and d2 must be equal to zero simultaneously,
because if not the evader can do better by maintaining a small
distance to the closer pursuer and decreasing its distance to the
further pursuer. Thus we can parameterize the boundary of the
pursuers’ target set by x1 = x2 = xe = s1, y1 = y2 = ye =
s2. The normal vector λ = (λ1, λ2, . . . , λ6) of this boundary
satisfies

λ1 + λ3 + λ5 = 0, λ2 + λ4 + λ6 = 0. (32)

Integrating the RPEs (28) ∼ (31) from any point on the BUP,
we obtain the optimal trajectories of the players as follows

x1 = s1 +
vpλ1

ρ1
τ, y1 = s2 +

vpλ2

ρ1
τ (33)

x2 = s1 +
vpλ3

ρ2
τ, y2 = s2 +

vpλ4

ρ2
τ (34)

xe = s1 +
ve(λ1 + λ3)

ρ3
τ, ye = s2 +

ve(λ2 + λ4)

ρ3
τ (35)

where τ is the reversed time and λ1, . . . , λ4 are undetermined
constants satisfying (27) and (32).

Fig. 5 shows the trajectories of the players associated with
the optimal strategies (24) ∼ (26) in the second sub-game,
where the pursuers P1, P2 and the evader E meet at the point
Q(s1, s2) from their initial positions after ∆t time. We express
these trajectories using the reduced state variables d1, d2 and
θ, and find that the barrier represented by (33) ∼ (35) has the
following property.

Theorem 4.3: In the second sub-game of kind, the optimal
trajectories of the players on the barrier satisfy

d1 = d2, θ = arccos(1− 2a2). (36)

Proof: Applying the sine law and the Pythagorean theo-
rem to the triangles △EP1P2 and △AP2Q (see Fig. 5), we
have

v2e∆t2 =
(
d2 cosβ − r12

2

)2
+ (d2 sinβ + w)2 (37)

v2p∆t2 = w2 +
r212
4

(38)
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Fig. 5. The trajectories of the players associated with the optimal strategies
(24) ∼ (26) in the second sub-game, where their destination Q(s1, s2) is
on the perpendicular bisector of line segment P1P2. The lengths of segments
AQ, P1Q, EQ and P2Q are equal to w, vp∆t, ve∆t and vp∆t, respectively.
β = ∠EP2P1.

where

cosβ =
d2 − d1 cos θ

r12
, sinβ =

d1 sin θ

r12
. (39)

Combining (37) and (38), and eliminating ∆t yield an equation
with respect to w,

(1− a2)w2 − 2a2d2 sinβ · w +
r212
4

(1− a2)−

− a2d22 + a2d2r12 cosβ = 0. (40)

The pursuers’ win requires that the discriminant of equation
(40) must be non-negative:

4a4d22 sin
2 β − 4(1− a2)·

·
[r212
4

(1− a2)− a2d22 + a2d2r12 cosβ
]
≥ 0.

Simplifying the above inequality

4a2d22 −
[
(1− a2)r12 + 2a2d2 cosβ

]2 ≥ 0 (41)

then substituting (39) into (41), we see that

r12 ≤ a(d1 + d2).

On the contrary, the evader’s win demands that equation (40)
has no real root which implies that r12 > a(d1 + d2). Thus
the above suggests that r12 = a(d1+d2) holds on the barrier,
but substantiation is needed.

When r12 = a(d1 + d2) holds, θ = Θ, the root of equation
(40) on the barrier is

w0 =
a2d2 sinβ

1− a2
=

ad1d2 sinΘ

(1− a2)(d1 + d2)

where Θ is the non-escape angle represented by (13). And the
corresponding time consumption is given by

∆t20 =
d1d2

v2e − v2p
. (42)

Moreover, it is easy to see that the optimal strategy of the
evader satisfies

cosα∗ =

√
1− a2(d1 + d2)

2
√
d1d2

=

√
cosΘ + 1

2

which implies that α∗ = Θ/2 = θ/2. Then according to the
sine law, the optimal strategies of the pursuers can be derived
by

sin ϕ̂∗
1 =

sinα∗

a
, cos ϕ̂∗

1 =

√
1− a2(d1 − d2)

2a
√
d1d2

sin ϕ̂∗
2 =

sinα∗

a
, cos ϕ̂∗

2 =

√
1− a2(d2 − d1)

2a
√
d1d2

and obviously ϕ̂∗
1 + ϕ̂∗

2 = π. Thus we see that △EP1Q and
△EP2Q in Fig. 5 are congruent triangles, then d1 = d2. From
Remark 4.2 we know that θ = arccos(1− 2a2) at this point.

It can be seen from Theorem 4.3 that the state satisfying
(36) is exactly the intersection of the boundaries B1 and B2,
which means that the barrier of the whole fishing game is
beginning to extend from (36). Next, we will integrate the
solutions of the two sub-games of kind based on this point.

C. Integration of the Winning Regions and the Barrier

We have known that in the first sub-game D1
p and D1

e are the
winning regions of the pursuers and the evader, respectively,
and the intersection of their boundaries is the barrier in the
second sub-game. Since Ω\D1

p ⊃ D1
e , it is predictable that the

evader can achieve success when the state lies in the region
Ω\{D1

p ∪ D1
e } as long as it constantly changes its direction

to maximize the included angle θ. Therefore, the pursuers’
winning region of the whole game is D1

p while the evader’s
winning region is Ω\D1

p , thus the barrier of the whole game
is given by B1.

In order to demonstrate that the barrier actually has the
above characteristics, it is convenient to switch to a three-
dimensional relative state space [16], where the state variables
are x, y and z (see Fig. 6). The coordinates of the pursuers
and the evader in the plane correspond to P1(0, z), P2(0,−z)
and E(x, y), respectively.

Fig. 6. Fishing game in the relative state space with variables x, y and z.
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In Fig. 7, the barrier of fishing game in the three-
dimensional relative state space are shown. From initial points
above the barrier, the evader can choose a suitable strategy
to succeed in passing the gap between the two pursuers. On
the contrary, from points below the barrier, the two pursuers
can adopt suitable strategies to prevent the evader’s threading
successfully.

Fig. 7. The barrier of fishing game in the three-dimensional relative state
space with a = 0.6.

A more intuitive delineation of the barriers with different
a and a fixed z is sketched in Fig. 8, where the locus of E
conforming to the surface B1 is an ellipse, which is given by
the following equation

x2 + (1− a2)y2 =
(1− a2)z2

a2
. (43)

The inner side of the ellipse (excluding the points P1 and P2)
is the escape zone, whose size decreases with a.

Fig. 8. The barriers of fishing game with a fixed z = 1 for different a (from
0.9 to 0.3), where the two small red circles represent the positions of the
pursuers.

V. OPTIMAL STRATEGIES FOR THE PLAYERS

We have already constructed the forms of the barrier and
winning regions analytically in the fishing game, which com-
prise a solution in the game of kind. In this section, we
will discuss the optimal strategies for the players in scope
of a game of degree [7]. This work, fusion of the games of
kind and degree, contains of two parts: when the initial state
lies in D1

p , the objective of the pursuers will be to capture
the evader as effectively as possible, further minimizing their
winning time T1. On the contrary, the evader will endeavor to
delay the pursuers’ victory to maximize the time T1. When
the initial state is in Ω\D1

p , the objective of the pursuers
will be maximizing the evader’s winning time T2 which the
evader seeks to minimize 1. Similar to the previous situation
encountered in the game of kind, the main obstruction in the
game of degree is also the characterization of the competition
focuses, θ and min{d1, d2}. Thus we continue to use the
method of explicit policy, partitioning the state space into
several regions and then solving the optimal strategies of the
players in these regions respectively.

A. Optimal Strategies in the Pursuers’ Winning Region

We take the winning time T1 or T2 as the payoff of the
fishing game of degree. Thus, when the initial positions of
the players are in the pursuers’ winning region D1

p , the payoff
function is given by

min
ϕ̂1,ϕ̂2

max
α

J1 = min
ϕ̂1,ϕ̂2

max
α

∫ T1

t0

1 dt (44)

Naturally, if the evader starts from the pursuers far enough,
as shown in Fig. 9, the two pursuers can go straight towards
each other to prevent the evader from threading, while the
evader only can move towards the midpoint Q between the
initial positions of the pursuers as close as possible.

According to the sine law and the Pythagorean theorem,

|EQ| =
√
(
1

2
d1 sin θ)2 + [d1 cos θ +

1

2
(d2 − d1 cos θ)]2

=
1

2

√
d21 + d22 + 2d1d2 cos θ (45)

then the optimal strategies of the players are

sin ϕ̂1
∗
=

d2 sin θ

r12
, cos ϕ̂1

∗
=

d1 − d2 cos θ

r12
(46)

sin ϕ̂2
∗
=

d1 sin θ

r12
, cos ϕ̂2

∗
=

d1 cos θ − d2
r12

(47)

sinα∗ =
1
2d1 sin θ

|EQ|
=

d1 sin θ√
d21 + d22 + 2d1d2 cos θ

(48)

cosα∗ =
1
2 (d2 + d1 cos θ)

|EQ|
=

d2 + d1 cos θ√
d21 + d22 + 2d1d2 cos θ

(49)

1Note that the objective of the pursuers is not the traditional pattern of
minimizing the closest distance to the evader in this case, because it will
not only lead to the loss of their original superiority of cooperation but also
increase the evader’s advantage in speed.
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However, the pursuers’ strategies (46) and (47) are available
only when

r12
2vp

≤ |EQ|
ve

(50)

that is,

r212
4v2p

≤ d21 + d22 + 2d1d2 cos θ

4v2e
=

2(d21 + d22)− r212
4v2e

(51)

Simplifying the above inequality, we have the following con-
ditions with respect to the state variables

r212 ≤ 2a2

1 + a2
(d21 + d22) (52)

or
cos θ ≥ (1− a2)(d21 + d22)

2(1 + a2)d1d2
. (53)

Fig. 9. The optimal trajectories of the players when the state satisfies the
condition (53), where Q is the midpoint of segment P1P2.

Corresponding to the previous three-dimensional relative
state space, the locus of E(x, y) on the boundary of (53)
denoted by B3 is a circle

x2 + y2 =
z2

a2
(54)

and the terminal time T1 = z(t0)/vp + t0.
Additionally, for the boundary B2, the locus of E is a

configuration of two segments of the circular arcs(
x± (1− 2a2)z

2a
√
1− a2

)2

+ y2 =
z2

4a2(1− a2)
(55)

where the notation “±” will be “+” when x ≤ 0, or “−” when
x > 0, and the intersections of the two circular arcs with the
x-axis must be at (±z

√
1− a2/a, 0). Particularly, when a =√

2/2, B2 will be a perfect circle furnished by x2 + y2 = z2.
Thus we can partition the relative state space into four zones

using the boundaries B1, B2, and B3, such as an instance
shown in Fig. 10 for a given z, where zone 1 and zone 2
including B3 and B1 constitute the pursuers’ winning region
D1

p , while zone 3 and zone 4 excluding the points P1, P2

constitute the evader’s winning region Ω\D1
p .

In particular, from Fig. 10 we can see that B1 is tangent
to B3 at the point with {r12 = a(d1 + d2), and θ = 0},
which inspires us that after the state holds on {r12 ≤ a(d1 +

Fig. 10. The partition of the relative state space, where the shaded region is
the evader’s winning region.

d2), and θ = 0}, the pursuers can adopt the strategies (46) and
(47) to achieve rendezvous, i.e., r12 = 0, and then terminate
the game (responding to Remark 4.3).

Thus in zone 2 with the boundary B1, the pursuers will
choose some suitable strategies to decrease the included angle
θ to zero as quickly as possible. Obviously, the strategies
represented by (8) are optimal, and correspondingly the evader
has to choose the strategy (9) to maximize the pursuers’
winning time T1. Their trajectories associated with the optimal
strategies are shown in Fig. 11.

When d01 < d02, the evader E tends to P2 with curvilinear
motion (Fig. 11(a)). When d01 = d02, the evader moves straight
along with the angular bisector of θ0, and correspondingly
the pursuers have two options: one is using strategy (8) in
curvilinear motion (see Fig. 11 (b)), the other one is choosing
strategies (24) and (25) to directly meet the evader at a point
(see Fig. 11 (c)). Comparatively speaking, the latter is better
than the former because of less time consumption, but if the
evader does not play optimally, the former will be better since
(8) is an optimal feedback strategy while (24) and (25) are
the conservative open-loop strategies only depending on the
initial state.

Certainly, the trajectories generated from the above two
options coincide with each other when d01 = d02 and θ0 =
arccos(1 − 2a2) (see Fig. 11 (d)). From (42), we know that
the time consumption at this point, is d01/

√
v2e − v2p. Thus in

zone 2, for the situations (c) and (d) the terminal time satisfies
T1 ≤ t0 + d01/

√
v2e − v2p.

Suppose the final values of d1, d2 and r12 are equal to
df1 , df2 and rf12 when the game terminates, respectively. For
the situation (b), since θ0 < arccos(1 − 2a2), cosα∗ =
cos(θ0/2) >

√
1− a2, then from (4) ∼ (5) and (8) ∼ (9)

we know that

|ḋ1| = |ḋ2| > ve
√
1− a2 =

√
v2e − v2p. (56)
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Fig. 11. The optimal trajectories of the players in zone 2, where df1 , df2 and rf12 are the final values of d1, d2 and r12 when the game terminates, respectively.

Thus the terminal time

T1 < t0 +
d01 − df1√
v2e − v2p

≤ t0 +
d01√

v2e − v2p

. (57)

Similarly, for the situation (a) with d01 < d02, since in the
final time the value of z satisfies

zf =
rf12
2

<
a(df1 + df2 )

2
< adf2 (58)

then according to the discussion of terminal time in zone 1,

T1 < t0 +
d02 − df2√
v2e − v2p

+
adf2
vp

< t0 +
d02 − df2√
v2e − v2p

+
df2√

v2e − v2p

= t0 +
d02√

v2e − v2p

(59)
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In a word, the terminal time T1 in zone 2 satisfies

T1 ≤ t0 +
max{d01, d02}√

v2e − v2p

. (60)

B. Optimal Strategies in the Evader’s Winning Region

When the initial positions of the players lie in the evader’s
winning region Ω\D1

p , the payoff function of the fishing game
of degree is changed into

max
ϕ̂1,ϕ̂2

min
α

J2 = max
ϕ̂1,ϕ̂2

min
α

∫ T2

t0

1 dt (61)

where T2 is the evader’s winning time.
Symmetric with the case in zone 2, the optimal strategies

of the pursuers and the evader in zone 3 are given by (8)
and (9) respectively. The corresponding optimal trajectories
of the players are shown in Fig. 12, where we can see that
they travel on spirals maintaining the rate of their relative
distance, b = d1/d2, constant and equal to the initial value
b0 = d01/d

0
2. Similarly, the terminal time satisfies T2 ≤

t0 +max{d01, d02}/
√

v2e − v2p since θ will increase to π prior
to that min{d1, d2} decreasing to zero.

Fig. 12. The optimal trajectories of the players in zone 3.

When the initial state lies in zone 4, clearly, from the proofs
of Theorem 4.2, we know that the evader will succeed as
long as it moves straight towards the interspace between two
Apollonius circles (as shown in Fig. 3). Thus, the optimal
strategy of the evader satisfies ξ < α∗ < θ− ξ (ξ = arcsin a).
Correspondingly, the optimal trajectories of the pursuers will
also be the straight lines. Suppose the evader moves to E′ in
∆t time with the heading α, in order to maximize the terminal
time T2 the pursuers P1 and P2 should select P ′

1 and P ′
2 as

their endpoints, respectively, to minimize the possible included
angle θ′ (see Fig. 13 (a), next page). Thus at the terminal time
T2, Fig. 13 (b) will be the final situation of the fishing game,
where the optimal strategies (headings) of the pursuers are

perpendicular to line P1P2 respectively. Then the expression
of ∆t can be derived according to the sine law,

∆t =
d1d2 sin θ

r12(ve sin(α+ β)− vp)
(62)

where sinβ = d1 sin θ/r12, cosβ = (d2 − d1 cos θ)/r12. For
the evader, to minimize ∆t, the value of α∗ within the interval
(ξ, θ − ξ) should furnish the max in sin(α + β). Thus the
terminal time T2 satisfies

T2 ≤ t0 +
d01d

0
2 sin θ0

r012(ve min{σ1, σ2} − vp)
(63)

where

σ1 =
1

r012

[
a(d02 − d01 cos θ0) +

√
1− a2d01 sin θ0

]
(64)

σ2 =
1

r012

[
a(d01 − d02 cos θ0) +

√
1− a2d02 sin θ0

]
. (65)

In particular, if d01 = d02, then α∗ = θ0/2 and T2 reaches
the minimum t0 +

d0
1 sin θ0√

2+2 cos θ0(ve−vp)
.

VI. CONCLUSIONS

A so-called “fishing game” with point capture is investigated
in this paper. Due to the faster speed of the evader, the possi-
bility of capture or escape is required to be determined first.
A critical aspect in the game of kind, barrier, is constructed
analytically by using the method of explicit policy, which
shows that the pursuers or the evader can adopt some suitable
strategies to achieve success when the initial state lies in their
own winning regions. Then for these winning regions, the
players’ optimal feedback strategies are solved in terms of
the game of degree. Furthermore, corresponding to the four
zones of the initial state space, the optimal trajectories of the
players are delineated and the upper bounds of their winning
times are also derived.

Since general pursuit-evasion game with more than two
pursuers and one evader can be regarded as a combination
of multiple fishing games, the findings of this paper are
useful for analyzing the interception, tracking, besiegement
or collision avoidance of multi-robot systems to some faster
targets. Especially, the barrier can be served as not only the
basis for determining the number of the pursuers, but also
a necessary and sufficient condition of successful capture in
related pursuit-evasion games with point capture. Besides,
the method of explicit policy is computationally efficient in
generating control strategies and winning conditions for the
players, and avoids solving the complicated HJI equations.
With the aid of geometric analysis, the obtained expression of
the barrier is fairly concise.

Due to the requirement of passing the gap between two
pursuers, the evader’s actions are bounded in the fishing game.
Next step, we will be interested in studying the game of kind
with other restrictions on the players, such as the pursuers’
cooperation and the more complex motion models (e.g. the
motion model of robotic fish [60]). The pursuit-evasion game
with more pursuers is another focus forward in the direction
of our research.
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Fig. 13. The optimal trajectories of the players in zone 4, where the blue (green) dashed circle represents the attainable location of P1 (P2) after ∆t time,
and the shaded area is the interspace between two Apollonius circles associated with the initial positions of the players.
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